WO2015106650A1 - 玻璃组合物 - Google Patents

玻璃组合物 Download PDF

Info

Publication number
WO2015106650A1
WO2015106650A1 PCT/CN2015/070359 CN2015070359W WO2015106650A1 WO 2015106650 A1 WO2015106650 A1 WO 2015106650A1 CN 2015070359 W CN2015070359 W CN 2015070359W WO 2015106650 A1 WO2015106650 A1 WO 2015106650A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass composition
composition according
less
glass
wavelength
Prior art date
Application number
PCT/CN2015/070359
Other languages
English (en)
French (fr)
Inventor
孙伟
Original Assignee
成都光明光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都光明光电股份有限公司 filed Critical 成都光明光电股份有限公司
Priority to US15/109,263 priority Critical patent/US9988299B2/en
Priority to KR1020197001558A priority patent/KR20190008447A/ko
Priority to KR1020167019478A priority patent/KR20160100375A/ko
Publication of WO2015106650A1 publication Critical patent/WO2015106650A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/082Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/226Glass filters
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass

Definitions

  • the present invention relates to a near-infrared light absorbing glass composition, and more particularly to a near-infrared light absorbing glass composition for use in a near-infrared light absorbing filter suitable for color sensitivity correction and excellent in bending strength.
  • the existing near-infrared light absorbing glass has been tested and the bending strength of the glass is tested.
  • ( ⁇ ) is about 60MPa, and it is easy to be damaged or broken if it is dropped or beaten during use. It cannot meet the requirements of glass strength of mobile phones and other end products.
  • the technical problem to be solved by the present invention is to provide a near-infrared light absorbing glass which has strong bending strength and excellent transmission characteristics in a visible region.
  • the technical solution adopted by the present invention to solve the technical problem is: a glass composition containing a total weight of cations P 5+ , Al 3+ , B 3+ , R 1 + , R 2+ , and Cu 2+ . More than 90%, the R1 + represents one or more of Li + , Na + and K + , and the R 2+ represents one of Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ Or a plurality of, the Cu 2+ content is 0.1-15%, the ratio of Cu 2+ /(P 5+ +Al 3+ ) is 0.01-0.15, and the content of the anion O 2- of the glass composition reaches 97 % or more; the glass composition has a flexural strength of 110 MPa or more, and when the thickness of the glass composition is 0.3 mm, the spectral transmittance at a wavelength of 400 nm shows greater than or equal to 80%, and the spectrum at a wavelength of 700 nm is transmitted.
  • the rate is less than or equal to 25%
  • the spectral transmittance at a wavelength of 1200 nm is less than or equal to 25%
  • the thickness of the glass composition is 0.3-0.35 mm
  • the wavelength range in which the spectral transmittance reaches 50% is in the range of 620-650 nm.
  • the glass composition has a flexural strength of 130 MPa or more, and when the thickness of the glass composition is 0.3 mm, the spectral transmittance at a wavelength of 400 nm is greater than or equal to 82%, and the spectrum is transmitted at a wavelength of 700 nm.
  • the rate is less than or equal to 20%
  • the spectral transmittance at a wavelength of 1200 nm is less than or equal to 16%
  • the thickness of the glass composition is 0.3-0.35 mm, the wavelength range in which the spectral transmittance reaches 50% is in the range of 630-640 nm.
  • the cation contains 50-75% of P 5+ ; 5-30% of Al 3+ ; 0-15% of B 3+ ; R1 + content is greater than 0 but less than 10%; 0-10% of R 2+ .
  • the ratio of the Cu 2+ /(P 5+ +Al 3+ ) ranges from 0.01 to 0.1.
  • the total amount of the Al 3+ and B 3+ is 5 to 45%.
  • it contains 0-10% of Mg 2+ ; 0-10% of Ca 2+ ; 0-8% of Sr 2+ ; 0-8% of Ba 2+ .
  • it contains 10% or less of Zn 2+ .
  • H - Representative F -, Cl -, Br - , I - one or more of the.
  • the glass composition has a weather resistance of at least 2 grades.
  • the cation contains 50-75% P 5+ ; 5-30% Al 3+ ; 0-15% B 3+ ; R1 + content is greater than 0 but less than 10%; 0-10% R 2+ ; 0.1-15% Cu 2+ , the R 1 + represents one or more of Li + , Na + and K + , the R 2+ represents Mg 2+ , Ca 2+ , Sr 2 One or more of + and Ba 2+ have an anion O 2- content of 97% or more.
  • R1 contains more than 0 and less than + 8%, further containing more than 0 and R1 + 6% or less.
  • it contains 0-10% of Mg 2+ ; 0-10% of Ca 2+ ; 0-8% of Sr 2+ ; 0-8% of Ba 2+ .
  • Cu 2+ / (P 5+ + Al 3+) ratio in the range of 0.01 to 0.15 further Cu 2+ / (P 5+ + Al 3+) ratio in the range of 0.01 to 0.1, further The ratio of Cu 2+ /(P 5+ +Al 3+ ) ranges from 0.02 to 0.08.
  • the total amount of the Al 3+ and B 3+ is 5 to 45%, and further the total amount of the Al 3+ and B 3+ is 12 to 35%, and further the Al 3+ and The total amount of B 3+ is 20-30%.
  • it contains 10% or less of Zn 2+ and further contains 5% or less of Zn 2+ .
  • the total weight of the cations P 5+ , Al 3+ , B 3+ , R 1 + , R 2+ , and Cu 2+ contained in the glass composition is 90% or more, further 95% or more, and further More than 98%.
  • H - Representative F -, Cl -, Br - , I - one or more of the.
  • the glass composition has a flexural strength of 110 MPa or more.
  • the spectral transmittance at a wavelength of 400 nm is greater than or equal to 80%, and the spectral transmittance at a wavelength of 700 nm is less than or equal to 25% at a wavelength of 1200 nm.
  • the spectral transmittance is less than or equal to 25%, and when the thickness of the glass composition is 0.3 to 0.35 mm, the wavelength range in which the spectral transmittance reaches 50% is in the range of 620 to 650 nm.
  • the glass composition has a weather resistance of at least 2 grades.
  • the near-infrared light absorbing element is composed of the above glass composition.
  • the near-infrared light absorbing filter is composed of the above glass composition.
  • the invention has the beneficial effects that the phosphate glass is used as the matrix glass, and the bending strength ( ⁇ ) of the near-infrared light absorbing glass can be effectively improved by rationally designing the contents of the cationic Al 3+ and B 3+ in the glass composition.
  • the bending strength of the glass reaches 110 MPa or more; by increasing the content of the cations R1 + and R 2+ in the phosphate matrix glass, the bending strength of the glass can be increased, and the melting temperature of the molten glass can be effectively reduced, which is beneficial to the Cu ion. Maintaining the divalent state makes the glass excellent in near-infrared light absorption performance.
  • the transmittance at a wavelength of 400 nm is 80% or more, the spectral transmittance at a wavelength of 700 nm is 25% or less, and the spectral transmittance at a wavelength of 1200 nm is 25% or less;
