WO2015104954A1 - 電子回路装置 - Google Patents

電子回路装置 Download PDF

Info

Publication number
WO2015104954A1
WO2015104954A1 PCT/JP2014/083083 JP2014083083W WO2015104954A1 WO 2015104954 A1 WO2015104954 A1 WO 2015104954A1 JP 2014083083 W JP2014083083 W JP 2014083083W WO 2015104954 A1 WO2015104954 A1 WO 2015104954A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductor layer
heat
conductor
circuit device
Prior art date
Application number
PCT/JP2014/083083
Other languages
English (en)
French (fr)
Inventor
直之 児島
佐藤 俊一郎
和人 日笠
藤原 英道
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to EP14877890.5A priority Critical patent/EP3093882B1/en
Priority to JP2015524520A priority patent/JP5889488B2/ja
Priority to KR1020167015071A priority patent/KR20160108307A/ko
Publication of WO2015104954A1 publication Critical patent/WO2015104954A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Definitions

  • the present invention relates to an electronic circuit device.
  • the substrate may be broken along the boundary surface between the insulating layers and the conductor layers.
  • the present invention has been made in view of the above problems, and an electronic circuit capable of enhancing the heat dissipation effect of the conductor layer while suppressing the substrate from cracking along the boundary surface between the insulating layer and the conductor layer.
  • An object is to provide an apparatus.
  • the present invention is an electronic circuit device, comprising an insulating layer, a conductor layer formed on at least one surface side of the insulating layer, and a side of the conductor layer opposite to the insulating layer.
  • the conductive layer has a heat-dissipating conductor layer positioned on the heat-generating element side and a circuit layer positioned on the insulating layer side, and the heat dissipation
  • the shortest distance l 1 from the side end of the heating element to the side end of the heat dissipation conductor layer at the boundary surface between the conductor layer and the circuit layer is equal to or greater than the thickness t 1 of the heat dissipation conductor layer.
  • the shortest distance l 1 from the side end portion of the heating element to the side end portion of the heat dissipation conductor layer at the boundary surface between the heat dissipation conductor layer and the circuit layer is the thickness of the heat dissipation conductor layer. it is preferably 2 or more times t 1.
  • the shortest distance l 1 from the side end portion of the heating element to the side end portion of the heat dissipation conductor layer at the boundary surface between the heat dissipation conductor layer and the circuit layer is the thickness of the heat dissipation conductor layer. It is preferred t 1 is less than four times.
  • the area of the boundary surface with the bonding layer is smaller than the area of the boundary surface with the circuit layer.
  • the heat radiating conductor layer includes a first conductor portion located on the circuit layer side and a second conductor portion located on the heating element side, and the first conductor portion
  • the shortest distance l 2 between the side edge of the heating element and the side edge of the second conductor at the boundary surface of the second conductor is the thickness t 2 (t 2 of the second conductor. It is preferably 2 times or more of ⁇ t 1 ).
  • the conductor layer has a metal intervening layer between the heat dissipating conductor layer and the circuit layer.
  • the metal intervening layer is preferably made of a sintered body of metal particles.
  • the metal intervening layer has an inner layer portion in contact with the surface of the radiating conductor layer and an outer layer portion extending so as to surround a side edge of the radiating conductor layer.
  • the rate is preferably higher than the porosity of the inner layer portion.
  • the heat dissipation conductor layer has a thermal conductivity of 90 to 427 W / (m ⁇ K).
  • the thermal expansion conductor layer has a linear expansion coefficient of 3 to 18 ⁇ 10 ⁇ 6 / K.
  • the heat dissipation effect of the conductor layer can be enhanced while suppressing the substrate from being broken along the boundary surface between the insulating layer and the conductor layer.
  • FIG. 1 It is sectional drawing of an electronic circuit apparatus. It is a top view of an electronic circuit device.
  • the horizontal axis represents the ratio of the shortest distance from the side edge of the heating element to the side edge of the heat-dissipating conductor layer and the thickness of the heat-dissipating conductor layer, and the vertical axis represents the temperature drop of the heat-generating element after a certain period of time. It is a drawn graph.
  • the electronic circuit device 100 includes a DBC (Directed Bonding Copper) substrate in which a copper circuit layer is directly bonded on a ceramic insulating layer as a circuit substrate.
  • the DBC substrate is an example.
  • an active metal copper circuit substrate in which a ceramic insulating layer and a copper circuit layer are bonded via a brazing material that is, an AMC substrate (Active Metal Brazed Copper), ceramics, etc. It may be a substrate such as a DBA (Directed Brazed Aluminum) substrate in which an aluminum circuit layer is bonded to the insulating layer.
  • DBA Directed Brazed Aluminum
  • the electronic circuit device 100 includes a circuit board 1 having a circuit layer 22 and a back conductor layer 11 on both main surfaces of the insulating layer 10, a conductor layer 2, a bonding layer 3, a heating element 4, and a heat dissipation device 5. is doing.
  • a conductor layer 2 is laminated on one surface of the circuit board 1
  • a bonding layer 3 is laminated on the conductor layer 2
  • a heating element 4 is provided on the bonding layer 3.
  • a heat dissipation device 5 is provided on the other surface of the circuit board 1.
  • the circuit board 1 has an insulating layer 10, a back conductor layer 11, and a circuit layer 22.
  • the insulating layer 10 constitutes the circuit board 1 and is formed in a rectangular shape in plan view as shown in FIG. 2 and is formed of an organic material or ceramics.
  • ceramics for example, Al 2 O 3 , AlN, Si 3 N 4 , a powder raw material of any one of glass, two or more powder raw materials, or a powder raw material containing these as a main component, if necessary, a binder component, etc. It is possible to use a product prepared by blending and forming into a sheet and firing. Further, the insulating layer 10 made of ceramics may be smoothed by appropriately polishing the surface with abrasive grains.
  • the thickness of the insulating layer 10 can be appropriately designed and is preferably 100 to 1000 ⁇ m. However, the thickness of the insulating layer 10 is reduced to 100 to 300 ⁇ m to dissipate heat from the heating element 4 of the electronic circuit device 100. The thermal resistance to the device 5 can be reduced.
  • the back conductor layer 11 constitutes the circuit board 1 and is formed on the surface of the insulating layer 10 opposite to the surface on which the circuit layer 22 is formed, as shown in FIG. The thickness is balanced with the circuit layer 22 so as not to warp, and is formed to have approximately the same thickness.
  • the back conductor layer 11 is preferably made of one kind of metal selected from a metal element group consisting of Cu, Al, Ag, and Au, two or more alloys, or an alloy containing one or more kinds as a main component.
  • the circuit layer 22 will be described together with the conductor layer 2.
  • the conductor layer 2 includes a heat radiating conductor layer 21 located on the heating element 4 side, a circuit layer 22 located on the insulating layer 1 side, and a metal intervening layer 23 provided between the heat radiating conductor layer 21 and the circuit layer 22.
  • the radiating conductor layer 21 is preferably made of one kind of metal selected from a metal element group consisting of Cu, Al, Ag, and Au, two or more alloys, or an alloy containing one or more kinds as a main component.
  • the circuit layer 22 is preferably made of one kind of metal selected from a metal element group consisting of Cu, Al, Ag, and Au, two or more alloys, or an alloy containing one or more kinds as a main component.
  • the heat radiating conductor layer 21 is preferably made of the same material as the circuit layer 22 from the viewpoint of thermal stress generated in the metal intervening layer 23 due to the difference in heat dissipation and linear expansion coefficient.
