WO2015129173A1 - 溶銑の脱硫方法および脱硫剤 - Google Patents

溶銑の脱硫方法および脱硫剤 Download PDF

Info

Publication number
WO2015129173A1
WO2015129173A1 PCT/JP2015/000561 JP2015000561W WO2015129173A1 WO 2015129173 A1 WO2015129173 A1 WO 2015129173A1 JP 2015000561 W JP2015000561 W JP 2015000561W WO 2015129173 A1 WO2015129173 A1 WO 2015129173A1
Authority
WO
WIPO (PCT)
Prior art keywords
desulfurization
hot metal
agent
desulfurizing agent
calcium aluminate
Prior art date
Application number
PCT/JP2015/000561
Other languages
English (en)
French (fr)
Inventor
市川 彰
中井 由枝
五十川 徹
秀栄 田中
錦織 正規
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to BR112015009513-5A priority Critical patent/BR112015009513B1/pt
Priority to JP2016505021A priority patent/JP6061053B2/ja
Priority to KR1020167023124A priority patent/KR101818031B1/ko
Priority to CN201580010243.6A priority patent/CN106062216A/zh
Publication of WO2015129173A1 publication Critical patent/WO2015129173A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • C21C1/025Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present disclosure relates to a hot metal desulfurization method and a desulfurization agent.
  • the hot metal discharged from the blast furnace contains a high concentration of sulfur (S) due to raw materials used in the blast furnace such as coke.
  • Sulfur is basically a component that adversely affects the quality of steel. For this reason, in a steelmaking process, hot metal desulfurization and molten steel desulfurization are performed according to the required quality of steel.
  • a method of adding a desulfurizing agent mainly composed of inexpensive quick lime (CaO) and stirring and mixing is used.
  • a fouling agent is used to promote hatching of the added desulfurizing agent.
  • a fluorite (CaF 2 ) -based fossilizing agent is known as a fossilizing agent excellent in promoting the hatching of a desulfurizing agent.
  • fluorine (F) contained in fluorite is an element for which there is a concern that it may adversely affect the environment and the human body and an emission standard is provided. For this reason, when recycling slag after desulfurization treatment using fluorite, elution of fluorine from recycled products becomes a problem, and therefore, a desulfurization agent having a high desulfurization ability and containing no fluorine component is required. .
  • Patent Document 1 discloses a steel additive containing a CaO.Al 2 O 3 -based mineral (calcium aluminate) having a low melting point as a desulfurization agent not containing a fluorine component used in desulfurization.
  • Patent Document 2 discloses calcium aluminate having a mass ratio of CaO: 40 to 60% and Al 2 O 3 : 60 to 40% as a desulfurization agent not containing fluorine, and the above calcium aluminum.
  • a desulfurization agent in which a nate and quicklime (CaO) are mixed is disclosed.
  • Patent Document 1 since the steel additive disclosed in Patent Document 1 has a high mixing ratio of 100% of calcium aluminate in the desulfurization agent, which has a high production cost, the cost for desulfurization treatment has been increased. Further, since the steel additive disclosed in Patent Document 2 has a high mixing cost of 77% to 100% in the calcium aluminate desulfurization agent, the cost for desulfurization treatment is the same as in Patent Document 1. Was inviting.
  • the present invention has been made paying attention to the above-described problem, and a hot metal desulfurization method and desulfurization capable of reducing the cost of desulfurization treatment while obtaining a predetermined desulfurization ability without using fluorine.
  • the purpose is to provide an agent.
  • calcium aluminate and quicklime are mixed into the hot metal with a mass concentration ratio of Al 2 O 3 / (Al 2 O 3 + CaO) is greater than 0 0.20 or less, and desulfurization process in which the mixing ratio of the calcium aluminate is added a desulfurizing agent which is a mixture such that less 0Mass% ultra 75 mass% in the hot metal is provided.
  • calcium aluminate and quicklime are mixed at a mass concentration ratio of Al 2 O 3 / (Al 2 O 3 + CaO) of more than 0 and 0.20 or less, and the mixing ratio of calcium aluminate.
  • the hot metal desulfurization method and the desulfurization agent according to the present invention it is possible to reduce the cost required for the desulfurization treatment while obtaining a predetermined desulfurization ability without using fluorine.
  • the present inventors focused on the influence of the ratio of alumina contained in calcium aluminate in the desulfurizing agent on the desulfurization ability, and mixed quick lime (CaO) and calcium aluminate at various mixing ratios.
  • the desulfurizing agent prepared in this manner was introduced into the hot metal, and the produced slag was examined for the alumina ratio in the slag and the S concentration (mass%) in the slag.
  • the alumina ratio is the ratio calculated from mass% of CaO and Al 2 O 3 in the slag represented by formula (1).
  • (% Al 2 O 3 ) represents mass% of Al 2 O 3 in the slag
  • (% CaO) represents mass% of CaO in the slag.
  • FIG. 1 shows the results of an investigation regarding the alumina ratio in the slag produced from the above desulfurizing agent and the S concentration in the slag.
  • the S concentration in the slag is as high as 2% or more in the region where the alumina ratio in the slag is more than 0% and 20% or less.
  • the alumina ratio is as low as more than 0% and 20% or less, calcium aluminate and quicklime are uniformly mixed in advance to prevent uneven distribution of calcium aluminate. It was inferred that the effect of improving the desulfurization ability of lime was obtained efficiently due to the presence of the material evenly around.
  • the region where the alumina ratio in the desulfurizing agent is more than 0% and not more than 20% corresponds to the region where the calcium aluminate ratio in the desulfurizing agent is more than 0% and not more than 30%. That is, the inventors of the present invention, in a region where the ratio of calcium aluminate in the desulfurizing agent is low, the effect of calcium aluminate to lower the melting point of the desulfurizing agent by alumina and the liquid produced by melting calcium aluminate. It was conceived that the effect of improving the dissolution rate of the desulfurizing agent by the phase was obtained, and the melting of the desulfurizing agent lime was effectively promoted.
  • the alumina ratio in the slag exceeds 20%, it has been clarified that the S concentration in the slag rapidly decreases and the S concentration in the slag becomes less than 2%. This is because the alumina reduces the S distribution ratio in the slag (ratio of the S concentration in the slag to the S concentration in the hot metal) compared to the effect of improving the liquid phase ratio by lowering the melting point of the desulfurizing agent to which alumina is added. It was inferred that the large size had an effect.