  • the wavelength range in which the spectral transmittance reaches 50% is in the range of 620 to 650 nm.
  • Fig. 1 is a graph showing a transmittance spectrum of a glass of Example 9 of the present invention.
  • the near-infrared light absorbing glass of the present invention is obtained by adding a Cu 2+ having a near-infrared light absorbing effect to a cation of a glass component based on a phosphate glass composition.
  • the cationic component content is expressed as a percentage of the total weight of the total cationic weight of the cationic component
  • the anionic component content is expressed as a percentage of the total weight of the total anion by weight of the anion.
  • P 5+ is an essential component of the cation of the phosphate glass composition and is an important component for generating absorption in the infrared region.
  • the content is less than 50%, the near-infrared light absorption effect of the glass is lowered, the color correction function is deteriorated and greenish; when the content exceeds 75%, the devitrification resistance and weather resistance of the glass are deteriorated, so P 5+
  • the content is limited to 50-75%, preferably 55-75%, more preferably 60-70%.
  • Al 3+ is also one of the main components of the cation of the phosphate glass composition of the present invention, and can improve the flexural strength property of the phosphate glass and improve the weather resistance of the glass.
  • the Al 3+ content is less than 5%, the above effect is not obtained; when the Al 3+ content exceeds 30%, the glass is refractory, and the near-infrared absorption characteristics are lowered. Therefore, the Al 3+ content is 5-30%, preferably 10-30%, more preferably 12-25%.
  • the copper in the glass of the present invention is a main indicator of near-infrared absorption characteristics and exists as Cu 2+ .
  • the Cu 2+ content is less than 0.1%, as a near-infrared light absorbing filter, the necessary near-infrared light absorbing effect cannot be sufficiently obtained; but when the content exceeds 15%, the glass is devitrified and glass-forming. Both are reduced. Therefore, the Cu 2+ content is from 0.1 to 15%, preferably from 0.5 to 12%, more preferably from 0.5 to 10%.
  • the glass composition of the present invention obtains the near-infrared light absorption spectrum property required for the glass of the present invention by adjusting the ratio of Cu 2+ to the total amount of P 5+ and Al 3+ , that is, Cu 2+ /(P 5+ +Al 3 )
  • the ratio range of + ) is adjusted to be 0.01 to 0.15, preferably in the range of 0.01 to 0.1, and most preferably in the range of 0.02 to 0.08.
  • the present invention introduces an appropriate amount of B 3+ to lower the glass melting temperature, and when the B 3+ content exceeds 15%, the near-infrared absorption characteristics are lowered. Therefore, the B 3+ content is 0-15%, preferably 2-10%, more preferably 3-8%.
  • the inventors have found through experiments that the present invention preferably melts Al 3+ and B 3+ to have a better effect on the flexural strength and weather resistance of the glass.
  • the total amount of Al 3+ and B 3+ in the present invention is preferably 5 to 45%, more preferably 12 to 35%, and most preferably 20 to 30%.
  • the present invention comprises at least one alkali metal R1 + which is fluxed during the melting of the glass to improve the meltability and glassability of the glass, where R1 + represents one or more of Li + , Na + and K + .
  • R1 + represents one or more of Li + , Na + and K + .
  • Appropriate introduction of R1 + is beneficial to the presence of Cu 2+ , but if the content of R1 + exceeds 10%, the bending strength of the glass is significantly reduced. Therefore, the R1 + content is more than 0 but less than 10%, preferably more than 0 but less than 8%, more preferably more than 0 but less than 6%.
  • the light transmittance of the visible region is high.
  • the copper ions introduced into the glass are not Cu + and must be Cu 2+ .
  • Cu 2+ becomes Cu + , and as a result, the transmittance near a wavelength of 400 nm is lowered.
  • the introduction of Li + not only has better weather resistance effect on glass, but also can effectively reduce the melting temperature of glass, and is more conducive to maintaining the oxidation state of glass liquid, keeping Cu ions in a divalent state and improving.
  • the content of Na + and K + in the present invention is 0-5%, respectively.
  • the content of Na + or K + exceeds 5%, the weather resistance and the processing property of the glass are rather lowered, and the content is preferably 0-3%.
  • R 2+ is a component effective for improving the glass forming property, devitrification resistance and workability of the glass, where R 2+ represents one or more of Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ .
  • the invention introduces R 2+ in an appropriate amount, increases the alkaline content of the glass liquid, and is also beneficial to maintain the oxidation state of the glass liquid, and effectively inhibits the reduction of Cu 2+ into Cu + , so that the near-infrared light absorption performance of the glass is excellent.
  • the content of R 2+ exceeds 10%, the weather resistance of the glass deteriorates and the strength decreases. Therefore, the R 2+ content is from 0 to 10%, preferably from 0 to 6%, more preferably from 0.1 to 5%.
  • the present invention preferably introduces one or both of Mg 2+ and Ca 2+ , and the component works better.
  • the Mg 2+ content is preferably from 0 to 10%, more preferably from 0 to 6%, most preferably from 0.1 to 5%; and the Ca 2+ content is preferably from 0 to 10%, more preferably from 0 to 6%, most preferably 0.1. - 5%;
  • Sr 2+ content is preferably 0-8%, more preferably 0-5%, most preferably 0-3%;
  • Ba 2+ content is preferably 0-8%, more preferably 0. -5%, most preferably 0-3%.
  • the present invention can also add an appropriate amount of Zn 2+ to increase the glass melting stability and the weather resistance of the glass.
  • the amount of Zn 2+ added is 10% or less, preferably 5% or less, and in a specific embodiment, the glass of the present invention does not contain Zn 2+ .
  • the invention may also consider adding an appropriate amount of cations A 4+ , D 5+ , C 3+ , wherein A 4+ represents one or more of Si 4+ , Ge 4+ , Zr 4+ , and D 5+ represents Nb 5 . + , one or more of Ta 5+ and Gd 5+ , C 3+ represents one or more of La 3+ and Y 3+ , and a small amount of introduction of A 4+ , D 5+ , C 3+ It can be used to adjust the glass constant or melting properties, and if added, the content should be 8% or less.
  • the total weight of the cations P 5+ , Al 3+ , B 3+ , R1 + , R 2+ and Cu 2+ is preferably 90% or more, more preferably 95% or more, and most preferably 98% or more.
  • Sb 3+ may be added to the glass in an amount of not more than 1%, preferably not more than 0.5%.
