WO2015111291A1 - 導電性皮膜形成浴 - Google Patents

導電性皮膜形成浴 Download PDF

Info

Publication number
WO2015111291A1
WO2015111291A1 PCT/JP2014/080527 JP2014080527W WO2015111291A1 WO 2015111291 A1 WO2015111291 A1 WO 2015111291A1 JP 2014080527 W JP2014080527 W JP 2014080527W WO 2015111291 A1 WO2015111291 A1 WO 2015111291A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
bath
water
plating
forming bath
Prior art date
Application number
PCT/JP2014/080527
Other languages
English (en)
French (fr)
Inventor
至哉 竹内
純二 吉川
晃治 北
Original Assignee
奥野製薬工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥野製薬工業株式会社 filed Critical 奥野製薬工業株式会社
Priority to JP2015558743A priority Critical patent/JP6024044B2/ja
Priority to CN201480064153.0A priority patent/CN105765104A/zh
Priority to US15/034,424 priority patent/US9951433B2/en
Priority to EP14879928.1A priority patent/EP3070185B1/en
Priority to KR1020167013814A priority patent/KR101799347B1/ko
Publication of WO2015111291A1 publication Critical patent/WO2015111291A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/285Sensitising or activating with tin based compound or composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers

Definitions

  • the present invention relates to a conductive film forming bath, a method for forming a conductive film, and a method for electroplating a non-conductive plastic material.
  • a method of forming a decorative electroplated film on a non-conductive plastic molded article after degreasing and etching, neutralization and pre-dip are performed as necessary, and then a palladium compound and a tin compound are contained.
  • a method of performing electroconductive film formation (electroless copper plating) and electroplating sequentially after applying a catalyst for electroless copper plating using a colloidal solution, performing activation treatment (accelerator treatment) if necessary Is widely practiced.
  • an alkaline aqueous solution has been conventionally used as an electroless copper plating bath used for forming a conductive film.
  • an alkaline electroless copper plating bath is used to form a conductive film, hydrolysis of the non-conductive plastic to be treated is easily promoted, and an electroplated film is formed on the formed conductive film.
  • the present invention has been made in view of the above-described current state of the prior art, and its main purpose is to form a conductive film made of an alkaline aqueous solution that can be used when an electroplated film is formed on a non-conductive plastic material. It is a forming bath, and it is to provide a novel conductive film forming bath capable of forming an electroplated film having a good appearance without deteriorating adhesion to a nonconductive plastic material.
  • an aqueous solution obtained by adding a water-soluble polymer having a polyoxyalkylene structure to an alkaline aqueous solution containing a copper compound and a complexing agent is used as a conductive film forming bath, and an electroplated film is formed on the conductive film formed from this bath. It has been found that an electroplated film having a good appearance can be formed without causing a decrease in adhesion to a non-conductive plastic material, and the present invention has been completed here.
  • the present invention has been completed as a result of further research based on such knowledge.
  • the present invention provides the following conductive film forming bath, a method for forming a conductive film, and a method for electroplating a non-conductive plastic material.
  • a conductive film forming bath comprising an aqueous solution containing a copper compound, a complexing agent, an alkali metal hydroxide, and a water-soluble polymer having a polyoxyalkylene structure.
  • the conductive film forming bath according to Item 2 wherein the reducing agent is at least one component selected from the group consisting of a carboxyl group-containing reducing compound and a saccharide having a reducing property of 6 or more carbon atoms.
  • Item 4. Item 4.
  • the water-soluble polymer having a polyoxyalkylene structure is a repeating unit having an oxyalkylene group represented by the general formula (1): — (O—Ak) — (wherein Ak represents an alkylene group) as a structural unit.
  • Item 6. Item 6. The conductive film forming bath according to any one of Items 1 to 5, wherein the water-soluble polymer having a polyoxyalkylene structure is a polymer having a number average molecular weight of 300 or more.
  • Item 7. Item 7. A conductive film is formed on a non-conductive plastic material, wherein the conductive film forming bath according to any one of Items 1 to 6 is contacted with a non-conductive plastic material to which a catalytic substance is added. Method.
  • Item 8. A method for electroplating a non-conductive plastic material, comprising a step of electroplating after forming a conductive film using a conductive film forming bath by the method according to Item 7.
  • the conductive film forming bath of the present invention comprises an aqueous solution containing a copper compound, a complexing agent, an alkali metal hydroxide, and a water-soluble polymer having a polyoxyalkylene structure.
  • the copper compound may be a water-soluble copper compound, and examples thereof include copper sulfate, copper chloride, copper carbonate, copper hydroxide, and hydrates thereof.
  • a copper compound can be used individually by 1 type or in mixture of 2 or more types as appropriate.
  • the content of the copper compound is preferably about 0.1 to 5 g / l, more preferably about 0.8 to 1.2 g / l as the amount of copper metal.
  • a known complexing agent effective for copper ions can be used.
  • examples of such a complexing agent include hydantoins and organic carboxylic acids.
  • hydantoins include hydantoin, 1-methylhydantoin, 1,3-dimethylhydantoin, 5,5-dimethylhydantoin, and allantoin.
  • organic carboxylic acids ethylenediaminetetraacetic acid, glycolic acid, lactic acid, hydroacrylic acid, oxybutyric acid, tartronic acid, malic acid, citric acid, tartaric acid, succinic acid, and salts thereof can be used.
  • salts water-soluble salts such as alkali metal salts, alkaline earth metal salts, and ammonium salts can be used.
  • potassium sodium tartrate (Rochelle salt) is particularly preferably used.
  • Complexing agents can be used singly or in appropriate combination of two or more.
  • the compounding amount of the complexing agent is preferably about 2 to 50 g / l, more preferably about 10 to 40 g / l.
  • the amount of the complexing agent is too small, the complexing power is insufficient and the copper dissolving power is insufficient, which is not preferable.
  • alkali metal hydroxide sodium hydroxide, potassium hydroxide, lithium hydroxide, and the like are suitable from the viewpoint of easy availability and cost.
  • Alkali metal hydroxides can be used singly or in appropriate combination of two or more.
  • the blending amount of the alkali metal hydroxide is preferably about 10 to 80 g / l, more preferably about 30 to 70 g / l.
  • the blending amount of the alkali metal hydroxide is too small, the formation of the conductive film is insufficient, and the electroplating in the next step is not preferable because the deposition property of the plating in the low current density region is deteriorated.
  • Water-soluble polymer having a polyoxyalkylene structure can be used without particular limitation as long as it is a polymer having a polyoxyalkylene structure portion as a main chain and a hydrophilic group. it can.
  • the polyoxyalkylene structure is a repeating unit having an oxyalkylene group represented by the general formula (1): — (O—Ak) — (wherein Ak represents an alkylene group) as a structural unit. Means structure.
  • the repeating number of the oxyalkylene structure represented by the said General formula (1) Although it may be the range used as the number average molecular weight mentioned later, Usually, it has 4 or more repeating numbers. It is preferable.
  • the alkylene group represented by Ak is preferably an alkylene group having 1 to 20 carbon atoms, and more preferably an alkylene group having 2 to 4 carbon atoms.
  • the alkylene group may be linear or branched.
  • examples of the alkylene group include a methylene group, an ethylene group, a propylene group, and a butylene group.
  • examples of the alkylene group include a methylene group, an ethylene group, a propylene group, and a butylene group.
  • an ethylene group and a propylene group are preferable from the viewpoint of a good water-soluble polymer.
  • the alkylene groups represented by Ak may be all the same in each structural unit, Alternatively, two or more different alkylene groups may be used.
  • the polyoxyalkylene structure contains two or more types of oxyalkylene groups, there is no particular limitation on the bonding form of different types of oxyalkylene groups, and any of the block, random, and alternating bonding forms may be used. Also good.
  • the repeating unit represented by the general formula (1): — (O—Ak) — is, for example, an oxy group represented by the general formula (3): — (O—CH (CH 3 ) CH 2 ) —.
  • — (O—CH (CH 3 ) CH 2 ) — When it is a propylene group, it will have an optical isomer, but the stereoregularity may be any of isotactic, syndiotactic and atactic.
  • the hydrophilic group contained in the water-soluble polymer having a polyoxyalkylene structure is not particularly limited as long as sufficient water-solubility can be imparted, and may be any anionic, cationic or nonionic hydrophilic group.
  • hydrophilic groups include anionic groups such as carboxyl groups, sulfonic acid groups, sulfate ester groups, phosphonic acid groups, and phosphoric acid groups, and salts thereof; nonionic groups such as hydroxyl groups and amino groups; Cationic groups such as ammonium group and phosphonium group are exemplified.
  • examples of the anionic group salt include alkali metal salts, alkaline earth metal salts, ammonium salts, and organic ammonium salts.
  • the number of hydrophilic groups is not particularly limited as long as sufficient water solubility can be imparted to the water-soluble polymer having a polyoxyalkylene structure.
  • the bonding position of the hydrophilic group is not particularly limited, and the bonding can be performed at any position such as a terminal or a side chain of the water-soluble polymer.
  • the specific number of hydrophilic groups and bonding positions are particularly limited as long as the water-soluble polymer to which the hydrophilic groups are bonded can be dissolved in the conductive film-forming bath of the present invention within the concentration range described below. There is no.
  • the water-soluble polymer having the polyoxyalkylene structure may have a substituent or other atoms in addition to the hydrophilic group.
  • a substituent or atom is not particularly limited as long as it does not prevent the polymer from being water-soluble, and examples thereof include hydrogen, an alkyl group, an alkenyl group, an aryl group, and a halogen group.
  • Polyalkylene glycol compounds polyoxyethylene octyl ether, polyoxyethylene decyl ether, polyoxyethylene lauryl ether, polyoxypropylene butyl ether, polyoxyethylene tridecyl ether, polyoxyethylene myristyl ether, polyoxyethylene polyoxypropylene octyl ether , Polyoxyethylene polyoxypropylene butyl ether, polyoxyethylene poly
  • a polyoxyalkylene alkyl ether compound such as xoxypropylene decyl ether, polyoxyethylene polyoxypropylene lauryl ether, polyoxyethylene polyoxypropylene tridecyl ether, polyoxyethylene polyoxypropylene myristyl ether, polyoxyethylene styrenated phenyl ether;
  • Jeffamine Compounds having one amino group such as M-600 and M-2070 (both are registered trademarks) and having a polyoxyalkylene structure
  • Jeffamine D-400 average molecular weight 430
  • polyethylene glycol particularly polyethylene glycol, polypropylene glycol, polyoxyethylene polyoxypropylene glycol, polyoxyethylene lauryl ether, polyoxypropylene butyl ether, polyoxyethylene polyoxypropylene butyl ether, polyoxyethylene polyoxypropylene monoamine, polyoxyethylene poly Oxypropylenediamine, polyoxyethylene oleyl cetyl ether ammonium sulfate, polyoxyethylene lauryl ether ammonium sulfate, polyoxyethylene styrenated phenyl ether ammonium sulfate, polyoxyethylene sulfosuccinate lauryl disodium, polyoxyethylene lauryl ether sodium acetate, polyoxyethylene alkyl ether Phosphate S Le, polyoxyethylene styrenated phenyl ether and the like are preferable.
  • the water-soluble polymer having a polyoxyalkylene structure can be used singly or in appropriate combination of two or more.
  • the water-soluble polymer having a polyoxyalkylene structure may have a number average molecular weight of 300 or more, preferably in the range of 500 to 50000, more preferably in the range of 600 to 20000, and particularly preferably in the range of 1000 to 20000.
  • the number average molecular weight is too small, the effect of improving the adhesion of the plating film to the nonconductive material is not sufficiently exhibited, which is not preferable.
  • the amount of the water-soluble polymer having a polyoxyalkylene structure is preferably about 0.00001 g to 100 g / l, more preferably about 0.001 to 50 g / l, and particularly preferably about 0.01 to 10 g / l. If the amount is too small, the effect of improving the adhesion of the plating film to the non-conductive material is not sufficiently exhibited, which is not preferable. On the other hand, if the blending amount of the water-soluble polymer having a polyoxyalkylene structure is too large, it is economically disadvantageous and not preferable from the viewpoint of wastewater treatment.
  • the aqueous solution containing the copper compound, complexing agent, alkali metal hydroxide, and water-soluble polymer having a polyoxyalkylene structure is further reduced as necessary.
  • An agent may be added.
  • reducing agent it is possible to use reducing agents that can reduce copper ions, and conventionally used in various electroless plating solutions. Specific examples include formaldehyde, paraformaldehyde, dimethylamine borane, glyoxylic acid, borohydride salts, saccharides having a reducibility of 6 or more carbon atoms, carboxyl group-containing reducing compounds, and the like.