  • the heat radiating conductor layer 21 and the circuit layer 22 may be formed by laminating separate layer bodies to form the conductor layer 2, or may be formed integrally.
  • the heat dissipating conductor layer 21 and the circuit layer 22 are each formed in a rectangular shape in plan view.
  • the heat radiating conductor layer 21 is formed such that the area on the side facing the circuit layer 22 (lower surface side) is smaller than the area of the circuit layer 22 on the side facing the heat radiating conductor layer 21 (upper surface side).
  • the circuit layer 22 is formed such that the area facing the insulating layer 10 (lower surface side) is smaller than the area of the insulating layer 10 facing the circuit layer 22 (upper surface side).
  • the shortest distance l 1 on the plane (along the plane) from the side end 4e of the heat generating element 4 to the side end 21e of the heat radiating conductor layer 21 at the boundary surface between the heat radiating conductor layer 21 and the circuit layer 22 is , in a thickness t 1 or more heat conductor layer 21. More specifically, the shortest distance l 1 is preferably not less than 2 times and not more than 4 times the thickness t 1 of the heat radiation conductor layer 21.
  • the heat radiation conductor layer 21 has a chamfered end on the bonding layer 3 side (upper surface side) so that the area of the boundary surface with the bonding layer 3 is smaller than the area of the boundary surface with the circuit layer 22. Is formed. More specifically, the boundary surface between the heat-radiating conductor layer 21 and the bonding layer 3 is formed to be a surface having the same or larger area as the surface (lower surface) of the bonding layer 3 on the heat-dissipating conductor layer 21 side. The boundary surface of the layer 21 with the circuit layer 22 is formed to be a surface having the same or smaller area than the surface (upper surface) of the circuit layer 22 on the heat radiation conductor layer 21 side.
  • the thermal conductivity of the radiating conductor layer 21 is preferably in the range of 90 to 427 W / (m ⁇ K). Further, the linear expansion coefficient of the heat dissipating conductor layer 21 is preferably 3 to 18 ⁇ 10 ⁇ 6 / K, and more preferably 3 to 10 ⁇ 10 ⁇ 6 / K.
  • Circuit layer 22, the distance L w of the longest diagonal line L which itself has on a plane, the heat conductor layer 21 from the top 22f of the circuit layer 22 along the diagonal L this circuit layer 22 at the interface of the heat conductor layer 21 the shortest distance L e to the side end portion 21f of is formed so as to satisfy the relation of the following equation (1).
  • the metal intervening layer 23 is a sintered body of metal particles, and has a large number of pores therein.
  • hole here is a part in which the metal material formed in the sintered compact does not exist, and is formed of the clearance gap between metal microparticles.
  • the volume ratio of the metal material is preferably in the range of 50 to 99.999%.
  • the pores may be filled with an organic material at an arbitrary ratio. More specifically, an organic material is filled in an arbitrary ratio with respect to one hole, and a plurality of such holes may exist in an arbitrary ratio. At this time, there may be holes that are completely filled with the organic material, and there may be holes that are not filled at all.
  • the average maximum width of the pores is preferably 10 to 1000 nm.
  • the difference in linear expansion coefficient between the insulating layer 1, the circuit layer 22, and the heat dissipation conductor layer 21 occurs when the metal material constituting the metal intervening layer 23 is about to expand due to heat.
  • the stress which arises arises the stress cannot be absorbed efficiently. If it is larger than 1000 nm, the conductivity will be low.
  • the metal intervening layer 23 is not limited to a sintered body of metal particles, and solder or silver paste may be used.
  • the metal fine particles are preferably composed mainly of any one or more of Cu, Ag, Au, Al, Ni, Sn, In, and Ti.
  • Cu is preferable because migration can be suppressed.
  • bonding is easy.
  • the metal fine particles preferably contain 50% by mass or more of particles having an average primary particle size of 1 nm to 500 nm and 50% by mass or less of particles having an average primary particle size of 0.5 to 50 ⁇ m.
  • the organic material filled in the pores include polyamides, epoxies, polyimides, polyhydric alcohols, and the like, and general materials obtained by imparting substitution plating properties and photosensitivity thereto.
  • a dispersing agent and a thickener in addition to the metal fine particles in order to facilitate handling.
  • a polyhydric alcohol etc. can be used as a dispersing agent.
  • polyvinylpyrrolidone etc. can be used as a thickener.
  • the metal intervening layer 23 has an inner layer portion 23 i in contact with the lower surface of the radiating conductor layer 21 and an outer layer portion 23 o extending to the outer periphery of the radiating conductor layer 21, and the porosity of the outer layer portion 23 o is The porosity of the inner layer portion 23i is higher.
  • the ratio [(B) / (A)] of the porosity (B) of the intermediate portion in the thickness direction of the outer layer portion 23o and the porosity (A) of the intermediate portion in the thickness direction of the inner layer portion 23i is 1.10.
  • the inner layer portion 23i preferably has a porosity (A) of 10.5 to 20.0%.
  • the thickness of the metal intervening layer 23 is preferably 5 to 500 ⁇ m. If the thickness is less than 5 ⁇ m, the crystal size of the circuit layer 22 is large, so that the surface becomes rough and local voids may occur. If it exceeds 500 ⁇ m, the variation in supply thickness also increases, resulting in uneven connection.
  • the thickness is particularly preferably 10 to 300 ⁇ m from the viewpoint of reliable connection.
  • the metal material constituting the metal intervening layer 23 is caused to expand by heat or due to a difference in linear expansion coefficient between the insulating layer 1, the heat radiating conductor layer 21, and the circuit layer 22. Since stress can be absorbed when stress is generated, the stress applied to the end portion of the circuit layer 22 is relaxed. Further, since the heat dissipation conductor layer 21 and the circuit layer 22 are joined by the metal intervening layer 23, the thermal resistance is lowered and the heat dissipation is good. The above distance is measured using a measuring microscope (MF-A4020D manufactured by Mitutoyo Corporation). The thickness of the heat dissipation conductive layer is confirmed by measuring with a micrometer before lamination.
  • a sintered body of metal particles similar to the metal intervening layer 23 and having a melting point of 250 ° C. or higher after sintering can be used.
  • a sintered body of Cu fine particles is preferable because of its bonding property with the heat dissipation conductor layer 21.
  • the bonding layer 3 is not limited to a sintered body of metal particles, and a general die bonding material such as solder or silver paste may be used.
  • the heating element 4 is an electronic component made of a semiconductor, and an element at the functional center of the electronic component, and is formed by cutting a chip unit into a rectangular shape in plan view.
  • the heat dissipating device 5 is provided on the back conductor layer 11 which is the surface opposite to the surface on which the conductor layer 2 is laminated in the insulating layer 10 of the circuit board 1.
  • the heat dissipation device 5 is composed of a metal plate or the like for radiating heat generated from the heat generating element 4.
  • a DBC board having a copper circuit layer bonded to both sides of a ceramic insulating layer so as to be inside the outer edge of the insulating layer ((Nippon Sumikin Electrodevice Co., Ltd., Cu (0.3 mmt) / Al 2 O 3 (0.635 mmt) / Cu (0.3 mmt))) was prepared. Further, a copper paste metal intervening layer was formed on the circuit layer, and a copper heat dissipating conductor layer was bonded onto the metal intervening layer. The metal intervening layer at this time was formed as follows.