  • polyvalent oxides may affect redox and promote the formation of Cu 2+ , but in view of the fact that Sb 3+ has a certain influence on the environment, the preferred embodiment of the glass does not contain Sb 3+ .
  • the glass of the present invention contains O 2 - as an anion component.
  • the O 2- content is 97% or more, preferably 99% or more, based on the total weight of the anion, and it is more preferable that the anion of the present invention is all O 2- .
  • the present invention can also introduce H - in a small amount, where H - represents one or more of F - , Cl - , Br - , I - , as an anion of the glass component, H - improves the weather resistance of the glass, and its content is less than 3%, preferably less than 1%, more preferably not contained.
  • the starting materials can be introduced in the form of metaphosphates, carbonates, nitrates, oxides, and the like.
  • the invention is designed by a specific component, and the characteristics of the bending strength of the glass are as follows: bending resistance
  • the strength ( ⁇ ) is 110 MPa or more, preferably 130 MPa or more, more preferably 150 MPa or more, and most preferably 190 MPa or more.
  • the bending strength of the glass composition of the present invention is suitable for testing by a three-point method at a normal temperature using a microcomputer-controlled electronic universal testing machine (model: CMT 6502).
  • the three-point bending strength test refers to placing the sample on a two-point point with a certain distance, bearing the weight at one point in the center of the fulcrum, and the maximum bending stress at the time of breaking.
  • W width of the sample (mm);
  • t thickness of the sample (mm).
  • the glass composition of the present invention was made into 50 mm * 20 mm * 0.3 mm (length * width * thickness), and the test conditions were as follows: the indenter diameter was ⁇ 6 mm; the pressing speed was 1 mm/min; and the span was 30 mm.
  • the weather resistance stability category can be at least 2 grades, preferably 1 grade or more, more preferably 0 grade or more.
  • Atmospheric pressure The pressure at the test site.
  • the sample When testing the weather resistance of the sample glass of the present invention, the sample is made into a specification size: 30 mm * 30 mm * 10 mm, the two faces are polished, and the other faces are finely ground, and the inside of the glass should be free of visible stripes, bubbles and stones.
  • test chamber requires that the temperature of each measurement point should not exceed ⁇ 2 °C of the specified temperature, and the allowable difference of relative humidity is ⁇ 5% RH.
  • the rate of temperature change should not exceed 10 ° C / min.
  • test sample Place the test sample in a test chamber with a saturated water vapor atmosphere of 90% relative humidity, raise the temperature to 40 ° C for 50 minutes, and then heat up to 50 ° C for 10 minutes for 50 minutes; then cool down for 10 minutes. The temperature was maintained at 40 ° C for 50 minutes, and the temperature was raised to 50 ° C for 10 minutes for 50 minutes. This was alternately cycled for at least 15 cycles. After the end of the test, the sample was taken out and placed in the room for 1 h for observation. If no corrosion spots appear after 30 hours, increase the test time until corrosion spots appear. The glass surface was observed using an 80x to 100x microscope and classified according to the time at which the corrosion spots appeared, as specified in Table 1.
  • the spectral transmittance has the characteristics shown below:
  • the spectral transmittance at a wavelength of 400 nm is greater than or equal to 80%, preferably greater than or equal to 82%, more preferably greater than or equal to 84%.
  • the spectral transmittance at a wavelength of 700 nm is less than or equal to 25%, preferably less than or equal to 20%, more preferably less than or equal to 18%.
  • the spectral transmittance at a wavelength of 1200 nm is less than or equal to 25%, preferably less than or equal to 16%, more preferably less than or equal to 10%.
  • the wavelength ( ⁇ 50 ) at which the spectral transmittance reaches 50% ranges from 620 to 650 nm, more preferably from 630 to 640 nm, and most preferably from 630 to 635 nm.
  • the transmittance of the glass of the present invention refers to a value obtained by the spectrophotometer in the manner described: assuming that the glass sample has two planes parallel to each other and optically polished, the light is incident perpendicularly from one parallel plane and exits from the other parallel plane.
  • the intensity of the emitted light divided by the intensity of the incident light is the transmittance, which is also referred to as the external transmittance.
  • the near-infrared light absorbing glass of the present invention can constitute a near-infrared light absorbing element, such as a thin plate-shaped glass element or a lens used in a near-infrared light absorbing filter, and is suitable for color correction use of a solid-state image sensor, and has good Transmission performance and weather resistance.
  • the near-infrared light absorbing element composed of the near-infrared light absorbing glass can constitute a near-infrared filter device, and therefore has good light transmission performance and weather resistance.
  • a metaphosphate compound, an oxide, a nitrate, and a carbonate are used as a glass raw material, and the raw materials are weighed to have a glass having an anion and a cation composition shown in Tables 2 and 3, and after thorough mixing.
  • the mixed raw materials are placed in the platinum crucible, and the oxidation atmosphere in the furnace is maintained in the process, which is favorable for the presence of Cu 2+ , heated at a temperature of 1250-1350 ° C and stirred and melted, and after clarification and homogenization, the molten glass is controlled from the temperature control pipeline.
  • the medium is continuously discharged at a constant flow rate, and the optical glass of the present invention is obtained after molding.
  • Example 1-20 Manufacturing Example of Near Infrared Absorbing Glass
  • the glass of the present invention was processed into a sheet shape, and both surfaces opposed to each other were optically polished to prepare a sample for measuring spectral transmittance, and the spectral transmittance of each sample was measured using a spectroscopic transmittance to obtain a thickness of 0.3 mm per The transmittance of a typical wavelength of a sample.
  • the transmittance values of the glass of the present invention at a thickness of 0.3 mm are shown in Table 4-5, and it can be confirmed that the glasses all have excellent properties as a color sensitivity correction glass for a semiconductor imaging element.
  • FIG. 1 A spectral transmittance curve of the near-infrared light absorbing glass of Example 9 of the present invention is shown in Fig. 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Glass Compositions (AREA)