  • a reducing agent can be used individually by 1 type or in mixture of 2 or more types as appropriate.
  • examples of the borohydride salt include sodium borohydride, potassium borohydride, lithium borohydride and the like.
  • Examples of the carboxyl group-containing reducing compound include reducing carboxylic acids, reducing dicarboxylic acids, and salts thereof.
  • As the carboxylic acid having reducibility formic acid, glyoxylic acid, salts thereof and the like can be used, for example.
  • dicarboxylic acid which has reducibility oxalic acid, maleic acid, these salts, etc. can be used.
  • these salts include alkali metal salts, salts having a group: —NH 4 (ammonium salts), and the like.
  • Examples of the alkali metal include lithium, sodium, and potassium.
  • the saccharides having a carbon number of 6 or more are not particularly limited as long as the saccharides have 6 or more carbon atoms and have a reducing property, and examples include known saccharides such as monosaccharides such as glucose, Examples thereof include disaccharides such as sucrose, polysaccharides such as cellulose, sugar alcohols such as sorbitol and mannitol, sugar acids such as ascorbic acid, and lactones such as gluconolactone. In addition, amino sugar, deoxy sugar and the like can be used. More preferably, the number of carbons in a saccharide having a reducing ability of 6 or more carbon atoms is about 6 to 12.
  • the total amount of the reducing agent is preferably about 0.1 to 100 g / l, more preferably about 0.5 to 50 g / l.
  • carboxyl group-containing reducing compounds and saccharides having a reducing ability of 6 or more carbon atoms are reducing agents with relatively low reducing power.
  • hydantoins and organic carboxylic acids having a relatively weak complexing power can be obtained without reducing the stability of the conductive film-forming bath. It can be used as a complexing agent. As a result, wastewater treatment becomes easy while maintaining sufficient precipitation.
  • Aliphatic polyalcohol An aliphatic polyalcohol can be further blended in the conductive film-forming bath of the present invention, if necessary.
  • aliphatic polyalcohol a linear or branched aliphatic polyalcohol having 2 to 5 carbon atoms and having 2 or more hydroxy groups can be used.
  • the carbon chain in the aliphatic polyalcohol may contain an oxygen atom.
  • the number of hydroxy groups contained in the aliphatic polyalcohol may be 2 or more, preferably 2 to 4, more preferably 2 or 3, and particularly preferably 2.
  • aliphatic polyalcohol examples include ethylene glycol, 1,2-propanediol, 1,2-butanediol, 1,2-pentanediol, glycerin, erythritol, xylitol, 1,2,4-butanetriol, diethylene glycol 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol and the like.
  • the aliphatic polyalcohol compound can be used singly or in appropriate combination of two or more.
  • the blending amount of the aliphatic polyalcohol compound is preferably about 1 to 500 g / l, more preferably about 1 to 200 g / l.
  • an aliphatic polyalcohol having 2 or less carbon atoms between two hydroxy groups is preferable to use as the aliphatic polyalcohol.
  • ethylene glycol, 1,2-propanediol, glycerin, erythritol or xylitol is more preferably used, and ethylene glycol is particularly preferably used.
  • the blending amount is about 1 to 50 g / l, and a film having excellent conductivity can be formed.
  • the blending amount of the aliphatic polyalcohol compound should be about 50 g / l or more within the above blending amount range. Is preferred.
  • Examples of the aliphatic polyalcohol having 3 or more carbon atoms between two hydroxy groups include 1,2,4-butanetriol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5- Examples include pentanediol and 2,2-dimethyl-1,3-propanediol.
  • a conductive film can be formed on a non-conductive plastic material by bringing the non-conductive plastic material provided with a catalytic substance into contact with the conductive film forming bath of the present invention. it can.
  • Non-conductive plastic material The non-conductive plastic material is not particularly limited, and for example, various large plastic materials widely used in recent years in the automobile industry and the like can be used as objects to be processed.
  • plastic parts such as various parts for automobiles such as front grills and emblems, exterior parts for electronics, various decorative plating parts such as knobs, and parts for corrosion resistance or functional plating.
  • plastic parts such as various parts for automobiles such as front grills and emblems, exterior parts for electronics, various decorative plating parts such as knobs, and parts for corrosion resistance or functional plating.
  • plastic parts such as various parts for automobiles such as front grills and emblems, exterior parts for electronics, various decorative plating parts such as knobs, and parts for corrosion resistance or functional plating.
  • decorative plating parts such as knobs
  • parts for corrosion resistance or functional plating examples include molded products.
  • the material of the plastic material is not particularly limited, and various conventionally known plastic materials can be processed.
  • PC polycarbonate
  • ABS acrylonitrile-butadiene-styrene
  • Nylon PA polyamide
  • PA polyacetal
  • General-purpose engineering plastics such as POM), polycarbonate (PC), modified polyphenylene ether (PPE), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), polyethersulfone (PES), polyetherimide having a heat resistance temperature exceeding 200 ° C (PEI), polyetheretherketone (PEEK), polyimide (PI), super engineering plastics such as liquid crystal polymer (LCP), polymer allotments such as PC / ABS It can be processed and the like.
  • POM polycarbonate
  • PPE modified polyphenylene ether
  • PBT polybutylene terephthalate
  • PPS polyphenylene sulfide
  • PES polyethersulfone
  • PEI polyetherimide having a heat resistance temperature exceeding 200 ° C
  • PEEK polyetheretherketone
  • PI polyimide
  • super engineering plastics such as liquid crystal polymer (LCP), polymer allotments such as PC / ABS It can be
  • the conductive film forming bath of the present invention When the conductive film forming bath of the present invention is used, it can be effectively used to form an electroplated film having excellent adhesion to the plastic material, and has excellent performance as an electroplating base. A film can be formed.
  • the conductive film-forming bath of the present invention provides adhesion. A conductive film having excellent performance capable of forming a film with excellent electroplating can be obtained.
  • Pretreatment process In the method for forming a conductive film of the present invention, first, as a pretreatment, in order to remove organic substances such as fingerprints, fats and oils, dusts and the like due to electrostatic action, etc. Clean the surface.
  • a known degreasing agent may be used as the treatment liquid.
  • a degreasing treatment or the like may be performed according to a conventional method using an alkali type degreasing agent or the like.
  • This step selectively dissolves the resin surface to produce an anchor effect, and this treatment can improve the adhesion and appearance of the conductive film.
  • Etching may be performed according to a conventional method.
  • a mixed solution of chromic acid and sulfuric acid may be used, and the object to be processed may be immersed in an appropriately heated solution.
  • the polybutadiene as a constituent component is eluted by oxidization of chromic acid by etching, and an anchor portion having a pore diameter of about 1 to 2 ⁇ m is formed on the resin surface.
  • Oxidative decomposition gives a polar group such as a carbonyl group, which facilitates adsorption of a catalyst such as a tin-palladium mixed colloid solution in a subsequent step.
  • the pre-etching treatment is to swell the skin layer or crystal orientation layer on the resin surface with an organic solvent, and can usually be performed using a highly polar solvent such as dimethyl sulfoxide. By performing this treatment, the etching effect can be improved.
  • an appropriate etching method may be selected according to a conventional method for a resin filled with an inorganic substance, glass fiber, or the like.
  • cleaning is performed to remove an etching solution such as chromic acid remaining on the resin surface.
  • chromic acid remaining on the resin surface can be easily removed by performing a cleaning treatment using a dilute hydrochloric acid solution or a solution containing a reducing agent such as sodium bisulfite.
  • Catalyst application step Next, a catalyst is applied to the treated product obtained in the pretreatment step.
  • the type of catalyst is not particularly limited, and various known catalysts known as ordinary electroless plating solution catalysts can be used.
  • a known noble metal catalyst-providing composition containing silver, palladium, gold, ruthenium, copper, nickel, platinum or the like as a catalyst component may be used.
  • catalyst application compositions and catalyst application methods are not particularly limited, and may be appropriately selected from known compositions and known catalyst application methods.
  • a palladium catalyst when a palladium catalyst is applied, the object to be treated is immersed in a sensitizer solution (tin (II) chloride hydrochloric acid solution) and then immersed in an activator solution (palladium chloride in hydrochloric acid solution) (sensitizer).
  • -Activator method A method of improving catalytic activity by immersing in an accelerator solution composed of an acidic solution such as sulfuric acid after soaking in a tin-palladium mixed colloidal solution to dissolve excess tin ions. (Catalyst-Accelerator method) can be applied as appropriate. Further, the catalyst can be applied only by the step of immersing in the tin-palladium mixed colloidal solution.
  • the conductive film forming bath of the present invention it is preferable to use a tin-palladium mixed colloid from the viewpoint that a plating film is likely to deposit uniformly on a resin molded product.
  • the use of a tin-palladium mixed colloid increases the amount of tin colloid remaining on the surface of the resin molded product, and the conductive film formed by displacement deposition. Can be easily formed.
  • tin-palladium mixed colloidal solution a commonly used acidic mixed colloidal solution containing palladium chloride and stannous chloride can be used.
  • a mixed colloidal solution containing about 0.05 to 0.6 g / l of palladium chloride, about 1 to 50 g / l of stannous chloride, and about 100 to 400 ml / l of 35% hydrochloric acid can be used.
  • the conditions for immersion in the tin-palladium mixed colloidal solution are not particularly limited. Usually, the temperature of the mixed colloidal solution is about 10 to 80 ° C., preferably about 20 to 40 ° C. What is necessary is just to immerse.
  • immersion time what is necessary is just to set required immersion time suitably according to the kind etc. of the conductive film formation bath of this invention.
  • the immersion time is in the range of about 2 to 10 minutes.
  • the conductive film can be formed by bringing the non-conductive plastic material provided with the catalyst substance into contact with the conductive film forming bath of the present invention.
  • Examples of a method for forming a conductive film by bringing a non-conductive plastic material provided with a catalyst into contact with the conductive film forming bath of the present invention include, for example, a non-conductive plastic provided with a catalyst in a conductive film forming bath. A method of immersing the material can be mentioned. If this method is used, a conductive film can be efficiently formed.
  • the conductive film forming bath of the present invention is preferably about pH 10 to 14, more preferably about pH 11.5 to 13.5. If the pH is too low, the smooth progress of the reduction reaction is hindered, and the reducing agent may be decomposed, etc., so that the depositing property of the conductive film is lowered and the conductive film forming bath may be decomposed. Absent. On the other hand, if the pH is too high, the stability of the conductive film forming bath tends to decrease, which is not preferable.
  • the temperature of the bath for forming the conductive film varies depending on the specific composition of the conductive film forming bath, etc., but is usually preferably about 30 ° C. or higher, and preferably about 40 to 80 ° C. More preferably, the temperature is about 50 to 70 ° C.
  • the liquid temperature of the conductive film forming bath is too low, the film deposition reaction becomes slow, and the film is not easily deposited or poor appearance tends to occur.
  • the liquid temperature of the conductive film forming bath is raised, the surface resistance value after the formation of the conductive film is further reduced, and an excellent plating appearance is obtained.
  • the liquid temperature of the conductive film forming bath is too high, evaporation of the conductive film forming bath becomes intense and it becomes difficult to maintain the plating solution composition within a predetermined range. Is not preferable because it is likely to occur.
  • the time for contacting the conductive film forming bath is not particularly limited, and may be a time that allows the conductive film to be completely covered. It can set suitably according to the surface state of a conductive film. If the contact time is too short, the conductive film is insufficient to supply onto the surface of the object to be processed, and the conductive film cannot be formed completely.
  • the immersion time is preferably about 1 to 10 minutes, particularly 3 More preferably, about 5 minutes.
