WO2016068124A1 - 光学ガラス、光学素子および光学ガラス素材 - Google Patents

光学ガラス、光学素子および光学ガラス素材 Download PDF

Info

Publication number
WO2016068124A1
WO2016068124A1 PCT/JP2015/080230 JP2015080230W WO2016068124A1 WO 2016068124 A1 WO2016068124 A1 WO 2016068124A1 JP 2015080230 W JP2015080230 W JP 2015080230W WO 2016068124 A1 WO2016068124 A1 WO 2016068124A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
content
optical
temperature
optical glass
Prior art date
Application number
PCT/JP2015/080230
Other languages
English (en)
French (fr)
Inventor
勝治 下嶋
藤原 康裕
金▲磊▼ 王
Original Assignee
Hoya株式会社
勝治 下嶋
藤原 康裕
金▲磊▼ 王
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014218629A external-priority patent/JP6560854B2/ja
Priority claimed from JP2015001894A external-priority patent/JP6576040B2/ja
Application filed by Hoya株式会社, 勝治 下嶋, 藤原 康裕, 金▲磊▼ 王 filed Critical Hoya株式会社
Priority to CN201580057960.4A priority Critical patent/CN107148404B/zh
Publication of WO2016068124A1 publication Critical patent/WO2016068124A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to an optical glass having a refractive index (nd) of 1.620 to 1.700 and an Abbe number ( ⁇ d) of 53 to 65. Moreover, this invention relates to the optical element and optical glass raw material which consist of this optical glass.
  • optical glass having a predetermined refractive index and low dispersibility is effectively used as an optical element material for these imaging devices.
  • a phosphate optical glass described in Patent Document 1 is known.
  • the selection of the glass component is important when attempting to further increase the refractive index and reduce the dispersion.
  • optical glass is widely used as an optical element such as an optical lens or an optical glass material for an optical element.
  • Glass is a viscous material above the glass transition temperature Tg (hereinafter sometimes simply referred to as “glass transition temperature”, “Tg” or “temperature Tg”), and has a property that the viscosity decreases as the temperature rises, ie, more than Tg. It has the property of softening when heated to a high temperature.
  • a press forming method is known in which heat-softened glass is pressed into a desired shape.
  • Such press molding methods are roughly classified into three methods: a direct press molding method, a reheat press molding method, and a precision press molding method (also referred to as a mold press molding method).
  • the direct press molding method and the reheat press molding method are press molding a melted or softened glass material in a short time to mold an optical element blank that approximates the target optical element shape, and then In this method, the optical element blank is ground and polished to finish the optical element.
  • the precision press molding method is a method for producing a target optical element by transferring a precisely processed molding surface shape to glass softened in a non-oxidizing atmosphere. No grinding / polishing is required.
  • the direct press molding method is a method of pressing molten glass without producing a glass material, whereas the reheat press molding method and the precision press molding method are once solidified by cooling the molten glass. After forming the glass material, the glass material is reheated and softened and press-molded.
  • the glass material that has been solidified is reheated and softened, such as the reheat press method and precision press molding method
  • the heating temperature is too high, defects due to crystallization occur in the molded product after pressing. There is. Therefore, if the heating temperature is too low to avoid crystallization of the glass, the viscosity of the glass is high. Therefore, the glass has a defective shape due to insufficient deformation of the glass during press molding, or the glass is increased due to an increase in press pressure for deforming the glass. Defects such as cracks may occur.
  • glass crystals include surface crystals that frequently occur on the glass surface and internal crystals that are generated from the glass surface to the inside.
  • internal crystals For optical glass, it is preferred that there are no or very few surface crystals and internal crystals.
  • the thermal stability of the glass includes devitrification resistance when the glass melt is formed and devitrification resistance when the glass once solidified is reheated.
  • the present inventors have found an optical glass having a high refractive index and a low dispersibility and excellent thermal stability. Specifically, the inventors have invented an optical glass having thermal stability to such an extent that internal crystals of the glass are not generated during reheat press molding while giving priority to increasing the refractive index.
  • An object of the present invention is to provide an optical glass having a relatively high refractive index nd and excellent thermal stability. Furthermore, an object of this invention is to provide the optical element and optical glass raw material which consist of this optical glass.
  • the gist of the present invention is as follows.
  • an optical glass having a relatively high refractive index (refractive index nd is 1.620 or more), even when reheated under harsh conditions due to excellent thermal stability
  • refractive index nd is 1.620 or more
  • an optical glass that hardly causes crystallization can be obtained.
  • an optical element and an optical glass material made of the optical glass are obtained.
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be implemented with appropriate modifications within the scope of the gist thereof.
  • the optical glass of the first embodiment has a total content [P 2 O 5 + B 2 O 3 + Al 2 O 3 ] of P 2 O 5 , B 2 O 3 and Al 2 O 3 of 55% by mass or less.
  • the ZnO content is 15 mass% or less
  • the mass ratio ⁇ 1 [BaO / (MgO + CaO + ZnO + SrO)] of the content of BaO to the total content of MgO, CaO, ZnO and SrO is 2 .1 or less and the mass of the total content of P 2 O 5 , B 2 O 3 and Al 2 O 3 with respect to the total content of Gd 2 O 3 , Y 2 O 3 , La 2 O 3 and Yb 2 O 3
  • the components constituting the glass can be roughly classified into a network component that forms a glass network structure and a modifying component that controls the characteristics of the glass.
  • the network component mainly contributes to the stability of the glass (for example, structural stability, thermal stability, and glass meltability). Therefore, from the viewpoint of obtaining a stable glass, it is desirable to relatively increase the proportion of network components in the glass.
  • the modifying component mainly contributes to the functionality of the glass (for example, optical properties such as refractive index and dispersibility and chemical durability such as weather resistance). For this reason, it is desirable to appropriately select and adjust the type and amount of the modifying component depending on the function and characteristics required of the glass.
  • the ratio of the modifying component in the glass increases, the ratio of the network component decreases as a result, so that the stability as the glass may decrease.
  • Some modifying components are effective from the viewpoint of improving the characteristics, but may significantly reduce the stability of the glass by adding a small amount.
  • the stability and functionality of glass are greatly influenced by the balance between network components and modifying components.
  • phosphate glass has been expected to be used as an optical element such as an optical lens because of its high refractive index and low dispersibility, but it has low weather resistance and cannot be used as a glass for press molding. It was.
  • BaO is added as a modifying component, and the ratio of BaO in the glass is increased to increase the refractive index (refractive index nd is 1.). 620 or more), and the weather resistance was improved.
  • Such an optical glass has improved weather resistance and is suitable as a glass for precision press molding, but crystallization due to a modifying component (for example, BaO) introduced in a large amount is likely to occur. There was a problem that the thermal stability deteriorated. Therefore, even if the glass has been solidified once, if it is softened again under severe conditions, crystals may be formed in the cooled glass.
  • a modifying component for example, BaO
  • Such glass is an optical element such as a reheat press molding method. It was unsuitable for the production method.
  • the present inventors have increased the proportion of modifying components in the glass and decreased the proportion of network components (P 2 O 5 , B 2).
  • the total content of O 3 and Al 2 O 3 be [P 2 O 5 + B 2 O 3 + Al 2 O 3] is less 55 mass%), blended well balanced and BaO, and other divalent component
  • the thermal stability of the glass can be improved, and the present invention has been completed.
  • the optical glass according to the present invention contains BaO and contains at least one selected from MgO, CaO, ZnO and SrO, and the content of BaO with respect to the total content of MgO, CaO, ZnO and SrO. It is one feature that the mass ratio ⁇ 1 of [BaO / (MgO + CaO + ZnO + SrO)] is 2.1 or less.
  • Such an optical glass according to the present invention can effectively prevent the generation of internal crystals of glass in reheat press molding performed in an air atmosphere where precise temperature control is difficult.
  • the optical glass according to the present invention is made of Gd 2 O 3 , in order to effectively increase the refractive index (nd) while maintaining the thermal stability obtained by setting the mass ratio ⁇ 1 within a predetermined range.
  • One or more rare earth elements selected from Y 2 O 3 , La 2 O 3 and Yb 2 O 3 are contained, and Gd 2 O 3 , Y 2 O 3 , La 2 O 3 and Yb 2 O P 2 O 5 to the total content of 3, B 2 O 3 and Al 2 O total content of the mass ratio of 3 ⁇ 1 [(P 2 O 5 + B 2 O 3 + Al 2 O 3) / (Gd 2 O 3 + Y
  • One characteristic is that 2 O 3 + La 2 O 3 + Yb 2 O 3 )] is less than 4.80.
  • Total content of network components P 2 O 5 , B 2 O 3 and Al 2 O 3 ) relative to the total content of the rare earth elements (Gd 2 O 3 , Y 2 O 3 , La 2 O 3 and Yb 2 O 3 )
  • the amount ratio (mass ratio ⁇ 1) in the above range, the total content of the rare earth elements is relatively increased, so that the refractive index of the glass can be set high.
  • Such an optical glass according to the present invention is particularly suitable when an optical element having a high refractive index is produced using a reheat press molding method.
  • the optical glass in the present invention is a glass composition containing a plurality of metal oxides, regardless of the form (lumps, plates, spheres, etc.) and uses (materials for optical elements, optical elements, etc.). In general, it is called optical glass.
  • the glass composition can be determined by a method such as ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • ICP-AES analysis quantitative analysis is first performed for each element, and then converted into oxide notation based on the quantitative analysis value.
  • the analysis value obtained by ICP-AES may include a measurement error of about ⁇ 5% of the analysis value. Therefore, the oxide notation value converted from the analysis value may also contain an error of about ⁇ 5%.
  • the content of the constituent component (notation of oxide) is 0% or does not contain or does not introduce, which means that the constituent component is not substantially contained, and that the constituent component is contained.
  • the amount shall be less than or equal to the impurity level.
  • P 2 O 5 is a network component that forms a network structure of glass, and is an important component that imparts thermal stability that can be produced to glass.
  • the glass transition temperature, the yield point, and the melting temperature of the glass increase, and the refractive index and weather resistance tend to decrease.
  • the content of P 2 O 5 is too small, the Abbe number ( ⁇ d) of the glass is reduced and the low dispersibility is impaired, and the tendency of the glass to become devitrified becomes strong and the glass tends to become unstable.
  • the upper limit of the content of P 2 O 5 is preferably 40%, and more preferably in the order of 37%, 35%, 34%, and 33%.
  • the lower limit of the content of P 2 O 5 is preferably 12%, and more preferably in the order of 13%, 14%, 15%, and 16%.
  • P 2 O 5 is preferably contained as an essential component.
  • B 2 O 3 is a very effective component for improving the meltability of glass and homogenizing glass, and at the same time, improving the devitrification resistance and weather resistance of glass, increasing the refractive index, and promoting low dispersion. It is an effective ingredient above.
  • the upper limit of the content of B 2 O 3 is preferably 20%, and more preferably 17%, 15%, 14%, 13%, and 12% in this order. Further, meltability and devitrification resistance of the glass when the content of B 2 O 3 is too small decreases.
  • the lower limit of the content of B 2 O 3 is preferably 0.1%, and further 1.0%, 2.0%, 3.0%, 3.5% Are preferred in this order.
  • B 2 O 3 in the optical glass of the present invention to form a network structure of the glass together with P 2 O 5, from the viewpoint of the stability of the glass is preferably contained.
  • Al 2 O 3 is a network component that forms a network structure of glass, and is used as an effective component for improving the weather resistance of glass.
  • the upper limit of the content of Al 2 O 3 is preferably 10%, and more preferably 7%, 5%, and 3% in this order.
  • the lower limit of the content of Al 2 O 3 is preferably 0%, and more preferably 0.5%, 1.0%, 1.3%, and 1.5% in this order.
  • the refractive index decreases and the glass melting temperature. There is a risk that the quality will deteriorate due to the increase of the glass and the volatilization of glass. On the other hand, if the total content of these components is too small, devitrification resistance deteriorates and vitrification becomes difficult, and low dispersibility may be impaired.
  • the upper limit of the total content [P 2 O 5 + B 2 O 3 + Al 2 O 3 ] is 55%, and further 50%, 45%, 42%, 40%, 39%, It is preferable in the order of 38%.
  • the lower limit of the total content [P 2 O 5 + B 2 O 3 + Al 2 O 3 ] is preferably 20%, and more preferably 23%, 25%, 27%, 29% and 30% in this order.
  • the content of P 2 O 5 with respect to the content of B 2 O 3 is compatible from the viewpoint of imparting low dispersibility to the glass and enhancing the thermal stability.
  • the upper limit of the ratio: mass ratio [P 2 O 5 / B 2 O 3 ] is preferably 12, and more preferably in the order of 10, 9, 8, and 7.
  • the lower limit of the mass ratio [P 2 O 5 / B 2 O 3 ] is preferably 0.6, and more preferably 0.8, 1.0, 1.2, and 1.5 in this order.
  • BaO is a very effective essential component for increasing the refractive index of glass and improving weather resistance by introducing an appropriate amount.
  • the amount introduced is too large, the thermal stability of the glass is remarkably impaired, the glass transition temperature rises, and the low dispersibility tends to be impaired.
  • the amount introduced is too small, the desired refractive index cannot be obtained, and the weather resistance is further deteriorated. Therefore, in the optical glass of the present invention, BaO is an essential component, and the upper limit of the content thereof is preferably 45%, and further 40%, 37%, 35%, 33%, 32%, 31%. Are preferred in this order.
  • the lower limit of the BaO content is preferably 10%, and more preferably 13%, 15%, 17%, 19%, and 20% in this order.
  • the upper limit of the total content of BaO and P 2 O 5 [BaO + P 2 O 5 ] is preferably 70%, and further 67% and 65%. 63%, 61% and 60% in this order.
  • the lower limit of the total content [BaO + P 2 O 5 ] is preferably 35%, and more preferably in the order of 38%, 40%, 42%, 44%, and 45%.
  • the proportion of BaO content to the content of B 2 O 3 is preferably Is 30, more preferably in the order of 20, 15, 12, 10, 8, and 7.
  • the lower limit of the mass ratio [BaO / B 2 O 3 ] is preferably 0.5, and more preferably in the order of 1.0, 1.5, 1.8, 2.0, and 2.2.
  • MgO is a component introduced in order to achieve both high weather resistance and low dispersibility of glass.
  • the introduction of a small amount of MgO has the effect of lowering the glass transition temperature, yield point or liquidus temperature.
  • the upper limit of the content of MgO is preferably 20%, and more preferably in the order of 15%, 12%, 10%, 9%, and 8%.
  • the lower limit of the content of MgO is preferably 0%, and more preferably in the order of 1%, 2%, 3%, 3.5%, and 4%.
  • the optical glass of the present invention contains at least 2% of any one component of MgO, B 2 O 3 and Li 2 O. It is preferable to introduce.
  • the lower limit of the content of any one of MgO, B 2 O 3 and Li 2 O is preferable in the order of 3%, 5% and 7%.
  • the upper limit of the CaO content is preferably 18%, and more preferably in the order of 15%, 12%, 11%, 10%, and 9.5%.
  • the lower limit of the CaO content is preferably 0%, and more preferably in the order of 2%, 3%, 4%, 5%, and 5.5%.
  • the upper limit of the total content [MgO + CaO] of MgO and CaO in the optical glass of the present invention is preferably 30% from the viewpoint of achieving both low dispersibility, thermal stability, and weather resistance of the glass. Is preferred in the order of 25%, 22%, 20%, 19% and 18%. Further, the lower limit of the total content [MgO + CaO] is preferably 5%, and more preferably 7%, 9%, 10%, and 11% in this order.
  • the upper limit of the SrO content is preferably 15%, and more preferably in the order of 13%, 10%, 7%, and 5%.
  • the lower limit of the SrO content is preferably 0%, and more preferably in the order of more than 0%, 1.0%, 2.0%, and 2.5%.
  • ZnO is a component used to increase the refractive index of glass by appropriate introduction, improve the thermal stability of glass, and lower the liquidus temperature and glass transition temperature.
  • the upper limit of the content of ZnO is 15%, and more preferably in the order of 13%, 12%, 11%, 10%, 9%, 6%, and 5%.
  • the lower limit of the content of ZnO is preferably 0%, and more preferably in the order of more than 0%, 1.0%, 2.0%, and 2.5%.
  • the optical glass of the present invention contains one or more selected from MgO, CaO, ZnO and SrO as a divalent component.
  • the upper limit of the total content R1 [MgO + CaO + ZnO + SrO + BaO] of MgO, CaO, ZnO, SrO and BaO is preferably 80%, Is preferred in the order of 70%, 60%, 55%, 52%.
  • the lower limit of the total content R1 is preferably 25%, and more preferably in the order of 30%, 35%, 40%, 42%, and 44%.
  • the ratio of the content of BaO to the total content of MgO, CaO, ZnO and SrO: mass ratio ⁇ 1 [BaO / (MgO + CaO + ZnO + SrO)] is made 2.1 or less.
  • the upper limit with preferable mass ratio (alpha) 1 is 2.0, Furthermore, it is preferable in order of 1.9, 1.8, 1.7, 1.6, 1.5, 1.2.
  • the lower limit of the mass ratio ⁇ 1 is preferably 0.4, and further in the order of 0.5, 0.6, 0.7, 0.8, 0.9. preferable.
  • the BaO content is not excessively introduced with respect to the content of the other divalent components, so that the precipitation of crystals due to BaO can be suppressed. Therefore, even when BaO and other divalent components are blended in a balanced manner, the component that increases the refractive index is increased, and the component that forms the network structure is decreased. Can be improved.
  • the optical glass of the present invention satisfying the mass ratio ⁇ 1 of 2.1 or less may be referred to as a crystallization peak temperature Tc (hereinafter simply referred to as “crystallization peak temperature”, “Tc”, or “temperature Tc”). ) And the glass transition temperature Tg (Tc ⁇ Tg) are relatively large, and both Tc ⁇ Tg are 145 ° C. or higher.
  • Tc-Tg crystallization peak temperature
  • the upper limit of the ratio of the content of BaO to the total content of MgO and SrO: mass ratio [BaO / (MgO + SrO)] is preferably 12, 10, 9, 8, 7, and 6 are preferable in this order.
  • the lower limit of the mass ratio [BaO / (MgO + SrO)] is preferably 0.2, and more preferably 0.4, 0.5, 0.6, 0.65, and 0.7 in this order.
  • the ratio of the total content of SrO and BaO to the total content of MgO and CaO the upper limit of the mass ratio [(SrO + BaO) / (MgO + CaO)] Is preferably 5, and more preferably in the order of 4, 3.5, 3.2, 3.0, 2.8.
  • the lower limit of the mass ratio [(SrO + BaO) / (MgO + CaO)] is preferably 0.3, and more preferably 0.7, 1.0, 1.2, and 1.4 in this order.
  • the upper limit of the ratio of the content of ZnO to the content of BaO: mass ratio [ZnO / BaO] is preferably 0.5, Furthermore, it is preferable in the order of 0.4, 0.35, and 0.3. Moreover, the lower limit of the mass ratio [ZnO / BaO] is preferably 0.05, and more preferably in the order of 0.1 and 0.13.
  • Gd 2 O 3 , Y 2 O 3 , La 2 O 3 and Yb 2 O 3 are all components that contribute to improving the weather resistance and increasing the refractive index of the glass. However, if these components are introduced excessively, the thermal stability of the glass may be deteriorated. Therefore, in the optical glass of the present invention, the upper limit of the content of Gd 2 O 3 is preferably 30%, and more preferably 27%, 24%, and 22% in this order. Moreover, the lower limit of the content of Gd 2 O 3 is preferably 0%, and more preferably in the order of 1%, 2%, 4%, and 5%. The upper limit of the content of Y 2 O 3 is preferably 10%, and more preferably 8%, 7%, and 6% in this order.
  • the lower limit of the content of Y 2 O 3 is preferably 0%, and more preferably 0.5% and 1.0% in this order.
  • the upper limit of the content of La 2 O 3 is preferably 10%, and more preferably 7%, 5%, and 4% in this order.
  • the lower limit of the content of La 2 O 3 is preferably 0%, more preferably 0.05%.
  • the upper limit of the content of Yb 2 O 3 is preferably 7%, and more preferably in the order of 5%, 2% and 1%.
  • the lower limit of the content of Yb 2 O 3 is preferably 0%, more preferably 0.05%. Since Yb 2 O 3 has an absorptivity in the near infrared region, it is preferably not introduced when using light rays in the near infrared region.
  • the optical glass of the present invention contains one or more selected from Gd 2 O 3 , Y 2 O 3 , La 2 O 3 and Yb 2 O 3 .
  • the upper limit of [Gd 2 O 3 + Y 2 O 3 + La 2 O 3 + Yb 2 O 3 ] is preferably 30%, and more preferably in the order of 25%, 23%, 22% and 21%.
  • the lower limit of the total content Re1 is preferably 4%, and more preferably in the order of 5%, 6%, 8%, and 9%.
  • the thermal stability of the glass may be improved by introducing two or more rare earth elements rather than introducing a single rare earth element.
  • the optical glass of the present invention preferably contains any two or more rare earth elements selected from Gd 2 O 3 , Y 2 O 3 , La 2 O 3 and Yb 2 O 3 .
  • the optical glass according to the present invention is a total content of the rare earth elements from the viewpoint of effectively increasing the refractive index while ensuring the thermal stability of the glass obtained by setting the mass ratio ⁇ 1 within a predetermined range.
  • the upper limit of the mass ratio ⁇ 1 is preferably 4.70, and more preferably in the order of 4.60, 4.50, 4.30, 4.10, 4.00.
  • the lower limit of the mass ratio ⁇ 1 is preferably 1.00, and more preferably in the order of 1.20, 1.30, and 1.40.
  • the mass ratio ⁇ 1 and the mass ratio ⁇ 1 are closely related from the viewpoint of obtaining desired optical characteristics and improving the thermal stability of the glass. This will be described below.
  • the total content Re1 of rare earth elements which are components that effectively increase the refractive index, is introduced in a relatively large amount in consideration of increasing the refractive index of the glass.
  • the thermal stability of the glass tends to deteriorate as described above. Therefore, there is a predetermined limit on the amount of rare earth element total content Re1 introduced, and this limit is defined by the mass ratio ⁇ 1 (the upper limit of the mass ratio ⁇ 1 is less than 4.80). In this way, by defining the mass ratio ⁇ 1 within a predetermined range, desired optical characteristics (high refractive index) can be obtained.
  • the thermal stability of the glass increases. It tends to get worse.
  • the thermal stability is improved by setting the mass ratio ⁇ 1 within a predetermined range.
  • the introduction amount of BaO with respect to the total content of MgO, CaO, ZnO and SrO is too large, the thermal stability is impaired. Therefore, in the present invention, the upper limit of the mass ratio ⁇ 1 is specified (the mass ratio ⁇ 1 is 2. 1 or less).
  • the glass composition so that the mass ratio ⁇ 1 and the mass ratio ⁇ 1 are within a predetermined range, desired optical characteristics can be obtained and the thermal stability of the glass can be improved.
  • SiO 2 is an effective component for improving chemical durability while maintaining low dispersibility. However, if the amount introduced is too large, the glass transition temperature and yield point tend to increase and the refractive index tends to decrease. Therefore, in the optical glass of the present invention, the upper limit of the content of SiO 2 is preferably 3%, more preferably 2%, still more preferably 1.5%, and even more preferably 1%.
  • SiO 2 is a network component with P 2 O 5, B 2 O 3, Al 2 O 3, it is not necessarily introduced SiO 2 in the optical glass of the present invention.
  • Li 2 O is a component that lowers the glass transition temperature and the yield point and is effective for lowering the dispersion.
  • coexistence of P 2 O 5 , B 2 O 3 and Li 2 O is very effective for reducing the dispersion of glass.
  • the upper limit of the Li 2 O content is preferably 7%, and more preferably in the order of 5%, 4%, and 3%.
  • the lower limit of the content of Li 2 O is preferably 0%, and more preferably in the order of 0.1%, 0.5%, 1.0%, 1.3%, and 1.5%.
  • Na 2 O and K 2 O are optional components introduced to improve the devitrification resistance of the glass, lower the glass transition temperature, yield point, and liquidus temperature, and improve the meltability of the glass. is there.
  • the introduction of appropriate amounts of Na 2 O and K 2 O improves the stability of the glass and leads to a decrease in the liquidus temperature and transition temperature.
  • the upper limit of the content of Na 2 O is preferably 8%, and more preferably in the order of 5%, 3%, and 1%.
  • the upper limit of the content of K 2 O is preferably 8%, and more preferably in the order of 5%, 3%, and 2%. It is particularly preferable that Na 2 O and K 2 O are not substantially introduced.