Abstract

一种具有较强抗弯强度、在可视域优异透过特性的近红外光吸收玻璃组合物,以阳离子重量%表示,含有的阳离子P 5+、Al 3+、B 3+、R1 +、R 2+及Cu 2+的总重量达到90%以上,所述Cu 2+含量为0.1-15%,Cu 2+/(P 5++Al 3+)的比值为0.01-0.15,所述玻璃组合物的阴离子O 2-的含量达到97阴离子重量%以上;所述玻璃组合物抗弯强度达到110MPa以上,所述玻璃组合物厚度为0.3mm时,在400nm的波长的光谱透过率显示大于或等于80%,在700nm的波长的光谱透过率小于或等于25%,在1200nm的波长的光谱透过率小于或等于25%。

Description

玻璃组合物 技术领域
本发明涉及一种近红外光吸收玻璃组合物,特别是涉及一种适合色灵敏度修正的近红外光吸收滤光器用、抗弯强度性能优良的近红外光吸收玻璃组合物。
背景技术
近年来,用于数码照相机及VTR照相机的CCD、CMOS等半导体摄像元件的光谱灵敏度,普及到从可视领域开始1100nm附近的近红外领域,使用吸收近红外领域光的滤光器可以得到近似于人的视感度。因此,色灵敏度修正用滤光器的需求越来越大,这就对用于制造此类滤光器的近红外光吸收功能玻璃提出了更高的要求,即要求此类玻璃组合物具有在可视域优异的透过特性。并且,由于近红外光吸收玻璃在智能手机等领域的应用,对玻璃的抗弯强度等性能也提出了更高的要求,现有的一种近红外光吸收玻璃,经过测试,玻璃抗弯强度(σ)在60MPa左右,在使用过程中如有落地或摔打的情况易受损或破碎,不能很好地满足手机等终端产品对玻璃强度的要求。
发明内容
本发明所要解决的技术问题是提供一种具有较强抗弯强度、在可视域优异透过特性的近红外光吸收玻璃。
本发明解决技术问题所采用的技术方案是:玻璃组合物,所述玻璃组合物含有的阳离子P5+、Al3+、B3+、R1+、R2+及Cu2+的总重量达到90%以上,所述R1+代表Li+、Na+和K+中的一种或多种,所述R2+代表Mg2+、Ca2+、Sr2+和Ba2+中的一种或多种,所述Cu2+含量为0.1-15%,Cu2+/(P5++Al3+)的比值为0.01-0.15,所述玻璃组合物的阴离子O2-的含量达到97%以上;所述玻璃组合物抗弯强度达到110MPa以上,所述玻璃组合物厚度为0.3mm时,在400nm的波长的光谱透过率显示大于或等于80%,在700nm的波长的光谱透过率小于或等于25%,在1200nm的波长的光谱透过率小于或等于25%,所述玻 璃组合物厚度为0.3-0.35mm时,光谱透过率达到50%的波长范围在620-650nm。
进一步的,所述玻璃组合物抗弯强度达到130MPa以上,所述玻璃组合物厚度为0.3mm时,在400nm的波长的光谱透过率显示大于或等于82%,在700nm的波长的光谱透过率小于或等于20%,在1200nm的波长的光谱透过率小于或等于16%,所述玻璃组合物厚度为0.3-0.35mm时,光谱透过率达到50%的波长范围在630-640nm。
进一步的,阳离子含有50-75%的P5+;5-30%的Al3+;0-15%的B3+;R1+含量为大于0但在10%以下;0-10%的R2+
进一步的,所述Cu2+/(P5++Al3+)的比值范围为0.01-0.1。
进一步的,所述Al3+和B3+的合计量为5-45%。
进一步的,含有10%以下的Li+;0-5%的Na+;0-5%的K+
进一步的,含有0-10%的Mg2+;0-10%的Ca2+;0-8%的Sr2+;0-8%的Ba2+
进一步的,含有10%以下的Zn2+
进一步的,含有8%以下的A4+;8%以下的D5+;8%以下的C3+,其中A4+代表Si4+、Ge4+、Zr4+中的一种或多种;D5+代表Nb5+、Ta5+、Gd5+中的一种或多种;C3+代表La3+、Y3+中的一种或多种。
进一步的,含有0-1%的Sb3+
进一步的,含有99%以上的阴离子O2-
进一步的,含有少于3%的阴离子H-,所述H-代表F-、Cl-、Br-、I-中的一种或多种。
进一步的,所述玻璃组合物的耐侯性达到2级以上。
玻璃组合物,阳离子含有50-75%的P5+;5-30%的Al3+;0-15%的B3+;R1+含量为大于0但在10%以下;0-10%的R2+;0.1-15%的Cu2+,所述R1+代表Li+、Na+和K+中的一种或多种,所述R2+代表Mg2+、Ca2+、Sr2+和Ba2+中的一种或多种,阴离子O2-的含量达到97%以上。
进一步的,含有55-75%的P5+,进一步的含有60-70%的P5+
进一步的,含有10-30%的Al3+,进一步的含有12-25%的Al3+
进一步的,含有2-10%的B3+,进一步的含有3-8%的B3+
进一步的,含有大于0但在8%以下的R1+,进一步的含有大于0但在6%以下的R1+
进一步的,含有10%以下的Li+;0-5%的Na+;0-5%的K+
进一步的,含有0.5-8%的Li+,进一步的含有1-6%的Li+
进一步的,含有0-6%的R2+,进一步的含有0.1-5%的R2+
进一步的,含有0-10%的Mg2+;0-10%的Ca2+;0-8%的Sr2+;0-8%的Ba2+
进一步的,含有0-6%的Mg2+,进一步的含有0.1-5%的Mg2+
进一步的,含有0.5-12%的Cu2+,进一步的含有0.5-10%的Cu2+
进一步的,含有99%以上的阴离子O2-,进一步的含有100%的O2-
进一步的,Cu2+/(P5++Al3+)的比值范围为0.01-0.15,进一步的Cu2+/(P5++Al3+)的比值范围为0.01-0.1,更进一步的Cu2+/(P5++Al3+)的比值范围为0.02-0.08。
进一步的,所述Al3+和B3+的合计量为5-45%,进一步的所述Al3+和B3+的合计量为12-35%,更进一步的所述Al3+和B3+的合计量为20-30%。
进一步的,含有10%以下的Zn2+,进一步的含有5%以下的Zn2+
进一步的,含有8%以下的A4+;8%以下的D5+;8%以下的C3+,其中A4+代表Si4+、Ge4+、Zr4+中的一种或多种;D5+代表Nb5+、Ta5+、Gd5+中的一种或多种;C3+代表La3+、Y3+中的一种或多种。
进一步的,所述玻璃组合物含有的阳离子P5+、Al3+、B3+、R1+、R2+及Cu2+的总重量达到90%以上,进一步的达到95%以上,更进一步的达到98%以上。
进一步的,含有0-1%的Sb3+