  • a conductive film mainly composed of copper oxide is formed. In this case, when the formed film is brought into contact with an acidic aqueous solution, a disproportionation reaction occurs in the copper oxide, and a dense film containing metallic copper is formed.
  • an aqueous solution containing sulfuric acid is particularly preferable.
  • an aqueous solution having a sulfuric acid concentration of about 20 to 120 g / l can be used.
  • a dense film containing metallic copper is formed by contact with an acidic aqueous solution, but in subsequent steps, contact with an acidic plating solution containing sulfuric acid such as a copper sulfate plating solution.
  • an acidic plating solution containing sulfuric acid such as a copper sulfate plating solution.
  • the step of immersing in an acidic aqueous solution can be omitted.
  • the dense film containing metallic copper improves the conductivity and acid resistance of the film, and forms an electroplated film with excellent adhesion and uniform appearance without damaging the conductive film in the electroplating process. can do.
  • a conductive film forming bath containing a reducing agent comprising at least one component selected from the group consisting of a carboxyl group-containing reducing compound and a saccharide having 6 or more carbon atoms, and an aliphatic polyalcohol is used.
  • a reducing agent comprising at least one component selected from the group consisting of a carboxyl group-containing reducing compound and a saccharide having 6 or more carbon atoms, and an aliphatic polyalcohol is used.
  • the means for increasing the dissolved oxygen is not particularly limited, and any method, for example, a method of supplying an oxygen-containing gas by bubbling into a conductive film forming bath, or a method of adding an oxidizing agent Etc. can be applied.
  • the state in which dissolved oxygen is increased means that the oxygen-containing gas is supplied by bubbling into the conductive film forming bath, and the state after increasing dissolved oxygen, or by adding an oxidizing agent, In addition to the state after increasing the amount of oxygen, the state of increasing dissolved oxygen while continuously bubbling and supplying an oxygen-containing gas into the conductive film forming bath, or while continuously adding an oxidizing agent The state where dissolved oxygen is increased is also included.
  • oxygen or air can be used as the oxygen-containing gas.
  • Oxygen or air may contain a gas other than oxygen, such as nitrogen or a rare gas.
  • the oxidizing agent is not particularly limited, and a known compound that can increase dissolved oxygen can be used.
  • dissolved oxygen in the conductive film forming bath can be increased by adding sodium persulfate, aqueous hydrogen peroxide, or the like.
  • the addition amount of the oxidizing agent is preferably about 0.1 to 5 g / l with respect to the conductive film forming bath.
  • a film having excellent conductivity is formed on the surface of the non-conductive plastic material.
  • the conductive film to be formed has good adhesion to the non-conductive plastic material that is the object to be plated, and the electroplating process is subsequently performed to form a good electroplated film with excellent adhesion. Can do.
  • the non-conductive plastic is a plastic that is easily hydrolyzed by an alkaline aqueous solution such as a polycarbonate (PC) resin, a polyester resin, or a PC / ABS polymer alloy
  • the conductive film forming bath of the present invention is used. By using it, it becomes possible to form a conductive film having excellent adhesion.
  • the conductive film to be formed is mainly composed of metallic copper, but at least one component selected from the group consisting of a carboxyl group-containing reducing compound and a saccharide exhibiting reducing properties having 6 or more carbon atoms is used as a reducing agent.
  • a conductive film forming bath to which an aliphatic polyalcohol is added is used, a conductive film mainly composed of copper oxide is formed.
  • the formed film is brought into contact with an acidic aqueous solution or an acidic electroplating solution to form a dense film containing metallic copper.
  • This film is a uniform film without bridge precipitation, has good conductivity, and is excellent in acid resistance. By performing an electroplating process on this, an electroplated film having an excellent appearance as well as good adhesion can be formed.
  • Electroplating process After forming the conductive film by the above process, the object to be processed on which the conductive film is formed is subjected to an electroplating process according to a conventional method.
  • the type of electroplating bath is not particularly limited, and any conventionally known electroplating bath can be used. Moreover, the conditions for the plating treatment may be in accordance with a conventional method.
  • the copper plating for example, a known copper sulfate plating bath can be used.
  • a plating bath in which a known brightener is added to an aqueous solution containing about 100 to 250 g / l of copper sulfate, about 20 to 120 g / l of sulfuric acid, and about 20 to 70 ppm of chlorine ions can be used.
  • the conditions for copper sulfate plating may be the same as usual.
  • the liquid temperature is about room temperature
  • the current density is about 3 A / dm 2
  • plating may be performed up to a predetermined film thickness.
  • the conductive film obtained by the conductive film forming bath of the present invention has high acid resistance, the film can be formed even when immersed in a strongly acidic plating solution such as a copper sulfate plating solution in this electroplating step. It is possible to form a decorative plating film having a uniform and excellent appearance without being attacked.
  • nickel plating a well-known nickel plating bath can be used, for example, a normal watt bath can be used. That is, an aqueous solution containing about 200 to 350 g / l of nickel sulfate, about 30 to 80 g / l of nickel chloride, and about 20 to 60 g / l of boric acid with a commercially available brightener for nickel plating baths can be used.
  • the plating conditions may be the same as usual. For example, electrolysis may be performed at a liquid temperature of about 55 to 60 ° C. and a current density of about 3 A / dm 2 to plate to a predetermined film thickness.
  • chromium plating a well-known chromium plating bath can be used, and a normal sergeant bath can be used. That is, an aqueous solution containing about 200 to 300 g / l of chromic anhydride and about 2 to 5 g / l of sulfuric acid can be used.
  • the plating conditions are a liquid temperature of about 45 ° C. and a current density of about 20 A / dm 2 , and plating may be performed up to a predetermined film thickness under these conditions.
  • the conductive film-forming bath of the present invention By forming the conductive film using the conductive film forming bath of the present invention, a uniform conductive film can be formed on the non-conductive plastic material.
  • the formed conductive film has good conductivity and good adhesion to non-conductive plastic material, and by forming an electroplating film on the film, the adhesion is good, An electroplated film having an excellent appearance can be formed.
  • the conductive film-forming bath of the present invention is useful in that it can form a uniform and excellent adhesive film even for plastic molded products containing polycarbonate, polyester, etc. that are easily hydrolyzed by an alkaline aqueous solution. It is highly probable.
  • Example 1 As the object to be processed, a flat plate made of PC / ABS polymer alloy (Mitsubishi Engineering Plastics Co., Ltd .: Iupilon PL-2010) having a size of 100 mm ⁇ 40 mm ⁇ 3 mm and a surface area of about 1 dm 2 was used.
  • PC / ABS polymer alloy Mitsubishi Engineering Plastics Co., Ltd .: Iupilon PL-2010
  • a jig for plating two contact parts with the object to be processed, a contact distance of 11 cm, a contact portion made of a stainless steel rod having a diameter of 2 mm, and other than the contact, a jig baked and coated with a vinyl chloride sol was used.
  • An electroplated film was formed by sequentially performing the following steps (1) to (9).
  • the object to be plated set on the jig is immersed in an alkaline degreasing agent solution (Okuno Pharmaceutical Co., Ltd .: A-screen A-220, 50 g / l aqueous solution) at 50 ° C. for 5 minutes. And washed with water.
  • an alkaline degreasing agent solution (Okuno Pharmaceutical Co., Ltd .: A-screen A-220, 50 g / l aqueous solution) at 50 ° C. for 5 minutes. And washed with water.
  • CRP conditioner 551M 15 ml / l which is a resin surface conditioner, was immersed in an aqueous solution adjusted to pH 7 with sodium hydroxide at room temperature for 60 seconds.
  • a conductive film forming bath an aqueous solution containing copper sulfate pentahydrate 4 g / l, Rochelle salt 20 g / l, and sodium hydroxide 60 g / l is used as a basic bath (hereinafter referred to as “basic bath A”).
  • An aqueous solution (invention baths 1 to 28) to which a water-soluble polymer having a polyoxyalkylene structure described in Tables 1 to 4 below was added was used, and an object to be treated was added to the conductive film forming bath at 60 ° C. for 30 minutes. It was immersed for a minute to form a conductive film.
  • Nickel plating treatment Next, the object to be treated was washed with water, immersed in Top Sun 50 g / l (Okuno Pharmaceutical Co., Ltd.) as an activator for 1 minute at 25 ° C., and sufficiently washed with water. Thereafter, an aqueous solution containing 280 g / l of nickel sulfate, 50 g / l of nickel chloride and 40 g / l of boric acid as an electronickel plating solution, and 20 ml / l of improved Acuna B-1 and 1 ml of improved Acuna B-2 as brighteners. Electrolytic nickel plating was performed at a liquid temperature of 55 ° C. and a current density of 3 A / dm 2 for 20 minutes using a plating solution to which / l (both manufactured by Okuno Pharmaceutical Co., Ltd.) was added while gently stirring air.
  • Chromium plating treatment After washing with water, an aqueous solution containing 250 g / l of chromic anhydride and 1 g / l of sulfuric acid is used as the chromium plating solution. Chromium plating was performed at 40 ° C. and a current density of 12 A / dm 2 for 3 minutes without stirring.
  • each sample was allowed to stand at ⁇ 30 ° C. for 60 minutes, at room temperature for 30 minutes, at 70 ° C. for 60 minutes, and at room temperature for 30 minutes, and this was repeated 3 cycles. Thereafter, the swollen state of the plating film was visually observed, and the adhesion between the plating films was evaluated according to the following criteria.
  • Example 2 (addition of reducing agent) Using the same workpieces and jigs as in Example 1, processing was performed in the same manner as in Example 1 up to the catalyst application step.
  • an aqueous solution containing copper sulfate pentahydrate 4.8 g / l, disodium ethylenediaminetetraacetate 30 g / l, sodium hydroxide 30 g / l, and formaldehyde 2 g / l (Hereinafter referred to as “basic bath B”), an aqueous solution obtained by adding a water-soluble polymer having a polyoxyalkylene structure described in Tables 5 to 7 was used as a conductive film-forming bath (invention baths 29 to 56).
  • a conductive film was formed under the same conditions as in Example 1. Thereafter, it was washed with water and subjected to electrolytic copper plating, nickel plating and chromium plating under the same conditions as in Example 1.
  • the types of polymers in the table are the same as those in Tables 1 to 3.
  • the basic bath B (comparative bath 6) to which no water-soluble polymer was added and the baths (comparative baths 7 to 10) in which the water-soluble compounds described in Table 6 below were added to the basic bath B were conducted.
  • a conductive film forming bath a conductive film was formed under the same conditions as in Example 1, then washed with water, and subjected to electrolytic copper plating, nickel plating and chromium plating under the same conditions as in Example 1.
  • Example 3 (reducing agent added) Using the same object and jig as in Example 1, the same treatment as in Example 1 was performed up to the catalyst application step.
  • the basic bath C to which no water-soluble polymer was added (comparative bath 11) and the baths in which the water-soluble compounds described in Table 9 below were added to the basic bath C (comparative baths 12 to 15) were electrically conductive.
  • a conductive film forming bath a conductive film was formed under the same conditions as in Example 1, then washed with water, and subjected to electrolytic copper plating, nickel plating and chromium plating under the same conditions as in Example 1.
  • the water-soluble polymer having a polyoxyalkylene structure was added to the basic bath C containing copper sulfate, 5,5-dimethylhydantoin, Rochelle salt, sodium hydroxide, and mannitol.
  • the added conductive film forming bath invention baths 57 to 84, it was possible to form a plating film having good adhesion.
  • Example 4 (Example in which a reducing agent and an aliphatic polyalcohol are added) Using the same object and jig as in Example 1, the same treatment as in Example 1 was performed up to the catalyst application step.
  • an aqueous solution containing copper sulfate pentahydrate 4 g / l, Rochelle salt 20 g / l, sodium hydroxide 65 g / l, formic acid 10 g / l and glycerin 50 g / l (
  • a conductive film was formed under the same conditions as in 1.
  • the types of polymers in the table are the same as those in Tables 1 to 3.
  • a basic bath D to which no water-soluble polymer was added (comparative bath 16) and a bath in which the water-soluble compounds described in Table 12 below were added to the basic bath D (comparative baths 17 to 20) were electrically conductive.
  • a conductive film forming bath a conductive film was formed under the same conditions as in Example 1, then washed with water, and subjected to electrolytic copper plating, nickel plating and chromium plating under the same conditions as in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