  • the present inventors have found that the desulfurization agent having a low alumina ratio and a low calcium aluminate ratio qualitatively has a lower liquid phase ratio than the desulfurization agent having a high alumina ratio, but S in the slag. Since the distribution ratio becomes high, it was clarified that melting of lime can be effectively promoted by uniformly dispersing alumina.
  • the present inventors set the mass concentration ratio Al 2 O 3 / (Al 2 O 3 + CaO) of the desulfurizing agent to be more than 0 and 0.20 or less, so that the mixing ratio of calcium aluminate is low, and the liquid phase Even in the case of a desulfurization agent having a low rate improvement effect, the inventors have conceived that a predetermined desulfurization ability can be obtained, and have made the present invention.
  • the predetermined desulfurization ability is at least equivalent to that of a desulfurization agent using fluorite or a desulfurization agent having a high mixing ratio of calcium aluminate.
  • the desulfurization method of the hot metal 16 which concerns on the 1st Embodiment of this invention is demonstrated.
  • the desulfurization method of the hot metal 16 according to the first embodiment is a mechanical stirring type desulfurization method using the mechanical stirring type desulfurization apparatus 20a.
  • the structure of the mechanical stirring desulfurization apparatus 20a used with the desulfurization method of the hot metal 16 which concerns on 1st Embodiment is demonstrated.
  • the mechanical stirring type desulfurization apparatus 20a includes an impeller 21 made of a refractory provided at one end of an impeller shaft 211, a desulfurization agent addition unit 24 for storing the desulfurization agent 18 and adding the desulfurization agent 18 to the molten iron 16, a dust collection hood 22, and an exhaust.
  • the impeller 21 is a stirring blade that stirs the hot metal 16 by being immersed and buried in the hot metal 16 accommodated in the hot metal pan 14 loaded on the carriage 12 and rotating. Further, the impeller 21 is configured to be vertically movable and rotatable about the impeller shaft 211 as a rotation axis by a lifting device and a rotating device (not shown) provided on the other end side of the impeller shaft 211.
  • the desulfurizing agent adding unit 24 adds the desulfurizing agent 18 to the hot metal 16, stores a hopper 241 for storing the desulfurizing agent 18, a cutting device 242 for cutting the desulfurizing agent 18 from the hopper 241, and the hot desulfurizing agent 18. 16 and an input chute 243 to be input to No. 16.
  • the desulfurization agent 18 has a mass concentration ratio Al 2 O 3 / (Al 2 O 3 + CaO) indicating a ratio of alumina in the desulfurization agent 18 of more than 0 and 0.20 or less, and a mixing ratio of calcium aluminate in the desulfurization agent 18 Is produced by uniformly mixing calcium aluminate and quicklime so that the amount becomes more than 0 mass% and not more than 75 mass%.
  • the inventors of the present invention set the alumina ratio of the desulfurizing agent 18 to 20% or less and the mixing ratio of the calcium aluminate in the desulfurizing agent 18 to 0 mass% or more and 30 mass% or less in the slag.
  • the present inventors set the alumina ratio of the desulfurizing agent 18 to 20% or less, so that the mixing ratio of the calcium aluminate in the desulfurizing agent 18 is more than 30 mass% and more than 75 mass%. It was confirmed that the predetermined desulfurization ability was obtained also in the following ranges.
  • Calcium aluminate is produced by mixing quick lime and alumina at a predetermined mass ratio, premelting and grinding.
  • the predetermined mass ratio of calcium aluminate quicklime and alumina is a mass ratio calculated so that the ratio of alumina in the desulfurizing agent 18 and the mixing ratio of calcium aluminate satisfy all the above conditions.
  • the mass ratio is represented by CaO / Al 2 O 3 .
  • the mass ratio CaO / Al 2 O 3 of calcium aluminate is calculated as 3/2.
  • the dust collection hood 22 is provided so as to cover the upper part of the hot metal ladle 14.
  • the exhaust duct 23 is attached to the dust collection hood 22.
  • the mechanical stirring type desulfurization apparatus 20 a causes the dust collector (not shown) connected to the exhaust duct 23 to suck the exhaust gas and dust generated during the processing through the exhaust duct 23.
  • what kind of hot metal may be used for the hot metal 16 of the first embodiment. That is, for the hot metal 16, hot metal that has been discharged from the blast furnace, hot metal in which at least one treatment of desiliconization or dephosphorization has been performed in advance after the extraction is used.
  • the addition amount of the desulfurizing agent 18 is determined from various conditions such as the desulfurizing ability of the desulfurizing agent 18, the component / temperature of the hot metal 16, the target S concentration after treatment, and the treatment time. Thereafter, when stirring for a predetermined time is performed, the rotation of the impeller 21 is stopped, the impeller 21 is raised, and the desulfurization process is completed.
  • the desulfurization method of the hot metal 16 according to the first embodiment is the desulfurization method using the mechanical stirring desulfurization apparatus 20a in which the desulfurization agent 18 is added.
  • a mixture obtained by mixing so that Al 2 O 3 / (Al 2 O 3 + CaO) is more than 0 and 0.20 or less and the mixing ratio of calcium aluminate is more than 0 mass% and 75 mass% or less is used as the desulfurization agent 18. For this reason, it is possible to efficiently obtain the effect of improving the dissolution rate of the desulfurizing agent 18 by the liquid phase generated by lowering the melting point of the desulfurizing agent 18 with alumina and melting the calcium aluminate.
  • the mechanical stirring type desulfurization apparatus 20b of the second embodiment is different from the mechanical stirring type desulfurization apparatus 20a of the first embodiment in the configuration of the desulfurizing agent addition unit 25, but the other configuration is the first implementation. It is the same as the form. That is, the mechanical stirring desulfurization apparatus 20b includes an impeller 21, a dust collection hood 22, and an exhaust duct 23, as in the first embodiment. Furthermore, the mechanical stirring type desulfurization apparatus 20b includes a desulfurization agent addition unit 25 that stores the desulfurization agent 18 and adds it by top blowing.