  • the upper limit of the total content R 2 1 [Li 2 O + Na 2 O + K 2 O] of Li 2 O, Na 2 O and K 2 O is preferably 15%, 10%, 7%, and 5% are preferable in this order.
  • the lower limit of the total content R 2 1 is preferably 0%, further 0.1%, 0.5%, 1.0%, 1.3%, preferably in the order of 1.5%.
  • Cs 2 O which is an alkali metal oxide.
  • Cs 2 O lowers the refractive index and remarkably impairs the weather resistance, so it is preferable not to introduce Cs 2 O.
  • the ratio of P 2 O 5 content to the total content R 2 1 of the alkali metal oxide mass ratio [P 2 O 5 / R 2 1] from the viewpoint of achieving both glass meltability and thermal stability.
  • the upper limit is preferably 40, and more preferably 30, 25, and 20 in this order.
  • the lower limit of the mass ratio [P 2 O 5 / R 2 1] is preferably 2, and more preferably 3, 5, and 7 in this order.
  • the optical glass of the present invention does not substantially contain Pb, As, Cd, U, Th, and Tl from the viewpoint of reducing the load on the environment.
  • the optical glass of the present invention can contain halogen, that is, F, Cl, Br, and I as optional components.
  • the content can be represented by the mass fraction of anions (for example, [F / (O + F)]).
  • the upper limit of the F content is preferably 8%, and more preferably 5%, 3%, 2%, 1%, 0.5%, and 0.1% in this order.
  • the upper limit of the content of Cl, Br, and I is preferably 5%, respectively, and more preferably in the order of 3%, 2%, 1%, 0.5%, and 0.1%.
  • the upper limit of B 2 O 3 in the glass is preferably 8% in order to suppress the volatilization of the glass, more preferably in the order of 5%, 3%, and 1%, and most preferably. Is substantially not contained. However, this does not apply when a small amount of halogen of 1% or less is added. In particular, in order to suppress the volatilization of components from the glass and improve the homogeneity of the glass, it is preferable that the halogen is not substantially contained.
  • an easily reducing component composed of WO 3 , TiO 2 , Bi 2 O 3 and Nb 2 O 5 can be contained as an optional component.
  • These easily reducing components are effective components for increasing the refractive index.
  • W, Ti, Bi, and Nb significantly reduce the glass Abbe number ( ⁇ d). Therefore, the upper limit of the content of the easily reducing component is preferably 4%, more preferably 3%, 2%, and 1%. In addition, it is particularly preferable not to substantially introduce the easily reducing component.
  • the optical glass of the present invention as described above is basically composed of P 2 O 5 , B 2 O 3 , SiO 2 , Al 2 O 3 , Li 2 O, Na 2 O, K 2 O, MgO, CaO, ZnO. , SrO, BaO, Gd 2 O 3 , Y 2 O 3 , La 2 O 3 and Yb 2 O 3 .
  • the total content of these components is 95% or more Preferably, it is 98% or more, more preferably 99% or more, and still more preferably 100%.
  • optical glass of this invention is fundamentally comprised by the said component, in the range which does not prevent the effect of this invention, it is also possible to introduce
  • substantially not containing can be taken as a guide that the content is less than 0.2% by mass. Since components and additives that are not substantially contained are preferably not contained in the glass, the content is preferably less than 0.1% by mass, more preferably less than 0.08% by mass, It is further preferably less than 0.05% by mass, more preferably less than 0.01% by mass, and even more preferably less than 0.005% by mass.
  • the optical glass of the present invention is composed of the above components and the total amount is 100% by mass, even if a refining agent such as Sb 2 O 3 , SnO 2 , or CeO 2 is introduced in an external ratio within 4% by mass. Good.
  • the upper limit of the content of Sb 2 O 3 is preferably 4% by mass, and more preferably 3% by mass, 2% by mass, 1% by mass, 0.5% by mass, and 0.1% by mass in this order.
  • the lower limit of the content of Sb 2 O 3 is preferably 0%, and more preferably in the order of 0.01% by mass, 0.02% by mass, and 0.04% by mass.
  • SnO 2 and CeO 2 may deteriorate the transmittance of the glass, so that introduction of 1% by mass or less is preferable, and it is particularly preferable not to introduce substantially.
  • the upper limit of the refractive index nd of the optical glass of the present invention is 1.700, and further preferably 1.690, 1.485, 1.680, 1.670, 1.660. Moreover, the minimum of refractive index nd is 1.620, Furthermore, it is preferable in order of 1.625, 1.630, 1.635, 1.640.
  • the upper limit of the Abbe number ⁇ d of the optical glass of the present invention is 65, and 62 and 61 are preferable in this order.
  • the lower limit of the Abbe number ⁇ d is 53, and 54, 55, 56, 57, 58, and 59 are preferable in this order.
  • an optical system is constructed, so that the optical system can be made compact, highly functional, and improved in chromatic aberration.
  • the thermal stability of glass includes devitrification resistance when forming a glass melt and devitrification resistance when glass that has been solidified once is reheated.
  • the devitrification resistance when molding the glass melt is based on the liquidus temperature, and the lower the liquidus temperature, the better the devitrification resistance.
  • the temperature of the glass melt In glass with a high liquidus temperature, the temperature of the glass melt must be maintained at a high temperature in order to prevent devitrification, which leads to deterioration in quality and productivity due to volatilization of glass components. May end up. Therefore, the optical glass of the present invention preferably has a liquidus temperature of 1350 ° C. or lower, more preferably 1300 ° C. or lower, further preferably 1250 ° C. or lower, and further preferably 1200 ° C. or lower. Preferably, the temperature is 1100 ° C. or lower.
  • Tc ⁇ Tg the temperature difference between the crystallization peak temperature Tc and the glass transition temperature Tg.
  • the “softening point” of glass is a temperature at which the glass starts to deform significantly due to its own weight, and corresponds to a viscosity of about 10 7.6 dPa ⁇ s.
  • “temperature Tp at which glass is softened” (hereinafter simply referred to as “temperature at which glass is softened”, “Tp” or “temperature Tp”) is higher than “softening point”. This is the temperature at which the viscosity of the glass corresponds to a viscosity of 10 4 to 10 6 dPa ⁇ s.
  • the temperature corresponding to a viscosity of 10 4 to 10 6 dPa ⁇ s can be uniquely determined by a viscosity curve.
  • Crystallization start temperature Tx (hereinafter, simply referred to as “crystallization start temperature”, “Tx”, or “temperature Tx”) will be described with reference to FIG.
  • FIG. 1 is a schematic diagram showing a differential scanning calorimetric curve of optical glass (phosphate optical glass).
  • the horizontal axis represents temperature
  • the vertical axis represents the amount of differential heat corresponding to the exothermic heat absorption of the glass.
  • the glass transition temperature Tg, the endothermic peak temperature Tk accompanying the glass transition, the crystallization start temperature Tx, and the crystallization peak temperature Tc are all measured by a differential scanning calorimeter [DSC (Differential Scanning Calorimetry)].
  • the endothermic peak temperature Tk accompanying the glass transition means the temperature of the peak of the endothermic reaction occurring in the vicinity of Tg to (Tg + 100 ° C.).
  • the crystallization peak temperature Tc means a temperature showing the lowest crystallization exothermic peak when glass is powdered and differential scanning calorimetry is performed from room temperature to a predetermined temperature at a heating rate of 10 ° C./min.
  • the crystallization start temperature Tx means the rising temperature on the low temperature side of the crystallization peak.
  • the glass transition temperature Tg of the optical glass of the present invention is preferably within the following range. That is, the upper limit of Tg is preferably 630 ° C, and more preferably in the order of 600 ° C, 580 ° C, 560 ° C, and 540 ° C. Moreover, although the minimum of Tg is not specifically limited, 400 degreeC is preferable and also 440 degreeC, 460 degreeC, 480 degreeC, and 490 degreeC are preferable in order.
  • the crystallization peak temperature Tc of the optical glass of the present invention is preferably within the following range. That is, the lower limit of Tc is preferably 640 ° C, and more preferably in the order of 650 ° C, 660 ° C, 670 ° C, and 675 ° C.
  • the upper limit of Tc is preferably 820 ° C, and more preferably in the order of 810 ° C, 800 ° C, 790 ° C, 785 ° C, and 780 ° C.
  • the glass material is heated and adjusted to have a viscosity suitable for press molding.
  • the reheat press molding method deforms the glass in a shorter time than the precision press molding method, so it is common to reheat the glass at a relatively high temperature so that good press molding can be performed, and sufficiently reduce the viscosity of the glass. Is.
  • the heating temperature is insufficient and the glass viscosity is high, the molded product may crack due to pressure during pressing, and shape defects may occur due to insufficient deformation. May decrease. Therefore, in order to perform good press molding, particularly in the reheat press molding method, it is necessary to sufficiently heat the glass material and adjust it to an appropriate temperature (temperature corresponding to a glass viscosity of 10 4 to 10 6 dPa ⁇ s). There is.
  • glass that is easily crystallized in the reheat press molding method often has a small temperature difference between Tg and Tc, and when heated to a temperature suitable for press molding, the temperature may exceed Tc.
  • the optical glass of the present invention has excellent Tc-Tg of 145 ° C. or higher, no internal crystals are generated by reheating, and is excellent in thermal stability, as shown in Examples described later. That is, since the temperature Tc of the optical glass of the present invention is sufficiently higher than the temperature Tg, the glass material is softened at a temperature lower than the crystallization peak temperature Tc and no crystal is generated at the time of reheat press molding. .
  • the crystallization peak temperature Tc of the optical glass of the present invention is sufficiently higher than the temperature Tp at which the glass softens.
  • the optical glass of the present invention as shown in Tables 1 to 3 described later, no internal crystals were formed in any of the samples (Samples 1 to 37). Therefore, if the optical glass of the present invention is used, reheat press molding under severe reheating conditions can be performed satisfactorily.
  • the temperature difference (Tc ⁇ Tg) is higher than the temperature Tg. Therefore, the temperature difference (Tc ⁇ Tg) is higher than the temperature difference (Tc ⁇ Tg). It is more preferable that the temperature difference is larger than Tp). Since the optical glass of the present invention has the above-described glass composition, the temperature Tc is high and the temperature difference (Tc ⁇ Tg) is large. Therefore, as a result, the temperature difference (Tc ⁇ Tp) also increases, and the thermal stability can be improved.
  • the temperature difference (Tc ⁇ Tg) between the temperature Tc and the temperature Tg is preferably 145 ° C. or more, more preferably 150 ° C. or more, further preferably 160 ° C. or more. Especially preferably, it is 180 degreeC or more, More preferably, it is 200 degreeC or more.
  • the temperature difference (Tc ⁇ Tp) between the temperature Tc and the temperature Tp is preferably 1 ° C. or more, and the temperature difference (Tc ⁇ Tp) is preferably 5 ° C. or more, more preferably 10 ° C. or more. Yes, more preferably 20 ° C. or higher, more preferably 30 ° C. or higher, and even more preferably 50 ° C. or higher.
  • the optical glass of the present invention has a crystallization peak in a reheat press molding method in which a glass material is heated to a temperature higher than Tg to soften the glass material to an appropriate viscosity (about 10 4 to 10 6 dPa ⁇ s). Since it is sufficiently softened at a temperature lower than the temperature Tc, the generation of internal crystals can be effectively prevented. Further, since the optical glass of the present invention is excellent in thermal stability, it can be applied to a reheat press molding method in an open atmosphere where precise temperature control is difficult.
  • the thermal stability of the glass obtained from a differential scanning calorimeter can also be evaluated by the peak intensity ⁇ of crystallization.
  • the height of the crystallization peak can also be calculated from the difference between the calorific value at the peak temperature and the baseline of the differential scanning calorimeter. In this case, since it depends on how to draw the baseline, in the present embodiment, the former is used.
  • the peak intensity ⁇ of crystallization was calculated by the method described above.
  • the peak intensity ⁇ is preferably 10 or less, more preferably 8 or less, still more preferably 6 or less, still more preferably 4 or less, still more preferably 2 or less, and even more preferably 1 or less.
  • the crystallization peak is not observed and the peak intensity cannot be defined.
  • the peak intensity ⁇ is relatively large, if the temperature difference [Tc ⁇ Tg] between the temperature Tc and the temperature Tg is 145 ° C. or higher, the crystallization can be achieved even if the viscosity is lowered by increasing the temperature of the glass. Therefore, crystallization in reheat press molding hardly occurs.
  • the optical glass of the present invention is also excellent in weather resistance.
  • the weather resistance of glass can be expressed using a haze value (haze) as an index.
  • the haze value is the degree of cloudiness of the glass when the glass is held for a predetermined time in a high temperature and high humidity environment.
  • the haze value is the ratio of the scattered light intensity to the total transmitted light intensity when white light is transmitted perpendicular to the polished surface of the glass flat plate subjected to double-side optical polishing, that is, [scattered light intensity / transmitted light intensity. ] In%.
  • the optical glass of the present invention preferably has a haze value of 10 or less, more preferably a haze value of 5 or less, further preferably a haze value of 2 or less, more preferably a haze value of less than 1.
  • Glass with a large haze value is a glass with low chemical durability, in which glass is easily eroded by water droplets and water vapor attached to the glass and various chemical components in the environment of use, and reactants are easily generated on the glass surface. is there.
  • a glass having a small haze value such as the optical glass of the present invention, is a glass having high chemical durability (weather resistance).
  • the optical glass according to the present invention will be described based on the content ratio of each component in cation% display.
  • each content is expressed in cation% unless otherwise specified.
  • the cation% means the ratio of individual cations to all cations contained in the glass in terms of mole percentage.
  • the optical glass of the present invention is an oxide glass, the anion is mainly oxygen (O 2 ⁇ ), but a part of the anion other than oxygen (for example, halogen) can be substituted.
  • the components constituting the glass can be roughly classified into a network component that forms a glass network structure and a modifying component that controls the characteristics of the glass.
  • the network component mainly contributes to the stability of the glass (for example, structural stability, thermal stability, and glass meltability). Therefore, from the viewpoint of obtaining a stable glass, it is desirable to relatively increase the proportion of network components in the glass.
  • the modifying component mainly contributes to the functionality of the glass (for example, optical properties such as refractive index and dispersibility and chemical durability such as weather resistance). For this reason, it is desirable to appropriately select and adjust the type and amount of the modifying component depending on the function and characteristics required of the glass.
  • the ratio of the modifying component in the glass increases, the ratio of the network component decreases as a result, so that the stability as the glass may decrease.
  • Some modifying components are effective from the viewpoint of improving the characteristics, but may significantly reduce the stability of the glass by adding a small amount.
  • the stability and functionality of glass are greatly influenced by the balance between network components and modifying components.
  • phosphate optical glass has been expected to be used as an optical element such as an optical lens because of its high refractive index and low dispersibility, but it has low weather resistance and can be used as a glass for press molding. There wasn't.
  • Ba 2+ is added as a modifying component, and the ratio of Ba 2+ in the glass is increased to increase the refractive index (refractive index). The weather resistance was improved while ensuring nd of 1.620 or more).
  • Such an optical glass has improved weather resistance and is suitable as a glass for precision press molding, but crystallization due to a modifying component (for example, Ba 2+ ) introduced in a large amount tends to occur. There was a problem that the thermal stability of the glass deteriorated. Therefore, even if the glass has been solidified once, if it is softened again under severe conditions, crystals may be formed in the cooled glass.
  • a modifying component for example, Ba 2+
  • Such glass is an optical element such as a reheat press molding method. It was unsuitable for the production method.
  • the present inventors have increased the proportion of the modifying component in the glass and decreased the proportion of the network component (P 5+ , B 3+ And Al 3+ total content [P 5+ + B 3+ + Al 3+ ] of 60% or less), by mixing Ba 2+ with other divalent components in a balanced manner, The present inventors have found that the thermal stability can be improved and have completed the present invention.
  • the optical glass according to the present invention contains Ba 2+ and contains at least one selected from Mg 2+ , Ca 2+ , Zn 2+ and Sr 2+ , and Mg 2+ , Ca 2.
  • the cation ratio ⁇ 2 [Ba 2+ / (Mg 2+ + Ca 2+ + Zn 2+ + Sr 2+ )] of the content of Ba 2+ to the total content of + , Zn 2+ and Sr 2+ is 0.80 or less Is one of the characteristics.
  • Such an optical glass according to the present invention can effectively prevent the generation of internal crystals of glass in reheat press molding performed in an air atmosphere where precise temperature control is difficult.
  • the optical glass according to the present invention has Gd 3+ , Y in order to effectively increase the refractive index (nd) while maintaining the thermal stability obtained by setting the cation ratio ⁇ 2 within a predetermined range.
  • 3+ contained either one or more rare earth elements selected from La 3+ and Yb 3+, and, Gd 3+, Y 3+, P to the total content of La 3+ and Yb 3+ 5
  • the cation ratio ⁇ 2 [(P 5+ + B 3+ + Al 3+ ) / (Gd 3+ + Y 3+ + La 3+ + Yb 3+ )] of the total content of + , B 3+ and Al 3+ is 14.0.
  • One characteristic is to make it less than.
  • Ratio of total content of network components (P 5+ , B 3+ and Al 3+ ) to total content of the rare earth elements (Gd 3+ , Y 3+ , La 3+ and Yb 3+ ) (cation ratio ⁇ 2 ) Within the above range, the total content of the rare earth elements is relatively increased, so that the refractive index of the glass can be set high.
  • Such an optical glass according to the present invention is particularly suitable when an optical element having a high refractive index is produced using a reheat press molding method.
  • the optical glass in the present invention is a glass composition containing a plurality of metal oxides, regardless of the form (lumps, plates, spheres, etc.) and uses (materials for optical elements, optical elements, etc.). In general, it is called optical glass.
  • the content rate of the constituent components of the glass can be measured by a method such as ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • an analysis value (for example, atomic% notation) obtained by performing a quantitative analysis for each element based on the ICP-AES analysis may include a measurement error of about ⁇ 5% of the analysis value. Based on the analysis value, it can be converted into a value expressed in oxide, and a cation component in the glass can be converted into a value expressed in cation%, and the conversion method will be described later.
  • the content of the constituent component is 0% or does not contain or is not introduced, which means that the constituent component is substantially not contained, and the content of the constituent component is about the impurity level.
  • P 5+ is a network component that forms a network structure of glass, and is an important component that imparts thermal stability that can be produced to glass.
  • the glass transition temperature, the yield point, and the melting temperature of the glass increase, and the refractive index and weather resistance tend to decrease.
  • the content of P 5+ is too small, the Abbe number ( ⁇ d) of the glass is reduced, and the low dispersibility is impaired. Further, the tendency of the glass to devitrify becomes strong and the glass tends to become unstable. Therefore, in the optical glass of the present invention, the upper limit of the P 5+ content is preferably 40%, and more preferably in the order of 37%, 35%, 34%, and 33%.
  • the lower limit of the content of P 5+ is preferably 10%, and more preferably in the order of 12%, 13%, 14%, and 15%.
  • P 5+ is preferably contained as an essential component.
  • B 3+ is a very effective component for improving the glass meltability and homogenizing the glass, and at the same time, improving the devitrification resistance and weather resistance of the glass, increasing the refractive index, and promoting low dispersion. It is an effective ingredient.
  • the upper limit of the B 3+ content is preferably 35%, and more preferably in the order of 32%, 30%, 28%, 27%, and 26%. Moreover, when there is too little introduction amount of B ⁇ 3+ >, the meltability and devitrification resistance of glass will fall.
  • the lower limit of the content of B 3+ is preferably 0.1%, and further 1.0%, 2.0%, 3.0%, 5.0%, It is preferable in the order of 7.0.
  • B 3+ forms a glass network structure together with P 5+ , and therefore is preferably contained as an essential component from the viewpoint of glass stability.
  • Al 3+ is a network component that forms a network structure of glass, and is used as an effective component for improving the weather resistance of glass.
  • the upper limit of the content of Al 3+ is preferably 10%, and more preferably in the order of 8%, 7%, 5%, and 4%.
  • the lower limit of the content of Al 3+ is preferably 0%, and more preferably in the order of 0.1%, 0.5%, and 1.0%.
  • the upper limit of the total content [P 5+ + B 3+ + Al 3+ ] is 60%, and further 55%, 52%, 50%, 48%, 47.5% in this order. preferable.
  • the lower limit of the total content [P 5+ + B 3+ + Al 3+ ] is preferably 27%, and more preferably in the order of 32%, 35%, 38%, 40%, and 41%.
  • the ratio of the content of P 5+ to the content of B 3+ from the viewpoint of both imparting low dispersibility to the glass and enhancing the thermal stability is preferably 12, and more preferably in the order of 10, 8, 6, 5, and 4. Further, the lower limit of the cation ratio [P 5+ / B 3+ ] is preferably 0.2, and more preferably in the order of 0.3, 0.4, 0.5, and 0.6.
  • excellent thermal stability is achieved while achieving low dispersion by balancing the proportion of P 5+ and B 3+ that predominantly affect the formation of the glass network structure. Can be obtained.
  • Ba 2+ is an essential component that is very effective for increasing the refractive index of glass and improving weather resistance by introducing an appropriate amount.
  • the amount introduced is too large, the thermal stability of the glass is remarkably impaired, the glass transition temperature rises, and the low dispersibility tends to be impaired.
  • the amount introduced is too small, the desired refractive index cannot be obtained, and the weather resistance is further deteriorated. Therefore, in the optical glass of the present invention, Ba 2+ is an essential component, and the upper limit of its content is preferably 25%, and further 22%, 20%, 18%, 17%, 16%, It is preferable in the order of 15%. Further, the lower limit of the Ba 2+ content is preferably 5%, and more preferably 6%, 8%, 9% and 10% in this order.
  • the upper limit of the total content of Ba 2+ and P 5+ [Ba 2+ + P 5+ ] is preferably 60%, and more preferably 55%. 53%, 51%, 50% and 48% in this order.
  • the lower limit of the total content [Ba 2+ + P 5+ ] is preferably 20%, and more preferably 22%, 25%, 27%, 29%, and 30% in this order.
  • the upper limit of the ratio of the Ba 2+ content to the B 3+ content: cation ratio [Ba 2+ / B 3+ ] is , Preferably 10, and more preferably in the order of 7, 5, 3, 2, 1.7, 1.6.
  • the lower limit of the cation ratio [Ba 2+ / B 3+ ] is preferably 0.1, and more preferably in the order of 0.2, 0.3, 0.4, and 0.5.
  • Mg 2+ is a component introduced to achieve both high weather resistance and low dispersibility of glass.
  • the introduction of a small amount of Mg 2+ has the effect of lowering the glass transition temperature, yield point or liquidus temperature.
  • the upper limit of the Mg 2+ content is preferably 25%, and more preferably 22%, 20%, 18%, 16%, and 15% in this order.
  • the lower limit of the Mg 2+ content is preferably 0%, and more preferably in the order of 1%, 2%, 5%, 7%, and 8%.
  • the upper limit of the Ca 2+ content is preferably 22%, and more preferably in the order of 20%, 17%, 15%, 13%, and 12%.
  • the lower limit of the Ca 2+ content is preferably 0%, and more preferably in the order of 1%, 2%, 5%, 7%, and 8%.
  • the upper limit of the total content of Mg 2+ and Ca 2+ [Mg 2+ + Ca 2+ ] in the optical glass of the present invention is from the viewpoint of achieving both low dispersion of glass, thermal stability, and weather resistance. , Preferably 40%, and more preferably in the order of 35%, 32%, 30%, 27%. Further, the lower limit of the total content [Mg 2+ + Ca 2+ ] is preferably 5%, and more preferably 10%, 12%, 14%, and 15% in this order.
  • the upper limit of the Sr 2+ content is preferably 15%, and more preferably in the order of 10%, 7%, 5%, and 4%.
  • the lower limit of the Sr 2+ content is preferably 0%, and more preferably in the order of 0.1%, 1.0%, 1.5%, and 2.0%.