 本発明の課題は、非導電性プラスチック材料に対して電気めっき皮膜を形成する際に使用できるアルカリ性水溶液からなる導電性皮膜形成浴であって、非導電性プラスチック材料に対する密着性を低下させることなく、良好な外観を有する電気めっき皮膜を形成することが可能な、新規な導電性皮膜形成浴を提供することである。本発明は、銅化合物、錯化剤、アルカリ金属水酸化物、及びポリオキシアルキレン構造を有する水溶性ポリマーを含有する水溶液からなる導電性皮膜形成浴に関する。

Description

導電性皮膜形成浴
 本発明は、導電性皮膜形成浴、導電性化皮膜を形成する方法、及び非導電性プラスチック材料への電気めっき方法に関する。
 一般に、非導電性プラスチック成形品に装飾電気めっき皮膜を形成する方法としては、脱脂及びエッチングを行った後、必要に応じて、中和及びプリディップを行い、次いで、パラジウム化合物及びスズ化合物を含有するコロイド溶液を用いて無電解銅めっき用触媒を付与し、必要に応じて活性化処理(アクセレーター処理)を行った後、導電性皮膜形成(無電解銅めっき)及び電気めっきを順次行う方法が広く行われている。
 この様な非導電性プラスチック成形品に対する電気めっき方法では、従来から、導電性皮膜の形成に用いられる無電解銅めっき浴としては、アルカリ性の水溶液が利用されている。しかしながら、導電性皮膜を形成するためにアルカリ性の無電解銅めっき浴を用いる場合には、処理対象の非導電性プラスチックの加水分解が促進され易く、形成された導電性皮膜上に電気めっき皮膜を形成する場合に十分な密着性が得られないという問題がある(特許文献1)。
特開2010-254971号公報
 本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、非導電性プラスチック材料に対して電気めっき皮膜を形成する際に使用できるアルカリ性水溶液からなる導電性皮膜形成浴であって、非導電性プラスチック材料に対する密着性を低下させることなく、良好な外観を有する電気めっき皮膜を形成することが可能な、新規な導電性皮膜形成浴を提供することである。
 本発明者らは、上記した課題を解決すべく鋭意研究を重ねてきた。その結果、銅化合物及び錯化剤を含有するアルカリ性水溶液にポリオキシアルキレン構造を有する水溶性ポリマーを添加した水溶液を導電性皮膜形成浴とし、この浴から形成される導電性皮膜上に電気めっき皮膜を形成することによって、非導電性プラスチック材料に対する密着性の低下を生じることなく、良好な外観の電気めっき皮膜を形成できることを見出し、ここに本発明を完成するに至った。
 本発明は、この様な知見に基づいて、更に、研究を重ねた結果、完成されたものである。
 即ち、本発明は、下記の導電性皮膜形成浴、導電性皮膜を形成する方法、及び非導電性プラスチック材料への電気めっき方法を提供するものである。
項1.
 銅化合物、錯化剤、アルカリ金属水酸化物、及びポリオキシアルキレン構造を有する水溶性ポリマーを含有する水溶液からなる導電性皮膜形成浴。
項2.
 さらに、還元剤を含有する項1に記載の導電性皮膜形成浴。
項3.
 前記還元剤が、カルボキシル基含有還元性化合物及び炭素数6以上の還元性を示す糖類からなる群から選ばれた少なくとも一種の成分である、項2に記載の導電性皮膜形成浴。
項4.
 さらに、炭素数2~5の脂肪族ポリアルコール化合物を含有する項1~3のいずれか一項に記載の導電性皮膜形成浴。
項5.
 前記ポリオキシアルキレン構造を有する水溶性ポリマーが、一般式(1):-(O-Ak)-(式中、Akはアルキレン基を示す。)で表されるオキシアルキレン基を構造単位とする繰り返し構造を主鎖として有し、かつ親水性基を有するポリマーである、項1~4のいずれか一項に記載の導電性皮膜形成浴。
項6.
 前記ポリオキシアルキレン構造を有する水溶性ポリマーが、数平均分子量300以上のポリマーである、項1~5のいずれか一項に記載の導電性皮膜形成浴。
項7.
 項1~6のいずれか一項に記載の導電性皮膜形成浴に、触媒物質を付与した非導電性プラスチック材料を接触させることを特徴とする、非導電性プラスチック材料に導電性皮膜を形成する方法。
項8.
 項7に記載の方法で導電性皮膜形成浴を用いて導電性皮膜を形成した後、電気めっきを行う工程を含む、非電導性プラスチック材料への電気めっき方法。
 本発明の導電性皮膜形成浴は、銅化合物、錯化剤、アルカリ金属水酸化物、及びポリオキシアルキレン構造を有する水溶性ポリマーを含有する水溶液からなるものである。
 以下、本発明の導電性皮膜形成浴に含有する各成分について具体的に説明する。
 (1)導電性皮膜形成浴
 銅化合物
 銅化合物としては、水溶性の銅化合物であればよく、例えば、硫酸銅、塩化銅、炭酸銅、水酸化銅、これらの水和物等を使用できる。銅化合物は、一種単独で又は二種以上を適宜混合して用いることができる。
 銅化合物の含有量は、銅金属量として0.1~5g/l程度とすることが好ましく、0.8~1.2g/l程度とすることがより好ましい。
 銅金属量が少なすぎると、導電性皮膜の形成が不十分となり、次工程での電気めっきの析出が悪くなるので好ましくない。
 一方、銅金属量が多すぎると、銅濃度を上げた効果がほとんどなく、銅濃度に比例して必要な錯化剤量が増加するだけであり、経済的に不利であり、排水処理性も悪くなる。
 錯化剤
 錯化剤としては、銅イオンに対して有効な公知の錯化剤を使用することができる。この様な錯化剤としては、ヒダントイン類、有機カルボン酸類等を挙げることができる。
 ヒダントイン類の具体例としては、ヒダントイン、1-メチルヒダントイン、1,3-ジメチルヒダントイン、5,5-ジメチルヒダントイン、アラントイン等が挙げられる。
 有機カルボン酸類としては、エチレンジアミン四酢酸、グリコール酸、乳酸、ヒドロアクリル酸、オキシ酪酸、タルトロン酸、リンゴ酸、クエン酸、酒石酸、コハク酸、これらの塩類等を用いることができる。塩類としては、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩等の水溶性塩を用いることができる。
 錯化剤としては、特に酒石酸カリウムナトリウム(ロッシェル塩)を用いることが好ましい。
 錯化剤は、一種単独で又は二種以上を適宜混合して用いることができる。
 錯化剤の配合量は、2~50g/l程度とすることが好ましく、10~40g/l程度とすることがより好ましい。
 錯化剤の配合量が少なすぎると、錯化力が不十分となって銅の溶解力が不足するので好ましくない。
 一方、配合量が多すぎると、銅の溶解性は向上するが、経済的に不利であり、排水処理性も悪くなるので好ましくない。
 アルカリ金属水酸化物
 アルカリ金属水酸化物としては、入手の容易性、コスト等の点から、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等が適当である。
 アルカリ金属水酸化物は、一種単独で又は二種以上を適宜混合して用いることができる。
 アルカリ金属水酸化物の配合量は、10~80g/l程度とすることが好ましく、30~70g/l程度とすることがより好ましい。
 アルカリ金属水酸化物の配合量が少なすぎると、導電性皮膜の形成が不十分であり、次工程での電気めっきにおいて、低電流密度域のめっきの析出性が悪くなるので好ましくない。
 一方、アルカリ金属水酸化物の配合量が多すぎると、濃度の上昇に従って銅の溶解性が低下し、導電性皮膜形成浴の安定性が悪くなるので好ましくない。
 ポリオキシアルキレン構造を有する水溶性ポリマー
 ポリオキシアルキレン構造を有する水溶性ポリマーとしては、ポリオキシアルキレン構造部分を主鎖として有し、かつ親水性基を有するポリマーであれば、特に制限なく用いることができる。本願明細書では、ポリオキシアルキレン構造とは、一般式(1):-(O-Ak)-(式中、Akはアルキレン基を示す。)で表されるオキシアルキレン基を構造単位とする繰り返し構造を意味する。尚、上記一般式(1)で表されるオキシアルキレン構造の繰り返し数については、特に限定はなく、後述する数平均分子量となる範囲であればよいが、通常は、4以上の繰り返し数を有することが好ましい。
 上記一般式(1)において、Akで表されるアルキレン基としては、炭素数1~20のアルキレン基が好ましく、炭素数2~4のアルキレン基がより好ましい。該アルキレン基は、直鎖状又は分岐鎖状であってもよい。
 該アルキレン基としてより具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基等が挙げられる。これらの中でも、良好な水溶性のポリマーとする点からエチレン基及びプロピレン基が好ましい。
 一般式(1):-(O-Ak)-で表されるオキシアルキレン基を構造単位とする繰り返し構造において、Akで表されるアルキレン基は、各構造単位において全て同一であってもよく、或いは、二種以上の異なるアルキレン基であってもよい。ポリオキシアルキレン構造が二種以上のオキシアルキレン基を含む場合、それぞれ種類の異なるオキシアルキレン基の結合形式については、特に限定はなく、ブロック状、ランダム状、交互状のいずれの結合形式であってもよい。
 尚、上記一般式(1):-(O-Ak)-で表される繰り返し単位が、例えば、一般式(3):-(O-CH(CH)CH)-で表されるオキシプロピレン基である場合、光学異性体を有することになるが、その立体規則性は、アイソタクチック、シンジオタクチック、アタクチックのいずれであってもよい。
 ポリオキシアルキレン構造を有する水溶性ポリマーに含まれる親水性基としては、十分な水溶性を付与できれば特に制限はなく、アニオン性、カチオン性、ノニオン性のいずれの親水性基であってもよい。この様な親水性基の具体例としては、カルボキシル基、スルホン酸基、硫酸エステル基、ホスホン酸基、リン酸基等のアニオン性基及びその塩;ヒドロキシル基、アミノ基等のノニオン性基;アンモニウム基、ホスホニウム基等のカチオン性基などが挙げられる。これらの内で、アニオン性基の塩としては、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、有機アンモニウム塩等が挙げられる。
 親水性基の数については特に限定はなく、ポリオキシアルキレン構造を有する水溶性ポリマーに十分な水溶性を付与できればよい。また、親水性基の結合位置についても特に限定はなく、水溶性ポリマーの末端、側鎖などの任意の位置に結合することができる。具体的な親水性基の数及び結合位置については、該親水性基が結合した水溶性ポリマーが、後述する濃度範囲において、本発明の導電性皮膜形成浴中に溶解できる範囲であれば特に限定はない。
 上記ポリオキシアルキレン構造を有する水溶性ポリマーは、上記親水性基以外に、置換基又はその他の原子を有していてもよい。この様な置換基又は原子としては、ポリマーが水溶性であることを妨げなければ特に制限はなく、例えば、水素、アルキル基、アルケニル基、アリール基、ハロゲン基等が挙げられる。