  • a stainless metal mask with a thickness of 100 ⁇ mt having an opening of the same size as the heat dissipation conductor layer was disposed at a position corresponding to the heat dissipation conductor layer, and copper nano paste was printed using a metal squeegee.
  • the copper nanopaste was prepared by dispersing copper particles having an average particle diameter of 20 nm as metal fine particles in a dispersant (diethylene glycol) and adding a thickener (polyvinylpyrrolidone).
  • the printing conditions were squeegee pressure 1 MPa, squeegee angle 5 °, squeegee speed 5 mm / sec, and on-contact. After printing, the film was dried at 100 ° C.
  • the heat-dissipating conductor layer was placed on the copper nanopaste, and bonded by applying pressure and heating.
  • the joining was performed using a vacuum press manufactured by Mikado Technos Co., Ltd. under a reduced pressure atmosphere at a temperature of 300 ° C., a pressure of 10 MPa, and a time of 10 Min.
  • it joined in the state which mounted the copper plate side of a DBC board
  • the thickness of the sintered body layer at this time was 35 ⁇ m.
  • a copper plate (oxygen-free copper (C1020)) having a thickness t 1 different from 0.2 mm, 0.3 mm, 1 mm, 2 mm, 3 mm, and 5 mm was used as the heat radiating conductor layer.
  • the heat dissipating conductor layer has a shortest distance l 1 on a plane from the side end of the heating element provided on the heat-dissipating layer via the bonding layer to its own side edge, which is 0.3 to 10 times the thickness t 1.
  • Different sizes were prepared within the double range. That is, a plurality of types of heat dissipation conductor layers having different sizes and thicknesses were prepared, and joined to the circuit layer via the metal intervening layer.
  • a copper paste bonding layer is formed on the heat-dissipating conductor layer, and a 5 mm square and 230 ⁇ m-thick heating element (semiconductor element metallized with a Ti—Ni—Au alloy) is used as the heat dissipating conductor layer via the bonding layer. Joined.
  • the copper paste used at this time was the same as the copper paste on which the metal intervening layer was formed, printed and supplied under the same conditions using a metal mask having a 5 mm square opening, dried under the same conditions, and a semiconductor element thereon Was bonded under pressure and heating under the same conditions.
  • the thing whose length ( Lw ) of the longest diagonal is different from 10 mm, 20 mm, 30 mm, 40 mm, and 50 mm was prepared.
  • the thickness of the heat dissipation conductor layer was confirmed by measuring with a micrometer before lamination.
  • the size of the circuit layer and the heat conductor layer, the circuit layer along the diagonal at the boundary of the longest value obtained by multiplying the coefficient 1/20 diagonally distance L w and the circuit layer and the heat conductor layer of the circuit layer Different ones were prepared within a range of 0.03 to 0.8 in the ratio of the shortest distance Le from the top to the side edge of the heat radiation conductor layer. That is, 40 types of circuit layers having different sizes were prepared and bonded on the insulating layer. After joining, these distances were measured by enlarging 50 times using a measuring microscope (MF-A4020D manufactured by Mitutoyo Corporation).
  • TCT Temperature cycle test
  • the temperature cycle test is an evaluation of resistance to temperature change.
  • a sample is placed in an environment at 175 ° C. for 30 minutes and then placed in an environment at ⁇ 55 ° C. for 30 minutes. °C / min or more), and after 1000 cycles, ultrasonic flaw detection (Hitachi Construction Machinery Co., Ltd., Mi-Scope) and probe (model PQ2-13, 50 MHz) were used to irradiate ultrasonic waves from the semiconductor element side
  • the gate was adjusted by a reflection method so as to enter from the back surface of the semiconductor element to the surface of the metal member, and peeling was measured. Thereby, the number of samples in which the peeled area of the conductor layer from the insulating layer was 20% or more and the number of samples in which the heating element was broken such as cracks were measured.
  • the horizontal axis represents the ratio of the shortest distance l 1 from the side edge of the heat generating element to the side edge of the heat radiating conductor layer and the thickness t 1 of the heat radiating conductor layer. It is the graph which took and took the temperature change amount of the heat generating body of about 10 seconds. In the thickness t 1 is 0.2mm and 0.3mm samples were evaluated using samples shortest distance l 1 is 0.5 times greater than the thickness t 1, in FIG. 3 l 1 The graph is such that the maximum is obtained when the value of / t 1 is 5. As shown in FIG.
  • the shortest distance l 1 is at least twice the thickness t 1 (l 1 / t 1 ⁇ 2), it can be confirmed that the heat dissipation effect is higher. Further, even if the shortest distance l 1 exceeds four times the thickness t 1 (l 1 / t 1 > 4), such a heat dissipation effect cannot be confirmed, and in order to avoid an increase in the size of the substrate, the shortest distance l 1 it was confirmed that preferably is less than 4 times the thickness t 1.
  • the heat generated from the heating element 4 is transmitted to the conductor layer 2, but the diffusion range is relative to a straight line perpendicular to the surface of the substrate. Most of the range is approximately 45 °.
  • the shortest distance l 1 from the side end portion 4 e of the heat generating element 4 to the side end portion 21 e of the heat dissipation conductor layer 21 at the boundary surface between the heat dissipation conductor layer 21 and the circuit layer 22 is the thickness t 1 of the heat dissipation conductor layer 21.
  • the diffusion of heat transmitted from the heating element 4 is transmitted to the heat radiating conductor layer 21 without being disturbed by the side surfaces of the heat radiating conductor layer 21 and is radiated. Therefore, the heat dissipation effect of the heat dissipation conductor layer 21 can be enhanced while suppressing the insulating layer 1 from being broken along the interface of the conductor layer 2.
  • the radiating conductor is such that the shortest distance l 1 from the side end of the heat generating element 4 to the side end of the radiating conductor layer 21 is not less than twice and not more than four times the thickness t 1 of the radiating conductor layer 21.
  • L e is the longest diagonal distance 1/20 from the top of the circuit layer 22 along the diagonal at the interface between the circuit layer 22 heat conductor layer 21 to the side edge portions of the heat conductor layer 21
  • the heat-radiating conductor layer 21 and the circuit layer 22 are formed so as to satisfy the relationship of L e ⁇ 0.1 ⁇ L w / 2, so that the heat-dissipating conductor layer 21 has an interface with the circuit layer 22. It can suppress that it breaks along. Further, by chamfering the outer edge of the upper surface of the heat radiating conductor layer 21, the adhesion of the resin is improved when the electronic circuit device 100 is molded.
  • the stress generated at the interface between the two layers is relieved and the peeling of the layer is suppressed. be able to.
  • the porosity of the outer layer portion 23o in the metal intervening layer 23 is higher than the porosity of the inner layer portion 23i, the stress generated at the bonding interface between the radiating conductor layer 21 and the circuit layer 22 is relieved, and the bonding life is increased. It is possible to improve the heat dissipation and conductivity, and to improve the bonding reliability.
  • the heat dissipating conductor layer 21 is configured to have a first conductor portion 21A located on the circuit layer 22 side and a second conductor portion 21B located on the heating element 4 side. May be.
  • the shortest distance l 2 between the side end portion 4e of the heating element 4 and the side end portion 21Be of the second conductor portion 21B at the boundary surface between the first conductor portion 21A and the second conductor portion 21B is the second.
  • the thickness t 2 (t 2 ⁇ t 1 ) of the conductor portion 21B is preferably at least twice.
  • a metal intervening layer may be provided between the first conductor portion 21A and the second conductor portion 21B.
  • the metal intervening layer at this time can have the same configuration as the metal intervening layer 23 provided between the heat dissipation conductor layer 21 and the circuit layer 22.