  • the Zn 2+ is a component used for increasing the refractive index of glass by appropriate introduction, improving the thermal stability of the glass, and lowering the liquidus temperature and the glass transition temperature.
  • the upper limit of the Zn 2+ content is preferably 15%, and more preferably in the order of 14%, 12%, 10%, and 9%.
  • the lower limit of the Zn 2+ content is preferably 0%, and more preferably 1.0%, 2.0%, 2.5%, and 3.0% in this order.
  • the optical glass of the present invention contains at least one selected from Mg 2+ , Ca 2+ , Zn 2+ and Sr 2+ as a divalent component in addition to Ba 2+ .
  • the total content of Mg 2+ , Ca 2+ , Zn 2+ , Sr 2+ and Ba 2+ R2 [Mg 2+ + Ca
  • the upper limit of 2+ + Zn 2+ + Sr 2+ + Ba 2+ ] is preferably 53%, and more preferably in the order of 50%, 47%, 45%, 44%, 43% and 42%.
  • the lower limit of the total content R2 is preferably 26%, and more preferably in the order of 30%, 33%, 35%, 36%, and 38%.
  • the content of Ba 2+ with respect to the total content of Mg 2+ , Ca 2+ , Zn 2+ and Sr 2+ from the viewpoint of improving the thermal stability of the glass while increasing the refractive index.
  • Amount ratio The cation ratio ⁇ 2 [Ba 2+ / (Mg 2+ + Ca 2+ + Zn 2+ + Sr 2+ )] is set to 0.80 or less.
  • the upper limit with preferable cation ratio (alpha) 2 is 0.75, Furthermore, 0.70, 0.65, 0.60, 0.55, 0.50 is preferable in order.
  • the lower limit of the cation ratio ⁇ 2 is preferably 0.10, and further in the order of 0.20, 0.25, 0.30, 0.35, 0.40. preferable.
  • the Ba 2+ content is not excessively introduced with respect to the content of the other divalent components, so that the precipitation of crystals due to Ba 2+ can be suppressed. Therefore, even when Ba2 + and other divalent components are blended in a balanced manner, the component that increases the refractive index is increased and the component that forms the network structure is decreased. Stability can be improved.
  • the optical glass of the present invention satisfying the cation ratio ⁇ 2 of 0.80 or less has a relatively large temperature difference (Tc ⁇ Tg) between the crystallization peak temperature Tc and the glass transition temperature Tg. More than °C.
  • Tc ⁇ Tg temperature difference between the crystallization peak temperature Tc and the glass transition temperature Tg. More than °C.
  • the ratio of the content of Ba 2+ to the total content of Mg 2+ and Sr 2+ : cation ratio [Ba 2+ / (Mg 2+ + Sr 2+ ) ] Is preferably 2.5, and more preferably in the order 2.0, 1.7, 1.5, 1.2, 1.1, 1.0.
  • the lower limit of the cation ratio [Ba 2+ / (Mg 2+ + Sr 2+ )] is preferably 0.1, and more preferably 0.2, 0.3, and 0.4 in this order.
  • the ratio of the total content of Sr 2+ and Ba 2+ to the total content of Mg 2+ and Ca 2+ : cation ratio [(Sr 2+ + Ba 2+ ) / (Mg 2+ + Ca 2+ )] is preferably 2.5, more preferably 2.0, 1.7, 1.5, 1.2, 1.1, It is preferable in the order of 1.0. Further, the lower limit of the cation ratio [(Sr 2+ + Ba 2+ ) / (Mg 2+ + Ca 2+ )] is preferably 0.1, and further 0.2, 0.3, 0.4, 0 .5 in order.
  • the upper limit of the ratio of the Zn 2+ content to the Ba 2+ content: cation ratio [Zn 2+ / Ba 2+ ] is 0.90 is preferable, and 0.80, 0.75, 0.70, 0.65, and 0.60 are more preferable in this order.
  • the lower limit of the cation ratio [Zn 2+ / Ba 2+ ] is preferably 0.05, and more preferably 0.10, 0.15, 0.20, and 0.25 in this order.
  • Gd 3+ , Y 3+ , La 3+ and Yb 3+ are all components that contribute to improving the weather resistance and increasing the refractive index of the glass. However, if these components are introduced excessively, the thermal stability of the glass may be deteriorated. Therefore, in the optical glass of the present invention, the upper limit of the content of Gd 3+ is preferably 15%, and more preferably in the order of 12%, 10%, 9%, 8%, 7%, 6%. Moreover, the lower limit of the content of Gd 3+ is preferably 0%, and more preferably in the order of 0.5%, 1%, 2%, and 3%.
  • the upper limit of the content of Y 3+ is preferably 10%, and more preferably 7%, 5%, 4%, and 3% in this order.
  • the lower limit of the content of Y 3+ is preferably 0%, and more preferably in the order of 0.5% and 1.0%.
  • the upper limit of the content of La 3+ is preferably 10%, and more preferably 7%, 5%, 4%, and 3% in this order.
  • the lower limit of the La 3+ content is preferably 0%, more preferably 0.05%.
  • the upper limit of the content of Yb 3+ is preferably 5%, and more preferably 4%, 3%, 2%, and 1.5% in this order.
  • the lower limit of the content of Yb 3+ is preferably 0%, more preferably 0.05%. Since Yb 3+ has an absorptivity in the near infrared region, it is preferably not introduced when using light rays in the near infrared region.
  • the lower limit of the total content Re2 is preferably 2.0%, and more preferably 2.5%, 3.0%, 3.5%, and 4.0% in this order.
  • the thermal stability of the glass may be improved by introducing two or more rare earth elements rather than introducing a single rare earth element.
  • the optical glass of the present invention preferably contains any two or more rare earth elements selected from Gd 3+ , Y 3+ , La 3+ and Yb 3+ .
  • the optical glass according to the present invention is a total content of the rare earth elements from the viewpoint of effectively increasing the refractive index while ensuring the thermal stability of the glass obtained by setting the cation ratio ⁇ 2 within a predetermined range.
  • Ratio of total content of P 5+ , B 3+ and Al 3+ to amount Re2: Cation ratio ⁇ 2 [(P 5+ + B 3+ + Al 3+ ) / Re2] is less than 14.0.
  • the upper limit with preferable cation ratio (beta) 2 is 13.5, Furthermore, 13.0, 12.5, 12.0, 11.5, and 11.0 are preferable in order.
  • the lower limit of the cation ratio ⁇ 2 is preferably 2.0, and more preferably 3.0, 4.0, 4.5, 5.0, and 5.5 in this order.
  • the cation ratio ⁇ 2 and the cation ratio ⁇ 2 are closely related from the viewpoint of obtaining desired optical characteristics and improving the thermal stability of the glass. This will be described below.
  • the optical glass according to the present invention in consideration of preferentially increasing the refractive index of the glass, a relatively large total content Re2 of a rare earth element which is a component for effectively increasing the refractive index is introduced.
  • the thermal stability of the glass tends to deteriorate as described above. Therefore, there is a predetermined limit on the amount of rare earth element total content Re2 introduced, and this limit is defined by the cation ratio ⁇ 2 (cation ratio ⁇ 2 is less than 14.0).
  • the cation ratio ⁇ 2 is less than 14.0
  • the thermal stability is improved by setting the cation ratio ⁇ 2 within a predetermined range.
  • the amount of Ba 2+ introduced is too much relative to the total content of Mg 2+ , Ca 2+ , Zn 2+ and Sr 2+ , the thermal stability is impaired.
  • the upper limit is defined (cation ratio ⁇ 2 is 0.80 or less).
  • the glass composition so that the cation ratio ⁇ 2 and the cation ratio ⁇ 2 are within a predetermined range, desired optical characteristics can be obtained and the thermal stability of the glass can be improved.
  • Si 4+ is an effective component for improving chemical durability while maintaining low dispersibility.
  • the upper limit of the content of Si 4+ is preferably 3%, and more preferably in the order of 2%, 1.5%, and 1.0%.
  • Si 4+ is a network component together with P 5+ , B 3+ , and Al 3+ , but Si 4+ is not necessarily introduced into the optical glass of the present invention.
  • Li + is a component that lowers the glass transition temperature and the yield point and is effective for lowering the dispersion.
  • coexistence of P 5+ , B 3+ and Li + is very effective for reducing the dispersion of the glass.
  • the upper limit of the Li + content is preferably 23%, and more preferably in the order of 20%, 17%, 15%, and 14%.
  • the lower limit of the Li + content is preferably 0%, and more preferably in the order of 1%, 2%, 5%, 7%, and 8%.
  • Both Na + and K + are optional components introduced to improve the devitrification resistance of the glass, lower the glass transition temperature, yield point, and liquidus temperature, and improve the meltability of the glass.
  • the introduction of appropriate amounts of Na + and K + improves the stability of the glass and leads to a decrease in liquidus temperature and transition temperature.
  • the upper limit of the content of Na + and K + is preferably 10%, respectively, and more preferably in the order of 5%, 3%, and 2%. It is particularly preferable that Na + and K + are not substantially introduced.
  • the upper limit of the total content R 2 2 [Li + + Na + + K + ] of Li + , Na + and K + is preferably 23%, further 20%, It is preferable in the order of 17%, 15%, and 14%.
  • the lower limit of the total content R 2 2 is preferably 0%, further, 1%, 2%, 5%, 7%, preferably in the order of 8%.
  • the upper limit of the ratio of the P 5+ content to the total content R 2 2 of the alkali metal component: cation ratio [P 5+ / R 2 2] is that the glass has both meltability and thermal stability. 30 is preferable, and 25, 20, 15, 10, and 8 are more preferable in this order.
  • the lower limit of the cation ratio [P 5+ / R 2 2] is preferably set to 1.0, more preferably in the order of 1.5,2.0,2.5.
  • the optical glass of the present invention does not substantially contain Pb, As, Cd, U, Th, and Tl from the viewpoint of reducing the load on the environment.
  • the optical glass of the present invention can contain halogen, that is, F ⁇ , Cl ⁇ , Br ⁇ , and I ⁇ as optional components.
  • the content can be represented by the anion fraction of anions (for example, [F ⁇ / (O 2 ⁇ + F ⁇ )]).
  • the upper limit of the content of F ⁇ is preferably 10%, and more preferably 5%, 3%, 2%, 1%, 0.5%, and 0.1% in this order.
  • the upper limit of the content of Cl ⁇ , Br ⁇ and I ⁇ is preferably 5%, respectively, and more preferably in the order of 3%, 2%, 1%, 0.5% and 0.1%. .
  • the upper limit of B 3+ in the glass is preferably 25% in order to suppress volatilization of the glass, and more preferably in the order of 20%, 15%, 10%, 5%, Most preferably, it does not contain substantially. However, this does not apply when a small amount of halogen of 1% or less is added. In particular, in order to suppress the volatilization of components from the glass and improve the homogeneity of the glass, it is preferable that the halogen is not substantially contained.
  • the optical glass of the present invention can contain an easily reducing component composed of W 6+ , Ti 4+ , Bi 3+ and Nb 5+ as an optional component.
  • These easily reducing components are effective components for increasing the refractive index.
  • W 6+ , Ti 4+ , Bi 3+ and Nb 5+ significantly reduce the glass Abbe number ( ⁇ d). Therefore, the upper limit of the total content [W 6+ + Ti 4+ + Bi 3+ + Nb 5+ ] of the above easily reducing components is preferably 5%, and more preferably 3%, 2%, 1%, 0.5 % In order.
  • the optical glass of the present invention basically has P 5+ , B 3+ , Si 4+ , Al 3+ , Li + , Na + , K + , Mg 2+ , Ca 2+ , Zn 2. It is preferably constituted by a component selected from + , Sr 2+ , Ba 2+ , Gd 3+ , Y 3+ , La 3+ and Yb 3+ .
  • Total content of these components is preferably 95% or more, more preferably 98% or more, more preferably 99% or more, and still more preferably 100%.
  • optical glass of this invention is fundamentally comprised by the said component, in the range which does not prevent the effect of this invention, it is also possible to introduce
  • substantially not containing can be taken as a guide when the content is less than 0.2%.
  • the components and additives that are not substantially contained are preferably not contained in the glass. Therefore, the content is preferably less than 0.1%, more preferably less than 0.08%, and more preferably. It is further preferably less than 05%, more preferably less than 0.01%, and even more preferably less than 0.005%.
  • the optical glass of the present invention is composed of the above components and the total amount is 100% by mass, even if a refining agent such as Sb 2 O 3 , SnO 2 , or CeO 2 is introduced in an external ratio within 4% by mass. Good.
  • the upper limit of the content of Sb 2 O 3 is preferably 4% by mass, and more preferably 3% by mass, 2% by mass, 1% by mass, 0.5% by mass, and 0.1% by mass in this order.
  • the lower limit of the content of Sb 2 O 3 is preferably 0%, and more preferably 0.01% by mass, 0.02% by mass, and 0.04% by mass in this order.
  • SnO 2 and CeO 2 may deteriorate the transmittance of the glass, so that introduction of 1% by mass or less is preferable, and it is particularly preferable not to introduce substantially.
  • the glass composition of the optical glass is mainly described in terms of cation%, but the analysis values obtained by performing quantitative analysis for each component by ICP-AES analysis or the like are as follows. Can be converted to a cation% display by a simple method.
  • the content of the cation element in the glass component composed of the cation and the anion may be displayed as a percentage of atomic%.
  • Such composition display can be converted into the cation% display of the present invention by, for example, the following method.
  • each cation content (atomic%) of the quantified glass component is divided by the specific atomic weight to obtain the molar percentage of each cation, and the ratio of the cation to be obtained to all the cations contained Is expressed as a percentage by cation.
  • the content (atomic%) of n cations is quantified as m 1 , m 2 ,..., M i , ..., m n, and the atomic weight of each cation is M 1
  • the cation content (cation%) of one component (m i , M i ) can be obtained by the following equation. [(M i / M i ) / [(m 1 / M 1 ) + (m 2 / M 2 ) + ... + (m i / M i ) + ...
  • an anion element may be quantified by quantitative analysis, it can be converted into the anion content rate (anion%) of an anion in the same manner as described above.
  • the glass component may be expressed on an oxide basis, and the content of the glass component may be displayed in mass%.
  • Such composition display can be converted into cation% display by the following method, for example.
  • a m O n An oxide composed of a cation A and oxygen is denoted as “A m O n ”.
  • m and n are integers determined stoichiometrically.
  • the characteristics (optical characteristics and thermal stability) of the optical glass according to the present embodiment are the same as those described in the first embodiment. Therefore, description is abbreviate
  • optical glass according to the present invention may be produced according to a known glass production method by blending raw materials so as to have the above-mentioned predetermined composition.
  • the optical glass according to the present invention is melted to form a plate-like glass material, and the plate-like glass material is subdivided into a predetermined volume to produce a glass material for press molding. Or the glass lump of a predetermined volume is shape
  • a glass material for precision press molding is produced by hot forming molten glass, and an optical element is produced by heating and precision press molding the glass material.
  • a molten glass is directly molded (direct press molding) to produce a glass molded body, and this molded body is polished to produce an optical element.
  • the optical functional surface of the manufactured optical element may be coated with an antireflection film, a total reflection film or the like according to the purpose of use.
  • optical elements examples include spherical lenses, aspherical lenses, microlenses, various lenses such as a lens array, prisms, diffraction gratings, and the like.
  • Tables 1 to 4 show optical glasses (samples 1A to 37A) according to examples of the first embodiment of the present invention, and Table 5 shows an optical glass (sample 38A) according to comparative examples of the present invention.
  • Samples 11A and 13A shown in Table 5 are the same as the samples shown in Table 2, and are shown together for comparison between Examples and Comparative Examples.
  • oxides, hydroxides, carbonates, and nitrates corresponding to glass components are prepared as raw materials, and the raw materials are weighed so that the glass composition of the optical glass obtained is the glass composition shown in each table.
  • the prepared raw material (batch raw material) thus obtained is put into a platinum crucible, melted in a temperature range of 1200 to 1400 ° C in an electric furnace according to the meltability of the raw material, and stirred to homogenize and clarify. From the outflow nozzle, the molten glass was discharged and cast into a mold preheated to an appropriate temperature.
  • the cast glass was put into a slow cooling furnace and cooled to room temperature according to a predetermined slow cooling schedule to obtain each optical glass.
  • the optical glasses (samples 1A to 37A) according to the examples of the present invention have a refractive index nd of 1.620 to 1.700 and an Abbe number ⁇ d of 53 to 65.
  • the ZnO content, the mass ratio ⁇ 1 [BaO / (MgO + CaO + ZnO + SrO)] and the mass ratio ⁇ 1 [(P 2 O 5 + B 2 O 3 + Al 2 O 3 ) / Re1] are within the desired ranges (ZnO content).
  • the amount of the glass is 15% by mass or less, the mass ratio ⁇ 1 is 2.1 or less, and the mass ratio ⁇ 1 is less than 4.80).
  • the average value of the temperature difference (Tc ⁇ Tg) between the temperature Tg and the temperature Tc is about 210 ° C., and the temperature Tp of each sample is higher than the crystallization peak temperature Tc. (In other words, Tp ⁇ Tc), it was confirmed that no internal crystals were generated in the solidified glass and the thermal stability was high.
  • Sample 11A in Tables 2 and 5 is the sample having the smallest temperature difference (Tc ⁇ Tg) among Samples 1A to 37A in Tables 1 to 5. Even in this case, the glass is softened. It was confirmed that no internal crystals were generated and the thermal stability was high.
  • sample 13A in Tables 2 and 5 is a sample that is very close to the sample 38A (comparative example) in terms of refractive index and Abbe number, but the temperature difference (Tc ⁇ Tg) is 192 ° C. In other words, no internal crystals were generated, and it was confirmed that the thermal stability was high as in the other samples.
  • the sample 38A in Table 5 which is an optical glass according to the comparative example of the present invention has a temperature difference (Tc ⁇ Tg) of 139 ° C., which is much higher than the crystallization peak temperature Tc (667 ° C.). Softened at a temperature Tp (710 ° C.). That is, in this sample 38A, the temperature Tp and the temperature Tc were in a relationship of Tp> Tc. And it was confirmed that the crystal
  • the optical glass according to the example of the present invention has a sufficiently large temperature difference (Tc ⁇ Tg). For this reason, glass can be reliably softened at a temperature Tp lower than the temperature Tc. Therefore, the optical glass of the present invention can be applied to reheat press molding where precise temperature control is difficult.
  • the optical glass according to the comparative example (sample 38A in Table 5) has a relatively small temperature difference (Tc ⁇ Tg) and the softening temperature Tp is higher than the crystallization peak temperature Tc.
  • Tc ⁇ Tg the softening temperature
  • Tp the softening temperature
  • the optical glass according to this example (Sample 13A in Table 2 and Table 5) has no surface alteration and is transparent after being treated for a long time under high temperature and high humidity. It was confirmed to be excellent. The haze value was 0.1%.
  • the optical glass according to the present invention has excellent weather resistance.
  • Tables 6 to 8 show optical glasses (samples 1B to 37B) according to examples of the second embodiment of the present invention, and Table 9 shows an optical glass (sample 38B) according to comparative examples of the present invention.
  • Samples 6B and 18B shown in Table 9 are the same as the samples shown in Table 6 and Table 7, and are shown together for comparison between Examples and Comparative Examples.
  • the optical glasses (samples 1B to 37B) according to the examples of the present invention have a refractive index nd of 1.620 to 1.700 and an Abbe number ⁇ d of 53 to 65.
  • the cation ratio ⁇ 2 [Ba 2+ / (Mg 2+ + Ca 2+ + Zn 2+ + Sr 2+ )] and the cation ratio ⁇ 2 [(P 5+ + B 3+ + Al 3+ ) / Re2] are within the desired ranges. It is a glass having a cation ratio ⁇ 2 of 0.80 or less and a cation ratio ⁇ 2 of less than 14.0.
  • the average value of the temperature difference (Tc ⁇ Tg) between the temperature Tg and the temperature Tc is about 210 ° C., and the temperature Tp of each sample is higher than the crystallization peak temperature Tc. (In other words, Tp ⁇ Tc), it was confirmed that no internal crystals were generated in the solidified glass and the thermal stability was high.
  • Sample 18B in Tables 6 and 9 has the smallest temperature difference (Tc ⁇ Tg) among Samples 1B to 37B in Tables 6 to 9, but even in this case, the glass is softened. It was confirmed that no internal crystals were generated and the thermal stability was high.
  • Sample 6B in Tables 6 and 9 is a sample very close to Sample 38B (Comparative Example) in terms of refractive index and Abbe number, but the temperature difference (Tc ⁇ Tg) is 192 ° C. In other words, no internal crystals were generated, and it was confirmed that the thermal stability was high as in the other samples.
  • Sample 38B of Table 9 which is an optical glass according to the comparative example of the present invention has a temperature difference (Tc ⁇ Tg) of 139 ° C., which is much higher than the crystallization peak temperature Tc (667 ° C.). Softened at a temperature Tp (710 ° C.). That is, in this sample 38B, the temperature Tp and the temperature Tc were in a relationship of Tp> Tc. And it was confirmed that the crystal
  • the sample 38B of Table 9 which is an optical glass according to the comparative example has a cation ratio ⁇ 2 of less than 14, the cation ratio ⁇ 2 serving as an index of the thermal stability of the glass is within a predetermined range. This is considered to be out of the range (0.80 or less).
  • the optical glass according to the example of the present invention has a sufficiently large temperature difference (Tc ⁇ Tg). For this reason, glass can be reliably softened at a temperature Tp lower than the temperature Tc. Therefore, the optical glass of the present invention can be applied to reheat press molding where precise temperature control is difficult.
  • the optical glass according to the comparative example (sample 38B in Table 9) has a relatively small temperature difference (Tc ⁇ Tg) and the softening temperature Tp is higher than the crystallization peak temperature Tc.
  • Tc ⁇ Tg the softening temperature
  • Tp the softening temperature
  • the optical glass according to this example (Sample 6B in Table 6 and Table 9) has no surface deterioration after being treated for a long time under high temperature and high humidity, and has transparency. It was confirmed to be excellent. The haze value was 0.1%.
  • the optical glass according to the present invention has excellent weather resistance.
  • Example 2 Optical lenses were produced using the optical glasses produced in Example 1A and Example 1B (Samples 1A to 37A in Tables 1 to 5 and Samples 1B to 37B in Tables 6 to 9). Specifically, each optical glass of Example 1A and Example 1B was processed into a predetermined shape to produce an optical glass material. Next, the optical glass material is heated and softened, press-molded into a shape that approximates the shape of the target lens, and after press molding, the glass is annealed (annealed) and finished into an optical lens through processing steps including a polishing step. It was. In addition, what is necessary is just to apply a well-known method suitably for the press molding method of glass, the method of annealing, and a process process.
  • optical lens thus obtained can be obtained as a good optical lens without crystallization of the glass even when heated at a relatively high temperature during reheat press molding.
  • Comparative Example 2 In the same manner as in Example 2, an optical lens was tried using the optical glass (Sample 38A in Table 5 and Sample 38B in Table 9) produced in Comparative Example 1A and Comparative Example 1B.
  • the thermal stability was low, crystallization occurred due to heating during reheat press molding, and internal crystals were generated in the obtained optical lens.
  • the optical glass of the first embodiment has a total content of P 2 O 5 , B 2 O 3 and Al 2 O 3 [P 2 O 5 + B 2 O 3 + Al 2 O 3 ] is 55% by mass or less glass, BaO, Any one or more selected from MgO, CaO, ZnO and SrO; One or more selected from Gd 2 O 3 , Y 2 O 3 , La 2 O 3 and Yb 2 O 3 , The content of ZnO is 15% by mass or less, The mass ratio ⁇ 1 [BaO / (MgO + CaO + ZnO + SrO)] of the content of BaO to the total content of MgO, CaO, ZnO and SrO is 2.1 or less, P 2 O 5 , B 2 O with respect to the total content [Gd 2 O 3 + Y 2 O 3 + La 2 O 3 + Yb 2 O 3 ] of Gd 2
  • samples 1A, 6A-8A, 10A, and 13A in Tables 1 to 3 as examples of the optical glass according to the first embodiment are used.
  • -18A and 20A-22A are selected.
  • these optical glasses satisfy the following conditions.
  • a total content of P 2 O 5 , B 2 O 3 and Al 2 O 3 [P 2 O 5 + B 2 O 3 + Al 2 O 3 ] is 55% by mass or less glass, BaO, Any one or more selected from MgO, CaO, ZnO and SrO; One or more selected from Gd 2 O 3 , Y 2 O 3 , La 2 O 3 and Yb 2 O 3 , The content of ZnO is 6% by mass or less, The mass ratio ⁇ 1 [BaO / (MgO + CaO + ZnO + SrO)] of the content of BaO to the total content of MgO, CaO, ZnO and SrO is 1.2 or less, P 2 O 5 , B 2 O with respect to the total content [Gd 2 O 3 + Y 2 O 3 + La 2 O 3 + Yb 2 O 3 ] of Gd 2 O 3 , Y 2 O 3 , La 2 O 3 and Yb 2 O 3 3 and the total content of Al 2 O 3 [P
  • the optical glass of the second embodiment has a total content of P 5+ , B 3+ and Al 3+ [P 5+ + B 3+ + Al 3+ ] is a glass having 60 cation% or less, Ba 2+ Any one or more selected from Mg 2+ , Ca 2+ , Zn 2+ and Sr 2+ ; Any one or more selected from Gd 3+ , Y 3+ , La 3+ and Yb 3+ , Cation ratio ⁇ 2 of Ba 2+ content to the total content of Mg 2+ , Ca 2+ , Zn 2+ and Sr 2+ [Ba 2+ / (Mg 2+ + Ca 2+ + Zn 2+ + Sr 2+ )] Is 0.80 or less, Cation ratio ⁇ 2 of the total content of P 5+ , B 3+ and Al 3+ to the total content of Gd 3+ , Y 3+ , La 3+ and Yb 3+ [(P 5+ + B 3+ + Al 3+ ] is a glass having 60
  • samples 1B to 17B in Tables 6 and 7, which are examples of the optical glass according to the second embodiment, are selected as optical glasses that are particularly excellent in low dispersibility and thermal stability.
  • these optical glasses satisfy the following conditions.
  • Optical glass having characteristics can be manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