 本発明で使用できるポリオキシアルキレン構造を有する水溶性ポリマーの具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンポリオキシブチレングリコール、ポリオキシプロピレンポリオキシブチレングリコール等のポリアルキレングリコール化合物;ポリオキシエチレンオクチルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシプロピレンブチルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンミリスチルエーテル、ポリオキシエチレンポリオキシプロピレンオクチルエーテル、ポリオキシエチレンポリオキシプロピレンブチルエーテル、ポリオキシエチレンポリオキシプロピレンデシルエーテル、ポリオキシエチレンポリオキシプロピレンラウリルエーテル、ポリオキシエチレンポリオキシプロピレントリデシルエーテル、ポリオキシエチレンポリオキシプロピレンミリスチルエーテル、ポリオキシエチレンスチレン化フェニルエーテル等のポリオキシアルキレンアルキルエーテル化合物;Jeffamine M-600、M-2070(いずれも登録商標)等の1つのアミノ基を有し、ポリオキシアルキレン構造を有する化合物;Jeffamine  D-400(平均分子量430)、 D-2000、 D-4000、ED-600、ED-900、ED-2003、XTJ-542、XTJ-533、XTJ-536(いずれも登録商標)等の2つのアミノ基を有し、ポリオキシアルキレン構造を有する化合物;Jeffamine T-403、T-3000、T-5000(いずれも登録商標)等の3つのアミノ基を有し、ポリオキシアルキレン構造を有する化合物;ポリオキシエチレンオレイルセチルエーテル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム、ポリオキシエチレンスチレン化フェニルエーテル硫酸アンモニウム等のスルホン酸基を有し、ポリオキシアルキレン構造を有する化合物;ポリオキシエチレンラウリルエーテル酢酸ナトリウム等のカルボン酸基を有し、ポリオキシアルキレン構造を有する化合物;ポリオキシエチレンスルホコハク酸ラウリル二ナトリウム等のカルボン酸基及びスルホン酸基を有し、ポリオキシアルキレン構造を有する化合物;ポリオキシエチレンアルキルエーテルリン酸エステル等のリン酸基を有し、ポリオキシアルキレン構造を有する化合物などが挙げられる。
 これらの中でも、特にポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンラウリルエーテル、ポリオキシプロピレンブチルエーテル、ポリオキシエチレンポリオキシプロピレンブチルエーテル、ポリオキシエチレンポリオキシプロピレンモノアミン、ポリオキシエチレンポリオキシプロピレンジアミン、ポリオキシエチレンオレイルセチルエーテル硫酸アンモニウム、ポリオキシエチレンラウリルエーテル硫酸アンモニウム、ポリオキシエチレンスチレン化フェニルエーテル硫酸アンモニウム、ポリオキシエチレンスルホコハク酸ラウリル二ナトリウム、ポリオキシエチレンラウリルエーテル酢酸ナトリウム、ポリオキシエチレンアルキルエーテルリン酸エステル、ポリオキシエチレンスチレン化フェニルエーテル等が好ましい。
 ポリオキシアルキレン構造を有する水溶性ポリマーは、一種単独で又は二種以上を適宜混合して用いることができる。
 ポリオキシアルキレン構造を有する水溶性ポリマーは、数平均分子量が300以上であればよく、500~50000の範囲が好ましく、600~20000の範囲がさらに好ましく、1000~20000の範囲が特に好ましい。数平均分子量が小さすぎる場合には、非導電性材料に対するめっき皮膜の密着性を向上させる効果が十分には発揮されないので好ましくない。
 ポリオキシアルキレン構造を有する水溶性ポリマーの配合量は、0.00001g~100g/l程度が好ましく、0.001~50g/l程度がより好ましく、0.01~10g/l程度が特に好ましい。配合量が少なすぎる場合には、非導電性材料に対するめっき皮膜の密着性を向上させる効果が十分には発揮されないので好ましくない。一方、ポリオキシアルキレン構造を有する水溶性ポリマーの配合量が多すぎると、経済的に不利であって、廃水処理性の点でも好ましくない。
 還元剤
 本発明の導電性皮膜形成浴では、上記の銅化合物、錯化剤、アルカリ金属水酸化物、及びポリオキシアルキレン構造を有する水溶性ポリマーを含む水溶液に、更に、必要に応じて、還元剤を添加してもよい。
 還元剤を添加することによって、導電性皮膜の析出速度を向上させて、効率よく導電性皮膜を形成することが可能となる。
 還元剤としては、銅イオンを還元可能な還元剤であって、従来から各種の無電解めっき液に配合されている還元剤を用いることができる。具体例としては、ホルムアルデヒド、パラホルムアルデヒド、ジメチルアミンボラン、グリオキシル酸、水素化ホウ素塩、炭素数6以上の還元性を示す糖類、カルボキシル基含有還元性化合物等が挙げられる。還元剤は、一種単独で又は二種以上を適宜混合して用いることができる。
 上記した還元剤の内で、水素化ホウ素塩としては、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム等が挙げられる。
 カルボキシル基含有還元性化合物としては、還元性を有するカルボン酸、還元性を有するジカルボン酸、これらの塩等が挙げられる。還元性を有するカルボン酸としては、例えば、ギ酸、グリオキシル酸、これらの塩等を用いることができる。また、還元性を有するジカルボン酸としては、シュウ酸、マレイン酸、これらの塩等を用いることができる。これらの塩としては、アルカリ金属塩、基:-NHを有する塩(アンモニウム塩)等が挙げられる。アルカリ金属としては、リチウム、ナトリウム、カリウム等が挙げられる。
 炭素数6以上の還元性を示す糖類としては、炭素数が6以上で、かつ、還元性を示す糖類であれば特に限定はなく、公知の糖類が挙げられ、例えば、ブドウ糖等の単糖類、ショ糖等の二糖類、セルロース等の多糖類、ソルビット、マンニット等の糖アルコール、アスコルビン酸等の糖酸、グルコノラクトン等のラクトンなどが挙げられる。その他、アミノ糖、デオキシ糖等が使用できる。炭素数6以上の還元性を示す糖類における炭素数は、6~12程度であることがより好ましい。
 還元剤として、1種又は2種以上の化合物を配合する際、還元剤の配合総量としては、0.1~100g/l程度が好ましく、0.5~50g/l程度がより好ましい。
 上記した還元剤の内で、カルボキシル基含有還元性化合物及び炭素数6以上の還元性を示す糖類は、比較的還元力の低い還元剤である。本発明では、これらの成分から選ばれた少なくとも一種を還元剤として用いることにより、導電性皮膜形成浴の安定性を低下させることなく、比較的弱い錯化力を有するヒダントイン類、有機カルボン酸類を錯化剤として用いることが可能となる。その結果、十分な析出性を維持した上で、排水処理が容易となる。
 脂肪族ポリアルコール
 本発明の導電性皮膜形成浴には、更に、必要に応じて、脂肪族ポリアルコールを配合することができる。
 特に、カルボキシル基含有還元性化合物及び炭素数6以上の還元性を示す糖類からなる群から選ばれた少なくとも一種の成分を還元剤として用いる場合に、脂肪族ポリアルコールを添加することによって、ブリッジ析出のない均一な導電性皮膜を形成することが可能となり、最終的に形成される電気めっき皮膜の外観を向上させることができる。
 脂肪族ポリアルコールとしては、ヒドロキシ基を2個以上有する炭素数2~5の直鎖状又は分枝鎖状の脂肪族ポリアルコールを用いることができる。また、該脂肪族ポリアルコール中の炭素鎖には、酸素原子が含まれていてもよい。
 脂肪族ポリアルコールに含まれるヒドロキシ基の数は、2以上であればよく、その中でも2~4が好ましく、2又は3がより好ましく、2が特に好ましい。
 脂肪族ポリアルコールの具体例としては、エチレングリコール、1,2-プロパンジオール、1,2-ブタンジオール、1,2-ペンタンジオール、グリセリン、エリトリトール、キシリトール、1,2,4-ブタントリオール、ジエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール等が挙げられる。
 脂肪族ポリアルコール化合物は、一種単独で又は二種以上を適宜混合して用いることができる。
 脂肪族ポリアルコール化合物の配合量は、1~500g/l程度が好ましく、1~200g/l程度がより好ましい。
 本発明の導電性皮膜形成浴では、特に脂肪族ポリアルコールとして、2つのヒドロキシ基間の炭素数が2以下の脂肪族ポリアルコールを用いることが好ましい。例えば、エチレングリコール、1,2-プロパンジオール、グリセリン、エリトリトール又はキシリトールを用いることがより好ましく、エチレングリコールを用いることが特に好ましい。
 2つのヒドロキシ基間の炭素数が2以下の脂肪族ポリアルコールを用いる場合、その配合量は、1~50g/l程度で、導電性に優れた皮膜を形成することができる。
 なお、2つのヒドロキシ基間の炭素数が3以上の脂肪族ポリアルコールを用いる場合は、脂肪族ポリアルコール化合物の配合量は、上記した配合量の範囲内において、50g/l程度以上とすることが好ましい。
 2つのヒドロキシ基間の炭素数が3以上の脂肪族ポリアルコールとしては、例えば、1,2,4-ブタントリオール、ジエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール等が挙げられる。
 (2)導電性皮膜を形成する方法
 本発明の導電性皮膜形成浴に、触媒物質を付与した非導電性プラスチック材料を接触させることによって、非導電性プラスチック材料に導電性皮膜を形成することができる。
 以下、導電性皮膜を形成する方法について、具体的に説明する。
 非導電性プラスチック材料
 非導電性プラスチック材料としては、特に限定はなく、例えば、自動車業界等において近年広く採用されている各種の大型のプラスチック材料を処理対象物とすることができる。
 この様な大型のプラスチック材料としては、例えば、フロントグリル、エンブレム等の各種自動車用部品、電子関連の外装品、ツマミ等の各種装飾めっき用部品、耐食性又は機能性めっき用部品等の各種のプラスチック成形品が挙げられる。
 プラスチック材料の材質についても特に限定はなく、従来から知られている各種のプラスチック材料を処理対象とすることができる。
 例えば、従来から化学めっき用として広く用いられているポリカーボネート(PC)樹脂、ポリエステル樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂等の汎用プラスチック、耐熱温度150℃以下のポリアミド(ナイロンPA)、ポリアセタール(POM)、ポリカーボネート(PC)、変成ポリフェニレンエーテル(PPE)、ポリブチレンテレフタレート(PBT)等の汎用エンジニアリングプラスチック、耐熱温度200℃を越えるポリフェニレンサルファイド(PPS)、ポリエーテルサルホン(PES)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、ポリイミド(PI)、液晶ポリマー(LCP)等のスーパーエンジニアニングプラスチック、PC/ABS等のポリマーアロイ等を処理対象とすることができる。
 本発明の導電性皮膜形成浴を用いれば、上記のプラスチック材料に対して、密着性に優れた電気めっき皮膜を形成するために有効に利用できる、電気めっきの下地として優れた性能を有する導電性皮膜を形成することができる。特に、アルカリによる加水分解が起こりやすいPC、ポリエステル、これらの樹脂を含むポリマーアロイ(例えば、PC/ABSポリマーアロイ)等に対しても、本発明の導電性皮膜形成浴によれば、密着性に優れた電気めっきを皮膜を形成できる優れた性能を有する導電性皮膜が得られる。
 前処理工程
 本発明の導体性皮膜を形成する方法では、まず、前処理として、常法に従って、指紋、油脂等の有機物、静電気作用による塵等の付着物等を除去するために、被処理物の表面を清浄化する。処理液としては、公知の脱脂剤を用いればよく、例えば、アルカリタイプの脱脂剤等を使用して、常法に従って脱脂処理等を行えばよい。
 次いで、必要に応じて、被処理物の表面をエッチングする。
 この工程は、選択的に樹脂表面を溶解してアンカー効果を生じさせるものであり、この処理により、導体性皮膜の密着性、外観等を向上させることができる。
 エッチングは、常法に従って行えばよく、例えば、クロム酸と硫酸の混合溶液を用い、適度に加温した溶液中に被処理物を浸漬すればよい。