Abstract

 基板が絶縁層と導体層との境界面に沿って割れてしまうことを抑制しつつ、導体層による放熱効果を高めること。 電子回路装置(100)は、絶縁層(1)と、絶縁層(1)の少なくとも一方の面側に形成された導体層(2)と、導体層(2)における絶縁層(1)とは反対側の面に接合層(3)を介して設けられた発熱体(4)とを有し、導体層(2)は、発熱体(4)側に位置する放熱導体層(21)と、絶縁層(1)側に位置する回路層(22)とを有し、放熱導体層(21)と回路層(22)の境界面における、発熱体(4)の側端部から放熱導体層(21)の側端部までの最短距離(l)が放熱導体層(21)の厚さ(t)以上である。

Description

電子回路装置
 本発明は、電子回路装置に関する。
 パワー半導体素子のように高周波の大電流で駆動すると発熱量が非常に大きくなるような半導体素子に対しては、熱を瞬時に逃がすために半導体素子の下側の導体層の熱容量を大きくする必要がある。そのために、導体層の面積や厚みを大きくして導体層の熱容量を大きくすることが提案されている(例えば、特許文献1参照)。
特開2003-188316号公報
 しかし、導体層の面積や厚みを大きくした場合、放熱効果は改善されるものの、製造工程において低温環境下におかれた後に高温環境下におかれるという温度サイクルが繰り返される際に、導体層に隣接する絶縁層の線膨張率と導体層の線膨張率との差が大きいことに起因して、基板が絶縁層と導体層の境界面に沿って割れてしまうおそれがある。
 本発明は、上記課題に鑑みてなされたものであり、基板が絶縁層と導体層との境界面に沿って割れてしまうことを抑制しつつ、導体層による放熱効果を高めることができる電子回路装置を提供することを目的とする。
 上記課題を解決するため、本発明は、電子回路装置であって、絶縁層と、前記絶縁層の少なくとも一方の面側に形成された導体層と、前記導体層における前記絶縁層とは反対側の面に接合層を介して設けられた発熱体とを有し、前記導体層は、前記発熱体側に位置する放熱導体層と、前記絶縁層側に位置する回路層とを有し、前記放熱導体層と前記回路層の境界面における、前記発熱体の側端部から前記放熱導体層の側端部までの最短距離lが前記放熱導体層の厚さt以上であることを特徴とする。
 この発明の一態様として、前記放熱導体層と前記回路層の境界面における、前記発熱体の側端部から前記放熱導体層の側端部までの最短距離lが前記放熱導体層の厚さtの2倍以上であることが好ましい。
 この発明の一態様として、前記回路層の最も長い対角線の距離Lと、前記回路層と前記放熱導体層の境界面における前記対角線に沿った前記回路層の頂部から前記放熱導体層の側端部までの最短距離Lとが以下の関係にあることが好ましい。
   L≧0.1×L/2
 この発明の一態様として、前記放熱導体層と前記回路層の境界面における、前記発熱体の側端部から前記放熱導体層の側端部までの最短距離lが前記放熱導体層の厚さtの4倍以下であることが好ましい。
 この発明の一態様として、前記放熱導体層は、前記回路層との境界面の面積よりも前記接合層との境界面の面積の方が小さいことが好ましい。
 この発明の一態様として、前記放熱導体層は、前記回路層側に位置する第1の導体部と、前記発熱体側に位置する第2の導体部とを有し、前記第1の導体部と前記第2の導体部の境界面における、前記発熱体の側端部と前記第2の導体部の側端部までの最短距離lが前記第2の導体部の厚さt(t<t)の2倍以上であることが好ましい。
 この発明の一態様として、前記導体層は、前記放熱導体層と前記回路層との間に金属介在層を有していることが好ましい。
 この発明の一態様として、前記金属介在層は、金属粒子の焼結体からなることが好ましい。
 この発明の一態様として、前記金属介在層は、前記放熱導体層の面と接する内層部と前記放熱導体層の側縁を囲むように延出した外層部とを有し、前記外層部の空隙率が、前記内層部の空隙率よりも高いことが好ましい。
 この発明の一態様として、前記放熱導体層の熱伝導率が90~427W/(m・K)であることが好ましい。
 この発明の一態様として、前記放熱導体層の線膨張率が3~18×10-6/Kであることが好ましい。
 本発明によれば、基板が絶縁層と導体層との境界面に沿って割れてしまうことを抑制しつつ、導体層による放熱効果を高めることができる。
電子回路装置の断面図である。 電子回路装置の平面図である。 横軸に発熱体の側端部から放熱導体層の側端部までの最短距離と放熱導体層の厚さとの比をとり、縦軸に一定時間経過後の発熱体の温度低下量をとって描いたグラフである。 横軸に回路層の最も長い対角線の距離に係数1/2を乗じた値と回路層と放熱導体層の境界面における対角線に沿った回路層の頂部から放熱導体層の側端部までの最短距離との比をとり、縦軸に温度サイクル試験で問題がなかったサンプル数をとって描いたグラフである。 他の例の電子回路装置の断面図である。
 この発明の好ましい実施形態について、図面を参照しながら説明する。なお、以下に示す実施形態は一つの例示であり、本発明の範囲において、種々の実施形態をとり得る。
<電子回路装置>
 図1に示すように、電子回路装置100は、回路基板として、セラミックスの絶縁層上に銅の回路層を直接接合したDBC(Directed Bonding Copper)基板を有している。ここで、DBC基板は一例であり、他にも、ろう材を介してセラミックスの絶縁層と銅の回路層とを接合した活性金属銅回路基板、すなわち、AMC基板(Active Metal Brazed Copper)、セラミックスの絶縁層上にアルミニウムの回路層を接合したDBA(Directed Brazed Alminum)基板等の基板であってもよい。
 電子回路装置100は、絶縁層10の両主面に回路層22と裏面導体層11を有する回路基板1と、導体層2と、接合層3と、発熱体4と、放熱デバイス5とを有している。回路基板1の一方の面に導体層2が積層され、導体層2に接合層3が積層され、接合層3に発熱体4が設けられている。回路基板1の他方の面に放熱デバイス5が設けられている。
(回路基板)
 回路基板1は、絶縁層10と、裏面導体層11と、回路層22とを有している。
 絶縁層10は、回路基板1を構成するものであり、図2に示すように、平面視矩形状に形成されると共に、有機材料またはセラミックス等から形成されている。セラミックスとしては、例えば、Al、AlN、Si、ガラスのいずれかの粉末原料、2種以上の粉末原料、またはこれらを主成分とする粉末原料に必要に応じてバインダー成分などを配合し、シート状に成形した後、焼成することにより作製されたものを使用することができる。また、セラミックスからなる絶縁層10は適宜、表面を砥粒で研磨する等して、平滑化してもよい。
 有機材料としては、ポリアミド、エポキシ、ポリイミド等の材料やこれらに置換めっき性、感光性を付与した材料全般を使用することができる。なお、使用可能な材料はこれらに限定されることはない。
 絶縁層10の厚さは、適宜設計することができ、100~1000μmであることが好ましいが、絶縁層10の厚さを100~300μmと薄くすることで電子回路装置100の発熱体4から放熱デバイス5への熱抵抗を小さくすることができる。
 裏面導体層11は、回路基板1を構成するものであり、図1に示すように、絶縁層10の回路層22が形成された面とは反対側の面に形成され、その厚みは基板に反りが生じないように回路層22とバランスを取った厚さで、おおよそ同じ厚さを有するように形成されている。裏面導体層11は、Cu、Al、Ag、Auからなる金属元素群から選ばれる1種の金属、2種以上の合金、または、1種以上を主成分とする合金からなることが好ましい。
 なお、回路層22については、導体層2と併せて説明する。
(導体層)
 導体層2は、発熱体4側に位置する放熱導体層21と、絶縁層1側に位置する回路層22と、放熱導体層21と回路層22との間に設けられた金属介在層23とを有している。
 放熱導体層21は、Cu、Al、Ag、Auからなる金属元素群から選ばれる1種の金属、2種以上の合金、または、1種以上を主成分とする合金からなることが好ましい。
 回路層22は、Cu、Al、Ag、Auからなる金属元素群から選ばれる1種の金属、2種以上の合金、または、1種以上を主成分とする合金からなることが好ましい。すなわち、放熱導体層21は、放熱性や線膨張率の差により金属介在層23に発生する熱応力の観点から、回路層22と同じ材料から構成することが好ましい。