  • the desulfurization agent addition unit 25 includes a dispenser 251 that stores the desulfurization agent 18, a cutout device 252 that cuts out the desulfurization agent 18 from the dispenser 251, a powder supply pipe 253 that supplies the cut out desulfurization agent 18 and the transport gas G. And an upper blowing lance 254 that is connected to the tip of the powder supply pipe 253 and injects the desulfurizing agent 18 onto the molten iron 16 together with the conveying gas G.
  • the carrier gas G can be any one or more of an inert gas, a non-oxidizing gas, and a reducing gas, and may be nitrogen or argon, for example.
  • the desulfurizing agent 18 is the same as the desulfurizing agent 18 according to the first embodiment.
  • the addition amount of the desulfurizing agent 18 is determined from various conditions such as the desulfurizing ability of the desulfurizing agent 18, the component / temperature of the hot metal 16, the target S concentration after treatment, and the treatment time. Thereafter, when stirring for a predetermined time is performed, the rotation of the impeller 21 is stopped, the impeller 21 is raised, and the desulfurization process is completed.
  • the desulfurization method of the hot metal 16 according to the second embodiment is the desulfurization method using the mechanical stirring type desulfurization apparatus 20b in which the desulfurization agent 18 is added by blowing, and the calcium aluminate and the quick lime are mass-concentrated.
  • Agent 18 is used. For this reason, similarly to the first embodiment, it is possible to efficiently obtain the effect of improving the dissolution rate of the desulfurization agent by the liquid phase generated by lowering the melting point of the desulfurization agent by alumina and melting the calcium aluminate.
  • the desulfurization method of the hot metal 16 according to the second embodiment efficiently adds the desulfurization agent 18 having a small particle size to the addition of the desulfurization agent 18 by adding the desulfurization agent 18 by top blowing. Can do.
  • the desulfurization method of the hot metal 16 according to the second embodiment can improve the reaction interfacial area by using the desulfurization agent 18 having a smaller particle size as compared with the first embodiment, and obtain a high desulfurization ability. be able to.
  • an oxidizing agent such as metallic aluminum, aluminum ash, or silicon may be added in addition to the desulfurizing agent 18 during the desulfurization treatment.
  • the oxidizing agent is stored in a container different from the hopper 241 and the dispenser 251 provided in the mechanical stirring type desulfurization apparatuses 20a and 20b, and is added by cutting out a predetermined amount like the desulfurizing agent 18. Also good.
  • the mechanical stirring type desulfurization apparatus according to the present invention may include two desulfurization agent addition units 24 and 25. At this time, the desulfurization agent 18 is added from the two desulfurization agent addition sections 24 and 25 so that the total addition amount becomes a predetermined addition amount.
  • the desulfurization agent 18 in which quick lime and calcium aluminate are mixed is stored in the dispenser 251 and added to the hot metal 16, but the present invention is not limited to this.
  • at least two dispensers 251 are provided, quick lime and calcium aluminate are separately stored in different dispensers 251, and a predetermined amount of quick lime and calcium aluminate are cut out and added to the hot metal 16 together with the conveying gas G. Also good.
  • the quick lime and calcium aluminate to be added are such that the ratio of alumina contained in calcium aluminate with respect to the total addition amount is more than 0% and not more than 20%, and the mixing ratio of calcium aluminate with respect to the total addition amount is more than 0 mass% and more than 75 mass. % Is cut out. Furthermore, quicklime and calcium aluminate are cut out simultaneously, and are uniformly mixed by the conveying gas G when the powder supply pipe 253 and the upper blowing lance 254 are conveyed. Thus, by mixing the desulfurizing agent 18 immediately before injection, it is possible to more uniformly disperse the alumina of the desulfurizing agent 18 as compared with the desulfurizing agent addition unit 25 according to the second embodiment.
  • the hot metal 16 in the hot metal ladle 14 used the mechanical stirring type desulfurization apparatus 20a, 20b which stirs and mixes using the impeller 21, this invention is not limited to this.
  • a mechanical stirring type desulfurization device such as the impeller 21 for stirring the hot metal 16
  • the gas injected from the top blowing lance, or the lance immersed in the hot metal 16 or the bottom of the hot metal pan 14 is provided.
  • the desulfurizing agent 18 may be added as in the first embodiment, or may be injected together with the agitation gas from a lance for injecting the agitation gas.
  • another container capable of accommodating the hot metal 16 such as a converter or a topped may be used.
  • calcium aluminate is manufactured by mixing quick lime and alumina and then premelting, but the present invention is not limited to this.
  • calcium aluminate a plurality of types of minerals (3CaO ⁇ Al 2 O 3 which main component consisting of CaO and Al 2 O 3, 12CaO ⁇ 7Al 2 O 3, CaO ⁇ Al 2 O 3, CaO ⁇ 2Al 2 O 3 Etc.), a plurality of raw materials may be selected and mixed from quick lime and alumina so that CaO / Al 2 O 3 has a predetermined mass ratio similar to that of the above embodiment, and further premelted. .
  • Example 1 a desulfurization agent having a mass concentration ratio of Al 2 O 3 / (Al 2 O 3 + CaO) of 0.20 and a mixing ratio of calcium aluminate of 30 mass%, 75 mass%, and 50 mass% was used.
  • the treatment was performed by the desulfurization method according to the first embodiment.
  • Example 2 a desulfurization agent having a mass concentration ratio of Al 2 O 3 / (Al 2 O 3 + CaO) of 0.20 and a mixing ratio of calcium aluminate of 30 mass% is used, and the second embodiment is applied.
  • the treatment was performed by the desulfurization method.
  • Comparative Example 1 a mixture of quick lime and calcium aluminate having a mass concentration ratio of Al 2 O 3 / (Al 2 O 3 + CaO) of 0.50 as a desulfurizing agent and a calcium aluminate mixture ratio of 75 mass% is used. Used and treated in the same manner as in the first embodiment. Further, in Comparative Example 2, as a desulfurizing agent using fluorite, a mixture in which quick lime was mixed by 97 mass% and fluorite was mixed by 3 mass% was added and treated in the same manner as in the first embodiment. Furthermore, in Comparative Example 3, only lime was used as a desulfurizing agent, and the desulfurizing agent was added in the same manner as in the first embodiment for the treatment. The other conditions such as the rotation speed of the impeller 21 and the processing time are the same at all levels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