【課題】 本発明は、屈折率が比較的高く、かつ、熱的安定性に優れた光学ガラス、並びに該光学ガラスからなる光学素子および光学ガラス素材を提供することを目的とする。 【解決手段】 P25、B23およびAl23の合計含有量が55質量%以下のガラスであって、BaOと、MgO、CaO、ZnOおよびSrOから選択されるいずれか1種以上と、Gd23、Y23、La23およびYb23から選択されるいずれか1種以上と、を含み、ZnOの含有量は15質量%以下であり、MgO、CaO、ZnOおよびSrOの合計含有量に対するBaOの含有量の質量比α1が2.1以下であり、Gd23、Y23、La23およびYb23の合計含有量に対するP25、B23およびAl23の合計含有量の質量比β1が4.80未満であり、屈折率ndが1.620~1.700、アッベ数νdが53~65である、光学ガラス。

Description

光学ガラス、光学素子および光学ガラス素材
 本発明は、屈折率(nd)が1.620~1.700、アッベ数(νd)が53~65である光学ガラスに関する。また、本発明は、該光学ガラスからなる光学素子および光学ガラス素材に関する。
 近年、デジタルカメラや監視カメラ等の撮像機器の普及に伴い、これらの装置に搭載される光学素子の需要が高まっている。特に、所定の屈折率と低分散性を有する光学ガラスは、これらの撮像機器等の光学素子材料として有効に使用されている。例えば、特許文献1に記載のリン酸塩光学ガラスが知られている。
 このような光学ガラスに基づいて、さらなる高屈折率化と低分散化を図ろうとした場合、ガラス成分の選択が重要となる。
 ところで、光学ガラスは、光学レンズ等の光学素子や光学素子用の光学ガラス素材として広く用いられている。ガラスはガラス転移温度Tg(以下、単に「ガラス転移温度」、「Tg」または「温度Tg」という場合がある。)以上では粘性体であり、温度上昇とともに粘度が低下する性質、すなわちTgよりも高い温度に加熱することにより軟化する性質がある。この性質を利用して、光学素子の成形方法としては、加熱軟化させたガラスをプレスして所望の形状に成形するプレス成形法が知られている。このようなプレス成形法を大別すると、ダイレクトプレス成形法、リヒートプレス成形法、および精密プレス成形法(モールドプレス成形法とも呼ばれる)の3つの方法が挙げられる。
 これらの成形方法のうちダイレクトプレス成形法とリヒートプレス成形法は、熔融または軟化したガラス素材を短時間でプレス成形して、目的とする光学素子形状に近似した光学素子ブランクを成形し、その後、その光学素子ブランクを研削・研磨加工して光学素子に仕上げる方法である。一方、精密プレス成形法は、精密加工された成形面形状を、非酸化性雰囲気中で軟化したガラスに転写することで、目的とする光学素子を作製する方法であり、この方法では成形品の研削・研磨は不要である。
 また、ダイレクトプレス成形法は、ガラス素材を作製することなく、熔融しているガラスをプレスする方法であるのに対し、リヒートプレス成形法と精密プレス成形法は、一度熔融ガラスを冷却して固化したガラス素材を成形した後、該ガラス素材を再加熱して軟化させ、プレス成形する方法である。
 一般に、リヒートプレス法や精密プレス成形法のように、一度固化したガラス素材を再加熱して軟化させる方法の場合、加熱温度が高すぎるとプレス後の成形品において結晶化による不良が発生する場合がある。そこで、ガラスの結晶化を避けて加熱温度を低くしすぎるとガラスの粘度が高いために、プレス成形時にガラスの変形量の不足による形状不良、あるいはガラスを変形させるためのプレス圧力の増加によるガラスの割れといった欠陥が発生する場合がある。
 これらの問題は、精密な温度制御の下、非酸化性雰囲気にて比較的低い温度で長時間かけてプレス成形される精密プレス成形法よりも、開放された大気中にて精密な温度制御が困難であり、かつ比較的高温度(例えば、ガラスの粘度が104~106dPa・sに相当する温度)にガラス素材を加熱し、高温状態で短時間にプレス成形される、リヒートプレス成形法の場合に顕著となる。
 なお、ガラスの結晶には、ガラス表面に多く生じる表面結晶と、ガラス表面から内部に亘って全体に発生する内部結晶とがある。光学ガラスにとっては、表面結晶と内部結晶の双方がないこともしくは極めて少ないことが好ましい。
 特に、光学ガラスについては、光学素子を製造する際のガラスの熱的安定性を確保することが重要である。
 なお、本発明において、ガラスの熱的安定性は、ガラス融液を成形する際の耐失透性と、一度固化したガラスを再加熱したときの耐失透性とを含む。
特許第4533069号公報
 しかしながら、光学ガラスにおいて、高屈折率化および低分散化を図ることと、ガラスの熱的安定性を確保することとはトレードオフの関係にある。このようなトレードオフの関係を考慮せずに、例えば屈折率を高めるためのガラス成分を多量に導入すると、ガラスの内部結晶が生じ易くなる傾向にあるため、ガラス製品の品質低下を招いてしまう。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、高屈折率および低分散性を有し、優れた熱的安定性を有する光学ガラスを見出した。具体的には、高屈折率化を図ることを優先しつつ、リヒートプレス成形の際にガラスの内部結晶が生じない程度の熱的安定性を有する光学ガラスを発明するに至った。
 本発明は、屈折率ndが比較的高く、かつ、熱的安定性に優れた光学ガラスを提供することを目的とする。さらに、本発明は、該光学ガラスからなる光学素子および光学ガラス素材を提供することを目的とする。
 すなわち、本発明の要旨は以下の通りである。
〔1〕 P25、B23およびAl23の合計含有量[P25+B23+Al23]が55質量%以下のガラスであって、
 BaOと、
 MgO、CaO、ZnOおよびSrOから選択されるいずれか1種以上と、
 Gd23、Y23、La23およびYb23から選択されるいずれか1種以上と、を含み、
 ZnOの含有量は15質量%以下であり、
 MgO、CaO、ZnOおよびSrOの合計含有量に対するBaOの含有量の質量比α1[BaO/(MgO+CaO+ZnO+SrO)]が2.1以下であり、
 Gd23、Y23、La23およびYb23の合計含有量に対するP25、B23およびAl23の合計含有量の質量比β1[(P25+B23+Al23)/(Gd23+Y23+La23+Yb23)]が4.80未満であり、
 屈折率ndが1.620~1.700、アッベ数νdが53~65である、光学ガラス。
〔2〕 Gd23、Y23、La23およびYb23の合計含有量[Gd23+Y23+La23+Yb23]が4~30質量%である、上記〔1〕に記載の光学ガラス。
〔3〕 P25の含有量が12~40質量%である、上記〔1〕または〔2〕に記載の光学ガラス。
〔4〕 BaOの含有量が10~45質量%である、上記〔1〕~〔3〕のいずれかに記載の光学ガラス。
〔5〕 P5+、B3+およびAl3+の合計含有量[P5++B3++Al3+]が60カチオン%以下の酸化物ガラスであって、
 Ba2+と、
 Mg2+、Ca2+、Zn2+およびSr2+から選択されるいずれか1種以上と、
 Gd3+、Y3+、La3+およびYb3+から選択されるいずれか1種以上と、を含み、
 Mg2+、Ca2+、Zn2+およびSr2+の合計含有量に対するBa2+の含有量のカチオン比α2[Ba2+/(Mg2++Ca2++Zn2++Sr2+)]が0.80以下であり、
 Gd3+、Y3+、La3+およびYb3+の合計含有量に対するP5+、B3+およびAl3+の合計含有量のカチオン比β2[(P5++B3++Al3+)/(Gd3++Y3++La3++Yb3+)]が14.0未満であり、
 屈折率ndが1.620~1.700、アッベ数νdが53~65である、光学ガラス。
〔6〕 Gd3+、Y3+、La3+およびYb3+の合計含有量[Gd3++Y3++La3++Yb3+]が2~20カチオン%である、上記〔5〕に記載の光学ガラス。
〔7〕 P5+の含有量が10~45カチオン%である、上記〔5〕または〔6〕に記載の光学ガラス。
〔8〕 Ba2+の含有量が5~25カチオン%である、上記〔5〕~〔7〕のいずれかに記載の光学ガラス。
〔9〕 Zn2+の含有量が15カチオン%以下である、上記〔5〕~〔8〕のいずれかに記載の光学ガラス。
〔10〕 B3+の含有量に対するP5+の含有量のカチオン比[P5+/B3+]が0.2~10.0である、上記〔5〕~〔9〕のいずれかに記載の光学ガラス。
〔11〕 上記〔1〕~〔10〕のいずれかに記載の光学ガラスからなる、光学素子。
〔12〕 上記〔1〕~〔10〕のいずれかに記載の光学ガラスからなる、光学ガラス素材。
 本発明によれば、比較的高い屈折率(屈折率ndが1.620以上)を有する光学ガラスであって、優れた熱的安定性により、過酷な条件下で再加熱した場合であっても、結晶化が起こりにくい光学ガラスが得られる。また、該光学ガラスからなる光学素子、光学ガラス素材が得られる。
光学ガラスの示差走査熱量曲線を示す模式図である。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
(第1の実施形態)
 本実施形態では、本発明の第1の観点として、質量%表示での各成分の含有比率に基づいて、本発明に係る光学ガラスを説明する。第1の実施形態において、各含有量は特記しない限り、質量%にて表示する。
光学ガラス
 第1の実施形態の光学ガラスは、P25、B23およびAl23の合計含有量[P25+B23+Al23]が55質量%以下のガラスであって、BaOと、MgO、CaO、ZnOおよびSrOから選択されるいずれか1種以上と、Gd23、Y23、La23およびYb23から選択されるいずれか1種以上と、を含み、ZnOの含有量は15質量%以下であり、MgO、CaO、ZnOおよびSrOの合計含有量に対するBaOの含有量の質量比α1[BaO/(MgO+CaO+ZnO+SrO)]が2.1以下であり、Gd23、Y23、La23およびYb23の合計含有量に対するP25、B23およびAl23の合計含有量の質量比β1[(P25+B23+Al23)/(Gd23+Y23+La23+Yb23)]が4.80未満であり、屈折率ndが1.620~1.700、アッベ数νdが53~65であることを特徴とする。
 一般に、ガラスを構成する成分は、ガラスの網目構造を形成するネットワーク成分とガラスの特性を制御する修飾成分とに大別することができる。このうちネットワーク成分は、主にガラスの安定性(例えば、構造上の安定性や熱的安定性、ガラスの熔融性)に寄与する。そのため、安定なガラスを得る観点からは、ガラス中におけるネットワーク成分の割合を、比較的多くすることが望ましい。
 一方、修飾成分は、主にガラスの機能性(例えば、屈折率・分散性等の光学特性や耐候性等の化学的耐久性)に寄与する。そのため、ガラスに求める機能や特性に応じて、修飾成分の種類やその添加量を適宜選択、調節して加えることが望ましい。しかし、ガラス中における修飾成分の割合が増加すると、結果的にネットワーク成分の割合が低下するため、ガラスとしての安定性が低下するおそれがある。また、修飾成分によっては、特性向上の観点からは有効であっても、少量の添加でガラスの安定性を著しく低下させるものもある。
 このように、ガラスの安定性と機能性は、ネットワーク成分と修飾成分とのバランスにより大きく左右される。
 従来、リン酸塩ガラスは、高屈折率と低分散性を示すことから光学レンズ等の光学素子としての利用が期待されていたが、耐候性が低く、プレス成形用ガラスとして用いることができなかった。このような不具合を解決するため、特許文献1に記載の参考例1では、修飾成分としてBaOを添加し、ガラス中におけるBaOの割合を多くすることにより、高屈折率(屈折率ndが1.620以上)を確保しつつ耐候性を向上していた。
 しかし、このような光学ガラスは、耐候性が向上し、精密プレス成形用ガラスとして好適であるものの、多量に導入される修飾成分(例えば、BaO)に起因する結晶化が生じやすくなり、ガラスの熱的安定性が悪化する問題があった。そのため、一度良好に固化されたガラスであっても、再度過酷な条件下で軟化させると、冷却後のガラスに結晶が生じることがあり、このようなガラスはリヒートプレス成形法のような光学素子の作製法には不適であった。
 特に、光学ガラス中におけるネットワーク成分(例えば、P25等)の割合が低下し、修飾成分(例えば、耐候性を高める成分や屈折率を高める成分等)の割合が増えると、ガラスの熱的安定性は悪化する傾向にある。このため、リヒートプレス成形における再加熱によるガラスの結晶化が発生し、耐候性や熱的安定性に優れた高屈折率のガラスを得ることは困難であった。このような問題は、比較的高い屈折率(屈折率ndが1.620以上、さらには1.630以上)を得ようとすると顕著に現れる。
 そこで、本発明者らは、上記のような問題を解決するべく鋭意研究を重ねた結果、ガラス中における修飾成分の割合が増え、ネットワーク成分の割合が低下した場合(P25、B23およびAl23の合計含有量[P25+B23+Al23]が55質量%以下)であっても、BaOと、その他の二価成分とをバランスよく配合することで、ガラスの熱的安定性を向上できることを見出し、本発明を完成させるに至った。
 すなわち、本発明に係る光学ガラスは、BaOを含むと共に、MgO、CaO、ZnOおよびSrOから選択されるいずれか1種以上を含み、MgO、CaO、ZnOおよびSrOの合計含有量に対するBaOの含有量の質量比α1[BaO/(MgO+CaO+ZnO+SrO)]を、2.1以下とすることが一つの特徴である。
 質量比α1を上記範囲とすることにより、特定の修飾成分(BaO)が他の修飾成分に対して過剰に導入されることを抑えられるので、特定の修飾成分に起因する結晶の発生を防止できる。したがって、ガラスの熱的安定性を確保できる。
 このような本発明に係る光学ガラスによれば、精密な温度制御が困難な大気雰囲気下で行われるリヒートプレス成形において、ガラスの内部結晶の発生を効果的に防止できる。
 また、本発明に係る光学ガラスは、上記質量比α1を所定範囲とすることによって得られる熱的安定性を維持しつつ、屈折率(nd)を効果的に高めるために、Gd23、Y23、La23およびYb23から選択されるいずれか1種以上の希土類元素を含有し、かつ、Gd23、Y23、La23およびYb23の合計含有量に対するP25、B23およびAl23の合計含有量の質量比β1[(P25+B23+Al23)/(Gd23+Y23+La23+Yb23)]を、4.80未満とすることが一つの特徴である。
 上記希土類元素(Gd23、Y23、La23およびYb23)の合計含有量に対するネットワーク成分(P25、B23およびAl23)の合計含有量の比率(質量比β1)を上記範囲とすることにより、上記希土類元素の合計含有量が相対的に増加するためガラスの屈折率を高く設定することができる。
 このような本発明に係る光学ガラスは、特に、リヒートプレス成形法を用いて高屈折率の光学素子を作製する場合に好適である。
 なお、本発明における光学ガラスとは、複数の金属酸化物を含むガラス組成物であって、形態(塊り状、板状、球状など)や用途(光学素子用素材、光学素子など)を問わず、総称して光学ガラスという。
<ガラス組成>
 次に、第1の実施形態に係る光学ガラスの構成成分について詳しく説明する。なお、ガラス組成は、例えば、ICP-AES(Inductively Coupled Plasma - Atomic Emission Spectrometry)などの方法により求めることができる。
 ICP-AES分析は、まず各元素別に定量分析を行い、その後、本定量分析値に基づいて酸化物表記に換算される。ICP-AESにより求められた分析値は、分析値の±5%程度の測定誤差を含んでいることがある。したがって、分析値から換算された酸化物表記の値についても、同様に±5%程度の誤差を含んでいることがある。
 また、第1の実施形態において、構成成分の含有量(酸化物表記)が0%または含まないもしくは導入しないとは、この構成成分を実質的に含まないことを意味し、この構成成分の含有量が不純物レベル程度以下であることを指すものとする。
 P25は、ガラスの網目構造を形成するネットワーク成分であり、ガラスに製造可能な熱的安定性を付与する重要な成分である。しかし、P25が過剰に含まれると、ガラス転移温度や屈伏点、ガラスの熔融温度が上昇するとともに、屈折率や耐候性が低下する傾向にある。一方、P25の含有量が少なすぎると、ガラスのアッベ数(νd)が減少して低分散性が損なわれると共に、ガラスの失透傾向が強くなりガラスが不安定になる傾向にある。よって、本発明の光学ガラスでは、P25の含有量の上限は、好ましくは40%であり、さらには37%、35%、34%、33%の順に好ましい。また、P25の含有量の下限は、好ましくは12%であり、さらには13%、14%、15%、16%の順に好ましい。なお、本発明において、P25は必須成分として含まれることが好ましい。
 B23は、ガラスの熔融性の向上やガラスの均質化に非常に有効な成分であると同時に、ガラスの耐失透性や耐候性の向上および屈折率を高め、低分散化を促す上で有効な成分である。しかし、B23を過剰に導入すると、ガラス転移温度や屈伏点の上昇、耐失透性の悪化、低分散性の損失を生じるおそれがある。よって、本発明の光学ガラスでは、B23の含有量の上限は、好ましくは20%であり、さらには17%、15%、14%、13%、12%の順に好ましい。また、B23の導入量が少なすぎるとガラスの熔解性や耐失透性が低下する。よって、本発明の光学ガラスでは、B23の含有量の下限は、好ましくは0.1%であり、さらには1.0%、2.0%、3.0%、3.5%の順に好ましい。なお、本発明の光学ガラスにおいてB23は、P25と共にガラスの網目構造を形成するため、ガラスの安定性の観点から、含まれることが好ましい。
 Al23は、ガラスの網目構造を形成するネットワーク成分であり、ガラスの耐候性を向上させるために有効な成分として用いられる。しかし、その導入量が過剰であると、ガラス転移温度や屈伏点が高くなり、ガラスの安定性や熔融性が悪化し、屈折率も低下してしまうおそれがある。よって、本発明の光学ガラスでは、Al23の含有量の上限は、好ましくは10%であり、さらには7%、5%、3%の順に好ましい。また、Al23の含有量の下限は、好ましくは0%であり、さらには0.5%、1.0%、1.3%、1.5%の順に好ましい。
 なお、P25、B23およびAl23の合計含有量[P25+B23+Al23]が55%を超えると、屈折率の低下やガラスの熔融温度の上昇、さらにガラスの揮発による品質悪化を生じるおそれがある。一方、これらの成分の合計含有量が少なすぎると、耐失透性が悪化しガラス化が困難になるほか、低分散性が損なわれるおそれがある。本発明の光学ガラスでは、合計含有量[P25+B23+Al23]の上限は、55%であり、さらには50%、45%、42%、40%、39%、38%の順に好ましい。合計含有量[P25+B23+Al23]の下限は、好ましくは20%であり、さらには23%、25%、27%、29%、30%の順に好ましい。
 また、本発明の光学ガラスでは、ガラスに低分散性を付与することと、熱的安定性を高めることとを両立する観点から、B23の含有量に対するP25の含有量の割合:質量比[P25/B23]の上限は、好ましくは12であり、さらには10、9、8、7の順に好ましい。また、質量比[P25/B23]の下限は、好ましくは0.6であり、さらには0.8、1.0、1.2、1.5の順に好ましい。このように本発明に係る光学ガラスにおいてガラスの網目構造の形成に支配的に作用するP25とB23の割合をバランスさせることにより、低分散化を達成しつつ優れた熱的安定性を得ることができる。
 BaOは、適量の導入によりガラスの屈折率を高め、耐候性を向上させるために非常に有効な必須成分である。しかし、その導入量が多すぎるとガラスの熱的安定性が著しく損なわれ、またガラス転移温度が上昇し、かつ低分散性を損なう傾向にある。一方、その導入量が少なすぎると、所望の屈折率が得られず、さらに耐候性が悪化する。よって、本発明の光学ガラスでは、BaOは、必須成分であり、その含有量の上限は、好ましくは45%であり、さらには40%、37%、35%、33%、32%、31%の順に好ましい。また、BaOの含有量の下限は、好ましくは10%であり、さらには13%、15%、17%、19%、20%の順に好ましい。
 また、ガラスの熱的安定性および耐候性を高める観点から、BaOとP25の合計含有量[BaO+P25]の上限は、好ましくは70%であり、さらには67%、65%、63%、61%、60%の順に好ましい。また、合計含有量[BaO+P25]の下限は、好ましくは35%であり、さらには38%、40%、42%、44%、45%の順に好ましい。
 さらに、ガラスを低分散化し、かつガラスの熱的安定性を高める観点から、B23の含有量に対するBaOの含有量の割合:質量比[BaO/B23]の上限は、好ましくは30であり、さらには20、15、12、10、8、7の順に好ましい。また、質量比[BaO/B23]の下限は、好ましくは0.5であり、さらには1.0、1.5、1.8、2.0、2.2の順に好ましい。
 MgOは、ガラスの高い耐候性と低分散性を両立させるために導入される成分ある。少量のMgOの導入により、ガラス転移温度や屈伏点または液相温度を下げる効果がある。しかし、多量に導入すると、ガラスの熱的安定性が著しく悪化し、液相温度が逆に高くなる。よって、本発明の光学ガラスでは、MgOの含有量の上限は、好ましくは20%であり、さらには15%、12%、10%、9%、8%の順に好ましい。また、MgOの含有量の下限は、好ましくは0%であり、さらには1%、2%、3%、3.5%、4%の順に好ましい。
 なお、MgOは、B23、Li2Oと同様にガラスの低分散化にとって有利な働きをする。よって、リヒートプレス成形における熱的安定性を損なわずに所望の分散を得る上から、本発明の光学ガラスには、MgO、B23およびLi2Oのいずれか一種の成分を2%以上導入することが好ましい。特に、MgO、B23およびLi2Oのいずれか一種の成分の含有量の下限は、3%、5%、7%の順に好ましい。
 CaOは、ガラスの低分散化を促すと共に、ガラスの熱的安定性を改善し、液相温度を低下させるために導入される成分である。しかし、過剰にCaOを導入すると、ガラスの化学的耐久性が悪化するだけでなく、ガラスの熱的安定性が却って低下し、屈折率も低下してしまうおそれがある。よって、本発明の光学ガラスでは、CaOの含有量の上限は、好ましくは18%であり、さらには15%、12%、11%、10%、9.5%の順に好ましい。また、CaOの含有量の下限は、好ましくは0%あり、さらには2%、3%、4%、5%、5.5%の順に好ましい。
 なお、ガラスの低分散性と熱的安定性、および耐候性を両立する観点から、本発明の光学ガラスにおけるMgOとCaOの合計含有量[MgO+CaO]の上限は、好ましくは30%であり、さらには25%、22%、20%、19%、18%の順に好ましい。また、合計含有量[MgO+CaO]の下限は、好ましくは5%であり、さらには7%、9%、10%、11%の順に好ましい。
 SrOは、ガラスの低分散性を損なわずにガラスの屈折率を高める有効な成分である。また、ガラスの耐候性を高める成分としても有効である。しかし、過剰にSrOを導入すると、液相温度が上昇してガラスの熱的安定性が悪化する傾向にある。よって、本発明の光学ガラスでは、SrOの含有量の上限は、好ましくは15%であり、さらには13%、10%、7%、5%の順に好ましい。また、SrOの含有量の下限は、好ましくは0%であり、さらには0%超、1.0%、2.0%、2.5%の順に好ましい。
 ZnOは、適度な導入によりガラスの屈折率を高め、ガラスの熱的安定性を改善し、液相温度やガラス転移温度を低下させるために用いられる成分である。しかし、過剰にZnOを導入すると、低分散性が大きく損なわれるとともに、ガラスの化学的耐久性が悪化する。よって、本発明の光学ガラスでは、ZnOの含有量の上限は、15%であり、さらには13%、12%、11%、10%、9%、6%、5%の順に好ましい。また、ZnOの導入量が少なすぎると、液相温度やガラス転移温度が高くなる傾向にある。よって、ZnOの含有量の下限は、好ましくは0%であり、さらには0%超、1.0%、2.0%、2.5%の順に好ましい。
 なお、本発明の光学ガラスは、BaOの他に、二価成分としてMgO、CaO、ZnOおよびSrOから選択される1種以上を含有する。その際、ガラスの耐候性を向上させ、所望の光学特性を得る観点から、MgO、CaO、ZnO、SrOおよびBaOの合計含有量R1=[MgO+CaO+ZnO+SrO+BaO]の上限は、好ましくは80%であり、さらには70%、60%、55%、52%の順に好ましい。また、合計含有量R1の下限は、好ましくは25%であり、さらには30%、35%、40%、42%、44%の順に好ましい。