 ここで、放熱導体層21と回路層22は、別個の層体を積層して導体層2を形成してもよいし、一体に形成してもよい。
 放熱導体層21を設けることにより、発熱体4の下側の熱容量を大きくすることができるため、放熱性に優れる電子回路装置を構成することができる。
 図2に示すように、放熱導体層21及び回路層22は、それぞれ平面視矩形状に形成されている。放熱導体層21は、回路層22に対向する側(下面側)の面積が、回路層22における放熱導体層21に対向する側(上面側)の面積よりも小さくなるように形成されている。回路層22は、絶縁層10に対向する側(下面側)の面積が、絶縁層10における回路層22に対向する側(上面側)の面積よりも小さくなるように形成されている。
 ここで、放熱導体層21と回路層22の境界面における、発熱体4の側端部4eから放熱導体層21の側端部21eまでの平面上における(平面に沿った)最短距離lは、放熱導体層21の厚さt以上となっている。より詳細には、この最短距離lは、放熱導体層21の厚さtの2倍以上かつ4倍以下であることが好ましい。
 放熱導体層21は、接合層3側(上面側)の端部が面取り加工されており、回路層22との境界面の面積よりも接合層3との境界面の面積の方が小さくなるように形成されている。より詳細には、放熱導体層21における接合層3との境界面は、接合層3の放熱導体層21側の面(下面)と同じ又はより大きい面積の面となるように形成され、放熱導体層21における回路層22との境界面は、回路層22の放熱導体層21側の面(上面)と同じ又はより小さい面積の面となるように形成されている。なお、放熱導体層21の熱伝導率は、90~427W/(m・K)の範囲内であることが好ましい。また、放熱導体層21の線膨張率が3~18×10-6/Kであることが好ましく、3~10×10-6/Kであることがさらに好ましい。
 回路層22は、平面上において自身が有する最も長い対角線Lの距離Lと、この回路層22と放熱導体層21の境界面における対角線Lに沿った回路層22の頂部22fから放熱導体層21の側端部21fまでの最短距離Lとが以下の式(1)の関係を満たすように形成されている。
   L≧0.1×L/2  ・・・(1)
 金属介在層23は、金属粒子の焼結体であり、内部に多数の空孔を有する。ここでいう空孔は、焼結体中に形成された金属材料が存在しない部分であり、金属微粒子間の隙間によって形成されている。金属介在層23の内部において、金属材料の占める体積割合が50~99.999%の範囲にあることが好ましい。空孔には、任意の割合で有機材料が充填されていてもよい。より詳細には、一つの空孔に対して任意の割合で有機材料が充填されており、このような空孔が任意の割合で複数存在していてもよい。このとき、有機材料が完全に充填されている空孔も有り、全く充填されていない空孔も存在していてもよい。空孔の大きさは、平均最大幅が10~1000nmであることが好ましい。空孔の大きさが、10nmより小さいと、金属介在層23を構成する金属材料が熱により膨張しようとしたときや、絶縁層1と回路層22および放熱導体層21との線膨張率差に起因する応力が生じたときに、その応力を効率的に吸収できない。1000nmより大きいと、導電率が低くなってしまう。
 なお、金属介在層23は金属粒子の焼結体に限らず、半田や銀ペーストを用いてもよい。
 金属微粒子は、Cu、Ag、Au、Al、Ni、Sn、In、Tiのうち、いずれか1種または2種以上の金属を主たる構成要素とすることが好ましい。特にマイグレーションを抑制することができることからCuが好適である。また、放熱導体層21や回路層22と同じ素材にすると接合しやすい。金属微粒子は、一次粒子の平均粒子径1nm~500nmの粒子を50質量%以上、かつ一次粒子の平均粒子径0.5μm~50μmの粒子を50質量%以下の割合で含むことが好ましい。
 また、空孔に充填される有機材料としては、ポリアミド、エポキシ、ポリイミド、多価アルコール等やこれらに置換めっき性、感光性を付与した材料全般がある。また、金属微粒子を焼結する前の状態では、取り扱いを容易にするために、金属微粒子の他に、分散材、増粘剤を含むことが好ましい。分散剤としては、多価アルコール等を使用することができる。また、増粘剤としては、ポリビニルピロリドン等を使用することができる。
 金属介在層23は、図1に示すように、放熱導体層21の下面と接する内層部23iと放熱導体層21の外周に延出した外層部23oとを有し、外層部23oの空隙率が、当該内層部23iの空隙率よりも高くなっている。このように形成することで、放熱導体層21と回路層22の接合界面に発生する応力が緩和されて、接合寿命を向上することができ、放熱性と導電性を維持し接合信頼性を向上できる。このとき、外層部23oの厚さ方向中間部の空隙率(B)と、内層部23iの厚さ方向中間部の空隙率(A)の比[(B)/(A)]が1.10~1.60であることが好ましく、内層部23iの空隙率(A)が10.5~20.0%であることが更に好ましい。
 金属介在層23の厚さは、5~500μmであることが好ましい。5μm未満であると、回路層22の結晶サイズが大きいため表面が粗くなり局所的なボイドが生じることがある。500μm超であると供給厚さバラつきも大きくなり接続ムラが生じる。また、確実に接続させる観点から10~300μmであることが特に好ましい。
 金属介在層23を設けることにより、金属介在層23を構成する金属材料が熱により膨張しようとしたときや、絶縁層1と、放熱導体層21及び回路層22との線膨張率差に起因する応力が生じたときに、その応力を吸収することができるため、回路層22の端部にかかる応力が緩和される。また、金属介在層23による放熱導体層21と回路層22との接合のため熱抵抗が低くなり、放熱性がよい。
 尚、上記の距離は測定顕微鏡(株式会社ミツトヨ製 MF―A4020D)を用いて測定している。放熱導電層の厚さは積層前にマイクロメータで測定して確認する。
(接合層)
 接合層3は、金属介在層23と同様の金属粒子の焼結体であって焼結後の融点が250℃以上のものを用いることができる。特に、放熱導体層21との接合性という理由からCu微粒子の焼結体が好ましい。金属粒子の焼結体を介して、放熱導体層21と発熱体4とを接続することにより、放熱導体層21を構成する金属が熱により膨張しても、空孔に吸収されるため、見かけ上の弾性率が低下する。また、発熱体4と絶縁層1と放熱導体層21の線膨張率差に起因する応力が生じても、空孔に吸収されるため、応力が緩和される。したがって、発熱体4と放熱導体層21との間で生じる剥離やクラックを低減することができる。なお、接合層3は、金属粒子の焼結体に限定されるものではなく、半田や銀ペーストなどの一般のダイボンディング材を使用してもよい。
(発熱体)
 発熱体4は、半導体による電子部品、電子部品の機能中心部の素子であり、チップ単位に平面視矩形状に切断して形成されている。発熱体4は、Si、SiC、GaN、GaAsなどが採用でき、特に、耐熱性に優れるSiCが好適である。
(放熱デバイス)
 放熱デバイス5は、回路基板1の絶縁層10における導体層2が積層されている面と反対側の面である裏面導体層11に設けられている。放熱デバイス5は、発熱体4からの発熱を放熱するための金属板等で構成されている。
 以下、実施例により本発明について説明する。
 回路基板として、セラミックスの絶縁層の両面に、絶縁層の外縁よりも内側になるように銅の回路層を接合したDBC基板((日鉄住金エレクトロデバイス株式会社製、Cu(0.3mmt)/Al(0.635mmt)/Cu(0.3mmt)))を準備した。
 さらに、回路層上に銅ペーストの金属介在層を形成し、この金属介在層上に銅の放熱導体層を接合した。このときの金属介在層は以下のように形成した。
 放熱導体層に対応する位置に、放熱導体層と同等サイズの開口を有する厚さ100μmtのステンレスのメタルマスクを配置し、メタルスキージを用いて銅ナノペーストを印刷した。銅ナノペーストは、金属微粒子として、平均粒径20nmの銅粒子を、分散剤(ジエチレングリコール)に分散させ、増粘剤(ポリビニルピロリドン)を添加したものを用いた。印刷の条件は、スキージ圧1MPa、スキージ角度5°、スキージ速度5mm/sec、オンコンタクトで行った。