进一步的,含有少于3%的阴离子H-,所述H-代表F-、Cl-、Br-、I-中的一种或多种。
进一步的,所述玻璃组合物的抗弯强度达到110MPa以上。
进一步的,所述玻璃组合物厚度为0.3mm时,在400nm的波长的光谱透过率显示大于或等于80%,在700nm的波长的光谱透过率小于或等于25%,在1200nm的波长的光谱透过率小于或等于25%,所述玻璃组合物厚度为0.3-0.35mm时,光谱透过率达到50%的波长范围在620-650nm。
进一步的,所述玻璃组合物的耐侯性达到2级以上。
近红外光吸收元件,由上述的玻璃组合物构成。
近红外光吸收滤光器,由上述的玻璃组合物构成。
本发明的有益效果是:本发明以磷酸盐玻璃作为基质玻璃,通过合理设计玻璃组合物中阳离子Al3+、B3+的含量,能有效提高近红外光吸收玻璃的抗弯强度(σ),玻璃抗弯强度达到110MPa以上;通过适量引入磷酸盐基质玻璃中的阳离子R1+、R2+的含量,在增加玻璃抗弯强度的同时,可以有效降低玻璃液的熔融温度,有利于Cu离子保持二价状态,使得玻璃的近红外光吸收性能优异。本发明的玻璃厚度为0.3mm时,在波长400nm透射率显示80%以上,在700nm的波长的光谱透过率小于或等于25%,在1200nm的波长的光谱透过率小于或等于25%;玻璃厚度为0.3-0.35mm时,光谱透过率达到50%的波长范围在620-650nm。
附图说明
图1是本发明的实施例9的玻璃的透射率光谱曲线图。
具体实施方式
本发明的近红外光吸收玻璃是把磷酸盐玻璃组合物作为基础,在玻璃组分的阳离子中添加有近红外光吸收作用的Cu2+而得到的。
在下文中,阳离子组分含量以该阳离子重量占全部阳离子总重量的百分比含量表示,阴离子组分含量以该阴离子重量占全部阴离子总重量的百分比含量表示。
P5+为磷酸盐玻璃组合物阳离子的基本成分,是在红外区域中产生吸收的一种重要组分。当其含量不到50%时,玻璃近红外光吸收效果降低,色修正功能恶化并带绿色;当其含量超过75%时,则玻璃的耐失透性与耐侯性均恶化,因此P5+的含量限定为50-75%,优选为55-75%,更优选为60-70%。
Al3+也是本发明磷酸盐玻璃组合物阳离子的主要成分之一,可以提高磷酸盐玻璃的抗弯强度性能,改善玻璃的耐侯性。当Al3+含量低于5%时,达不到上述效果;当Al3+含量超过30%时,玻璃会难熔,而且近红外线吸收特性降低。因此,Al3+含量为5-30%,优选为10-30%,更优选为12-25%。
本发明玻璃中的铜是近红外线吸收特性的主要指标,并且以Cu2+存在。当Cu2+含量低于0.1%时,作为近红外光吸收滤光器,不能充分达到必须的 近红外光吸收效果;但当其含量超过15%时,玻璃的耐失透性、成玻璃性均降低。因此,Cu2+含量为0.1-15%,优选为0.5-12%,更优选为0.5-10%。
本发明玻璃组合物通过调整Cu2+与P5+、Al3+合计量的比值,来得到本发明玻璃所需要的近红外光吸收光谱性能,即将Cu2+/(P5++Al3+)的比值范围调整为0.01-0.15,优选范围为0.01-0.1,最优选范围为0.02-0.08。
本发明引入适量的B3+,可以降低玻璃熔融温度,当B3+含量超过15%时,近红外线吸收特性降低。因此,B3+含量为0-15%,优选为2-10%,更优选为3-8%。
发明人通过实验发现,本发明优选将Al3+、B3+混熔,对玻璃的抗弯强度与耐侯性有更好的效果。本发明的Al3+、B3+的合计量优选为5-45%,更优选为12-35%,最优选为20-30%。
本发明至少包含一种碱金属R1+,在玻璃熔融过程助熔,提高玻璃的可熔性和成玻璃性,这里R1+代表Li+、Na+和K+中的一种或多种。适量地引入R1+有利于Cu2+存在,但若R1+的含量超过10%,会使玻璃的抗弯强度明显下降。因此,R1+含量为大于0但在10%以下,优选为大于0但在8%以下,更优选为大于0但在6%以下。
作为近红外光吸收滤光器,期望可视域的光透过率较高。为了提高可视域的透过率,玻璃中引入的铜离子不是Cu+,必须是Cu2+。玻璃熔液如果处于还原状态,Cu2+就变成Cu+,其结果是波长400nm附近的透过率将降低。相对于Na+、K+而言,Li+的引入不仅对玻璃的耐侯性效果更好,而且可以有效降低玻璃熔融温度,更有利于玻璃液保持氧化状态,使Cu离子保持二价状态,改善玻璃的光谱性能,但当Li+含量超过10%时,玻璃的耐侯性和抗弯强度性能恶化。因此,Li+含量为10%以下,优选为0.5-8%,更优选为1-6%。
本发明Na+、K+含量分别为0-5%,若Na+或K+含量超过5%时,玻璃耐侯性及加工性能反而降低,优选含量分别为0-3%。
R2+是有效提高玻璃的成玻璃性、耐失透性和可加工性的组分,这里R2+代表Mg2+、Ca2+、Sr2+和Ba2+中的一种或多种。本发明适量引入R2+,增加玻璃液的碱性含量,也有利于玻璃液保持氧化状态,有效抑制Cu2+还原成Cu+,使得玻璃的近红外光吸收性能优异。R2+的含量如果超过10%,玻璃耐侯性 恶化,强度下降。因此,R2+含量为0-10%,优选含量为0-6%,更优选含量为0.1-5%。
相对Sr2+和Ba2+而言,本发明优选引入Mg2+和Ca2+中的一种或两种,组份作用效果更佳。Mg2+含有量为0-10%较理想,更优选0-6%,最优选0.1-5%;Ca2+含量优选为0-10%,更优选为0-6%,最优选为0.1-5%;Sr2+含有量为0-8%较理想,更优选为0-5%,最优选为0-3%;Ba2+含有量为0-8%较理想,更优选为0-5%,最优选为0-3%。
本发明还可以添加适量的Zn2+,增加玻璃熔融稳定性及玻璃的耐侯性,但如果添加过量的话,玻璃耐侯性恶化,抗弯强度下降。因此,在本发明中Zn2+添加量为10%以下,优选为5%以下,在特别的实施方式中本发明玻璃不含Zn2+
本发明也可以考虑适量添加阳离子A4+、D5+、C3+,其中A4+代表Si4+、Ge4+、Zr4+中的一种或多种,D 5+代表Nb5+、Ta5+、Gd5+中的一种或多种,C3+代表La3+、Y3+中的一种或多种,A4+、D 5+、C3+的少量引入可用于调整玻璃常数或熔融性能,如果添加,其含量应当分别为8%以下。
本发明优选阳离子P5+、Al3+、B3+、R1+、R2+和Cu2+的总重量达到90%以上,更优选达到95%以上,最优选达到98%以上。