 本発明の光学ガラスでは、屈折率を高めつつ、ガラスの熱的安定性を向上する観点から、MgO、CaO、ZnOおよびSrOの合計含有量に対するBaOの含有量の割合:質量比α1[BaO/(MgO+CaO+ZnO+SrO)]を、2.1以下とする。また、質量比α1の好ましい上限は、2.0であり、さらには1.9、1.8、1.7、1.6、1.5、1.2の順に好ましい。また、ガラスの耐候性を向上させる観点から、質量比α1の下限は、好ましくは0.4であり、さらには0.5、0.6、0.7、0.8、0.9の順に好ましい。このような条件を満たすことで、BaOの含有量がそれ以外の二価成分の含有量に対して際立って過剰に導入されないため、BaOに起因する結晶の析出を抑えられる。したがって、このようにBaOとそれ以外の二価成分とをバランスよく配合することにより、屈折率を高める成分を増やし、網目構造を形成する成分を減らした場合であっても、ガラスの熱的安定性を向上できる。
 また、質量比α1が2.1以下を満たす本発明の光学ガラスは、後述する結晶化ピーク温度Tc(以下、単に「結晶化ピーク温度」、「Tc」または「温度Tc」という場合がある。)とガラス転移温度Tgとの温度差(Tc-Tg)が比較的大きく、Tc-Tgはいずれも145℃以上になる。この質量比α1を上記範囲内に設定することにより、結果的にTc-Tgが大きくなり、ガラスを再軟化する際に、温度Tcよりも低い温度で軟化させることができるため、ガラスが結晶化せず、ガラスの熱的安定性を向上できる。
 さらに、ガラスの熱的安定性を向上する観点から、MgOおよびSrOの合計含有量に対するBaOの含有量の割合:質量比[BaO/(MgO+SrO)]の上限は、好ましくは12であり、さらには10、9、8、7、6の順に好ましい。また、質量比[BaO/(MgO+SrO)]の下限は好ましくは0.2であり、さらには0.4、0.5、0.6、0.65、0.7の順に好ましい。
 また、ガラスの熱的安定性向上と所望の光学特性を得る観点から、MgOとCaOの合計含有量に対するSrOとBaOの合計含有量の割合:質量比[(SrO+BaO)/(MgO+CaO)]の上限は、好ましくは5であり、さらには4、3.5、3.2、3.0、2.8の順に好ましい。また、質量比[(SrO+BaO)/(MgO+CaO)]の下限は、好ましくは0.3であり、さらには0.7、1.0、1.2、1.4の順に好ましい。
 なお、MgO、CaO、ZnO、SrOおよびBaOからなる二価成分のうち、BaOはガラスの屈折率および耐候性を効果的に高めるが、過剰な導入によりガラスの熱的安定性が著しく損なわれる。一方、ZnOはガラスの熱的安定性を改善するものの、過剰な導入により低分散性が大きく損なわれる。そこで、ガラスの熱的安定性と所望の光学恒数を得る観点から、BaOの含有量に対するZnOの含有量の割合:質量比[ZnO/BaO]の上限は、好ましくは0.5であり、さらには0.4、0.35、0.3の順に好ましい。また、質量比[ZnO/BaO]の下限は、好ましくは0.05であり、さらには0.1、0.13の順に好ましい。
 Gd23、Y23、La23およびYb23は、いずれもガラスの耐候性の改善や高屈折率化に寄与する成分である。しかし、これらの成分を過剰に導入すると、ガラスの熱的安定性が悪化してしまうおそれがある。よって、本発明の光学ガラスでは、Gd23の含有量の上限は、好ましくは30%であり、さらには27%、24%、22%の順に好ましい。また、Gd23の含有量の下限は、好ましくは0%であり、さらには1%、2%、4%、5%の順に好ましい。Y23の含有量の上限は、好ましくは10%であり、さらには8%、7%、6%の順に好ましい。また、Y23の含有量の下限は、好ましくは0%であり、さらには0.5%、1.0%の順に好ましい。La23の含有量の上限は、好ましくは10%であり、さらには7%、5%、4%の順に好ましい。また、La23の含有量の下限は、好ましくは0%であり、より好ましくは0.05%である。Yb23の含有量の上限は、好ましくは7%であり、さらには5%、2%、1%の順に好ましい。また、Yb23の含有量の下限は、好ましくは0%であり、より好ましくは0.05%である。なお、Yb23は、近赤外域で吸収性を有するので、近赤外域の光線を利用する場合は導入しないことが好ましい。
 なお、Gd23、Y23、La23およびYb23といった希土類元素は、屈折率を効果的に高める観点からも適度な導入が好ましい。そのため、本発明の光学ガラスは、Gd23、Y23、La23およびYb23から選択されるいずれか1種以上を含有する。しかし、これらの成分を過剰に導入すると、ガラスの熱的安定性が悪化する傾向があるため、Gd23、Y23、La23およびYb23の合計含有量Re1=[Gd23+Y23+La23+Yb23]の上限は、好ましくは30%であり、さらには25%、23%、22%、21%の順に好ましい。また、合計含有量Re1の下限は、好ましくは4%であり、さらには5%、6%、8%、9%の順に好ましい。なお、単一の希土類元素を導入するよりも、2種以上の希土類元素を導入することで、ガラスの熱的安定性が改善されることがある。このため、本発明の光学ガラスにおいて、Gd23、Y23、La23およびYb23から選択されるいずれか2種以上の希土類元素を含有することが好ましい。
 また、本発明に係る光学ガラスは、上記質量比α1を所定範囲とすることによって得られるガラスの熱的安定性を確保しつつ、屈折率を効果的に高める観点から、上記希土類元素の合計含有量Re1に対するP25、B23およびAl23の合計含有量の割合:質量比β1[(P25+B23+Al23)/Re1]を4.80未満とする。質量比β1の上限は、好ましくは4.70であり、さらには4.60、4.50、4.30、4.10、4.00の順に好ましい。また、質量比β1の下限は、好ましくは1.00であり、さらには1.20、1.30、1.40の順に好ましい。
 本発明において、所望の光学特性を得るとともにガラスの熱的安定性を向上させる観点から、質量比α1と質量比β1とは密接した関係にある。以下にその説明をする。
 本発明に係る光学ガラスでは、ガラスの屈折率を高めることを優先的に考慮して、屈折率を効果的に上昇させる成分である希土類元素の合計含有量Re1を比較的多く導入している。一方、希土類元素の合計含有量Re1が過剰になると、上述のようにガラスの熱的安定性が悪化する傾向にある。したがって、希土類元素の合計含有量Re1の導入量に所定の制限があり、この制限を質量比β1により規定(質量比β1の上限が4.80未満)している。このように質量比β1を所定範囲に規定することにより、所望の光学特性(高屈折率)を得ることができるが、希土類元素の合計含有量Re1の増加に伴ってガラスの熱的安定性が悪化する傾向にある。
 一方、希土類元素の過剰な導入が熱的安定性を悪化させることから、本発明に係る光学ガラスでは、質量比α1を所定範囲内とすることで熱的安定性の改善を図っている。ただし、MgO、CaO、ZnOおよびSrOの合計含有量に対するBaOの導入量が多すぎると、熱的安定性が損なわれるので、本発明において、質量比α1の上限を規定(質量比α1が2.1以下)している。
 このように、質量比α1と質量比β1とが所定範囲内になるようにガラス組成を調整することにより、所望の光学特性を得るとともにガラスの熱的安定性を向上させることができる。
 SiO2は、低分散性を維持しつつ化学的耐久性を向上させるのに有効な成分である。しかし、その導入量が多すぎるとガラス転移温度や屈伏点を高くなると共に屈折率が低下する傾向にある。よって、本発明の光学ガラスでは、SiO2の含有量の上限は、好ましくは3%であり、より好ましくは2%、さらに好ましくは1.5%であり、一層好ましくは1%である。なお、SiO2は、P25、B23、Al23と共にネットワーク成分であるが、本発明の光学ガラスにおいてSiO2を必ずしも導入しなくてもよい。
 Li2Oは、ガラス転移温度および屈伏点を低下させ、さらに低分散化に有効な成分である。特に、ガラスの低分散化のために、P25、B23およびLi2Oを共存させることは非常に有効である。ただし、Li2Oを過剰に導入すると、ガラスの化学的耐久性(耐候性、耐アルカリ性等)が悪化し、屈折率も急激に低下する傾向にある。よって、本発明の光学ガラスでは、Li2Oの含有量の上限は、好ましくは7%であり、さらには、5%、4%、3%の順に好ましい。また、Li2Oの含有量の下限は、好ましくは0%であり、さらには、0.1%、0.5%、1.0%、1.3%、1.5%の順に好ましい。
 Na2OおよびK2Oは、いずれもガラスの耐失透性を向上させ、ガラス転移温度、屈伏点、液相温度を低下させ、ガラスの熔融性を改善するために導入される任意成分である。適当量のNa2OおよびK2Oの導入はガラスの安定性を改善し、液相温度や転移温度の低下につながるが、過剰に導入すると、化学的耐久性が著しく悪化し、屈折率も低下する傾向にある。よって、本発明の光学ガラスでは、Na2Oの含有量の上限は、好ましくは8%であり、さらには、5%、3%、1%の順に好ましい。また、K2Oの含有量の上限は、好ましくは8%であり、さらには、5%、3%、2%の順に好ましい。なお、Na2OおよびK2Oを実質的に導入しないことが特に好ましい。
 Li2O、Na2OおよびK2Oの合計含有量が、少なすぎると、ガラス転移温度や屈伏点が上昇し、また熔融性が悪化する。したがって、本発明の光学ガラスでは、Li2O、Na2OおよびK2Oの合計含有量R21=[Li2O+Na2O+K2O]の上限は、好ましくは15%であり、さらには、10%、7%、5%の順に好ましい。また、合計含有量R21の下限は、好ましくは0%であり、さらには、0.1%、0.5%、1.0%、1.3%、1.5%の順に好ましい。
 また、本発明の光学ガラスにおいて、アルカリ金属酸化物であるCs2Oの導入は必ずしも必要ではなく、原料コストの面から不利なのでむしろ不要である。また、Cs2Oは屈折率を下げ、耐候性を著しく損なうため、Cs2Oを導入しないことが好ましい。
 なお、ガラスの熔融性と熱的安定性を両立させる点から、アルカリ金属酸化物の合計含有量R21に対するP25含有量の割合:質量比[P25/R21]の上限は、40とすることが好ましく、さらには、30、25、20の順に好ましい。また、質量比[P25/R21]の下限は、2とすることが好ましく、さらには3、5、7の順に好ましい。
 また、本発明の光学ガラスは、環境への負荷を低減する観点から、Pb、As、Cd、U、Th、Tlを実質的に含有しないことが好ましい。
 また、本発明の光学ガラスにおいてはハロゲンすなわちF、Cl、Br、Iを任意成分として含有することができる。その含有量は陰イオンの質量分率(例えば、[F/(O+F)])で表すことができる。Fの含有量の上限は8%とすることが好ましく、さらには、5%、3%、2%、1%、0.5%、0.1%の順に好ましい。また、Cl、Br、Iの含有量の上限は、それぞれ5%とすることが好ましく、さらには、3%、2%、1%、0.5%、0.1%の順に好ましい。なお、ハロゲンをガラスに含む場合、ガラスの揮発を抑えるためガラス中のB23の上限を8%にすることが好ましく、さらには、5%、3%、1%の順に好ましく、最も好ましくは実質的に含有しないことである。ただし、ハロゲンを1%以下の少量添加するときはこの限りではない。特に、ガラスからの成分の揮発を抑止してガラスの均質性を向上させるためには、ハロゲンを実質的に含有しないことが好ましい。
 また、本発明の光学ガラスにおいてはWO3、TiO2、Bi23およびNb25からなる易還元成分を任意成分として含有することができる。これらの易還元成分は、屈折率を高くするために有効な成分である。しかしながら、W、Ti、Bi、Nbはガラスのアッベ数(νd)を著しく減少させてしまう。そこで、上記易還元成分の含有量の上限は、4%とすることが好ましく、さらには3%、2%、1%の順に好ましい。なお、上記易還元成分を実質的に導入しないことが特に好ましい。
 上記のような本発明の光学ガラスは、基本的にはP25、B23、SiO2、Al23、Li2O、Na2O、K2O、MgO、CaO、ZnO、SrO、BaO、Gd23、Y23、La23およびYb23から選択される成分によって構成されることが好ましい。これらの成分の合計含有量[P25+B23+SiO2+Al23+Li2O+Na2O+K2O+MgO+CaO+ZnO+SrO+BaO+Gd23+Y23+La23+Yb23]は、95%以上とすることが好ましく、さらに好ましくは98%以上、より好ましくは99%以上、より一層好ましくは100%である。
 なお、本発明の光学ガラスは基本的に上記成分により構成されることが好ましいが、本発明の作用効果を妨げない範囲において、その他の成分を導入することも可能である。また、本発明において、不可避的不純物の含有を排除するものではない。
 なお、「実質的に含有しない」とは、含有量が0.2質量%未満であることを目安にすることができる。実質的に含有しない成分や添加剤は、ガラスに含まれないことが好ましいから、その含有量が0.1質量%未満であることが好ましく、0.08質量%未満であることがより好ましく、0.05質量%未満であることがさらに好ましく、0.01質量%未満であることが一層好ましく、0.005質量%未満であることがより一層好ましい。
 また、本発明の光学ガラスが上記成分により構成されて合計量を100質量%としたとき、Sb23、SnO2、CeO2などの清澄剤を外割で4質量%以内導入してもよい。Sb23の含有量の上限は、好ましくは4質量%であり、さらには3質量%、2質量%、1質量%、0.5質量%、0.1質量%の順に好ましい。また、Sb23の含有量の下限は、好ましくは0%であり、さらには、0.01質量%、0.02質量%、0.04質量%の順に好ましい。また、SnO2、CeO2は、ガラスの透過率を悪化させるおそれがあるため、1質量%以下の導入が好ましく、実質的に導入しないことが特に好ましい。
<光学ガラスの光学特性(屈折率、アッベ数)>
 本発明の光学ガラスの屈折率ndの上限は、1.700であり、さらには、1.690、1.685、1.680、1.670、1.660の順に好ましい。また、屈折率ndの下限は、1.620であり、さらには、1.625、1.630、1.635、1.640の順に好ましい。
 本発明の光学ガラスのアッベ数νdの上限は、65であり、さらには、62、61の順に好ましい。また、アッベ数νdの下限は、53であり、さらには、54、55、56、57、58、59の順に好ましい。
 このような高屈折率・低分散の光学ガラスからなる光学素子を用い、光学系を構成することによって、光学系のコンパクト化、高機能化、色収差の改善が可能となる。
<光学ガラスの熱的安定性>
 ガラスの熱的安定性には、ガラス融液を成形する際の耐失透性と、一度固化したガラスを再加熱したときの耐失透性とがある。ガラス融液を成形する際の耐失透性は液相温度を目安にし、液相温度が低いほど優れた耐失透性を有している。液相温度が高いガラスでは、失透を防止するために、ガラス融液の温度を高温に保持しなければならず、これにより、ガラス成分の揮発による品質の悪化や生産性の低下を招いてしまうことがある。そのため、本発明の光学ガラスは、液相温度が1350℃以下であることが好ましく、1300℃以下であることがより好ましく、1250℃以下であることがさらに好ましく、1200℃以下であることが一層好ましく、1100℃以下であることがより一層好ましい。
 一方、一度固化したガラスを再加熱したときの耐失透性については、結晶化ピーク温度Tcとガラス転移温度Tgとの温度差(Tc-Tg)が大きいものほど耐失透性が優れている。例えば、リヒートプレス成形法では、光学ガラス素材を温度Tgよりも高い温度に加熱して、適度な粘度(104~106dPa・s程度)に軟化させる必要がある。ところが、加熱したガラス素材の温度が温度Tcに達すると内部結晶が生じるので温度差(Tc-Tg)が小さいガラスはリヒートプレス成形を行う上で不利である。これに対して、温度差(Tc-Tg)が大きいガラスは、温度Tcよりも低い温度で軟化しやすくなるので、ガラスが失透しない状態でリヒートプレス成形を行うことができる。
 なお、一般に、ガラスの「軟化点(Softening Point)」は、ガラスが自重で顕著に変形し始める温度であって、約107.6dPa・sの粘度に相当する温度とされている。一方、リヒートプレス成形法において「ガラスが軟化する温度Tp」(以下、単に「ガラスが軟化する温度」、「Tp」または「温度Tp」という場合がある。)は、「軟化点」よりも高い温度であって、ガラスの粘度が104~106dPa・sの粘度に相当する温度である。なお、104~106dPa・sの粘度に相当する温度は、粘性曲線によって一義的に求めることができる。
 ガラスの熱的安定性の指標となるガラス転移温度Tg、結晶化ピーク温度Tcおよびガラス転移に伴う吸熱ピーク温度Tk(以下、単に「吸熱ピーク温度」、「Tk」または「温度Tk」という場合がある。)、結晶化開始温度Tx(以下、単に「結晶化開始温度」、「Tx」または「温度Tx」という場合がある。)について、図1を参照して説明する。
 図1は、光学ガラス(リン酸塩光学ガラス)の示差走査熱量曲線を示す模式図である。同図における横軸は温度、縦軸はガラスの発熱吸熱に対応する示差熱量を示す。ガラス転移温度Tg、ガラス転移に伴う吸熱ピーク温度Tk、結晶化開始温度Txおよび結晶化ピーク温度Tcは、いずれも示差走査熱量計[DSC(Differential Scanning Calorimetry)]で測定されたものである。
 本発明でいうガラス転移に伴う吸熱ピーク温度Tkとは、Tg~(Tg+100℃)程度付近に生じる吸熱反応のピークの温度を意味する。結晶化ピーク温度Tcとは、ガラスを粉末化して昇温速度10℃/分で室温から所定温度まで示差走査熱量測定を行ったときに、最も低温の結晶化発熱ピークを示す温度を意味する。また、結晶化開始温度Txとは、結晶化ピークの低温側の立ち上がり温度を意味する。
 本発明の光学ガラスのガラス転移温度Tgは、次のような範囲内とすることが好ましい。すなわち、Tgの上限は630℃が好ましく、さらには600℃、580℃、560℃、540℃の順に好ましい。また、Tgの下限は特に限定されないが、400℃が好ましく、さらには440℃、460℃、480℃、490℃の順に好ましい。
 本発明の光学ガラスの結晶化ピーク温度Tcは、次のような範囲内とすることが好ましい。すなわち、Tcの下限は640℃が好ましく、さらには650℃、660℃、670℃、675℃の順に好ましい。また、Tcの上限は820℃が好ましく、さらには810℃、800℃、790℃、785℃、780℃の順に好ましい。
 通常、プレス成形法では、ガラス素材を加熱して、プレス成形に適した粘度となるように調整する。特にリヒートプレス成形法は、精密プレス成形法よりも短時間でガラスの変形を行うため、良好なプレス成形が行えるように比較的高い温度で再加熱し、ガラスの粘度を十分に下げるのが一般的である。
 短時間のプレス成形の場合、加熱温度が不十分でガラスの粘度が高いと、プレス時の圧力で成形品に割れが生じ、また変形量の不足による形状不良が発生することがあり、良品率が低下するおそれがある。したがって、良好なプレス成形を行うために、特にリヒートプレス成形法では、ガラス素材を十分に加熱し、適度な温度(ガラス粘度が104~106dPa・sに相当する温度)に調整する必要がある。
 一方、ガラスを加熱する際に、ガラスの結晶化ピーク温度Tcよりも高い温度まで加熱してしまうと、プレス成形後のガラス成形品に結晶(内部結晶や表面結晶)が発生し、不良品となるおそれがある。そのため、ガラス素材を加熱するに際しては、プレス成形に適した粘度となる温度であって、温度Tcよりも低い温度で行う必要がある。
 しかし、リヒートプレス成形法において結晶化しやすいガラスは、TgとTcとの温度差が小さい場合が多く、プレス成形に適した粘度となる温度まで加熱すると、温度Tcを超えてしまう場合がある。
 したがって、温度Tcと温度Tgとの温度差(Tc-Tg)が大きいほどガラスの結晶化は発生しにくい。本発明の光学ガラスは、後述する実施例に示すように、Tc-Tgがいずれも145℃以上あり、再加熱による内部結晶が発生せず、熱的安定性に優れている。すなわち、本発明の光学ガラスは、温度Tcが温度Tgよりも十分に高い温度にあるため、リヒートプレス成形時において、結晶化ピーク温度Tcよりも低い温度でガラス素材が軟化し、結晶が発生しない。
 別の言い方をすれば、本発明の光学ガラスの結晶化ピーク温度Tcは、ガラスが軟化する温度Tpよりも十分に高い。本発明の光学ガラスは、後述する表1~表3に示すように、いずれの試料(試料1~37)も内部結晶が生じることはなかった。したがって、本発明の光学ガラスを用いれば、過酷な再加熱条件下にあるリヒートプレス成形を良好に行うことが可能となる。
 さらに、温度差(Tc-Tg)および温度差(Tc-Tp)の関係をみると、温度Tgよりも温度Tpの方が高いので、温度差(Tc-Tg)の方が温度差(Tc-Tp)よりも大きく、これらの温度差はいずれも大きいほど好ましい。本発明の光学ガラスは、上述のガラス組成としたことで、温度Tcが高くなり、温度差(Tc-Tg)が大きい。したがって、結果的に温度差(Tc-Tp)も大きくなり、熱的安定性を向上させることができる。
 なお、本発明の光学ガラスは、温度Tcと温度Tgとの温度差(Tc-Tg)は、145℃以上であることが好ましく、より好ましくは150℃以上であり、さらに好ましくは160℃以上、特に好ましくは180℃以上、一層好ましくは200℃以上である。
 また、温度Tcと温度Tpとの温度差(Tc-Tp)は、1℃以上であることが好ましく、さらに温度差(Tc-Tp)は、5℃以上が好ましく、さらに好ましくは10℃以上であり、より好ましくは20℃以上であり、一層好ましくは30℃以上であり、さらに一層好ましくは50℃以上である。
 本発明の光学ガラスは、ガラス素材をTgよりも高温に加熱して、適度な粘度(104~106dPa・s程度)にガラス素材を軟化させるようなリヒートプレス成形法において、結晶化ピーク温度Tcよりも低い温度で十分に軟化するので、内部結晶の発生を効果的に防止できる。また、本発明の光学ガラスは、熱的安定性に優れているため、精密な温度制御が困難な開放された大気中におけるリヒートプレス成形法に適用することができる。
 なお、示差走査熱量計(DSC)から得られるガラスの熱的安定性は、結晶化のピーク強度Δによっても評価することができる。具体的には、結晶化の発熱ピークが小さいほど、ガラスが結晶に変化する傾向が小さいことから、ガラスの熱的安定性が高くなり、本発明のガラスにとって好ましい。結晶化のピーク強度Δは、装置感度を考慮して、このTkとTgの熱量差の絶対値をAとし、TxとTcの熱量差の絶対値をBとしたとき、Aを基準としたBの倍率、すなわちピーク強度Δ=B/A(倍)といった相対値で表すことができる。なお、結晶化ピークの高さは、ピーク温度における熱量と示差走査熱量計のベースラインとの差分からも計算できるが、この場合、ベースラインの引き方に依存するため、本願実施形態では、前者の方法により結晶化のピーク強度Δを算出した。
 熱的安定性が高く結晶化が起こりにくいガラスほど、ガラスが結晶に転移する際の発熱が小さいためピーク強度Δは小さくなる。したがってピーク強度Δは、好ましくは10以下であり、より好ましくは8以下、さらに好ましくは6以下、一層好ましくは4以下、より一層好ましくは2以下、さらに一層好ましくは1以下である。最も好ましいガラスでは、結晶化ピークが観測されずピーク強度が定義できなくなる。なお、ピーク強度Δが比較的大きい場合であっても、温度Tcと温度Tgとの温度差[Tc-Tg]が145℃以上あれば、ガラスをより高温にして粘性を低下させても結晶化が起こらないため、リヒートプレス成形における結晶化が起こりにくくなる。
 また、本発明の光学ガラスは耐候性にも優れている。ガラスの耐候性は、ヘイズ値(haze)を指標に表すことができる。ヘイズ値とは、ガラスを高温高湿度の環境下で所定時間保持したときのガラスのくもり度合いである。具体的には、ヘイズ値は、両面光学研磨したガラス平板の研磨面に対し垂直に白色光を透過させたときの全透過光強度に対する散乱光強度の比、つまり[散乱光強度/透過光強度]を%表示したものである。本発明の光学ガラスは、好ましくは10以下のヘイズ値、より好ましくは5以下のヘイズ値、さらに好ましくは2以下のヘイズ値、一層好ましくはヘイズ値が1未満である。ヘイズ値の大きいガラスは、ガラスに付着する水滴や水蒸気および使用環境における種々の化学成分によって、ガラスが侵蝕されやすく、またガラス表面に反応物が生成しやすい、いわゆる化学的耐久性が低いガラスである。逆に、本発明の光学ガラスのようにヘイズ値の小さいガラスは、化学的耐久性(耐候性)が高いガラスである。
(第2の実施形態)
 本実施形態では、本発明の第2の観点として、カチオン%表示での各成分の含有比率に基づいて、本発明に係る光学ガラスを説明する。第2の実施形態において、各含有量は特記しない限り、カチオン%にて表示する。
 本発明においてカチオン%とは、ガラスに含有される全ての陽イオンに対する個別の陽イオンの割合をモル百分率で示したものである。また、本発明の光学ガラスは酸化物ガラスであるため、陰イオンは主として酸素(O2-)であるが、酸素以外の陰イオン(例えば、ハロゲン)に一部を置換することができる。
光学ガラス