 印刷後に、100℃で10分間、大気雰囲気で乾燥させた後、放熱導体層を銅ナノペースト上に載置し、加圧、加熱して接合した。接合は、ミカドテクノス株式会社製の真空プレス機を用いて、減圧雰囲気下、温度300℃、圧力10MPa、時間10Minで行った。また、副資材としてのテフロン(登録商標)シートの上にDBC基板の銅板側を載置し、導体層の上にさらにテフロン(登録商標)シートを配置した状態で接合を行った。この時の焼結体層としては、35μmの厚さとなった。
 このとき、放熱導体層として、厚さtが0.2mm、0.3mm、1mm、2mm、3mm、5mmと異なる銅板(無酸素銅(C1020))を用いた。また、放熱導体層は、その上に接合層を介して設けられる発熱体の側端部から自身の側縁までの平面上の最短距離lが、厚さtの0.3倍~10倍の範囲内で大きさの異なるものを準備した。すなわち、放熱導体層は、大きさや厚さが異なる複数種類のものを準備し、金属介在層を介して回路層上に接合した。
 放熱導体層上には銅ペーストの接合層を形成し、接合層を介して5mm角で厚み230μmの発熱体(接合面はTi―Ni-Au合金でメタライズされた半導体素子)を放熱導体層に接合した。このとき用いた銅ペーストは金属介在層を形成した銅ペーストと同じものを用い、5mm角の開口を有するメタルマスクを用いて同じ条件で印刷供給し、同じ条件で乾燥させ、その上に半導体素子を搭載し同じ条件で加圧加熱して接合した。
 回路層については、最も長い対角線の長さ(L)が10mm、20mm、30mm、40mm、50mmと異なるものを準備した。放熱導体層の厚さは積層前にマイクロメータで測定して確認した。また、回路層と放熱導体層の大きさについては、回路層の最も長い対角線の距離Lに係数1/20を乗じた値と回路層と放熱導体層の境界面における対角線に沿った回路層の頂部から放熱導体層の側端部までの最短距離Leとの比が0.03~0.8の範囲内で異なるものを準備した。すなわち、回路層は、大きさが異なる40種類のものを準備し、絶縁層上に接合した。接合後、これらの距離は測定顕微鏡(株式会社ミツトヨ製 MF―A4020D)を用いて50倍に拡大して測定した。
<評価方法>
 評価は、以下の2項目に基づいて行った。
(放熱性試験)
 発熱体に114Wの発熱に相当する電力を供給し、かつ、裏面側に設けられた放熱デバイスを介して、冷却水により20℃に保たれた冷却用熱媒体へ放熱を行いながら、発熱体の温度が上がりきって1秒間の温度変化が±1℃以下になるまで加熱し、そのときの温度を計測した。この温度計測を、l=0となるサンプルと、実施例で用意したサンプルに対して実施し、l=0となるサンプルの計測温度と各サンプルの計測温度の差ΔTを算出し、放熱評価を行った。温度は、各サンプルに対して3回ずつ計測し、3回の計測温度の平均値を各サンプルの計測温度として用いた。
(温度サイクル試験)
 発熱体を設けた各電子回路装置のサンプル10個に対して温度サイクル試験(TCT)を行った。温度サイクル試験は、温度変化に対する耐性を評価するものであり、サンプルを175℃の環境下に30分間おいた後、-55℃の環境下に30分間おくことを1サイクルとし(昇降温速度46℃/分以上)、1000サイクル繰り返した後に、超音波探傷(日立建機株式会社製、 Mi-Scope)とプローブ(型式PQ2-13、50MHz)を使用して、半導体素子側から超音波を照射し、反射法で半導体素子裏面から金属部材表面まで入るようにゲートを調整し、剥離の測定を行った。これにより、絶縁層からの導体層の剥離面積が20%以上になるサンプルの個数と発熱体に割れ等の破損が生じているサンプルの個数を計測した。
<評価結果>
 図3は、横軸に発熱体の側端部から放熱導体層の側端部までの最短距離lと放熱導体層の厚さtとの比をとり、縦軸に一定時間経過後(10秒程度)の発熱体の温度変化量をとって描いたグラフである。なお、厚さtが0.2mm及び0.3mmのサンプルでは、最短距離lが厚さtの0.5倍超となるサンプルを用いて評価を行ったが、図3ではl/tの値が5のときが最大になるようなグラフとした。
 図3に示すように、同じ厚さの放熱導体層で比較した場合、発熱体の側端部から放熱導体層の側端部までの最短距離lが長くなるにつれて、一定時間経過後(10秒程度)の温度が低くなっており、放熱効果が大きいことが確認できる。
 最短距離lが放熱導体層の厚さtよりも長くなる(l/t≧1となる)と、ここ(l/t=1)を境として、放熱導体層がどの厚さであっても、温度が大きく下がり、放熱効果が高いことが確認できる。さらに、最短距離lが厚さtの2倍以上(l/t≧2)になると、より放熱効果が高いことが確認できる。また、最短距離lが厚さtの4倍を超えて(l/t>4)もそれ程の放熱効果は確認できず、基板の大型化を避けるためにも、最短距離lは厚さtの4倍以下であることが好ましいことが確認できた。
 次に、発熱体の側端部から放熱導体層の側端部までの最短距離lと放熱導体層の厚さtとの比が同じである場合、放熱導体層が厚くなるほど、一定時間経過後の温度が低くなっており、放熱効果が大きいことが確認できる。
 図4は、横軸に回路層の最も長い対角線の距離Lに係数1/2を乗じた値と回路層と放熱導体層の境界面における対角線に沿った回路層の頂部から放熱導体層の側端部までの最短距離Lとの比をとり、縦軸に温度サイクル試験で問題がなかったサンプルの個数をとって描いたグラフである。
 図4に示すように、最短距離Lが最長の対角線の距離Lの1/20に相当する長さ以上({L/(L/2)}≧0.1)になると、温度サイクル試験で問題がなかったサンプルの個数が大幅に増加し、温度変化に対する耐性が向上することが確認できる。
<実施形態の作用、効果>
 以上のように、上記の構成を有する電子回路装置100によれば、発熱体4から発生する熱は導体層2に伝わるが、その拡散範囲は、基板の面に対して直角をなす直線に対してほぼ45°となる範囲が大半である。ここで、放熱導体層21と回路層22の境界面における、発熱体4の側端部4eから放熱導体層21の側端部21eまでの最短距離lが放熱導体層21の厚さtと同じ又は厚さtよりも長くなっているので、発熱体4から伝わる熱の拡散は、放熱導体層21の側面で阻害されることなく、放熱導体層21に伝えられ、放熱される。よって、絶縁層1が導体層2の界面に沿って割れてしまうことを抑制しつつ、放熱導体層21の放熱効果を高めることができる。
 また、発熱体4の側端部から放熱導体層21の側端部までの最短距離lが放熱導体層21の厚さtに対して2倍以上で4倍以下となるように放熱導体層21を形成することで、より小さいサイズで放熱効果を高めることができる。
 また、回路層22と放熱導体層21の境界面における対角線に沿った回路層22の頂部から放熱導体層21の側端部までの最短距離Lが最長の対角線の距離の1/20に相当する長さ以上、すなわち、L≧0.1×L/2の関係を満たすように、放熱導体層21及び回路層22を形成することで、放熱導体層21が回路層22との界面に沿って割れてしまうことを抑制することができる。
 また、放熱導体層21の上面の外縁を面取りすることにより、電子回路装置100をモールドする際に樹脂の密着性が向上する。
 また、放熱導体層21と回路層22との間に、金属粒子の焼結体からなる金属介在層23を設けることにより、両層の界面に発生する応力が緩和され、層の剥離を抑制することができる。
 また、金属介在層23における外層部23oの空隙率を内層部23iの空隙率よりも高くすることで、放熱導体層21と回路層22の接合界面に発生する応力が緩和されて、接合寿命を向上することができ、放熱性と導電性を維持し接合信頼性を向上できる。
<その他>
 なお、本発明は上記実施形態に限られるものではない。例えば、図5に示すように、放熱導体層21は、回路層22側に位置する第1の導体部21Aと、発熱体4側に位置する第2の導体部21Bとを有するように構成してもよい。この場合、第1の導体部21Aと第2の導体部21Bの境界面における、発熱体4の側端部4eと第2の導体部21Bの側端部21Beまでの最短距離lが第2の導体部21Bの厚さt(t<t)の2倍以上であることが好ましい。
 また、第1の導体部21Aと第2の導体部21Bの間には、金属介在層を設けてもよい。このときの金属介在層は、放熱導体層21と回路層22の間に設けられた金属介在層23と同様の構成をとることができる。
1 回路基板
2 導体層
3 接合層
4 発熱体
5 放熱デバイス
10 絶縁層
11 裏面導体層
21 放熱導体層
22 回路層
23 金属介在層
100 電子回路装置