作为澄清剂,优选地,可以在玻璃中加入Sb3+,其含量不应当超过1%,优选不超过0.5%。此外,多价氧化物可能会影响氧化还原作用,从而促进Cu2+的形成,但考虑到Sb3+对环境有一定的影响,因此,玻璃的优选实施方式中不含Sb3+
本发明玻璃中含有作为阴离子成分的O2-。O2-含量达到阴离子总重量的97%以上,优选达到99%以上,更优选本发明的阴离子全部为O2-
本发明也可以少量引入H-,这里H-代表F-、Cl-、Br-、I-中的一种或多种,作为玻璃组分的阴离子,H-提高玻璃耐侯性,其含量少于3%,优选少于1%,更优选不含有。
为生产本发明的玻璃,原料可以以偏磷酸盐、碳酸盐、硝酸盐、氧化物等形式引入。
本发明通过特定的组分设计,玻璃的抗弯强度方面的特性如下:抗弯 强度(σ)达到110MPa以上,优选达到130MPa以上,更优选达到150MPa以上,最优选达到190MPa以上。
本发明玻璃组合物的抗弯强度适用于采用微机控制电子万能试验机(型号:CMT 6502)常温下利用三点法进行测试。三点法抗弯强度测试是指:将样品放置在有一定距离的二支点上,在支点中央的1点上负重,折断时的最大弯曲应力。
抗弯强度计算:
三点法抗弯强度:
Figure PCTCN2015070359-appb-000001
式中σ(3.L):三点抗弯强度(MPa);
L:下部二支点间的跨距(mm);
F:样品断裂时的最大弯曲应力(N);
W:样品的宽度(mm);
t:样品的厚度(mm)。
将本发明的玻璃组合物制作成50mm*20mm*0.3mm(长*宽*厚),测试条件如下:压头直径为Ф6mm;下压速度为1mm/min;跨距为30mm。
在玻璃耐侯性方面,通常玻璃被大气侵蚀后,其表面产生“白斑”或“雾浊”等变质层。本发明玻璃表面的侵蚀程度,可以使用80X~100X显微镜观察玻璃表面,根据出现腐蚀斑点的时间进行确定。本发明玻璃组合物耐侯性方面的特性如下:耐气候稳定性类别(CR)可以达到2级以上,优选1级以上,更优选0级以上。
上述耐侯性应在下列标准大气条件下进行测量和试验:
温度:15℃~35℃;
相对湿度:20%RH~80%RH;
大气压力:试验场所气压。
测试本发明样品玻璃耐侯性时,将样品制作成规格尺寸:30mm*30mm*10mm,两大面抛光,其余各面精磨,玻璃内部应无肉眼可见的条纹、气泡和结石。
试验箱(室)要求各个测量点的温度不应超过规定温度的±2℃,相对湿度的允许差为±5%RH。使用符合GB/T6682要求的二级蒸馏水。温度变化的速率不应超过10℃/min。
首先将玻璃样品擦干净,放置在正常的试验大气压下,直到达到温度稳定,再放入干燥器中,24h后进行试验,但放置时间不应超过72h。用超声波清洗器清洗或用长纤维棉和符合GB/T 678要求的无水乙醇与符合GB/T12591要求的乙醚(1:9)的混合溶剂拭净样品,在80x~100x显微镜下检查应无侵蚀痕迹。
将试验样品放置在相对湿度为90%的饱和水蒸气环境的试验箱内,升温至40℃,保持50分钟,再用10分钟时间升温至50℃,保持50分钟;然后再用10分钟时间降温至40℃,保持50分钟,再用10分钟时间升温至50℃,保持50分钟,这样交替循环,进行至少15个循环周期。试验结束后,将样品取出,放置室内稳定1h后进行观察。如果30h后没有出现腐蚀斑,应增加试验时间,直至出现腐蚀斑。使用80x~100x显微镜观察玻璃表面,根据出现腐蚀斑点的时间进行分类,按表1规定。
表1  玻璃耐气候稳定性类别
Figure PCTCN2015070359-appb-000002
本发明玻璃的透过率特性如下:
当玻璃厚度为0.3mm时,光谱透过率具有下面显示的特性:
在400nm波长的光谱透过率大于或等于80%、优选大于或等于82%、更优选大于或等于84%。
在700nm波长的光谱透过率小于或等于25%、优选小于或等于20%、更优选小于或等于18%。
在1200nm波长的光谱透过率小于或等于25%、优选小于或等于16%、更优选小于或等于10%。
当玻璃厚度为0.3-0.35mm时,光谱透过率达到50%的波长(λ50)范围在 620-650nm,更优选范围为630-640nm,最优选波长范围为630-635nm。
本发明玻璃的透过率是指通过分光光度计以所述方式得到的值:假定玻璃样品具有彼此平行并且光学抛光的两个平面,光从一个平行平面上垂直入射,从另外一个平行平面出射,该出射光的强度除以入射光的强度就是透过率,该透过率也称为外透过率。
根据本发明的玻璃的上述特性,可以很好地实现半导体成像元件如CCD或CMOS的颜色校正。
本发明所述近红外光吸收玻璃可以构成近红外光吸收元件,如用于近红外光吸收滤光器中的薄板状的玻璃元件或透镜等,适用于固体摄像元件的色修正用途,具备良好的透射性能及耐侯性。近红外光吸收玻璃构成的近红外光吸收元件,可以构成近红外滤光器装备,因此也具备良好的光透射性能和耐侯性。
实施例
在下文中,参考实施例将更详细地描述本发明。然而,本发明不限于所述实施例。
首先,以偏磷酸盐化合物、氧化物、硝酸盐和碳酸盐作为玻璃原料,将原料按比例称重使其为具有在表2和表3中显示的阴、阳离子组成的玻璃,完全混合后,将混合原料放入到铂坩埚中,工艺上维持炉内氧化气氛,有利于Cu2+存在,在1250-1350℃的温度加热并且搅拌熔融,澄清均化后,使熔融玻璃从控温管道中以恒定流速连续流出,成型后得到本发明的光学玻璃。
实施例1-20(近红外线吸收玻璃的制造实施例)
表2
Figure PCTCN2015070359-appb-000003
Figure PCTCN2015070359-appb-000004
表3
Figure PCTCN2015070359-appb-000005
Figure PCTCN2015070359-appb-000006
将本发明玻璃加工成板状,并且将彼此相对的两面进行光学抛光以制备用于测量光谱透过率的样品,使用光谱透射仪测量每个样品的光谱透过率,得到0.3mm厚度的每个样品的典型波长的透过率。
表4-5中显示了本发明玻璃在0.3mm厚度时的透射率值,可以证实所述玻璃都具有作为用于半导体成像元件的颜色灵敏度校正玻璃的优异性能。
表4
Figure PCTCN2015070359-appb-000007
Figure PCTCN2015070359-appb-000008
表5
Figure PCTCN2015070359-appb-000009
本发明实施例9的近红外光吸收玻璃的光谱透射率曲线图如图1所示。