 第2の実施形態の光学ガラスは、P5+、B3+およびAl3+の合計含有量[P5++B3++Al3+]が60%以下の酸化物ガラスであって、Ba2+と、Mg2+、Ca2+、Zn2+およびSr2+から選択されるいずれか1種以上と、Gd3+、Y3+、La3+およびYb3+から選択されるいずれか1種以上と、を含み、Mg2+、Ca2+、Zn2+およびSr2+の合計含有量に対するBa2+の含有量のカチオン比α2[Ba2+/(Mg2++Ca2++Zn2++Sr2+)]が0.80以下であり、Gd3+、Y3+、La3+およびYb3+の合計含有量に対するP5+、B3+およびAl3+の合計含有量のカチオン比β2[(P5++B3++Al3+)/(Gd3++Y3++La3++Yb3+)]が14.0未満であり、屈折率ndが1.620~1.700、アッベ数νdが53~65であることを特徴とする。
 一般に、ガラスを構成する成分は、ガラスの網目構造を形成するネットワーク成分とガラスの特性を制御する修飾成分とに大別することができる。このうちネットワーク成分は、主にガラスの安定性(例えば、構造上の安定性や熱的安定性、ガラスの熔融性)に寄与する。そのため、安定なガラスを得る観点からは、ガラス中におけるネットワーク成分の割合を、比較的多くすることが望ましい。
 一方、修飾成分は、主にガラスの機能性(例えば、屈折率・分散性等の光学特性や耐候性等の化学的耐久性)に寄与する。そのため、ガラスに求める機能や特性に応じて、修飾成分の種類やその添加量を適宜選択、調節して加えることが望ましい。しかし、ガラス中における修飾成分の割合が増加すると、結果的にネットワーク成分の割合が低下するため、ガラスとしての安定性が低下するおそれがある。また、修飾成分によっては、特性向上の観点からは有効であっても、少量の添加でガラスの安定性を著しく低下させるものもある。
 このように、ガラスの安定性と機能性は、ネットワーク成分と修飾成分とのバランスにより大きく左右される。
 従来、リン酸塩光学ガラスは、高屈折率と低分散性を示すことから光学レンズ等の光学素子としての利用が期待されていたが、耐候性が低く、プレス成形用ガラスとして用いることができなかった。このような不具合を解決するため、特許文献1に記載の参考例1では、修飾成分としてBa2+を添加し、ガラス中におけるBa2+の割合を多くすることにより、高屈折率(屈折率ndが1.620以上)を確保しつつ耐候性を向上していた。
 しかし、このような光学ガラスは、耐候性が向上し、精密プレス成形用ガラスとして好適であるものの、多量に導入される修飾成分(例えば、Ba2+)に起因する結晶化が生じやすくなり、ガラスの熱的安定性が悪化する問題があった。そのため、一度良好に固化されたガラスであっても、再度過酷な条件下で軟化させると、冷却後のガラスに結晶が生じることがあり、このようなガラスはリヒートプレス成形法のような光学素子の作製法には不適であった。
 特に、光学ガラス中におけるネットワーク成分(例えば、P5+等)の割合が低下し、修飾成分(例えば、耐候性を高める成分や屈折率を高める成分等)の割合が増えると、ガラスの熱的安定性は悪化する傾向にある。このため、リヒートプレス成形における再加熱によるガラスの結晶化が発生し、耐候性や熱的安定性に優れた高屈折率の光学ガラスを得ることは困難であった。このような問題は、比較的高い屈折率(屈折率ndが1.620以上、さらには1.630以上)を得ようとすると顕著に現れる。
 そこで、本発明者らは、上記のような問題を解決するべく鋭意研究を重ねた結果、ガラス中における修飾成分の割合が増え、ネットワーク成分の割合が低下した場合(P5+、B3+およびAl3+の合計含有量[P5++B3++Al3+]が60%以下)であっても、Ba2+と、その他の二価成分とをバランスよく配合することで、ガラスの熱的安定性を向上できることを見出し、本発明を完成させるに至った。
 すなわち、本発明に係る光学ガラスは、Ba2+を含むと共に、Mg2+、Ca2+、Zn2+およびSr2+から選択されるいずれか1種以上を含み、Mg2+、Ca2+、Zn2+およびSr2+の合計含有量に対するBa2+の含有量のカチオン比α2[Ba2+/(Mg2++Ca2++Zn2++Sr2+)]を、0.80以下とすることが一つの特徴である。
 カチオン比α2を上記範囲とすることにより、特定の修飾成分(Ba2+)が他の修飾成分に対して過剰に導入されることを抑えられるので、特定の修飾成分に起因する結晶の発生を防止できる。したがって、ガラスの熱的安定性を確保できる。
 このような本発明に係る光学ガラスによれば、精密な温度制御が困難な大気雰囲気下で行われるリヒートプレス成形において、ガラスの内部結晶の発生を効果的に防止できる。
 また、本発明に係る光学ガラスは、上記カチオン比α2を所定範囲とすることによって得られる熱的安定性を維持しつつ、屈折率(nd)を効果的に高めるために、Gd3+、Y3+、La3+およびYb3+から選択されるいずれか1種以上の希土類元素を含有し、かつ、Gd3+、Y3+、La3+およびYb3+の合計含有量に対するP5+、B3+およびAl3+の合計含有量のカチオン比β2[(P5++B3++Al3+)/(Gd3++Y3++La3++Yb3+)]を、14.0未満とすることが一つの特徴である。
 上記希土類元素(Gd3+、Y3+、La3+およびYb3+)の合計含有量に対するネットワーク成分(P5+、B3+およびAl3+)の合計含有量の比率(カチオン比β2)を上記範囲とすることにより、上記希土類元素の合計含有量が相対的に増加するためガラスの屈折率を高く設定することができる。
 このような本発明に係る光学ガラスは、特に、リヒートプレス成形法を用いて高屈折率の光学素子を作製する場合に好適である。
 なお、本発明における光学ガラスとは、複数の金属酸化物を含むガラス組成物であって、形態(塊り状、板状、球状など)や用途(光学素子用素材、光学素子など)を問わず、総称して光学ガラスという。
<ガラス組成>
 次に、第2の実施形態に係る光学ガラスのガラス組成について詳しく説明する。ガラスの構成成分の含有率は、例えば、ICP-AES(Inductively Coupled Plasma - Atomic Emission Spectrometry)などの方法により測定することができる。
 なお、ICP-AES分析に基づいて各元素別に定量分析を行うことにより求められた分析値(例えば、原子%表記)は、分析値の±5%程度の測定誤差を含んでいることがある。上記分析値に基づいて、酸化物表記の値に換算することができ、またガラス中の陽イオン成分をカチオン%表記の値に換算することができるが、その換算方法は後述する。
 また、第2の実施形態において、構成成分の含有量が0%または含有しないもしくは導入しないとは、この構成成分を実質的に含まないことを意味し、この構成成分の含有量が不純物レベル程度以下であることを指すものとする。
 P5+は、ガラスの網目構造を形成するネットワーク成分であり、ガラスに製造可能な熱的安定性を付与する重要な成分である。しかし、P5+が過剰に含まれると、ガラス転移温度や屈伏点、ガラスの熔融温度が上昇するとともに、屈折率や耐候性が低下する傾向にある。一方、P5+の含有量が少なすぎると、ガラスのアッベ数(νd)が減少して低分散性が損なわれると共に、ガラスの失透傾向が強くなりガラスが不安定になる傾向にある。よって、本発明の光学ガラスでは、P5+の含有量の上限は、好ましくは40%であり、さらには37%、35%、34%、33%の順に好ましい。また、P5+の含有量の下限は、好ましくは10%であり、さらには12%、13%、14%、15%の順に好ましい。なお、本発明において、P5+は必須成分として含まれることが好ましい。
 B3+は、ガラスの熔融性の向上やガラスの均質化に非常に有効な成分であると同時に、ガラスの耐失透性や耐候性の向上および屈折率を高め、低分散化を促す上で有効な成分である。しかし、B3+を過剰に導入すると、ガラス転移温度や屈伏点の上昇、耐失透性の悪化、低分散性の損失を生じるおそれがある。よって、本発明の光学ガラスでは、B3+の含有量の上限は、好ましくは35%であり、さらには32%、30%、28%、27%、26%の順に好ましい。また、B3+の導入量が少なすぎるとガラスの熔解性や耐失透性が低下する。よって、本発明の光学ガラスでは、B3+の含有量の下限は、好ましくは0.1%であり、さらには1.0%、2.0%、3.0%、5.0%、7.0の順に好ましい。なお、本発明の光学ガラスにおいてB3+は、P5+と共にガラスの網目構造を形成するため、ガラスの安定性の観点から、必須成分として含まれることが好ましい。
 Al3+は、ガラスの網目構造を形成するネットワーク成分であり、ガラスの耐候性を向上させるために有効な成分として用いられる。しかし、その導入量が過剰であると、ガラス転移温度や屈伏点が高くなり、ガラスの安定性や熔融性が悪化し、屈折率も低下してしまうおそれがある。よって、本発明の光学ガラスでは、Al3+の含有量の上限は、好ましくは10%であり、さらには8%、7%、5%、4%の順に好ましい。また、Al3+の含有量の下限は、好ましくは0%であり、さらには0.1%、0.5%、1.0%の順に好ましい。
 なお、P5+、B3+およびAl3+の合計含有量[P5++B3++Al3+]が60%を超えると、屈折率の低下やガラスの熔融温度の上昇、さらにガラスの揮発による品質悪化を生じるおそれがある。一方、これらの成分の合計含有量が少なすぎると、耐失透性が悪化しガラス化が困難になるほか、低分散性が損なわれるおそれがある。本発明の光学ガラスでは、合計含有量[P5++B3++Al3+]の上限は、60%であり、さらには55%、52%、50%、48%、47.5%の順に好ましい。また、合計含有量[P5++B3++Al3+]の下限は、好ましくは27%であり、さらには32%、35%、38%、40%、41%の順に好ましい。
 また、本発明の光学ガラスでは、ガラスに低分散性を付与することと、熱的安定性を高めることとを両立する観点から、B3+の含有量に対するP5+の含有量の割合:カチオン比[P5+/B3+]の上限は、好ましくは12であり、さらには10、8、6、5、4の順に好ましい。また、カチオン比[P5+/B3+]の下限は、好ましくは0.2であり、さらには0.3、0.4、0.5、0.6の順に好ましい。このように本発明に係る光学ガラスにおいてガラスの網目構造の形成に支配的に作用するP5+とB3+の割合をバランスさせることにより、低分散化を達成しつつ優れた熱的安定性を得ることができる。
 Ba2+は、適量の導入によりガラスの屈折率を高め、耐候性を向上させるために非常に有効な必須成分である。しかし、その導入量が多すぎるとガラスの熱的安定性が著しく損なわれ、またガラス転移温度が上昇し、かつ低分散性を損なう傾向にある。一方、その導入量が少なすぎると、所望の屈折率が得られず、さらに耐候性が悪化する。よって、本発明の光学ガラスでは、Ba2+は、必須成分であり、その含有量の上限は、好ましくは25%であり、さらには22%、20%、18%、17%、16%、15%の順に好ましい。また、Ba2+の含有量の下限は、好ましくは5%であり、さらには6%、8%、9%、10%の順に好ましい。
 また、ガラスの熱的安定性および耐候性を高める観点から、Ba2+とP5+の合計含有量[Ba2++P5+]の上限は、好ましくは60%であり、さらには55%、53%、51%、50%、48%の順に好ましい。また、合計含有量[Ba2++P5+]の下限は、好ましくは20%であり、さらには22%、25%、27%、29%、30%の順に好ましい。
 さらに、ガラスを低分散化し、かつガラスの熱的安定性を高める観点から、B3+の含有量に対するBa2+の含有量の割合:カチオン比[Ba2+/B3+]の上限は、好ましくは10であり、さらには7、5、3、2、1.7、1.6の順に好ましい。また、カチオン比[Ba2+/B3+]の下限は、好ましくは0.1であり、さらには0.2、0.3、0.4、0.5の順に好ましい。
 Mg2+は、ガラスの高い耐候性と低分散性を両立させるために導入される成分ある。少量のMg2+の導入により、ガラス転移温度や屈伏点または液相温度を下げる効果がある。しかし、多量に導入すると、ガラスの熱的安定性が著しく悪化し、液相温度が逆に高くなる。よって、本発明の光学ガラスでは、Mg2+の含有量の上限は、好ましくは25%であり、さらには22%、20%、18%、16%、15%の順に好ましい。また、Mg2+の含有量の下限は、好ましくは0%であり、さらには1%、2%、5%、7%、8%の順に好ましい。
 Ca2+は、ガラスの低分散化を促すと共に、ガラスの熱的安定性を改善し、液相温度を低下させるために導入される成分である。しかし、過剰にCa2+を導入すると、ガラスの化学的耐久性が悪化するだけでなく、ガラスの熱的安定性が却って低下し、屈折率も低下してしまうおそれがある。よって、本発明の光学ガラスでは、Ca2+の含有量の上限は、好ましくは22%であり、さらには20%、17%、15%、13%、12%の順に好ましい。また、Ca2+の含有量の下限は、好ましくは0%あり、さらには1%、2%、5%、7%、8%の順に好ましい。
 なお、ガラスの低分散化と熱的安定性、および耐候性を両立する観点から、本発明の光学ガラスにおけるMg2+とCa2+の合計含有量[Mg2++Ca2+]の上限は、好ましくは40%であり、さらには35%、32%、30%、27%の順に好ましい。また、合計含有量[Mg2++Ca2+]の下限は、好ましくは5%であり、さらには10%、12%、14%、15%の順に好ましい。
 Sr2+は、ガラスの低分散性を損なわずにガラスの屈折率を高める有効な成分である。また、ガラスの耐候性を高める成分としても有効である。しかし、過剰にSr2+を導入すると、液相温度が上昇してガラスの熱的安定性が悪化する傾向にある。よって、本発明の光学ガラスでは、Sr2+の含有量の上限は、好ましくは15%であり、さらには10%、7%、5%、4%の順に好ましい。また、Sr2+の含有量の下限は、好ましくは0%であり、さらには0.1%、1.0%、1.5%、2.0%の順に好ましい。
 Zn2+は、適度な導入によりガラスの屈折率を高め、ガラスの熱的安定性を改善し、液相温度やガラス転移温度を低下させるために用いられる成分である。しかし、過剰にZn2+を導入すると、低分散性が大きく損なわれるとともに、ガラスの化学的耐久性が悪化する。よって、本発明の光学ガラスでは、Zn2+の含有量の上限は、好ましくは15%であり、さらには14%、12%、10%、9%の順に好ましい。また、Zn2+の導入量が少なすぎると、液相温度やガラス転移温度が高くなる傾向にある。よって、Zn2+の含有量の下限は、好ましくは0%であり、さらには1.0%、2.0%、2.5%、3.0%の順に好ましい。
 なお、本発明の光学ガラスは、Ba2+の他に、二価成分としてMg2+、Ca2+、Zn2+およびSr2+から選択される1種以上を含有する。その際、ガラスの耐候性を向上させ、所望の光学特性を得る観点から、Mg2+、Ca2+、Zn2+、Sr2+およびBa2+の合計含有量R2=[Mg2++Ca2++Zn2++Sr2++Ba2+]の上限は、好ましくは53%であり、さらには50%、47%、45%、44%、43%、42%の順に好ましい。また、合計含有量R2の下限は、好ましくは26%であり、さらには30%、33%、35%、36%、38%の順に好ましい。
 本発明の光学ガラスでは、屈折率を高めつつ、ガラスの熱的安定性を向上する観点から、Mg2+、Ca2+、Zn2+およびSr2+の合計含有量に対するBa2+の含有量の割合:カチオン比α2[Ba2+/(Mg2++Ca2++Zn2++Sr2+)]を、0.80以下とする。また、カチオン比α2の好ましい上限は0.75であり、さらには0.70、0.65、0.60、0.55、0.50の順に好ましい。また、ガラスの耐候性を向上させる観点から、カチオン比α2の下限は、好ましくは0.10であり、さらには0.20、0.25、0.30、0.35、0.40の順に好ましい。このような条件を満たすことで、Ba2+の含有量がそれ以外の二価成分の含有量に対して際立って過剰に導入されないため、Ba2+に起因する結晶の析出を抑えられる。したがって、このようにBa2+とそれ以外の二価成分とをバランスよく配合することにより、屈折率を高める成分を増やし、網目構造を形成する成分を減らした場合であっても、ガラスの熱的安定性を向上できる。
 また、カチオン比α2が0.80以下を満たす本発明の光学ガラスは、結晶化ピーク温度Tcとガラス転移温度Tgとの温度差(Tc-Tg)が比較的大きく、Tc-Tgはいずれも145℃以上になる。このカチオン比α2を上記範囲内に設定することにより、結果的にTc-Tgが大きくなり、ガラスを再軟化する際に、温度Tcよりも低い温度で軟化させることができるため、ガラスが結晶化せず、ガラスの熱的安定性を向上できる。
 さらに、ガラスの熱的安定性を向上する観点から、Mg2+およびSr2+の合計含有量に対するBa2+の含有量の割合:カチオン比[Ba2+/(Mg2++Sr2+)]の上限は、好ましくは2.5であり、さらには2.0、1.7、1.5、1.2、1.1、1.0の順に好ましい。また、カチオン比[Ba2+/(Mg2++Sr2+)]の下限は、好ましくは0.1であり、さらには0.2、0.3、0.4の順に好ましい。
 また、ガラスの熱的安定性向上と所望の光学特性を得る観点から、Mg2+とCa2+の合計含有量に対するSr2+とBa2+の合計含有量の割合:カチオン比[(Sr2++Ba2+)/(Mg2++Ca2+)]の上限は、好ましくは2.5であり、さらには2.0、1.7、1.5、1.2、1.1、1.0の順に好ましい。また、カチオン比[(Sr2++Ba2+)/(Mg2++Ca2+)]の下限は、好ましくは0.1であり、さらには0.2、0.3、0.4、0.5の順に好ましい。
 なお、Mg2+、Ca2+、Zn2+、Sr2+およびBa2+からなる二価成分のうち、Ba2+はガラスの屈折率および耐候性を効果的に高めるが、過剰な導入によりガラスの熱的安定性が著しく損なわれる。一方、Zn2+はガラスの熱的安定性を改善するものの、過剰な導入により低分散性が大きく損なわれる。そこで、ガラスの熱的安定性と所望の光学恒数を得る観点から、Ba2+の含有量に対するZn2+の含有量の割合:カチオン比[Zn2+/Ba2+]の上限は、好ましくは0.90であり、さらには0.80、0.75、0.70、0.65、0.60の順に好ましい。また、カチオン比[Zn2+/Ba2+]の下限は、好ましくは0.05であり、さらには0.10、0.15、0.20、0.25の順に好ましい。
 Gd3+、Y3+、La3+およびYb3+は、いずれもガラスの耐候性の改善や高屈折率化に寄与する成分である。しかし、これらの成分を過剰に導入すると、ガラスの熱的安定性が悪化してしまうおそれがある。よって、本発明の光学ガラスでは、Gd3+の含有量の上限は、好ましくは15%であり、さらには12%、10%、9%、8%、7%、6%の順に好ましい。また、Gd3+の含有量の下限は、好ましくは0%であり、さらには0.5%、1%、2%、3%の順に好ましい。Y3+の含有量の上限は、好ましくは10%であり、さらには、7%、5%、4%、3%の順に好ましい。また、Y3+の含有量の下限は、好ましくは0%であり、さらには0.5%、1.0%の順に好ましい。La3+の含有量の上限は、好ましくは10%であり、さらには7%、5%、4%、3%の順に好ましい。また、La3+の含有量の下限は、好ましくは0%であり、より好ましくは0.05%である。Yb3+の含有量の上限は、好ましくは5%であり、さらには4%、3%、2%、1.5%の順に好ましい。また、Yb3+の含有量の下限は、好ましくは0%であり、より好ましくは0.05%である。なお、Yb3+は、近赤外域で吸収性を有するので、近赤外域の光線を利用する場合は導入しないことが好ましい。
 なお、Gd3+、Y3+、La3+およびYb3+といった希土類元素は、屈折率を効果的に高める観点からも適度な導入が好ましい。そのため、本発明の光学ガラスは、Gd3+、Y3+、La3+およびYb3+から選択されるいずれか1種以上を含有する。しかし、これらの成分を過剰に導入すると、ガラスの熱的安定性が悪化する傾向がある。そこで、Gd3+、Y3+、La3+およびYb3+の合計含有量Re2=[Gd3++Y3++La3++Yb3+]の上限は、好ましくは20%であり、さらには15%、12%、10%、9%の順に好ましい。また、合計含有量Re2の下限は、好ましくは2.0%であり、さらには2.5%、3.0%、3.5%、4.0%の順に好ましい。なお、単一の希土類元素を導入するよりも、2種以上の希土類元素を導入することで、ガラスの熱的安定性が改善されることがある。このため、本発明の光学ガラスにおいて、Gd3+、Y3+、La3+およびYb3+から選択されるいずれか2種以上の希土類元素を含有することが好ましい。
 また、本発明に係る光学ガラスは、上記カチオン比α2を所定範囲とすることによって得られるガラスの熱的安定性を確保しつつ、屈折率を効果的に高める観点から、上記希土類元素の合計含有量Re2に対するP5+、B3+およびAl3+の合計含有量の割合:カチオン比β2[(P5++B3++Al3+)/Re2]を14.0未満とする。また、カチオン比β2の好ましい上限は、13.5であり、さらには13.0、12.5、12.0、11.5、11.0の順に好ましい。また、カチオン比β2の下限は、好ましくは2.0であり、さらには3.0、4.0、4.5、5.0、5.5の順に好ましい。
 本発明において、所望の光学特性を得るとともにガラスの熱的安定性を向上させる観点から、カチオン比α2とカチオン比β2とは密接した関係にある。以下にその説明をする。
 本発明に係る光学ガラスでは、ガラスの屈折率を高めることを優先的に考慮して、屈折率を効果的に上昇させる成分である希土類元素の合計含有量Re2を比較的多く導入している。一方、希土類元素の合計含有量Re2が過剰になると、上述のようにガラスの熱的安定性が悪化する傾向にある。したがって、希土類元素の合計含有量Re2の導入量に所定の制限があり、この制限をカチオン比β2により規定(カチオン比β2が14.0未満)している。このようにカチオン比β2を所定範囲に規定することにより、所望の光学特性(高屈折率)を得ることができるが、希土類元素の合計含有量Re2の増加に伴ってガラスの熱的安定性が悪化する傾向にある。
 一方、希土類元素の過剰な導入が熱的安定性を悪化させることから、本発明に係る光学ガラスでは、カチオン比α2を所定範囲内とすることで熱的安定性の改善を図っている。ただし、Mg2+、Ca2+、Zn2+およびSr2+の合計含有量に対するBa2+の導入量が多すぎると、熱的安定性が損なわれるので、本発明において、カチオン比α2の上限を規定(カチオン比α2が0.80以下)している。
 このように、カチオン比α2とカチオン比β2とが所定範囲内になるようにガラス組成を調整することにより、所望の光学特性を得るとともにガラスの熱的安定性を向上させることができる。
 Si4+は、低分散性を維持しつつ化学的耐久性を向上させるのに有効な成分である。しかし、その導入量が多すぎるとガラス転移温度や屈伏点を高くなると共に屈折率が低下する傾向にある。よって、本発明の光学ガラスでは、Si4+の含有量の上限は、好ましくは3%であり、さらには2%、1.5%、1.0%の順に好ましい。なお、Si4+は、P5+、B3+、Al3+と共にネットワーク成分であるが、本発明の光学ガラスにおいてSi4+を必ずしも導入しなくてもよい。
 Li+は、ガラス転移温度および屈伏点を低下させ、さらに低分散化に有効な成分である。特に、ガラスの低分散化のために、P5+、B3+およびLi+を共存させることは非常に有効である。ただし、Li+を過剰に導入すると、ガラスの化学的耐久性(耐候性、耐アルカリ性等)が悪化し、屈折率も急激に低下する傾向にある。よって、本発明の光学ガラスでは、Li+の含有量の上限は、好ましくは23%であり、さらには、20%、17%、15%、14%の順に好ましい。また、Li+の含有量の下限は、好ましくは0%であり、さらには、1%、2%、5%、7%、8%の順に好ましい。
 Na+およびK+は、いずれもガラスの耐失透性を向上させ、ガラス転移温度、屈伏点、液相温度を低下させ、ガラスの熔融性を改善するために導入される任意成分である。適当量のNa+およびK+の導入はガラスの安定性を改善し、液相温度や転移温度の低下につながるが、過剰に導入すると、化学的耐久性が著しく悪化し、屈折率も低下する傾向にある。よって、本発明の光学ガラスでは、Na+およびK+の含有量の上限は、それぞれ、好ましくは10%であり、さらには、5%、3%、2%の順に好ましい。なお、Na+およびK+を実質的に導入しないことが特に好ましい。
 Li+、Na+およびK+の合計含有量が、少なすぎると、ガラス転移温度や屈伏点が上昇し、また熔融性が悪化する。したがって、本発明の光学ガラスでは、Li+、Na+およびK+の合計含有量R22=[Li++Na++K+]の上限は、好ましくは23%であり、さらには、20%、17%、15%、14%の順に好ましい。また、合計含有量R22の下限は、好ましくは0%であり、さらには、1%、2%、5%、7%、8%の順に好ましい。