 フッ素を用いずに所定の脱硫能を得ながらも脱硫処理に掛かるコストを低減することが可能な溶銑の脱硫方法および脱硫剤を提供すること。溶銑(16)を撹拌させて脱硫処理する際に、溶銑(16)に、カルシウムアルミネートと生石灰とを、質量濃度比Al/(Al+CaO)が0.01以上0.20以下、かつ脱硫剤(18)中のカルシウムアルミネートの混合率が0mass%超75mass%以下となるように混合させた脱硫剤(18)を添加する。

Description

溶銑の脱硫方法および脱硫剤
 本開示は、溶銑の脱硫方法および脱硫剤に関する。
 高炉から出銑された溶銑中には、コークス等の高炉で用いられる原料に起因して、高濃度の硫黄(S)が含まれる。硫黄は、基本的に鋼の品質に悪影響を与える成分である。このため、製鋼工程では、要求される鋼の品質に応じて、溶銑脱硫および溶鋼脱硫が行われる。このうち、溶銑脱硫では、安価な生石灰(CaO)を主体とする脱硫剤を添加し、撹拌・混合する方法が用いられている。
 このような脱硫処理においては、添加する脱硫剤の滓化を促進させるために造滓剤が用いられる。脱硫剤の滓化促進に優れた造滓剤としては、蛍石(CaF)系造滓剤が知られている。しかし、蛍石に含まれるフッ素(F)は、環境や人体に悪影響を与える懸念があり、排出基準が設けられている元素である。このため、蛍石を用いた脱硫処理後のスラグをリサイクルする際に、リサイクル製品からのフッ素の溶出が問題となることから、脱硫能が高く、フッ素成分を含まない脱硫剤が求められている。
 例えば、特許文献1には、脱硫の際に用いるフッ素成分を含まない脱硫剤として、融点の低いCaO・Al系鉱物(カルシウムアルミネート)を含有する鉄鋼添加剤が開示されている。
 また、例えば、特許文献2には、フッ素を含有しない脱硫剤として、化学成分が質量比でCaO:40~60%、Al:60~40%であるカルシウムアルミネート、および上記カルシウムアルミネートと生石灰(CaO)とを混合させた脱硫剤が開示されている。
特開2003-129122号公報 特開2007-46083号公報
 しかし、特許文献1に開示された鉄鋼添加剤は、製造コストの高いカルシウムアルミネートの脱硫剤中の混合比率が100%と高いため、脱硫処理に掛かるコストの増大を招いていた。
 また、特許文献2に開示された鉄鋼添加剤は、製造コストの高いカルシウムアルミネートの脱硫剤中の混合比率が77%~100%と高いため、特許文献1と同様に、脱硫処理に掛かるコストの増大を招いていた。
 そこで、本発明は、上記の課題に着目してなされたものであり、フッ素を用いずに所定の脱硫能を得ながらも脱硫処理に掛かるコストを低減することが可能な溶銑の脱硫方法および脱硫剤を提供することを目的としている。
 上記目的を達成するために、本発明の一実施形態によれば、溶銑を撹拌させて脱硫処理する際に、溶銑に、カルシウムアルミネートと生石灰とを、質量濃度比Al/(Al+CaO)が0超0.20以下、かつカルシウムアルミネートの混合率が0mass%超75mass%以下となるように混合させた脱硫剤を溶銑に添加する脱硫方法が提供される。
 また、本発明の一実施形態によれば、カルシウムアルミネートと生石灰とを、質量濃度比Al/(Al+CaO)が0超0.20以下、かつカルシウムアルミネートの混合率が0mass%超75mass%以下となるように混合させた混合物である脱硫剤が提供される。
 本発明に係る溶銑の脱硫方法および脱硫剤によれば、フッ素を用いずに所定の脱硫能を得ながらも脱硫処理に掛かるコストを低減することが可能となる。
スラグ中のアルミナ比率とスラグ中のS濃度の関係を示すグラフである。 本発明の第1の実施形態で用いる機械撹拌式脱硫装置を示す概略図である。 本発明の第2の実施形態で用いる機械撹拌式脱硫装置を示す概略図である。
 以下、本発明を実施するための形態(以下、実施形態という。)を、詳細に説明する。以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の細部について記載される。しかしながら、かかる特定の細部がなくとも1つ以上の実施形態が実施できることは明らかであろう。他にも、図面を簡潔にするために、周知の構造及び装置が略図で示されている。
 本発明に先立ち、本発明者らは、脱硫剤中のカルシウムアルミネートに含まれるアルミナの比率が脱硫能に与える影響に注目し、生石灰(CaO)とカルシウムアルミネートとを様々な混合比で混合させて作成した脱硫剤を溶銑中に投入し、生成したスラグについてスラグ中のアルミナ比率とスラグ中のS濃度(mass%)についてそれぞれ調査した。なお、アルミナ比率は、(1)式で示すスラグ中のCaOとAlのmass%から算出される比率である。(1)式における、(%Al)はスラグ中のAlのmass%、(%CaO)はスラグ中のCaOのmass%をそれぞれ示す。
Figure JPOXMLDOC01-appb-M000001
 また、本調査では、質量濃度比でCaO/Al=1/2となるように、生石灰とアルミナとを混合させた後、混合させた生石灰とアルミナとをプリメルトさせて製造したカルシウムアルミネートを使用した。さらに、上記の方法で製造したカルシウムアルミネートを粉砕し、粉砕したカルシウムアルミネートと生石灰とを、質量濃度比Al/(Al+CaO)が0超0.46以下の範囲の所定の質量濃度比となるように混合させて製造した脱硫剤を使用した。なお、このような方法で製造される脱硫剤には、フッ素は含有されていない。
 図1に、上記の脱硫剤から生成されるスラグ中のアルミナ比率とスラグ中のS濃度とについての調査結果を示す。調査の結果、スラグ中のアルミナ比率が0%超20%以下の領域では、スラグ中のS濃度が2%以上と高くなることが明らかになった。この結果は、アルミナ比率が0%超20%以下と低い場合において、カルシウムアルミネートと生石灰とが事前に均一に混合されることで、カルシウムアルミネートの偏在が防止され、カルシウムアルミネートが生石灰粒子のまわりにムラなく存在することにより、石灰の脱硫能を改善する効果が効率良く得られたためと推察された。ここで、本調査の脱硫剤におけるアルミナ比率0%超20%以下の領域は、脱硫剤中のカルシウムアルミネートの比率0%超30%以下の領域に相当する。すなわち、本発明者らは、脱硫剤中のカルシウムアルミネートの比率が低い領域において、カルシウムアルミネートの作用であるアルミナによる脱硫剤の低融点化効果、およびカルシウムアルミネートの溶融により生成された液相による脱硫剤の溶解速度向上効果が得られ、脱硫剤の石灰の溶融が効果的に促進されることを想到した。
 一方、スラグ中のアルミナ比率が20%超の領域では、スラグ中のS濃度が急激に低下し、スラグ中のS濃度が2%未満となることが明らかになった。これは、アルミナが添加された脱硫剤の低融点化による液相率向上効果に比べ、アルミナがスラグ中のS分配比(溶銑中のS濃度に対するスラグ中のS濃度の比)を低下させる効果が大きいことが影響していると推察された。