Claims (37)

  1. 玻璃组合物,其特征在于,所述玻璃组合物含有的阳离子P5+、Al3+、B3+、R1+、R2+及Cu2+的总重量达到90%以上,所述R1+代表Li+、Na+和K+中的一种或多种,所述R2+代表Mg2+、Ca2+、Sr2+和Ba2+中的一种或多种,所述Cu2+含量为0.1-15%,Cu2+/(P5++Al3+)的比值为0.01-0.15,所述玻璃组合物的阴离子O2-的含量达到97%以上;所述玻璃组合物抗弯强度达到110MPa以上,所述玻璃组合物厚度为0.3mm时,在400nm的波长的光谱透过率显示大于或等于80%,在700nm的波长的光谱透过率小于或等于25%,在1200nm的波长的光谱透过率小于或等于25%,所述玻璃组合物厚度为0.3-0.35mm时,光谱透过率达到50%的波长范围在620-650nm。
  2. 如权利要求1所述的玻璃组合物,其特征在于,所述玻璃组合物抗弯强度达到130MPa以上,所述玻璃组合物厚度为0.3mm时,在400nm的波长的光谱透过率显示大于或等于82%,在700nm的波长的光谱透过率小于或等于20%,在1200nm的波长的光谱透过率小于或等于16%,所述玻璃组合物厚度为0.3-0.35mm时,光谱透过率达到50%的波长范围在630-640nm。
  3. 如权利要求1或2所述的玻璃组合物,其特征在于,阳离子含有50-75%的P5+;5-30%的Al3+;0-15%的B3+;R1+含量为大于0但在10%以下;0-10%的R2+
  4. 如权利要求1或2所述的玻璃组合物,其特征在于,所述Cu2+/(P5++Al3+)的比值范围为0.01-0.1。
  5. 如权利要求1或2所述的玻璃组合物,其特征在于,所述Al3+和B3+的合计量为5-45%。
  6. 如权利要求1或2所述的玻璃组合物,其特征在于,含有10%以下的Li+;0-5%的Na+;0-5%的K+
  7. 如权利要求1或2所述的玻璃组合物,其特征在于,含有0-10%的Mg2+;0-10%的Ca2+;0-8%的Sr2+;0-8%的Ba2+
  8. 如权利要求1或2所述的玻璃组合物,其特征在于,含有10%以下的Zn2+
  9. 如权利要求1或2所述的玻璃组合物,其特征在于,含有8%以下的A4+;8%以下的D5+;8%以下的C3+,其中A4+代表Si4+、Ge4+、Zr4+中的一种或多种;D5+代表Nb5+、Ta5+、Gd5+中的一种或多种;C3+代表La3+、Y3+中的一种或多种。
  10. 如权利要求1或2所述的玻璃组合物,其特征在于,含有0-1%的Sb3+
  11. 如权利要求1或2所述的玻璃组合物,其特征在于,含有99%以上的阴离子O2-
  12. 如权利要求1或2所述的玻璃组合物,其特征在于,含有少于3%的阴离子H-,所述H-代表F-、Cl-、Br-、I-中的一种或多种。
  13. 如权利要求1或2所述的玻璃组合物,其特征在于,所述玻璃组合物的耐侯性达到2级以上。
  14. 玻璃组合物,其特征在于,阳离子含有50-75%的P5+;5-30%的Al3+;0-15%的B3+;R1+含量为大于0但在10%以下;0-10%的R2+;0.1-15%的Cu2+,所述R1+代表Li+、Na+和K+中的一种或多种,所述R2+代表Mg2+、Ca2+、Sr2+和Ba2+中的一种或多种,阴离子O2-的含量达到97%以上。
  15. 如权利要求14所述的玻璃组合物,其特征在于,含有55-75%的P5+,进一步的含有60-70%的P5+
  16. 如权利要求14所述的玻璃组合物,其特征在于,含有10-30%的Al3+,进一步的含有12-25%的Al3+
  17. 如权利要求14所述的玻璃组合物,其特征在于,含有2-10%的B3+,进一步的含有3-8%的B3+
  18. 如权利要求14所述的玻璃组合物,其特征在于,含有大于0但在8%以下的R1+,进一步的含有大于0但在6%以下的R1+
  19. 如权利要求14所述的玻璃组合物,其特征在于,含有10%以下的Li+;0-5%的Na+;0-5%的K+
  20. 如权利要求14所述的玻璃组合物,其特征在于,含有0.5-8%的Li+,进一步的含有1-6%的Li+
  21. 如权利要求14所述的玻璃组合物,其特征在于,含有0-6%的R2+, 进一步的含有0.1-5%的R2+
  22. 如权利要求14所述的玻璃组合物,其特征在于,含有0-10%的Mg2+;0-10%的Ca2+;0-8%的Sr2+;0-8%的Ba2+
  23. 如权利要求14所述的玻璃组合物,其特征在于,含有0-6%的Mg2+,进一步的含有0.1-5%的Mg2+
  24. 如权利要求14所述的玻璃组合物,其特征在于,含有0.5-12%的Cu2+,进一步的含有0.5-10%的Cu2+
  25. 如权利要求14所述的玻璃组合物,其特征在于,含有99%以上的阴离子O2-,进一步的含有100%的O2-
  26. 如权利要求14所述的玻璃组合物,其特征在于,Cu2+/(P5++Al3+)的比值范围为0.01-0.15,进一步的Cu2+/(P5++Al3+)的比值范围为0.01-0.1,更进一步的Cu2+/(P5++Al3+)的比值范围为0.02-0.08。
  27. 如权利要求14所述的玻璃组合物,其特征在于,所述Al3+和B3+的合计量为5-45%,进一步的所述Al3+和B3+的合计量为12-35%,更进一步的所述Al3+和B3+的合计量为20-30%。
  28. 如权利要求14所述的玻璃组合物,其特征在于,含有10%以下的Zn2+,进一步的含有5%以下的Zn2+
  29. 如权利要求14所述的玻璃组合物,其特征在于,含有8%以下的A4+;8%以下的D5+;8%以下的C3+,其中A4+代表Si4+、Ge4+、Zr4+中的一种或多种;D5+代表Nb5+、Ta5+、Gd5+中的一种或多种;C3+代表La3+、Y3+中的一种或多种。
  30. 如权利要求14所述的玻璃组合物,其特征在于,所述玻璃组合物含有的阳离子P5+、Al3+、B3+、R1+、R2+及Cu2+的总重量达到90%以上,进一步的达到95%以上,更进一步的达到98%以上。
  31. 如权利要求14所述的玻璃组合物,其特征在于,含有0-1%的Sb3+
  32. 如权利要求14所述的玻璃组合物,其特征在于,含有少于3%的阴离子H-,所述H-代表F-、Cl-、Br-、I-中的一种或多种。
  33. 如权利要求14所述的玻璃组合物,其特征在于,所述玻璃组合物的抗弯强度达到110MPa以上。
  34. 如权利要求14所述的玻璃组合物,其特征在于,所述玻璃组合物厚度为0.3mm时,在400nm的波长的光谱透过率显示大于或等于80%,在700nm的波长的光谱透过率小于或等于25%,在1200nm的波长的光谱透过率小于或等于25%,所述玻璃组合物厚度为0.3-0.35mm时,光谱透过率达到50%的波长范围在620-650nm。
  35. 如权利要求14所述的玻璃组合物,其特征在于,所述玻璃组合物的耐侯性达到2级以上。
  36. 近红外光吸收元件,其特征在于,由权利要求1-35中任一权利要求所述的玻璃组合物构成。
  37. 近红外光吸收滤光器,其特征在于,由权利要求1-35中任一权利要求所述的玻璃组合物构成。
PCT/CN2015/070359 2014-01-16 2015-01-08 玻璃组合物 WO2015106650A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/109,263 US9988299B2 (en) 2014-01-16 2015-01-08 Glass composition
KR1020197001558A KR20190008447A (ko) 2014-01-16 2015-01-08 유리 조성물
KR1020167019478A KR20160100375A (ko) 2014-01-16 2015-01-08 유리 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410020496.9A CN104788020B (zh) 2014-01-16 2014-01-16 玻璃组合物
CN201410020496.9 2014-01-16