 また、本発明の光学ガラスにおいて、アルカリ金属成分であるCs+の導入は必ずしも必要ではなく、原料コストの面から不利なのでむしろ不要である。また、Cs+は屈折率を下げ、耐候性を著しく損なうため、Cs+を導入しないことが好ましい。
 なお、ガラスの熔融性と熱的安定性を両立させる点から、アルカリ金属成分の合計含有量R22に対するP5+含有量の割合:カチオン比[P5+/R22]の上限は、30とすることが好ましく、さらには、25、20、15、10、8の順に好ましい。また、カチオン比[P5+/R22]の下限は、1.0とすることが好ましく、さらには1.5、2.0、2.5の順に好ましい。
 また、本発明の光学ガラスは、環境への負荷を低減する観点から、Pb、As、Cd、U、Th、Tlを実質的に含有しないことが好ましい。
 また、本発明の光学ガラスにおいてはハロゲンすなわちF-、Cl-、Br-、I-を任意成分として含有することができる。その含有量は陰イオンのアニオン分率(例えば、[F-/(O2-+F-)])で表すことができる。F-の含有量の上限は10%とすることが好ましく、さらには、5%、3%、2%、1%、0.5%、0.1%の順に好ましい。また、Cl-、Br-、I-の含有量の上限は、それぞれ5%とすることが好ましく、さらには、3%、2%、1%、0.5%、0.1%の順に好ましい。なお、ハロゲンをガラスに含む場合、ガラスの揮発を抑えるためガラス中のB3+の上限を25%にすることが好ましく、さらには、20%、15%、10%、5%の順に好ましく、最も好ましくは実質的に含有しないことである。ただし、ハロゲンを1%以下の少量添加するときはこの限りではない。特に、ガラスからの成分の揮発を抑止してガラスの均質性を向上させるためには、ハロゲンを実質的に含有しないことが好ましい。
 また、本発明の光学ガラスにおいてはW6+、Ti4+、Bi3+およびNb5+からなる易還元成分を任意成分として含有することができる。これらの易還元成分は、屈折率を高くするために有効な成分である。しかしながら、W6+、Ti4+、Bi3+およびNb5+はガラスのアッベ数(νd)を著しく減少させてしまう。そこで、上記易還元成分の合計含有量[W6++Ti4++Bi3++Nb5+]の上限は、5%とすることが好ましく、さらには3%、2%、1%、0.5%の順に好ましい。なお、上記易還元成分を実質的に導入しないことが特に好ましい。
 上記のような本発明の光学ガラスは、基本的にはP5+、B3+、Si4+、Al3+、Li+、Na+、K+、Mg2+、Ca2+、Zn2+、Sr2+、Ba2+、Gd3+、Y3+、La3+およびYb3+から選択される成分によって構成されることが好ましい。これらの成分の合計含有量[P5++B3++Si4++Al3++Li++Na++K++Mg2++Ca2++Zn2++Sr2++Ba2++Gd3++Y3++La3++Yb3+]は、95%以上とすることが好ましく、さらに好ましくは98%以上、より好ましくは99%以上、より一層好ましくは100%である。
 なお、本発明の光学ガラスは基本的に上記成分により構成されることが好ましいが、本発明の作用効果を妨げない範囲において、その他の成分を導入することも可能である。また、本発明において、不可避的不純物の含有を排除するものではない。
 なお、「実質的に含有しない」とは、含有量が0.2%未満であることを目安にすることができる。実質的に含有しない成分や添加剤は、ガラスに含まれないことが好ましいから、その含有量が0.1%未満であることが好ましく、0.08%未満であることがより好ましく、0.05%未満であることがさらに好ましく、0.01%未満であることが一層好ましく、0.005%未満であることがより一層好ましい。
 また、本発明の光学ガラスが上記成分により構成されて合計量を100質量%としたとき、Sb23、SnO2、CeO2などの清澄剤を外割で4質量%以内導入してもよい。Sb23の含有量の上限は、好ましくは4質量%であり、さらには3質量%、2質量%、1質量%、0.5質量%、0.1質量%の順に好ましい。また、Sb23の含有量の下限は、好ましくは0%であり、さらには0.01質量%、0.02質量%、0.04質量%の順に好ましい。また、SnO2、CeO2は、ガラスの透過率を悪化させるおそれがあるため、1質量%以下の導入が好ましく、実質的に導入しないことが特に好ましい。
 第2の実施形態において、光学ガラスのガラス組成を主にカチオン%表示にて説明しているが、ICP-AES分析等により各成分別に定量分析を行なって求められた分析値を、次のような方法でカチオン%表示に換算することができる。
 ガラス組成の定量分析の結果、陽イオンと陰イオンとから構成されるガラス成分のうち陽イオン元素の含有率が原子%の百分率で表示されることがある。このような組成表示を、例えば次のような方法で、本発明のカチオン%表示に換算することができる。
 すなわち、定量されたガラス成分の各陽イオンの含有率(原子%)をそれぞれ固有の原子量で除算して各陽イオンのモル百分率を求め、含有される全ての陽イオンに対する求めるべき陽イオンの割合をモル百分率で示すことにより、カチオン%表示に換算される。
 たとえば、定量分析によりn個の陽イオンの含有率(原子%)がm1,m2,・・・,mi,・・・,mnと定量され、各陽イオンの原子量がM1,M2,・・・,Mi,・・・,Mnとするとき、1成分(mi,Mi)のカチオン含有率(カチオン%)は次式で求めることができる。
[(mi/Mi)/[(m1/M1)+(m2/M2)+・・・+(mi/Mi)+・・・+(mn/Mn)]]×100
 なお、定量分析により陰イオン元素の含有率(原子%)も定量されることがあるが、上記と同様の要領で陰イオンのアニオン含有率(アニオン%)に換算することができる。
 また、ガラス組成の定量分析の結果、ガラス成分が酸化物基準で表され、ガラス成分の含有量が質量%表示されることがある。このような組成の表示は、例えば次のような方法で、カチオン%表示に換算することができる。
 カチオンAと酸素とから成る酸化物は「Amn」と表記される。mとnはそれぞれ化学量論的に定まる整数である。例えば、B3+では酸化物基準による表記がB23となり、m=2、n=3となり、Si4+ではSiO2となり、m=1、n=2となる。
 まず、質量%表示におけるAmnの含有量をAmnの分子量で除算し、さらにmを乗じる。この値をQとする。そして、ガラス成分のすべてについてのQを合計する。Qを合計した値をΣQとすると、ΣQが100%になるように各ガラス成分のQの値を規格化した値が、カチオン%表示におけるAs+の含有量となる。なお、sは2n/mである。
 なお、本実施形態に係る光学ガラスの特性(光学特性、熱的安定性)は、第1実施形態で説明したものと同様である。したがって、本実施形態では説明は省略する。
光学ガラスの製造
 本発明に係る光学ガラスは、上記所定の組成となるように原料を配合し、公知のガラス製造方法に従って作製すればよい。
 なお、ガラス中の各成分の原料(ガラス原料)としては特に限定されないが、各金属の酸化物、炭酸塩、硝酸塩、水酸化物等が挙げられる。
光学素子等の製造
 本発明に係る光学ガラスを使用して光学素子を作るには、公知の方法を適用すればよい。例えば、本発明に係る光学ガラスを熔融して板状のガラス素材を成形し、この板状のガラス素材を所定体積に細分化してプレス成形用ガラス素材を作製する。あるいは、本発明に係る光学ガラスを熔融した状態から連続的に所定体積のガラス塊を成形してプレス成形用ガラス素材を作製する。次に、このガラス素材を再加熱、プレス成形(リヒートプレス成形)して光学素子ブランクを作製する。さらに光学素子ブランクを、研磨を含む工程により加工して光学素子、または精密プレス成形用ガラス素材を作製する。
 あるいは、熔融ガラスを熱間成形して精密プレス成形用ガラス素材(プリフォーム)を作製し、このガラス素材を加熱、精密プレス成形して光学素子を作製する。
 あるいは、熔融ガラスを直接成形(ダイレクトプレス成形)してガラス成形体を作製し、この成形体を研磨加工して光学素子を作製する。
 作製した光学素子の光学機能面には使用目的に応じて、反射防止膜、全反射膜などをコーティングしてもよい。
 光学素子としては、球面レンズ、非球面レンズ、マイクロレンズ、レンズアレイなどの各種レンズ、プリズム、回折格子などを例示することができる。
 以上、本発明の実施形態について説明してきたが、本発明はこうした実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々なる態様で実施し得ることは勿論である。
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1Aおよび比較例1A)
 表1~4に本発明の第1の実施形態の実施例に係る光学ガラス(試料1A~37A)を、表5に本発明の比較例に係る光学ガラス(試料38A)をそれぞれ示す。なお、表5に示した試料11Aおよび13Aは、表2に示した試料と同じであり、実施例と比較例の比較のために併記したものである。
 これらの光学ガラスは、以下の手順で作製され、各種評価が行われた。結果を表1~5に示す。
[光学ガラスの製造]
 まず、ガラスの構成成分に対応する酸化物、水酸化物、炭酸塩、および硝酸塩を原材料として準備し、得られる光学ガラスのガラス組成が、各表に示すガラス組成となるように上記原材料を秤量、調合して、原材料を十分に混合した。こうして得られた調合原料(バッチ原料)を、白金坩堝に投入し、原材料の熔融性に応じて電気炉で1200~1400℃の温度範囲で熔融し、攪拌して均質化を図り、清澄してから流出ノズルより熔融ガラスを流出して適当な温度に予熱した金型に鋳込んだ。鋳込んだガラスを徐冷炉に投入し、所定の徐冷スケジュールで室温まで冷却して各光学ガラスを得た。
[光学ガラスの評価]
 得られた光学ガラスについて、以下に示す方法にて、ガラス組成の確認、屈折率(nd)、アッベ数(νd)、ガラス転移温度(Tg)、結晶化開始温度(Tx)、結晶化ピーク温度(Tc)、結晶化ピーク強度(Δ)および内部結晶の有無の評価が行われた。また、一部の試料については、耐候性(DH)試験も行った。
[1]ガラス組成の確認
 上記のようにして得られた各光学ガラスを適量採取し、これを酸およびアルカリ処理し、誘導結合プラズマ質量分析法(ICP-AES法)を用いて、各成分の含有量を定量することで測定し、各表に示す各試料のガラス組成と一致していることを確認した。
[2]屈折率(nd)およびアッベ数(νd)
 日本光学硝子工業会規格の屈折率測定法により、室温まで冷却された光学ガラスを再びガラス転移温度(Tg)~屈伏点(Ts)間の温度で保持し、降温速度-30℃/時間で降温することによりガラス中の歪を除去して得られた光学ガラスについて、屈折率(nd)とアッベ数(νd)を測定した〔(株)島津デバイス製造より販売されている「GMR-1」を使用〕。
[3]ガラス転移温度(Tg)、結晶化ピーク温度(Tc)およびピーク強度(Δ)
 ブルカー・AXS株式会社製の示差走査熱量計により昇温速度を10℃/分にして測定した。さらに、測定されたTgとTcから温度差(Tc-Tg)を算出した。また、示差走査熱量計によって示された示差走査熱量曲線に基づいて、ピーク強度(Δ)を算出した。
[4]内部結晶の有無
 ガラスを大気中にて熔融状態から鋳型にキャストし、上面に平坦な自由表面を有するガラス成形体を作製し、このガラス成形体を切断し、1×1×1cm3の立方体状のガラス試料を得た。このガラス試料を加熱炉に投入して、温度Tgで10分間保持(一次加熱)した後、ガラスが軟化する温度(Tp)で10分間保持(二次加熱)し、ガラス試料を加熱炉から取り出して放冷した。次いで、ガラス試料を研磨加工して、研磨面からガラス内部を顕微鏡によって内部結晶の有無を観察した。この観察により、直径0.1μm以上の結晶が存在しないものを「結晶なし」とし、直径0.1μm以上の結晶が存在したものを「結晶あり」と評価した。なお、温度Tpは各試料によって個体差があったが、(Tg+約130℃)~(Tg+約180℃)の範囲内の温度で、いずれの試料も軟化することを確認した。
[5]耐候性(DH)試験
 得られた光学ガラスについて、日本光学硝子工業会規格JOGIS07に従い、主表面が対面研磨されたガラス試料(30×30×3mm)を成形し、高温高湿度の温度サイクル環境下で48時間処理した。その後、(有)東京電色製のヘーズメーター(TC-HIIIDPK)を用い、ガラス試料のヘイズ値を測定した。なお、ヘイズ値は、散乱光強度/透過光強度×100(単位:%)により求めることができる。結果は後述する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1~5に示されるように、本発明の実施例に係る光学ガラス(試料1A~37A)は、屈折率ndが1.620~1.700、アッベ数νdが53~65の範囲にあり、特に、ZnOの含有量、質量比α1[BaO/(MgO+CaO+ZnO+SrO)]および質量比β1[(P25+B23+Al23)/Re1]が、所望の範囲内(ZnOの含有量が15質量%以下、質量比α1が2.1以下、さらに質量比β1が4.80未満)にあるガラスである。
 このような本発明の実施例に係る光学ガラスは、温度Tgと温度Tcとの温度差(Tc-Tg)の平均値が約210℃あり、いずれの試料も温度Tpが結晶化ピーク温度Tcよりも低く(すなわち、Tp<Tcの関係にあり)、固化したガラスに内部結晶が発生せず、熱的安定性が高いことが確認された。
 特に、表2および表5の試料11Aは、表1~5の試料1A~37Aの中で温度差(Tc-Tg)が最も小さい試料であるが、この場合であってもガラスが軟化して、内部結晶が発生せず、熱的安定性が高いことが確認された。
 また、表2および表5の試料13Aは、屈折率とアッベ数との観点では、試料38A(比較例)に非常に近い試料であるにもかかわらず、温度差(Tc-Tg)が192℃もあり、内部結晶が発生せず、他の試料と同様に熱的安定性が高いことが確認された。
 これに対して、本発明の比較例に係る光学ガラスである表5の試料38Aは、温度差(Tc-Tg)が139℃であり、結晶化ピーク温度Tc(667℃)よりもはるかに高い温度Tp(710℃)で軟化した。つまり、この試料38Aは、温度Tpと温度Tcとが、Tp>Tcの関係にあった。そして、固化した試料38Aのガラスには、内部結晶が発生しており、熱的安定性に劣ることが確認された。
 上述の差異が生じる理由として、比較例に係る光学ガラスである表5の試料38Aは、質量比β1が4.77であるものの、ガラスの熱的安定性の指標となる質量比α1が所定の範囲内(2.1以下)から外れているためと考えられる。
 以上のように、本発明の実施例に係る光学ガラスは、温度差(Tc-Tg)が十分に大きい。このため、温度Tcよりも低い温度Tpにてガラスを確実に軟化させることができる。したがって、精密な温度制御が困難なリヒートプレス成形に本発明の光学ガラスを適用することができる。
 一方、比較例に係る光学ガラス(表5の試料38A)は、温度差(Tc-Tg)が比較的小さく、軟化する温度Tpが結晶化ピーク温度Tcよりも高いことから、比較例に係る光学ガラスを軟化させると内部結晶が生じてしまい、比較例に係る光学ガラスをリヒートプレス成形に適用することは困難である。
 また、耐候性(DH)試験の結果、本実施例に係る光学ガラス(表2および表5の試料13A)は、高温高湿度下で長時間処理された後も、表面変質がなく、透明度に優れることが確認された。また、ヘイズ値は、0.1%であった。
 これらの結果から、本発明に係る光学ガラスは、優れた耐候性を有することが確認された。
(実施例1Bおよび比較例1B)
 表6~8に本発明の第2の実施形態の実施例に係る光学ガラス(試料1B~37B)を、表9に本発明の比較例に係る光学ガラス(試料38B)をそれぞれ示す。なお、表9に示した試料6Bおよび18Bは、表6および表7に示した試料と同じであり、実施例と比較例の比較のために併記したものである。
 これらの光学ガラスは、上記実施例1Aおよび比較例1Aと同様の手順で作製され、上記同様の各種評価が行われた。結果を表6~9に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表6~9に示されるように、本発明の実施例に係る光学ガラス(試料1B~37B)は、屈折率ndが1.620~1.700、アッベ数νdが53~65の範囲にあり、特に、カチオン比α2[Ba2+/(Mg2++Ca2++Zn2++Sr2+)]およびカチオン比β2[(P5++B3++Al3+)/Re2]が、所望の範囲内(カチオン比α2が0.80以下、さらにカチオン比β2が14.0未満)にあるガラスである。
 このような本発明の実施例に係る光学ガラスは、温度Tgと温度Tcとの温度差(Tc-Tg)の平均値が約210℃あり、いずれの試料も温度Tpが結晶化ピーク温度Tcよりも低く(すなわち、Tp<Tcの関係にあり)、固化したガラスに内部結晶が発生せず、熱的安定性が高いことが確認された。
 特に、表6および表9の試料18Bは、表6~9の試料1B~37Bの中で温度差(Tc-Tg)が最も小さい試料であるが、この場合であってもガラスが軟化して、内部結晶が発生せず、熱的安定性が高いことが確認された。
 また、表6および表9の試料6Bは、屈折率とアッベ数との観点では、試料38B(比較例)に非常に近い試料であるにもかかわらず、温度差(Tc-Tg)が192℃もあり、内部結晶が発生せず、他の試料と同様に熱的安定性が高いことが確認された。
 これに対して、本発明の比較例に係る光学ガラスである表9の試料38Bは、温度差(Tc-Tg)が139℃であり、結晶化ピーク温度Tc(667℃)よりもはるかに高い温度Tp(710℃)で軟化した。つまり、この試料38Bは、温度Tpと温度Tcとが、Tp>Tcの関係にあった。そして、固化した試料38Bのガラスには、内部結晶が発生しており、熱的安定性に劣ることが確認された。
 上述の差異が生じる理由として、比較例に係る光学ガラスである表9の試料38Bは、カチオン比β2が14未満であるものの、ガラスの熱的安定性の指標となるカチオン比α2が所定の範囲内(0.80以下)から外れているためと考えられる。
 以上のように、本発明の実施例に係る光学ガラスは、温度差(Tc-Tg)が十分に大きい。このため、温度Tcよりも低い温度Tpにてガラスを確実に軟化させることができる。したがって、精密な温度制御が困難なリヒートプレス成形に本発明の光学ガラスを適用することができる。
 一方、比較例に係る光学ガラス(表9の試料38B)は、温度差(Tc-Tg)が比較的小さく、軟化する温度Tpが結晶化ピーク温度Tcよりも高いことから、比較例に係る光学ガラスを軟化させると内部結晶が生じてしまい、比較例に係る光学ガラスをリヒートプレス成形に適用することは困難である。
 また、耐候性(DH)試験の結果、本実施例に係る光学ガラス(表6および表9の試料6B)は、高温高湿度下で長時間処理された後も、表面変質がなく、透明度に優れることが確認された。また、ヘイズ値は、0.1%であった。
 これらの結果から、本発明に係る光学ガラスは、優れた耐候性を有することが確認された。
(実施例2)
 実施例1Aおよび実施例1Bにおいて作製した光学ガラス(表1~5の試料1A~37Aおよび表6~9の試料1B~37B)を用いて、光学レンズを作製した。具体的には、実施例1Aおよび実施例1Bの各光学ガラスを所定形に加工して光学ガラス素材を作成した。次いで、その光学ガラス素材を加熱、軟化し、目的のレンズの形状に近似する形状にプレス成形し、プレス成形後、ガラスを焼鈍(アニール)し、研磨工程を含む加工工程により、光学レンズに仕上げた。なお、ガラスのプレス成形法、アニールの方法、加工工程は、公知の方法を適宜、適用すればよい。
 このようにして得た光学レンズは、リヒートプレス成形にあたり比較的高温で加熱を行った場合であっても、ガラスが結晶化することがなく、良好な光学レンズが得られることが確認された。
(比較例2)
 実施例2と同様の方法により、比較例1Aおよび比較例1Bにおいて作製した光学ガラス(表5の試料38Aおよび表9の試料38B)を用いて、光学レンズの作製を試みた。
 しかしながら、比較例に係る光学ガラスでは、熱的安定性が低く、リヒートプレス成形の際の加熱により結晶化が起こり、得られた光学レンズにおいて内部結晶が発生していることが確認された。
 以下に、本発明を総括する。
 表1~5に示すように、第1の実施形態の光学ガラス(試料1A~37A)は、P25、B23およびAl23の合計含有量[P25+B23+Al23]が55質量%以下のガラスであって、
 BaOと、
 MgO、CaO、ZnOおよびSrOから選択されるいずれか1種以上と、
 Gd23、Y23、La23およびYb23から選択されるいずれか1種以上と、を含み、
 ZnOの含有量は15質量%以下であり、
 MgO、CaO、ZnOおよびSrOの合計含有量に対するBaOの含有量の質量比α1[BaO/(MgO+CaO+ZnO+SrO)]が、2.1以下であり、
 Gd23、Y23、La23およびYb23の合計含有量[Gd23+Y23+La23+Yb23]に対するP25、B23およびAl23の合計含有量[P25+B23+Al23]の質量比β1[(P25+B23+Al23)/(Gd23+Y23+La23+Yb23)]が4.80未満であり、
 屈折率ndが1.620~1.700、アッベ数νdが53~65であることを満たす。
 別の局面から、低分散性と熱的安定性に特に優れた光学ガラスとして、第1の実施形態に係る光学ガラスの実施例である表1~3の試料1A、6A~8A、10A、13A~18Aおよび20A~22Aが選択される。これらの試料を参照して本発明をみると、これらの光学ガラスは以下の条件を満たす。
 P25、B23およびAl23の合計含有量[P25+B23+Al23]が55質量%以下のガラスであって、
 BaOと、
 MgO、CaO、ZnOおよびSrOから選択されるいずれか1種以上と、
 Gd23、Y23、La23およびYb23から選択されるいずれか1種以上と、を含み、
 ZnOの含有量は6質量%以下であり、
 MgO、CaO、ZnOおよびSrOの合計含有量に対するBaOの含有量の質量比α1[BaO/(MgO+CaO+ZnO+SrO)]が、1.2以下であり、
 Gd23、Y23、La23およびYb23の合計含有量[Gd23+Y23+La23+Yb23]に対するP25、B23およびAl23の合計含有量[P25+B23+Al23]の質量比β1[(P25+B23+Al23])/(Gd23+Y23+La23+Yb23)]が4.5以下であり、
 屈折率ndが1.635~1.660、アッベ数νdが59~62である、光学ガラス。
 また、表6~9に示すように、第2の実施形態の光学ガラス(試料1B~37B)は、P5+、B3+およびAl3+の合計含有量[P5++B3++Al3+]が60カチオン%以下のガラスであって、
 Ba2+と、
 Mg2+、Ca2+、Zn2+およびSr2+から選択されるいずれか1種以上と、
 Gd3+、Y3+、La3+およびYb3+から選択されるいずれか1種以上と、を含み、
 Mg2+、Ca2+、Zn2+およびSr2+の合計含有量に対するBa2+の含有量のカチオン比α2[Ba2+/(Mg2++Ca2++Zn2++Sr2+)]が、0.80以下であり、
 Gd3+、Y3+、La3+およびYb3+の合計含有量に対するP5+、B3+およびAl3+の合計含有量のカチオン比β2[(P5++B3++Al3+)/(Gd3++Y3++La3++Yb3+)]が14.0未満であり、
 屈折率ndが1.620~1.700、アッベ数νdが53~65であることを満たす。
 別の局面から、低分散性と熱的安定性に特に優れた光学ガラスとして、第2の実施形態に係る光学ガラスの実施例である表6、7の試料1B~17Bが選択される。これらの試料を参照して本発明をみると、これらの光学ガラスは以下の条件を満たす。
 P5+、B3+およびAl3+の合計含有量[P5++B3++Al3+]が60カチオン%以下のガラスであって、
 Ba2+と、
 Mg2+、Ca2+、Zn2+およびSr2+から選択されるいずれか1種以上と、
 Gd3+、Y3+、La3+およびYb3+から選択されるいずれか1種以上と、を含み、
 Mg2+、Ca2+、Zn2+およびSr2+の合計含有量に対するBa2+の含有量のカチオン比α2[Ba2+/(Mg2++Ca2++Zn2++Sr2+)]が、0.50以下であり、
 Gd3+、Y3+、La3+およびYb3+の合計含有量に対するP5+、B3+およびAl3+の合計含有量のカチオン比β2[(P5++B3++Al3+])/(Gd3++Y3++La3++Yb3+)]が12.0以下であり、
 屈折率ndが1.635~1.660、アッベ数νdが59~62である、光学ガラス。
 これらの試料によれば、Tc-Tgが180℃以上と大きく、かつピーク強度Δを低く抑えられ、熱的安定性に優れるとともに、屈折率ndが1.635以上、アッベ数が59以上の光学特性を有する光学ガラスを製造することができる。
Tg  ガラス転移温度
Tk  吸熱ピーク温度
Tx  結晶化開始温度
Tc  結晶化ピーク温度
A  TkとTgの熱量差の絶対値
B  TxとTcの熱量差の絶対値