 以上の調査結果より、本発明者らは、アルミナ比率およびカルシウムアルミネートの比率が低い脱硫剤について、定性的にはアルミナ比率が高い脱硫剤に比べ液相率が低下するものの、スラグ中のS分配比が高くなるため、アルミナを均一に分散させることで石灰の溶融を効果的に促進させることができることを明らかにした。これにより、本発明者らは、脱硫剤の質量濃度比Al/(Al+CaO)を0超0.20以下とすることで、カルシウムアルミネートの混合比が低く、液相率向上効果の低い脱硫剤においても、所定の脱硫能を得られることを想到し、本発明をなすに至った。なお、所定の脱硫能は、蛍石を用いた脱硫剤やカルシウムアルミネートの混合率が高い脱硫剤等と少なくとも同等の脱硫能である。
 <第1の実施形態>
 [機械撹拌式脱硫装置の構成]
 次に、図2を参照して、本発明の第1の実施形態に係る溶銑16の脱硫方法について説明する。第1の実施形態に係る溶銑16の脱硫方法は、機械撹拌式脱硫装置20aを用いた機械撹拌式脱硫方法である。まず、第1の実施形態に係る溶銑16の脱硫方法で用いられる機械撹拌式脱硫装置20aの構成について説明する。
 機械撹拌式脱硫装置20aは、インペラ軸211の一端に設けられた耐火物からなるインペラ21と、脱硫剤18を貯蔵し溶銑16に添加する脱硫剤添加部24と、集塵フード22と、排気ダクト23とを備える。
 インペラ21は、台車12に積載された溶銑鍋14に収容される溶銑16に浸漬・埋没し、回転することにより溶銑16を撹拌する撹拌羽根である。また、インペラ21は、インペラ軸211の他端側に設けられる不図示の昇降装置および回転装置により、鉛直方向に昇降可能に、且つインペラ軸211を回転軸として回転可能に構成される。
 脱硫剤添加部24は、脱硫剤18を溶銑16に上添加し、脱硫剤18を貯蔵するホッパ241と、ホッパ241から脱硫剤18を切り出しする切り出し装置242と、切り出された脱硫剤18を溶銑16に投入する投入シュート243とを有する。
 脱硫剤18は、脱硫剤18中のアルミナの比率を示す質量濃度比Al/(Al+CaO)が0超0.20以下、かつ脱硫剤18中のカルシウムアルミネートの混合率が0mass%超75mass%以下となるように、カルシウムアルミネートと生石灰とが均一に混合されることで製造される。ここで、上記の調査において、本願発明者らは、脱硫剤18のアルミナ比率を20%以下かつ、脱硫剤18中のカルシウムアルミネートの混合率を0mass%超30mass%以下とすることでスラグ中のS分配比を向上させることができることを明らかにした。さらに、後述の実施例で説明するように、本発明者らは、脱硫剤18のアルミナ比率を20%以下とすることにより、脱硫剤18中のカルシウムアルミネートの混合率が30mass%超75mass%以下の範囲についても、所定の脱硫能を得られることを確認した。
 カルシウムアルミネートは、所定の質量比で生石灰とアルミナとを混合させた後、プリメルトさせ、粉砕することで製造される。ここで、カルシウムアルミネートの生石灰とアルミナとの所定の質量比とは、脱硫剤18中のアルミナの比率およびカルシウムアルミネートの混合率が上記の条件を全て満たすように算出される質量比であり、質量比CaO/Alで示される。例えば、脱硫剤18中のアルミナの比率が20%、かつカルシウムアルミネートの混合率が50%である場合、カルシウムアルミネートの質量比CaO/Alは、3/2と算出される。
 集塵フード22は、溶銑鍋14の上部を覆うように設けられる。排気ダクト23は、集塵フード22に取り付けられる。機械撹拌式脱硫装置20aは、排気ダクト23を介して、処理中に発生する排気やダストを排気ダクト23に接続される集塵機(不図示)に吸引させる。
 また、第1の実施形態の溶銑16には、どのような溶銑が用いられてもよい。すなわち、溶銑16には、高炉から出銑した状態の溶銑や、出銑した後に脱珪または脱燐の少なくとも一方の処理が予め行われた溶銑などが用いられる。
 [溶銑の脱硫方法]
 次に、第1の実施形態に係る溶銑16の脱硫方法について説明する。まず、インペラ21の位置が溶銑鍋14のほぼ中心となるように、溶銑鍋14を積載した台車12を移動する。次いで、インペラ21を下降させて溶銑16に浸漬させ、インペラ21を回転させる。さらに、ホッパ241に収容された脱硫剤18を切り出し装置242で必要量だけ切り出し、投入シュート243を介して溶銑16に上添加する。脱硫剤18の添加量は、脱硫剤18の脱硫能、溶銑16の成分・温度、目標とする処理後のS濃度、処理時間等の種々の条件から決定される。その後、所定時間の撹拌が行われたら、インペラ21の回転を停止し、インペラ21を上昇させ、脱硫処理が終了する。
 以上のように、第1の実施形態に係る溶銑16の脱硫方法は、脱硫剤18を上添加する機械撹拌式脱硫装置20aを用いた脱硫方法において、カルシウムアルミネートと生石灰とを、質量濃度比Al/(Al+CaO)が0超0.20以下、かつカルシウムアルミネートの混合率が0mass%超75mass%以下となるように混合させた混合物を脱硫剤18として用いる。このため、アルミナによる脱硫剤18の低融点化およびカルシウムアルミネートの溶融により生成された液相による脱硫剤18の溶解速度向上効果を効率よく得ることが可能となる。これにより、カルシウムアルミネートの混合率が75%超と高い脱硫剤や、フッ素を含有する脱硫剤等を用いた場合と少なくとも同等となる所定の脱硫能を得ることが可能となる。したがって、カルシウムアルミネートの混合率が75%超と高い脱硫剤を用いる場合と比べ、高価なカルシウムアルミネートの使用量を削減することができ、脱硫処理に掛かるコストを低減することが可能となる。また、フッ素を含有する脱硫剤を用いる場合と比べ、処理後のスラグ中のフッ素含有量を低減することが可能となる。
 なお、質量濃度比Al/(Al+CaO)が0の場合、アルミナによる液相率向上効果が得られなくなるため、高い脱硫能は得られない。
 <第2の実施形態>
 [機械撹拌式脱硫装置の構成]
 次に、図3を参照して、本発明の第2の実施形態に係る溶銑16の脱硫方法について説明する。まず、第2の実施形態に係る溶銑16の脱硫方法で用いられる機械撹拌式脱硫装置20bの構成について説明する。
 第2の実施形態の機械撹拌式脱硫装置20bは、第1の実施形態の機械撹拌式脱硫装置20aに対し、脱硫剤添加部25の構成が異なるが、それ以外の構成については第1の実施形態と同様である。すなわち、機械撹拌式脱硫装置20bは、第1の実施形態と同様に、インペラ21と、集塵フード22と、排気ダクト23とを備える。さらに、機械撹拌式脱硫装置20bは、脱硫剤18を貯蔵し、上吹き添加する脱硫剤添加部25を備える。脱硫剤添加部25は、脱硫剤18を貯蔵するディスペンサ251と、ディスペンサ251から脱硫剤18を切り出す切り出し装置252と、切り出された脱硫剤18と搬送用ガスGとを供給する紛体供給管253と、紛体供給管253の先端に接続され搬送用ガスGと共に脱硫剤18を溶銑16に噴射する上吹きランス254とを有する。
 搬送用ガスGは、不活性ガス、非酸化性ガスおよび還元性ガスのいずれか一種類以上とすることができ、例えば窒素やアルゴン等であってもよい。
 脱硫剤18は、第1の実施形態に係る脱硫剤18と同様である。
 [溶銑の脱硫方法]