Claims (11)

  1.  絶縁層と、前記絶縁層の少なくとも一方の面側に形成された導体層と、前記導体層における前記絶縁層とは反対側の面に接合層を介して設けられた発熱体とを有し、
     前記導体層は、前記発熱体側に位置する放熱導体層と、前記絶縁層側に位置する回路層とを有し、
     前記放熱導体層と前記回路層の境界面における、前記発熱体の側端部から前記放熱導体層の側端部までの最短距離lが前記放熱導体層の厚さt以上であることを特徴とする電子回路装置。
  2.  前記放熱導体層と前記回路層の境界面における、前記発熱体の側端部から前記放熱導体層の側端部までの最短距離lが前記放熱導体層の厚さtの2倍以上であることを特徴とする請求項1に記載の電子回路装置。
  3.  前記回路層の最も長い対角線の距離Lと、前記回路層と前記放熱導体層の境界面における前記対角線に沿った前記回路層の頂部から前記放熱導体層の側端部までの最短距離Lとが以下の関係にあることを特徴とする請求項1又は2に記載の電子回路装置。
       L≧0.1×L/2
  4.  前記放熱導体層と前記回路層の境界面における、前記発熱体の側端部から前記放熱導体層の側端部までの最短距離lが前記放熱導体層の厚さtの4倍以下であることを特徴とする請求項2に記載の電子回路装置。
  5.  前記放熱導体層は、前記回路層との境界面の面積よりも前記接合層との境界面の面積の方が小さいことを特徴とする請求項1~4までのいずれか1項に記載の電子回路装置。
  6.  前記放熱導体層は、前記回路層側に位置する第1の導体部と、前記発熱体側に位置する第2の導体部とを有し、
     前記第1の導体部と前記第2の導体部の境界面における、前記発熱体の側端部と前記第2の導体部の側端部までの最短距離lが前記第2の導体部の厚さt(t<t)の2倍以上であることを特徴とする請求項1~5までのいずれか1項に記載の電子回路装置。
  7.  前記導体層は、前記放熱導体層と前記回路層との間に金属介在層を有していることを特徴とする1~6までのいずれか1項に記載の電子回路装置。
  8.  前記金属介在層は、金属粒子の焼結体からなることを特徴とする請求項7に記載の電子回路装置。
  9.  前記金属介在層は、前記放熱導体層の面と接する内層部と前記放熱導体層の側縁を囲むように延出した外層部とを有し、前記外層部の空隙率が、前記内層部の空隙率よりも高いことを特徴とする請求項7又は8に記載の電子回路装置。
  10.  前記放熱導体層の熱伝導率が90~427W/(m・K)であることを特徴とする請求項1~9までのいずれか1項に記載の電子回路装置。
  11.  前記放熱導体層の線膨張率が3~18×10-6/Kであることを特徴とする請求項1~10までのいずれか1項に記載の電子回路装置。
PCT/JP2014/083083 2014-01-10 2014-12-15 電子回路装置 WO2015104954A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14877890.5A EP3093882B1 (en) 2014-01-10 2014-12-15 Electronic circuit device
JP2015524520A JP5889488B2 (ja) 2014-01-10 2014-12-15 電子回路装置
KR1020167015071A KR20160108307A (ko) 2014-01-10 2014-12-15 전자회로장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014003672 2014-01-10
JP2014-003672 2014-01-10

Publications (1)

Publication Number Publication Date
WO2015104954A1 true WO2015104954A1 (ja) 2015-07-16

Family

ID=53523792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083083 WO2015104954A1 (ja) 2014-01-10 2014-12-15 電子回路装置

Country Status (4)