Claims (12)

  1.  P25、B23およびAl23の合計含有量[P25+B23+Al23]が55質量%以下のガラスであって、
     BaOと、
     MgO、CaO、ZnOおよびSrOから選択されるいずれか1種以上と、
     Gd23、Y23、La23およびYb23から選択されるいずれか1種以上と、を含み、
     ZnOの含有量は15質量%以下であり、
     MgO、CaO、ZnOおよびSrOの合計含有量に対するBaOの含有量の質量比α1[BaO/(MgO+CaO+ZnO+SrO)]が2.1以下であり、
     Gd23、Y23、La23およびYb23の合計含有量に対するP25、B23およびAl23の合計含有量の質量比β1[(P25+B23+Al23)/(Gd23+Y23+La23+Yb23)]が4.80未満であり、
     屈折率ndが1.620~1.700、アッベ数νdが53~65である、光学ガラス。
  2.  Gd23、Y23、La23およびYb23の合計含有量[Gd23+Y23+La23+Yb23]が4~30質量%である、請求項1に記載の光学ガラス。
  3.  P25の含有量が12~40質量%である、請求項1または2に記載の光学ガラス。
  4.  BaOの含有量が10~45質量%である、請求項1~3のいずれかに記載の光学ガラス。
  5.  P5+、B3+およびAl3+の合計含有量[P5++B3++Al3+]が60カチオン%以下の酸化物ガラスであって、
     Ba2+と、
     Mg2+、Ca2+、Zn2+およびSr2+から選択されるいずれか1種以上と、
     Gd3+、Y3+、La3+およびYb3+から選択されるいずれか1種以上と、を含み、
     Mg2+、Ca2+、Zn2+およびSr2+の合計含有量に対するBa2+の含有量のカチオン比α2[Ba2+/(Mg2++Ca2++Zn2++Sr2+)]が0.80以下であり、
     Gd3+、Y3+、La3+およびYb3+の合計含有量に対するP5+、B3+およびAl3+の合計含有量のカチオン比β2[(P5++B3++Al3+)/(Gd3++Y3++La3++Yb3+)]が14.0未満であり、
     屈折率ndが1.620~1.700、アッベ数νdが53~65である、光学ガラス。
  6.  Gd3+、Y3+、La3+およびYb3+の合計含有量[Gd3++Y3++La3++Yb3+]が2~20カチオン%である、請求項5に記載の光学ガラス。
  7.  P5+の含有量が10~45カチオン%である、請求項5または6に記載の光学ガラス。
  8.  Ba2+の含有量が5~25カチオン%である、請求項5~7のいずれかに記載の光学ガラス。
  9.  Zn2+の含有量が15カチオン%以下である、請求項5~8のいずれかに記載の光学ガラス。
  10.  B3+の含有量に対するP5+の含有量のカチオン比[P5+/B3+]が0.2~10.0である、請求項5~9のいずれかに記載の光学ガラス。
  11.  請求項1~10のいずれかに記載の光学ガラスからなる、光学素子。
  12.  請求項1~10のいずれかに記載の光学ガラスからなる、光学ガラス素材。
PCT/JP2015/080230 2014-10-27 2015-10-27 光学ガラス、光学素子および光学ガラス素材 WO2016068124A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580057960.4A CN107148404B (zh) 2014-10-27 2015-10-27 光学玻璃、光学元件以及光学玻璃原材料

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014218629A JP6560854B2 (ja) 2014-10-27 2014-10-27 光学ガラス、光学素子および光学ガラス素材
JP2014-218629 2014-10-27
JP2015001894A JP6576040B2 (ja) 2015-01-07 2015-01-07 光学ガラス、光学素子および光学ガラス素材
JP2015-001894 2015-01-07

Publications (1)

Publication Number Publication Date
WO2016068124A1 true WO2016068124A1 (ja) 2016-05-06

Family

ID=55857460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080230 WO2016068124A1 (ja) 2014-10-27 2015-10-27 光学ガラス、光学素子および光学ガラス素材

Country Status (2)

Country Link
CN (1) CN107148404B (ja)
WO (1) WO2016068124A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104204A (ja) * 2016-12-22 2018-07-05 光ガラス株式会社 光学ガラス、光学ガラスを用いた光学素子、光学装置
JP2019026549A (ja) * 2017-08-02 2019-02-21 Hoya株式会社 光学ガラスおよび光学素子
JP2019172556A (ja) * 2017-05-19 2019-10-10 株式会社オハラ 光学ガラス、プリフォーム及び光学素子

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696747A (en) * 1979-12-29 1981-08-05 Jenaer Glaswerk Schott & Gen Optical glass
JPH01286934A (ja) * 1988-05-10 1989-11-17 Sumita Kogaku Glass Seizosho:Kk 精密プレス成形用光学ガラス
JPH0337130A (ja) * 1989-07-04 1991-02-18 Sumita Kogaku Glass:Kk 精密プレス成形用光学ガラス
JPH0393645A (ja) * 1989-09-01 1991-04-18 Minolta Camera Co Ltd 紫外線透過ガラス
JPH0492834A (ja) * 1990-08-02 1992-03-25 Sumita Kogaku Glass:Kk 精密プレス用光学ガラス
JPH0558669A (ja) * 1991-06-21 1993-03-09 Ohara Inc 光学ガラス
JPH0812368A (ja) * 1994-06-30 1996-01-16 Hoya Corp 光学ガラス
JPH1072233A (ja) * 1996-07-03 1998-03-17 Ohara Inc 光学ガラス
JP2001031443A (ja) * 1999-07-21 2001-02-06 Matsushita Electric Ind Co Ltd モールドレンズ用B2O3−La2O3−RO系ガラス
JP2003089543A (ja) * 2001-09-13 2003-03-28 Nippon Electric Glass Co Ltd モールドプレス成形用光学ガラス
JP2004035318A (ja) * 2002-07-03 2004-02-05 Hoya Corp 光学ガラス、プレス成形用プリフォームおよび光学素子
JP2008019104A (ja) * 2006-07-10 2008-01-31 Ohara Inc ガラス
JP2012001382A (ja) * 2010-06-15 2012-01-05 Fujifilm Corp 光学ガラス
JP2012126586A (ja) * 2010-12-13 2012-07-05 Ohara Inc 光学ガラス、プリフォーム及び光学素子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157391B2 (en) * 2002-12-27 2007-01-02 Hoya Corporation Optical glass, preform for press molding and optical element
CN1331792C (zh) * 2003-08-06 2007-08-15 Hoya株式会社 玻璃模制透镜的生产方法
JP5296345B2 (ja) * 2007-08-10 2013-09-25 株式会社オハラ 光学ガラス
US8404604B2 (en) * 2008-02-08 2013-03-26 Nihon Yamamura Glass Co., Ltd. Optical glass
JP5558755B2 (ja) * 2009-08-06 2014-07-23 株式会社オハラ 光学ガラス、光学素子及びプリフォーム
CN103717542A (zh) * 2011-07-29 2014-04-09 株式会社小原 光学玻璃

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696747A (en) * 1979-12-29 1981-08-05 Jenaer Glaswerk Schott & Gen Optical glass
JPH01286934A (ja) * 1988-05-10 1989-11-17 Sumita Kogaku Glass Seizosho:Kk 精密プレス成形用光学ガラス
JPH0337130A (ja) * 1989-07-04 1991-02-18 Sumita Kogaku Glass:Kk 精密プレス成形用光学ガラス
JPH0393645A (ja) * 1989-09-01 1991-04-18 Minolta Camera Co Ltd 紫外線透過ガラス
JPH0492834A (ja) * 1990-08-02 1992-03-25 Sumita Kogaku Glass:Kk 精密プレス用光学ガラス
JPH0558669A (ja) * 1991-06-21 1993-03-09 Ohara Inc 光学ガラス
JPH0812368A (ja) * 1994-06-30 1996-01-16 Hoya Corp 光学ガラス
JPH1072233A (ja) * 1996-07-03 1998-03-17 Ohara Inc 光学ガラス
JP2001031443A (ja) * 1999-07-21 2001-02-06 Matsushita Electric Ind Co Ltd モールドレンズ用B2O3−La2O3−RO系ガラス
JP2003089543A (ja) * 2001-09-13 2003-03-28 Nippon Electric Glass Co Ltd モールドプレス成形用光学ガラス
JP2004035318A (ja) * 2002-07-03 2004-02-05 Hoya Corp 光学ガラス、プレス成形用プリフォームおよび光学素子
JP2008019104A (ja) * 2006-07-10 2008-01-31 Ohara Inc ガラス
JP2012001382A (ja) * 2010-06-15 2012-01-05 Fujifilm Corp 光学ガラス
JP2012126586A (ja) * 2010-12-13 2012-07-05 Ohara Inc 光学ガラス、プリフォーム及び光学素子

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104204A (ja) * 2016-12-22 2018-07-05 光ガラス株式会社 光学ガラス、光学ガラスを用いた光学素子、光学装置
JP2019172556A (ja) * 2017-05-19 2019-10-10 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP7502843B2 (ja) 2017-05-19 2024-06-19 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2019026549A (ja) * 2017-08-02 2019-02-21 Hoya株式会社 光学ガラスおよび光学素子
CN109467312A (zh) * 2017-08-02 2019-03-15 Hoya株式会社 光学玻璃及光学元件
CN114890668A (zh) * 2017-08-02 2022-08-12 Hoya株式会社 光学玻璃及光学元件

Also Published As

Publication number Publication date
CN107148404B (zh) 2021-04-27
CN107148404A (zh) 2017-09-08

Similar Documents

Publication Publication Date Title
JP6382256B2 (ja) 光学ガラスおよびその利用
JP4286652B2 (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子
JP4322217B2 (ja) 光学ガラス、プレス成形用ガラスゴブ、光学部品、ガラス成形体の製造方法および光学部品の製造方法
JP4562041B2 (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子
TWI532698B (zh) Optical glass, preformed stock and optical components
JP6603449B2 (ja) ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
JP5926479B2 (ja) 光学ガラス、プレス成形用ガラスゴブおよび光学素子
JP6280015B2 (ja) ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
JP5986938B2 (ja) 光学ガラス、精密プレス成形用ガラス素材、光学素子およびその製造方法
CN101337768A (zh) 高折射率光学玻璃
JP5856509B2 (ja) 光学ガラス、プレス成形用ガラス素材、および光学素子とその製造方法
JP6396622B1 (ja) ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
US9550698B2 (en) Optical glass and use thereof
WO2016068124A1 (ja) 光学ガラス、光学素子および光学ガラス素材
WO2016068125A1 (ja) 光学ガラス、光学素子および光学ガラス素材
JP6280284B1 (ja) ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
CN115974407A (zh) 光学玻璃
JP2018104283A (ja) ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
JP6576040B2 (ja) 光学ガラス、光学素子および光学ガラス素材
JP2011121833A (ja) 光学ガラス、光学素子及びプリフォーム
WO2018221678A1 (ja) ガラス、光学ガラスおよび光学素子
JP6735402B2 (ja) 光学ガラス、光学素子および光学ガラス素材
JP6560854B2 (ja) 光学ガラス、光学素子および光学ガラス素材
JP6626907B2 (ja) ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
JP6600702B2 (ja) ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/08/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15853862

Country of ref document: EP

Kind code of ref document: A1