Publications (1)

Publication Number Publication Date
WO2015106650A1 true WO2015106650A1 (zh) 2015-07-23

Family

ID=53542394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070359 WO2015106650A1 (zh) 2014-01-16 2015-01-08 玻璃组合物

Country Status (5)

Country Link
US (1) US9988299B2 (zh)
KR (2) KR20190008447A (zh)
CN (1) CN104788020B (zh)
TW (1) TWI630187B (zh)
WO (1) WO2015106650A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6267823B1 (ja) 2017-07-27 2018-01-24 日本板硝子株式会社 光学フィルタ、カメラモジュール、及び情報端末
JP6232161B1 (ja) 2017-07-27 2017-11-15 日本板硝子株式会社 光学フィルタ
JP6435033B1 (ja) * 2017-10-20 2018-12-05 日本板硝子株式会社 光学フィルタ
WO2019093076A1 (ja) * 2017-11-07 2019-05-16 日本板硝子株式会社 光吸収性組成物及び光学フィルタ
US20190369312A1 (en) * 2018-06-04 2019-12-05 Hoya Candeo Optronics Corporation Optical filter and imaging apparatus
NL2030887B1 (en) * 2022-01-19 2023-08-01 Corning Inc Phosphate and borate glasses with high elastic moduli
EP4215500A1 (en) * 2022-01-19 2023-07-26 Corning Incorporated Phosphate and borate glasses with high elastic moduli

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167257A (ja) * 1987-12-24 1989-06-30 Toshiba Glass Co Ltd 近赤外カットフイルタガラス
JPH01242440A (ja) * 1988-03-23 1989-09-27 Toshiba Glass Co Ltd 近赤外カットフィルタガラス
JPH038741A (ja) * 1989-06-06 1991-01-16 Matsunami Glass Kogyo Kk 燐酸塩ガラスの製造方法
US5173212A (en) * 1990-10-05 1992-12-22 Schott Glaswerke Aluminophosphate glass containing copper(ii) oxide
CN1911844A (zh) * 2005-04-22 2007-02-14 肖特公司 含有铜(ii)氧化物的铝磷酸盐玻璃及其滤光应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325245A (ja) * 1986-07-17 1988-02-02 Toshiba Glass Co Ltd 近赤外カツトフイルタガラス
DE19546313C1 (de) * 1995-12-12 1997-01-23 Schott Glaswerke Kupfer(II)-oxidhaltige Alumophosphatgläser
US7157391B2 (en) * 2002-12-27 2007-01-02 Hoya Corporation Optical glass, preform for press molding and optical element
JP4744795B2 (ja) * 2003-09-04 2011-08-10 Hoya株式会社 精密プレス成形用プリフォームおよびその製造方法並びに光学素子およびその製造方法
JP2007290886A (ja) * 2006-04-24 2007-11-08 Schott Corp 酸化銅(ii)を含んでいるアルミノリン酸塩ガラスおよび光フィルタリングのためのそれらの使用
JP5842613B2 (ja) * 2009-10-16 2016-01-13 旭硝子株式会社 近赤外線カットフィルタガラス
CN102597823B (zh) * 2009-11-04 2014-12-03 旭硝子株式会社 近红外线截止滤光片
JP5659499B2 (ja) * 2010-02-19 2015-01-28 旭硝子株式会社 近赤外線カットフィルタガラス
JPWO2011132786A1 (ja) * 2010-04-23 2013-07-18 旭硝子株式会社 紫外線透過型近赤外線カットフィルタガラス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167257A (ja) * 1987-12-24 1989-06-30 Toshiba Glass Co Ltd 近赤外カットフイルタガラス
JPH01242440A (ja) * 1988-03-23 1989-09-27 Toshiba Glass Co Ltd 近赤外カットフィルタガラス
JPH038741A (ja) * 1989-06-06 1991-01-16 Matsunami Glass Kogyo Kk 燐酸塩ガラスの製造方法
US5173212A (en) * 1990-10-05 1992-12-22 Schott Glaswerke Aluminophosphate glass containing copper(ii) oxide
CN1911844A (zh) * 2005-04-22 2007-02-14 肖特公司 含有铜(ii)氧化物的铝磷酸盐玻璃及其滤光应用

Also Published As

Publication number Publication date
KR20190008447A (ko) 2019-01-23
TWI630187B (zh) 2018-07-21
CN104788020B (zh) 2019-01-29
US9988299B2 (en) 2018-06-05
TW201529521A (zh) 2015-08-01
CN104788020A (zh) 2015-07-22
KR20160100375A (ko) 2016-08-23
US20160326043A1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
TWI630187B (zh) Glass composition
JP6431948B2 (ja) 光学ガラス、光学プリフォーム、及び光学素子
TWI609848B (zh) 高折射高色散光學玻璃、光學元件及光學儀器
JP2011132077A (ja) 近赤外光吸収ガラス、近赤外光吸収フィルターおよび撮像装置
CN110255886A (zh) 一种玻璃、玻璃制品及其制造方法
JP6047227B2 (ja) 近赤外光吸収ガラス、近赤外光吸収素子、及び近赤外光吸収光学フィルタ
TWI573770B (zh) Near infrared light absorption glass, components and filters
CN104788019B (zh) 玻璃组合物
JP6047226B2 (ja) 近赤外光吸収ガラス、近赤外光吸収素子、及び近赤外光吸収光学フィルタ
CN110255897A (zh) 一种玻璃、玻璃制品及其制造方法
WO2023179276A1 (zh) 玻璃、玻璃元件及滤光器
WO2017152656A1 (zh) 光学玻璃及光学元件
TWI805187B (zh) 光學玻璃、玻璃預製件、光學元件和光學儀器
CN107540214B (zh) 光学玻璃、光学预制件和光学元件
JP6669663B2 (ja) 光学ガラス、光学素子および光学ガラス素材
WO2016068124A1 (ja) 光学ガラス、光学素子および光学ガラス素材
CN114702241B (zh) 近红外光吸收玻璃、元件及滤光器
CN113880425A (zh) 近红外光吸收玻璃、元件及滤光器
WO2013120420A1 (zh) 近红外光吸收玻璃、元件及滤光器
CN103359937B (zh) 近红外光吸收玻璃、元件及滤光器
JP6161767B2 (ja) 近赤外光吸収ガラス、近赤外光吸収素子、及び近赤外光吸収光学フィルタ
TW201505996A (zh) 近紅外光吸收玻璃、元件及濾光器
TWI839128B (zh) 玻璃、玻璃元件及濾光器
JP6576040B2 (ja) 光学ガラス、光学素子および光学ガラス素材
TWI401229B (zh) 抗水性無鉛氟磷酸鹽系紅外線吸收材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15109263

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167019478

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737221

Country of ref document: EP

Kind code of ref document: A1