Country Link
EP (1) EP3093882B1 (ja)
JP (1) JP5889488B2 (ja)
KR (1) KR20160108307A (ja)
WO (1) WO2015104954A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012738A1 (ja) * 2017-07-11 2019-01-17 株式会社日立製作所 半導体モジュールおよび半導体モジュールの製造方法
WO2019093121A1 (ja) * 2017-11-13 2019-05-16 京セラ株式会社 ペースト組成物、半導体装置及び電気・電子部品
CN112399724A (zh) * 2020-11-04 2021-02-23 广东佛智芯微电子技术研究有限公司 一种基于键合丝的精细线路修复方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017215048A1 (de) * 2017-08-29 2019-02-28 Conti Temic Microelectronic Gmbh Schaltungsträger für Leistungselektronik und Leistungselektronikmodul mit einem Schaltungsträger
JP2022511552A (ja) 2018-12-21 2022-01-31 ウェイモ エルエルシー 自動運転車両カメラのセンサクランプ設計

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551271A (ja) * 1991-08-20 1993-03-02 Nippon Carbide Ind Co Inc 金属板とセラミツクス基板とからなる接合体
JPH104156A (ja) * 1996-06-14 1998-01-06 Mitsubishi Electric Corp 半導体装置用絶縁基板及び半導体装置
JPH10125821A (ja) * 1996-08-27 1998-05-15 Dowa Mining Co Ltd 高信頼性半導体用基板
JP2003188316A (ja) 2002-12-20 2003-07-04 Ibiden Co Ltd セラミックdbc基板およびその製造方法。
JP2004014589A (ja) * 2002-06-04 2004-01-15 Dowa Mining Co Ltd 金属−セラミックス接合体およびその製造方法
JP2006202938A (ja) * 2005-01-20 2006-08-03 Kojiro Kobayashi 半導体装置及びその製造方法
JP2006319146A (ja) * 2005-05-13 2006-11-24 Fuji Electric Holdings Co Ltd 配線基板
JP2010103311A (ja) * 2008-10-23 2010-05-06 Toyota Central R&D Labs Inc 積層基板
JP2012531728A (ja) * 2009-07-02 2012-12-10 キュラミーク エレクトロニクス ゲーエムベーハー 電子装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852832A (ja) * 1981-09-25 1983-03-29 Hitachi Ltd 半導体装置
JP2001237252A (ja) * 2000-02-22 2001-08-31 Hitachi Ltd 半導体装置とそれを用いた電子装置
DE10016129A1 (de) * 2000-03-31 2001-10-18 Siemens Ag Verfahren zum Herstellen einer wärmeleitenden Verbindung zwischen zwei Werkstücken

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551271A (ja) * 1991-08-20 1993-03-02 Nippon Carbide Ind Co Inc 金属板とセラミツクス基板とからなる接合体
JPH104156A (ja) * 1996-06-14 1998-01-06 Mitsubishi Electric Corp 半導体装置用絶縁基板及び半導体装置
JPH10125821A (ja) * 1996-08-27 1998-05-15 Dowa Mining Co Ltd 高信頼性半導体用基板
JP2004014589A (ja) * 2002-06-04 2004-01-15 Dowa Mining Co Ltd 金属−セラミックス接合体およびその製造方法
JP2003188316A (ja) 2002-12-20 2003-07-04 Ibiden Co Ltd セラミックdbc基板およびその製造方法。
JP2006202938A (ja) * 2005-01-20 2006-08-03 Kojiro Kobayashi 半導体装置及びその製造方法
JP2006319146A (ja) * 2005-05-13 2006-11-24 Fuji Electric Holdings Co Ltd 配線基板
JP2010103311A (ja) * 2008-10-23 2010-05-06 Toyota Central R&D Labs Inc 積層基板
JP2012531728A (ja) * 2009-07-02 2012-12-10 キュラミーク エレクトロニクス ゲーエムベーハー 電子装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3093882A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012738A1 (ja) * 2017-07-11 2019-01-17 株式会社日立製作所 半導体モジュールおよび半導体モジュールの製造方法
JP2019016755A (ja) * 2017-07-11 2019-01-31 株式会社日立製作所 半導体モジュールおよび半導体モジュールの製造方法
WO2019093121A1 (ja) * 2017-11-13 2019-05-16 京セラ株式会社 ペースト組成物、半導体装置及び電気・電子部品
JPWO2019093121A1 (ja) * 2017-11-13 2020-12-24 京セラ株式会社 ペースト組成物、半導体装置及び電気・電子部品
JP7222904B2 (ja) 2017-11-13 2023-02-15 京セラ株式会社 ペースト組成物、半導体装置及び電気・電子部品
US11859112B2 (en) 2017-11-13 2024-01-02 Kyocera Corporation Paste composition, semiconductor device, and electrical/electronic component
CN112399724A (zh) * 2020-11-04 2021-02-23 广东佛智芯微电子技术研究有限公司 一种基于键合丝的精细线路修复方法

Also Published As

Publication number Publication date
EP3093882A1 (en) 2016-11-16
JPWO2015104954A1 (ja) 2017-03-23
EP3093882A4 (en) 2017-09-27
EP3093882B1 (en) 2021-02-17
JP5889488B2 (ja) 2016-03-22
KR20160108307A (ko) 2016-09-19

Similar Documents

Publication Publication Date Title
US9723707B2 (en) Power module substrate, power module substrate with heatsink, power module, and method for producing power module substrate
JP5128951B2 (ja) ヒートシンクモジュール及びその製造方法
JP5889488B2 (ja) 電子回路装置
JP5759902B2 (ja) 積層材およびその製造方法
JP6146007B2 (ja) 接合体の製造方法、パワーモジュールの製造方法、パワーモジュール用基板及びパワーモジュール
TWI781246B (zh) 附散熱器的功率模組用基板及附散熱器的功率模組用基板的製造方法
TW201325330A (zh) 配線基板及其製造方法以及半導體裝置
JP5520815B2 (ja) 絶縁基板およびパワーモジュール用ベース
JP2006269966A (ja) 配線基板およびその製造方法
JP2011071260A (ja) 積層材およびその製造方法、絶縁積層材およびその製造方法
JP5420078B2 (ja) 接合体およびそれを備えた半導体装置、ならびに、接合方法およびそれを用いた製造方法
WO2017051798A1 (ja) 発光モジュール用基板、発光モジュール、冷却器付き発光モジュール用基板、および発光モジュール用基板の製造方法
JP7299672B2 (ja) セラミックス回路基板及びその製造方法
JP6790945B2 (ja) 絶縁回路基板の製造方法、及び、ヒートシンク付き絶縁回路基板の製造方法
JP2010238965A (ja) パワーモジュール用基板、パワーモジュール用基板の製造方法及びパワーモジュール
JP2014160707A (ja) 接合体の製造方法、パワーモジュールの製造方法、及びパワーモジュール
JP7039933B2 (ja) 接合体、絶縁回路基板、ヒートシンク付絶縁回路基板、ヒートシンク、及び、接合体の製造方法、絶縁回路基板の製造方法、ヒートシンク付絶縁回路基板の製造方法、ヒートシンクの製造方法
JP4876612B2 (ja) 絶縁伝熱構造体及びパワーモジュール用基板
JP7087446B2 (ja) 放熱板付絶縁回路基板、及び、放熱板付絶縁回路基板の製造方法
JP2019067802A (ja) セラミックス回路基板及びその製造方法
JP6825411B2 (ja) 絶縁回路基板、絶縁回路基板の製造方法
JP4548317B2 (ja) 絶縁回路基板及びこれを備えるパワーモジュール構造体
JP2005277381A (ja) 電子部品収納用パッケージおよび電子装置
JP7063559B2 (ja) ベース板及びパワーモジュール
JP2024054510A (ja) 熱伝導部材および熱伝導部材の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015524520

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167015071

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014877890

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014877890

Country of ref document: EP