 次に、第2の実施形態に係る溶銑16の脱硫方法について説明する。まず、インペラ21の位置が溶銑鍋14のほぼ中心となるように、溶銑鍋14を積載した台車12を移動する。次いで、インペラ21を下降させて溶銑16に浸漬させ、インペラ21を回転させる。さらに、ディスペンサ251に収容された脱硫剤18を切り出し装置252で必要量だけ切り出し、切り出した脱硫剤18を紛体供給管253および上吹きランス254を介して搬送用ガスGと共に溶銑16に噴射し、上吹き添加する。脱硫剤18の添加量は、脱硫剤18の脱硫能、溶銑16の成分・温度、目標とする処理後のS濃度、処理時間等の種々の条件から決定される。その後、所定時間の撹拌が行われたら、インペラ21の回転を停止し、インペラ21を上昇させ、脱硫処理が終了する。
 以上のように、第2の実施形態に係る溶銑16の脱硫方法は、脱硫剤18を上吹き添加する機械撹拌式脱硫装置20bを用いた脱硫方法において、カルシウムアルミネートと生石灰とを、質量濃度比Al/(Al+CaO)が0超0.20以下、かつ脱硫剤18中のカルシウムアルミネートの混合率が0mass%超75mass%以下となるように均一に混合させた脱硫剤18を用いる。このため、第1の実施形態と同様に、アルミナによる脱硫剤の低融点化およびカルシウムアルミネートの溶融により生成された液相による脱硫剤の溶解速度向上効果を効率よく得ることが可能となる。
 さらに、第2の実施形態に係る溶銑16の脱硫方法は、脱硫剤18を上吹き添加することにより、脱硫剤18を上添加する場合に対し、粒度の小さい脱硫剤18を効率良く添加することができる。このため、第2の実施形態に係る溶銑16の脱硫方法は、第1の実施形態に比べ、粒度の小さい脱硫剤18を用いることで反応界面積を向上させることができ、高い脱硫能を得ることができる。
 <変形例>
 以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態の種々の変形例とともに本発明の別の実施形態も明らかである。従って、特許請求の範囲は、本発明及び要旨に含まれるこれらの変形例または実施形態も網羅すると解すべきである。
 例えば、本発明に係る溶銑の脱硫方法では、脱硫処理中に脱硫剤18に加え、金属アルミ、アルミ灰、シリコン等の酸化剤を添加してもよい。この際、酸化剤は、機械撹拌式脱硫装置20a,20bに設けられた、ホッパ241やディスペンサ251とは別の容器に貯蔵され、脱硫剤18と同様に所定量が切り出されることで添加されてもよい。
 また、例えば、本発明に係る機械撹拌式脱硫装置は、2つの脱硫剤添加部24,25を備えてもよい。このとき、脱硫剤18は、合計の添加量が所定の添加量となるように、2つの脱硫剤添加部24,25からそれぞれ添加される。
 また、第2の実施形態では、ディスペンサ251に生石灰とカルシウムアルミネートとを混合した脱硫剤18を貯蔵し、溶銑16に添加する構成としたが、本発明はこれに限らない。例えば、ディスペンサ251を少なくとも2つ設け、異なるディスペンサ251に生石灰とカルシウムアルミネートとをそれぞれ別に貯蔵し、生石灰とカルシウムアルミネートとを所定量切り出し、搬送用ガスGと共に溶銑16に上吹き添加してもよい。この際、添加する生石灰とカルシウムアルミネートとは、総添加量に対するカルシウムアルミネートに含まれるアルミナの比率が0%超20%以下、かつ総添加量に対するカルシウムアルミネートの混合率が0mass%超75mass%以下となるように切り出される。さらに、生石灰とカルシウムアルミネートとは、同時に切り出され、搬送用ガスGによって、紛体供給管253および上吹きランス254を搬送される際に均一に混合される。このように脱硫剤18を噴射の直前に混合させることにより、第2の実施形態に係る脱硫剤添加部25に比べ、脱硫剤18のアルミナをより均一に分散させることが可能となる。
 また、上記実施形態では、溶銑鍋14中の溶銑16を、インペラ21を用いて撹拌・混合する機械撹拌式脱硫装置20a,20bを用いたが、本発明はこれに限らない。例えば、溶銑16の撹拌にインペラ21等の機械撹拌式の脱硫装置を用いずに、上吹きランスから噴射されるガス、または溶銑16中に浸漬されるランスや溶銑鍋14の底部に設けられた羽口から噴射されるガスにより撹拌されるガス撹拌式の脱硫装置を用いてもよい。このとき、脱硫剤18は、第1の実施形態のように上添加されてもよく、撹拌ガスを噴射するランスから撹拌ガスと共に噴射されてもよい。さらに、このようなガス撹拌式の脱硫装置では、溶銑鍋14の代わりに、転炉やトピード等の溶銑16を収容可能な他の容器が用いられてもよい。
 また、上記実施形態では、生石灰とアルミナとを混合させた後、プリメルトさせることで、カルシウムアルミネートを製造したが、本発明はこれに限らない。例えば、カルシウムアルミネートは、主要成分がCaOおよびAlからなる複数種類の鉱物(3CaO・Al、12CaO・7Al、CaO・Al、CaO・2Al等)、生石灰およびアルミナから、CaO/Alが上記実施形態と同様の所定の質量比となるように、複数の原材料が選択および混合され、さらにプリメルトされたものが用いられてもよい。
 次に、本発明者が行った実験とその結果を、実施例として説明する。
 本実施例では、図1に示すように、第1および第2の実施形態に相当する2水準の実施例、および3水準の比較例について実験を行った。実験では、表1に示す各種条件で200tの溶銑16に対して脱硫処理を行い、処理前および処理後の溶銑中のS濃度について調査した。
 実施例1,3,4では、質量濃度比Al/(Al+CaO)が0.20、かつカルシウムアルミネートの混合率が30mass%,75mass%,50mass%の脱硫剤を用い、第1の実施形態に係る脱硫方法でそれぞれ処理を行った。また、実施例2では、質量濃度比Al/(Al+CaO)が0.20、かつカルシウムアルミネートの混合率が30mass%の脱硫剤を用い、第2の実施形態に係る脱硫方法で処理を行った。さらに、比較例1では、脱硫剤として質量濃度比Al/(Al+CaO)が0.50、且つカルシウムアルミネートの配合率が75mass%の生石灰とカルシウムアルミネートとの混合物を用い、第1の実施形態と同様に上添加し処理を行った。さらに、比較例2では、蛍石を用いた脱硫剤として、生石灰を97mass%、蛍石を3mass%混合させた混合物を用い、第1の実施形態と同様に上添加し処理を行った。さらに、比較例3では、脱硫剤として生石灰のみを用い、第1の実施形態と同様に脱硫剤を上添加して処理を行った。なお、インペラ21の回転数や、処理時間等の他の条件は、全ての水準で同様である。
Figure JPOXMLDOC01-appb-T000001
 実験の結果、実施例1~4では、比較例3の脱硫剤として生石灰のみを用いた場合に比べ、脱硫率が向上することが確認できた。また、実施例1~4では、比較例1~2と同等の脱硫率となっており、比較例1~2と同等の脱硫能が得られることが確認できた。これにより、本実施例における脱硫方法および脱硫剤によれば、フッ素を用いずに所定の脱硫能を得ながらも脱硫処理に掛かるコストを低減することが可能となることが確認できた。
 12  台車
 14  溶銑鍋
 16  溶銑
 18  脱硫剤
 20a,20b  機械撹拌式脱硫装置
 21  インペラ
 211  インペラ軸
 24  脱硫剤添加部(上添加)
 241  ホッパ
 242  切り出し装置
 243  投入シュート
 25  脱硫剤添加部(上吹き添加)
 251  ディスペンサ
 252  切り出し装置
 253  紛体供給管
 254  上吹きランス
 G  搬送用ガス

Claims (6)

  1.  溶銑を撹拌させて脱硫処理する際に、
     前記溶銑に、カルシウムアルミネートと生石灰とを、質量濃度比Al/(Al+CaO)が0超0.20以下、かつ前記カルシウムアルミネートの混合率が0mass%超75mass%以下となるように混合させた脱硫剤を前記溶銑に添加することを特徴とする溶銑の脱硫方法。
  2.  前記溶銑を脱硫する際に、機械撹拌式脱硫装置を用いる請求項1に記載の溶銑の脱硫方法。
  3.  前記脱硫剤を前記溶銑に添加する際に、前記脱硫剤を上添加することを特徴とする請求項1または2に記載の溶銑の脱硫方法。
  4.  前記脱硫剤を前記溶銑に添加する際に、前記脱硫剤を上吹きランスを介して、前記脱硫剤の搬送用ガスと共に上吹き添加することを特徴とする請求項1または2に記載の溶銑の脱硫方法。
  5.  前記カルシウムアルミネートと前記生石灰とを前記上吹きランスへの搬送中に混合させることを特徴とする請求項4に記載の溶銑の脱硫方法。
  6.  カルシウムアルミネートと生石灰とを、質量濃度比Al/(Al+CaO)が0超0.20以下、かつ前記カルシウムアルミネートの混合率が0mass%超75mass%以下となるように混合させた混合物であることを特徴とする脱硫剤。
PCT/JP2015/000561 2014-02-26 2015-02-06 溶銑の脱硫方法および脱硫剤 WO2015129173A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112015009513-5A BR112015009513B1 (pt) 2014-02-26 2015-02-06 método para dessulfurar ferro fundido e agente de dessulfuração
JP2016505021A JP6061053B2 (ja) 2014-02-26 2015-02-06 溶銑の脱硫方法および脱硫剤
KR1020167023124A KR101818031B1 (ko) 2014-02-26 2015-02-06 용선의 탈황 방법 및 탈황제
CN201580010243.6A CN106062216A (zh) 2014-02-26 2015-02-06 铁水的脱硫方法及脱硫剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-035889 2014-02-26
JP2014035889 2014-02-26

Publications (1)

Publication Number Publication Date
WO2015129173A1 true WO2015129173A1 (ja) 2015-09-03

Family

ID=54008511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000561 WO2015129173A1 (ja) 2014-02-26 2015-02-06 溶銑の脱硫方法および脱硫剤

Country Status (6)

Country Link
JP (1) JP6061053B2 (ja)
KR (1) KR101818031B1 (ja)
CN (1) CN106062216A (ja)
BR (1) BR112015009513B1 (ja)
TW (1) TWI604060B (ja)
WO (1) WO2015129173A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071854A (ja) * 2015-10-05 2017-04-13 Jfeスチール株式会社 脱硫剤、機械攪拌式溶銑脱硫方法及び脱硫溶銑の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108048615A (zh) * 2017-12-25 2018-05-18 上海盛宝冶金科技有限公司 一种铁水预处理用脱硫剂及其制备方法
CN108396092A (zh) * 2018-03-26 2018-08-14 首臣(上海)新能源科技有限公司 一种无氟kr脱硫剂,其制造方法及脱硫的方法
CN111137964A (zh) * 2020-01-14 2020-05-12 福建永荣科技有限公司 一种燃煤锅炉氨法脱硫浆液脱氯处理工艺
CN113388716B (zh) * 2021-05-24 2022-10-18 鞍钢股份有限公司 一种无氟复合型铁水脱硫剂及制备方法
CN113403451A (zh) * 2021-05-24 2021-09-17 鞍钢股份有限公司 一种无氟铁水脱硫用球形渣及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222425A (ja) * 1992-02-17 1993-08-31 Nippon Steel Corp カルシウム・アルミネートによる溶銑脱硫および脱硫滓の処理方法
JPH093515A (ja) * 1995-06-14 1997-01-07 Nippon Steel Corp 低珪素濃度溶銑の脱硫方法
JP2004263285A (ja) * 2003-03-04 2004-09-24 Nippon Steel Corp 溶鋼の脱硫剤および脱硫方法およびカルシウムアルミネート源の製造方法
JP2008231494A (ja) * 2007-03-20 2008-10-02 Jfe Steel Kk 脱硫剤及び溶融鉄の脱硫処理方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4414562B2 (ja) * 2000-05-25 2010-02-10 新日本製鐵株式会社 溶銑の脱硫剤及び脱硫方法
JP4707241B2 (ja) * 2001-01-09 2011-06-22 日新製鋼株式会社 溶銑脱硫剤および溶銑脱硫方法
JP2003129122A (ja) * 2001-10-25 2003-05-08 Denki Kagaku Kogyo Kk 鉄鋼添加剤
CN1238532C (zh) * 2003-06-20 2006-01-25 盛富春 低氟复合高活性氧化钙脱硫剂及其制造方法
JP4234118B2 (ja) * 2005-08-08 2009-03-04 電気化学工業株式会社 鉄鋼添加剤
JP5066923B2 (ja) * 2007-01-31 2012-11-07 Jfeスチール株式会社 溶銑の脱硫処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222425A (ja) * 1992-02-17 1993-08-31 Nippon Steel Corp カルシウム・アルミネートによる溶銑脱硫および脱硫滓の処理方法
JPH093515A (ja) * 1995-06-14 1997-01-07 Nippon Steel Corp 低珪素濃度溶銑の脱硫方法
JP2004263285A (ja) * 2003-03-04 2004-09-24 Nippon Steel Corp 溶鋼の脱硫剤および脱硫方法およびカルシウムアルミネート源の製造方法
JP2008231494A (ja) * 2007-03-20 2008-10-02 Jfe Steel Kk 脱硫剤及び溶融鉄の脱硫処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071854A (ja) * 2015-10-05 2017-04-13 Jfeスチール株式会社 脱硫剤、機械攪拌式溶銑脱硫方法及び脱硫溶銑の製造方法

Also Published As

Publication number Publication date
JPWO2015129173A1 (ja) 2017-03-30
KR20160113212A (ko) 2016-09-28
CN106062216A (zh) 2016-10-26
TWI604060B (zh) 2017-11-01
BR112015009513A2 (pt) 2017-07-04
TW201536925A (zh) 2015-10-01
KR101818031B1 (ko) 2018-01-12
JP6061053B2 (ja) 2017-01-18
BR112015009513B1 (pt) 2021-01-05

Similar Documents

Publication Publication Date Title
JP6061053B2 (ja) 溶銑の脱硫方法および脱硫剤
JP4819187B2 (ja) 精錬剤および精錬方法
JP4845078B2 (ja) 溶銑の脱硫方法
JP5045031B2 (ja) 溶銑の脱硫剤及び脱硫処理方法
JP5177170B2 (ja) 溶銑の脱硫方法
JP2008231495A (ja) 脱硫剤の製造方法
JP5895887B2 (ja) 溶鋼の脱硫処理方法
JP5341235B2 (ja) 脱硫剤及び溶融鉄の脱硫処理方法
JP4635672B2 (ja) 溶融金属の精錬方法
JP4927467B2 (ja) CaO系脱硫剤及び溶鉄の脱硫処理方法
JP5910069B2 (ja) 脱硫剤及びその脱硫剤を用いた溶銑の脱硫処理方法、並びに、耐火物を併用した溶銑の脱硫処理方法
JP5074063B2 (ja) 脱硫剤及び溶融鉄の脱硫処理方法
US20090013827A1 (en) Conditioned Quicklime for Injection to a Molten Bath of a Steel-Making Vessel
JP5098518B2 (ja) 溶銑の脱燐方法
JP3978355B2 (ja) 溶銑の脱硫剤および脱硫方法
JP6649639B2 (ja) 溶銑処理容器内への脱硫剤の添加方法及び溶銑の精錬方法
JP2018172719A (ja) 溶銑の脱硫方法
JP6238019B2 (ja) 復硫の少ない溶銑脱硫方法
JP5418248B2 (ja) 溶銑の脱硫方法
JP2005146333A (ja) 脱硫スラグの利用方法
JP5668641B2 (ja) 溶銑の脱硫方法
JP5481899B2 (ja) 溶銑の脱硫剤及び脱硫処理方法
JP2023003056A (ja) 溶銑の脱硫処理方法及び脱硫剤
JP2008184684A (ja) 溶銑の脱硫方法
JP6375822B2 (ja) 溶銑の脱珪処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754912

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015009513

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016505021

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167023124

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15754912

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015009513

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150428