 例えば、ABS樹脂を被処理物とする場合には、エッチング処理によって構成成分のポリブタジエンがクロム酸の酸化作用により溶出し、樹脂表面に孔径1~2μm程度のアンカー部が形成され、また、ポリブタジエンが酸化分解し、カルボニル基等の極性基が付与され、後工程におけるスズ-パラジウム混合コロイド溶液等の触媒の吸着が容易になる。
 汎用エンジニアリングプラスチック又はスーパーエンジニアリングプラスチックを被処理物とする場合には、エッチングが困難な場合が多いので、エッチングの前に、必要に応じて、常法に従ってプリエッチング処理を行うことが好ましい。
 プリエッチング処理は、樹脂表面のスキン層又は結晶の配向層を有機溶剤で膨潤させるものであり、通常、ジメチルスルホキシド等の極性の高い溶剤を用いて行うことができる。この処理を行うことによって、エッチングの効果を向上させることができる。
 また、無機物、ガラス繊維等を充填した樹脂についても、常法に従って適切なエッチング方法を選定すればよい。
 次に、樹脂表面に残存するクロム酸等のエッチング液を除去するために洗浄を行う。
 この場合、希薄塩酸溶液、重亜硫酸ナトリウム等の還元剤を含有する溶液を用いて洗浄処理を行うことによって、樹脂表面に残存するクロム酸の除去が容易になる。
 触媒付与工程
 次いで、前処理工程によって得られた処理物に対して、触媒を付与する。
 触媒の種類としては、特に限定はなく、通常の無電解めっき液用触媒として知られている公知の各種触媒を用いることができる。
 例えば、銀、パラジウム、金、ルテニウム、銅、ニッケル、白金等を触媒成分として含む公知の貴金属触媒付与用の組成物を用いればよい。
 具体的な触媒付与用組成物の種類、触媒付与方法については、特に限定的ではなく、公知の組成物、公知の触媒付与方法から適宜選択すればよい。
 例えば、パラジウム触媒を付与する場合には、被処理物をセンシタイザー溶液(塩化錫(II)の塩酸溶液)に浸漬した後、アクチベーター溶液(塩化パラジウムの塩酸溶液)に浸漬する方法(センシタイザー-アクチベーター法)、スズ-パラジウム混合コロイド溶液に浸漬して触媒を付与した後、硫酸等の酸性溶液からなるアクセレーター溶液に浸漬して、過剰のスズイオンを溶解させて触媒活性を向上させる方法(キャタリスト-アクセレーター法)等を適宜適用できる。また、スズ-パラジウム混合コロイド溶液に浸漬する工程のみで触媒を付与することもできる。
 本発明の導電性皮膜形成浴では、樹脂成形品に均一にめっき皮膜が析出しやすい点で、スズ-パラジウム混合コロイドを用いることが好ましい。特に、本発明の導電性皮膜形成浴に還元剤が含まれない場合には、スズ-パラジウム混合コロイドを用いることによって、樹脂成形品表面におけるスズコロイドの残存量が多くなり、置換析出による導電性皮膜の形成が容易となる。
 スズ-パラジウム混合コロイド溶液としては、通常用いられている塩化パラジウム及び塩化第一錫を含む酸性の混合コロイド水溶液を用いることができる。例えば、塩化パラジウムを0.05~0.6g/l程度、塩化第一錫を1~50g/l程度、及び35%塩酸を100~400ml/l程度含む混合コロイド溶液を用いることができる。
 スズ-パラジウム混合コロイド溶液に浸漬する場合の条件については特に限定的ではなく、通常、上記混合コロイド溶液の温度を10~80℃程度、好ましくは20~40℃程度として、これに被処理物を浸漬すればよい。
 浸漬時間については、本発明の導電性皮膜形成浴の種類等に応じて、適宜必要な浸漬時間を設定すればよい。通常は、2~10分程度の範囲の浸漬時間とすればよい。
 導電性皮膜形成工程
 次いで、本発明の導電性皮膜形成浴に、触媒物質を付与した非導電性プラスチック材料を接触させることによって導電性皮膜を形成することができる。
 本発明の導電性皮膜形成浴に、触媒を付与した非導電性プラスチック材料を接触させて導電性皮膜を形成する方法としては、例えば、導体性皮膜形成浴に、触媒を付与した非導電性プラスチック材料を浸漬する方法を挙げることができる。この方法を用いれば、効率よく導電性皮膜を形成することができる。
 本発明の導電性皮膜形成浴は、pH10~14程度とすることが好ましく、pH11.5~13.5程度とすることがより好ましい。pHが低すぎると、還元反応の円滑な進行が妨げられ、また、還元剤の分解等が生じて、導電性皮膜の析出性が低下し、導電性皮膜形成浴が分解する場合もあるので好ましくない。一方、pHが高すぎると、導電性皮膜形成浴の安定性が低下する傾向があるので好ましくない。
 導電性皮膜を形成する際の浴の温度については、具体的な導電性皮膜形成浴の組成等によって異なるが、通常、30℃程度以上とすることが好ましく、40~80℃程度とすることがより好ましく、50~70℃程度とするのが特に好ましい。導電性皮膜形成浴の液温が低すぎる場合には、皮膜析出反応が緩慢になって皮膜の未析出又は外観不良が生じ易くなる。一方、導電性皮膜形成浴の液温を上げると、導電性皮膜形成後の表面抵抗値がより減少し、優れためっき外観となる。但し、導電性皮膜形成浴の液温が高すぎると、導電性皮膜形成浴の蒸発が激しくなってめっき液組成を所定の範囲に維持することが困難となり、更に、導電性皮膜形成浴の分解が生じ易くなるので好ましくない。
 導電性皮膜形成浴を接触させる時間は、特に限定はなく、導電性皮膜を完全に被覆できるような時間とすればよい。導電性皮膜の表面状態に応じて適宜設定することができる。接触させる時間が短すぎると、導電性皮膜が被処理物表面上へ供給するのに不十分となり、完全に導電性皮膜を形成することができない。
 本発明の導電性皮膜形成浴に、触媒を付与した非導電性プラスチック材料を接触させて導電性皮膜を形成する場合には、浸漬時間は、1~10分程度とするのが好ましく、特に3~5分程度とするのがより好ましい。
 後述する通り、カルボキシル基含有還元性化合物及び炭素数6以上の還元性を示す糖類からなる群から選ばれた少なくとも一種の成分を還元剤として用い、更に、脂肪族ポリアルコールを添加した場合には、主として酸化銅からなる導電性皮膜が形成される。この場合には、形成された皮膜を、酸性水溶液に接触させることによって、酸化銅に不均化反応が起こり、金属銅を含む緻密な皮膜が形成される。
 上記酸性水溶液としては、特に硫酸を含む水溶液が好ましい。例えば、硫酸濃度が20~120g/l程度の水溶液を用いることができる。
 主として酸化銅からなる皮膜を形成した後は、酸性水溶液に接触させることで金属銅を含む緻密な皮膜が形成されるが、続く工程で硫酸銅めっき液等の硫酸を含む酸性のめっき液に接触させる場合には、酸性水溶液に浸漬する工程を省くことができる。
 この金属銅を含む緻密な皮膜によって、皮膜の導電性及び耐酸性が向上し、電気めっき工程において、導電性皮膜が侵されることなく、密着性に優れ、かつ均一な外観の電気めっき皮膜を形成することができる。
 尚、カルボキシル基含有還元性化合物及び炭素数6以上の還元性を示す糖類からなる群から選ばれた少なくとも一種の成分からなる還元剤と、脂肪族ポリアルコールを含有する導電性皮膜形成浴を用いる場合には、該導電性皮膜形成浴中の溶存酸素を増加させた状態で非導電性プラスチック材料を接触させることが好ましい。これにより、主として酸化銅からなる導電性皮膜をより厚く形成することが可能となり、導電性皮膜の導電性をより向上させることができる。
 溶存酸素を増加させた状態にする手段としては、特に限定はなく、任意の方法、例えば、導電性皮膜形成浴中に、酸素含有ガスをバブリングして供給する方法、又は酸化剤を添加する方法等を適用できる。
 ここで、溶存酸素を増加させた状態とは、導電性皮膜形成浴中に酸素含有ガスをバブリングして供給し、溶存酸素を増加させた後の状態、又は酸化剤を添加して、溶存酸素を増加させた後の状態だけでなく、導電性皮膜形成浴中に酸素含有ガスを連続的にバブリングして供給しながら溶存酸素を増加させている状態、又は酸化剤を連続的に添加しながら溶存酸素を増加させている状態も含まれる。
 酸素含有ガスとしては、酸素又は空気を使用することができる。酸素又は空気は、窒素や希ガス等の酸素以外の気体を含んでいてもよい。
 酸化剤としては、特に限定はなく、溶存酸素を増加させることのできる公知の化合物が使用できる。例えば、過硫酸ナトリウム、過酸化水素水等を添加することで導電性皮膜形成浴中の溶存酸素を増加させることができる。
 酸化剤の添加量は、導電性皮膜形成浴に対して、0.1~5g/l程度が好ましい。
 導電性皮膜
 上記した導電性皮膜形成工程によって、非導電性プラスチック材料の表面に導電性に優れた皮膜が形成される。形成される導電性皮膜は、被めっき物である非導電性プラスチック材料との密着性が良好であり、引き続き電気めっき処理を行うことによって、密着性に優れた良好な電気めっき皮膜を形成することができる。特に、非導電性プラスチックがポリカーボネート(PC)樹脂、ポリエステル樹脂、PC/ABSポリマーアロイ等のアルカリ水溶液によって加水分解が生じ易いプラスチックスである場合であっても、本発明の導電性皮膜形成浴を用いることによって密着性に優れた導電性皮膜を形成することが可能となる。
 形成される導電性皮膜は、主として金属銅からなるものであるが、カルボキシル基含有還元性化合物及び炭素数6以上の還元性を示す糖類からなる群から選ばれた少なくとも一種の成分を還元剤として用い、更に、脂肪族ポリアルコールを添加した導電性皮膜形成浴を用いた場合には、主として酸化銅からなる導電性皮膜が形成される。この場合には、前記した通り、形成された皮膜を酸性水溶液又は酸性の電気めっき液に接触させることによって、金属銅を含む緻密な皮膜となる。この皮膜は、ブリッジ析出のない均一な皮膜であり、良好な導電性を有し、しかも耐酸性に優れたものである。この上に電気めっき処理を行うことによって、特に、良好な密着性と共に、優れた外観を有する電気めっき皮膜を形成できる。
 電気めっき工程
 上記工程によって導体性皮膜を形成した後、導電性皮膜が形成された被処理物を、常法に従って電気めっき処理に供する。
 電気めっき浴の種類は、特に限定されるものではなく、従来公知のいずれの電気めっき浴も使用可能である。また、めっき処理の条件も常法に従えばよい。
 電気めっき処理の一例として、銅めっき、ニッケルめっき、及びクロムめっきを順次行うことによる装飾用電気めっきプロセスについて具体的に説明する。
 銅めっきとしては、例えば、公知の硫酸銅めっき浴を用いることができる。
 例えば、硫酸銅100~250g/l程度、硫酸20~120g/l程度、及び塩素イオン20~70ppm程度を含有する水溶液に、公知の光沢剤を添加しためっき浴を使用できる。硫酸銅めっきの条件は、通常と同様でよい。例えば、液温は室温程度、電流密度は3A/dm程度で、所定の膜厚までめっきを行えばよい。
 本発明の導電性皮膜形成浴によって得られた導電性皮膜は、高い耐酸性を有することから、本電気めっき工程において、硫酸銅めっき液等の強酸性のめっき液に浸漬した場合にも皮膜が侵されることがなく、均一で優れた外観を有する装飾めっき皮膜を形成することが可能である。
 また、ニッケルめっきとしては、公知のニッケルめっき浴を用いることができ、例えば、通常のワット浴を用いることができる。すなわち、硫酸ニッケル200~350g/l程度、塩化ニッケル30~80g/l程度、及びホウ酸20~60g/l程度を含有する水溶液に、市販のニッケルめっき浴用光沢剤を添加したものを使用できる。めっき条件は 通常と同様でよい。例えば、液温55~60℃程度、電流密度3A/dm程度で電解して所定の膜厚までめっきすればよい。
 クロムめっきとしては、公知のクロムめっき浴を用いることができ、通常のサージェント浴を用いることができる。すなわち、無水クロム酸200~300g/l程度、及び硫酸2~5g/l程度を含有する水溶液を使用することができる。めっき条件は、液温45℃程度、電流密度20A/dm程度であり、この条件下で所定の膜厚までめっきを行えばよい。
 本発明の導電性皮膜形成浴を用いて導電性皮膜を形成することによって、非導電性プラスチック材料に対して、均一な導電性皮膜を形成することができる。形成される導電性皮膜は、良好な導電性を有すると共に、非導電性プラスチック材料に対する密着性が良好であり、該皮膜上に電気めっき皮膜を形成することによって、密着性が良好であって、優れた外観を有する電気めっき皮膜を形成できる。特に、本発明の導電性皮膜形成浴は、アルカリ水溶液によって加水分解が生じ易いポリカーボネート、ポリエステルなどを含むプラスチック成形品に対しても、均一で密着性に優れた導電性皮膜を形成できる点で有用性が高いものである。
 以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
 実施例1
 被処理物として、100mm×40mm×3mm、表面積約1dmのPC/ABSポリマーアロイ製(三菱エンジニアリングプラスチックス(株)製:ユーピロンPL-2010)の平板を用いた。
 また、めっき用治具としては、被処理物との接点部位2カ所、接点間隔11cmで、接点部がφ2mmのステンレス棒からなり、接点以外は塩化ビニル製ゾルで焼き付けコーティングした治具を用い、下記(1)~(9)の工程を順次行うことによって、電気めっき皮膜を形成した。
 (1)脱脂処理
 まず、治具にセットした被めっき物を、アルカリ系脱脂剤溶液(奥野製薬工業(株)製:エースクリーンA-220、50g/l水溶液)中に50℃で5分間浸漬し、水洗した。
 (2)エッチング処理
 次いで、無水クロム酸400g/l及び硫酸400g/lを含有する水溶液からなるエッチング溶液中に67℃で10分間浸漬して、樹脂表面を粗化した。
 (3)中和処理
 その後、被処理物を水洗し、樹脂の表面調整剤であるCRPコンディショナー551M 15ml/lを水酸化ナトリウムでpHを7に調整した水溶液に室温で60秒間浸漬した。
 (4)プリディップ処理
 次に、プリディップ処理として、35%塩酸250ml/lを含有する水溶液に被処理物を室温で1分間浸漬した。
 (5)触媒化処理
 塩化パラジウム 83.3mg/l(Pdとして50mg/l)、塩化第一錫 8.6g/l(Snとして4.5g/l)、及び35%塩酸250ml/lを含有するpH1以下のコロイド溶液中に、被処理物を35℃で6分間浸漬して、被処理物に均一に触媒を付着させた。
 (6)導電性皮膜形成処理
 その後、水洗を充分に行い、導電性皮膜を形成した。導電性皮膜形成浴としては、硫酸銅5水和物4g/l、ロッシェル塩20g/l、及び水酸化ナトリウム60g/lを含有する水溶液を基本浴(以下、「基本浴A」という。)として、これに下記表1~4に記載したポリオキシアルキレン構造を有する水溶性ポリマーを添加した水溶液(本発明浴1~28)を用い、被処理物を該導電性皮膜形成浴に60℃で30分間浸漬して、導電性皮膜を形成した。
 一方、比較試験として、水溶性ポリマーを添加していない基本浴A(比較浴1)、及び基本浴Aに下記表3に記載の水溶性化合物を添加した浴(比較浴2~5)を導電性皮膜形成浴として用いて、上記した方法と同様にして導電性皮膜を形成した。
 (7)硫酸銅めっき処理
 その後、充分水洗し、治具を変えることなく次工程の電気銅めっきに移行した。電気銅めっき浴としては、硫酸銅・5HO 50g/l、硫酸 50g/l及び塩素イオン50mg/lを含有する水溶液に、光沢剤としてトップルチナ2000MU 5ml/l(奥野製薬工業(株)製)、及びトップルチナ2000A 0.5ml/l(奥野製薬工業(株)製)を添加しためっき浴を用い、含リン銅板を陽極とし、被めっき品を陰極として、緩やかなエアー攪拌を行いながら、液温25℃、電流密度3A/dmで5分間電気銅めっきを行った。
 (8)ニッケルめっき処理
 次に、被処理物を水洗し、活性化剤としてトップサン50g/l(奥野製薬工業(株)製)に25℃で1分間浸漬し、充分に水洗した。その後、電気ニッケルめっき液として、硫酸ニッケル280g/l、塩化ニッケル50g/l、及びホウ酸40g/lを含有する水溶液に、光沢剤として改良アクナB-1 20ml/l、改良アクナB-2 1ml/l(共に奥野製薬工業(株)製)を添加しためっき液を用い、緩やかなエアー撹拌を行いながら、液温55℃、電流密度3A/dmで20分間電気ニッケルめっきを行った。
 (9)クロムめっき処理
 次に、水洗後、クロムめっき液として、無水クロム酸250g/l及び硫酸1g/lを含有する水溶液を用い、鉛板を陽極とし、被処理物を陰極として、液温40℃、電流密度12A/dmで無撹拌で3分間クロムめっきを行った。
 *密着性の評価
 上記した方法でめっき皮膜を形成した各試料について、形成されためっき皮膜の密着性を下記の方法で評価した。結果を表1~4に併記する。
 まず、各試料について、-30℃で60分間、室温で30分間、70℃で60分間、室温で30分間放置することを1サイクルとして、これを3サイクル繰り返した。その後、めっき皮膜の膨れ状態を目視で観察し、下記の基準によってめっき皮膜間の密着性を評価した。
 ◎:めっき皮膜の膨れ無し
 ○:めっき皮膜の0~10%の面積で膨れ有り
 △:めっき皮膜の10~80%の面積で膨れ有り
 ×:めっき皮膜の80~100%で膨れ有り
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~4に示す結果から明らかなように、硫酸銅、ロッシェル塩及び水酸化ナトリウムを含有する基本浴Aにポリオキシアルキレン構造を有する水溶性ポリマーを添加した導電性皮膜形成浴(本発明浴1~28)を用いた場合には、いずれも良好な密着性を有するめっき皮膜を形成することができた。
 これに対して、水溶性ポリマーを含まない基本浴A(比較浴1)を用いた場合、及び基本浴Aに対してポリマーではない水溶性ポリオール化合物を添加した浴(比較浴2~5)を用いた場合には、いずれも、形成されためっき皮膜は、密着性が劣るものであった。
 実施例2(還元剤添加)
 実施例1と同様の被処理物と治具を用い、触媒付与工程まで実施例1と同様にして処理を行なった。
 上記触媒付与工程の後、水洗を充分に行い、硫酸銅5水和物4.8g/l、エチレンジアミン四酢酸二ナトリウム30g/l、水酸化ナトリウム30g/l、及びホルムアルデヒド2g/lを含有した水溶液(以下、「基本浴B」という。)に、表5~7に記載のポリオキシアルキレン構造を有する水溶性ポリマーを添加した水溶液を導電性皮膜形成浴(本発明浴29~56)として、実施例1と同様の条件で導電性皮膜を形成した。その後水洗し、実施例1と同様の条件で電気銅めっき、ニッケルめっき及びクロムめっきを行った。尚、表中のポリマーの種類は、表1~3と同様である。
 一方、比較試験として、水溶性ポリマーを添加していない基本浴B(比較浴6)、及び基本浴Bに下記表6に記載の水溶性化合物を添加した浴(比較浴7~10)を導電性皮膜形成浴として用い、実施例1と同様の条件で導電性皮膜を形成し、その後水洗し、実施例1と同様の条件で電気銅めっき、ニッケルめっき及びクロムめっきを行った。
 上記した方法によってめっき皮膜を形成した後、形成されためっき皮膜の密着性を実施例1と同様の方法で評価した。結果を表5~7に併記する。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表5~7に示す結果から明らかなように、硫酸銅、エチレンジアミン四酢酸二ナトリウム、水酸化ナトリウム、及びホルムアルデヒドを含有する基本浴Bにポリオキシアルキレン構造を有する水溶性ポリマーを添加した導電性皮膜形成浴(本発明浴29~56)を用いた場合には、いずれも良好な密着性を有するめっき皮膜を形成することができた。
 これに対して、水溶性ポリマーを含まない基本浴B(比較浴6)を用いた場合、及び基本浴Bに対してポリマーではない水溶性ポリオール化合物を添加した浴(比較浴7~10)を用いた場合には、いずれも、形成されるめっき皮膜は、密着性が劣るものであった。
 実施例3(還元剤添加)
 実施例1と同様の被処理物と治具を用い、触媒付与工程まで実施例1と同様にして処理を行った。
 上記触媒付与工程の後、水洗を充分に行い、硫酸銅5水和物4g/l、5,5-ジメチルヒダントイン20g/l、ロッシェル塩10g/l、水酸化ナトリウム70g/l、及びマンニット10g/lを含有する水溶液(以下、「基本浴C」という。)に、表8~10に記載のポリオキシアルキレン構造を有する水溶性ポリマーを添加した水溶液を導電性皮膜形成浴(本発明浴57~84)として、実施例1と同様の条件で導電性皮膜を形成した。その後水洗し、実施例1と同様の条件で電気銅めっき、ニッケルめっき及びクロムめっきを行った。尚、表中のポリマーの種類は、表1~3と同様である。
 一方、比較試験として、水溶性ポリマーを添加していない基本浴C(比較浴11)、及び基本浴Cに下記表9に記載の水溶性化合物を添加した浴(比較浴12~15)を導電性皮膜形成浴として用い、実施例1と同様の条件で導電性皮膜を形成し、その後水洗し、実施例1と同様の条件で電気銅めっき、ニッケルめっき及びクロムめっきを行った。
 上記した方法によってめっき皮膜を形成した後、形成されためっき皮膜の密着性を実施例1と同様の方法で評価した。結果を表8~10に併記する。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表8~10に示す結果から明らかなように、硫酸銅、5,5-ジメチルヒダントイン、ロッシェル塩、水酸化ナトリウム、及びマンニットを含有する基本浴Cにポリオキシアルキレン構造を有する水溶性ポリマーを添加した導電性皮膜形成浴(本発明浴57~84)を用いた場合には、いずれも良好な密着性を有するめっき皮膜を形成することができた。
 これに対して、水溶性ポリマーを含まない基本浴C(比較浴11)を用いた場合、及び基本浴Cに対してポリマーではない水溶性ポリオール化合物を添加した浴(比較浴12~15)を用いた場合には、いずれも、形成されるめっき皮膜は、密着性が劣るものであった。
 実施例4(還元剤と脂肪族ポリアルコールとを添加した例)
 実施例1と同様の被処理物と治具を用い、触媒付与工程まで実施例1と同様にして処理を行った。
 上記触媒付与工程の後、水洗を充分に行い、硫酸銅5水和物4g/l、ロッシェル塩20g/l、水酸化ナトリウム65g/l、ギ酸10g/l及びグリセリン50g/lを含有する水溶液(以下、「基本浴D」という。)に、表11~13に記載のポリオキシアルキレン構造を有する水溶性ポリマーを添加した水溶液を導電性皮膜形成浴(本発明浴85~112)として、実施例1と同様の条件で導電性皮膜を形成した。その後水洗し、実施例1と同様の条件で電気銅めっき、ニッケルめっき及びクロムめっきを行った。尚、表中のポリマーの種類は、表1~3と同様である。
 一方、比較試験として、水溶性ポリマーを添加していない基本浴D(比較浴16)、及び基本浴Dに下記表12に記載の水溶性化合物を添加した浴(比較浴17~20)を導電性皮膜形成浴として用い、実施例1と同様の条件で導電性皮膜を形成し、その後水洗し、実施例1と同様の条件で電気銅めっき、ニッケルめっき及びクロムめっきを行った。
 上記した方法によってめっき皮膜を形成した後、形成されためっき皮膜の密着性を実施例1と同様の方法で評価した。結果を表11~13に併記する。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表11~13に示す結果から明らかなように、硫酸銅、ロッシェル塩、水酸化ナトリウム、ギ酸及びグリセリンを含有する基本浴Dにポリオキシアルキレン構造を有する水溶性ポリマーを添加した導電性皮膜形成浴(本発明浴85~112)を用いた場合には、いずれも良好な密着性を有するめっき皮膜を形成することができた。
 これに対して、水溶性ポリマーを含まない基本浴D(比較浴16)を用いた場合、及び基本浴Dに対してポリマーではない水溶性ポリオール化合物を添加した浴(比較浴17~20)を用いた場合には、いずれも、形成されるめっき皮膜は、密着性が劣るものであった。

Claims (8)

  1.  銅化合物、錯化剤、アルカリ金属水酸化物、及びポリオキシアルキレン構造を有する水溶性ポリマーを含有する水溶液からなる導電性皮膜形成浴。
  2.  さらに、還元剤を含有する請求項1に記載の導電性皮膜形成浴。
  3.  前記還元剤が、カルボキシル基含有還元性化合物及び炭素数6以上の還元性を示す糖類からなる群から選ばれた少なくとも一種の成分である、請求項2に記載の導電性皮膜形成浴。
  4.  さらに、炭素数2~5の脂肪族ポリアルコール化合物を含有する請求項1~3のいずれか一項に記載の導電性皮膜形成浴。
  5.  前記ポリオキシアルキレン構造を有する水溶性ポリマーが、一般式(1):-(O-Ak)-(式中、Akはアルキレン基を示す。)で表されるオキシアルキレン基を構造単位とする繰り返し構造を主鎖として有し、かつ親水性基を有するポリマーである、請求項1~4のいずれか一項に記載の導電性皮膜形成浴。
  6.  前記ポリオキシアルキレン構造を有する水溶性ポリマーが、数平均分子量300以上のポリマーである、請求項1~5のいずれか一項に記載の導電性皮膜形成浴。
  7.  請求項1~6のいずれか一項に記載の導電性皮膜形成浴に、触媒物質を付与した非導電性プラスチック材料を接触させることを特徴とする、非導電性プラスチック材料に導電性皮膜を形成する方法。
  8.  請求項7に記載の方法で導電性皮膜形成浴を用いて導電性皮膜を形成した後、電気めっきを行う工程を含む、非電導性プラスチック材料への電気めっき方法。
PCT/JP2014/080527 2014-01-27 2014-11-18 導電性皮膜形成浴 WO2015111291A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015558743A JP6024044B2 (ja) 2014-01-27 2014-11-18 導電性皮膜形成浴
CN201480064153.0A CN105765104A (zh) 2014-01-27 2014-11-18 导电膜形成浴
US15/034,424 US9951433B2 (en) 2014-01-27 2014-11-18 Conductive film-forming bath
EP14879928.1A EP3070185B1 (en) 2014-01-27 2014-11-18 Conductive film-forming bath
KR1020167013814A KR101799347B1 (ko) 2014-01-27 2014-11-18 도전성 피막 형성 욕

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014012132 2014-01-27
JP2014-012132 2014-01-27

Publications (1)

Publication Number Publication Date
WO2015111291A1 true WO2015111291A1 (ja) 2015-07-30

Family

ID=53681113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080527 WO2015111291A1 (ja) 2014-01-27 2014-11-18 導電性皮膜形成浴

Country Status (6)

Country Link
US (1) US9951433B2 (ja)
EP (1) EP3070185B1 (ja)
JP (1) JP6024044B2 (ja)
KR (1) KR101799347B1 (ja)
CN (1) CN105765104A (ja)
WO (1) WO2015111291A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112966A (zh) * 2015-09-22 2015-12-02 太仓市金鹿电镀有限公司 一种高耐磨洗衣机门圈表面环保塑料电镀工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098064A1 (ja) * 2012-12-21 2014-06-26 奥野製薬工業株式会社 導電性皮膜形成浴
EP3070185B1 (en) 2014-01-27 2024-05-29 Okuno Chemical Industries Co., Ltd. Conductive film-forming bath
KR102565708B1 (ko) * 2021-03-24 2023-08-11 박일영 플라스틱 도금용 팔라듐 촉매제 및 이를 이용한 플라스틱 도금 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138381A (ja) * 2001-08-24 2003-05-14 Hitachi Ltd 無電解銅めっき液、その管理方法、及び無電解銅めっき装置
JP2005200666A (ja) * 2004-01-13 2005-07-28 C Uyemura & Co Ltd 無電解銅めっき浴
JP2010031361A (ja) * 2008-07-01 2010-02-12 C Uyemura & Co Ltd 無電解めっき液及びそれを用いた無電解めっき方法、並びに配線基板の製造方法
JP2010254971A (ja) 2009-03-31 2010-11-11 Fujifilm Corp 新規共重合ポリマー、新規共重合ポリマーを含有する組成物、積層体、表面金属膜材料の作製方法、表面金属膜材料、金属パターン材料の作製方法、及び金属パターン材料

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1195217A (en) 1967-10-04 1970-06-17 Technograph Ltd Electroless Copper Plating.
US3930963A (en) 1971-07-29 1976-01-06 Photocircuits Division Of Kollmorgen Corporation Method for the production of radiant energy imaged printed circuit boards
JPS5375123A (en) * 1976-12-16 1978-07-04 Hitachi Ltd Chemical copper plating liquid
CA1184359A (en) 1981-10-23 1985-03-26 Donald A. Arcilesi Metallic impurity control for electroless copper plating
JPS59119786A (ja) 1982-12-27 1984-07-11 イビデン株式会社 プリント配線板の無電解銅めっき方法
KR920002710B1 (ko) * 1984-06-18 1992-03-31 가부시기가이샤 히다찌세이사꾸쇼 화학동도금방법
JPS619578A (ja) 1984-06-22 1986-01-17 Hitachi Ltd 化学銅めつき方法
US4617205A (en) * 1984-12-21 1986-10-14 Omi International Corporation Formaldehyde-free autocatalytic electroless copper plating
JPH05148662A (ja) 1991-11-28 1993-06-15 Hitachi Chem Co Ltd 無電解銅めつき液
JPH05221637A (ja) 1992-02-10 1993-08-31 Sumitomo Metal Ind Ltd 酸化第一銅粉末および銅粉末の製造方法
JP3091583B2 (ja) 1992-09-14 2000-09-25 株式会社ジャパンエナジー 無電解めっき液への酸素供給方法及び装置
CA2222158C (en) 1993-03-18 2001-01-30 Nayan Harsukhrai Joshi Self accelerating and replenishing non-formaldehyde immersion coating method and composition
US5419926A (en) 1993-11-22 1995-05-30 Lilly London, Inc. Ammonia-free deposition of copper by disproportionation
JP3332668B2 (ja) 1994-07-14 2002-10-07 松下電器産業株式会社 半導体装置の配線形成に用いる無電解めっき浴及び半導体装置の配線形成方法
KR960005765A (ko) 1994-07-14 1996-02-23 모리시다 요이치 반도체 장치의 배선형성에 이용하는 무전해 도금욕 및 반도체 장치의 배선성형방법
DE19510855C2 (de) 1995-03-17 1998-04-30 Atotech Deutschland Gmbh Verfahren zum selektiven oder partiellen elektrolytischen Metallisieren von Substraten aus nichtleitenden Materialien
EP0913502B1 (en) 1997-04-07 2006-05-31 Okuno Chemical Industries Co., Ltd. Method of electroplating nonconductive plastic molded product
JP2000144439A (ja) * 1998-10-30 2000-05-26 Kizai Kk 不導体素材へのめっき処理方法とそのための無電解処理液組成物
JP4482744B2 (ja) 2001-02-23 2010-06-16 株式会社日立製作所 無電解銅めっき液、無電解銅めっき方法、配線板の製造方法
GB0301933D0 (en) * 2003-01-28 2003-02-26 Conductive Inkjet Tech Ltd Method of forming a conductive metal region on a substrate
EP1590500A2 (en) 2003-01-28 2005-11-02 Conductive Inkjet Technology Limited Method of forming a conductive metal region on a substrate
US20050016416A1 (en) * 2003-07-23 2005-01-27 Jon Bengston Stabilizer for electroless copper plating solution
US20090120798A1 (en) 2005-01-17 2009-05-14 Toshihiro Tai Method For Manufacturing Plated Resin Molded Article
WO2006075782A1 (ja) * 2005-01-17 2006-07-20 Daicel Polymer Ltd. めっき樹脂成形体の製造方法
JP2006219757A (ja) 2005-01-17 2006-08-24 Daicel Polymer Ltd めっき樹脂成形体の製造方法
JP4617445B2 (ja) * 2005-04-22 2011-01-26 奥野製薬工業株式会社 樹脂成形体へのめっき方法
US7220296B1 (en) * 2005-12-15 2007-05-22 Intel Corporation Electroless plating baths for high aspect features
KR20080083790A (ko) * 2007-03-13 2008-09-19 삼성전자주식회사 무전해 구리 도금액, 그의 제조방법 및 무전해 구리도금방법
JP2008266689A (ja) * 2007-04-17 2008-11-06 Sharp Corp 基材に金属薄膜を形成する方法及び金属薄膜形成装置
EP2149622A4 (en) * 2007-05-22 2010-07-28 Okuno Chem Ind Co PRE-TREATMENT METHOD FOR ELECTRICALLY PLATING A RESIN FORM BODY, METHOD FOR PLATING A RESIN MOLD BODY AND PRE-TREATMENT AGENT
WO2009099067A1 (ja) 2008-02-04 2009-08-13 Sekisui Chemical Co., Ltd. メッキ構造体
JP6180419B2 (ja) * 2011-10-05 2017-08-16 アトーテヒ ドイッチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング ホルムアルデヒドのない無電解銅めっき溶液
WO2014098064A1 (ja) 2012-12-21 2014-06-26 奥野製薬工業株式会社 導電性皮膜形成浴
WO2015060196A1 (ja) * 2013-10-22 2015-04-30 奥野製薬工業株式会社 樹脂材料のエッチング処理用組成物
EP3070185B1 (en) 2014-01-27 2024-05-29 Okuno Chemical Industries Co., Ltd. Conductive film-forming bath

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138381A (ja) * 2001-08-24 2003-05-14 Hitachi Ltd 無電解銅めっき液、その管理方法、及び無電解銅めっき装置
JP2005200666A (ja) * 2004-01-13 2005-07-28 C Uyemura & Co Ltd 無電解銅めっき浴
JP2010031361A (ja) * 2008-07-01 2010-02-12 C Uyemura & Co Ltd 無電解めっき液及びそれを用いた無電解めっき方法、並びに配線基板の製造方法
JP2010254971A (ja) 2009-03-31 2010-11-11 Fujifilm Corp 新規共重合ポリマー、新規共重合ポリマーを含有する組成物、積層体、表面金属膜材料の作製方法、表面金属膜材料、金属パターン材料の作製方法、及び金属パターン材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3070185A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112966A (zh) * 2015-09-22 2015-12-02 太仓市金鹿电镀有限公司 一种高耐磨洗衣机门圈表面环保塑料电镀工艺

Also Published As

Publication number Publication date
KR101799347B1 (ko) 2017-11-20
EP3070185B1 (en) 2024-05-29
US20160273118A1 (en) 2016-09-22
CN105765104A (zh) 2016-07-13
EP3070185A4 (en) 2017-06-28
US9951433B2 (en) 2018-04-24
EP3070185A8 (en) 2016-11-30
JP6024044B2 (ja) 2016-11-09
KR20160113096A (ko) 2016-09-28
JPWO2015111291A1 (ja) 2017-03-23
EP3070185A1 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
US6331239B1 (en) Method of electroplating non-conductive plastic molded products
JP6482049B1 (ja) 無電解めっきの前処理用組成物、無電解めっきの前処理方法、無電解めっき方法
TWI658122B (zh) 用於金屬化非導電塑膠表面之組合物及方法
JP5269306B2 (ja) 誘電体の金属化
JP6024044B2 (ja) 導電性皮膜形成浴
JP6035540B2 (ja) 導電性皮膜形成浴
JP5517275B2 (ja) クロム酸−硫酸混液によるエッチング処理の後処理剤
JP4740711B2 (ja) Pd/Snコロイド触媒吸着促進剤
JP2001152353A (ja) 非導電性プラスチックへの電気めっき方法
JP2007239084A (ja) 無電解めっき方法
JP5364880B2 (ja) クロム酸−硫酸混液によるエッチング処理の後処理剤
JP7160306B2 (ja) 無電解めっきの前処理用組成物、無電解めっきの前処理方法、無電解めっき方法
JP7138880B1 (ja) 無電解めっき方法
JP7012136B2 (ja) 無電解銅めっき及び不動態化の抑制
JP6524459B1 (ja) 無電解めっき用銀触媒付与剤用添加剤
JP3325236B2 (ja) 無電解銅めっき方法
JP2023060704A (ja) 無電解めっき方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015558743

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014879928

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014879928

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15034424

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167013814

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE