WO2015104045A1 - Metallkomplexe - Google Patents

Metallkomplexe Download PDF

Info

Publication number
WO2015104045A1
WO2015104045A1 PCT/EP2014/003398 EP2014003398W WO2015104045A1 WO 2015104045 A1 WO2015104045 A1 WO 2015104045A1 EP 2014003398 W EP2014003398 W EP 2014003398W WO 2015104045 A1 WO2015104045 A1 WO 2015104045A1
Authority
WO
WIPO (PCT)
Prior art keywords
radicals
mmol
group
atoms
substituted
Prior art date
Application number
PCT/EP2014/003398
Other languages
English (en)
French (fr)
Inventor
Philipp Stoessel
Nils KOENEN
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to EP14818877.4A priority Critical patent/EP3094638B1/de
Priority to KR1020167022022A priority patent/KR102378657B1/ko
Priority to US15/110,770 priority patent/US11005050B2/en
Priority to CN201480073054.9A priority patent/CN105916868B/zh
Priority to JP2016563244A priority patent/JP6618927B2/ja
Publication of WO2015104045A1 publication Critical patent/WO2015104045A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0086Platinum compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to metal complexes which are suitable for use as emitters in organic electroluminescent devices.
  • OLEDs organic electroluminescent devices
  • organic semiconductors are used as functional materials
  • OLEDs organic electroluminescent devices
  • organometallic complexes that show phosphorescence instead of fluorescence.
  • organometallic compounds as phosphorescence emitters.
  • iridium and platinum complexes are used in phosphorescent OLEDs as triplet emitters in particular.
  • iridium complexes in particular bis- and tris-ortho-metallated complexes with aromatic ligands are used, wherein the ligands on a negatively charged carbon atom and a neutral nitrogen atom or on a negatively charged carbon atom and a neutral
  • Carbene carbon atom bind to the metal.
  • complexes are tris (phenylpyridyl) iridium (III) and derivatives thereof (eg according to US 2002/0034656 or WO 20 0/027583).
  • phenylpyridyl iridium
  • a number of related ligands and iridium or platinum complexes are known from the literature, for example complexes with 1- or 3-phenylisoquinoline ligands (for example according to EP 1348711 or WO 2011/028473), with 2-phenyl-quinolines (eg.
  • the object of the present invention is therefore to provide new metal complexes which are suitable as emitters for use in OLEDs.
  • the object is to provide emitters having improved properties in terms of efficiency, operating voltage,
  • the invention thus relates to a compound according to formula (1),
  • M is iridium or platinum
  • CyC is an aryl or heteroaryl group having 5 to 18 aromatic ring atoms or a fluorene or azafluorene group, which in each case via a carbon atom coordinated to M and which may each be substituted by one or more radicals R and which each have a covalent bond with CyD is connected;
  • CyD is a heteroaryl group having 5 to 18 aromatic ring atoms, which coordinates to M via a neutral nitrogen atom or via a carbene carbon atom and which may be substituted by one or more R radicals and which is linked to CyC via a covalent bond;
  • a 1 , A 2 is the same or different at each occurrence CR 2 or N;
  • a 3 are identical or different in each occurrence an alkylene group having 2 or 3 carbon atoms in which a carbon atom may be replaced by oxygen and which may be substituted with one or more radicals R 3; with the proviso that in A 1 -A 3 -A 2 or A -AA 2 not two heteroatoms are bonded directly to each other;
  • Radicals R 4 can be substituted, or a Diarylaminooeuvre, Deteroarylaminooeuvre or Aryiheteroarylaminooeuvre with 10 to 40 aromatic ring atoms, which can be substituted by one or more remainders R 4 ;
  • two or more adjacent radicals R may together contain a mono- or polycyclic, alipha- form table, aromatic or heteroaromatic ring system, and / or two radicals R 3 may together form a mono- or polycyclic aliphatic ring system, wherein the ring formation between two radicals R 3 , which are bonded to A 3 and A 4 , possible is;
  • R 4 is the same or different at each occurrence as H, D, F or a
  • aliphatic, aromatic and / or heteroaromatic hydrocarbon radical having 1 to 20 C atoms, in which also one or more H atoms may be replaced by F; two or more substituents R 4 may also together form a mono- or polycyclic ring system;
  • L ' is the same or different at each occurrence a ligand; n is 1, 2 or 3; m is O, 1, 2, 3 or 4; in this case also several ligands L can be linked to one another or L to L 'via a single bond or a divalent or trivalent bridge and thus span a tridentate, tetradentates, pentadentates or hexadentate ligand system; In this case, a substituent R can additionally coordinate to M; characterized in that the partial structure of the formula (2) has at least one structural unit of the abovementioned formula (3).
  • a partial structure of the formula (3) ie a fused aliphatic bicyclic is essential to the invention.
  • a double bond between the two carbon atoms, which are part of CyC or CyD is formally depicted. This represents a simplification of the chemical structure, since these two carbon atoms are transformed into an aromatic or heteroaromatic Aromatic system of the ligand are involved and thus the bond between these two carbon atoms formally lies between the degree of binding of a single bond and that of a double bond.
  • the characterization of the formal double bond is not intended to be limiting to the structure, but it will be apparent to those skilled in the art that it is meant herein an aromatic bond.
  • adjacent carbon atoms means that the carbon atoms are directly bonded to each other
  • adjacent radicals in the definition of the radicals means that these radicals are bonded either to the same carbon atom or to adjacent carbon atoms.
  • An aryl group for the purposes of this invention contains 6 to 40 carbon atoms;
  • a heteroaryl group contains 2 to 40 C atoms and at least one heteroatom, with the proviso that the sum of C atoms and heteroatoms gives at least 5.
  • the heteroatoms are preferably selected from N, O and / or S.
  • an aryl group or heteroaryl group is either a simple aromatic cycle, ie benzene, or a simple heteroaromatic cycle, for example, pyridine, pyrimidine, thiophene, etc., or a fused aryl or heteroaryl group, for example naphthalene, anthracene,
  • An aromatic ring system in the sense of this invention contains 6 to 60 carbon atoms in the ring system.
  • a heteroaromatic ring system in the sense of this invention contains 1 to 60 C atoms and at least one heteroatom in the ring system, with the proviso that the sum of C atoms and heteroatoms gives at least 5.
  • the heteroatoms are preferably selected from N, O and / or S.
  • An aromatic or heteroaromatic ring system in the sense of this invention is to be understood as meaning a system which does not necessarily contain only aryl or heteroaryl groups, but in which several aryls are also present - or heteroaryl groups by a non-aromatic unit (preferably less than 10% of the atoms other than H), such as.
  • N or O atom or a carbonyl group may be interrupted.
  • systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ethers, stilbene, etc. are to be understood as aromatic ring systems in the context of this invention, and also systems in which two or more aryl groups, for example by a linear or cyclic alkyl group or interrupted by a silyl group.
  • systems in which two or more aryl or heteroaryl groups are bonded directly to each other, such as.
  • biphenyl or terphenyl also be understood as an aromatic or heteroaromatic ring system.
  • a cyclic alkyl, alkoxy or thioalkoxy group is understood as meaning a monocyclic, a bicyclic or a polycyclic group.
  • a C 1 - to C 40 -alkyl group in which also individual H atoms or CH 2 groups can be substituted by the abovementioned groups for example the radicals methyl, ethyl, n-propyl, Propyl, cyclopropyl, n-butyl, i-butyl, s-butyl, t-butyl, cyclobutyl, 2-methylbutyl, n-pentyl, s-pentyl, t-pentyl, 2-pentyl, neo-pentyl, cyclopentyl, n- Hexyl, s-hexyl, t -hexyl, 2-hexyl, 3 Hexyl
  • alkenyl group is understood as meaning, for example, ethenyl, propenyl, butenyl, pentenyl, cyclopentenyl, hexenyl, cyclohexenyl, heptenyl, cycloheptenyl, octenyl, cyclooctenyl or cyclooctadienyl.
  • alkynyl group is meant, for example, ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl or octynyl.
  • a C 1 to C 40 alkoxy group is meant for example methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy or 2-methylbutoxy.
  • aromatic or heteroaromatic ring system having 5-60 aromatic ring atoms, which may be substituted in each case with the abovementioned radicals and which may be linked via any positions on the aromatic or heteroaromatic, are understood, for example, groups which are derived from benzene , Naphthalene, anthracene, benzanthracene, phenanthrene, benzophenanthrene, pyrene, chrysene, perylene, fluoranthene, benzfluoranthene, naphthacene, pentacene, benzpyrene, biphenyl, biphenylene, terphenyl, terphenylene, fluorene, spirobifluorene, dihydrophenanthrene, dihydropyrene, tetrahydropyrene, cis- or trans indenofluorene, cis or trans monobenzoindenofluorene, cis or trans dibenzoindene
  • the indices n and m are chosen such that the coordination number on the metal M in total, depending on the metal, corresponds to the usual coordination number for this metal. This is the coordination number 6 for iridium (III) and the coordination number 4 for platinum (II).
  • n 1 or 2
  • CyC is an aryl or heteroaryl group having 6 to 14 aromatic ring atoms, more preferably having 6 to 10 aromatic ring atoms, most preferably having 6 aromatic ring atoms, or a fluorene or azafluorene group each having a carbon atom coordinated to M, which may be substituted with one or more R groups and which is linked to CyD via a covalent bond.
  • Preferred embodiments of the group CyC are the structures of the following formulas (CyC-1) to (CyC-19), wherein the group CyC in each case binds to CyD at the position indicated by # and coordinates to M at the position marked by *,
  • X is the same or different CR or N at each occurrence
  • W is the same or different at each occurrence NR, O, S or CR 2 . If the group of formula (3) is attached to CyC, two adjacent groups X in CyC represent CR and these two carbon atoms, together with the radicals R attached to these carbon atoms, form a group of the above-mentioned and below, respectively Formula (3).
  • a maximum of three symbols X in (CyC-1) to (CyC-9) are N, particularly preferably a maximum of two symbols X in (CyC-1) to (CyC-19) is N, very particularly preferably at most one symbol X in (CyC-1) to (CyC-19) for N. More preferably, all symbols X are CR.
  • CyC are therefore the groups of the following formulas (CyC-1 a) to (CyC-19a), (CyC-18a) (CyC-19a)
  • Preferred groups among the groups (CyC-1) to (CyC-19) are the groups (CyC-1), (CyC-3), (CyC-8), (CyC-10), (CyC-12), ( CyC-13) and (CyC-16), and particularly preferred are the groups (CyC-1a), (CyC-3a), (CyC-8a), (CyC-10a), (CyC-12a), (CyC-1a) 13a) and (CyC-16a).
  • CyD is a heteroaryl group having 5 to 13 aromatic ring atoms, particularly preferably having 5 to 10 aromatic ring atoms, which coordinates to M via a neutral nitrogen atom or via a carbene carbon atom which substitutes one or more R radicals which is linked to CyC via a covalent bond.
  • the group coordinates CyD via a nitrogen atom to M.
  • Preferred embodiments of the group CyD are the structures of the following formulas (CyD-1) to (CyD-10), wherein the group CyD in each case binds to CyC at the position indicated by # and coordinates at the position indicated by *,
  • a maximum of three symbols X in (CyD-1) to (CyD-10) represent N, particularly preferably a maximum of two symbols X in (CyD-1) to (CyD-10) represent N, very particularly preferably at most one symbol X in (CyD-1) to (CyD-10) for N. More preferably, all symbols X are CR.
  • CyD are therefore the groups of the following formulas (CyD-1 a) to (CyD-10a),
  • Preferred groups among the groups (CyD-1) to (CyD-10) are the groups (CyD-1), (CyD-3), (CyD-4), (CyD-5) and (CyD-6), and particularly preferred are the groups (CyD-1a), (CyD-3a), (CyD-4a), (CyD-5a) and (CyD-6a).
  • CyC and CyD can be combined as desired.
  • Particularly suitable in ligand L are the following
  • CyD and / or CyC or the above-mentioned preferred embodiments have two adjacent carbon atoms, which are each substituted by radicals R, wherein the respective radicals R together with the C atoms a bi- or span polycyclic structure of the above formula (3).
  • the ligand L contains exactly one group of the formula (3).
  • either CyC or CyD can have this structure.
  • the group of formula (3) may be attached to CyC or CyD in any position.
  • Groups X which represent CR, where the respective radicals R together with the carbon atoms to which they are attached form a ring of the above-mentioned formula (3),
  • the groups (CyC-1-1) to (CyC-9-1) or (CyD-1-1) to (CyD-10-4) are preferable to the groups (CyC-1) to (CyC-19) or (CyD-1) to (CyD-19) shown in the Tables, respectively.
  • the group of formula (3) is a bicyclic structure. It is essential that they have no acidic benzylic protons.
  • benzylic protons are meant protons which bind to a carbon atom, which are bonded directly to the aromatic or heteroaromatic ligands.
  • the absence of acidic benzylic protons is achieved in the structure of formula (3) by being a bicyclic structure whose bridgehead directly binds to the aromatic group of CyC and CyD, respectively. Because of the rigid spatial arrangement, when A 1 and A 2 are CR 2 and R 2 is H, the substituent R 2 attached to the bridgehead is significantly less acidic than benzylic protons in a non-bicyclic structure since the corresponding anion of the bicyclic structure is not mesomerically stabilized. Such a proton is therefore a non-acidic proton in the sense of the present application.
  • a 1 and A 2 are both identical or different for CR 2 , or A 1 and A 2 are both N. More preferably, A 1 and A 2 are the same or different for CR 2 . It is therefore particularly preferable for carbon bridgehead atoms.
  • the radical R 2 which is bonded to the bridgehead atom, the same or different at each occurrence selected from the group consisting of H, D, F, a straight-chain alkyl group having 1 to 10 carbon atoms, which may be substituted with one or more radicals R 4 , but is preferably unsubstituted, a branched or cyclic alkyl group having 3 to 10 carbon atoms, which may be substituted by one or more radicals R 4 , but is preferably unsubstituted, or an aromatic or heteroaromatic ring system having 5 to 12 aromatic ring atoms, each by a or more radicals R 4 may be substituted.
  • the radical R 2 attached to the bridgehead atom is the same or different at each occurrence selected from the group consisting of H, F, a straight chain alkyl group having 1 to 4 carbon atoms, a branched alkyl group having 3 or 4C Atoms or a phenyl group which may be substituted by an alkyl group having 1 to 4 carbon atoms, but is preferably unsubstituted.
  • the radical R 2 is the same or different selected on each occurrence from the group consisting of H, methyl or tert-butyl.
  • both groups A 1 and A 2 in formula (3) are CR 2 and the two radicals R 2 are the same.
  • a 3 and A 4 are the same or different each occurrence of an alkylene group having 2 or 3 carbon atoms, which may be substituted by one or more R 3 radicals.
  • a 3 and A 4 preferably contain no oxygen atoms in the aikylene group.
  • the radical R 3 which binds to A 3 or A 4 is identical or different in each occurrence selected from the group consisting of H, D, F, a straight-chain alkyl group having 1 to 10 carbon atoms which may be substituted by one or more radicals R 4 , but is preferably unsubstituted, a branched or cyclic alkyl group having 3 to 10 C atoms, which may be substituted by one or more radicals R 4 , but is preferably unsubstituted, or a aromatic or heteroaromatic ring system having 5 to 12 aromatic ring atoms, each of which may be substituted by one or more radicals R 4 ;
  • two radicals R 3 together form a ring and clamp thus form a polycyclic, aliphatic ring system with up.
  • the ring formation is also possible and preferably between a radical R 3 which is attached to A 3, and a radical R 3 which is bound to A fourth
  • the ring formation between a radical R 3 , which is bonded to A 3 , and a radical R 3 , which is bonded to A 4 preferably takes place by a single bond, oxygen, a methylene group which may be substituted by one or two groups R 4 but preferably is unsubstituted, or an ethylene group which may be substituted by one or more R 4 groups, but is preferably unsubstituted.
  • the radical R 3 is identical or different in each occurrence selected from the group consisting of H, F, a straight-chain alkyl group having 1 to 4 C atoms or a branched alkyl group having 3 or 4 C atoms; in this case, two radicals R 3 can form a ring with one another and thus form a polycyclic, aliphatic ring system.
  • a 1 and A 2 are the same or different and represent each other as CR 2
  • a 3 and A 4 are the same or different each occurrence of an alkylene group having 2 or 3 carbon atoms which may be substituted with one or more R 3 groups
  • R 2 and R 3 are preferably the abovementioned preferred definitions.
  • a 3 and A 4 each represent an ethylene group which may be substituted by one or more R 3 radicals.
  • a 3 is an ethylene group and A 4 is a propylene group which may each be substituted by one or more R 3 radicals.
  • a 3 and A 4 are each a propylene group which may be substituted with one or more R 3 groups. It is therefore preferably a group of the following formula (4), (5) or (6),
  • a 1 and A 2 have the abovementioned meanings and the ethylene groups or propylene groups, which are drawn in for clarity unsubstituted, may be substituted by one or more radicals R 3 , wherein R 3 has the abovementioned meanings.
  • R 3 has the abovementioned meanings.
  • two radicals R 3 to the are bound to two different ethylene or propylene groups, be linked together to form a ring system.
  • Preferred structures of the formulas (4), (5) and (6) are the structures of the following formulas (4a), (5a) and (6a),
  • ethylene groups or propylene groups can be substituted by one or more radicals R 3 , where R 3 has the abovementioned meanings.
  • R 3 has the abovementioned meanings.
  • two radicals R 3 which are bonded to the two different ethylene or propylene groups, may in particular also be linked together to form a ring system.
  • Preferred structures of the formulas (4) and (6) in which two radicals R 3 are linked together to form a ring system are the structures of the following formulas (4b) and (6b),
  • the ethylene or propylene groups may be substituted by one or more radicals R 3 and G 1 is an ethylene group which may be substituted by one or more groups R 4 , but preferably is unsubstituted, and G 2 is a single bond, a methylene or ethylene group, each of which may be substituted with one or more R 4 groups, but is preferably unsubstituted, or is an oxygen atom.
  • R 3 and G 1 is an ethylene group which may be substituted by one or more groups R 4 , but preferably is unsubstituted
  • G 2 is a single bond, a methylene or ethylene group, each of which may be substituted with one or more R 4 groups, but is preferably unsubstituted, or is an oxygen atom.
  • a 1 and A 2 in formulas (4b) and (6b) are the same or different for CR 2 . Examples of suitable structures of the formula (4) are the following structures:
  • two adjacent radicals R or R with R 1 can also together form a mono- or polycyclic, alipha
  • radicals R on each occurrence are identically or differently selected from the group consisting of H, D, F, N (R 1 ) 2 , a straight-chain alkyl group having 1 to 6 C atoms or a branched or cyclic alkyl group having 3 to 10 C atoms, with one or more H atoms can be replaced by D or F, or an aromatic or heteroaromatic ring system having 5 to 24 aromatic ring atoms, each of which may be substituted by one or more radicals R 1 ; in this case, two adjacent radicals R or R with R 1 can also form a mono- or polycyclic, aliphatic or aromatic ring system with one another. Furthermore, ring formation between CyC and CyD is possible, as described above.
  • the substituent R which is bonded in the ortho position to the metal coordination, represents a group which also coordinates or binds to the metal M.
  • Preferred coordinating groups R are aryl or heteroaryl groups, for example phenyl or pyridyl, aryl or alkyl cyanides, aryl or alkyl isocyanides, amines or amides, alcohols or alcoholates, thio alcohols or thioalcoholates, phosphines, phosphites, carbonyl functions, carboxylates, carbamides or aryl or alkyl acetylides.
  • Examples of partial structures ML of the formula (2) in which CyD is pyridine and CyC is benzene are the structures of the following formulas (7) to (18):
  • X 1 is identical or different at each occurrence for C or N and W 1 is the same or different at each occurrence for S, O or NR 1 .
  • a bridging unit may be present which links this ligand L with one or more further ligands L and L '.
  • Embodiment of the invention instead of one of the radicals R, in particular instead of the radicals R, which are in ortho or meta position to the coordinating atom, a bridging unit is present, so that the ligands have tridentate or polydentate or polypodalen character. There may also be two such bridging units. This leads to the formation of macrocyclic ligands or to the formation of cryptates.
  • Preferred structures with polydentate ligands or with polydentate ligands are the metal complexes of the following formulas (19) to (24),
  • the ligands can be bridged together via the cyclic group of the formula (3).
  • V preferably represents a single bond or a bridging unit containing 1 to 80 atoms from the third, fourth, fifth and / or sixth main group (group 13, 14, 15 or 16 according to IUPAC) or a 3- to 6-membered homo- or heterocycle which covalently connects the partial ligands L with each other or L with L '.
  • the bridging unit V can also be constructed asymmetrically, ie the combination of V to L or L 'does not have to be identical.
  • the bridging unit V can be neutral, single, double or triple negative or single, double or triple positively charged.
  • V is preferably neutral or simply negative or simply positively charged, more preferably neutral.
  • the charge of V is preferably selected so that a total of neutral
  • n is preferably at least 2.
  • group V has no significant influence on the electronic properties of the complex, since the task of this group is essentially to increase the chemical and thermal stability of the complexes by bridging L with each other or with L ' ,
  • V is a trivalent group, ie three ligands L are bridged with one another or two ligands L with L 'or one ligand L with two ligands L', V is preferably the same or different at each occurrence selected from the group consisting of B, B ( R 1 ) -, B (C (R) 2 ) 3 ,
  • N (C O) 3 , N (C (R) 2 C (R) 2 ) 3 , (R 1 ) N (C (R 1 ) 2 C (R 1 ) 2 ) + , P, P (R) + , PO, PS,
  • the other symbols used have the meanings given above.
  • V stands for a group CR 2
  • the two radicals R can also be linked to one another so that structures such as, for example, 9,9-fluorene are suitable groups V.
  • ligand groups L ' are described as they occur in formula (1).
  • the ligand groups L ' can also be selected if these are bonded to L via a bridging unit V, as indicated in formulas (19), (21) and (23).
  • the ligands L ' are preferably neutral, monoanionic, dianionic or trianionic ligands, particularly preferably neutral or monoanionic ligands. They may be monodentate, bidentate, tridentate or tetradentate and are preferably bidentate, so preferably have two coordination sites. As described above, the ligands L 'may also be bonded to L via a bridging group V.
  • Preferred neutral, monodentate ligands L ' are selected from the group consisting of carbon monoxide, nitrogen monoxide, alkyl cyanides, such as.
  • alkyl cyanides such as.
  • amines such as.
  • Trifluorophosphine trimethylphosphine, tricyclohexylphosphine, tri-tert-butylphosphine, triphenylphosphine, tris (pentafluoro- pheny phosphine, dimethylphenylphosphine, methyldiphenylphosphine, bis (tert-butyl) phenylphosphine, phosphites, such as. For example, trimethyl phosphite, triethyl phosphite, arsines, such as.
  • Trifluorarsine trimethylarsine, tricyclohexylarsine, tri-fe / t-butylarsine, triphenylarsine, tris (pentafluorophenyl) arsine, stibines, such as. Trifluorostibine, trimethylstibine, tricyclohexylstibine, Tn-tert-butylstibine, triphenylstibine, tris (pentafluorophenyl) stibine, nitrogen-containing heterocycles, such as. As pyridine, pyridazine, pyrazine, pyrimidine, triazine, and carbenes, in particular Arduengo carbenes.
  • Preferred monoanionic, monodentate ligands L ' are selected from hydride, Deutend, the halides F ⁇ , Cl ⁇ , ⁇ and ⁇ , alkyl acetylides, such as.
  • Carboxylates such as. Acetate, trifluoroacetate, propionate, benzoate,
  • Aryl groups such as. Phenyl, naphthyl, and anionic, nitrogen-containing heterocycles, such as pyrrolidine, imidazolide, pyrazolide.
  • the alkyl groups in these groups are preferably C 1 -C 20 -alkyl groups,
  • aryl group is also understood to mean heteroaryl groups. These groups are as defined above.
  • Preferred neutral or mono- or dianionic, bidentate or higher-dentate ligands L ' are selected from diamines, such as.
  • diamines such as.
  • diphosphines such as.
  • pyridine-2-carboxylic acid quinoline-2-carboxylic acid, glycine, ⁇ , ⁇ -dimethylglycine, alanine, ⁇ , ⁇ -dimethylaminoalanine, salicyliminates derived from salicylimines, such as.
  • dialcoholates derived from dialcohols such as ethylene glycol, 1, 3-propylene glycol, dithiolates derived from dithiols, such as.
  • Preferred tridentate ligands are borates of nitrogen-containing heterocycles, such as. For example, tetrakis (1-imidazolyl) borate and tetrakis (1-pyrazolyl) borate.
  • bidentate monoanionic, neutral or dianionic ligands L ' in particular monoanionic ligands, which with the metal have a cyclometall believing five-membered or six-membered ring with at least one metal-carbon bond, in particular a cyclometall striv five-membered ring.
  • ligands such as are generally used in the field of phosphorescent metal complexes for organic electroluminescent devices, ie, phenylpyridine, naphthylpyridine, phenylquinoline, phenylisoquinoline, etc. ligands, each of which may be substituted by one or more R radicals.
  • phosphorescent metal complexes for organic electroluminescent devices, ie, phenylpyridine, naphthylpyridine, phenylquinoline, phenylisoquinoline, etc.
  • Electroluminescent devices a plurality of such ligands is known, and he can without further inventive step other such
  • ligand L for compounds according to formula (1).
  • the combination of two groups as represented by the following formulas (40) to (64) is particularly suitable for this, one group preferably bonding via a neutral nitrogen atom or a carbene carbon atom and the other group preferably via a negatively charged Carbon atom or a negatively charged nitrogen atom binds.
  • the ligand L 'can then be formed from the groups of formulas (40) to (64) by each of these groups bonding to each other at the position indicated by #.
  • the position at which the groups coordinate to the metal are indicated by * .
  • These groups can also be connected via one or two bridging units V to the
  • Ligands L be bound.
  • W has the abovementioned meaning and X stands, identically or differently, for each occurrence for CR or N, the above-mentioned limitation that at least two adjacent groups X represent CR and the radicals R form a ring of the formula (3), does not apply; and R has the same meaning as described above.
  • a maximum of three symbols X in each group represent N, more preferably, at most two symbols X in each group represent N, most preferably, at most one symbol X in each group represents N. More preferably, all symbols X stand for CR.
  • ligands L ' are 1,3,5-cis, cis-cyclohexane derivatives, in particular of the formula (65), 1,1,1-tri (methylene) methane derivatives, in particular of the formula (66) and 1, 1, 1 - trisubstituted methanes, in particular of the formula (67) and (68),
  • R has the abovementioned meaning and A, identical or different at each occurrence, stands for O " , S ⁇ , COO ⁇ , PR 2 or NR 2 .
  • H atoms can be replaced by D or F, or an aromatic or heteroaromatic ring system having 5 to 14 aromatic ring atoms, each of which may be substituted by one or more radicals R; two or more adjacent radicals R may also together form a mono- or polycyclic, aliphatic, aromatic and / or benzoannulated ring system.
  • radicals R are the same or different at each occurrence selected from the group consisting of H, D, F, Br, CN, B (OR 1 ) 2 , a straight-chain alkyl group having 1 to 5 carbon atoms, in particular methyl, or a branched or cyclic alkyl group having 3 to 5 C atoms, in particular iso-propyl or tert-butyl, wherein one or more H atoms may be replaced by D or F, or an aromatic or heteroaromatic ring system having from 5 to 12 aromatic ring atoms, each of which may be substituted by one or more R 1 ; two or more radicals R may also together form a mono- or polycyclic, aliphatic, aromatic and / or benzoannulated ring system.
  • L coordinates via one or more aromatic or heteroaromatic groups on M, but does not coordinate via non-aromatic and non-heteroaromatic groups.
  • the complexes according to the invention can be facial or pseudofacial, or they can be meridional or pseudomeridional.
  • the ligands L may also be chiral depending on the structure. This is the case, for example, if in the structure of the formula (3) the groups A 3 and A 4 are different or if they contain substituents, for example alkyl, alkoxy, dialkylamino or aralkyl groups which have one or more stereocenters. Since the basic structure of the complex can also be a chiral structure, the formation of diastereomers and several pairs of enantiomers is possible.
  • the complexes according to the invention then comprise both the mixtures of the different diastereomers or the corresponding racemates as well as the individual isolated diastereomers or enantiomers.
  • the compounds can also be used as chiral, enantiomerically pure complexes which can emit circularly polarized light. This can have advantages because it can save the polarization filter on the device. In addition, such complexes are also suitable for use in security labels, since in addition to the emission they also have the polarization of the light as an easily readable feature.
  • the metal complexes according to the invention can in principle be prepared by various methods. However, the methods described below have been found to be particularly suitable.
  • another object of the present invention is a process for preparing the metal complex compounds of formula (1) by reacting the corresponding free ligands L and optionally L 'with metal alcoholates of formula (69), with metal ketoketonates of formula (70), with metal halides of the formula (71), with dimeric metal complexes of the formula (72) or with metal complexes of the formula (73),
  • metal compounds in particular iridium compounds, which carry both alcoholate and / or halide and / or hydroxyl and also ketoketonate radicals. These connections can also be loaded.
  • iridium compounds which are particularly suitable as starting materials are disclosed in WO 2004/085449.
  • [IrCl 2 (acac) 2] for example Na [IrCl 2 (acac) 2 ]
  • metal complexes with acetylacetonate derivatives as ligands for example Ir (acac) 3 or Trisis-e-tetramethylheptane-SS-dionato-iridium, and lrCl 3 xH 2 O, where x is usually a number between 2 and 4.
  • Suitable platinum starting materials are, for example, PtCl 2 , K 2 [PtCl],
  • PtCl 2 (DMSO) 2 Pt (Me) 2 (DMSO) 2 or PtCl 2 (benzonitrile) 2 .
  • Heteroleptic complexes can also be used, for example, according to WO
  • 2005/042548 be synthesized.
  • the synthesis can be activated, for example, thermally, photochemically and / or by microwave radiation.
  • a Lewis acid for example a silver salt or AICI 3 .
  • the reactions can be carried out without addition of solvents or melting aids in a melt of the corresponding o-metalating ligands. If necessary, solvents or melting aids may be added.
  • Suitable solvents are protic or aprotic solvents, such as aliphatic and / or aromatic alcohols (methanol, ethanol, isopropanol, t-butanol, etc.), oligo- and polyalcohols (ethylene glycol, 1,2-propanediol, glycerol, etc.).
  • Alcohol ethers ethoxyethanol, diethylene glycol, triethylene glycol, polyethylene glycol, etc.
  • ethers di- and triethylene glycol dimethyl ether, diphenyl ether, etc.
  • aromatic, heteroaromatic and / or aliphatic hydrocarbons toluene, xylene, mesitylene, chlorobenzene, pyridine, lutidine, Quinoline, iso-quinoline, tridecane, hexadecane, etc.
  • amides DF, DMAC, etc.
  • lactams NMP
  • sulfoxides DMOS
  • sulfones dimethylsulfone, sulfolane, etc.
  • Suitable melt aids are compounds which are solid at room temperature but which melt on heating the reaction mixture and dissolve the reactants to form a homogeneous melt.
  • Particularly suitable are biphenyl, m-terphenyl, triphenylene, 1, 2-, 1, 3-, 1, 4-bis-phenoxybenzene, triphenylphosphine oxide, 18-crown-6, phenol, 1-naphthol, hydroquinone, etc.
  • purification such as recrystallization or sublimation, the compounds of the invention according to formula (1) can be obtained in high purity, preferably more than 99% (determined by means of 1 H-NMR and / or HPLC).
  • the compounds according to the invention can also be made soluble by suitable substitution, for example by longer alkyl groups (about 4 to 20 C atoms), in particular branched alkyl groups, or optionally substituted aryl groups, for example xylyl, mesityl or branched terphenyl or quaterphenyl groups.
  • suitable substitution for example by longer alkyl groups (about 4 to 20 C atoms), in particular branched alkyl groups, or optionally substituted aryl groups, for example xylyl, mesityl or branched terphenyl or quaterphenyl groups.
  • Such compounds are then soluble in common organic solvents, such as toluene or xylene at room temperature in sufficient concentration to process the complexes from solution can.
  • These soluble compounds are particularly suitable for processing from solution, for example by printing processes.
  • the compounds of the invention may also be mixed with a polymer. It is also possible to incorporate these compounds covalently into a polymer. This is particularly possible with compounds which are substituted with reactive leaving groups, such as bromine, iodine, chlorine, boronic acid or boronic acid esters, or with reactive, polymerizable groups, such as olefins or oxetanes. These can be used as monomers for the production of corresponding oligomers, dendrimers or polymers. The oligomerization or polymerization is preferably carried out via the halogen functionality or the Boronklarefunktionaitician or via the polymerizable group. It is also possible to crosslink the polymers via such groups. The compounds of the invention and polymers can be used as a crosslinked or uncrosslinked layer.
  • reactive leaving groups such as bromine, iodine, chlorine, boronic acid or boronic acid esters
  • reactive, polymerizable groups such as olefins or oxeta
  • the invention therefore further oligomers, polymers or dendrimers containing one or more of the compounds of the invention listed above, wherein one or more bonds of the inventive compound to the polymer, oligomer or dendrimer are present. Depending on the linkage of the compound of the invention therefore, it forms a side chain of the oligomer or polymer or is linked in the main chain.
  • the polymers, oligomers or dendrimers may be conjugated, partially conjugated or non-conjugated.
  • the oligomers or polymers may be linear, branched or dendritic.
  • the repeat units of the compounds according to the invention in oligomers, dendrimers and polymers have the same preferences as described above.
  • the monomers according to the invention are homopolymerized or copolymerized with further monomers.
  • Preferred are copolymers, wherein the units according to
  • Suitable and preferred comonomers which form the polymer backbone are selected from fluorenes (eg according to EP 842208 or WO 2000/022026), spirobifluorenes (eg according to EP 707020, EP 894107 or WO 2006/06 181), Para phenylenes (for example according to WO 92/18552), carbazoles (for example according to WO 2004/070772 or WO 2004/113468), thiophenes (for example according to EP 1028136), dihydric phenanthrenes (e.g.
  • fluorenes eg according to EP 842208 or WO 2000/022026)
  • spirobifluorenes eg according to EP 707020, EP 894107 or WO 2006/06 181
  • Para phenylenes for example according to WO 92/18552
  • carbazoles for example according to WO 2004/070772 or WO 2004/113468
  • thiophenes for
  • the polymers, oligomers and dendrimers may also contain other units, for example hole transport units, in particular those based on triarylamines, and / or electron transport units.
  • Yet another object of the present invention is a formulation comprising a compound of the invention or an oligomer according to the invention, polymer or dendrimer and at least one further compound.
  • the further compound may for example be a solvent.
  • the further compound can also be a further organic or inorganic compound which is likewise used in the electronic device, for example a matrix material.
  • This further compound may also be polymeric.
  • formulations of the compounds according to the invention are required. These formulations may be, for example, solutions, dispersions or emulsions. It may be preferable to use mixtures of two or more solvents for this purpose.
  • Suitable and preferred solvents are, for example, toluene, anisole, o-, m- or p-xylene, methyl benzoate, mesitylene, tetralin, veratrol, THF, methyl THF, THP, chlorobenzene, dioxane, phenoxytoluene, in particular 3-phenoxytoluene, ( -) - fenchone, 1, 2,3,5-tetramethylbenzene, 1, 2,4,5-tetramethylbenzene, 1-methylnaphthalene, 2-methylbenzothiazole, 2-phenoxyethanol, 2-pyrrolidinone, 3-methylanisole, 4-methylanisole, 3 , 4-dimethylanisole, 3,5-dimethylanisole, acetophenone, a-terpineol, benzothiazole, butylbenzoate, cumene, cyclohexanol, cyclohexanone, cyclohexylbenzene, decal
  • An electronic device is understood to mean a device which contains anode, cathode and at least one layer, this layer containing at least one organic or organometallic compound.
  • the electronic device according to the invention thus contains anode, cathode and at least one layer which contains at least one compound of the above-mentioned formula (1).
  • preferred electronic devices are selected from the group consisting of organic electroluminescent devices (OLEDs, PLEDs), organic integrated circuits (O-ICs), organic field effect transistors (O-FETs), organic thin film transistors (O-TFTs), organic light - emitting transistors (O-LETs), organic solar cells (O-SCs), organic optical detectors, organic photoreceptors, organic field quench devices (O-FQDs), light-emitting electrochemical cells (LECs), or organic laser diodes (O-lasers), containing in at least one layer at least one compound according to the above-mentioned formula (1). Particularly preferred are organic electroluminescent devices.
  • Active components are generally the organic or inorganic materials incorporated between the anode and cathode, for example, charge injection, charge transport or charge blocking materials, but especially emission materials and matrix materials.
  • the compounds according to the invention exhibit particularly good properties as emission material in organic electroluminescent devices. A preferred embodiment of the invention are therefore organic electroluminescent devices.
  • the compounds according to the invention can be used for the production of singlet oxygen or in photocatalysis.
  • the organic electroluminescent device includes cathode, anode and at least one emitting layer. In addition to these layers, they may also contain further layers, for example one or more hole injection layers, hole transport layers, hole blocking layers, electron transport layers, electron injection layers, exciton blocking layers, electron blocking layers, charge generation layers and / or organic or inorganic p / n junctions. It is possible that one or more hole transport layers are p-doped, for example, with metal oxides, such as M0O 3 or W0 3 or with (per) fluorinated low-electron aromatics, and / or that one or more electron-transport layers are n-doped.
  • metal oxides such as M0O 3 or W0 3 or with (per) fluorinated low-electron aromatics
  • interlayers may be introduced between two emitting layers which, for example, have an exciton-blocking function and / or control the charge balance in the electroluminescent device. It should be noted, however, that not necessarily each of these layers must be present. In this case, the organic electroluminescent device can
  • Used compounds that can fluoresce or phosphoresce are particularly preferred.
  • the three layers exhibiting blue, green and orange or red emission (for the basic structure see, for example, WO 2005/011013) or systems having more than three emitting layers. It may also be a hybrid system wherein one or more layers fluoresce and one or more other layers phosphoresce.
  • the organic electroluminescent device contains the compound according to formula (1) or the above-mentioned preferred embodiments as
  • emitting compound in one or more emitting layers.
  • the compound of the formula (1) When the compound of the formula (1) is used as an emitting compound in an emitting layer, it is preferably used in combination with one or more matrix materials.
  • the mixture of the compound according to formula (1) and the matrix material contains between 0.1 and 99% by volume, preferably between 1 and 90% by volume, more preferably between 3 and 40% by volume, in particular between 5 and 15% by volume .-% of the compound according to formula (1) based on the total mixture of emitter and matrix material. Accordingly contains the
  • Mixture between 99.9 and 1% by volume, preferably between 99 and 10% by volume, more preferably between 97 and 60% by volume, in particular between 95 and 85% by volume of the matrix material based on the total mixture of emitters and matrix material.
  • the triplet level of the matrix material is higher than the triplet level of the emitter.
  • Suitable matrix materials for the compounds according to the invention are ketones, phosphine oxides, sulfoxides and sulfones, for. B. according to WO 2004/013080, WO 2004/093207, WO 2006/005627 or WO 2010/006680, triarylamines, carbazole derivatives, z. B.
  • CBP ( ⁇ , ⁇ -biscarbazolylbiphenyl), m-CBP or in WO 2005/039246, US 2005/0069729, JP 2004/288381, EP 1205527, WO 2008/086851 or US 2009/0134784 disclosed
  • Carbazole derivatives indolocarbazole derivatives, e.g. B. according to WO 2007/063754 or WO 2008/056746, indenocarbazole derivatives, for. B. according to WO
  • a plurality of different matrix materials as a mixture, in particular at least one electron-conducting matrix material and at least one hole-conducting matrix material.
  • a preferred combination is, for example, the use of an aromatic ketone, a triazine derivative or a phosphine oxide derivative with a triarylamine derivative or a carbazole derivative as a mixed matrix for the metal complex according to the invention.
  • Also preferred is the use of a mixture of a charge-transporting matrix material and an electrically inert matrix material, which is not or not significantly involved in charge transport, such. As described in WO 2010/108579.
  • the triplet emitter with the shorter-wave emission spectrum serves as a co-matrix for the Tri-plate emitter with the longer-wave emission spectrum.
  • the complexes according to the invention of formula (1) can be used as a co-matrix for longer-wave emitting triplet emitters, for example for green or red emitting triplet emitters.
  • the compounds of the invention can also be used in others
  • the complexes according to the invention can be used as matrix material for other phosphorescent metal complexes in an emitting layer.
  • low work function metals, metal alloys or multilayer structures of various metals are preferable, such as alkaline earth metals, alkali metals, main group metals or lanthanides (eg, Ca, Ba, Mg, Al, In, Mg, Yb, Sm, etc.).
  • alkaline earth metals alkali metals, main group metals or lanthanides (eg, Ca, Ba, Mg, Al, In, Mg, Yb, Sm, etc.).
  • alloys of an alkali or alkaline earth metal and silver for example an alloy of magnesium and silver.
  • further metals which have a relatively high work function such as, for example, B. Ag, which then usually combinations of metals, such as Mg / Ag, Ca / Ag or Ba / Ag are used.
  • a metallic cathode and the organic semiconductor may also be preferred to introduce between a metallic cathode and the organic semiconductor a thin intermediate layer of a material with a high dielectric constant.
  • a metallic cathode and the organic semiconductor a thin intermediate layer of a material with a high dielectric constant.
  • Suitable examples of this are alkali metal or alkaline earth metal fluorides, but also the corresponding oxides or carbonates (for example LiF, Li 2 O, BaF 2 , MgO, NaF, CsF, CS 2 CO 3, etc.).
  • organic alkali metal complexes for.
  • the layer thickness of this layer is preferably between 0.5 and 5 nm.
  • the anode high workfunction materials are preferred.
  • the anode has a work function greater than 4.5 eV. Vacuum up.
  • metals with a high redox potential are suitable for this purpose, such as, for example, Ag, Pt or Au.
  • metal / metal oxide Electrodes eg Al / Ni / NiO x) Al / PtO x
  • at least one of the electrodes must be transparent or partially transparent to allow either the irradiation of the organic material (O-SC) or the outcoupling of light (OLED / PLED, O-LASER).
  • Preferred anode materials here are conductive mixed metal oxides. Particularly preferred are indium tin oxide (ITO) or indium zinc oxide (IZO). Also preferred are conductive, doped organic materials.
  • conductive doped polymers for. B. PEDOT, PANI or derivatives of these polymers.
  • a p-doped hole transport material is applied to the anode as a hole injection layer, with metal oxides, for example MoO 3 or WO 3 , or (per) fluorinated electron-poor aromatics being suitable as p-dopants.
  • metal oxides for example MoO 3 or WO 3
  • fluorinated electron-poor aromatics are suitable as p-dopants.
  • suitable p-dopants are HAT-CN (hexacyanohexaazatriphenylene) or the compound NPD9 from Novaled.
  • the device is structured accordingly (depending on the application), contacted and finally hermetically sealed because the life of such devices drastically shortened in the presence of water and / or air.
  • an organic electroluminescent device characterized in that one or more layers are coated with a sublimation process.
  • the materials are applied in vacuum sublimation at an initial pressure of usually less than 10 "5 mbar, preferably less than 10 ⁇ vapor-deposited 6 mbar. It is also possible that the initial pressure is even lower or even higher, for example less than 10" 7 mbar.
  • an organic electroluminescent device characterized in that one or more layers are coated with the OVPD (Organic Vapor Phase Deposition) method or with the aid of a carrier gas sublimation.
  • the materials are applied at a pressure between 10 ⁇ 5 mbar and 1 bar.
  • OVJP Organic Vapor Jet Printing
  • an organic electroluminescent device characterized in that one or more layers of solution, such. B. by spin coating, or with any printing process, such.
  • any printing process such as screen printing, flexographic printing, offset printing or Nozzle printing, but more preferably LITI (Light Induced Thermal Imaging, thermal transfer printing) or ink-jet printing (ink jet printing) can be produced.
  • LITI Light Induced Thermal Imaging, thermal transfer printing
  • ink-jet printing ink jet printing
  • the organic electroluminescent device can also be produced as a hybrid system by forming one or more layers
  • Solution are applied and one or more other layers are evaporated.
  • an emitting layer containing a compound of formula (1) and a solution matrix material and then vacuum evaporate a hole blocking layer and / or an electron transport layer.
  • organic electroluminescent devices are distinguished by one or more of the following surprising advantages over the prior art: Organic electroluminescent devices containing the compounds of the invention as emitting materials have a very good lifetime.
  • Organic electroluminescent devices containing the compounds of the invention as emitting materials have excellent efficiency.
  • the efficiency is significantly higher than analogous compounds containing no structural unit according to formula (3).
  • the metal complexes according to the invention are outstandingly soluble in a large number of organic solvents, in particular in organic hydrocarbons.
  • the solubility over analogous compounds containing no structural unit of the formula (3) is significantly improved. This leads to a simplified purification during the synthesis of the complexes and to their excellent suitability in the production of OLEDs in solution-processed processes, for example printing processes.
  • the metal complexes according to the invention have a very high oxidation stability to air and light, so that their processing from solution, for example by printing processes, is also possible in the air.
  • Some of the metal complexes according to the invention have a very narrow emission spectrum, which leads to a high color purity of the emission, which is desirable in particular for display applications.
  • the metal complexes according to the invention have a reduced aggregation compared to analogous compounds which do not contain a structural unit according to formula (3). This manifests itself in a lower sublimation temperature compared to analog
  • Figure 1 shows the photoluminescence spectrum of a tris (benzo [h] quinoline) iridium complex containing a group of formula (3) compared to the spectrum of the corresponding complex without the group of formula (3).
  • the spectra were measured in a ca. 10 ⁇ 5 molar solution in degassed toluene at room temperature. It can be clearly seen the narrower emission band with a full width at half maximum FWHM of
  • the following syntheses are carried out under an inert gas atmosphere in dried solvents.
  • the metal complexes are additionally handled in the absence of light or under yellow light.
  • the solvents and reagents may, for. B. from Sigma-ALDRICH or ABCR.
  • the respective information in square brackets or the numbers given for individual compounds refer to the CAS numbers of the compounds known from the literature.
  • the dark oily residue is dissolved in 1000 ml of THF and slowly added dropwise with ice cooling to a solution of 38.0 g (1.0 mol) of lithium aluminum hydride in 1000 ml of THF (Caution: Exothermic reaction!). After completion of the addition, allow to warm to room temperature and stir the reaction mixture. mixture for 20 h at room temperature.
  • reaction mixture is hydrolyzed with ice cooling by the slow addition of 500 ml of saturated sodium sulfate solution. It is suctioned off from the salts, washed with 500 ml of THF, the THF in vacuo, the residue is taken up in 1000 ml of dichloromethane, the solution washed three times with 300 ml of water, once with 300 ml of saturated brine, dried over magnesium sulfate and then remove the solvent in vacuo.
  • reaction mixture is quenched by addition of 30 ml of ethanol, the solvent is completely evaporated in vacuo, the residue is taken up in 1000 ml of glacial acetic acid, 150 ml of acetic anhydride are added with stirring and then 30 ml of concentrated solution are added dropwise. Sulfuric acid and stirred for 3 h at 60 ° C after. Then the solvent is removed in vacuo, the residue is taken up in 1000 ml of dichloromethane and under cooling with ice by the addition of 10 wt .-%, aqueous NaOH alkaline.
  • the organic phase is separated, washed three times with 500 ml of water, dried over magnesium sulfate, the organic phase is concentrated completely and the residue is taken up in 500 ml of methanol, homogenized in the heat and then stirred for 12 h, the product crystallized.
  • the solid obtained after aspiration is in
  • the precipitated triethylammonium hydrochloride is filtered off with suction, this is reconstituted with 30 ml of DMF. washed. The filtrate is freed from the solvents in vacuo.
  • the oily residue is taken up in 300 ml of ethyl acetate, the solution is washed five times with 100 ml each of water and once with 100 ml of saturated brine, and the organic phase is dried over magnesium sulfate. After removal of the ethyl acetate in vacuo, the oily residue is chromatographed on silica gel (n-heptane: ethyl acetate 99: 1). Yield: 19.6 g (72 mmol), 72%; Purity: about 97% after 1 H NMR.
  • Solids are purified by recrystallization and fractionated sublimation (p ca. 10 ⁇ 4 - 10 "5 mbar, T about 160-240 ° C) of low boilers and non-volatile secondary components. Oils are purified by chromatography, fractionated by Kugelrohr distillation or dried in vacuo to remove low boilers.
  • Solids are purified by recrystallization and fractional sublimation (p ca. 10 "4 - 10 5 mbar, T ca. 160 - 240 ° C) of low-boiling and non-volatile Additional components are freed. Oils are purified by chromatography, fractionated Kugelrohr distilled or dried in vacuo to remove low boilers.
  • Example 78 1,5,5,6,6,7,7-heptamethyl-3-phenyl-1, 5,6,7-tetrahydroindeno [5,6-d] imidazolium iodide, L78
  • Step B After 4 h under low reflux, the mixture is cooled to 50 ° C., 40 ml of methanol are added, then allowed to cool completely with stirring, stirred for 2 h at room temperature, then filtered with suction from the crystals of 2- (2-amido-phenyl) formed. benzimidazole, washed twice with 20 ml of methanol and dried in vacuo. If the 2- (2-amido-phenyl) -benzimidazole does not crystallize out, remove the solvent in vacuo and add the residue in step B. Step B:
  • the crude product is taken up in ethyl acetate or dichloromethane, filtered through a short column of Alox, basic, activity grade 1 or silica gel to remove brown impurities.
  • recrystallization methanol, ethanol, acetone, dioxane, DMF, etc.
  • this is purified by Kugelrohr distillation or fractional sublimation (p ca. 10 "4 - 10 " 5 mbar, T approx. 160 - 240 ° C) of low-boiling components and nonvolatile secondary components.
  • the mixture is extracted three times with 300 ml of toluene, the organic phase is washed three times with water, dried over magnesium sulfate and the solvent is removed in vacuo.
  • the oily residue is dissolved in 200 ml of o-dichlorobenzene, the solution is treated with 86.9 g (1 mol) of manganese dioxide and then boiled for 16 h under reflux at the water. After cooling, the manganese dioxide is filtered through a Celite layer, the solid is washed with 500 ml of a mixture of dichloromethane and ethanol (10: 1) and the combined filtrates are freed from the solvents in vacuo.
  • Example L136 1R, 4S-methano-1,2,3,4-tetrahydro-9-phenyl-10-phenanthrene.
  • the oily residue is mixed with 27.6 g (200 mmol) of potassium carbonate, 5 g of palladium-carbon (5% strength by weight), 2.6 g (10 mmol) of triphenylphosphine, 100 g of glass beads (3 mm diameter) and 300 g ml mesitylene and heated again for 16 h under reflux. After cooling, the salts are filtered off with suction through a celite layer, which is then washed with 500 ml of toluene and the combined filtrates are concentrated to dryness in vacuo. The residue is recrystallized three times from DMF / ethanol and finally by fractional sublimation (p ca. 0 "4 - 10 5 mbar, T 230 ° C) free of low boilers and non-volatile secondary components Yield: 14.9 g (55 mmol). 55%, purity: about 99.5% after 1 H NMR.
  • the solid After dry suction, the solid is re-suspended in 1 l 15 wt .-% ammonia solution and stirred for 1 h, filtered off again, washed the solid until neutral reaction with water and then sucked dry.
  • the solid is dissolved in 500 ml of dichloromethane, the solution is washed with saturated brine, and the organic phase is dried over magnesium sulfate. After removal of the drying agent, the solution is concentrated and the glassy residue is once acidified on Alox, basic, activity level 1 and twice on silica gel with dichloromethane.
  • Example LB118 hexadentate ligands
  • connection LB119 can be represented:
  • Phenyl-imidazole or phenyl-benzimidazole type Phenyl-imidazole or phenyl-benzimidazole type:
  • Variant A tris-acetylacetonato-iridium (III) as iridium starting material
  • the vial is heated for the indicated time at the indicated temperature
  • the entire ampoule must have the indicated temperature.
  • the synthesis can take place in a stirred autoclave with glass insert.
  • the ampoules are usually under pressure!), the ampoule is opened, the sinter cake is 100 g
  • the dry solid is placed in a continuous hot extractor on a 3-5 cm high Alox bed (Alox, basic activity level 1) and then with an extractant (amount of preparation ca, 500 ml, the extractant is chosen so that the complex therein in the Heat is good and poorly soluble in the cold, particularly suitable extractants are hydrocarbons such as toluene, xylenes, mesitylene, naphthalene, o-dichlorobenzene, halogenated aliphatic hydrocarbons are generally unsuitable because they may halogenate or decompose the complexes, if appropriate) extracted. After completion of the extraction, the extractant is concentrated in vacuo to about 100 ml.
  • Metal complexes which have too good solubility in the extractant are brought to crystallization by the dropwise addition of 200 ml of methanol.
  • the solid of the suspensions thus obtained is filtered off with suction, washed once with about 50 ml of methanol and dried. After drying, the purity of the metal complex is determined by NMR and / or HPLC. If the purity is below 99.5%, the hot extraction step is repeated, omitting the Alox bed from the 2nd extraction. If a purity of 99.5 - 99.9% is reached, the metal complex is tempered or sublimated.
  • the annealing is carried out in high vacuum (p about 10 "6 mbar) in the temperature range of about 200-300 ° C, preferably greater than for complexes with molecular weights of about 1300 g / mol
  • the sublimation is carried out in high vacuum (p about 10 ⁇ . 6 mbar) in the temperature range of about 230-400 ° C, wherein the sublimation is preferably carried out in the form of a fractional sublimation
  • organic complexes soluble complexes can alternatively be chromatographed on silica gel.
  • the deduced fac metal complexes precipitate as a mixture of diastereomers.
  • the enantiomers ⁇ , ⁇ of the point group C3 generally have a significantly lower solubility in the extractant than the enantiomers of the point group C1, which thus accumulate in the mother liquor. A separation of the C3 from the C1 diastereomers in this way is often possible.
  • the diastereomers can also be separated by chromatography. If ligands of the point group C1 are used enantiomerically pure, a pair of diastereomers ⁇ , ⁇ of the point group C3 is formed. The diastereomers can be separated by crystallization or chromatography and thus obtained as enantiomerically pure compounds.
  • Variant B tris (2,2,6,6-tetramethyl-3,5-heptanedionato) iridium (III) as an iridium starting material
  • Variants C Sodium [cis, trans-di-chloro (bis-acetylacetonato] iridate (III) as iridium starting material
  • a mixture of 10 mmol of the ligand, 3 mmol of iridium (III) chloride hydrate, 10 mmol of silver carbonate, 10 mmol of sodium carbonate in 75 ml of 2-ethoxyethanol is refluxed for 24 h. After cooling, 300 ml of water are added, filtered off from the precipitated solid, washed once with 30 ml of water and three times with 15 ml of ethanol and dried in
  • a mixture of 22 mmol of the ligand, 10 mmol of iridium (III) chloride hydrate, 75 ml of 2-ethoxyethanol and 25 ml of water is refluxed with good stirring for 16 to 24 hours. If the ligand does not dissolve or does not dissolve completely in the solvent mixture under reflux, 1, 4-dioxane is added until a solution has formed. After cooling, the product is filtered off with suction from the precipitated solid, washed twice with ethanol / water (1: 1, v / v) and then dried in vacuo. The resulting chloro dimer of the formula [Ir (L) 2 Cl] 2 is further reacted without purification.
  • the sinter cake is with 00 g glass beads (3 mm diameter) in 100 ml of the specified suspension agent (the suspension medium is chosen so that the ligand is good, the chloro-dimer of the formula [Ir (L) 2 CI] 2 but poorly soluble in it, typical suspending agents are dichloromethane, acetone, ethyl acetate, toluene, etc.) stirred for 3 h and thereby mechanically digested.
  • the fine suspension is decanted from the glass beads and the solid [Ir (L) 2 Cl] 2 , which still contains about 2 eq NaCl, hereinafter called the crude chloro dimer, is suctioned off and dried in vacuo.
  • the resulting crude chloro-dimer of the formula [Ir (l_) 2 Cl] 2 is further reacted without purification.
  • the precipitated silver (l) chloride is filtered off with suction through a bed of Celite, the filtrate is concentrated to dryness, the yellow residue is taken up in 30 ml of toluene or cyclohexane, filtered from the solid, washed with n-heptane and dried in vacuo , The product of the formula [Ir (L) 2 (HOMe) 2 ] OTf thus obtained is further reacted without purification.
  • a mixture of 20 mmol of ligand L, 10 mmol h ⁇ PtCU 75 ml of 2-ethoxyethanol and 25 ml of water is refluxed for 16 h. After cooling and addition of 100 ml of water is filtered off with suction from the precipitated solid, washed once with 30 ml of water and dried in vacuo.
  • the platinum-chloro-dimer of the formula [PtLCI] 2 thus obtained is suspended in 100 ml of 2-ethoxyethanol, 30 mmol of the ligands L ' and 50 mmol of sodium carbonate are added, the reaction mixture is stirred at 100 ° C. for 16 h and then concentrated in vacuo to the dry one.
  • a mixture of 10 mmol of ligand L, 10 mmol K 2 PtCl 4) 400 mmol of lithium acetate, anhydrous, and 200 ml of glacial acetic acid is refluxed for 60 h. After cooling and addition of 200 ml of water, the mixture is extracted twice with 250 ml of toluene, dried over magnesium sulfate, filtered through a bed of Celite, the Celite washed with 200 ml of toluene and then removed the toluene in vacuo. The solid thus obtained is purified by hot extraction as described under 1) Variant A and then sublimated fractionally.
  • a mixture of 10 mmol of the ligand, 10 mmol of silver (I) oxide and 200 ml of dioxane is stirred for 16 h at room temperature, then treated with 100 ml of butanone, 20 mmol of sodium carbonate and 10 mmol cyclooctadienyl-platinum dichloride and heated under reflux for 16 h , After removal of the solvent, the solid is triturated with 500 ml of hot toluene, the suspension is filtered through a pad of Celite and the filtrate is concentrated to dryness. The resulting solid is chromatographed on silica gel with DCM and then subjected to fractional sublimation as described under 1) Variant A.
  • a mixture of 10 mmol of the ligand L, 10 mmol of sodium bis-acetyl-acetonato-dichloro-iridate (III) [770720-50-8] and 200 ml of triethylene glycol dimethyl ether is 48 h at 210 ° C on a water separator (the acetyl - acetone and thermal cleavage products of the solvent distilled off) heated. After cooling and addition of 200 ml of water is filtered off with suction from the precipitated solid and dried in vacuo.
  • the solid is stirred with 500 ml of hot THF, the suspension is filtered while hot on a Celite bed, the Celite is washed with 200 ml of THF and the combined filtrates are concentrated to dryness.
  • the solid thus obtained is purified as described under 1) Variant A by hot extraction with toluene and then fractionated by sublimation.
  • FIG. 1 shows the photoluminescence spectrum of the complex Ir (LB94) 3 , ie a tris (benzo [h] quinoline) iridium complex, which contains a group of the formula (3) in comparison to the spectrum of the corresponding complex without the group of the formula (3).
  • the spectra were measured in a ca. 10 ⁇ 5 molar solution in degassed toluene at room temperature. It can be clearly seen the narrower emission band with a half-width FWHM of 68 nm compared to 81 nm in the compound without a group of formula (3).
  • Vacuum Processed Devices The preparation of inventive OLEDs and OLEDs according to the prior art is carried out according to a general method according to WO 2004/058911, based on the circumstances described here
  • the OLEDs have in principle the following layer structure: substrate / hole transport layer 1 (HTL1) consisting of HTM doped with 3% NDP-9 (commercially available from Novaled), 20 nm / hole transport layer 2 (HTL2) / optional electron blocker layer (EBL) / Emission layer (EML) / optional hole blocking layer (HBL) / electron transport layer (ETL) / optional electron injection layer (EIL) and finally one
  • the cathode is formed by a 100 nm thick aluminum layer.
  • the emission layer always consists of at least one matrix material (host material, host material) and an emitting dopant (dopant, emitter) which is admixed to the matrix material or the matrix materials by co-evaporation in a specific volume fraction.
  • the electron transport layer may consist of a mixture of two materials.
  • Table 1 The exact structure of the OLEDs is shown in Table 1.
  • the materials used to make the OLEDs are shown in Table 3.
  • the OLEDs are characterized by default.
  • the electroluminescence spectra, the current efficiency (measured in cd / A) and the voltage (measured at 1000 cd / m 2 in V) are determined from current-voltage-brightness characteristics (IUL characteristic curves).
  • IUL characteristic curves current-voltage-brightness characteristics
  • the service life is determined.
  • the lifespan is the time defined according to which the luminance has dropped from a certain starting luminance to a certain proportion.
  • the term LD50 means that the stated lifetime is the time at which the luminance has fallen to 50% of the starting luminance, ie from 1000 cd / m 2 to 500 cd / m 2 .
  • the values for the lifetime can be converted to an indication for other starting luminous densities with the aid of conversion formulas known to the person skilled in the art.
  • the life for a starting luminous flux of 1000 cd / m 2 is a common statement.
  • the compounds according to the invention can be used inter alia as phosphorescent emitter materials in the emission layer in OLEDs.
  • the compounds according to the invention can be used inter alia as phosphorescent emitter materials in the emission layer in OLEDs.
  • Example LB1 2-tricyclo [6.2.2.0 * 2.7 *] dodeca-2 [79,3,5-trien-4-ypyridine,
  • the sublimation is carried out in a high vacuum (p about 10 "6 mbar) in the temperature range of about 300-400 ° C, the sublimation is preferably carried out in the form of a fractional sublimation.
  • the base potassium fluoride, tripotassium phosphate (anhydrous or monohydrate or trihydrate), potassium carbonate, cesium carbonate, etc.
  • an aprotic solvent THF, dio
  • Phosphines such as tri-tert-butylphosphine, SPhos, XPhos, RuPhos, XanthPhos, etc. are used, wherein in these phosphines the preferred phosphine: palladium ratio is 2: 1 to 1.2: 1.
  • the solvent is removed in vacuo, the product is taken in a suitable phosphine
  • Solvent toluene, dichloromethane, ethyl acetate, etc.
  • purified as described under variant A.
  • the annealing is carried out in high vacuum (p about 10 "6 mbar) in the temperature range of about 200-300 ° C
  • the sublimation is carried out in high vacuum (p about 10". 6 mbar) in the temperature range of about 300-400 ° C
  • the sublimation is preferably carried out in the form of a fractional sublimation.
  • a suspension of 10 mmol of a borylated complex, 12-20 mmol of aryl bromide per (RO) 2B function and 80 mmol of tripotassium phosphate in a mixture of 300 ml of toluene, 100 ml of dioxane and 300 ml of water is treated with 0.6 mmol of tri-o-tolylphosphine and then with 0.1 mmol of palladium (II) acetate added and heated under reflux for 16 h. After cooling, 500 ml of water and 200 ml of toluene are added, the aqueous phase is separated off, the organic phase is washed three times with 200 ml of water, once with 200 ml
  • the metal complex is finally tempered or sublimated.
  • the annealing is carried out in high vacuum (p about 10 "6 mbar) in the temperature range of about 200-300 ° C, the sublimation is carried out in high vacuum (p about 10". 6 mbar) in the temperature range of about 300-400 ° C, wherein the sublimation is preferably carried out in the form of a fractional sublimation.
  • Dioxane, xylene, mesitylene, dimethylacetamide, NMP, DMSO, etc. is treated with 0.6 mmol of tri-o-tolylphosphine and then with 0.1 mmol of palladium (II) acetate and heated under reflux for 1 to 24 hours.
  • other phosphines such as tri-tert-butylphosphine, SPhos, XPhos, RuPhos, XanthPhos, etc., may be used, with the preferred phosphine: palladium ratio being 2: 1 to 1.2: 1 for these phosphines.
  • the solvent is removed in vacuo, the product is taken in a suitable
  • Composition in a total concentration of about 100 mmol / L in a mixture of 2 volumes of toluene: 6 volumes of dioxane: 1 volume of water dissolved or suspended. Then you add 2 mol equivalents of tri-potassium phosphate per Br functionality used, stirred for 5 min. then adds 0.03 to 0.003 mol equivalents of tri-ortho-tolyl-phosphine and then 0.005 to 0.0005 mol equivalents of palladium (II) acetate (ratio of phosphine to Pd preferably 6: 1) per Br functionality used and heated with very good stirring 2-3 h under reflux.
  • the viscosity of the mixture increases too much, it can be diluted with a mixture of 2 volumes of toluene: 3 volumes of dioxane. After a total of 4-6 h reaction time is added to end capping 0.05 mol equivalents per boronic acid functionality of a Monobromaromaten and then 30 min. then 0.05 mol equivalents per Br-functionality of a monoboronic acid or a Monoboronklareesters added and boiled for a further 1 h.
  • the mixture is diluted with 300 ml of toluene, the aqueous phase is separated, the organic phase is washed twice with 300 ml of water, dried over magnesium sulfate, filtered through a Celite bed to remove palladium and then concentrated to dryness.
  • the polymer is filtered off with suction and washed three times with methanol washed.
  • the Umfallvorgang is repeated five times, then the polymer is dried in vacuo to constant weight at 30 - 50 ° C.
  • composition in a total concentration of about 100 mmol / L in a solvent (THF, dioxane, xylyl, mesitylene, dimethylacetamide, NMP, DMSO, etc.) dissolved or suspended. Then add 3 mol equivalents of base (potassium fluoride, tripotassium phosphate (anhydrous, monohydrate or trihydrate), potassium carbonate, cesium carbonate, etc. each anhydrous) per Br functionality and the weight equivalent glass beads (3 mm diameter), stirred for 5 min. after, then adds 0.03 to 0.003 mol equivalents of tri-ortho-tolylphosphine and then 0.005 to 0.0005 mol equivalents
  • phosphines such as tri-tert-butylphosphine, SPhos, XPhos, RuPhos, XanthPhos, etc.
  • the preferred phosphine: palladium ratio being 2: 1 to 1.3: 1 for these phosphines.
  • the complexes of the invention have the solubility reported in the table, in the specified solvents at 25 ° C on.
  • the comparison with the complexes without Bicyclus according to the invention shows that the solubility of the complexes according to the invention is significantly greater (factor about 10-100).
  • the complexes according to the invention have the sublimation temperature and rate specified in the table at a base pressure of about 10.sup.- 5 mbar.
  • the comparison with complexes without a bicycle of the invention shows that the sublimation temperature of the complexes according to the invention is lower and the sublimation rate is significantly greater complexes of the invention under the sublimation stable.
  • the iridium complexes according to the invention can also be processed from solution and lead there to process technology significantly simpler OLEDs, in comparison to the vacuum-processed OLEDs, with nevertheless good properties.
  • the production of such components is based on the production of polymeric light-emitting diodes (PLEDs), which has already been described many times in the literature (eg in WO 2004/037887).
  • the structure is composed of substrate / ITO / PEDOT (80 nm) / interlayer (80 nm) / emission layer (80 nm) / cathode.
  • substrates from Technoprint Sodalimeglas
  • the ITO structure indium tin oxide, a transparent, conductive anode
  • the substrates are in the clean room with DI water and a Detergent (Deconex 15 PF) and then activated by a UV / ozone plasma treatment. Thereafter, an 80 nm layer of PEDOT (PEDOT is a polythiophene derivative (Baytron P VAI 4083sp.) From HC Starck, Goslar, which is supplied as an aqueous dispersion) is also applied in the clean room as a buffer layer by spin-coating. The required spin rate depends on the degree of dilution and the specific spin coater geometry (typically 80 nm: 4500 rpm). To remove residual water from the layer, the substrates are baked for 10 minutes at 180 ° C on a hot plate.
  • PEDOT is a polythiophene derivative (Baytron P VAI 4083sp.) From HC Starck, Goslar, which is supplied as an aqueous dispersion
  • the interlayer used is for hole injection, in this case HIL-012 is used by Merck.
  • the interlayer can also be replaced by one or more layers, which merely have to fulfill the condition that they will not be peeled off again by the downstream processing step of the EML deposition from solution.
  • the emitters according to the invention are dissolved together with the matrix materials in toluene.
  • the typical solids content of such solutions is between 16 and 25 g / L, if, as here, the typical for a device layer thickness of 80 nm is to be achieved by spin coating.
  • Type 1 solution-processed devices contain a (polystyrene) emission layer: M5: M6: Ir (L) 3 (20%: 30%: 40%: 10%); Type 2 contains a (polystyrene): M5 emission layer : M6: Ir (LB3) 3 : Ir (L) 3 (20%: 20%: 40%: 15%: 5%).
  • the emission layer is spin-coated in an inert gas atmosphere, in this case argon, and baked at 130 ° C. for 30 minutes.
  • a cathode is made of barium (5 nm) and aluminum (100 nm) (high purity metals from Aldrich, particularly barium 99.99% (order no 474711).

Abstract

Die vorliegende Erfindung betrifft Metallkomplexe sowie elektronische Vorrichtungen, insbesondere organische Elektrolumineszenzvorrichtungen enthaltend diese Metallkomplexe.

Description

Metallkomplexe
Die vorliegende Erfindung betrifft Metallkomplexe, welche sich für den Einsatz als Emitter in organischen Elektrolumineszenzvorrichtungen eignen.
Der Aufbau organischer Elektrolumineszenzvorrichtungen (OLEDs), in denen organische Halbleiter als funktionelle Materialien eingesetzt werden, ist beispielsweise in US 4539507, US 5151629, EP 0676461 und WO 98/27136 beschrieben. Dabei werden als emittierende Materialien zunehmend metallorganische Komplexe eingesetzt, die Phosphoreszenz statt Fluoreszenz zeigen. Aus quantenmechanischen Gründen ist unter Verwendung metallorganischer Verbindungen als Phosphoreszenzemitter eine bis zu vierfache Energie- und Leistungseffizienz möglich. Generell gibt es bei OLEDs, die Triplettemission zeigen, immer noch Verbesserungsbedarf, insbesondere im Hinblick auf Effizienz, Betriebsspannung und Lebensdauer.
Gemäß dem Stand der Technik werden in phosphoreszierenden OLEDs als Triplettemitter insbesondere Iridium- und Platinkomplexe eingesetzt. Als Iridiumkomplexe werden insbesondere bis- und tris-ortho-metallierte Komplexe mit aromatischen Liganden eingesetzt, wobei die Liganden über ein negativ geladenes Kohlenstoffatom und ein neutrales Stickstoffatom oder über ein negativ geladenes Kohlenstoffatom und ein neutrales
Carben-Kohlenstoffatom an das Metall binden. Beispiele für solche Komplexe sind Tris(phenylpyridyl)iridium(lll) und Derivate davon (z. B. gemäß US 2002/0034656 oder WO 20 0/027583). Aus der Literatur ist eine Vielzahl verwandter Liganden und Iridium- bzw. Platinkomplexe bekannt, wie beispielsweise Komplexe mit 1- oder 3-Phenylisochinolinliganden (z. B. gemäß EP 1348711 oder WO 2011/028473), mit 2-Phenyl-chinolinen (z. B. gemäß WO 2002/064700 oder WO 2006/095943), mit Phenyl-chinoxalinen (z. B. gemäß US 2005/0191527), mit Phenyl-imidazolen (z. B. gemäß JP 2003/109758), mit Phenyl-benzimidazolen (z. B. gemäß US
2005/0008895) oder mit Phenyl-carbenen (z. B. gemäß WO 2005/019373). Platinkomplexe sind beispielsweise aus der WO 2003/040257 bekannt. Auch wenn mit derartigen Metallkomplexen bereits gute Ergebnisse erzielt werden, sind hier noch weitere Verbesserungen wünschenswert, insbesondere in Hinblick auf die Effizienz und die Lebensdauer der Komplexe.
Ein weiteres Problem, was manche der Metallkomplexe gemäß dem Stand der Technik aufweisen, ist die geringe Löslichkeit in organischen Löse- mittein. So ist beispielsweise Tris(benzo[h]chinolin)iridium(lll) in einer Vielzahl gängiger organischer Lösemittel, beispielsweise in aromatischen Kohlenwasserstoffen oder Chlorbenzol, nahezu unlöslich. Neben der dadurch erheblich erschwerten Aufreinigung bei der Herstellung der Komplexe wird durch die geringe Löslichkeit auch die Verwendung dieser Kom- plexe bei der lösungsprozessierten Herstellung der OLEDs erschwert oder gänzlich verhindert. Hier wäre daher der Zugang zu Derivaten mit höherer Löslichkeit wünschenswert, wobei sich durch die Derivatisierung deren elektronische Eigenschaften nicht verschlechtern sollten. Für die Verarbeitung aus Lösung wäre weiterhin eine verbesserte Oxidationsstabilität von Vorteil.
Verbesserungsbedarf gibt es weiterhin bei den Sublimationseigenschaften mancher Metallkomplexe gemäß dem Stand der Technik. So weisen diese eine hohe Sublimationstemperatur auf, was wiederum einen hohen ther- mischen Stress für diese Materialien sowohl bei der Sublimation zur Aufreinigung nach der Synthese wie auch bei der Herstellung von OLEDs in vakuumprozessierten Verfahren bedeutet. Hier wäre der Zugang zu Derivaten mit geringerer Sublimationstemperatur wünschenswert, wobei sich durch die Derivatisierung deren elektronische Eigenschaften nicht ver- schlechtem sollten.
Aufgabe der vorliegenden Erfindung ist daher die Bereitstellung neuer Metallkomplexe, welche sich als Emitter für die Verwendung in OLEDs eignen. Insbesondere ist die Aufgabe, Emitter bereitzustellen, welche verbesserte Eigenschaften in Bezug auf Effizienz, Betriebsspannung,
Lebensdauer, Farbkoordinaten, Farbreinheit, d. h. Breite der Emissionsbande, Löslichkeit und/oder Oxidationsstabilität zeigen.
Überraschend wurde gefunden, dass bestimmte, unten näher beschrie- bene Metallchelatkomplexe diese Aufgabe lösen und sich sehr gut für die Verwendung in einer organischen Elektrolumineszenzvornchtung eignen. Diese Metallkomplexe und organische Elektrolumineszenzvorrichtungen, welche diese Komplexe enthalten, sind daher der Gegenstand der vorliegenden Erfindung.
Gegenstand der Erfindung ist somit eine Verbindung gemäß Formel (1),
M(L)n(L')m Formel (1 ) welche eine Teilstruktur M(L)n der Formel (2) enthält:
Figure imgf000004_0001
wobei für die verwendeten Symbole und Indizes gilt: M ist Iridium oder Platin;
CyC ist eine Aryl- oder Heteroarylgruppe mit 5 bis 18 aromatischen Ring atomen oder eine Fluoren- bzw. Azafluorengruppe, welche jeweils über ein Kohlenstoffatom an M koordiniert und welche jeweils mit einem oder mehreren Resten R substituiert sein kann und welche jeweils über eine kovalente Bindung mit CyD verbunden ist;
CyD ist eine Heteroarylgruppe mit 5 bis 18 aromatischen Ringatomen, welche über ein neutrales Stickstoffatom oder über ein Carben- Kohlenstoffatom an M koordiniert und welche mit einem oder mehreren Resten R substituiert sein kann und welche über eine kovalente Bindung mit CyC verbunden ist;
R ist bei jedem Auftreten gleich oder verschieden H, D, F, Cl, Br, I, N(R )2l CN, N02, OH, COOR1, C(=O)N(R1)2, Si(R1)3) B(OR )2, C(=O)R1, P(=O)(R1)2, S(=O)R\ S(=O)2R1, OSO2R1, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 20 C-Atomen oder eine Alkenyl- oder Alkinylgruppe mit 2 bis 20 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 20 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R C=CR1, C=C, Si(R1)2, C=O, NR1, O, S oder CONR1 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, Cl, Br, I oder CN ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 40 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 40 aromatischen Ringatomen, die durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Aralkyl- oder Heteroaralkyl- gruppe mit 5 bis 40 aromatischen Ringatomen, die durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Diarylamino- gruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R1 substituiert sein kann; dabei können zwei benachbarte Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches oder heteroaromatisches Ringsystem bilden; weiterhin können zwei Reste R, von denen einer an CyD und der andere an CyC bindet, miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches oder heteroaromatisches Ringsystem bilden;
oder CyC bzw. CyD enthalten zwei benachbarte Kohlenstoffatome, die so durch Reste R substituiert sind, dass die beiden Kohlenstoffatome zusammen mit den Substituenten R eine Struktur der folgenden Formel (3) aufspannen,
Figure imgf000005_0001
Formel (3) wobei die gestrichelten Bindungen die Verknüpfung der beiden Kohlenstoffatome im Liganden andeuten; die beiden explizit eingezeichneten Kohlenstoffatome sind also Teil von CyC bzw. CyD;
A1, A2 ist gleich oder verschieden bei jedem Auftreten CR2 oder N;
A3, A4 ist gleich oder verschieden bei jedem Auftreten eine Alkylengruppe mit 2 oder 3 C-Atomen, in welcher ein Kohlenstoffatom durch Sauerstoff ersetzt sein kann und welche mit einem oder mehreren Resten R3 substituiert sein kann; mit der Maßgabe, dass in A1-A3-A2 bzw. A -A -A2 nicht zwei Heteroatome direkt aneinander gebunden sind;
R1, R2, R3 ist bei jedem Auftreten gleich oder verschieden H, D, F, Cl, Br, I, N(R4)2, CN, NO2, Si(R4)3, B(OR4)2, C(=O)R4, P(=0)(R4)2l
S(=O)R4, S(=0)2R4, OS02R4, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 20 C-Atomen oder eine Alkenyl- oder Alkinylgruppe mit 2 bis 20 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 20 C- Atomen, die jeweils mit einem oder mehreren Resten R4 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R4C=CR4, C=C, Si(R )2, C=O, NR4, O, S oder CONR4 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, Cl, Br, I, CN oder N02 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 40 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R4 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 40 aromatischen Ringatomen, die durch einen oder mehrere Reste R4 substituiert sein kann, oder eine Aralkyl- oder Heteroaralkylgruppe mit 5 bis 40 aromatischen Ringatomen, die durch einen oder mehrere
Reste R4 substituiert sein kann, oder eine Diarylaminogruppe, Di- heteroarylaminogruppe oder Aryiheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R4 substituiert sein kann; dabei können zwei oder mehrere benach- barte Reste R miteinander ein mono- oder polycyclisches, alipha- tisches, aromatisches oder heteroaromatisches Ringsystem bilden, und/oder zwei Reste R3 können miteinander ein mono- oder poly- cyclisches, aliphatisches Ringsystem bilden, wobei auch die Ringbildung zwischen zwei Resten R3, die an A3 und A4 gebunden sind, möglich ist;
R4 ist bei jedem Auftreten gleich oder verschieden H, D, F oder ein
aliphatischer, aromatischer und/oder heteroaromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, in dem auch ein oder mehrere H-Atome durch F ersetzt sein können; dabei können zwei oder mehrere Substituenten R4 auch miteinander ein mono- oder poly- cyclisches Ringsystem bilden;
L' ist gleich oder verschieden bei jedem Auftreten ein Ligand; n ist 1 , 2 oder 3; m ist O, 1 , 2, 3 oder 4; dabei können auch mehrere Liganden L miteinander oder L mit L' über eine Einfachbindung oder eine bivalente oder trivalente Brücke verknüpft sein und so ein tridentates, tetradentates, pentadentates oder hexa- dentates Ligandensystem aufspannen; dabei kann auch ein Substituent R zusätzlich an M koordinieren; dadurch gekennzeichnet, dass die Teilstruktur der Formel (2) mindestens eine Struktureinheit der oben genannten Formel (3) aufweist.
Dabei ist die Anwesenheit einer Teilstruktur der Formel (3), also eines ankondensierten aliphatischen Bicyclus erfindungswesentlich. In der oben abgebildeten Struktur der Formel (3) sowie den weiteren als bevorzugt genannten Ausführungsformen dieser Struktur wird formal eine Doppelbindung zwischen den zwei Kohlenstoffatomen, die Teil von CyC bzw. CyD sind, abgebildet. Dies stellt eine Vereinfachung der chemischen Struktur dar, da diese beiden Kohlenstoffatome in ein aromatisches oder hetero- aromatisches System des Liganden eingebunden sind und somit die Bindung zwischen diesen beiden Kohlenstoffatomen formal zwischen dem Bindungsgrad einer Einfachbindung und dem einer Doppelbindung liegt. Das Einzeichnen der formalen Doppelbindung ist somit nicht limitierend für die Struktur auszulegen, sondern es ist dem Fachmann offensichtlich, dass hiermit eine aromatische Bindung gemeint ist.
Dabei bedeutet„benachbarte Kohlenstoffatome", dass die Kohlenstoffatome direkt aneinander gebunden sind. Weiterhin bedeutet„benachbarte Reste" in der Definition der Reste, dass diese Reste entweder an dasselbe Kohlenstoffatom oder an benachbarte Kohlenstoffatome gebunden sind. In den oben genannten Teilstrukturen der Formel (2) können weiterhin auch CyC und CyD durch Ringbildung der Substituenten R miteinander verknüpft sein. Dies kann auch dazu führen, dass CyC und CyD keine eigenständigen aromatischen Systeme mehr darstellen, sondern durch die Ringbildung ein gesamtes größeres aromatisches System ausbilden. Dies ist beispielsweise dann der Fall, wenn CyC und CyD durch eine Gruppe -CR =CR1- oder durch eine gegebenenfalls durch R1 substituierte ortho- Phenylengruppe miteinander verbrückt sind. Dies wird im Folgenden an einem Phenylpyridin-Liganden schematisch erläutert:
Figure imgf000008_0001
Eine Arylgruppe im Sinne dieser Erfindung enthält 6 bis 40 C-Atome; eine Heteroarylgruppe im Sinne dieser Erfindung enthält 2 bis 40 C-Atome und mindestens ein Heteroatom, mit der Maßgabe, dass die Summe aus C-Atomen und Heteroatomen mindestens 5 ergibt. Die Heteroatome sind bevorzugt ausgewählt aus N, O und/oder S. Dabei wird unter einer Arylgruppe bzw. Heteroarylgruppe entweder ein einfacher aromatischer Cyclus, also Benzol, bzw. ein einfacher heteroaromatischer Cyclus, beispielsweise Pyridin, Pyrimidin, Thiophen, etc., oder eine kondensierte Aryl- oder Heteroarylgruppe, beispielsweise Naphthalin, Anthracen,
Phenanthren, Chinolin, Isochinolin, etc., verstanden.
Ein aromatisches Ringsystem im Sinne dieser Erfindung enthält 6 bis 60 C- Atome im Ringsystem. Ein heteroaromatisches Ringsystem im Sinne dieser Erfindung enthält 1 bis 60 C-Atome und mindestens ein Heteroatom im Ringsystem, mit der Maßgabe, dass die Summe aus C-Atomen und Heteroatomen mindestens 5 ergibt. Die Heteroatome sind bevorzugt ausgewählt aus N, O und/oder S. Unter einem aromatischen oder hetero- aromatischen Ringsystem im Sinne dieser Erfindung soll ein System verstanden werden, das nicht notwendigerweise nur Aryl- oder Heteroaryl- gruppen enthält, sondern in dem auch mehrere Aryl- oder Heteroaryl- gruppen durch eine nicht-aromatische Einheit (bevorzugt weniger als 10 % der von H verschiedenen Atome), wie z. B. ein C-, N- oder O-Atom oder eine Carbonylgruppe, unterbrochen sein können. So sollen beispielsweise auch Systeme wie 9,9'-Spirobifluoren, 9,9-Diarylfluoren, Triarylamin, Diarylether, Stilben, etc. als aromatische Ringsysteme im Sinne dieser Erfindung verstanden werden, und ebenso Systeme, in denen zwei oder mehrere Arylgruppen beispielsweise durch eine lineare oder cyclische Alkylgruppe oder durch eine Silylgruppe unterbrochen sind. Weiterhin sollen Systeme, in denen zwei oder mehrere Aryl- oder Heteroarylgruppen direkt aneinander gebunden sind, wie z. B. Biphenyl oder Terphenyl, ebenfalls als aromatisches bzw. heteroaromatisches Ringsystem verstanden werden.
Unter einer cyclischen Alkyl-, Alkoxy- oder Thioalkoxygruppe im Sinne dieser Erfindung wird eine monocyclische, eine bicyclische oder eine polycyclische Gruppe verstanden. im Rahmen der vorliegenden Erfindung werden unter einer d- bis C40- Alkylgruppe, in der auch einzelne H-Atome oder CH2-Gruppen durch die oben genannten Gruppen substituiert sein können, beispielsweise die Reste Methyl, Ethyl, n-Propyl, i-Propyl, Cyclopropyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, Cyclobutyl, 2-Methylbutyl, n-Pentyl, s-Pentyl, t-Pentyl, 2- Pentyl, neo-Pentyl, Cyclopentyl, n-Hexyl, s-Hexyl, t-Hexyl, 2-Hexyl, 3- Hexyl, neo-Hexyl, Cyclohexyl, 1-Methylcyclopentyl, 2-Methylpentyl, n-Heptyl, 2-Heptyl, 3-Heptyl, 4-Heptyl, Cycloheptyl, 1-Methylcyclohexyl, n-Octyl, 2-Ethylhexyl, Cyclooctyl, 1-Bicyclo[2,2,2]octyl, 2-Bicyclo[2,2,2]- octyl, 2-(2,6-Dimethyl)octyl, 3-(3,7-Dimethyl)octyl, Adamantyl, Trifluor- methyl, Pentafluorethyl, 2,2,2-Trifluorethyl, 1 ,1-Dimethyl-n-hex-1-yl-, 1 ,1- Dimethyl-n-hept-1-yl-, 1 ,1-Dimethyl~n-oct-1-yl-, 1 ,1-Dimethyl-n-dec-1-yl-, 1 , 1 -Dimethyl-n-dodec-1 -yl-, 1 , 1 -Dimethyl-n-tetradec-1 -yl-, 1 , 1 -Dimethyl-n- hexadec-1-yl-, 1 ,1-Dimethyl-n-octadec-1-yl-, 1 ,1-Diethyl-n-hex-1-yl-, 1 ,1- Diethyl-n-hept-1-yl-, 1 ,1-Diethyl-n-oct-1-yl-, 1 ,1-Diethyl-n-dec-1-yl-, 1 ,1- Diethyl-n-dodec-1 -yl-, 1 , 1 -Diethyl-n-tetradec-1 -yl-, 1 , 1 -Diethyln-n-hexadec- 1 -yl-, 1 ,1-Diethyl-n-octadec-1-yl-, 1-(n-Propyl)-cyclohex-1-yl-, l-(n-Butyl)- cyclohex-1-yl-, 1-(n-Hexyl)-cyclohex-1-yl-, 1-(n-Octyl)-cyclohex-1-yl- und 1- (n-Decyl)-cyclohex-l-yl- verstanden. Unter einer Alkenylgruppe werden beispielsweise Ethenyl, Propenyl, Butenyl, Pentenyl, Cyclopentenyl, Hexenyl, Cyclohexenyl, Heptenyl, Cycloheptenyl, Octenyl, Cyclooctenyl oder Cyclooctadienyl verstanden. Unter einer Alkinylgruppe werden beispielsweise Ethinyl, Propinyl, Butinyl, Pentinyl, Hexinyl, Heptinyl oder Octinyl verstanden. Unter einer d- bis C40-Alkoxygruppe werden beispielsweise Methoxy, Trifluormethoxy, Ethoxy, n-Propoxy, i-Propoxy, n-Butoxy, i-Butoxy, s-Butoxy, t-Butoxy oder 2-Methylbutoxy verstanden.
Unter einem aromatischen oder heteroaromatischen Ringsystem mit 5 - 60 aromatischen Ringatomen, welches noch jeweils mit den oben genannten Resten substituiert sein kann und welches über beliebige Positionen am Aromaten bzw. Heteroaromaten verknüpft sein kann, werden beispiels- weise Gruppen verstanden, die abgeleitet sind von Benzol, Naphthalin, Anthracen, Benzanthracen, Phenanthren, Benzophenanthren, Pyren, Chrysen, Perylen, Fluoranthen, Benzfluoranthen, Naphthacen, Pentacen, Benzpyren, Biphenyl, Biphenylen, Terphenyl, Terphenylen, Fluoren, Spiro- bifluoren, Dihydrophenanthren, Dihydropyren, Tetrahydropyren, eis- oder trans-lndenofluoren, eis- oder trans-Monobenzoindenofluoren, eis- oder trans-Dibenzoindenofluoren, Truxen, Isotruxen, Spirotruxen, Spiroiso- truxen, Furan, Benzofuran, Isobenzofuran, Dibenzofuran, Thiophen, Benzothiophen, Isobenzothiophen, Dibenzothiophen, Pyrrol, Indol, Iso- indol, Carbazol, Indolocarbazol, Indenocarbazol, Pyridin, Chinolin, Iso- chinolin, Acridin, Phenanthridin, Benzo-5,6-chinolin, Benzo-6,7-chinolin, Benzo-7,8-chinolin, Phenothiazin, Phenoxazin, Pyrazol, Indazol, Imidazol, Benzimidazol, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazin- imidazol, Chinoxalinimidazol, Oxazol, Benzoxazol, Naphthoxazol,
Anthroxazol, Phenanthroxazol, Isoxazol, 1 ,2-Thiazol, 1 ,3-Thiazol, Benzo- thiazol, Pyridazin, Benzopyridazin, Pyrimidin, Benzpyrimidin, Chinoxalin, 1 ,5-Diazaanthracen, 2,7-Diazapyren, 2,3-Diazapyren, 1 ,6-Diazapyren, 1 ,8-Diazapyren, 4,5-Diazapyren, 4,5,9, 10-Tetraazaperylen, Pyrazin, Phenazin, Phenoxazin, Phenothiazin, Fluorubin, Naphthyridin, Aza- carbazol, Benzocarbolin, Phenanthrolin, 1 ,2,3-Triazol, 1 ,2,4-Triazol, Benzotriazol, 1 ,2,3-Oxadiazol, 1 ,2,4-Oxadiazol, 1 ,2,5-Oxadiazol, 1 ,3,4- Oxadiazol, 1 ,2,3-Thiadiazol, 1 ,2,4-Thiadiazol, 1 ,2,5-Thiadiazol, 1 ,3,4-Thia- diazol, 1 ,3,5-Triazin, 1 ,2,4-Triazin, 1 ,2,3-Triazin, Tetrazol, 1 ,2,4,5-Tetrazin, 1 ,2,3,4-Tetrazin, 1 ,2,3,5-Tetrazin, Purin, Pteridin, Indolizin und Benzo- thiadiazol. Bevorzugt sind Verbindungen gemäß Formel (1), dadurch gekennzeichnet, dass diese nicht geladen, d. h. elektrisch neutral, sind. Dies wird auf einfache Weise dadurch erreicht, dass die Ladung der Liganden L und L' so gewählt wird, dass sie die Ladung des komplexierten Metallatoms M kompensiert.
Dabei werden in den Komplexen der Formel (1) die Indizes n und m so gewählt, dass die Koordinationszahl am Metall M insgesamt, je nach Metall, der für dieses Metall üblichen Koordinationszahl entspricht. Dies ist für Iridium(lll) die Koordinationszahl 6 und für Platin(ll) die Koordinations- zahl 4.
In einer bevorzugten Ausführungsform der Erfindung ist M Iridium(lll), und der Index n steht für 1 , 2 oder 3, bevorzugt für 2 oder 3. Wenn der Index n = 1 ist, sind noch vier monodentate oder zwei bidentate oder ein bi- dentater und zwei monodentate oder ein tridentater und ein monodentater oder ein tetradentater Ligand L', bevorzugt zwei bidentate Liganden L', an das Metall koordiniert. Wenn der Index n = 2 ist, sind noch ein bidentater oder zwei monodentate Liganden L', bevorzugt ein bidentater Ligand L', an das Metall koordiniert. Wenn der Index n = 3 ist, ist der Index m = 0. In einer weiteren bevorzugten Ausführungsform der Erfindung ist M
Platin(ll), und der Index n steht für 1 oder 2. Wenn der Index n = 1 ist, sind noch ein bidentater oder zwei monodentate Liganden L', bevorzugt ein bidentater Ligand L', an das Metall M koordiniert. Wenn der Index n = 2 ist, ist der Index m = 0.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist CyC eine Aryl- oder Heteroarylgruppe mit 6 bis 14 aromatischen Ringatomen, besonders bevorzugt mit 6 bis 10 aromatischen Ringatomen, ganz besonders bevorzugt mit 6 aromatischen Ringatomen, oder eine Fluoren- oder Azafluorengruppe, welche jeweils über ein Kohlenstoffatom an M koordiniert, welche mit einem oder mehreren Resten R substituiert sein kann und welche über eine kovalente Bindung mit CyD verbunden ist.
Bevorzugte Ausführungsformen der Gruppe CyC sind die Strukturen der folgenden Formeln (CyC-1) bis (CyC-19), wobei die Gruppe CyC jeweils an der durch # gekennzeichneten Position an CyD bindet und an der durch * gekennzeichneten Position an M koordiniert,
Figure imgf000012_0001
Figure imgf000013_0001
wobei R die oben genannten Bedeutungen aufweist und für die weiteren verwendeten Symbole gilt:
X ist bei jedem Auftreten gleich oder verschieden CR oder N;
W ist bei jedem Auftreten gleich oder verschieden NR, O, S oder CR2. Falls die Gruppe der Formel (3) an CyC gebunden ist, stehen zwei benachbarte Gruppen X in CyC für CR und diese beiden Kohlenstoffatome bilden zusammen mit den Resten R, die an diese Kohlenstoffatome gebunden sind, eine Gruppe der oben genannten bzw. unten genauer ausgeführten Formel (3).
Bevorzugt stehen maximal drei Symbole X in (CyC-1 ) bis (CyC- 9) für N, besonders bevorzugt stehen maximal zwei Symbole X in (CyC-1) bis (CyC- 19) für N, ganz besonders bevorzugt steht maximal ein Symbol X in (CyC- 1) bis (CyC-19) für N. Insbesondere bevorzugt stehen alle Symbole X für CR.
Besonders bevorzugte Gruppen CyC sind daher die Gruppen der folgenden Formeln (CyC-1 a) bis (CyC-19a),
Figure imgf000014_0001
(CyC-18a) (CyC-19a)
Figure imgf000015_0001
wobei die verwendeten Symbole die oben genannten Bedeutungen aufweisen. Falls die Gruppe der Formel (3) an (CyC-1) bis (CyC-19) gebunden ist, bilden zwei benachbarte Reste R zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, eine Gruppe der oben genannten bzw. unten genauer ausgeführten Formel (3).
Bevorzugte Gruppen unter den Gruppen (CyC-1) bis (CyC-19) sind die Gruppen (CyC-1), (CyC-3), (CyC-8), (CyC-10), (CyC-12), (CyC-13) und (CyC-16), und besonders bevorzugt sind die Gruppen (CyC-1a), (CyC-3a), (CyC-8a), (CyC-10a), (CyC-12a), (CyC-13a) und (CyC-16a).
In einer weiteren bevorzugten Ausführungsform der Erfindung ist CyD eine Heteroarylgruppe mit 5 bis 13 aromatischen Ringatomen, besonders bevorzugt mit 5 bis 10 aromatischen Ringatomen, welche über ein neutrales Stickstoffatom oder über ein Carben-Kohlenstoffatom an M koordiniert, welche mit einem oder mehreren Resten R substituiert sein kann und welche über eine kovalente Bindung mit CyC verbunden ist. Bevorzugt koordiniert die Gruppe CyD über ein Stickstoffatom an M.
Bevorzugte Ausführungsformen der Gruppe CyD sind die Strukturen der folgenden Formeln (CyD-1) bis (CyD-10), wobei die Gruppe CyD jeweils an der durch # gekennzeichneten Position an CyC bindet und an der durch * gekennzeichneten Position an koordiniert,
Figure imgf000015_0002
Figure imgf000016_0001
wobei X, W und R die oben genannten Bedeutungen aufweist.
Falls die Gruppe der Formel (3) an CyD gebunden ist, stehen zwei benachbarte Gruppen X in CyD für CR, und die beiden Kohlenstoffatome bilden zusammen mit den Resten R, die an diese Kohlenstoffatome gebunden sind, eine Gruppe der oben genannten bzw. unten genauer ausgeführten Formel (3).
Bevorzugt stehen maximal drei Symbole X in (CyD-1 ) bis (CyD-10) für N, besonders bevorzugt stehen maximal zwei Symbole X in (CyD-1 ) bis (CyD- 10) für N, ganz besonders bevorzugt steht maximal ein Symbol X in (CyD- 1) bis (CyD-10) für N. Insbesondere bevorzugt stehen alle Symbole X für CR.
Besonders bevorzugte Gruppen CyD sind daher die Gruppen der folgenden Formeln (CyD-1 a) bis (CyD-10a),
Figure imgf000016_0002
Figure imgf000017_0001
wobei die verwendeten Symbole die oben genannten Bedeutungen aufweisen. Falls die Gruppe der Formel (3) an (CyD-1 ) bis (CyD- 0) gebunden ist, bilden zwei benachbarte Reste R zusammen mit den
Kohlenstoffatomen, an die sie gebunden sind, eine Gruppe der oben genannten bzw. unten genauer ausgeführten Formel (3).
Bevorzugte Gruppen unter den Gruppen (CyD-1) bis (CyD-10) sind die Gruppen (CyD-1), (CyD-3), (CyD-4), (CyD-5) und (CyD-6), und besonders bevorzugt sind die Gruppen (CyD-1 a), (CyD-3a), (CyD-4a), (CyD-5a) und (CyD-6a).
Die oben genannten bevorzugten Gruppen CyC und CyD können beliebig miteinander kombiniert werden. Bevorzugt sind Verbindungen, in denen CyC eine Aryl- oder Heteroarylgruppe mit 6 bis 14 aromatischen Ringatomen und CyD eine Heteroarylgruppe mit 5 bis 13 aromatischen Ringatomen darstellt, die jeweils durch einen oder mehrere Reste R substituiert sein können. Besonders bevorzugt sind Verbindungen, in denen CyC eine Aryl- oder Heteroarylgruppe mit 6 bis 10 aromatischen Ringatomen und CyD eine Heteroarylgruppe mit 5 bis 10 aromatischen Ringatomen darstellt, die jeweils durch einen oder mehrere Reste R substituiert sein können. Geeignet sind im Liganden L insbesondere die folgenden
Kombinationen aus CyC und CyD:
Figure imgf000018_0001
Figure imgf000019_0002
Figure imgf000019_0001
Insbesondere bevorzugt ist es, wenn die oben als besonders bevorzugt genannten Gruppen CyC und CyD miteinander kombiniert werden. Besonders bevorzugt sind somit im Liganden L die folgenden Kombinationen aus CyC und CyD:
Figure imgf000021_0001
Figure imgf000022_0002
Figure imgf000022_0001
Wenn die Reste R an CyC und CyD zusammen einen Ring bilden, dann ergeben sich bevorzugt die folgenden Ligandenstrukturen (L1) bis (L6),
Figure imgf000023_0001
wobei X die oben genannten Bedeutungen aufweist und * die Position der Koordination an M andeutet.
Wie oben beschrieben, ist es erfindungswesentlich, dass CyD und/oder CyC bzw. die oben aufgeführten bevorzugten Ausführungsformen zwei benachbarte Kohlenstoffatome aufweist, die jeweils mit Resten R substituiert sind, wobei die jeweiligen Reste R zusammen mit den C-Atomen eine bi- bzw. polycyclische Struktur der oben genannten Formel (3) aufspannen.
In einer bevorzugten Ausführungsform der Erfindung enthält der Ligand L genau eine Gruppe der Formel (3). Dabei kann entweder CyC oder CyD diese Struktur aufweisen. Generell kann die Gruppe der Formel (3) in jeder möglichen Position an CyC oder CyD gebunden sein.
In den folgenden Gruppen (CyC-1- ) bis (CyC-19-1) und (CyD-1-1) bis (CyD-10-1) sind jeweils die bevorzugten Positionen für benachbarte
Gruppen X, welche für CR stehen, wobei die jeweiligen Reste R zusammen mit den C-Atomen, an die sie gebunden sind, einen Ring der oben genannten Formel (3) aufspannen, abgebildet,
(C
Figure imgf000024_0001
CyD-9-3)
)
Figure imgf000025_0001
wobei die verwendeten Symbole die oben genannten Bedeutungen aufweisen und 0 jeweils die Positionen kennzeichnet, die für CR stehen, wobei die jeweiligen Reste R zusammen mit den C-Atomen, an die sie gebunden sind, einen Ring der oben genannten Formel (3) aufspannen.
Ebenso sind in den beiden oben aufgeführten Tabellen für die Kombinationen aus CyC und CyD die Gruppen (CyC-1-1) bis (CyC- 9-1) bzw. (CyD-1-1 ) bis (CyD-10-4) statt den in den Tabellen aufgeführten Gruppen (CyC-1 ) bis (CyC-19) bzw. (CyD-1) bis (CyD-19) bevorzugt.
Bevorzugte Positionen für die Bindung der Gruppe der Formel (3) in den Liganden (L1) bis (L6) sind in den folgenden Strukturen (L1-1) bis (L6-6) abgebildet:
Figure imgf000026_0001
( )
Figure imgf000027_0001
wobei die verwendeten Symbole die oben genannten Bedeutungen aufweisen.
Im Folgenden werden bevorzugte Ausführungsformen der Gruppe gemäß Formel (3) ausgeführt.
Bei der Gruppe der Formel (3) handelt es sich um bicyclische Strukturen. Wesentlich ist, dass diese keine aziden benzylischen Protonen aufweisen. Unter benzylischen Protonen werden Protonen verstanden, die an ein Kohlenstoffatom binden, welches direkt an den aromatischen bzw. hetero- aromatischen Liganden gebunden sind. Die Abwesenheit von aziden benzylischen Protonen ist in der Struktur der Formel (3) dadurch erreicht, dass es sich dabei um eine bicyclische Struktur handelt, deren Brückenkopf direkt an die aromatische Gruppe von CyC bzw. CyD bindet. Aufgrund der starren räumlichen Anordnung ist der Substituent R2, der an den Brücken- köpf gebunden ist, wenn A1 bzw. A2 für CR2 steht und R2 für H steht, deutlich weniger azide als benzylische Protonen in einer nicht-bicyclischen Struktur, da das korrespondierende Anion der bicyclischen Struktur nicht mesomeriestabilisiert ist. Bei einem solchen Proton handelt es sich also um ein nicht-azides Proton im Sinne der vorliegenden Anmeldung.
In einer bevorzugten Ausführungsform der Erfindung stehen A1 und A2 beide gleich oder verschieden für CR2, oder A1 und A2 stehen beide für N. Besonders bevorzugt stehen A1 und A2 gleich oder verschieden für CR2. Es handelt sich also besonders bevorzugt um Kohlenstoff-Brückenkopf- atome.
In einer bevorzugten Ausführungsform der Erfindung ist der Rest R2, der an das Brückenkopfatom gebunden ist, gleich oder verschieden bei jedem Auftreten gewählt aus der Gruppe bestehend aus H, D, F, einer gerad- kettigen Alkylgruppe mit 1 bis 10 C-Atomen, die mit einem oder mehreren Resten R4 substituiert sein kann, bevorzugt aber unsubstituiert ist, einer verzweigten oder cyclischen Alkylgruppe mit 3 bis 10 C-Atomen, die mit einem oder mehreren Resten R4 substituiert sein kann, bevorzugt aber unsubstituiert ist, oder einem aromatischen oder heteroaromatischen Ring- system mit 5 bis 12 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R4 substituiert sein kann. Besonders bevorzugt ist der Rest R2, der an das Brückenkopfatom gebunden ist, gleich oder verschieden bei jedem Auftreten gewählt aus der Gruppe bestehend aus H, F, einer geradkettigen Alkylgruppe mit 1 bis 4 C-Atomen, einer verzweigten Alkylgruppe mit 3 oder 4 C-Atomen oder einer Phenylgruppe, die durch eine Alkylgruppe mit 1 bis 4 C-Atomen substituiert sein kann, bevorzugt aber unsubstituiert ist. Ganz besonders bevorzugt ist der Rest R2 bei jedem Auftreten gleich oder verschieden gewählt aus der Gruppe bestehend aus H, Methyl oder tert-Butyl. in einer weiteren bevorzugten Ausführungsform stehen beide Gruppen A1 und A2 in Formel (3) für CR2 und die beiden Reste R2 sind gleich gewählt.
In einer weiteren bevorzugten Ausführungsform der Erfindung stehen A3 und A4 gleich oder verschieden bei jedem Auftreten für eine Aikylengruppe mit 2 oder 3 Kohlenstoffatomen, die mit einem oder mehreren Resten R3 substituiert sein kann. Bevorzugt enthalten A3 und A4 somit keine Sauerstoffatome in der Aikylengruppe.
In einer bevorzugten Ausführungsform der Erfindung ist der Rest R3, der an A3 bzw. A4 bindet, gleich oder verschieden bei jedem Auftreten ausgewählt aus der Gruppe bestehend aus H, D, F, einer geradkettigen Alkylgruppe mit 1 bis 10 C-Atomen, die mit einem oder mehreren Resten R4 substituiert sein kann, bevorzugt aber unsubstituiert ist, einer verzweigten oder cyclischen Alkylgruppe mit 3 bis 10 C-Atomen, die mit einem oder mehreren Resten R4 substituiert sein kann, bevorzugt aber unsubstituiert ist, oder einem aromatischen oder heteroaromatischen Ringsystem mit 5 bis 12 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R4 substituiert sein kann; dabei können zwei Reste R3 miteinander einen Ring bilden und so ein polycyclisches, aliphatisches Ringsystem auf- spannen. Dabei ist die Ringbildung auch möglich und bevorzugt zwischen einem Rest R3, der an A3 gebunden ist, und einem Rest R3, der an A4 gebunden ist. Die Ringbildung zwischen einem Rest R3, der an A3 gebunden ist, und einem Rest R3, der an A4 gebunden ist, erfolgt bevorzugt durch eine Einfachbindung, Sauerstoff, eine Methylengruppe, die durch ein oder zwei Gruppen R4 substituiert sein kann, bevorzugt aber unsubstituiert ist, oder eine Ethylengruppe, die durch ein oder mehrere Gruppen R4 substituiert sein kann, bevorzugt aber unsubstituiert ist.
Besonders bevorzugt ist der Rest R3 gleich oder verschieden bei jedem Auftreten gewählt aus der Gruppe bestehend aus H, F, einer geradkettigen Alkylgruppe mit 1 bis 4 C-Atomen oder einer verzweigten Alkylgruppe mit 3 oder 4 C-Atomen; dabei können zwei Reste R3 miteinander einen Ring bilden und so ein polycyclisches, aliphatisches Ringsystem aufspannen.
Besonders bevorzugt stehen A1 und A2 gleich oder verschieden für CR2, und A3 und A4 stehen gleich oder verschieden bei jedem Auftreten für eine Alkylengruppe mit 2 oder 3 Kohlenstoffatomen, die mit einem oder mehreren Resten R3 substituiert sein kann, wobei für R2 und R3 bevorzugt die oben genannten bevorzugten Definitionen gelten.
In einer bevorzugten Ausführungsform der Erfindung stehen A3 und A4 jeweils für eine Ethylengruppe, die mit einem oder mehreren Resten R3 substituiert sein kann. In einer weiteren bevorzugten Ausführungsform der Erfindung steht A3 für eine Ethylengruppe und A4 für eine Propylengruppe, die jeweils mit einem oder mehreren Resten R3 substituiert sein können. In nochmals einer weiteren Ausführungsform der Erfindung stehen A3 und A4 jeweils für eine Propylengruppe, die mit einem oder mehreren Resten R3 substituiert sein können. Es handelt sich also bevorzugt um eine Gruppe der folgenden Formel (4), (5) oder (6),
Figure imgf000030_0001
wobei A1 und A2 die oben genannten Bedeutungen aufweisen und die Ethylengruppen bzw. Propylengruppen, die der Übersichtlichkeit halber unsubstituiert eingezeichnet sind, durch einen oder mehrere Reste R3 substituiert sein können, wobei R3 die oben genannten Bedeutungen aufweist. Dabei können insbesondere auch zwei Reste R3, die an die beiden unterschiedlichen Ethylen- bzw. Propylengruppen gebunden sind, miteinander zu einem Ringsystem verknüpft sein.
Bevorzugte Strukturen der Formeln (4), (5) und (6) sind die Strukturen der folgenden Formeln (4a), (5a) und (6a),
Formel (4a) Formel (6a)
Figure imgf000031_0001
wobei die Ethylengruppen bzw. Propylengruppen durch einen oder mehrere Reste R3 substituiert sein können, wobei R3 die oben genannten Bedeutungen aufweist. Dabei können insbesondere auch zwei Reste R3, die an die beiden unterschiedlichen Ethylen- bzw. Propylengruppen gebunden sind, miteinander zu einem Ringsystem verknüpft sein.
Bevorzugte Strukturen der Formeln (4) und (6), in denen zwei Reste R3 miteinander zu einem Ringsystem verknüpft sind, sind die Strukturen der folgenden Formeln (4b) und (6b),
Form
Figure imgf000031_0002
wobei A1 und A2 die oben genannten Bedeutungen aufweisen, die Ethylen- bzw. Propylengruppen durch einen oder mehrere Reste R3 substituiert sein kann und G1 für eine Ethylengruppe steht, die mit einem oder mehreren Gruppen R4 substituiert sein kann, bevorzugt aber unsubstituiert ist, und G2 für eine Einfachbindung, eine Methylen- oder Ethylengruppe, die jeweils mit einem oder mehreren Gruppen R4 substituiert sein kann, bevorzugt aber unsubstituiert ist, oder für ein Sauerstoffatom steht. Bevorzugt stehen A1 und A2 in den Formeln (4b) und (6b) gleich oder verschieden für CR2. Beispiele für geeignete Strukturen der Formel (4) sind die folgenden Strukturen:
Figure imgf000032_0001
Dabei sind die folgenden beiden Strukturen besonders bevorzugt:
Figure imgf000032_0002
Beispiele für geeignete Strukturen der Formel (5) sind die folgenden Strukturen:
Figure imgf000032_0003
Beispiele für geeignete Strukturen der Formel (6) sind die folgenden Strukturen:
Figure imgf000032_0004
Beispiele für geeignete Strukturen der Formel (4b) und (6b) sind die folgenden Strukturen:
Figure imgf000033_0001
Dabei sind die drei folgenden Strukturen besonders bevorzugt:
Figure imgf000033_0002
Wenn in der Teilstruktur der Formel (2) Reste R gebunden sind, die nicht für eine Gruppe der Formel (3) stehen, so sind diese Reste R bei jedem Auftreten gleich oder verschieden bevorzugt ausgewählt aus der Gruppe bestehend aus H, D, F, Br, I, N(R1)2, CN, Si(R1)3, B(OR1)2, C(=0)R1, einer geradkettigen Alkylgruppe mit 1 bis 10 C-Atomen oder einer Alkenylgruppe mit 2 bis 10 C-Atomen oder einer verzweigten oder cyclischen Alkylgruppe mit 3 bis 10 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei ein oder mehrere H-Atome durch D oder F ersetzt sein können, oder einem aromatischen oder heteroaromatischen Ringsystem mit 5 bis 30 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann; dabei können zwei benachbarte Rest R oder R mit R1 auch miteinander ein mono- oder poly- cyclisches, aliphatisches oder aromatisches Ringsystem bilden. Besonders bevorzugt sind diese Reste R bei jedem Auftreten gleich oder verschieden ausgewählt aus der Gruppe bestehend aus H, D, F, N(R1)2, einer geradkettigen Alkylgruppe mit 1 bis 6 C-Atomen oder einer verzweigten oder cyclischen Alkylgruppe mit 3 bis 10 C-Atomen, wobei ein oder mehrere H-Atome durch D oder F ersetzt sein können, oder einem aromatischen oder heteroaromatischen Ringsystem mit 5 bis 24 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann; dabei können zwei benachbarte Reste R oder R mit R1 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden. Weiterhin ist auch eine Ringbildung zwischen CyC und CyD möglich, wie oben beschrieben.
Weiterhin ist es möglich, dass der Substituent R, der in der ortho-Position zur Metallkoordination gebunden ist, eine Gruppe darstellt, die ebenfalls an das Metall M koordiniert bzw. bindet. Bevorzugte koordinierende Gruppen R sind Aryl- bzw. Heteroarylgruppen, beispielsweise Phenyl oder Pyridyl, Aryl- oder Alkylcyanide, Aryl- oder Alkylisocyanide, Amine oder Amide, Alkohole oder Alkoholate, Thioalkohole oder Thioalkoholate, Phosphine, Phosphite, Carbonylfunktionen, Carboxylate, Carbamide oder Aryl- oder Alkylacetylide. Beispiele für Teilstrukturen ML der Formel (2), in denen CyD für Pyridin und CyC für Benzol steht, sind die Strukturen der folgenden Formeln (7) bis (18):
Figure imgf000034_0001
Figure imgf000035_0001
wobei die verwendeten Symbole und Indizes die gleichen Bedeutungen aufweisen, wie oben beschrieben, X1 gleich oder verschieden bei jedem Auftreten für C oder N steht und W1 gleich oder verschieden bei jedem Auftreten für S, O oder NR1 steht.
Die Formeln (7) bis ( 8) zeigen nur exemplarisch, wie der Substituent R zusätzlich an das Metall koordinieren kann. Ganz analog sind ohne weiteres erfinderisches Zutun auch andere an das Metall koordinierende Gruppen R zugänglich, beispielsweise auch Carbene.
Wie oben beschrieben, kann auch statt einem der Reste R eine verbrückende Einheit vorhanden sein, die diesen Liganden L mit einem oder mehreren weiteren Liganden L bzw. L' verknüpft. In einer bevorzugten
Ausführungsform der Erfindung ist statt einem der Reste R, insbesondere statt der Reste R, die in ortho- oder meta-Position zum koordinierenden Atom stehen, eine verbrückende Einheit vorhanden, so dass die Liganden dreizähnigen oder mehrzähnigen oder polypodalen Charakter aufweisen. Es können auch zwei solcher verbrückenden Einheiten vorhanden sein. Dies führt zur Bildung makrocyclischer Liganden bzw. zur Bildung von Kryptaten.
Bevorzugte Strukturen mit mehrzähnigen Liganden bzw. mit polydentaten Liganden sind die Metallkomplexe der folgenden Formeln (19) bis (24),
Figure imgf000036_0001
wobei die verwendeten Symbole und Indizes die oben genannten
Bedeutungen aufweisen.
Ebenso können die Liganden über die cyclische Gruppe der Formel (3) miteinander verbrückt sein.
Dabei stellt in den Strukturen der Formeln (19) bis (24) V bevorzugt eine Einfachbindung oder eine verbrückende Einheit dar, enthaltend 1 bis 80 Atome aus der dritten, vierten, fünften und/oder sechsten Hauptgruppe (Gruppe 13, 14, 15 oder 16 gemäß IUPAC) oder einen 3- bis 6-gliedrigen Homo- oder Heterocyclus, die die Teilliganden L miteinander oder L mit L' miteinander kovalent verbindet. Dabei kann die verbrückende Einheit V auch unsymmetrisch aufgebaut sein, d. h. die Verknüpfung von V zu L bzw. L' muss nicht identisch sein. Die verbrückende Einheit V kann neutral, einfach, zweifach oder dreifach negativ oder einfach, zweifach oder dreifach positiv geladen sein. Bevorzugt ist V neutral oder einfach negativ oder einfach positiv geladen, besonders bevorzugt neutral. Dabei wird die Ladung von V bevorzugt so gewählt, dass insgesamt ein neutraler
Komplex entsteht. Dabei gelten für die Liganden die oben für die Teil- struktur MLn genannten Bevorzugungen und n ist bevorzugt mindestens 2.
Die genaue Struktur und chemische Zusammensetzung der Gruppe V hat keinen wesentlichen Einfluss auf die elektronischen Eigenschaften des Komplexes, da die Aufgabe dieser Gruppe im Wesentlichen darin liegt, durch die Verbrückung von L miteinander bzw. mit L' die chemische und thermische Stabilität der Komplexe zu erhöhen.
Wenn V eine trivalente Gruppe ist, also drei Liganden L miteinander bzw. zwei Liganden L mit L' oder einen Liganden L mit zwei Liganden L' verbrückt, ist V bevorzugt gleich oder verschieden bei jedem Auftreten gewählt aus der Gruppe bestehend aus B, B(R1)-, B(C(R )2)3,
(R1)B(C(R1)2)3 ~, B(0)3, (R1)B(0)3-, B(C(R1)2C(R1)2)3, (R )B(C(R1)2C(R1)2)3-, B(C(R1)2O)3, (R1)B(C(R1)2O)3-, B(OC(R1)2)3, (R1)B(OC(R )2)3-, C(R1), CO", CN(R1)2l (R )C(C(R1)2)3, (R1)C(O)3, (R )C(C(R )2C(R1)2)3> (R1)C(C(R )2O)3> (R1)C(OC(R1)2)3, (R1)C(Si(R1)2)3, (R1)C(Si(R1)2C(R1)2)3,
(R )C(C(R1)2Si(R )2)3, (R1)C(Si(R1)2Si(R1)2)3, Si(R1), (R1)Si(C(R1)2)3, (R1)Si(0)3, (R1)Si(C(R1)2C(R )2)3, (R1)Si(OC(R1)2)3, (R )Si(C(R1)2O)3, (R1)Si(Si(R1)2)3, (R1)Si(Si(R )2C(R1)2)3, (R1)Si(C(R1)2Si(R1)2)3,
(R )Si(Si(R1)2Si(R1)2)3, N, NO, N(R1)+, N(C(R1)2)3, (R1)N(C(R1)2)3 +,
N(C=O)3, N(C(R )2C(R )2)3, (R1)N(C(R1)2C(R1)2)+, P, P(R )+, PO, PS,
P(O)3, PO(O)3, P(OC(R1)2)3, PO(OC(R )2)3, P(C(R1)2)3, P(R1)(C(R )2)3 +, PO(C(R1)2)3, P(C(R1)2C(R1)2)3, P(R1) (C(R1)2C(R )2)3 +, PO(C(R1)2C(R1)2)3, S+, S(C(R1)2)3 +, S(C(R')2C(R' +,
oder eine Einheit gemäß Formel (25) bis (29),
Formel (29)
Figure imgf000038_0001
wobei die gestrichelten Bindungen jeweils die Bindung zu den Teilliganden L bzw. L' andeuten und Z gleich oder verschieden bei jedem Auftreten ausgewählt ist aus der Gruppe bestehend aus einer Einfachbindung, O, S, S(=O), S(=0)2, NR1, PR1, P(=O)R1, C(R1)2, C(=O), C(=NR1), C(=C(R )2), Si(R1)2 oder BR1. Die weiteren verwendeten Symbole haben die oben genannten Bedeutungen.
Wenn V für eine Gruppe CR2 steht, so können die beiden Reste R auch miteinander verknüpft sein, so dass auch Strukturen wie zum Beispiele 9,9-Fluoren geeignete Gruppen V sind.
Wenn V eine bivalente Gruppe ist, also zwei Liganden L miteinander bzw. einen Liganden L mit L' verbrückt, ist V bevorzugt gleich oder verschieden bei jedem Auftreten gewählt aus der Gruppe bestehend aus BR1, B(R1)2 ", C(R1)2, C(=O), Si(R1)2, NR1, PR1, P(R1)2 +, P(=0)(R1), P(=S)(R1), O, S, Se, oder eine Einheit emäß Formel (30) bis (39),
Formel (30) el (31) Formel (32) Formel (33)
Figure imgf000038_0002
Figure imgf000039_0001
Formel wobei die gestrichelten Bindungen jeweils die Bindung zu den Teilliganden L bzw. L' andeuten, Y bei jedem Auftreten gleich oder verschieden für C(R1)2, N(R1), O oder S steht und die weiteren verwendeten Symbole jeweils die oben aufgeführten Bedeutungen haben.
Im Folgenden werden bevorzugte Liganden L' beschrieben, wie sie in Formel (1) vorkommen. Entsprechend können auch die Ligandengruppen L' gewählt sein, wenn diese über eine verbrückende Einheit V an L gebunden sind, wie in Formeln (19), (21) und (23) angedeutet.
Die Liganden L' sind bevorzugt neutrale, monoanionische, dianionische oder trianionische Liganden, besonders bevorzugt neutrale oder monoanionische Liganden. Sie können monodentat, bidentat, tridentat oder tetradentat sein und sind bevorzugt bidentat, weisen also bevorzugt zwei Koordinationsstellen auf. Wie oben beschrieben, können die Liganden L' auch über eine verbrückende Gruppe V an L gebunden sein.
Bevorzugte neutrale, monodentate Liganden L' sind ausgewählt aus der Gruppe bestehend aus Kohlenmonoxid, Stickstoffmonoxid, Alkylcyaniden, wie z. B. Acetonitril, Arylcyaniden, wie z. B. Benzonitril, Alkylisocyaniden, wie z. B. Methylisonitril, Arylisocyaniden, wie z. B. Benzoisonitril, Aminen, wie z. B. Trimethylamin, Triethylamin, Morpholin, Phosphinen, insbesondere Halogenphosphine, Trialkylphosphine, Triarylphosphine oder Alkylarylphosphine, wie z. B. Trifluorphosphin, Trimethylphosphin, Tricyclo- hexylphosphin, Tri-terf-butylphosphin, Triphenylphosphin, Tris(pentafluor- pheny phosphin, Dimethylphenylphosphin, Methyldiphenylphosphin, Bis(tert-butyl)phenylphosphin, Phosphiten, wie z. B. Trimethylphosphit, Triethylphosphit, Arsinen, wie z. B. Trifluorarsin, Trimethylarsin, Tricyclo- hexylarsin, Tri-fe/t-butylarsin, Triphenylarsin, Tris(pentafluorphenyl)arsin, Stibinen, wie z. B. Trifluorstibin, Trimethylstibin, Tricyclohexylstibin, Tn-tert- butylstibin, Triphenylstibin, Tris(pentafluorphenyl)stibin, stickstoffhaltigen Heterocyclen, wie z. B. Pyridin, Pyridazin, Pyrazin, Pyrimidin, Triazin, und Carbenen, insbesondere Arduengo-Carbenen.
Bevorzugte monoanionische, monodentate Liganden L' sind ausgewählt aus Hydrid, Deutend, den Halogeniden F~, Cl~, Β und Γ, Alkylacetyliden, wie z. B. Methyl-CsC~, tert-Butyl-C=C", Arylacetyliden, wie z. B. Phenyl- C=C~, Cyanid, Cyanat, Isocyanat, Thiocyanat, Isothiocyanat, aliphatischen oder aromatischen Alkoholaten, wie z. B. Methanolat, Ethanolat,
Propanolat, /so-Propanolat, terf-Butylat, Phenolat, aliphatischen oder aromatischen Thioalkoholaten, wie z. B. Methanthiolat, Ethanthiolat,
Propanthiolat, /so-Propanthiolat, ferf-Thiobutylat, Thiophenolat, Amiden, wie z. B. Dimethylamid, Diethylamid, Di-/so-propylamid, Morpholid,
Carboxylaten, wie z. B. Acetat, Trifluoracetat, Propionat, Benzoat,
Arylgruppen, wie z. B. Phenyl, Naphthyl, und anionischen, stickstoff- haltigen Heterocyclen, wie Pyrrolid, Imidazolid, Pyrazolid. Dabei sind die Alkylgruppen in diesen Gruppen bevorzugt Ci-C2o-Alkylgruppen,
besonders bevorzugt C-i-C-io-Alkylgruppen, ganz besonders bevorzugt Ci-C4-Alkylgruppen. Unter einer Arylgruppe werden auch Heteroaryl- gruppen verstanden. Diese Gruppen sind wie oben definiert.
Bevorzugte di- bzw. trianionische Liganden sind O2-, S2~, Carbide, welche zu einer Koordination der Form R-C^M führen, und Nitrene, welche zu einer Koordination der Form R-N=M führen, wobei R allgemein für einen Substituenten steht, oder N3~.
Bevorzugte neutrale oder mono- oder dianionische, bidentate oder höher- dentate Liganden L' sind ausgewählt aus Diaminen, wie z. B. Ethylen- diamin, Ν,Ν,Ν''-Tetramethylethylendiamin, Propylendiamin, Ν,Ν,Ν''- Tetramethylpropylendiamin, cis- oder trans-Diaminocyclohexan, cis- oder trans-N,N,N',N'-Tetramethyldiaminocyclohexan, Iminen, wie z. B. 2-[1- (Phenylimino)ethyl]pyridin, 2-[1-(2-Methylphenylimino)ethyl]pyridin, 2-[1- (2,6-Di-/so-propylphenylimino)ethyl]pyridin, 2-[1-(Methylimino)ethyl]pyridin, 2-[1-(ethylimino)ethyl]pyridin, 2-[1-(/so-Propylimino)ethyl]pyridin, 2-{\-{Tert- Butylimino)ethyl]pyridin, Diiminen, wie z. B. 1 ,2-Bis(methyiimino)ethan, 1 ,2-Bis(ethylimino)ethan, 1 ,2-Bis(/so-propylimino)ethan, 1 ,2-Bis(fe/f-butyl- imino)ethan, 2,3-Bis(methylimino)butan, 2,3-Bis(ethylimino)butan, 2,3-Bis- (/so-propylimino)butan, 2,3-Bis(ferf-butylimino)butan, 1 ,2-Bis(phenylimino)- ethan, 1 ,2-Bis(2-methylphenylimino)ethan, 1 ,2-Bis(2,6-di-/so-propylphenyl- imino)ethan, 1 ,2-Bis(2,6-di-te t-butylphenylimino)ethan, 2,3-Bis(phenyl- imino)butan, 2,3-Bis(2-methylphenylimino)butan, 2,3-Bis(2,6-di-/so-propyl- phenylimino)butan, 2,3-Bis(2,6-di-ferf-butylphenylimino)butan, Hetero- cyclen enthaltend zwei Stickstoffatome, wie z. B. 2,2'-Bipyridin,
o-Phenanthrolin, Diphosphinen, wie z. B. Bis(diphenylphosphino)methan, Bis(diphenylphosphino)ethan, Bis(diphenylphosphino)propan, Bis(diphenyl- phosphino)butan, Bis(dimethylphosphino)methan, Bis(dimethylphosphino)- ethan, Bis(dimethylphosphino)propan, Bis(diethylphosphino)methan, Bis- (diethylphosphino)ethan, Bis(diethylphosphino)propan, Bis(di-terf-butyl- phosphino)methan, Bis(di-teAf-butylphosphino)ethan, Bis(ferf-butyl- phosphino)propan, 1 ,3-Diketonaten abgeleitet von 1 ,3-Diketonen, wie z. B. Acetylaceton, Benzoylaceton, ,5-Diphenylacetylaceton, Dibenzoylmethan, Bis(1 ,1 ,1-trifluoracetyl)methan, 3-Ketonaten abgeleitet von 3-Ketoestern, wie z. B. Acetessigsäureethylester, Carboxylate, abgeleitet von Amino- carbonsäuren, wie z. B. Pyridin-2-carbonsäure, Chinolin-2-carbonsäure, Glycin, Ν,Ν-Dimethylglycin, Alanin, Ν,Ν-Dimethylaminoalanin, Salicyl- iminaten abgeleitet von Salicyliminen, wie z. B. Methylsalicylimin, Ethyl- salicylimin, Phenylsalicylimin, Dialkoholaten abgeleitet von Dialkoholen, wie z. B. Ethylenglykol, 1 ,3-Propylenglykol, Dithiolaten abgeleitet von Dithiolen, wie z. B. 1 ,2-Ethylendithiol, 1 ,3-Propylendithiol, Bis(pyrazolyl- boraten), Bis(imidazolyl)boraten, 3-(2-Pyridyl)-diazolen oder 3-(2-Pyridyl)- triazolen.
Bevorzugte tridentate Liganden sind Borate stickstoffhaltiger Heterocyclen, wie z. B. Tetrakis(1-imidazolyl)borat und Tetrakis(1 -pyrazolyl)borat.
Bevorzugt sind weiterhin bidentate monoanionische, neutrale oder dianionische Liganden L', insbesondere monoanionische Liganden, welche mit dem Metall einen cyclometallierten Fünfring oder Sechsring mit mindestens einer Metall-Kohlenstoff-Bindung aufweisen, insbesondere einen cyclometallierten Fünfring. Dies sind insbesondere Liganden, wie sie allgemein im Gebiet der phosphoreszierenden Metallkomplexe für organische Elektrolumineszenzvorrichtungen verwendet werden, also Liganden vom Typ Phenylpyridin, Naphthylpyridin, Phenylchinolin, Phenylisochinolin, etc., welche jeweils durch einen oder mehrere Reste R substituiert sein können. Dem Fachmann auf dem Gebiet der phosphoreszierenden
Elektrolumineszenzvorrichtungen ist eine Vielzahl derartiger Liganden bekannt, und er kann ohne erfinderisches Zutun weitere derartige
Liganden als Ligand L' für Verbindungen gemäß Formel (1) auswählen. Generell eignet sich dafür besonders die Kombination aus zwei Gruppen, wie sie durch die folgenden Formeln (40) bis (64) dargestellt sind, wobei eine Gruppe bevorzugt über ein neutrales Stickstoffatom oder ein Carben- kohlenstoffatom bindet und die andere Gruppe bevorzugt über ein negativ geladenes Kohlenstoffatom oder ein negativ geladenes Stickstoffatom bindet. Der Ligand L' kann dann aus den Gruppen der Formeln (40) bis (64) gebildet werden, indem diese Gruppen jeweils an der durch # gekennzeichneten Position aneinander binden. Die Position, an der die Gruppen an das Metall koordinieren, sind durch * gekennzeichnet. Diese Gruppen können auch über eine oder zwei verbrückende Einheiten V an den
Liganden L gebunden sein.
Figure imgf000042_0001
Figure imgf000043_0001
Dabei hat W die oben genannte Bedeutung und X steht bei jedem Auftreten gleich oder verschieden für CR oder N, wobei hier die oben genannte Limitierung, dass mindestens zwei benachbarte Gruppen X für CR stehen und die Reste R einen Ring der Formel (3) bilden, nicht gilt; und R hat dieselbe Bedeutung wie oben beschrieben. Bevorzugt stehen maximal drei Symbole X in jeder Gruppe für N, besonders bevorzugt stehen maximal zwei Symbole X in jeder Gruppe für N, ganz besonders bevorzugt steht maximal ein Symbol X in jeder Gruppe für N. Insbesondere bevorzugt stehen alle Symbole X für CR. Ebenfalls bevorzugte Liganden L' sind r^-Cyclopentadienyl, r|5-Penta- methylcyclopentadienyl, r|6-Benzol oder η7-Cycloheptatrίenyl> welche jeweils durch einen oder mehrere Reste R substituiert sein können.
Ebenfalls bevorzugte Liganden L' sind 1 ,3,5-cis,cis-Cyclohexanderivate, insbesondere der Formel (65), 1 ,1 ,1-Tri(methylen)methanderivate, insbesondere der Formel (66) und 1 ,1 ,1 -trisubstituierte Methane, insbesondere der Formel (67) und (68),
Figure imgf000044_0001
wobei in den Formeln jeweils die Koordination an das Metall M dargestellt ist, R die oben genannte Bedeutung hat und A, gleich oder verschieden bei jedem Auftreten, für O", S~, COO~, PR2 oder NR2 steht.
Bevorzugte Reste R in den oben aufgeführten Strukturen sind bei jedem Auftreten gleich oder verschieden ausgewählt aus der Gruppe bestehend aus H, D, F, Br, N(R1)2, CN, B(OR1)2, C(=0)R1, P(=O)(R1)2, einer geradkettigen Alkylgruppe mit 1 bis 10 C-Atomen oder einer Alkenyl- oder Alkinylgruppe mit 2 bis 10 C-Atomen oder einer verzweigten oder cyclischen Alkylgruppe mit 3 bis 10 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei ein oder mehrere
H-Atome durch D oder F ersetzt sein können, oder einem aromatischen oder heteroaromatischen Ringsystem mit 5 bis 14 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R substituiert sein kann; dabei können zwei oder mehrere benachbarte Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden. Besonders bevorzugte Reste R sind bei jedem Auftreten gleich oder verschieden ausgewählt aus der Gruppe bestehend aus H, D, F, Br, CN, B(OR1)2, einer geradkettigen Alkylgruppe mit 1 bis 5 C-Atomen, insbesondere Methyl, oder einer verzweigten oder cyclischen Alkylgruppe mit 3 bis 5 C-Atomen, insbesondere iso-Propyl oder tert-Butyl, wobei ein oder mehrere H-Atome durch D oder F ersetzt sein können, oder einem aromatischen oder heteroaromatischen Ringsystem mit 5 bis 12 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann; dabei können zwei oder mehrere Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden.
In einer bevorzugten Ausführungsform der Erfindung koordiniert L' über eine oder mehrere aromatische bzw. heteroaromatische Gruppen an M, aber koordiniert nicht über nicht-aromatische und nicht-heteroaromatische Gruppen.
Die erfindungsgemäßen Komplexe können facial bzw. pseudofacial sein, oder sie können meridional bzw. pseudomeridional sein. Die Liganden L können je nach Struktur auch chiral sein. Dies ist beispielsweise dann der Fall, wenn in der Struktur der Formel (3) die Gruppen A3 und A4 unterschiedlich sind oder wenn sie Substituenten enthalten, beispielsweise Alkyl-, Alkoxy, Dialkylamino- oder Aralkylgruppen, welche ein oder mehrere Stereozentren aufweisen. Da es sich bei der Grundstruktur des Komplexes auch um eine chirale Struktur handeln kann, ist die Bildung von Diastereomeren und mehreren Enantiomerenpaaren möglich. Die erfindungsgemäßen Komplexe umfassen dann sowohl die Mischungen der verschiedenen Diastereomere bzw. die entsprechenden Racemate wie auch die einzelnen isolierten Diastereomere bzw. Enantiomere.
Die Verbindungen können auch als chirale, enantiomerenreine Komplexe eingesetzt werden, welche circular polarisiertes Licht emittieren können. Dies kann Vorteile aufweisen, da dadurch der Polarisationsfilter auf dem Device eingespart werden kann. Außerdem eignen sich solche Komplexe auch zur Verwendung in Sicherheitslabeln, da sie neben der Emission auch die Polarisation des Lichts als einfach auslesbares Merkmal aufweisen.
Die oben genannten bevorzugten Ausführungsformen sind beliebig mitein- ander kombinierbar. In einer besonders bevorzugten Ausführungsform der Erfindung gelten die oben genannten bevorzugten Ausführungsformen gleichzeitig.
Die erfindungsgemäßen Metallkomplexe sind prinzipiell durch verschiedene Verfahren darstellbar. Es haben sich jedoch die im Folgenden beschriebenen Verfahren als besonders geeignet herausgestellt.
Daher ist ein weiterer Gegenstand der vorliegenden Erfindung ein Verfahren zur Herstellung der Metallkomplex- Verbindungen gemäß Formel (1) durch Umsetzung der entsprechenden freien Liganden L und gegebenenfalls L' mit Metallalkoholaten der Formel (69), mit Metallketoketonaten der Formel (70), mit Metallhalogeniden der Formel (71), mit dimeren Metallkomplexen der Formel (72) oder mit Metallkomplexen der Formel (73),
Figure imgf000046_0001
Formel (69) Formel (70) Formel (71)
Hai -L"
:Μ<Ι_·)Π (L'L M; (Anion)
Hai
Formel (72) Formel (73) wobei die Symbole M, m, n und R die oben angegebenen Bedeutungen haben, Hai = F, Cl, Br oder I ist, L" für einen Alkohol, insbesondere für einen Alkohol mit 1 bis 4 C-Atomen oder ein Nitril, insbesondere Acetonitril oder Benzonitril, steht und (Anion) ein nicht-koordinierendes Anion ist, wie beispielsweise Triflat.
Es können ebenfalls Metallverbindungen, insbesondere Iridiumverbindungen, die sowohl Alkoholat- und/oder Halogenid- und/oder Hydroxy- wie auch Ketoketonatreste tragen, verwendet werden. Diese Verbindungen können auch geladen sein. Entsprechende Iridiumverbindungen, die als Edukte besonders geeignet sind, sind in WO 2004/085449 offenbart. Besonders geeignet sind [lrCI2(acac)2 , beispielsweise Na[lrCI2(acac)2], Metallkomplexe mit Acetylacetonat-Derivaten als Ligand, beispielsweise lr(acac)3 oder Trisi ^^.e-Tetramethylheptan-S.S-dionatoJiridium, und lrCI3 xH2O, wobei x üblicherweise für eine Zahl zwischen 2 und 4 steht. Geeignete Platin-Edukte sind beispielsweise PtCI2, K2[PtCI ],
PtCI2(DMSO)2, Pt(Me)2(DMSO)2 oder PtCI2(Benzonitril)2.
Die Synthese der Komplexe wird bevorzugt durchgeführt wie in WO
2002/060910, WO 2004/085449 und WO 2007/065523 beschrieben.
Heteroleptische Komplexe können beispielsweise auch gemäß WO
2005/042548 synthetisiert werden. Dabei kann die Synthese beispielsweise auch thermisch, photochemisch und/oder durch Mikrowellenstrahlung aktiviert werden. Zur Aktivierung der Reaktion ist es weiterhin auch möglich, eine Lewis-Säure, beispielsweise ein Silbersalz oder AICI3, zuzugeben.
Die Reaktionen können ohne Zusatz von Lösemitteln oder Schmelzhilfen in einer Schmelze der entsprechenden zu o-metallierenden Liganden durchgeführt werden. Gegebenenfalls können Lösemittel oder Schmelz- hilfen zugesetzt werden. Geeignete Lösemittel sind protische oder aprotische Lösemittel, wie aliphatische und / oder aromatische Alkohle (Methanol, Ethanol, iso-Propanol, t-Butanol, etc.), Oligo- und Polyalkohole (Ethylenglykol, 1 ,2-Propandiol, Glycerin, etc.), Alkoholether (Ethoxy- ethanol, Diethylenglykol, Triethylenglycol, Polyethylenglykol, etc.), Ether (Di- und Triethylenglykoldimethylether, Diphenylether, etc.), aromatische, heteroaromatische und oder aliphatische Kohlenwasserstoffe (Toluol, Xylol, Mesitylen, Chlorbenzol, Pyridin, Lutidin, Chinolin, iso-Chinolin, Tridecan, Hexadecan, etc.), Amide (DMF, DMAC, etc.), Lactame (NMP), Sulfoxide (DMOS) oder Sulfone (Dimethylsulfon, Sulfolan, etc.). Geeignete Schmelzhilfen sind Verbindungen, die bei Rautemperatur fest vorliegen, jedoch beim Erwäremen der Reaktionsmischung schmelzen und die Reaktanden lösen, so dass eine homogene Schmelze entsteht. Besonders geeignet sind Biphenyl, m-Terphenyl, Triphenylen, 1 ,2-, 1 ,3-, 1 ,4-Bis- phenoxybenzol, Triphenylphosphinoxid, 18-Krone-6, Phenol, 1-Naphthol, Hydrochinon, etc.. Durch diese Verfahren, gegebenenfalls gefolgt von Aufreinigung, wie z. B. Umkristallisation oder Sublimation, lassen sich die erfindungsgemäßen Verbindungen gemäß Formel (1) in hoher Reinheit, bevorzugt mehr als 99 % (bestimmt mittels 1H-NMR und/oder HPLC) erhalten.
Die erfindungsgemäßen Verbindungen können auch durch geeignete Substitution, beispielsweise durch längere Alkylgruppen (ca. 4 bis 20 C- Atome), insbesondere verzweigte Alkylgruppen, oder gegebenenfalls substituierte Arylgruppen, beispielsweise Xylyl-, Mesityl- oder verzweigte Terphenyl- oder Quaterphenylgruppen, löslich gemacht werden. Solche Verbindungen sind dann in gängigen organischen Lösemitteln, wie beispielsweise Toluol oder Xylol bei Raumtemperatur in ausreichender Konzentration löslich, um die Komplexe aus Lösung verarbeiten zu können. Diese löslichen Verbindungen eignen sich besonders gut für die Verarbeitung aus Lösung, beispielsweise durch Druckverfahren.
Die erfindungsgemäßen Verbindungen können auch mit einem Polymer gemischt werden. Ebenso ist es möglich, diese Verbindungen kovalent in ein Polymer einzubauen. Dies ist insbesondere möglich mit Verbindungen, welche mit reaktiven Abgangsgruppen, wie Brom, lod, Chlor, Boronsäure oder Boronsäureester, oder mit reaktiven, polymerisierbaren Gruppen, wie Olefinen oder Oxetanen, substituiert sind. Diese können als Monomere zur Erzeugung entsprechender Oligomere, Dendrimere oder Polymere Verwendung finden. Die Oligomerisation bzw. Polymerisation erfolgt dabei bevorzugt über die Halogenfunktionalität bzw. die Boronsäurefunktionaiität bzw. über die polymerisierbare Gruppe. Es ist weiterhin möglich, die Polymere über derartige Gruppen zu vernetzen. Die erfindungsgemäßen Verbindungen und Polymere können als vernetzte oder unvernetzte Schicht eingesetzt werden.
Weiterer Gegenstand der Erfindung sind daher Oligomere, Polymere oder Dendrimere enthaltend eine oder mehrere der oben aufgeführten erfindungsgemäßen Verbindungen, wobei ein oder mehrere Bindungen der erfindungsgemäßen Verbindung zum Polymer, Oligomer oder Dendrimer vorhanden sind. Je nach Verknüpfung der erfindungsgemäßen Verbindung bildet diese daher eine Seitenkette des Oligomers oder Polymers oder ist in der Hauptkette verknüpft. Die Polymere, Oligomere oder Dendrimere können konjugiert, teilkonjugiert oder nicht-konjugiert sein. Die Oligomere oder Polymere können linear, verzweigt oder dendritisch sein. Für die Wiederholeinheiten der erfindungsgemäßen Verbindungen in Oligomeren, Dendrimeren und Polymeren gelten dieselben Bevorzugungen, wie oben beschrieben.
Zur Herstellung der Oligomere oder Polymere werden die erfindungsgemäßen Monomere homopolymerisiert oder mit weiteren Monomeren copolymerisiert. Bevorzugt sind Copolymere, wobei die Einheiten gemäß
Formel (1) bzw. die oben ausgeführten bevorzugten Ausführungsformen zu 0.01 bis 99.9 mol%, bevorzugt 5 bis 90 mol%, besonders bevorzugt 20 bis 80 mol% vorhanden sind. Geeignete und bevorzugte Comonomere, welche das Polymergrundgerüst bilden, sind gewählt aus Fluorenen (z. B. gemäß EP 842208 oder WO 2000/022026), Spirobifluorenen (z. B. gemäß EP 707020, EP 894107 oder WO 2006/06 181 ), Para-phenylenen (z. B. gemäß WO 92/18552), Carbazolen (z. B. gemäß WO 2004/070772 oder WO 2004/113468), Thiophenen (z. B. gemäß EP 1028136), Dihydro- phenanthrenen (z. B. gemäß WO 2005/014689), eis- und trans-lndeno- fluorenen (z. B. gemäß WO 2004/041901 oder WO 2004/113412), Ketonen (z. B. gemäß WO 2005/040302), Phenanthrenen (z. B. gemäß
WO 2005/104264 oder WO 2007/017066) oder auch mehreren dieser Einheiten. Die Polymere, Oligomere und Dendrimere können noch weitere Einheiten enthalten, beispielsweise Lochtransporteinheiten, insbesondere solche basierend auf Triarylaminen, und/oder Elektronentransporteinheiten.
Nochmals ein weiterer Gegenstand der vorliegenden Erfindung ist eine Formulierung, enthaltend eine erfindungsgemäße Verbindung bzw. ein erfindungsgemäßes Oligomer, Polymer oder Dendrimer und mindestens eine weitere Verbindung. Die weitere Verbindung kann beispielsweise ein Lösemittel sein. Die weitere Verbindung kann aber auch eine weitere organische oder anorganische Verbindung sein, die ebenfalls in der elektronischen Vorrichtung eingesetzt wird, beispielsweise ein Matrix- material. Diese weitere Verbindung kann auch polymer sein. Für die Verarbeitung der erfindungsgemäßen Verbindungen aus flüssiger Phase, beispielsweise durch Spin-Coating oder durch Druckverfahren, sind Formulierungen der erfindungsgemäßen Verbindungen erforderlich. Diese Formulierungen können beispielsweise Lösungen, Dispersionen oder Emulsionen sein. Es kann bevorzugt sein, hierfür Mischungen aus zwei oder mehr Lösemitteln zu verwenden. Geeignete und bevorzugte Lösemittel sind beispielsweise Toluol, Anisol, o-, m- oder p-Xylol, Methyl- benzoat, Mesitylen, Tetralin, Veratrol, THF, Methyl-THF, THP, Chlorbenzol, Dioxan, Phenoxytoluol, insbesondere 3-Phenoxytoluol, (-)-Fenchon, 1 ,2,3,5-Tetramethylbenzol, 1 ,2,4,5-Tetramethylbenzol, 1-Methylnaphthalin, 2-Methylbenzothiazol, 2-Phenoxyethanol, 2-Pyrrolidinon, 3-Methylanisol, 4- Methylanisol, 3,4-Dimethylanisol, 3,5-Dimethylanisol, Acetophenon, a- Terpineol, Benzothiazol, Butylbenzoat, Cumol, Cyclohexanol, Cyclo- hexanon, Cyclohexylbenzol, Decalin, Dodecylbenzol, Ethylbenzoat, Indan, Methylbenzoat, NMP, p-Cymol, Phenetol, 1 ,4-Diisopropylbenzol, Dibenzyl- ether, Diethylenglycolbutylmethylether, Triethylenglycolbutylmethylether, Diethylenglycoldibutylether, Triethylenglycoldimethylether, Diethylenglycol- monobutylether, Tripropyleneglycoldimethylether, Tetraethylenglycoldi- methylether, 2-lsopropylnaphthalin, Pentylbenzol, Hexylbenzol, Heptyl- benzol, Octylbenzol, 1 ,1-Bis(3,4-dimethylphenyl)ethan oder Mischungen dieser Lösemittel.
Die oben beschriebenen Komplexe gemäß Formel (1) bzw. die oben aufgeführten bevorzugten Ausführungsformen können in der elektronischen Vorrichtung als aktive Komponente verwendet werden. Unter einer elektronischen Vorrichtung wird eine Vorrichtung verstanden, welche Anode, Kathode und mindestens eine Schicht enthält, wobei diese Schicht mindestens eine organische bzw. metallorganische Verbindung enthält. Die erfindungsgemäße elektronische Vorrichtung enthält also Anode, Kathode und mindestens eine Schicht, welche mindestens eine Verbindung der oben aufgeführten Formel (1) enthält. Dabei sind bevorzugte elektronische Vorrichtungen ausgewählt aus der Gruppe bestehend aus organischen Elektrolumineszenzvorrichtungen (OLEDs, PLEDs), organischen integrierten Schaltungen (O-ICs), organischen Feld-Effekt-Transistoren (O- FETs), organischen Dünnfilmtransistoren (O-TFTs), organischen licht- emittierenden Transistoren (O-LETs), organischen Solarzellen (O-SCs), organischen optischen Detektoren, organischen Photorezeptoren, organischen Feld-Quench-Devices (O-FQDs), lichtemittierenden elektrochemischen Zellen (LECs) oder organischen Laserdioden (O-Laser), enthaltend in mindestens einer Schicht mindestens eine Verbindung gemäß der oben aufgeführten Formel (1). Besonders bevorzugt sind organische Elektrolumineszenzvorrichtungen. Aktive Komponenten sind generell die organischen oder anorganischen Materialien, welche zwischen Anode und Kathode eingebracht sind, beispielsweise Ladungsinjektions-, Ladungstransport- oder Ladungsblockiermaterialien, insbesondere aber Emissionsmaterialien und Matrixmaterialien. Die erfindungsgemäßen Verbindungen zeigen besonders gute Eigenschaften als Emissionsmaterial in organischen Elektrolumineszenzvorrichtungen. Eine bevorzugte Ausführungsform der Erfindung sind daher organische Elektrolumineszenzvor- richtungen. Weiterhin können die erfindungsgemäßen Verbindungen zur Erzeugung von Singulett-Sauerstoff oder in der Photokatalyse eingesetzt werden.
Die organische Elektrolumineszenzvornchtung enthält Kathode, Anode und mindestens eine emittierende Schicht. Außer diesen Schichten kann sie noch weitere Schichten enthalten, beispielsweise jeweils eine oder mehrere Lochinjektionsschichten, Lochtransportschichten, Lochblockierschichten, Elektronentransportschichten, Elektroneninjektionsschichten, Exzitonenblockierschichten, Elektronenblockierschichten, Ladungs- erzeugungsschichten und/oder organische oder anorganische p/n-Über- gänge. Dabei ist es möglich, dass eine oder mehrere Lochtransportschichten p-dotiert sind, beispielsweise mit Metalloxiden, wie M0O3 oder W03 oder mit (per)fluorierten elektronenarmen Aromaten, und/oder dass eine oder mehrere Elektronentransportschichten n-dotiert sind. Ebenso können zwischen zwei emittierende Schichten Interlayers eingebracht sein, welche beispielsweise eine Exzitonen-blockierende Funktion aufweisen und/oder die Ladungsbalance in der Elektrolumineszenzvornchtung steuern. Es sei aber darauf hingewiesen, dass nicht notwendigerweise jede dieser Schichten vorhanden sein muss. Dabei kann die organische Elektrolumineszenzvorrichtung eine
emittierende Schicht enthalten, oder sie kann mehrere emittierende
Schichten enthalten. Wenn mehrere Emissionsschichten vorhanden sind, weisen diese bevorzugt insgesamt mehrere Emissionsmaxima zwischen 380 nm und 750 nm auf, so dass insgesamt weiße Emission resultiert, d. h. in den emittierenden Schichten werden verschiedene emittierende
Verbindungen verwendet, die fluoreszieren oder phosphoreszieren können. Insbesondere bevorzugt sind Dreischichtsysteme, wobei die drei Schichten blaue, grüne und orange oder rote Emission zeigen (für den prinzipiellen Aufbau siehe z. B. WO 2005/011013) bzw. Systeme, welche mehr als drei emittierende Schichten aufweisen. Es kann sich auch um ein Hybrid-System handeln, wobei eine oder mehrere Schichten fluoreszieren und eine oder mehrere andere Schichten phosphoreszieren.
In einer bevorzugten Ausführungsform der Erfindung enthält die orga- nische Elektrolumineszenzvorrichtung die Verbindung gemäß Formel (1 ) bzw. die oben aufgeführten bevorzugten Ausführungsformen als
emittierende Verbindung in einer oder mehreren emittierenden Schichten.
Wenn die Verbindung gemäß Formel (1) als emittierende Verbindung in einer emittierenden Schicht eingesetzt wird, wird sie bevorzugt in Kombination mit einem oder mehreren Matrixmaterialien eingesetzt. Die Mischung aus der Verbindung gemäß Formel (1) und dem Matrixmaterial enthält zwischen 0.1 und 99 Vol.-%, vorzugsweise zwischen 1 und 90 Vol.-%, besonders bevorzugt zwischen 3 und 40 Vol.-%, insbesondere zwischen 5 und 15 Vol.-% der Verbindung gemäß Formel (1) bezogen auf die Gesamtmischung aus Emitter und Matrixmaterial. Entsprechend enthält die
Mischung zwischen 99.9 und 1 Vol.-%, vorzugsweise zwischen 99 und 10 Vol.-%, besonders bevorzugt zwischen 97 und 60 Vol.-%, insbesondere zwischen 95 und 85 Vol.-% des Matrixmaterials bezogen auf die Gesamt- mischung aus Emitter und Matrixmaterial.
Als Matrixmaterial können generell alle Materialien eingesetzt werden, die gemäß dem Stand der Technik hierfür bekannt sind. Bevorzugt ist das Triplett-Niveau des Matrixmaterials höher als das Triplett-Niveau des Emitters. Geeignete Matrixmaterialien für die erfindungsgemäßen Verbindungen sind Ketone, Phosphinoxide, Sulfoxide und Sulfone, z. B. gemäß WO 2004/013080, WO 2004/093207, WO 2006/005627 oder WO 2010/006680, Triarylamine, Carbazolderivate, z. B. CBP (Ν,Ν-Biscarbazolylbiphenyl), m- CBP oder die in WO 2005/039246, US 2005/0069729, JP 2004/288381 , EP 1205527, WO 2008/086851 oder US 2009/0134784 offenbarten
Carbazolderivate, Indolocarbazolderivate, z. B. gemäß WO 2007/063754 oder WO 2008/056746, Indenocarbazolderivate, z. B. gemäß WO
2010/136109 oder WO 2011/000455, Azacarbazole, z. B. gemäß
EP 1617710, EP 1617711 , EP 1731584, JP 2005/347160, bipolare Matrixmaterialien, z. B. gemäß WO 2007/137725, Silane, z. B. gemäß WO
2005/111172, Azaborole oder Boronester, z. B. gemäß WO 2006/1 7052, Diazasilolderivate, z. B. gemäß WO 2010/054729, Diazaphospholderivate, z. B. gemäß WO 2010/054730, Triazinderivate, z. B. gemäß WO
2010/015306, WO 2007/063754 oder WO 2008/056746, Zinkkomplexe, z. B. gemäß EP 652273 oder WO 2009/062578, Dibenzofuranderivate, z. B. gemäß WO 2009/148015, oder verbrückte Carbazolderivate, z. B.
gemäß US 2009/0136779, WO 2010/050778, WO 2011/042107 oder WO 2011/088877.
Es kann auch bevorzugt sein, mehrere verschiedene Matrixmaterialien als Mischung einzusetzen, insbesondere mindestens ein elektronenleitendes Matrixmaterial und mindestens ein lochleitendes Matrixmaterial. Eine bevorzugte Kombination ist beispielsweise die Verwendung eines aroma- tischen Ketons, eines Triazin-Derivats oder eines Phosphinoxid-Derivats mit einem Triarylamin-Derivat oder einem Carbazol-Derivat als gemischte Matrix für den erfindungsgemäßen Metallkomplex. Ebenso bevorzugt ist die Verwendung einer Mischung aus einem ladungstransportierenden Matrixmaterial und einem elektrisch inerten Matrixmaterial, welches nicht bzw. nicht in wesentlichem Maße am Ladungstransport beteiligt ist, wie z. B. in WO 2010/108579 beschrieben.
Weiterhin bevorzugt ist es, eine Mischung aus zwei oder mehr Triplett- Emittern zusammen mit einer Matrix einzusetzen. Dabei dient der Triplett- Emitter mit dem kürzerwelligen Emissionsspektrum als Co-Matrix für den Tri plett- Em itter mit dem längerwelligen Emissionsspektrum. So können beispielsweise die erfindungsgemäßen Komplexe gemäß Formel (1 ) als Co-Matrix für längerwellig emittierende Triplettemitter, beispielsweise für grün oder rot emittierende Triplettemitter, eingesetzt werden. Die erfindungsgemäßen Verbindungen lassen sich auch in anderen
Funktionen in der elektronischen Vorrichtung einsetzen, beispielsweise als Lochtransportmaterial in einer Lochinjektions- oder -transportschicht, als Ladungserzeugungsmaterial oder als Elektronenblockiermaterial. Ebenso lassen sich die erfindungsgemäßen Komplexe als Matrixmaterial für andere phosphoreszierende Metallkomplexe in einer emittierenden Schicht einsetzen.
Als Kathode sind Metalle mit geringer Austrittsarbeit, Metalllegierungen oder mehrlagige Strukturen aus verschiedenen Metallen bevorzugt, wie beispielsweise Erdalkalimetalle, Alkalimetalle, Hauptgruppenmetalle oder Lanthanoide (z. B. Ca, Ba, Mg, AI, In, Mg, Yb, Sm, etc.). Weiterhin eignen sich Legierungen aus einem Alkali- oder Erdalkalimetall und Silber, beispielsweise eine Legierung aus Magnesium und Silber. Bei mehrlagigen Strukturen können auch zusätzlich zu den genannten Metallen weitere Metalle verwendet werden, die eine relativ hohe Austrittsarbeit aufweisen, wie z. B. Ag, wobei dann in der Regel Kombinationen der Metalle, wie beispielsweise Mg/Ag, Ca/Ag oder Ba/Ag verwendet werden. Es kann auch bevorzugt sein, zwischen einer metallischen Kathode und dem organischen Halbleiter eine dünne Zwischenschicht eines Materials mit einer hohen Dielektrizitätskonstante einzubringen. Hierfür kommen beispielsweise Alkalimetall- oder Erdalkalimetallfluoride, aber auch die entsprechenden Oxide oder Carbonate in Frage (z. B. LiF, Li2O, BaF2, MgO, NaF, CsF, CS2CO3, etc.). Ebenso kommen hierfür organische Alkalimetallkomplexe in Frage, z. B. Liq (Lithiumchinolinat). Die Schichtdicke dieser Schicht beträgt bevorzugt zwischen 0.5 und 5 nm.
Als Anode sind Materialien mit hoher Austrittsarbeit bevorzugt. Bevorzugt weist die Anode eine Austrittsarbeit größer 4.5 eV vs. Vakuum auf. Hierfür sind einerseits Metalle mit hohem Redoxpotential geeignet, wie beispiels- weise Ag, Pt oder Au. Es können andererseits auch Metall/Metalloxid- Elektroden (z. B. AI/Ni/NiOX) AI/PtOx) bevorzugt sein. Für einige Anwendungen muss mindestens eine der Elektroden transparent oder teiltransparent sein, um entweder die Bestrahlung des organischen Materials (O- SC) oder die Auskopplung von Licht (OLED/PLED, O-LASER) zu ermöglichen. Bevorzugte Anodenmaterialien sind hier leitfähige gemischte Metall- oxide. Besonders bevorzugt sind Indium-Zinn-Oxid (ITO) oder Indium-Zink- Oxid (IZO). Bevorzugt sind weiterhin leitfähige, dotierte organische
Materialien, insbesondere leitfähige dotierte Polymere, z. B. PEDOT, PANI oder Derivate dieser Polymere. Bevorzugt ist weiterhin, wenn auf die Anode ein p-dotiertes Lochtransportmaterial als Lochinjektionsschicht aufgebracht wird, wobei sich als p-Dotanden Metalloxide, beispielsweise MoO3 oder WO3, oder (per)fluorierte elektronenarme Aromaten eignen. Weitere geeignete p-Dotanden sind HAT-CN (Hexacyano-hexaazatri- phenylen) oder die Verbindung NPD9 von Novaled. Eine solche Schicht vereinfacht die Lochinjektion in Materialien mit einem tiefen HOMO, also einem betragsmäßig großen HOMO.
In den weiteren Schichten können generell alle Materialien verwendet werden, wie sie gemäß dem Stand der Technik für die Schichten verwendet werden, und der Fachmann kann ohne erfinderisches Zutun jedes dieser Materialien in einer elektronischen Vorrichtung mit den erfindungsgemäßen Materialien kombinieren.
Die Vorrichtung wird entsprechend (je nach Anwendung) strukturiert, kontaktiert und schließlich hermetisch versiegelt, da sich die Lebensdauer derartiger Vorrichtungen bei Anwesenheit von Wasser und/oder Luft drastisch verkürzt.
Weiterhin bevorzugt ist eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit einem Sublimationsverfahren beschichtet werden. Dabei werden die Materialien in Vakuum-Sublimationsanlagen bei einem Anfangsdruck von üblicherweise kleiner 10"5 mbar, bevorzugt kleiner 10~6 mbar aufgedampft. Es ist auch möglich, dass der Anfangsdruck noch geringer oder noch höher ist, beispielsweise kleiner 10"7 mbar. Bevorzugt ist ebenfalls eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit dem OVPD (Organic Vapour Phase Deposition) Verfahren oder mit Hilfe einer Trägergassublimation beschichtet werden. Dabei werden die Materialien bei einem Druck zwischen 10~5 mbar und 1 bar aufgebracht. Ein Spezialfall dieses Verfahrens ist das OVJP (Organic Vapour Jet Printing) Verfahren, bei dem die Materialien direkt durch eine Düse aufgebracht und so strukturiert werden (z. B. M. S. Arnold et al., Appl. Phys. Lett. 2008, 92,
053301). Weiterhin bevorzugt ist eine organische Elektrolumineszenzvorrichtung, dadurch gekennzeichnet, dass eine oder mehrere Schichten aus Lösung, wie z. B. durch Spincoating, oder mit einem beliebigen Druckverfahren, wie z. B. Siebdruck, Flexodruck, Offsetdruck oder Nozzle-Printing, besonders bevorzugt aber LITI (Light Induced Thermal Imaging, Thermotransferdruck) oder Ink-Jet Druck (Tintenstrahldruck), hergestellt werden. Hierfür sind lösliche Verbindungen nötig, welche beispielsweise durch geeignete Substitution erhalten werden.
Die organische Elektrolumineszenzvorrichtung kann auch als Hybrid- system hergestellt werden, indem eine oder mehrere Schichten aus
Lösung aufgebracht werden und eine oder mehrere andere Schichten aufgedampft werden. So ist es beispielsweise möglich, eine emittierende Schicht enthaltend eine Verbindung gemäß Formel (1) und ein Matrixmaterial aus Lösung aufzubringen und darauf eine Lochblockierschicht und/oder eine Elektronentransportschicht im Vakuum aufzudampfen.
Diese Verfahren sind dem Fachmann generell bekannt und können von ihm ohne Probleme auf organische Elektrolumineszenzvorrichtungen enthaltend Verbindungen gemäß Formel (1) bzw. die oben aufgeführten bevorzugten Ausführungsformen angewandt werden.
Die erfindungsgemäßen elektronischen Vorrichtungen, insbesondere organische Elektrolumineszenzvorrichtungen, zeichnen sich durch einen oder mehrere der folgenden überraschenden Vorteile gegenüber dem Stand der Technik aus: Organische Elektrolumineszenzvorrichtungen enthaltend die erfindungsgemäßen Verbindungen als emittierende Materialien weisen eine sehr gute Lebensdauer auf.
Organische Elektrolumineszenzvorrichtungen enthaltend die erfindungsgemäßen Verbindungen als emittierende Materialien weisen eine hervorragende Effizienz auf. Insbesondere ist die Effizienz deutlich höher gegenüber analogen Verbindungen, die keine Struktureinheit gemäß Formel (3) enthalten.
Der erfindungsgemäßen Metallkomplexe sind hervorragend in einer Vielzahl organischer Lösemittel löslich, insbesondere in organischen Kohlenwasserstoffen. Dabei ist die Löslichkeit gegenüber analogen Verbindungen, die keine Struktureinheit der Formel (3) enthalten, deutlich verbessert. Dies führt zu einer vereinfachten Aufreinigung während der Synthese der Komplexe sowie zu deren hervorragender Eignung bei der Herstellung von OLEDs in lösungsprozessierten Verfahren, beispielsweise Druckverfahren.
Dier erfindungsgemäßen Metallkomplexe weisen eine sehr hohe Oxidationsstabilität an Luft und Licht auf, so dass deren Verarbeitung aus Lösung, beispielsweise durch Druckverfahren, auch an der Luft möglich ist.
Die erfindungsgemäßen Metallkomplexe weisen teilweise ein sehr schmales Emissionsspektrum auf, was zu einer hohen Farbreinheit der Emission führt, wie sie insbesondere für Displayanwendungen wünschenswert ist.
Die erfindungsgemäßen Metallkomplexe weisen im Vergleich zu analogen Verbindungen, welche keine Struktureinheit gemäß Formel (3) enthalten, eine reduzierte Aggregation auf. Dies äußert sich in einer niedrigeren Sublimationstemperatur im Vergleich zu analogen
Komplexen, die keine Struktureinheit gemäß Formel (3) enthalten. Diese oben genannten Vorteile gehen nicht mit einer Verschlechterung der weiteren elektronischen Eigenschaften einher.
Die Erfindung wird durch die nachfolgenden Beispiele näher erläutert, ohne sie dadurch einschränken zu wollen. Der Fachmann kann aus den
Schilderungen ohne erfinderisches Zutun weitere erfindungsgemäße elektronische Vorrichtungen herstellen und somit die Erfindung im gesamten beanspruchten Bereich ausführen.
Beschreibung der Figuren
Figur 1 zeigt das Photolumineszenzspektrum eines Tris(benzo[h]chinolin)- iridium-Komplexes, welcher eine Gruppe der Formel (3) enthält, im Vergleich zu dem Spektrum des entsprechenden Komplexes ohne die Gruppe der Formel (3). Die Spektren wurden in einer ca. 10~5 molaren Lösung in entgastem Toluol bei Raumtemperatur gemessen. Es lässt sich deutlich die schmalere Emissionsbande mit einer Halbwertsbreite FWHM von
68 nm gegenüber 81 nm bei der Verbindung ohne eine Gruppe der Formel (3) erkennen.
Beispiele:
Die nachfolgenden Synthesen werden, sofern nicht anders angegeben, unter einer Schutzgasatmosphäre in getrockneten Lösungsmitteln durchgeführt. Die Metallkomplexe werden zusätzlich unter Ausschluss von Licht bzw. unter Gelblicht gehandhabt. Die Lösungsmittel und Reagenzien können z. B. von Sigma-ALDRICH bzw. ABCR bezogen werden. Die jeweiligen Angaben in eckigen Klammern bzw. die zu einzelnen Verbindungen angegebenen Nummern beziehen sich auf die CAS-Nummern der literaturbekannten Verbindungen.
A: Synthese der Synthone S und SB:
Beispiel S1 : 1,1,2,2,3,3-Hexamethyl-indan-d18, S1
Figure imgf000058_0001
Darstellung analog zu J. Baran, et al., J. Org. Chem. 1988, 53, 19, 4626. Ein auf -78°C gekühltes Gemisch aus 160.7 g (1 mol) 2-Chlor-2-phenyl- propan-d6 [53102-26-4], 230.8 g (2,4 mol) 2,3-Dimethylbut-2-en-d12
[69165-86-2] und 2500 ml wasserfreiem Dichlormethan wird tropfenweise unter gutem Rühren mit 18.7 ml (170 mmol) Titantetrachlorid versetzt und 2 h nachgerührt. Man gießt die kalte Reaktionsmischung unter gutem Rühren in 1500 ml 3N Salzsäure ein, rührt 20 min. nach, trennt die organische Phase ab, wäscht diese zweimal mit je 1000 ml Wasser, einmal mit 500 ml gesättigter Natriumcarbonat-Lösung, einmal mit 500 ml gesättigter Kochsalzlösung, trocknet über Magnesiumsulfat, filtriert vom Trockenmittel ab, befreit das Filtrat im Vakuum vom Dichlormethan und destilliert den Rückstand fraktioniert (Kernfraktion 60-65 °C, ca. 0.5 mbar). Ausbeute: 163.1 g (740 mmol), 74%; Reinheit: ca. 95%ig nach NMR.
Figure imgf000059_0002
Beispiel S4: 1,1,3,3-Tetramethyl-indan-5-boronsäure-pinakolester, S4 Variante 1 :
Figure imgf000059_0001
-1 ,1,3,3-tetramethyl-indan [169695-24-3], S4-Br
Figure imgf000060_0001
Eine auf 0 °C gekühlte Lösung von 87.2 g (500 mmol) 1 , ,3,3-Tetramethyl- indan [4834-33-7] in 1000 ml Dichlormethan wird mit 0.6 g wasserfreiem Eisen(lll)chlorid und dann unter Lichtausschluss tropfenweise mit einer Mischung von 25.6 ml (500 mol) Brom und 300 ml Dichlormethan so versetzt, dass die Temperatur + 5 °C nicht übersteigt. Man rührt die
Reaktionsmischung 16 h bei Raumtemperatur nach, versetzt dann langsam mit 300 ml gesättigter Natriumsulfit-Lösung, trennt die wässrige Phase ab, wäscht die organische Phase dreimal mit je 1000 ml Wasser, trocknet über Natriumsulfat, filtriert über eine kurze Säule aus Kieselgel und zieht dann das Lösungsmittel ab. Abschießend wird der Feststoff einmal aus wenig (ca. 100 - 150 ml) Ethanol umkristallisiert. Ausbeute: 121.5 g (480 mmol), 96%; Reinheit: ca. 95%ig nach 1H-NMR.
B) 1,1,3,3-Tetramethyl-indan-5-boronsäure-pinakolester, S4
Ein Gemisch von 25.3 g (100 mmol) S4-Br, 25.4 g (120 mmol) Bis(pinaco- lato)diboran [73183-34-3], 29.5 g (300) mmol Kaliumacetat, wasserfrei,
561 mg (2 mmol) Tricyclohexylphosphin und 249 mg (1 mmol) Palladium- (ll)acetat und 400 ml Dioxan wird 16 h bei 80 °C gerührt. Nach Entfernen des Lösungsmittels im Vakuum wird der Rückstand in 500 ml Dichlormethan aufgenommen, über ein Celite-Bett filtriert, das Filtrat wird bis zur beginnenden Kristallisation im Vakuum eingeengt und abschließend noch tropfenweise mit ca. 00 ml Methanol versetzt, um die Kristallisation zu vervollständigen. Ausbeute: 27.9 g (93 mmol), 93%; Reinheit: ca. 95%ig nach 1H-NMR. Als Öl anfallende Boronsäureester können auch ohne Reinigung weiter umgesetzt werden.
Variante 2:
Figure imgf000061_0001
800 ml n-Heptan werden mit 3.3 g (5 mmol) Bis[(1 ,2,5,6-r|)-1 ,5-cyclo- octadien]di-n-methoxydi-iridium(l) [12148-71-9], dann mit 2.7 g (10 mmol) 4,4'-Di-tert-butyl-[2,2']bipyridinyl [72914-19-3] und dann mit 5.1 g
(10 mmol) Bis-(pinkolato)diboran versetzt und 15 min. bei Raumtemperatur gerührt. Anschließend gibt man 127.0 g (500 mmol) Bis(pinacolato)diboran und dann 87.2 g (500 mmol) 1 ,1 ,3,3-Tetramethyl-indan [4834-33-7] zu und erwärmt für 12 h auf 80 °C (DC-Kontrolle-Heptan:Ethylacetat 5:1). Nach Erkalten versetzt man die Reaktionsmischung mit 300 ml Ethylacetat, filtriert über ein Kieselgel-Bett ab und engt das Filtrat im Vakuum komplett ein. Das Rohprodukt wird zweimal aus Aceton (ca. 800 ml) umkristallisiert. Ausbeute: 136.6 g (455 mmol), 91%; Reinheit: ca. 99%ig nach 1H-NMR.
Figure imgf000061_0002
Figure imgf000062_0001
Figure imgf000063_0001
Figure imgf000064_0001
Figure imgf000065_0001
Figure imgf000066_0001
Figure imgf000067_0001
Figure imgf000068_0002
5,5,7,7-Tetramethyl-6,7-dihydro-5H-[2]pyridin, S24
Figure imgf000068_0001
Durchführung analog D. L. Boger et al., J. Org. Chem., 1981 , 46, 10, 2180. Ein Gemisch aus 14.0 g (100 mmol) 2,2,4,4-Tetramethyl-cyclo-pentanon [4694-11-5], 9.0 ml (110 mmol) Pyrrolidin [123-75-1], 951 mg (5 mmol) p-Toluolsulfonsäure-Monohydrat [6192-52-5] und 500 ml Toluol wird so lange am Wasserabscheider erhitzt, bis die Wasserabscheidung beendet ist (typischerweise ca. 16 h). Danach wird das Toluol im Vakuum entfernt und der ölige Rückstand einer Kugelrohrdestillation unterzogen. Die so als bernsteinfarbenenes Öl erhaltenen 17.4 g (90 mmol) 1 -(3,3,5, 5-Tetra- methyl-cyclopent-1-enyl)-pyrrolidin werden in 50 ml Chloroform aufgenommen und bei Raumtemperatur langsam zu einer Lösung von 10.5 g (130 mmol) ,2,4-Triazin in 50 ml Chloroform getropft. Nach beendeter Zugabe rührt man die orangefarbene Lösung weitere 2 h bei Raumtemperatur nach, steigert dann die Temperatur auf 50 °C und rührt 45 h nach. Nach Entfernen das Chloroforms im Vakuum wird der Rückstand an Kieselgel mit Diethylethenn-Heptan (1 :1 , vv) chromatographiert. Ausbeute: 8.9 g (51 mmol), 51 %; Reinheit: ca. 97%ig nach 1H NMR.
Analo werden fol ende Verbindun en dar estellt:
Figure imgf000069_0002
: 5,6-Dibrom-1^2,2,3,3 iexamethyl-indan, S27
Figure imgf000069_0001
Eine Lösung von 101.2 g (500 mmol) 1 ,1 ,2,2,3,3-Hexamethyl-indan
[91324-94-6] in 2000 ml Dichlormethan wird mit 1.3 g wasserfreiem Eisen- (lll)chlorid und dann unter Lichtausschluss tropfenweise mit einer
Mischung von 64.0 ml (1.25 mol) Brom und 300 ml Dichlormethan so versetzt, dass die Temperatur 25 °C nicht übersteigt. Gegebenenfalls wird mit einem Kaltwasserbad gegengekühlt. Man rührt die Reaktionsmischung 16 h bei Raumtemperatur nach, versetzt dann langsam mit 500 ml gesättigter Natriumsulfit-Lösung, trennt die wässrige Phase ab, wäscht die organische Phase dreimal mit je 1000 ml Wasser, trocknet über Natriumsulfat, filtriert über eine kurze Säule aus Kieselgel und zieht dann das Lösungsmittel ab. Abschließend wird der Feststoff einmal aus wenig (ca. 100 ml) Ethanol umkristallisiert. Ausbeute: 135.8 g (377 mmol), 75%; Reinheit: ca. 95%ig nach H NMR.
Analog werden folgende Verbindungen dargestellt:
Figure imgf000070_0001
Figure imgf000071_0001
Figure imgf000072_0002
Beispel S35: 5,6-Diamino-1 ,1 , 2,2,3, 3-hexamethyl-indan, S35
o-1,1,2,2,3,3-tetramethyl-indan, S35a
Figure imgf000072_0001
Zu einer gut gerührten, auf 0° C gekühlten Mischung aus 101.2 g
(500 mmol) 1 ,1 ,2,2,3,3-Hexamethyl-indan [91324-94-6] und 350 ml 95 Gew.-%iger Schwefelsäure tropft man langsam 350 ml 100 Gew.-%ige Salpetersäure so zu, dass die Temperatur + 5° C nicht übersteigt.
Anschließend lässt man während 2 - 3 h langsam auf Raumtemperatur erwärmen und gießt die Reaktionsmischung dann in ein gut gerührtes Gemisch aus 6 kg Eis und 2 kg Wasser. Man stellt durch Zugabe von 40 Gew.-%iger NaOH auf pH = 8-9 ein, extrahiert dreimal mit je 1000 ml Ethylacetat, wäscht die vereinigten organischen Phasen zweimal mit je 1000 ml Wasser, trocknet über Magnesiumsulfat, entfernt dann das Ethylacetat im Vakuum fast vollständig bis zur beginnenden Kristallisation und vervollständigt die Kristallisation durch Zusatz von 500 ml Heptan. Man saugt von den so erhaltenen beigefarbenen Kristallen ab und trocknet diese im Vakuum. Ausbeute: 136.2 g (466 mmol), 93%; Reinheit: ca. 94%ig nach H-NMR, Rest ca. 4% 4,6-Dinitro-1 ,1 ,3,3-tetramethyl-indan. Aus der Mutterlauge können ca. 3% 4,5-Dinitro-1 ,1 ,3,3-tetramethyl-indan, S35b isoliert werden.
B: 5,6-Diamino-1 ,1 ,2,2,3,3-hexamethyl-indan, S35
136.2 g (466 mmol) 5,6-Dinitro-1 ,1 ,2,2,3,3-hexamethyl-indan, S35a werden bei Raumtemperatur in 1200 ml Ethanol an 10 g Palladium/Kohle bei 3 bar Wasserstoffdruck während 24 h hydriert. Die Reaktionsmischung wird zweimal über ein Celite-Bett filtriert, der nach Entferen des Ethanols erhaltene braune Feststoff wird Kugelrohr-destilliert (T ca. 160 °C, p ca. 10"4 mbar). Ausbeute: 98.5 g (424 mmol), 91%; Reinheit: ca. 95% nach H-NMR.
Analog werdem folgende Verbindungen dargestellt:
Figure imgf000073_0001
Figure imgf000074_0001
Figure imgf000075_0003
Beispel S43: N-[2-(1 ,1,2,2,3,3-Hexamethylindan-5-yl)-ethyl]-benzamid,
Figure imgf000075_0001
3-Hexamethylindan-5-carboxaldehyd, S43a
Figure imgf000075_0002
Eine auf -78 °C gekülte, gut gerührte Lösung von 140.6 g (500 mmol) 5-Brom-1 ,1 , 2,2,3, 3-hexamethylindan, S5-Br, in 1000 ml THF wird tropfenweise so mit 200 ml (500 mmol) n-BuLi, 2.5 M in n-Hexan versetzt, dass die Tempertur -55 °C nicht übersteigt. Nach beendeter Zugabe rührt man noch 30 min. nach und lässt dann eine Mischung aus 42.3 ml (550 mmol) DMF und 50 ml THF unter gutem Rühren zulaufen. Man rührt 1 h bei -78 °C nach, lässt dann auf Raumtemperatur erwärmen und quencht durch Zugabe von 300 ml gesättigter Ammoniumchlorid-Lösung. Man trennt die organische Phase ab, entfernt das THF im Vakuum, nimmt den Rückstand in 500 ml Ethylacetat auf, wäscht einmal mit 300 ml 5%iger Salzsäure, zweimal mit je 300 ml Wasser, einmal mit 300 ml gesättigter Kochsalzlösung, trocknet die organische Phase über Magnesiumsulfat und entfernt dann das Lösungsmittel im Vakuum. Der Rückstand wird ohne weitere Reinigung in Stufe B eingesetzt. Ausbeute: 107.1 g (465 mmol), 93%; Reinheit: ca. 95% nach 1H-NMR.
Figure imgf000076_0001
Figure imgf000077_0002
,2,3,3-Hexamethyl-5-indanyl)-ethylamin, S43b
Figure imgf000077_0001
Ein Gemisch aus 80.6 g (350 mmol) 1 ,1 ,2,2,3, 3-Hexamethylindan-5- carboxaldehyd, S43a, 400 ml Nitromethan und 4.6 g (70 mmol)
Ammoniumacetat, wasserfrei wird 2 h unter Rückfluss erhitzt, bis das Edukt verbraucht ist (DC-Kontrolle). Nach Erkalten gießt man die
Reaktionsmischung in 1000 ml Wasser, extrahiert dreimal mit je 300 ml Dichlormethan, wäscht die vereinigten organischen Phasen dreimal mit gesättigter Natriumhydrogencarbonat-Lösung, dreimal mit je 300 ml Wasser und einmal mit 300 ml gesätigter Kochsalzlösung, trocknet über Magnesiumsulfat und entfernt das Lösungsmittel im Vakuum. Der dunkle ölige Rückstand wird in 1000 ml THF gelöst und unter Eiskühlung langsam zu einer Lösung von 38.0 g (1.0 mol) Lithiumaluminiumhydrid in 1000 ml THF getropft (Vorsicht: Exotherme Reaktion!). Nach beendeter Zugabe lässt man auf Raumtemperatur erwärmen und rührt die Reaktions- mischung 20 h bei Raumtemperatur nach. Die Reaktionsmischung wird unter Eiskühlung durch langsame Zugabe von 500 ml gesättigter Natriumsulfat-Lösung hydrolysiert. Man saugt von den Salzen ab, wäscht diese mit 500 ml THF nach, entfernt das THF im Vakuum, nimmt den Rückstand in 1000 ml Dichlormethan auf, wäscht die Lösung dreimal mit je 300 ml Wasser, einmal mit 300 ml gesättigter Kochsalzlösung, trocknet über Magnesiumsulfat und entfernt dann das Lösungsmittel im Vakuum. Die Reinigung erfolgt durch Kugelrohrdestillation (p ca. 10"4 mbar, T = 200 °C). Ausbeute: 67.0 g (273 mmol), 78%; Reinheit: ca. 95% nach 1H-NMR.
Analog können folgende Verbindungen dargeste It werden:
Figure imgf000078_0001
Figure imgf000079_0001
C: N-[2-(1,1,2,2,3,3-Hexamethylindan-5-yl)-ethyl]-benzamid, S43
Eine Mischung von 24.5 g (100 mmol) 2-(1 ,1 ,2,2,3,3-Hexamethyl-5- indanyl)-ethylamin, S43b, 14.1 ml (100 mmol) Triethylamin und 150 ml Dichiormethan wird bei 0 °C mit einer Lösung von 14.1 g (100 mmol) Benzoesäurechlorid [98-88-4] in 100 ml Dichiormethan unter gutem Rühren tropfenweise so versetzt, dass die Temperatur 30 °C nicht übersteigt. Anschließend wird 1 h bei Raumtemperatur nachgerührt. Das Dichiormethan wird im Vakuum entfernt, der farblose Feststoff wird mit 100 ml Methanol versetzt, abgesaugt, dreimal mit 50 ml Methanol gewaschen und im Vakuum getrocknet. Ausbeute: 31.1 g (89 mmol), 89%; Reinheit: ca. 98% nach 1H-NMR.
Figure imgf000079_0002
Figure imgf000080_0001
Figure imgf000081_0002
utyl-9,9'-(6-brompyridin-2-yl)xanthen, S50
Figure imgf000081_0001
Eine Lösung von 84.7 g (300 mmol) Di(4-tert-butylphenyl)ether [24085-65- 2] in 1500 ml Diethylether wird bei Raumtemperatur mit 120 ml (300 mmol) n-BuLi, 2.5 M in n-Hexan versetzt und dann 60 h unter Rückfluss gerührt. Nach Abkühlen auf -10 °C wird die Reaktionsmischung portionsweise mit 82.1 g (240mmol) Bis-(6-brom-pyridin-2-yl)methanon versetzt und dann 1.5 h bei -10 °C nachgerührt. Man quencht die Reaktionsmischung durch Zugabe von 30 ml Ethanol, rotiert das Lösungsmittel komplett im Vakuum ab, nimmt den Rückstand in 1000 ml Eisessig auf, gibt unter Rühren 150 ml Essigsäureanhydrid und dann tropfenweise 30 ml konz. Schwefelsäure zu und rührt 3 h bei 60 °C nach. Dann entfernt man das Lösungsmittel im Vakuum, nimmt den Rückstand in 1000 ml Dichlormethan auf und stellt unter Eiskühlung durch Zugabe von 10 Gew.-%iger, wässriger NaOH alkalisch. Man trennt die organische Phase ab, wäscht diese dreimal mit je 500 ml Wasser, trocknet über Magnesiumsulfat, engt die organische Phase komplett ein und nimmt den Rückstand in 500 ml Methanol auf, homogenisiert in der Wärme und rührt dann 12 h nach, wobei das Produkt kristallisiert. Der nach Absaugen erhaltene Feststoff wird in
1000 ml Dichlormethan gelöst, die Lösung wird über ein Celite-Bett filtriert, das Filtrat wird zur Tockene eingeengt, der Rückstand wird zweimal aus Toluol : Methanol (1 :1) umkristallisiert und dann im Vakuum getrocknet. Ausbeute: 56.3 g (87 mmol), 36%; Reinheit: ca. 95% nach 1H-NMR.
Figure imgf000082_0002
3,3-hexamethylindan-5-yl)ether
Figure imgf000082_0001
Durchführung analog zu G. Chen et al., Tetrahedron Letters 2007, 48, 3, 47. Ein gut gerührtes Gemisch aus 56.2 g (200 mmol) 5-Brom-1 , 1 ,2,2, 3,3- hexamethylindan, S5-Br, 212.2 g (800 mmol) Trikalium-phosphat-trihydrat, 300 Glaskugeln (3 mm Durchmesser), 449 mg (2 mmol) Palladium(ll)- acetat, 809 mg (4 mmol) Tri-tert-butylphosphin und 1000 ml Dioxan wird 20 h unter Rückfluss erhitzt. Nach Erkalten saugt man von den Salzen ab, wäscht diese mit 300 ml Dioxan nach, engt das Filtrat im Vakuum ein, nimmt den Rückstand in 500 mi Ethylacetat auf, wäscht die Lösung dreimal mit je 300 ml Wasser, einmal mit 300 ml gesättigter Kochsalzlösung, trocknet über Magnesiumsulfat und entfernt dann das Ethylacetat im
Vakuum. Der Rückstand wird durch Kugelrohrdestillation (p ca. 10~4 mbar, T ca, 180 °C) gereinigt. Ausbeute: 32.6 g (78 mmol), 78%; Reinheit: ca. 97% nach 1H-NMR.
Beispiel S53: 7-Brom-1 ,2,3,4-tetrahydro-1 ,4-methano-naphthalin-6- carbaldehyd, S53
Figure imgf000083_0001
H
Durchführung analog L. S. Chen et al., J. Organomet. Chem. 1980, 193, 283-292. Eine auf -1 0 °C gekühlte Lösung von 30.2 g (100 mmol) ey-Dibrom-I ^.S^-tetrahydro-l ^-methano-naphthalin [42810-32-2] in einem Gemisch aus 1000 ml THF und 1000 ml Diethylether wird so mit 40 ml (100 mmol) n-BuLi, 2.5 M in Hexan, vorgekühlt auf -110 °C, versetzt, dass die Temperatur -105 °C nicht übersteigt. Man rührt 30 min. nach, versetzt dann trofenweise mit einem auf -110 °C vorgekühlten Gemisch aus 9.2 ml (120 mmol) DMF und 100 ml Diethylether, rührt dann 2 h nach, lässt auf -10 °C erwärmen, fügt 1000 ml 2 N HCl zu und rührt 2 h bei Raumtemperatur nach. Man trennt die organische Phase ab, wäscht diese einmal mit 500 ml Wasser, einmal mit 500 ml gesättigter Kochsalzlösung, trocknet über Magnesiumsulfat, entfernt das Lösungsmittel im Vakuum und unterwirft den Rückstand einer Kugelrohrdestillation (T ca. 90 °C, p ca. 10"4 mbar). Ausbeute: 15.8 g (63 mmol), 63%; Reinheit: ca. 95% nach 1H-NMR.
Figure imgf000083_0002
Figure imgf000084_0001
Figure imgf000085_0002
Beispiel S58: 7-Phenyl-ethynyl-1,2,3,4-tetrahydro-1 ,4-methano- aldehyd, S58
Figure imgf000085_0001
Eine Lösung von 25.1 g (100 mmol) 7-Brom-1 ,2,3,4-tetrahydro-1 ,4- methano-naphthalin-6-carbaldehyd, S53 in einem Gemisch aus 200 ml DMF und 100 ml Triethylamin wird konsekutiv mit 1.6 g (6 mmol) Triphenyl- phosphin, 674 mg (3 mmol) Palladium(ll)acetat, 571 mg (30 mmol) Kupfer- (l)iodid und 15.3 g (150 mmol) Phenylacetylen [536-74-3] versetzt und 4 h bei 65 °C gerührt. Nach Erkalten wird vom ausgefallenen Triethyl- ammonium-hydrochlorid abgesaugt, dieses wird mit 30 ml DMF nach- gewaschen. Das Filtrat wird im Vakuum von den Lösungsmitteln befreit. Der ölige Rückstand wird in 300 ml Ethylacetat aufgenommen, die Lösung wird fünfmal mit je 100 ml Wasser und einmal mit 100 ml gesättigter Kochsalzlösung gewaschen, und die organische Phase wird über Magnesiumsulfat getrocknet. Nach Entfernen des Ethylacetats im Vakuum wird der ölige Rückstand an Kieselgel chromatographiert (n-Heptan:Ethylacetat 99:1). Ausbeute: 19.6 g (72 mmol), 72%; Reinheit: ca. 97% nach 1 H-NMR.
Figure imgf000086_0001
Figure imgf000087_0001
- 87 -
Figure imgf000088_0001
Beispiel SB22: 5-[1-Hydroxy-meth-(E)-ylidene]-tricyclo-[4.3.1.1-3,8]- undecan-4-οη, SB22
Figure imgf000089_0001
Eine gut gerührte Suspension von 9.6 g (100 mmol) Natrium-tert-butylat in 300 ml Methyl-tert-butyl-ether wird tropfenweise mit einem Gemisch aus 16.4 g (100 mmol) Homoadamantanon [24669-56-5], 9.6 g (130 mmol)
Ameisensäureethylester [109-94-4] und 250 ml Methyl-tert-butyl-ether versetzt (Achtung: exotherm). Nach beendeter Zugabe erwärmt man für 16 h auf 60 °C. Nach Erkalten saugt man vom ausgefallenen beige-roten Feststoff ab, wäscht diesen einmal mit wenig Methyl-tert-butyl-ether, resuspen- diert diesen in 300 ml Methyl-tert-butyl-ether und hydrolysiert durch Zugabe von 200 ml gesättigter Ammoniumchlorid-Lösung. Man trennt die klare organische Phase ab, wäscht diese dreimal mit je 100 ml Wasser, einmal mit 100 ml gesättigter Natriumchlorid-Lösung, trocknet über
Magnesiumsulfat und entfernt dann das Lösungsmittel im Vakuum, wobei ein gelbes Öl, das mit der Zeit kristallisiert, verbleibt, welches ohne weitere Reinigung im nächsten Schritt eingesetzt werden kann. Ausbeute: 15.6 g (81 mmol), 81 %; Reinheit: ca. 95%ig nach 1H NMR, wobei je nach Verbindung, Lösungsmittel, Restwassergehalt und pH wechselnde Anteile der (Ζ,Ε)-ΕηοΙ- und Aldehydform zu beobachten sind, wobei die Enolform meist stark überwiegt.
Analog können folgende Verbindungen dargestellt werden:
Figure imgf000089_0002
Figure imgf000090_0001
Figure imgf000091_0002
Beispiel SB32:
Figure imgf000091_0001
Durchführung analog G. Zhang et al., Ad. Synth. & Catal., 2011 , 353(2+3), 291. Ein Gemisch aus 28.4 g (100 mmol) SB1 , 9.4 g (105 mmol) Kupfer(l)- cyanid, 41.5 g (300 mmol) Kaliumcarbonat, 100 g Glaskugeln (3 mm Durchmesser), 400 ml DMF und 3.6 ml Wasser wird 10 h bei 80 °C gerührt. Nach Erkalten entfernt man das DMF weitgehend im Vakuum, verdünnt den Rückstand mit 500 ml Dichlormethan, filtriert von den Salzen über ein Celite-Bett ab, wäscht das Filtrat dreimal mit 200 ml Wasser und einmal mit 100 ml gesättigter Kochsalzlösung und trocknet dann über Magnesiumsulfat. Der nach Entfernen des Dichlormethans verbleibende ölige Rückstand wird Kugelrohr-destilliert. Ausbeute: 1 1.5 g (63 mmol), 63%; Reinheit: ca. 97%ig nach 1H NMR.
Analog können folgende Verbindungen dargestellt werden:
Bsp. Edukt Produkt Ausbeute
Figure imgf000092_0001
Figure imgf000093_0002
B: Synthese der Liganden L und LB:
: 2-(1,1,3,3-Tetramethyl-indan-5-yl)pyridine, L1
Figure imgf000093_0001
Ein Gemisch aus 30.0 g (100 mmol) 1 ,1 ,3,3-Tetramethyl-indan-5-boron- säure-pinakolester, S4-B, 17.4 g (110 mmol) 2-Brompyridin [109-04-6], 46.1 g (200 mmol) Trikaliumphosphat-mono-hydrat, 300 ml Dioxan und 100 ml Wasser wird mit 821 mg (2 mmol) S-Phos und dann mit 249 mg (1 mmol) Palladium(ll)acetat versetzt und 16 h unter Rückfluss erhitzt. Nach Erkalten trennt man die wässrige Phase ab, engt die organische zur Trockene ein, nimmt den Rückstand in 500 ml Ethylacetat auf, wäscht die organische Phase dreimal mit je 200 ml Wasser, einmal mit 200 ml gesättigter Kochsalzlösung, trocknet über Magnesiumsulfat, filtriert über ein Celite-Bett vom Trockenmittel ab und engt erneut zur Trockene ein. Das so erhaltene Öl wird durch zweimalige fraktionierte Kugelrohrdestillation von Leichtsiedern und nicht flüchtigen Nebenkomponenten befreit. Ausbeute: 15.3 g (61 mmol), 61 %; Reinheit: ca. 99.5%ig nach 1H NMR.
Analog werden folgende Verbindungen dargestellt. Feststoffe werden durch Umkristallistion und fraktionierte Sublimation (p ca. 10~4 - 10 "5 mbar, T ca. 160 - 240 °C) von Leichtsiedern und nicht flüchtigen Nebenkomponenten befreit. Öle werden chromatographisch gereinigt, fraktioniert Kugel- rohr-destilliert oder im Vakuum getrocknet, um Leichtsieder zu entfernen.
Figure imgf000094_0001
Figure imgf000095_0001
Figure imgf000096_0001
Figure imgf000097_0001

Figure imgf000098_0001
Figure imgf000099_0001
 - 99 -
Figure imgf000100_0001
Figure imgf000101_0001
Figure imgf000102_0001

Figure imgf000103_0001
Figure imgf000104_0001
Figure imgf000105_0001

Figure imgf000106_0001

Figure imgf000107_0001

Figure imgf000108_0002
Figure imgf000108_0001
Durchführung analog A. Mazzanti et al., Eur. J. Org. Chem., 20 , 6725. Ein auf -78 °C gekühltes Gemisch aus 10.5 ml (100 mmol) Brombenzol und 500 ml Diethylether wird tropfenweise mit 40 ml (100 mmol) n-Butyl- lithium, 2.5 M in n-Hexan versetzt und 30 min. nachgerührt. Dann tropft man 17.5 g (100 mmol) 5,5,7,7-Tetramethyl-6,7-dihydro-5H-[2]pyridin, S24 zu, lässt auf Raumtemperatur erwärmen, rührt 12 h nach, quencht durch Zugabe von 100 ml Wasser, trennt die organische Phase ab, trocknet diese über Magnsiumsulfat. Nach Entfernen das Lösungsmittels wird der ölige Rückstand an Kieselgel mit Diethylethern-Heptan (3:7, v:v) chroma- tographiert und anschließend zweimal fraktioniert Kugelrohr-destilliert. Ausbeute: 12.1 g (48 mmol), 48%; Reinheit: ca. 99.5%ig nach 1H NMR.
Analog können folgende Verbindungen dargestellt werden. Feststoffe werden durch Umkristallistion und fraktionierte Sublimation (p ca. 10"4 - 10 5 mbar, T ca. 160 - 240 °C) von Leichtsiedern und nicht flüchtigen Nebenkomponenten befreit werden. Öle werden chromatographisch gereinigt, fraktioniert Kugelrohr-destilliert oder im Vakuum getrocknet, um Leichtsieder zu entfernen.
Figure imgf000109_0001
Figure imgf000110_0001
Figure imgf000111_0002
Beispiel 53: 6,6,7,7,8,8-Hexamethyl-2-phenyl-7,8-dihydro-6H-cyclo- penta[g]chinoxalin, L53
Figure imgf000111_0001
Durchführung analog S. V. More et al., Tetrahedron Lett. 2005, 46, 6345. Ein Gemisch aus 23.2 g (100 mmol) 1 ,1 ,2,2,3,3-Hexamethyl-indan-5,6- diamin, S35, 13.4 g (100 mmol) Oxo-phenyl-acetaldehyd [1074-12-0],
767 mg (3 mmol) lod und 75 ml Acetonitril wird 16 h bei Raumtemperatur gerührt. Man saugt vom ausgefallenen Feststoff ab, wäscht diesen einmal mit 20 ml Acetonitril, zweimal mit je 75 ml n-Heptan und kristallisiert dann zweimal aus Ethanol/Ethylacetat um. Abschließend wird der Feststoff durch fraktionierte Sublimation (p ca. 10"4 - 10 "5 mbar, T ca. 220 °C) von Leichtsiedern und nicht flüchtigen Nebenkomponenten befreit.
Ausbeute: 22.1 g (67 mmol), 67%; Reinheit: ca. 99.5%ig nach 1H NMR.
Analog werden folgende Verbindungen dargestellt. Feststoffe werden durch Umkristallistion und fraktionierte Sublimation (p ca. 10"4 - 10 "5 mbar, T ca. 160 - 240 °C) von Leichtsiedern und nicht flüchtigen Nebenkomponenten befreit werden. Öle werden chromatographisch gereinigt, fraktioniert Kugelrohr-destilliert oder im Vakuum getrocknet, um Leichtsieder zu entfernen.
Figure imgf000112_0001
 - 112 -
Figure imgf000113_0001
Figure imgf000114_0001
 - 114 -
Figure imgf000115_0001
Figure imgf000116_0002
Beispiel 64: 5,5,6,6,7,7-Hexamethy 1-1 ,2-dipheny 1-1 ,5,6,7-tetrahydro- indeno[5,6-d]imidazol, L64
Figure imgf000116_0001
Durchführung analog D. Zhao et al., Org. Lett., 2011 , 13, 24, 6516. Ein Gemisch aus 36.0 g (100 mmol) 5,6-Dibrom-1 ,1 ,2, 2, 3, 3-hexamethyl-indan, 21.6 g (110 mmol) N-Phenyl-benzamidin [1527-91-9], 97.8 g (300 mmol) Caesiumcarbonat, 100 g Molsieb 4A, 1.2 g (2 mmol) Xanthphos, 449 mg (2 mmol) Palladium(ll)acetat und 600 ml o-Xylol wird unter gutem Rühren 24 h unter Rückfluss erhitzt. Nach Erkalten saugt man von den Salzen über ein Celite-Bett ab, wäscht diese mit 500 ml o-Xylol nach, entfernt das Lösungsmittel im Vakuum und kristallisiert den Rückstand dreimal aus
Cyclohexan/Ethylacetat um. Abschließend wird der Feststoff durch fraktionierte Sublimation (p ca. 10~4 - 10 ~5 mbar, T ca. 230 °C) von Leichtsiedern und nicht flüchtigen Nebenkomponenten befreit. Ausbeute: 28.0 g
(71 mmol), 71 %; Reinheit: ca. 99.5%ig nach 1H NMR.
Analog werden folgende Verbindungen dargestellt. Feststoffe werden durch Umkristallistion und fraktionierte Sublimation (p ca. 10"4 - 10 "5 mbar, T ca. 160 - 240 °C) von Leichtsiedern und nicht flüchtigen Nebenkomponenten befreit werden. Öle können chromatographisch gereinigt, fraktio- niert Kugelrohr-destilliert oder im Vakuum getrocknet werden, um Leicht- sieder zu entfernen.
Figure imgf000117_0001
Figure imgf000118_0001
Figure imgf000119_0001
Figure imgf000120_0001
Figure imgf000121_0001

Figure imgf000122_0003
Beispiel 78: 1,5,5,6,6,7,7-Heptamethyl-3-phenyl-1 ,5,6,7-tetrahyd indeno[5,6-d]imidazolium-iodid, L78
Figure imgf000122_0001
methyl-I .S.e -tetrahydro-indenofSje-dlimidazol
Figure imgf000122_0002
Durchführung analog Z.-H. Zhang et al., J. Heterocycl. Chem. 2007, 44, 6, 1509. Ein gut gerührtes Gemisch aus 116.2 g (500 mmol) 1 ,1 ,2,2,3,3- Hexamethyl-indan-5,6-diamin, S35, 90.9 ml (550 mmol) Triethoxymethan [122-51-0] und 400 ml Acetonitril wird mit 1.3 g (5 mmol) lod versetzt und 5 h bei Raumtemperatur gerührt. Man saugt vom ausgefallenen Feststoff ab, wäscht diesen einmal mit wenig Acetonitril, dreimal mit je 100 ml n-Heptan und trocknet im Vakuum. Ausbeute: 108.8 g (449 mmol), 90%; Reinheit: ca. 97%ig nach 1H NMR.
B) 5,5,6,6,7,7-Hexamethy -phenyl-1 ,5,6,7-tetrahydro-indeno[5,6-d]- imidazol
Figure imgf000123_0001
Durchführung analog S. Zhang et al., Chem. Commun. 2008, 46, 6170. Ein Gemisch aus 24.2 g (100 mmol) 5,5,6,6, 7,7-Hexamethyl-1 ,5,6,7- tetrahydro-indeno[5,6-d]imidazol, A), 12.6 ml (120 mmol) Brombenzol [108-86-1], 27.6 g (200 mmol) Kaliumcarbonat, 952 mg (5 mmol) Kupfer(l)- iodid, 1.0 g (10 mmol) N,N-Dimethylglycin, 200 g Glaskugeln (3 mm
Durchmesser) und 300 ml DMSO wird unter gutem Rühren 36 h auf 120 °C erhitzt. Nach Erkalten saugt man von den Salzen ab, wäscht diese mit 1000 ml Ethylacetat nach, wäscht die vereinigten organischen Phasen fünfmal mit je 500 ml Wasser, einmal mit 500 ml gesättigter Kochsalzlösung, trocknet über Magnesiumsulfat, entfernt das Lösungsmittel im Vakuum und kristallisiert den Rückstand zweimal aus Cyclohexan um. Ausbeute: 28.3 g (89 mmol), 89%; Reinheit: ca. 97%ig nach H NMR.
C) 1 ,5,5,6,6,7,7-Heptamethyl-3-pheny 1-1 ,5,6,7-tetrahydro-indeno[5,6-d]- imidazolium-iodid, L78
Eine Suspension von 28.3 g (89 mmol) 5,5,6,6,7,7-Hexamethyl-1-phenyl- 1 ,5,6,7-tetrahydro-indeno[5,6-d]imiazol, B), in 100 ml THF wird unter Rühren mit 12.6 ml (200 mmol) Methyliodid [74-88-4] versetzt und 24 h bei 45 °C gerührt. Nach Erkalten saugt man vom ausgefallenen Feststoff ab, wäscht diesen dreimal mit je 50 ml Ethanol und trocknet im Vakuum.
Ausbeute: 23.5 g (51 mmol), 57%; Reinheit: ca. 99%ig nach 1H NMR.
Analo werden fol ende Verbindun en dar estellt:
Figure imgf000123_0002
Figure imgf000124_0001
Figure imgf000125_0001
Figure imgf000126_0001
Figure imgf000127_0001
Figure imgf000128_0002
Beispiel 89: 1,4,4,6,6-Pentamethyl-3-phenyl-1,4,5,6-tetrahyd pentaimidazolium-iodid, L89
Figure imgf000128_0001
A) 4,4,6,6-TetramethyM ,4,5,6-tetrahydro-cyclopentaimidazol
Figure imgf000129_0001
Darstellung analog G. Bratulescu, Synthesis, 2009, 14, 2319. Ein inniges Gemisch aus 1.54 g (10.0 mmol) 3,3,5,5-Tetramethyl-cyclophentan-1 ,2- dion [20633-06-1], 4.21 g (3.0 mmol) Urotropin, 7.7 g (10 mmol)
Ammoniumacetat und 0.3 ml Eisessig wird in einer temperaturgesteuerten Mikrowelle so lange erhitzt, bis eine Innentemperatur von ca. 120 °C erreicht ist, und dann ca. 15 min. bei dieser Temperatur gehalten. Nach Erkalten gibt man die Masse in 150 ml Wasser, stellt unter Rühren mit wässriger Ammoniak-Lösung (10 Gew -% ig) auf pH = 8 ein, saugt dann vom ausgefallenen Feststoff ab und wäscht diesen mit Wasser. Nach Trocknen wird aus Ethanol/Ethylacetat umkristallisiert. Ausbeute: 1.17 g (7.1 mmol), 71%; Reinheit: ca. 98%ig nach 1H NMR. ramethy 1-1 -phenyl-1 ,4,5,6-tetrahydro-cyclopentaimidazol
Figure imgf000129_0002
Darstellung analog Beispiel 78, B). Einsatz von 1.64 g (10.0 mmol) 4,4,6,6- Tetramethyl- ,4,5,6-tetrahydro-cyclopentaimidazol, A), die restlichen
Edukte und Lösungsmittel werden entsprechend stöchiometrisch ange- passt. Ausbeute: 1.53 g (6.3 mmol), 63%; Reinheit: ca. 98%ig nach
1H NMR. C) 1 ,4,4,6,6-Pentamethyl-3-phenyl-1 ,4,5,6-tetrahydro-cyclopenta- imidazolium-iodid, L89
Darstellung analog Beispiel 78, C). Einsatz von 2.4 g (10.0 mmol) 4,4,6,6- TetramethyI-1 -phenyl-1 ,4,5,6-tetrahydro-cyclopentaimidazol, B), die restlichen Edukte und Lösungsmittel werden entsprechend stöchiometrisch angepasst. Ausbeute: 2.26 g (5.9 mmol), 59%; Reinheit: ca. 99%ig nach 1H NMR.
Figure imgf000130_0001
Figure imgf000131_0002
Beispiel 93: Liganden vom Benzo[4,5]imidazo[2,1-c]chinazol
Allgemeine Ligandensynthese:
Aus 2-Amido-aryl-aldehyden und 1 ,2-Diamino-benzolen:
Figure imgf000131_0001
Schritt A:
Eine Lösung von 100 mmol des 2-Amido-arylaldehyds und 110 mmol des 1 ,2-Diaminobenzols in 70 ml Ethanol wird in einem 500 ml Rundkolben mit Wasserabscheider platziert und 30 min. bei 50 °C gerührt. Dann gibt man 70 ml Nitrobenzol zu und steigert die Temperatur schrittweise bis zum schwachen Rückfluss des Nitrobenzols, wobei man beim Hochheizen das Ethanol und gebildetes Wasser abdestilliert. Nach 4 h unter schwachem Rückfluss lässt man auf 50 °C erkalten, gibt 40 ml Methanol zu, lässt dann unter Rühren ganz erkalten, rührt 2 h bei Raumtemperatur nach, saugt dann von den gebildeten Kristallen des 2-(2-Amido-phenyl)-benzimidazols ab, wäscht diese zweimal mit je 20 ml Methanol und trocknet im Vakuum. Falls das 2-(2-Amido-phenyl)-benzimidazol nicht auskristallisiert, entfernt man das Lösungsmittel im Vakuum und setzt den Rückstand in Schritt B ein. Schritt B:
Variante A:
Eine gut gerührte Mischung (KPG-Rührer) aus 100 mmol des 2-(2-Amido- phenyl)-benzimidazols und 150 ml Dioxan oder Diethylenglykoldimethyl- ether wird mit 350 mmol des entsprechenden Carbonsäurechlorids und 50 mmol der entsprechenden Carbonsäure versetzt und so lange
(typischerweise 4 - 48 h) unter Rückfluss erhitzt, bis das 2-(2-Amido- phenyl)-benzimidazol umgesetzt ist. Entsprechende Carbonsäurechloride und Carbonsäuren sind die, die den jeweiligen Amidrest bilden. Nach Erkalten wird die Reaktionsmischung unter gutem Rühren in ein Gemisch aus 1000 g Eis und 300 ml wässrigem konz. Ammoniak eingerührt. Fällt das Produkt als Feststoff an, wird dieser abgesaugt, mit Wasser gewaschen und trocken gesaugt. Fällt das Produkt als Öl an, wird dieses mit drei Portionen zu je 300 ml Ethylacetat oder Dichlormethan extrahiert. Die organische Phase wird abgetrennt, mit 500 ml Wasser gewaschen und im Vakuum eingeengt. Das Rohprodukt wird in Ethylacetat oder Dichlormethan aufgenommen, über eine kurze Säule aus Alox, basisch, Aktivitätsstufe 1 oder Kieselgel filtriert, um braune Verunreinigungen zu entfernen. Nach Umkristallisation (Methanol, Ethanol, Aceton, Dioxan, DMF, etc.) des so erhaltenen Benzo[4,5]-imidazo[2,1-c]-chinazolins wird dieses, durch Kugel- rohrdestillation oder fraktionierte Sublimation (p ca. 10"4 - 10 "5 mbar, T ca. 160 - 240 °C) von Leichtsiedern und nicht flüchtigen Nebenkomponenten befreit. Verbindungen mit aliphatischen Resten, die mehr als 6 C-Atome aufweisen, bzw. solche mit Aralkylgruppen, die mehr als 9 C-Atome aufweisen, werden typischerweise chromatographisch gereinigt und dann im Vakuum getrocknet, um Leichtsieder zu entfernen. Reinheit nach 1H-NMR typischerweise > 99.5% ig.
Variante B:
Analoge Durchführung zu Variante A, jedoch werden anstatt der Carbon- säure 50 mmol Wasser zugesetzt.
Variante C:
Analoge Durchführung zu Variante A, jedoch wird keine Carbonsäure zugesetzt. :
Figure imgf000133_0001
Schritt A:
Einsatz von 20.5 g ( 00 mmol) N-(2-Formyl-phenyl)-2,2-dimethyl-propion- amid [6141-21-5] und 22.5 g ( 10 mmol) 1 ,1 ,3,3-Tetramethyl-indan-5,6- diamin S37. Das 2,2-Dimethyl-N-[2-(5,5,7,7-tetramethyl-1 ,5,6,6-tetrahydro- indeno[5,6-d]imidazol-2-yl)-phenyl]-propionamid kristallisiert aus.
Ausbeute: 31.6 g (81 mmol) 81 %; Reinheit: 97% nach 1 H-NMR.
Schritt B, Variante A:
Einsatz von 31.6 g (81 mmol) 2,2-Dimethyl-N-[2-(5,5,7,7-tetramethyl- 1 ,5,6,6-tetrahydro-indeno[5,6-d]imidazol-2-yl)-phenyl]-propionamid
(Schritt A), 120 ml Dioxan, 33.8 g (280 mmol) Pivalinsäurechlorid [3282- 30-2] und 4.1 g (40 mmol) Pivalinsäure [75-98-9], Reaktionszeit 16 h, das Rohprodukt fällt beim Neutralisieren als Feststoff an, Umkristallisation aus DMF/Ethanol, zweimalige fraktionierte Sublimation des Produktes bei T ca. 170 °C, p ca. 10"4 mbar. Ausbeute: 19.3 g (52 mmol), 64%; Reinheit: ca. 99.5% ig nach 1 H-NMR.
Analog werden die folgenden Verbindungen dargestellt.
Figure imgf000134_0002
Beispiel L95: 1 ,1 ,2,2,3,3-Hexamethy l-5-phenyl-2,3-dihydro-1 Η-6-aza- penta[b]naphthalin, L95
Figure imgf000134_0001
Eine Lösung von 34.8 g (100 mmol) N-[2-(1 ,1 ,2,2,3,3-Hexamethylindan-5- yl)-ethyl]-benzamid, S43 in 150 ml o-Xylol wird bei 90 °C unter gutem Rühren portionsweise mit 17.0 g (120 mmol) Phosphorpentoxid versetzt. Zu dieser Reaktionsmischung tropft man 28.0 ml (300 mmol) Phosphoryl- chlorid zu und rührt weitere 4 h unter Rückfluss nach. Die auf 80 °C abgekühlte Reaktionsmischung wird unter gutem Rühren auf 1000 g Eis gegossen und dann durch Zugabe von fester NaOH alkalisch (pH ca. 12) gestellt. Man extrahiert das Gemisch dreimal mit je 300 ml Toluol, wäscht die organische Phase dreimal mit Wasser, trocknet über Magnesiumsulfat und entfernt das Lösungsmittel im Vakuum. Der ölige Rückstand wird in 200 ml o-Dichlorbenzol gelöst, die Lösung wird mit 86.9 g (1 mol) Mangandioxid versetzt und anschließend 16 h unter Rückfluss am Wasserabscheider gekocht. Nach Erkalten wird vom Mangandioxid über eine Celite- Schicht abfiltriert, der Feststoff wird mit 500 ml eines Gemischs aus Di- chlormethan und Ethanol (10:1) gewaschen und die vereinigten Filtrate werden im Vakuum von den Lösungsmitteln befreit. Der Rückstand wird aus Cyclohexan / Ethylacetat umkristallisiert und abschließend durch fraktionierte Sublimation (p ca. 10~4 - 10 "5 mbar, T ca. 230 °C) von Leicht- siedern und nicht flüchtigen Nebenkomponenten befreit. Ausbeute: 20.1 g (61 mmol), 61 %; Reinheit: ca. 99.5%ig nach 1H NMR.
Figure imgf000135_0001
Figure imgf000136_0001
Beispiel L102: 7,8,9,10-Tetrahydro-7,10-methano-6-phenyl- phenanthridin, L102
Figure imgf000137_0001
Ein gut gerührtes Gemisch aus 46.6 g (500 mmol) Anilin, 58.4 (550 mmol) Benzaldehyd, 94.2 g (1 mol) Norbornen und 1300 ml Dichlormethan wird tropfenweise mit 14.2 g (100 mmol) Bortrifluoridetherat versetzt und dann 40 h unter Rückfluss erhitzt. Nach Erkalten wäscht man die Reaktionsmischung zweimal mit je 400 ml Wasser, trocknet die orgische Phase über Magnesiumsulfat und entfernt dann das Dichlormethan im Vakuum. Der Rückstand wird in 1000 ml o-Dichlorbenzol aufgenommen, mit 435 g (5 mol) Mangandioxid versetzt und 16 h am Wasserabscheider unter Rückfluss erhitzt. Nach Erkalten fügt man 1000 ml Ethylacetat zu, saugt vom Mangandioxid über eine Celite-Schicht ab, wäscht das Mangandioxid mit 000 ml Ethylacetat nach und befreit die vereinigten Filtrate im
Vakuum von den Lösungsmitteln. Der Rückstand wird zweimal aus Cyclo- hexan umkristallisiert und abschließend durch fraktionierte Sublimation (p ca. 10"4 - 10 "5 mbar, T ca. 230 °C) von Leichtsiedern und nicht flüchtigen Nebenkomponenten befreit. Ausbeute: 76.0 g (280 mmol), 56%; Reinheit: ca. 99.5%ig nach H NMR.
Analo können fol ende Verbindun en dar estellt werden:
Figure imgf000137_0002
Figure imgf000138_0001
35
Figure imgf000139_0001

Figure imgf000140_0001
35
Figure imgf000141_0001
Figure imgf000142_0001

Figure imgf000143_0001
Figure imgf000144_0001
Figure imgf000145_0001

Figure imgf000146_0001
Figure imgf000147_0002
Figure imgf000147_0001
Ein Gemisch aus 13.6 g (50 mmol) 7-(3,3-Dimethyl-but-1 -ynyl)-1 , 2,3,4- tetrahydro-1 ,4-methanonaphthalin-6-carbaldehyd, S58 und 500 ml methanolische Ammoniak-Lösung (2M) wird in einem Autoklaven 5 h bei 140 °C gerührt. Nach Erkalten wird das Methanol im Vakuum entfernt, der ölige Rückstand wird an Kieselgel chromatographiert (n-Heptan:Ethyl- acetat 95:5) und abschließend durch fraktionierte Sublimation (p ca. 10" 10 "5 mbar, T ca. 230 °C) von Leichtsiedern und nicht flüchtigen Nebenkomponenten befreit. Ausbeute: 5.1 g (17 mmol), 34%; Reinheit: ca. 99.5%ig nach 1 H NMR.
Analog können folgende Derivate dargestellt werden:
Figure imgf000148_0001
Figure imgf000149_0001
Figure imgf000150_0001
Beispiel L136: 1R,4S-Methano-1,2,3,4-tetrahydro-9-phenyl-10- phenanthren. L136
Figure imgf000151_0001
Ein Gemisch aus 26.1 g (100 mmol) 2-Bromphenyl-phenyl-methanon
[13047-06-8], 11.1 g (100 mmol) (1 R,2R,4S)-Bicyclo[2.2.1]-heptan-2-amin [7242-92-4] und 23.3 ml (105 mmol) Tetraethoxysilan [78- 0-4] wird mit einem Tropfen konz. Schwefelsäure versetzt und dann 16 h am Wasserabscheider bei 160 °C erhitzt, wobei das Ethanol abdestilliert. Nach Erkalten versetzt man den Rückstand mit 500 ml Diethylether, wäscht zweimal mit je 100 ml gesättigter Natriumhydrogencarbonat-Lösung und zweimal mit je 300 ml Wasser und trocknet dann über Magnesiumsulfat. Nach Entfernen des Diethylethers versetzt man den öligen Rückstand mit 27.6 g (200 mmol) Kaliumcarbonat, 5 g Palladium-Kohle (5 Gew.-%ig), 2.6 g (10 mmol) Triphenylphosphin, 100 g Glaskugeln (3 mm Durchmesser) und 300 ml Mesitylen und erhitzt erneut 16 h unter Rückfluss. Nach Erkalten saugt man von den Salzen über eine Celite-Schicht ab, wäscht diese mit 500 ml Toluol nach und engt die vereinigten Filtrate im Vakuum zur Trockene ein. Der Rückstand wird dreimal aus DMF / Ethanol umkristallisiert und abschließend durch fraktionierte Sublimation (p ca. 0"4 - 10 5 mbar, T ca. 230 °C) von Leichtsiedern und nicht flüchtigen Nebenkomponenten befreit. Ausbeute: 14.9 g (55 mmol), 55%; Reinheit: ca. 99.5%ig nach 1H NMR.
Analo können fol ende Derivate dar estellt werden:
Figure imgf000151_0002
Figure imgf000152_0001
Beispi
Figure imgf000153_0001
Darstellung analog M. Ohashi et al., J. Am. Chem. Soc, 2011 , 133, 18018. Ein Gemisch aus 13.4 g (100 mmol) 2.3-Dimethylen-bicycol[2.2.2]octan [36439-79-9], 5.2 g (50 mmol) Benzonitril [100-47-0], 1.4 g (5 mmol) Bis- cyclooctadien-nickel(O) [1295-35-8], 5.6 g (20 mmol) Tricycohexylphosphin [2622-14-2] und 200 ml o-Xylol wird unter Einleiten eines schwachen Argonstroms 30 h unter schwachem Rückfluss erhitzt. Nach Erkalten filtriert man über ein Celite-Bett ab, entfernt das Lösungsmittel im Vakuum. Der Rückstand wird zweimal Kugelrohr-Destilliert. Ausbeute: 6.4 g
(27 mmol), 54 %; Reinheit: ca. 98% ig nach 1H NMR.
Figure imgf000153_0002
Figure imgf000154_0001

Figure imgf000155_0001

Figure imgf000156_0001

Figure imgf000157_0001

Figure imgf000158_0002
94:
Figure imgf000158_0001
Ein Gemisch aus 19.2 g (100 mmol) 5-[1-Hydroxy-meth-[E]-ylidene-9- tricyclo[4.3.1.1 *3,8*]undecan-4-on, SB22 und 14.3 g (100 mmol) 1-Amino- naphthalin [ 34-32-7] wird am Wasserabscheider langsam auf 160 °C erhitzt, wobei aus der Schmelze das bei der Reaktion gebildete Wasser langsam abdesilliert. Nach 10 h bei 160 °C tropft man langsam 100 ml Toluol zu und destilliert dieses über den Wasserabscheider ab, um das restliche Wasser aus der Schmelze und der Apparatur zu entfernen. Die so erhaltene tiefbraune Schmelze wird im Argongegenstrom mit ca. 300 g Polyphosphorsäure versetzt und weitere 16 h bei 160 °C gerührt. Nach Abkühlen auf 120 °C versetzt man die schwarze zähe Schmelze tropfenweise mit 400 ml Wasser (Achtung: exotherm!) und rührt nach, bis sich die Schmelze vollständig homogenisiert hat, wobei ein brauner Feststoff ausfällt. Man überführt die Suspension in ein Becherglas mit 2 I Wasser, rührt 1 h nach, saugt vom Feststoff ab und wäscht diesen einmal mit 300 ml Wasser. Nach Trockensaugen re-suspendiert man den Feststoff in 1 I 15 Gew.-% iger Ammoniaklösung und rührt 1 h nach, saugt erneut ab, wäscht den Feststoff bis zu neutralen Reaktion mit Wasser und saugt dann trocken. Der Feststoff wird in 500 ml Dichlormethan gelöst, die Lösung wird mit gesättigter Kochsalzlösung gewaschen, die organische Phase wird über Magnesiumsulfat getrocknet. Nach Entfernen des Trockenmittels wird die Lösung eingeengt und der glasartige Rückstand wird einmal an Alox, basisch, Aktivitätsstufe 1 und zweimal an Kieselgel mit Dichlormethan gesäult. Der so erhaltene Feststoff wird dreimal aus DMF/EtOH umkistallisiert und dann zweimal fraktionierte sublimiert (p ca. 10"5 mbar, T 290 °C). Ausbeute: 15.0 g (50 mmol), 50%; Reinheit: ca. 99.9%ig nach 1H NMR.
Figure imgf000159_0001
Figure imgf000160_0001
Figure imgf000161_0001

Figure imgf000162_0002
Beispiel LB107: Tetradentate Liganden
Figure imgf000162_0001
Ein Gemisch aus 47.8 g (100 mmol) 9,9-Bis(6-brom-pyrid-2-yl)fluoren
[1323362-54-4], 65.4 g (230 mmol) SB1 , 42.4 g (400 mmol) Natrium- carbonat, 1.2 g (1 mmol) Tetrakis-triphenylphosphino-palladium(O), 300 ml Toluol, 200 ml Dioxan und 300 ml Wasser wird 30 h unter Rückfluss erhitzt. Nach Erkalten wird die organische Phase abgetrennt, über ein Celite-Bett filtriert, wobei das Celite mit 300 ml Toluol nachgewaschen wird, die vereinigten Filtrate werden dreimal mit je 300 ml Wasser gewaschen, über Magnesiumsulfat getrocknet und dann im Vakuum vom Toluol befreit. Der Rückstand wird dreimal aus Ethanol unter Zusatz von wenig Ethylacetat umkristallisiert und abschließend durch fraktionierte Sublimation (p ca. 10 "5 mbar, T ca. 300 °C) von Leichtsiedern und nicht flüchtigen Nebenkomponenten befreit. Ausbeute: 32.3 g (51 mmol), 51 %; Reinheit: ca. 99.5%ig nach 1H NMR.
Analog können folgende Verbindungen dargestellt werden:
Figure imgf000163_0001
Beispiel LB111: Tetradentate Ligand
Figure imgf000164_0001
Durchführung analog C. Cao et al., Synth. Commun. 2012, 42, 380.
Ein Gemisch aus 15.0 g (50 mmol) LB43 B) und 4.7 g (25 mmol)
1 ,2-Dibromethan [106-93-4] wird in einem Autoklaven 6 h auf 120 °C erhitzt. Nach Erkalten nimmt man die feste Masse in 100 ml tert-Butyl- methyl-ether auf, homogeniert unter Rühren, filtriert vom weißen Feststoff ab, wäscht diesen zweimal mit je 50 ml tert-Butyl-methyl-ether und trocknet im Vakuum. Ausbeute: 15.8 g (20 mmol), 80%; Reinheit: ca. 98.0%ig nach 1H NMR.
Analog können folgende Verbindungen dargestellt werden:
Figure imgf000164_0002
Figure imgf000165_0002
exadentate Liganden
Figure imgf000165_0001
Ein Gemisch aus 51.4 g (100 mmol) Tris(6-brom-pyridin-2-yl)methoxy- methan [336158-91-9], 93.8 g (330 mmol) SB1 , 42.4 g (400 mmol) Natriumcarbonat, 1.2 g (1 mmol) Tetrakis-triphenylphoshino-palladium(O), 500 ml Toluol, 300 ml Dioxan und 500 ml Wasser wird 36 h unter Rück- fluss erhitzt. Nach Erkalten wird die organische Phase abgetrennt, über ein Celite-Bett filtriert, wobei das Celite mit 400 ml Toluol nachgewaschen wird, die vereinigten Filtrate werden dreimal mit je 300 ml Wasser gewaschen, über Magnesiumsulfat getrocknet und dann im Vakuum vom Toluol befreit. Der Rückstand wird dreimal aus iso-Propanol unter Zusatz von wenig Ethylacetat umkristallisiert und abschließend durch fraktionierte Sublimation (p ca. 10 ~5 mbar, T ca. 310 °C) von Leichtsiedern und nicht flüchtigen Nebenkomponenten befreit. Ausbeute: 36.6 g (47 mmol), 47%; Reinheit: ca. 99.5%ig nach 1H NMR.
Analo können fol ende Verbindun en c ar estellt werden:
Figure imgf000165_0003
Figure imgf000166_0002
Beispiel LB118: Hexadentate Liganden
Figure imgf000166_0001
Durchführung analog LB111 , wobei das 1 ,2-Dibromethan durch 5.2 g (16.7 mmol) 1 ,1 ,1-Tris(brommethyl)ethan [60111-68-4] ersetzt wird. Ausbeute: 14.5 g (12 mmol), 72%; Reinheit: ca. 99.0%ig nach 1H NMR.
Analog kann Verbindung LB119 dargestellt werden:
Figure imgf000167_0001
1 ,1 ,1-Tris(brommethyl)ethan wird durch 6.1 g (16.7 mmol) eis, cis-1 ,2,3- Cyclopropantrimethanol-tri-methansulfonsäureester [945230-85-3] ersetzt. Ausbeute: 16.5 g (13 mmol), 78%; Reinheit: ca. 99.0%ig nach 1H NMR.
C: Synthese der Metallkomplexe
1) Homoleptische tris-faciale Iridium-Komplexe vom Phenyl-Pyridin-,
Phenyl-Imidazol- bzw. Phenyl-Benzimidazol-Typ:
Variante A: Tris-acetylacetonato-iridium(lll) als Iridium-Edukt
Ein Gemisch aus 10 mmol Tris-acetylacetonato-iridium(lll) [15635-87-7] und 40-60 mmol (bevorzugt 40 mmol) des Liganden L, gegebenenfalls 1 - 10 g - typischerweise 3 g - eines inerten hochsiedenden Zusatzes als Schmelzhilfe bzw. Lösungsmittel, z. B. Hexadecan, m-Terphenyl, Tri- phenylen, Bis-phenylether, 3-Phenoxy-toluol, 1 ,2-, 1 ,3-, 1 ,4-Bis-phenoxy- benzol, Triphenylphosphinoxid, Sulfolan, 18-Krone-6, Triethylenglykol, Glycerin, Polyethylenglykole, Phenol, 1-Naphthol, etc., und ein glasummantelter Magnetrührkern werden unter Vakuum (10"5 mbar) in eine dickwandige 50 ml Glasampulle abgeschmolzen. Die Ampulle wird für die angegebene Zeit bei der angegebenen Temperatur getempert, wobei das aufgeschmolzene Gemisch mit Hilfe eines Magnetrührers gerührt wird. Um eine Sublimation der Liganden an kältere Stellen der Ampulle zu vermeiden, muss die gesamte Ampulle die angegebene Temperatur besitzen. Alternativ kann die Synthese in einem Rührautoklaven mit Glaseinsatz erfolgen. Nach Erkalten (ACHTUNG: die Ampullen stehen meist unter Druck!) wird die Ampulle geöffnet, der Sinterkuchen wird mit 100 g
Glaskugeln (3 mm Durchmesser) in 100 ml eines Suspensionsmittels (das Suspensionsmittel wird so gewählt, dass der Ligand gut, der Metallkomplex jedoch schlecht darin löslich ist, typische Suspensionsmittel sind Methanol, Ethanol, Dichlormethan, Aceton, THF, Ethylacetat, Toluol, etc.) 3 h gerührt und dabei mechanisch aufgeschlossen. Man dekantiert die feine Suspension von den Glaskugeln ab, saugt den Feststoff ab, wäscht mit 50 ml des Suspensionsmittels nach und trocknet diesen im Vakuum. Der trockene Feststoff wird in einem kontinuierlichen Heißextraktor auf einem 3-5 cm hohen Alox-Bett (Alox, basisch Aktivitätsstufe 1 ) platziert und dann mit einem Extraktionsmittel (Vorlagemenge ca, 500 ml, das Extraktionsmittel wird so gewählt, dass der Komplex darin in der Hitze gut und in der Kälte schlecht löslich ist, besonders geeignete Extraktionsmittel sind Kohlenwasserstoffe wie Toluol, Xylole, Mesitylen, Naphthalin, o-Dichlorbenzol, halogenierte aliphatische Kohlenwasserstoffe sind in der Regel ungeeignet, da sie die Komplexe gegebenenfalls halogenieren oder zersetzen) extrahiert. Nach beendeter Extraktion wird das Extraktions- mittel im Vakuum auf ca. 100 ml eingeengt. Metallkomplexe, die im Extraktionsmittel eine zu gute Löslichkeit aufweisen, werden durch Zutropfen von 200 ml Methanol zur Kristallisation gebracht. Der Feststoff der so erhaltenen Suspensionen wird abgesaugt, einmal mit ca. 50 ml Methanol gewaschen und getrocknet. Nach Trocknen wird die Reinheit des Metall- komplexes mittels NMR und / oder HPLC bestimmt. Liegt die Reinheit unter 99.5% wird der Heißextraktionsschritt wiederholt, wobei ab der 2. Extraktion das Alox-Bett weggelassen wird. Ist eine Reinheit von 99.5 - 99.9% erreicht, wird der Metallkomplex getempert oder sublimiert. Das Tempern erfolgt im Hochvakuum (p ca. 10"6 mbar) im Temperaturbereich von ca. 200 - 300 °C, bevorzugt für Komplexe mit Molmassen größer ca. 1300 g/mol. Die Sublimation erfolgt im Hochvakuum (p ca. 10~6 mbar) im Temperaturbereich von ca. 230 - 400 °C, wobei die Sublimation bevorzugt in Form einer fraktionierten Sublimation durchgeführt wird. Gut in
organischen Lösungsmitteln lösliche Komplexe können alternativ auch an Kieselgel chromatograpiert werden.
Werden chirale Liganden eingesetzt, fallen die abgeleiteten fac-Metall- komplexe als Diastereomerenmischung an. Die Enantiomere Λ,Δ der Punktgruppe C3 weisen in der Regel eine deutlich geringere Löslichkeit im Extraktionsmittel auf als die Enatiomeren der Punktgruppe C1 , die sich folglich in der Mutterlauge anreichern. Eine Trennung der C3- von den C1- Diasteromeren auf diesem Wege ist häufig möglich. Daneben können die Diastereomeren auch chromatographisch getrennt werden. Werden Liganden der Punktgruppe C1 enantiomerenrein eingesetzt, entsteht ein Diasteromerenpaar Λ,Δ der Punktgruppe C3. Die Diastereomeren können durch Kristallisation oder Chromatographie getrennt und damit als enantiomerenreine Verbindungen erhalten werden.
Variante B: Tris-(2,2,6,6-tetramethyl-3,5-heptandionato)iridium(lll) als Iridium-Edukt
Durchführung analog zu Variante A, wobei anstelle von 10 mmol Tris- acetylacetonato-iridium(lll) [15635-87-7] 10 mmol Tris-(2,2,6,6-tetra- methyl-3,5-heptandionato)iridium [99581-86-9] eingesetzt werden. Die Verwendung dieses Edukts ist vorteilhaft, da die Reinheit der erhaltenen Rohprodukte häufig besser ist als bei Variante A. Außerdem ist der Druckaufbau in der Ampulle häufig nicht so ausgeprägt.
Vaiante C: Natrium[cis-,trans-di-chloro-(bis-acetylacetonato]iridat(lll) als Iridium-Edukt
Ein Gemisch aus 10 mmol Natrium[cis-,trans-di-chloro-(bis-acetyl- acetonato]iridat(lll) [876296-21-8] und 60 mmol das Liganden in 50 ml Ethylen-, Proylen- oder Diethylenglykol wird unter einem leichten Argonstrom für die angegebene Zeit unter schwachem Rückfluss erhitzt. Nach Erkalten auf 60 °C verdünnt man unter Rühren mit einem Gemisch aus 50 ml Ethanol und 50 ml 2 N Salzsäure, rührt 1 h nach, saugt vom ausge- fallenen Feststoff ab, wäscht diesen dreimal mit je 30 ml Ethanol und trocknet dann im Vakuum. Reinigung durch Heißextraktion oder Chromatographie und fraktionierte Sublimation, wie unter A beschrieben.
Figure imgf000169_0001
Figure imgf000170_0001
Figure imgf000171_0001
Figure imgf000172_0001
Figure imgf000173_0001
Figure imgf000174_0001
Figure imgf000175_0001
Figure imgf000176_0001
Figure imgf000177_0001
Figure imgf000178_0001
Figure imgf000179_0001
Figure imgf000180_0001
Figure imgf000181_0001
Figure imgf000182_0001
Figure imgf000183_0001
Figure imgf000184_0001
Figure imgf000185_0001
Figure imgf000186_0001
Figure imgf000187_0001
Figure imgf000188_0002
2) Homoleptische Iridium-Komplexe vom Arduengo-Carben-Typ:
Darstellung analog K. Tsuchiya, et al., Eur. J. Inorg. Chem., 2010, 926.
Ein Gemisch aus 10 mmol des Liganden, 3 mmol lridium(lll)chlorid-Hydrat, 10 mmol Silbercarbonat, 10 mmol Natriumcarbonat in 75 ml 2-Ethoxy- ethanol wird 24 h unter Rückfluss erwärmt. Nach Erkalten gibt man 300 ml Wasser zu, saugt vom ausgefallenen Feststoff ab, wäscht diesen einmal mit 30 ml Wasser und dreimal mit je 15 ml Ethanol und trocknet im
Vakuum. Das so erhaltene fac-/mer-lsomerengemisch wird an Kieselgel chromatographiert. Die Isomeren werden anschließend fraktioniert subli- miert bzw. im Hochvakuum vom Lösungsmittel befreit (fac-lr(LB49)3, fac- lr(LB50)3, fac-lr(LB51 )3).
Figure imgf000188_0001
Figure imgf000189_0001
Figure imgf000190_0001
Figure imgf000191_0001
3) Iridium-Komplexe vom Typ [lr(L)2CI]2
Variante A:
Ein Gemisch aus 22 mmol des Liganden, 10 mmol lridium(lll)chlorid- Hydrat, 75 ml 2-Ethoxyethanol und 25 ml Wasser wird unter gutem Rühren 16 - 24 h unter Rückfluss erhitzt. Falls sich der Ligand nicht oder nicht vollständig im Lösungsmittelgemisch unter Rückfluss löst, wird so lange 1 ,4-Dioxan zugesetzt, bis eine Lösung entstanden ist. Nach Erkalten saugt man vom ausgefallenen Feststoff ab, wäscht diesen zweimal mit Ethanol/ Wasser (1 :1 , vv) und trocknet dann im Vakuum. Das so erhaltene Chloro- Dimer der Formel [lr(L)2CI]2 wird ohne Reinigung weiter umgesetzt.
Variante B:
Ein Gemisch aus 10 mmol Natrium-bis-acetylacetonato-dichloro-iridat(lll) [770720-50-8], 24 mmol des Liganden L und ein glasummantelter Magnet- rührkern werden unter Vakuum (10"5 mbar) in eine dickwandige 50 ml Glasampulle abgeschmolzen. Die Ampulle wird für die angegebene Zeit bei der angegebenen Temperatur getempert, wobei das aufgeschmolzene Gemisch mit Hilfe eines Magnetrührers gerührt wird. Nach Erkalten - ACHTUNG: die Ampullen stehen meist unter Druck! - wird die Ampulle geöffnet, der Sinterkuchen wird mit 00 g Glaskugeln (3 mm Durch- messer) in 100 ml des angegebenen Suspensionsmittels (das Suspensionsmittel wird so gewählt, dass der Ligand gut, das Chloro-Dimer der Formel [lr(L)2CI]2 jedoch schlecht darin löslich ist, typische Suspensionsmittel sind Dichlormethan, Aceton, Ethylacetat, Toluol, etc.) 3 h gerührt und dabei mechanisch aufgeschlossen. Man dekantiert die feine Suspen- sion von den Glaskugeln ab, saugt den Feststoff [lr(L)2CI]2, der noch ca. 2 eq NaCI enthält, nachfolgend das rohe Chloro-Dimer genannt, ab und trocknet diesen im Vakuum. Das so erhaltene rohe Chloro-Dimer der Formel [lr(l_)2CI]2 wird ohne Reinigung weiter umgesetzt.
Figure imgf000192_0001
Figure imgf000193_0001
Figure imgf000194_0001
Figure imgf000195_0001
Figure imgf000196_0001
Figure imgf000197_0001
Figure imgf000198_0001
Figure imgf000199_0001
Figure imgf000200_0001
Figure imgf000201_0001
Figure imgf000202_0001
Figure imgf000203_0001
Figure imgf000204_0001
Figure imgf000205_0001
Figure imgf000206_0002
4) Iridium-Komplexe vom Typ [lr(L)2(HO e)2]OTf
Eine Suspension von 5 mmol des Chloro-Dimers [lr(L)2CI]2 in 150 ml Dichlormethan wird mit 5 ml Methanol und dann mit 10 mmol Silber(l)tri- fluormethansulfonat [2923-28-6] versetzt und 18 h bei Raumtemperatur gerührt. Man saugt vom ausgefallenen Silber(l)chlorid über ein Celite-Bett ab, engt das Filtrat zur Trockene ein, nimmt den gelben Rückstand in 30 ml Toluol oder Cyclohexan auf, filtriert vom Feststoff ab, wäscht diesen mit n-Heptan und trocknet im Vakuum. Das so erhaltene Produkt der Formel [lr(L)2(HOMe)2]OTf wird ohne Reinigung weiter umgesetzt.
Figure imgf000206_0001
Figure imgf000207_0001
Figure imgf000208_0001
5) Heteroleptische tris-faciale Iridium-Komplexe vom Phenylpyridin-, Phenylimidazol- bzw. Phenylbenzimidazol-Typ :
Ein Gemisch aus 10 mmol des Liganden L, 10 mmol Bis(methanol)bis[2- (2-pyridinyl-KN]phenyl-KC]iridium(lll)-triflourmethansulfonat [1215692-14-0] bzw. Bis(methanol)bis[2-(6-methyl-2-pyridinyl-KN]phenyl-KC]iridium(lll)- triflourmethansulfonat [1215692-29-7] bzw. erfindungsgemäße Iridium- Komplexe vom Typ [lr(L)2(HOMe)2]OTf, 1 1 mmol 2,6-Dimethylpryridin und 150 ml Ethanol wird 40 h unter Rückfluss erhitzt. Nach Erkalten saugt man vom ausgefallenen Feststoff ab, wäscht diesen dreimal mit je 30 ml Ethanol und trocknet im Vakuum. Das so erhaltene Rohprodukt wird an Kieselgel (Lösemittel bzw. deren Gemische, z.B. DCM, THF, Toluol, n-Heptan, Cyclohexan) chromatographiert, und wie unter 1 ) Variante A beschrieben fraktioniert sublimiert.
Figure imgf000208_0002
Figure imgf000209_0001
Figure imgf000210_0001
Figure imgf000211_0001
Figure imgf000212_0001
Figure imgf000213_0001
Figure imgf000214_0001
Figure imgf000215_0001
Figure imgf000216_0001
Figure imgf000217_0002
6) Heteroleptische tris-faciale Iridium-Komplexe enthaltend Liganden vom Arduengo-Carben-Typ:
Darstellung analog A. G. Tennyson et al., Inorg. Chem., 2009, 48, 6924. Ein Gemisch aus 22 mmol des Liganden, 10 mmol Iridium-Chloro-Dimer [lr(L)2CI]2, 10 mmol Siber(l)oxid und 300 ml 1 ,2-Dichlorethan wird 30 h bei 90 °C gerührt. Nach Erkalten saugt man vom ausgefallenen Feststoff über ein Celite-Bett ab, wäscht diesen einmal mit 30 ml 1 ,2-Dichlorethan und engt das Filtrat im Vakuum zur Trockene ein. Das so erhaltene Rohprodukt wird an Kieselgel (Lösemittel bzw. deren Gemische, z. B. Dichlor- methan, THF, Toluol, n-Heptan, Cyclohexan) chromatographiert, und wie unter 1 ) Variante A beschrieben fraktioniert sublimiert.
Figure imgf000217_0001
Figure imgf000218_0001
7) Iridium-Komplexe vom Typ lr(L)2L' enthaltend nicht o-metallierte Liganden L':
Ein Gemisch aus 25 mmol des Liganden L', 10 mmol Iridium-Chloro-Dimer [lr(L)2CI]2, 30 mmol Natriumhydrogencarbonat, 100 ml 2-Ethoxyethanol und 30 ml Wasser wird 16 h bei 90 °C gerührt. Nach Erkalten saugt man vom ausgefallenen Feststoff ab, wäscht diesen dreimal mit je 30 ml Ethanol und trocknet im Vakuum. Das so erhaltene Rohprodukt wird an Kieselgel (Lösemittel bzw. deren Gemische, z. B. Dichlormethan, THF,
Toluol, n-Heptan, Cyclohexan) chromatographiert bzw. umkristallisiert, und wie unter 1) Variante A beschrieben fraktioniert sublimiert.
Figure imgf000218_0002
Figure imgf000219_0001
Figure imgf000220_0001
8) Platin-Komplexe vom Typ PtLL' enthaltend nicht o-metallierte Liganden L':
Darstellung analog J. Brooks et al., Inorg. Chem. 2002, 41 , 3055.
Ein Gemisch aus 20 mmol des Liganden L, 10 mmol h^PtCU 75 ml 2-Ethoxyethanol und 25 ml Wasser wird 16 h unter Rückfluss erhitzt. Nach Erkalten und Zugabe von 100 ml Wasser saugt man vom ausgefallenen Feststoff ab, wäscht diesen einmal mit 30 ml Wasser und trocknet im Vakuum. Man suspendiert das so erhaltene Platin-Chloro-Dimer der Formel [PtLCI]2 in 100 ml 2-Ethoxyethanol, gibt 30 mmol der Liganden L' und 50 mmol Natriumcarbonat zu, rührt die Reaktionsmischung 16 h bei 100 °C und engt dann im Vakuum zur Trockene ein. Das so erhaltene Rohprodukt wird an Kieselgel (Lösemittel bzw. deren Gemische, z. B. Dichlormethan, THF, Toluol, n-Heptan, Cyclohexan) chromatographiert bzw. umkristallisiert, und wie unter 1 ) Variante A beschrieben fraktioniert sublimiert.
Figure imgf000221_0001
Figure imgf000222_0001
9) Platin-Komplexe tetradentater Liganden:
Ein Gemisch aus 10 mmol des Liganden L, 10 mmol K2PtCI4) 400 mmol Lithiumacetat, wasserfrei, und 200 ml Eisessig wird 60 h unter Rückfluss erhitzt. Nach Erkalten und Zugabe von 200 ml Wasser extrahiert man zweimal mit je 250 ml Toluol, trocknet über Magnesiumsulfat, filtriert über ein Celite-Bett ab, wäscht das Celite mit 200 ml Toluol nach und entfernt dann das Toluol im Vakuum. Der so erhaltene Feststoff wird wie unter 1 ) Variante A beschrieben durch Heißextraktion gereinigt und dann fraktioniert sublimiert.
Figure imgf000222_0002
Figure imgf000223_0001
10) Platin-Komplexe tetradentater Liganden vom Arduengo-Carben- Typ:
Ein Gemisch aus 10 mmol des Liganden, 10 mmol Silber(l)oxid und 200 ml Dioxan wird 16 h bei Raumtemperatur gerührt, dann mit 100 ml Butanon, 20 mmol Natriumcarbonat und 10 mmol Cyclooctadienyl-platin-dichlorid versetzt und 16 h unter Rückfluss erhitzt. Nach Entfernen des Lösungsmittels wird der Feststoff mit 500 ml heißem Toluol ausgerührt, die Suspension wird über ein Celite-Bett filtriert und das Filtrat wird zur Trockene eingeengt. Der so erhaltene Feststoff wird an Kieselgel mit DCM chroma- tographiert und dann wie unter 1) Variante A beschrieben fraktioniert sublimiert.
Figure imgf000223_0002
Figure imgf000224_0002
11) Iridium-Komplexe hexadentater Liganden:
Ein Gemisch aus 10 mmol des Liganden L, 10 mmol Natrium-bis-acetyl- acetonato-dichloro-iridat(lll) [770720-50-8] und 200 ml Triethylenglycol- dimethylether wird 48 h bei 210 °C am Wasserabscheider (das Acetyl- aceton und thermische Spaltprodukte des Lösungsmittel destillieren ab) erhitzt. Nach Erkalten und Zugabe von 200 ml Wasser saugt man vom ausgefallenen Feststoff ab und trocknet im Vakuum. Der Festoff wird mit 500 ml heißem THF ausgerührt, die Suspension wird noch heiß über ein Celite-Bett abfiltriert, das Celite wird mit 200 ml THF nachgewaschen und die vereinigten Filtrate werden zur Trockene eingeengt. Der so erhaltene Feststoff wird wie unter 1) Variante A beschrieben durch Heißextraktion mit Toluol gereinigt und dann fraktioniert sublimiert.
Figure imgf000224_0001
12) Iridium-Komplexe hexadentater Liganden vom Arduengo- Carben-Typ:
Darstellung analog K. Tsuchiya et al., Eur. J. Inorg. Chem. 20 0, 926. Ein Gemisch aus 3 mmol des Liganden, 3 mmol lridium(lll)chlorid-Hydrat, 10 mmol Silbercarbonat und 10 mmol Natriumcarbonat in 75 ml 2-Ethoxy- ethanol wird 48 h unter Rückfluss erwärmt. Nach Erkalten gibt man 300 ml Wasser zu, saugt vom ausgefallenen Feststoff ab, wäscht diesen einmal mit 30 ml Wasser und dreimal mit je 15 ml Ethanol und trocknet im
Vakuum. Das so erhaltene Rohprodukt wird an Kieselgel (DCM) chromato- graphiert und dann wie unter 1) Variante A beschrieben fraktioniert sublimiert.
Figure imgf000225_0001
Beispiel: Vergleich der Photolumineszenzspektren
Figur 1 zeigt das Photolumineszenzspektrum des Komplexes lr(LB94)3, also eines Tris(benzo[h]chinolin)iridium-Komplexes, welcher eine Gruppe der Formel (3) enthält, im Vergleich zu dem Spektrum des entsprechenden Komplexes ohne die Gruppe der Formel (3). Die Spektren wurden in einer ca. 10~5 molaren Lösung in entgastem Toluol bei Raumtemperatur gemessen. Es lässt sich deutlich die schmalere Emissionsbande mit einer Halbwertsbreite FWHM von 68 nm gegenüber 81 nm bei der Verbindung ohne eine Gruppe der Formel (3) erkennen. Der erfindungsgemäße
Komplex weist weiterhin eine höhere Photolumineszenzquanteneffizienz auf.
Beispiel: Herstellung der OLEDs
1) Vakuum-prozessierte Devices: Die Herstellung von erfindungsgemäßen OLEDs sowie OLEDs nach dem Stand der Technik erfolgt nach einem allgemeinen Verfahren gemäß WO 2004/058911 , das auf die hier beschriebenen Gegebenheiten
(Schichtdickenvariation, verwendete Materialien) angepasst wird. In den folgenden Beispielen werden die Ergebnisse verschiedener OLEDs vorgestellt. Glasplättchen, mit strukturiertem ITO (50 nm, Indium-Zinn- Oxid) bilden die Substrate, auf weiche die OLEDs aufgebracht werden. Die OLEDs haben prinzipiell folgenden Schichtaufbau: Substrat / Lochtransportschicht 1 (HTL1) bestehend aus HTM dotiert mit 3 % NDP-9 (kommer- ziell erhältlich von der Fa. Novaled), 20 nm / Lochtransportschicht 2 (HTL2) / optionale Elektronenblockerschicht (EBL) / Emissionsschicht (EML) / optionale Lochblockierschicht (HBL) / Elektronentransportschicht (ETL) / optionale Elektroneninjektionsschicht (EIL) und abschließend eine
Kathode. Die Kathode wird durch eine 100 nm dicke Aluminiumschicht gebildet.
Zunächst werden vakuumprozessierte OLEDs beschrieben. Hierfür werden alle Materialien in einer Vakuumkammer thermisch aufgedampft. Dabei besteht die Emissionsschicht immer aus mindestens einem Matrixmaterial (Hostmaterial, Wirtsmaterial) und einem emittierenden Dotierstoff (Dotand, Emitter), der dem Matrixmaterial bzw. den Matrixmaterialien durch Co. verdampfung in einem bestimmten Volumenanteil beigemischt wird. Eine Angabe wie M3:M2:lr(L1)3 (55%:35%:10%) bedeutet hierbei, dass das Material M3 in einem Volumenanteil von 55%, M2 in einem Anteil von 35% und lr(L1)3 in einem Anteil von 0% in der Schicht vorliegt. Analog kann auch die Elektronentransportschicht aus einer Mischung zweier Materialien bestehen. Der genaue Aufbau der OLEDs ist Tabelle 1 zu entnehmen. Die zur Herstellung der OLEDs verwendeten Materialien sind in Tabelle 3 gezeigt.
Die OLEDs werden standardmäßig charakterisiert. Hierfür werden die Elektrolumineszenzspektren, die Stromeffizienz (gemessen in cd/A) und die Spannung (gemessen bei 1000 cd/m2 in V) bestimmt aus Strom- Spannungs-Helligkeits-Kennlinien (IUL-Kennlinien). Für ausgewählte Versuche wird die Lebensdauer bestimmt. Als Lebensdauer wird die Zeit definiert, nach der die Leuchtdichte von einer bestimmten Startleuchtdichte aus auf einen gewissen Anteil abgesunken ist. Die Angabe LD50 bedeutet, dass es sich bei der genannten Lebensdauer um die Zeit handelt, bei der die Leuchtdichte auf 50% der Startleuchtdichte abgefallen ist, also von z.B. 1000 cd/m2 auf 500 cd/m2. Je nach Emissionsfarbe wurden unterschiedliche Starthelligkeiten gewählt. Die Werte für die Lebensdauer können mit Hilfe dem Fachmann bekannten Umrechnungsformeln auf eine Angabe für andere Startleuchtdichten umgerechnet werden. Hierbei ist die Lebensdauer für eine Startleuchtdichte von 1000 cd/m2 eine übliche Angabe.
Verwendung von erfindungsgemäßen Verbindungen als Emittermaterialien in phosphoreszierenden OLEDs
Die erfindungsgemäßen Verbindungen lassen sich unter anderem als phosphoreszierende Emittermaterialien in der Emissionsschicht in OLEDs einsetzen. Als Vergleich gemäß dem Stand der Technik werden die
Iridium-Verbindungen gemäß Tabelle 3 verwendet.. Die Ergebnisse der OLEDs sind in Tabelle 2 zusammengefasst.
Figure imgf000227_0001
Figure imgf000228_0001
Tabelle 2: Ergebnisse der Vakuum-prozessierten OLEDs
Figure imgf000228_0002
Figure imgf000229_0001
Figure imgf000230_0001
Figure imgf000231_0001
 20:
Figure imgf000232_0001
Ein Gemisch aus 19.4 g (100 mmol) 6-Amino-phenanthridin [832-68-8] , 47.6 g (300 mmol) 3-Chlor-bicyclo[2.2.2]octan-2-on [23804-48-0], 25.2 g (300 mmol) Natriumhydrogencarbonat, 300 ml Ethylenglycol und 30 ml Wasser wird 24 h bei 30 °C gerührt. Dann gibt man weitere 47.6 g
(300 mmol) 3-Chlor-bicyclo[2.2.2]octan-2-on, [23804-48-0] und 25.2 g (300 mmol) Natriumhydrogencarbonat zu und rührt weitere 24 h bei 130 °C. Nach Erkalten verdünnt man die Reaktionsmischung mit 1000 ml Wasser, extrahiert dreimal mit je 300 ml Ethylacetat, wäscht die vereinigten organischen Phasen mit 500 ml Wasser, mit 500 ml gesättigter Kochsalzlösung und engt die organische Phase im Vakuum ein. Der Rückstand wird an Kieselgel chromatographiert (EE:DCM 9:1), dann zweimal aus DMF/ Ethanol umkristallisiert und zweimal fraktioniert sublimiert (T ca. 200 °C, p ca. 10"4 mbar. Ausbeute: 6.3 g (21 mmol), 21 %; Reinheit: ca. 99.0 % ig n. 1H-NMR.
Analo können fol ende Derivate dar estellt werden:
Figure imgf000232_0002
Figure imgf000233_0001
7:
Figure imgf000234_0001
Eine gut gerührte Mischung von 19.4 g (100 mmol) 6-Amino-phenanthridin [832-68-8], 41.1 g (130 mmol) SB5, 18.0 g (130 mmol) Kaliumcarbonat, 100 g Glaskugeln (3 mm Durchmesser), 2.1 g (8 mmol) Triphenylphosphin und 498 mg (2 mmol) Palladium(ll)acetat in 300 ml o-Xylol wird 18 h unter Rückfluss erhitzt. Nach Abkühlen auf 80 °C saugt man von den Salzen und den Glaskugeln über ein Celite-Bett ab, wäscht diese mit 500 ml heißem o- Xylol nach, engt das Filtrat im Vakuum zur Trockene ein. Der Rückstand wird an Kieselgel chromatographiert (EE:DCM 9:1), dann zweimal aus DMF/Ethanol umkristallisiert und zweimal fraktioniert sublimiert (T ca.
230 °C, p ca. 10"4 mbar. Ausbeutet 1.9 g (34 mmol), 34%; Reinheit: ca. 99.0 % ig n. 1H-NMR.
Analog können folgende Derivate dargestellt werden:
Figure imgf000234_0002
Figure imgf000235_0002
Beispiel LB1 : 2-Tricyclo[6.2.2.0*2,7*]dodeca-2[79,3,5-trien-4-y Ipyridin,
LB1
Figure imgf000235_0001
Ein Gemisch aus 13.4 g (100 mmol) 2,3-Dimethylen-bicyclo[2.2.2]octan [36439-79-9], 12.4 g (120 mmol) 2-Ethynyl-pyridin [1945-84-2] und 50 ml Chlorbenzol wird 16 h bei 120 °C gerührt. Dann fügt man 26.1 g
(300 mmol) aktiviertes Mangan(ll)oxid zu und rührt weiter 3 h bei 120 °C. Nach Erkalten erweitert man mit 200 ml Ethylacetat, filtriert über ein Celite- Bett an und entfernt das Lösungsmittel und überschüssiges 2-Ethynyl- pyridin im Vakuum. Der ölige Rückstand wird zweimal Kugelrohr-destilliert (p ca. 10"4 mbar, T ca. 190 °C). Ausbeute: 17.2 g (73 mmol), 73%;
Reinheit: ca. 99.0%ig nach 1H NMR.
Analog können folgende Verbindungen dargestellt werden:
Figure imgf000236_0001
Figure imgf000237_0002
C: Synthese der Metallkomplexe
1) Homoleptische tris-faciale Iridium-Komplexe vom Phenyl-Pyrid Phenyl-Imidazol- bzw. Phenyl-Benzimidazol-Typ:
Wie im o.g. Kapitel beschrieben können folgende Metallkomplexe
Figure imgf000237_0001
Figure imgf000238_0001
Derivatisierung der Metallkomplexe
1) Halogenierung der fac-lridium-Komplexe:
Eine Lösung bzw. Suspension von 10 mmol eines Komplexes, der in paraPosition zum Iridium A x C-H-Gruppen (mit A = 1 , 2 oder 3) trägt, in 500 ml Dichlormethan wird unter Licht- und Luftausschluss bei 30 °C mit A x 10.5 mmol N-Halogensuccinimid (Halogen: Cl, Br, I) versetzt und 20 h gerührt. In DCM schlecht lösliche Komplexe können auch in anderen Lösungsmitteln (TCE, THF, DMF, etc.) und bei erhöhter Temperatur umgesetzt werden. Anschließend wird das Lösungsmittel im Vakuum weit- gehend entfernt. Der Rückstand wird mit 100 ml Methanol ausgekocht, der Feststoff wird abgesaugt, dreimal mit 30 ml Methanol gewaschen und dann im Vakuum getrocknet. Man erhält so die in para-Position zum Iridium bromierten fac-lridium-Komplexe.
Synthese von lr(LB74-Br)3:
Figure imgf000239_0001
Eine bei 30 °C gerührte Suspension von 8.9 g (10 mmol) lr(LB74)3 in 500 ml DCM wird auf ein Mal mit 5.6 g (31.5 mmol) N-Bromsuccinimid versetzt und dann weitere 20 h gerührt. Nach Entfernen von ca. 450 ml des DCMs im Vakuum wird die gelbe Suspension mit 100 ml Methanol versetzt, der Feststoff wird abgesaugt, dreimal mit ca. 30 ml Methanol gewaschen und dann im Vakuum getrocknet. Ausbeute: 10.5 g (9.3 mmol) 93%; Reinheit: > 99.0 %ig nach NMR.
Analo können fol ende Verbindun en dar estellt werden:
Figure imgf000239_0002
Figure imgf000240_0001
Figure imgf000241_0001
Figure imgf000242_0001
Figure imgf000243_0001
2) Suzuki-Kupplung an den bromierten fac-lridium-Komplexen:
Variante A, zweiphasige Reaktionsmischung:
Eine Suspension von 10 mmol eines bromierten Komplexes, 12-20 mmol Boronsäure bzw. Boronsäureester pro Br-Funktion und 40 - 80 mmol Trikaliumphosphat in einem Gemisch aus 300 ml Toluol, 100 ml Dioxan und 300 ml Wasser wird mit 0.6 mmol Tri-o-tolylphosphin und dann mit 0.1 mmol Palladium(ll)acetat versetzt und 16 h unter Rückfluss erhitzt. Nach Erkalten gibt man 500 ml Wasser und 200 ml Toluol zu, trennt die wässrige Phase ab, wäscht die organische Phase dreimal mit 200 ml Wasser, einmal mit 200 ml gesättigter Kochsalzlösung und trocknet über Magnesiumsulfat. Man filtriert über ein Celite-Bett ab, wäscht dieses mit Toluol nach, entfernt das Toluol fast vollständig im Vakuum, gibt 300 ml Methanol zu, saugt vom ausgefallenen Rohprodukt ab, wäscht dieses dreimal mit je 50 ml Methanol und trocknet im Vakuum. Das Rohprodukt wird zweimal an Kieselgel gesäult. Der Metall komplex wird abschließend getempert oder sublimiert. Das Tempern erfolgt im Hochvakuum (p ca. 10"6 mbar) im
Temperaturbereich von ca. 200 - 300 °C. Die Sublimation erfolgt im Hochvakuum (p ca. 10"6 mbar) im Temperaturbereich von ca. 300 - 400 °C, wobei die Sublimation bevorzugt in Form einer fraktionierten Sublimation durchgeführt wird.
Variante B, einphasige Reaktionsmischung:
Eine Suspension von 10 mmol eines bromierten Komplexes, 12-20 mmol Boronsäure bzw. Boronsäureester pro Br-Funktion und 60 - 100 mmol der Base (Kaliumfluorid, Trikaliumphosphat (wasserfrei oder Monohydrat oder Trihydrat), Kaliumcarbonat, Cäsiumcarbonat etc.) und 100 g Glaskugeln (3 mm Durchmesser) in 100 ml - 500 ml eines aprotischen Lösungsmittels (THF, Dioxan, Xylol, Mesitylen, Dimethylacetamid, NMP, DMSO, etc.) wird mit 0.6 mmol Tri-o-totylphosphin und dann mit 0.1 mmol Palladium(ll)acetat versetzt und 1 - 24 h unter Rückfluss erhitzt. Alternativ können andere
Phosphine wie Tri-tert-butylphosphin, SPhos, XPhos, RuPhos, XanthPhos, etc. eingesetzt werden, wobei bei diesen Phosphinen das bevorzugte Phosphin : Palladium Verhältnis 2:1 bis 1.2:1 beträgt. Man entfernt das Lösungsmittel im Vakuum, nimmt das Produkt in einem geeigneten
Lösungsmittel (Toluol, Dichlormethan, Ethylacetat, etc.) auf und reinigt wie unter Variante A beschrieben.
Synthese von Ir6003:
Figure imgf000244_0001
Variante A:
Einsatz von 11.3 g (10.0 mmol) lr(LB74-Br)3 und 4.9 g (40.0 mmol) Phenyl- boronsäure [98-80-6], 17.7 (60 mmol) Trikaliumphosphat (wasserfrei), 183 mg (0.6 mmol) Tri-o-tolylphosphin [6163-58-2], 23 mg (0.1 mmol) Palladium(ll)acetat , 300 ml Toluol, 100 ml Dioxan und 300 ml Wasser, 100 °C, 12 h. Zweimalige chromatographische Trennung an Kieselgel mit Toluol/Ethylacetat (90:10, vv). Ausbeute: 6.3 g (5.6 mmol) 56 %; Reinheit: ca. 99.9 %ig nach HPLC.
Figure imgf000245_0001
Figure imgf000246_0001
Figure imgf000247_0001
3) Buchwald-Kupplung an den Iridium-Komplexen:
Ein Gemisch aus 10 mmol des bromierten Komplexes, 12-20 mmol des Diarylamins oder Carbazols pro Brom-Funktion, 1.1 molare Menge an Natrium-tert-butylat pro eingesetztem Amin bzw. 80 mmol Trikalium- phosphat (wasserfrei) bei Carbazolen, 100 g Glaskugeln (3 mm Durchmesser) und 300 - 500 ml Toluol bzw. o-Xylol bei Carbazolen wird mit 0.4 mmol Tri-tert-butylphosphin und dann mit 0.3 mmol Palladium(ll)acetat versetzt und unter gutem Rühren 16 - 30 h unter Rückfluss erhitzt. Nach Erkalten gibt man 500 ml Wasser zu, trennt die wässrige Phase ab, wäscht die organische Phase zweimal mit 200 ml Wasser, einmal mit 200 ml gesättigter Kochsalzlösung und trocknet über Magnesiumsulfat. Man filtriert über ein Celite-Bett ab, wäscht dieses mit Toluol bzw. o-Xylol nach, entfernt das Lösungsmittel fast vollständig im Vakuum, gibt 300 ml Ethanol zu, saugt vom ausgefallenen Rohprodukt ab, wäscht dieses dreimal mit je 50 ml EtOH und trocknet im Vakuum. Das Rohprodukt wird zweimal an Kieselgel chromatographisch gereinigt. Der Metallkomplex wird abschließend getempert oder sublimiert. Das Tempern erfolgt im Hochvakuum (p ca. 10"6 mbar) im Temperaturbereich von ca. 200 - 300 °C. Die Sublimation erfolgt im Hochvakuum (p ca. 10"6 mbar) im Temperaturbereich von ca. 300 - 400 °C, wobei die Sublimation bevorzugt in Form einer fraktionierten Sublimation durchgeführt wird.
Synthese von Ir700:
Figure imgf000248_0001
Einsatz von 11.3 g (10 mmol) lr(LB74-Br)3 und 14.5 g (40 mmol) Ν-[1 ,1 ' biphenyl]-4-yl-9,9-dimethyl-9H-fluoren-2-amin [897671-69-1]. Tempern. Ausbeute: 7.1 g (3.6 mmol) 36 %; Reinheit: ca. 99.8 %ig nach HPLC.
Analog können folgende Verbindungen dargestellt werden:
Figure imgf000248_0002
Figure imgf000249_0001
Figure imgf000250_0002
4) Cyanierung der Iridium-Komplexe:
Ein Gemisch aus 10 mmol des bromierten Komplexes, 13 mmol Kupfer(l)- cyanid pro Brom-Funktion und 300 ml NMP wird 20 h bei 200 °C gerührt. Nach Erkalten entfernt man das Lösungsmittel im Vakuum, nimmt den den Rückstand in 500 ml Dichlormethan auf, filtriert über Celite von den Kupfersalzen ab, engt das Dichlormethan im Vakuum fast bis zur Trockene ein, gibt 100 ml Ethanol zu, saugt vom ausgefallenen Feststoff ab, wäscht diesen zweimal mit je 50 ml Ethanol und trocknet im Vakuum. Chromatographie oder Heißextraktion und fraktionierte Sublimation des Rohprodukts wie in C: Synthese der Metallkomplexe, 1 ) Homoleptische tris-faciale Iridium-Komplexe vom Phenyl-Pyridin-, Phenyl-Imidazol- bzw. Phenyl- Benzimidazol-Typ: Variante A beschrieben.
Figure imgf000250_0001
Einsatz von 1.3 g (10 mmol) lr(LB74-Br)3 und 3.5 g (39) mmol) Kupfer(l)- cyanid. Sublimation. Ausbeute: 4.7 g (4.8 mmol) 48 %; Reinheit: ca.
99.8 %ig nach HPLC. nalog können folgende Verbindungen dargestellt werden:
Figure imgf000251_0001
Figure imgf000252_0002
5) Borylierung der Iridium-Komplexe:
Ein Gemisch von 10 mmol des bromierten Komplexes, 12 mmol Bis- (pinacolato)diboran [73183-34-3] pro Brom-Funktion, 30 mmol Kalium- acetat, wasserfrei pro Bromfunktion, 0.2 mmol Tricyclohexylphosphin, 0.1 mmol Palladium(l!)acetat und 300 ml Lösungsmittel (Dioxan, DMSO, NMP, etc.) wird 4-16 h bei 80-160 °C gerührt. Nach Entfernen des
Lösungsmittels im Vakuum wird der Rückstand in 300 ml Dichlormethan, THF oder Ethylacetat aufgenommen, über ein Celite-Bett filtriert, das Filtrat wird bis zur beginnenden Kristallisation im Vakuum eingeengt und abschließend noch tropfenweise mit ca. 100 ml Methanol versetzt, um die Kristallisation zu vervollständigen. Die Verbindungen können aus Dichlormethan, Ethylacetat oder THF unter Zusatz von Methanol oder alternativ aus Cyclohexan umkristallisiert werden.
Figure imgf000252_0001
Einsatz von 11.3 g (10 mmol) lr(LB74-Br)3 und 9.1 g (36 mmol) Bis(pinaco- lato)diboran [73183-34-3], DMSO, 120 °C, 6 h, aufnehmen und Celite- Filtration in THF, Umkristallisation aus THF:Methanol. Ausbeute: 7.5 g (5.7 mmol) 57%; Reinheit: ca. 99.8 %ig nach HPLC. nalog können folgende Verbindungen dargestellt werden
Figure imgf000253_0001
Figure imgf000254_0001
6) Suzuki-Kupplung an den borylierten fac-lridium-Komplexen:
Variante A, zweiphasige Reaktionsmischung:
Eine Suspension von 10 mmol eines borylieren Komplexes, 12-20 mmol Arylbromid pro (RO)2B-Funktion und 80 mmol Trikaliumphosphat in einem Gemisch aus 300 ml Toluol, 100 ml Dioxan und 300 ml Wasser wird mit 0.6 mmol Tri-o-tolylphosphin und dann mit 0.1 mmol Palladium(ll)acetat versetzt und 16 h unter Rückfluss erhitzt. Nach Erkalten gibt man 500 ml Wasser und 200 ml Toluol zu, trennt die wässrige Phase ab, wäscht die organische Phase dreimal mit 200 ml Wasser, einmal mit 200 ml
gesättigter Kochsalzlösung und trocknet über Magnesiumsulfat. Man filtriert über ein Celite-Bett ab, wäscht dieses mit Toluol nach, entfernt das Toluol fast vollständig im Vakuum, gibt 300 ml Methanol zu, saugt vom ausgefallenen Rohprodukt ab, wäscht dieses dreimal mit je 50 ml Methanol und trocknet im Vakuum. Das Rohprodukt wird zweimal an Kieselgel ge- säult. Der Metallkomplex wird abschließend getempert oder sublimiert. Das Tempern erfolgt im Hochvakuum (p ca. 10"6 mbar) im Temperaturbereich von ca. 200 - 300 °C. Die Sublimation erfolgt im Hochvakuum (p ca. 10"6 mbar) im Temperaturbereich von ca. 300 - 400 °C, wobei die Sublimation bevorzugt in Form einer fraktionierten Sublimation durchgeführt wird.
Variante B, einphasige Reaktionsmischung:
Eine Suspension von 10 mmol eines borylieren Komplexes, 12-20 mmol Arylbromid pro (RO)2B-Funktion und 60 - 100 mmol der Base (Kalium- fluorid, Trikaliumphosphat (wasserfrei, Monohydrat oder Trihydrat), Kalium- carbonat, Cäsiumcarbonat etc.) und 100 g Glaskugeln (3 mm Durchmesser) in 100 ml - 500 ml eines aprotischen Lösungsmittels (THF,
Dioxan, Xylol, Mesitylen, Dimethylacetamid, NMP, DMSO, etc.) wird mit 0.6 mmol Tri-o-tolylphosphin und dann mit 0.1 mmol Palladium(ll)acetat versetzt und 1 - 24 h unter Rückfluss erhitzt. Alternativ können andere Phosphine wir Tri-tert-butylphosphin, SPhos, XPhos, RuPhos, XanthPhos, etc. eingesetzt werden, wobei bei diesen Phosphinen das bevorzugte Phosphin : Palladium Verhältnis 2:1 bis 1.2:1 beträgt. Man entfernt das Lösungsmittel im Vakuum, nimmt das Produkt in einem geeigneten
Lösungsmittel (Toluol, Dichlormethan, Ethylacetat, etc.) auf und reinigt wie unter Variante A beschrieben. Synthese von Ir6003:
Figure imgf000256_0001
Variante A:
Einsatz von 12.7 g (10.0 mmol) Ir900 und 4.2 ml (40.0 mmol) Brombenzol [108-86-1], 17.7 g (60 mmol) Trikaliumphosphat (wasserfrei), 183 mg (0.6 mmol) Tri-o-tolylphosphin [6163-58-2], 23 mg (0.1 mmol) Palladium(ll)- acetat , 300 ml Toluol, 100 ml Dioxan und 300 ml Wasser, 100 °C, 12 h. Zweimalige chromatographische Trennung an Kieselgel mit Toluol/Ethyl- acetat (90:10, vv). Ausbeute: 6.6 g (5.9 mmol) 59 %; Reinheit: ca. 99.9 %ig nach HPLC.
Figure imgf000256_0002
Figure imgf000257_0001
Polymere enthaltend die Metallkomplexe:
Allgemeine Polymerisationsvorschrift für die Bromide bzw. Boron- säure-Derivate als polymerisierbare Gruppe, Suzuki-Polymerisation Variante A - Zweiphasiges Reaktionsgemisch:
Die Monomere (Bromide und Boronsäuren bzw. Boronsäureester, Reinheit nach HPLC > 99.8 % ig) werden in der in der Tabelle angegebenen
Zusammensetzung in einer Gesamtkonzentration von ca. 100 mmol/L in einem Gemisch aus 2 Volumenteilen Toluol : 6 Volumenteilen Dioxan : 1 Volumenteil Wasser gelöst bzw. suspendiert. Dann gibt man 2 mol Äquivalente Tri-kalium-phosphat pro eingesetzter Br-Funktionalität zu, rührt 5 min. nach, fügt dann 0.03 bis 0.003 mol Äquivalente Tri-ortho-tolyl- phosphin und dann 0.005 bis 0.0005 mol Äquivalente Palladium(ll)acetat (Verhältnis Phosphin zu Pd bevorzugt 6:1) pro eingesetzter Br-Funktionalität zu und erhitzt unter sehr gutem Rühren 2-3 h unter Rückfluss. Falls die Viskosität der Mischung zu stark ansteigt, kann mit einem Gemisch aus 2 Volumenteilen Toluol : 3 Volumenteilen Dioxan verdünnt werden. Nach insgesamt 4-6 h Reaktionszeit fügt man zum end-capping 0.05 mol Äquivalente pro eingesetzter Boronsäure-Funktionalität eines Monobromaromaten und dann 30 min. danach 0.05 mol Äquivalente pro eingesetzter Br- Funktionalität einer Monoboronsäure bzw. eines Monoboronsäureesters zu und kocht weitere 1 h nach. Nach Erkalten verdünnt man mit 300 ml Toluol, trennt die wässrige Phase ab, wäscht die organische Phase zweimal mit je 300 ml Wasser, trocknet über Magnesiumsulfat, filtriert über ein Celite-Bett ab, um Palladium zu entfernen und engt dann zur Trockene ein. Man löst das Rohpolymer in THF (Konzentration ca. 10 - 30 g/L) und lässt die Lösung unter sehr gutem Rühren langsam in das doppelte Volumen Methanol einlaufen. Das Polymer wird abgesaugt und dreimal mit Methanol gewaschen. Der Umfällvorgang wird fünfmal wiederholt, danach wird das Polymer im Vakuum bis zur Gewichtskonstanz bei 30 - 50 °C getrocknet.
Variante B - Einphasiges Reaktionsgemisch:
Die Monomere (Bromide und Boronsäuren bzw. Boronsäureester, Reinheit nach HPLC > 99.8 % ig) werden in der in Tabelle angegebenen
Zusammensetzung in einer Gesamtkonzentration von ca. 100 mmol/L in einem Lösemittel (THF, Dioxan, Xyylol, Mesitylen, Dimethylacetamid, NMP, DMSO, etc.) gelöst bzw. suspendiert. Dann gibt man 3 mol Äquivalente Base (Kaliumfluorid, Trikaliumphosphat (wasserfrei, Monohydrat oder Trihydrat), Kaliumcarbonat, Cäsiumcarbonat etc. jeweils wasserfrei) pro Br- Funktionalität und das Gewichtsäquivalent Glaskugeln (3 mm Durchmesser) zu, rührt 5 min. nach, fügt dann 0.03 bis 0.003 mol Äquivalente Tri-ortho-tolylphosphin und dann 0.005 bis 0.0005 mol Äquivalente
Palladium(ll)acetat (Verhältnis Phosphin zu Pd bevorzugt 6:1) pro
Br-Funktionalität zu und erhitzt unter sehr gutem Rühren 2-3 h unter Rück- fluss. Alternativ können andere Phosphine wir Tri-tert-butylphosphin, SPhos, XPhos, RuPhos, XanthPhos, etc. eingesetzt werden, wobei bei diesen Phosphinen das bevorzugte Phosphin : Palladium Verhältnis 2:1 bis 1.3:1 beträgt. Nach insgesamt 4-12 h Reaktionszeit fügt man zum end- capping 0.05 mol Äquivalente eines Monobromaromaten und dann 30 min. danach 0.05 mol Äquivalente einer Monoboronsäure bzw. eines Mono- boronsäureesters zu und kocht weiter 1 h nach. Man entfernt das Lösungsmittel weitgehend im Vakuum, nimmt den Rückstand in Toluol auf, und reinigt das Polymer wie unter Variante A beschrieben.
Monomere M / Endca er E:
Figure imgf000258_0001
Figure imgf000259_0002
Polymere:
Zusammensetzun der Pol mere mol %:
Figure imgf000259_0001
Molekulargewichte und Ausbeute der erfindungsgemäßen Polymere
Polymer Mn [gmol"1l Polydispersität Ausbeute
P1 190.000 4.5 62%
P2 218.000 5.0 59%
P3 270.000 2.3 60%
P4 245.000 2.2 55%
P5 260.000 2.5 57% Löslichkeit der Komplexe in organischen Lösungsmitteln:
Die erfindungsgemäßen Komplexe weisen die in der Tabelle ausgewiesene Löslichkeit, in den angegebenen Lösungsmitteln bei 25 °C, auf. Der Vergleich mit den Komplexen ohne erfindungsgemäßen Bicyclus zeigt, dass die Löslichkeit der erfindungsgemäßen Komplexe deutlich (Faktor ca. 10 - 100) größer ist.
Figure imgf000260_0001
Figure imgf000261_0001
Figure imgf000262_0001
Sublimation der Komplexe:
Die erfindungsgemäßen Komplexe weisen die in der Tabelle ausgewiesene Sublimationstemperatur und Rate bei einem Basisdruck von ca. 10"5 mbar auf. Der Vergleich mit Komplexen ohne erfindungsgemäßen Bicyclus zeigt, dass die Sublimationstemperatur der erfindungsgemäßen Komplexe geringer und die Sublimationsrate deutlich größer ist. Außerdem sind die erfindungsgemäßen Komplexe unter den Sublimationsbedingungen stabil.
Figure imgf000263_0001
Figure imgf000264_0001
Beispiel: Herstellung der OLEDs
2) Weitere Vakuum-prozessierte Devices: abelle 1 : Aufbau der OLEDs
Figure imgf000264_0002
Figure imgf000265_0001
Figure imgf000266_0001
Figure imgf000267_0001
Figure imgf000268_0001
Figure imgf000269_0001
Figure imgf000270_0001
Figure imgf000271_0002
Tabelle 2: Er ebnisse der Vakuum- rozessierten OLEDs
Figure imgf000271_0001
Figure imgf000272_0001
Figure imgf000273_0001
3) Lösungs-prozessierte Devices:
A: Aus löslichen Funktionsmaterialien
Die erfindungsgemäßen Iridium-Komplexe können auch aus Lösung verarbeitet werden und führen dort zu prozesstechnisch wesentlich einfacheren OLEDs, im Vergleich zu den vakuumprozessierten OLEDs, mit dennoch guten Eigenschaften. Die Herstellung solcher Bauteile lehnt sich an die Herstellung polymerer Leuchtdioden (PLEDs) an, die in der Literatur bereits vielfach beschrieben ist (z. B. in der WO 2004/037887). Der Aufbau setzt sich aus Substrat / ITO / PEDOT (80 nm) / Interlayer (80 nm) / Emissionsschicht (80 nm) / Kathode zusammen. Dazu werden Substrate der Firma Technoprint (Sodalimeglas) verwendet, auf weiche die ITO- Struktur (Indium-Zinn-Oxid, eine transparente, leitfähige Anode) aufge- bracht wird. Die Substrate werden im Reinraum mit DI Wasser und einem Detergens (Deconex 15 PF) gereinigt und dann durch eine UV/Ozon- Plasmabehandlung aktiviert. Danach wird ebenfalls im Reinraum als Pufferschicht eine 80 nm Schicht PEDOT (PEDOT ist ein Polythiophen- Derivat (Baytron P VAI 4083sp.) von H. C. Starck, Goslar, das als wässrige Dispersion geliefert wird) durch Spin-Coating aufgebracht. Die benötigte Spinrate hängt vom Verdünnungsgrad und der spezifischen Spin-Coater- Geometrie ab (typisch für 80 nm: 4500 rpm). Um Restwasser aus der Schicht zu entfernen, werden die Substrate für 10 Minuten bei 180 °C auf einer Heizplatte ausgeheizt. Die verwendete Interlayer dient der Lochinjektion, in diesem Fall wird HIL-012 von Merck verwendet. Die Interlayer kann alternativ auch durch eine oder mehrere Schichten ersetzt werden, die lediglich die Bedingung erfüllen müssen, durch den nachgelagerten Prozessierungsschritt der EML-Abscheidung aus Lösung nicht wieder abgelöst zu werden. Zur Herstellung der Emissionsschicht werden die erfindungsgemäßen Emitter zusammen mit den Matrixmaterialien in Toluol gelöst. Der typische Feststoffgehalt solcher Lösungen liegt zwischen 16 und 25 g/L, wenn, wie hier, die für eine Device typische Schichtdicke von 80 nm mittels Spincoating erzielt werden soll. Die lösungsprozessierten Devices vom Typ1 enthalten eine Emissionsschicht aus (Polystyrol):M5: M6:lr(L)3 (20%:30%:40%:10%), die vom Typ2 enthalten eine Emissions- schicht aus (Polystyrol):M5:M6:lr(LB3)3:lr(L)3 (20%:20%:40%:15%:5%). Die Emissionsschicht wird in einer Inertgasatmosphäre, im vorliegenden Fall Argon, aufgeschleudert und 30 min bei 130 °C ausgeheizt. Zuletzt wird eine Kathode aus Barium (5 nm) und dann Aluminium (100 nm) (hochreine Metalle von Aldrich, besonders Barium 99.99 % (Best-Nr. 474711); Auf- dampfanlagen von Lesker o.a., typischer Aufdampfdruck 5 x 10"6 mbar) aufgedampft. Optional kann zunächst eine Lockblockierschicht und dann eine Eletronentransportschicht und dann erst die Kathode (z.B. AI oder LiF/AI) im Vakuum aufgedampft werden. Um das Device vor Luft und Luftfeuchtigkeit zu schützen, wird die Vorrichtung abschließend verkapselt und dann charakterisiert. Die genannten OLED-Beispiele sind noch nicht optimiert, Tabelle 4 fasst die erhaltenen Daten zusammen.
Tabelle 4: Ergebnisse mit aus Lösung prozessierten Materialien
Figure imgf000274_0001
Figure imgf000275_0001
Figure imgf000276_0001
Figure imgf000277_0001
B: Aus polymeren Funktionsmaterialien:
Herstellung der OLEDs wie unter A: beschrieben. Zur Herstellung der Emissionsschicht werden die erfindungsgemäßen Polymere in Toluol gelöst. Der typische Feststoffgehalt solcher Lösungen liegt zwischen 10 und 15 g/L, wenn, wie hier, die für eine Device typische Schichtdicke von 80 nm mittels Spincoating erzielt werden soll. Die genannten OLED- Beispiele sind noch nicht optimiert, Tabelle 5 fasst die erhaltenen Daten zusammen. Tabelle 5: Er ebnisse mit aus Lösun rozessierten Materialien
Figure imgf000278_0002
4) Weiß emittierende OLEDs
Gemäß den allgemeinen Verfahren aus 1) wird eine weiß emittierende OLED mit folgendem Schichtaufbau hergestellt:
Tabelle 6: Aufbau der weißen OLEDs
Figure imgf000278_0001
Tabelle 7: Deviceergebnisse
Bsp. EQE (%) Spannung (V) CIE x/y LD50 (h) 1000 cd/m2 1000 cd/m2 1000 cd/m2 1000 cd/m2
D-W1 21.8 5.8 0.41/0.39 5500

Claims

Patentansprüche
1. Verbindung gemäß Formel (1),
M(L)n(L')m Formel (1 ) welche eine Teilstruktur M(L)n der Formel (2) enthält:
Figure imgf000279_0001
Formel (2) wobei für die verwendeten Symbole und Indizes gilt: M ist Iridium oder Platin;
CyC ist eine Aryl- oder Heteroarylgruppe mit 5 bis 18 aromatischen Ringatomen oder eine Fluoren- bzw. Azafluorengruppe, welche jeweils über ein Kohlenstoffatom an M koordiniert und welche jeweils mit einem oder mehreren Resten R substituiert sein kann und welche jeweils über eine kovalente Bindung mit CyD verbunden ist; CyD ist eine Heteroarylgruppe mit 5 bis 18 aromatischen Ringatomen, welche über ein neutrales Stickstoffatom oder über ein Carben-Kohlenstoffatom an M koordiniert und welche mit einem oder mehreren Resten R substituiert sein kann und welche über eine kovalente Bindung mit CyC verbunden ist;
R ist bei jedem Auftreten gleich oder verschieden H, D, F, Cl, Br, I, N(R )2, CN, NO2, OH, COOR1, C(=O)N(R )2, Si(R )3, B(OR1)2, C(=O)R1, P(=O)(R1)2l S(=O)R1, S(=O)2R1, OSO2R1, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 20
C-Atomen oder eine Alkenyl- oder Alkinylgruppe mit 2 bis 20 C- Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 20 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R1C=CR1 , C=C, Si(R1)2, C=O, NR1, O, S oder CONR ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, Cl, Br, I oder CN ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 40 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 40 aromatischen Ringatomen, die durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Aralkyl- oder Heteroaralkylgruppe mit 5 bis 40 aromatischen Ringatomen, die durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Diarylaminogruppe, Di- heteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R substituiert sein kann; dabei können zwei benachbarte Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches oder heteroaromatisches Ringsystem bilden; weiterhin können zwei Reste R, von denen einer an CyD und der andere an CyC bindet, miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches oder heteroaromatisches Ringsystem bilden;
oder CyC bzw. CyD enthalten zwei benachbarte Kohlenstoffatome, die so durch Reste R substituiert sind, dass die beiden Kohlenstoffatome zusammen mit den Substituenten R eine Struktur der folgenden Formel (3) aufspannen,
Figure imgf000280_0001
Formel (3) wobei die gestrichelten Bindungen die Verknüpfung der beiden Kohlenstoffatome im Liganden andeuten; A1 , A2 ist gleich oder verschieden bei jedem Auftreten CR2 oder N;
A3, A4 ist gleich oder verschieden bei jedem Auftreten eine Alkylen- gruppe mit 2 oder 3 C-Atomen, in welcher ein Kohlenstoff atom durch Sauerstoff ersetzt sein kann und welche mit einem oder mehreren Resten R3 substituiert sein kann; mit der Maßgabe, dass in A1-A3-A2 bzw. A -A4-A2 nicht zwei
Heteroatome direkt aneinander gebunden sind; R1 , R2, R3 ist bei jedem Auftreten gleich oder verschieden H, D, F,
Cl, Br, I, N(R4)2, CN, NO2, Si(R4)3, B(OR4)2, C(=O)R4, P(=O)(R )2, S(=O)R4, S(=0)2R4, OS02R4, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 20 C-Atomen oder eine Alkenyl- oder Alkinylgruppe mit 2 bis 20 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 20
C-Atomen, die jeweils mit einem oder mehreren Resten R4 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2- Gruppen durch R C=CR4, C=C, Si(R4)2, C=O, NR4, O, S oder CONR4 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, Cl, Br, I, CN oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 40 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R4 substituiert sein kann, oder eine Aryloxy- oder Hetero- aryloxygruppe mit 5 bis 40 aromatischen Ringatomen, die durch einen oder mehrere Reste R4 substituiert sein kann, oder eine
Aralkyl- oder Heteroaralkylgruppe mit 5 bis 40 aromatischen Ringatomen, die durch einen oder mehrere Reste R4 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ring- atomen, welche durch einen oder mehrere Reste R4 substituiert sein kann; dabei können zwei oder mehrere benachbarte Reste R1 miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches oder heteroaromatisches Ringsystem bilden, und/oder zwei Reste R3 können miteinander ein mono- oder polycyclisches, aliphatisches Ringsystem bilden, wobei auch die Ringbildung zwischen zwei Resten R3, die an A3 und A4 gebunden sind, möglich ist; ist bei jedem Auftreten gleich oder verschieden H, D, F oder ein aliphatischer, aromatischer und/oder heteroaromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, in dem auch ein oder mehrere H-Atome durch F ersetzt sein können; dabei können zwei oder mehrere Substituenten R4 auch miteinander ein mono- oder polycyclisches Ringsystem bilden; ist gleich oder verschieden bei jedem Auftreten ein Ligand; n ist 1 , 2 oder 3; m ist 0, 1 , 2, 3 oder 4; dabei können auch mehrere Liganden L miteinander oder L mit L' über eine Einfachbindung oder eine bivalente oder trivalente Brücke verknüpft sein und so ein tridentates, tetradentates, pentadentates oder hexadentates Ligandensystem aufspannen; dabei kann auch ein Substituent R zusätzlich an M koordinieren; dadurch gekennzeichnet, dass die Teilstruktur der Formel (2) mindestens eine Struktureinheit der Formel (3) aufweist.
2. Verbindung nach Anspruch 1 , dadurch gekennzeichnet, dass M für Iridium(lll) steht und n = 1 ist und vier monodentate oder zwei bi- dentate oder ein bidentater und zwei monodentate oder ein tridentater und ein monodentater oder ein tetradentater Ligand L' an das Iridium koordinieren oder dass n = 2 ist und ein bidentater oder zwei monodentate Liganden L' an das Iridium koordinieren oder dass n = 3 und m = 0 ist, oder dass M für Platin(ll) steht und n = 1 ist und ein bidentater oder zwei monodentate Liganden L' an das Platin koordinieren oder dass n = 2 und m = 0 ist. Verbindung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass CyC ausgewählt ist aus Strukturen der Formeln (CyC-1) bis (CyC-19), wobei die Gruppe CyC jeweils an der durch # gekennzeichneten Position an CyD bindet und an der durch * gekennzeichneten Position an M koordiniert,
Figure imgf000283_0001
wobei R die in Anspruch 1 genannten Bedeutungen aufweist und für die weiteren verwendeten Symbole gilt:
X ist bei jedem Auftreten gleich oder verschieden CR oder N;
W ist bei jedem Auftreten gleich oder verschieden NR, O, S oder CR2.
4. Verbindung nach einem oder mehreren der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass CyC ausgewählt ist aus den Gruppen der Formeln (CyC-1a) bis (CyC-19a),
Figure imgf000284_0001
Figure imgf000285_0001
wobei die verwendeten Symbole die in den Ansprüchen 1 und 3 genannten Bedeutungen aufweisen.
Verbindung nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass CyD ausgewählt ist aus den Strukturen der Formeln (CyD-1) bis (CyD-10), wobei die Gruppe CyD jeweils an der durch # gekennzeichneten Position an CyC bindet und an der durch * gekennzeichneten Position an M koordiniert,
Figure imgf000285_0002
Figure imgf000286_0001
wobei X, W und R die in den Ansprüchen 1 und 3 genannten
Bedeutungen aufweisen.
6. Verbindung nach einem oder mehreren der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass CyD ausgewählt ist aus den Gruppen der Formeln (CyD-1a) bis (CyD-10a),
Figure imgf000286_0002
wobei die verwendeten Symbole die in den Ansprüchen 1 und 3 genannten Bedeutungen aufweisen.
7. Verbindung nach einem oder mehreren der Ansprüche 1 bis 6,
dadurch gekennzeichnet, dass die Reste R an CyC und CyD zusammen einen Ring bilden und die Liganden L ausgewählt sind aus den Liganden (L1) bis (L6),
Figure imgf000287_0001
wobei X die in Anspruch 3 genannten Bedeutungen aufweist und * die Position der Koordination an M andeutet. 8. Verbindung nach einem oder mehreren der Ansprüche 1 bis 7,
dadurch gekennzeichnet, dass CyC ausgewählt ist aus den Gruppen (CyC-1-1) bis (CyC-19-1) und CyD ausgewählt ist aus den Gruppen (CyD-1-1) bis (CyD-10-1) oder dass die Liganden L ausgewählt sind aus den Liganden (L1-1) bis (L6-6),
Figure imgf000287_0002
Figure imgf000288_0001
Figure imgf000289_0001
Figure imgf000290_0001
Figure imgf000291_0001
wobei die verwendeten Symbole die in den Ansprüchen 1 und 3 genannten Bedeutungen aufweisen und 0 jeweils die Positionen kennzeichnet, die für CR stehen, wobei die jeweiligen Reste R zusammen mit den C-Atomen, an die sie gebunden sind, einen Ring der oben genannten Formel (3) aufspannen.
9. Verbindung nach einem oder mehreren der Ansprüche 1 bis 8,
dadurch gekennzeichnet, dass A1 und A2 in Formel (3) beide gleich oder verschieden für CR2 stehen oder dass A1 und A2 beide für N stehen.
10. Verbindung nach einem oder mehreren der Ansprüche 1 bis 9,
dadurch gekennzeichnet, dass A3 und A4 gleich oder verschieden bei jedem Auftreten für eine Alkylengruppe mit 2 oder 3 Kohlenstoff- atomen, die mit einem oder mehreren Resten R3 substituiert sein kann, stehen.
11. Verbindung nach einem oder mehreren der Ansprüche 1 bis 0,
dadurch gekennzeichnet, dass R2 und R3 unabhängig voneinander gleich oder verschieden bei jedem Auftreten ausgewählt sind aus der Gruppe bestehend aus H, D, F, einer geradkettigen Alkylgruppe mit 1 bis 10 C-Atomen, die mit einem oder mehreren Resten R4 substituiert sein kann, einer verzweigten oder cyclischen Alkylgruppe mit 3 bis 10 C-Atomen, die mit einem oder mehreren Resten R4 substituiert sein kann, oder einem aromatischen oder heteroaromatischen Ringsystem mit 5 bis 12 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R4 substituiert sein kann; dabei können zwei Reste R3 miteinander einen Ring bilden und so ein polycyclisches, aliphatisches Ringsystem aufspannen, wobei auch die Ringbildung zwischen einem Rest R3, der an A3 gebunden ist, und einem Rest R3, der an A4 gebunden ist, möglich ist.
12. Verbindung nach einem oder mehreren der Ansprüche 1 bis 11 ,
dadurch gekennzeichnet, dass die Gruppe der Formel (3) ausgewählt ist aus den Gruppen der Formeln (4), (5) oder (6),
Figure imgf000292_0001
wobei A , A und R die in Anspruch 1 genannten Bedeutungen aufweisen und die Ethylengruppen bzw. Propylengruppen durch einen
Ί
oder mehrere Reste R substituiert sein können.
13. Verbindung nach einem oder mehreren der Ansprüche 1 bis 12,
dadurch gekennzeichnet, dass die Struktur der Formel (3) ausgewählt ist aus den Strukturen der Formeln (4a), (5a), (6a), (4b) und (6b)
Figure imgf000293_0001
wobei R2 und R3 die in Anspruch 1 genannten Bedeutungen aufweisen, die Ethylengruppen bzw. Propylengruppen durch einen oder mehrere Reste R3 substituiert sein können, G1 für eine Ethylengruppe steht, die mit einem oder mehreren Gruppen R4 substituiert sein kann, und G2 für eine Einfachbindung, eine Methylen- oder Ethylengruppe, die jeweils mit einem oder mehreren Gruppen R4 substituiert sein kann, oder für ein Sauerstoffatom steht.
14. Verbindung nach einem oder mehreren der Ansprüche 1 bis 13,
dadurch gekennzeichnet, dass L' gleich oder verschieden bei jedem Auftreten ausgewählt ist aus der Gruppe bestehend aus Kohlen- monoxid, Stickstoffmonoxid, Alkylcyaniden, Arylcyaniden, Alkyliso- cyaniden, Arylisocyaniden, Aminen, Phosphinen, Phosphiten, Arsinen, Stibinen, stickstoffhaltigen Heterocyclen, Carbenen, Hydrid, Deuterid, den Halogeniden F~ CI", ΒΓ und Γ, Alkylacetyliden, Arylacetyliden, Cyanid, Cyanat, Isocyanat, Thiocyanat, Isothiocyanat, aliphatischen oder aromatischen Alkoholaten, aliphatischen oder aromatischen Thioalkoholaten, Amiden, Carboxylaten, Arylgruppen, O2_, S2~,
Carbiden, Nitrenen, Iminen, 1 ,3-Diketonaten abgeleitet von 1 ,3-Di- ketonen, 3-Ketonaten abgeleitet von 3-Ketoestern, Salicyliminaten, Boraten stickstoffhaltiger Heterocyclen und monoanionischen
Liganden, welche mit M einen cyclometallierten Fünfring oder Sechsring mit mindestens einer Metall-Kohlenstoff-Bindung aufweisen, ins- besondere eine Kombination aus zwei Gruppen der Formeln (40) bis
(64), wobei eine Gruppe über ein neutrales Stickstoffatom oder ein
Carbenkohlenstoffatom bindet und die andere Gruppe über ein negativ geladenes Kohlenstoffatom oder ein negativ geladenes Stickstoffatom bindet und L' gebildet wird, indem diese Gruppen jeweils an der durch
# gekennzeichneten Position aneinander binden,
Figure imgf000294_0001
Figure imgf000295_0001
wobei * die Position kennzeichnet, an der die Gruppen an M koordinieren; W und R haben die in Anspruch 3 genannte Bedeutung und X steht bei jedem Auftreten gleich oder verschieden für CR oder N, wobei hier die oben genannte Limitierung, dass mindestens zwei benachbarte Gruppen X für CR stehen und die Reste R einen Ring der Formel (3) bilden, nicht gilt. Verfahren zur Herstellung einer Verbindung nach einem oder mehreren der Ansprüche 1 bis 15 durch Umsetzung der freien
Liganden L und gegebenenfalls L' mit Metallalkoholaten der Formel (69), mit Metallketoketonaten der Formel (70), mit Metallhalogeniden der Formel (71), mit dimeren Metallkomplexen der Formel (72) oder mit Metallkomplexen der Formel (73) oder mit Iridiumverbindungen, die sowohl Alkoholat- und/oder Halogenid- und/oder Hydroxy- wie auch Ketoketonatreste tragen,
Figure imgf000295_0002
wobei die Symbole M, m, n und R die in Anspruch 1 angegebenen Bedeutungen haben, Hai = F, Cl, Br oder I ist, L" für einen Alkohol oder ein Nitril steht und (Anion) ein nicht-koordinierendes Anion ist.
16. Oligomer, Polymer oder Dendrimer enthaltend eine oder mehrere Verbindungen nach einem oder mehreren der Ansprüche 1 bis 14, wobei ein oder mehrere Bindungen der Verbindung zum Polymer, Oligomer oder Dendrimer vorhanden sind.
17. Formulierung, enthaltend mindestens eine Verbindung nach einem oder mehreren der Ansprüche 1 bis 14 bzw. mindestens ein Oligomer, Polymer oder Dendrimer nach Anspruch 16 und mindestens eine weitere Verbindung und/oder mindestens ein Lösemittel.
18. Verwendung einer Verbindung nach einem oder mehreren der
Ansprüche 1 bis 14 bzw. eines Oligomers, Polymers oder Dendrimers nach Anspruch 16 oder einer Formulierung nach Anspruch 17 in einer elektronischen Vorrichtung oder zur Erzeugung von Singulett-Sauer- stoff oder in der Photokatalyse.
19. Elektronische Vorrichtrung, insbesondere ausgewählt aus der Gruppe bestehend aus organischen Elektrolumineszenzvorrichtungen, organischen integrierten Schaltungen, organischen Feld-Effekt-Transis- toren, organischen Dünnfilmtransistoren, organischen lichtemittierenden Transistoren, organischen Solarzellen, organischen optischen Detektoren, organischen Photorezeptoren, organischen Feld-Quench-Devices, lichtemittierenden elektrochemischen Zellen oder organischen Laserdioden, enthaltend in mindestens einer Schicht mindestens eine Verbindung nach einem oder mehreren der
Ansprüche 1 bis 14 bzw. ein Oligomer, Polymer oder Dendrimer nach Anspruch 16 oder eine Formulierung nach Anspruch 17.
20. Elektronische Vorrichtung nach Anspruch 19, wobei es sich um eine organische Elektrolumineszenzvorrichtung handelt, dadurch
gekennzeichnet, dass die Verbindung nach einem oder mehreren der Ansprüche 1 bis 14 als emittierende Verbindung in einer oder mehreren emittierenden Schichten eingesetzt wird.
PCT/EP2014/003398 2014-01-13 2014-12-17 Metallkomplexe WO2015104045A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14818877.4A EP3094638B1 (de) 2014-01-13 2014-12-17 Metallkomplexe
KR1020167022022A KR102378657B1 (ko) 2014-01-13 2014-12-17 금속 착물
US15/110,770 US11005050B2 (en) 2014-01-13 2014-12-17 Metal complexes
CN201480073054.9A CN105916868B (zh) 2014-01-13 2014-12-17 金属络合物
JP2016563244A JP6618927B2 (ja) 2014-01-13 2014-12-17 金属錯体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP14000105.8 2014-01-13
EP14000105 2014-01-13
EP14000345.0 2014-01-30
EP14000345 2014-01-30

Publications (1)

Publication Number Publication Date
WO2015104045A1 true WO2015104045A1 (de) 2015-07-16

Family

ID=52146431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/003398 WO2015104045A1 (de) 2014-01-13 2014-12-17 Metallkomplexe

Country Status (7)

Country Link
US (1) US11005050B2 (de)
EP (1) EP3094638B1 (de)
JP (1) JP6618927B2 (de)
KR (1) KR102378657B1 (de)
CN (1) CN105916868B (de)
TW (1) TWI660959B (de)
WO (1) WO2015104045A1 (de)

Cited By (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106146532A (zh) * 2015-05-15 2016-11-23 环球展览公司 有机电致发光材料和装置
WO2016184540A1 (en) 2015-05-18 2016-11-24 Merck Patent Gmbh Materials for organic electroluminescent devices
JPWO2015151914A1 (ja) * 2014-04-04 2017-04-13 コニカミノルタ株式会社 有機金属錯体の合成方法及び当該合成方法により合成された化合物を用いた有機エレクトロルミネッセンス素子
WO2017080324A1 (zh) * 2015-11-12 2017-05-18 广州华睿光电材料有限公司 含无机纳米材料的印刷组合物及其应用
WO2017148565A1 (de) 2016-03-03 2017-09-08 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
CN107528004A (zh) * 2016-06-17 2017-12-29 三星Sdi株式会社 用于有机光电子装置的组合物和有机光电子装置
WO2018050584A1 (de) 2016-09-14 2018-03-22 Merck Patent Gmbh Verbindungen mit spirobifluoren-strukturen
WO2018050583A1 (de) 2016-09-14 2018-03-22 Merck Patent Gmbh Verbindungen mit carbazol-strukturen
EP3214085A4 (de) * 2014-10-31 2018-04-11 Heesung Material Ltd. Heterocyclische verbindung und organisches lichtemittierendes element mit verwendung davon
WO2018087346A1 (de) 2016-11-14 2018-05-17 Merck Patent Gmbh Verbindungen mit einer akzeptor- und einer donorgruppe
WO2018087022A1 (de) 2016-11-09 2018-05-17 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018099846A1 (de) 2016-11-30 2018-06-07 Merck Patent Gmbh Verbindungen mit valerolaktam-strukturen
WO2018104193A1 (de) 2016-12-05 2018-06-14 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018104195A1 (de) 2016-12-05 2018-06-14 Merck Patent Gmbh Stickstoffhaltige heterocyclen zur verwendung in oleds
WO2018104194A1 (de) 2016-12-05 2018-06-14 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018127465A1 (de) 2017-01-04 2018-07-12 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018138306A1 (de) 2017-01-30 2018-08-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018138039A1 (de) 2017-01-25 2018-08-02 Merck Patent Gmbh Carbazolderivate
WO2018149769A1 (de) 2017-02-14 2018-08-23 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018166932A1 (de) 2017-03-13 2018-09-20 Merck Patent Gmbh Verbindungen mit arylamin-strukturen
WO2018166934A1 (de) 2017-03-15 2018-09-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018215318A1 (de) 2017-05-22 2018-11-29 Merck Patent Gmbh Hexazyklische heteroaromatische verbindungen für elektronische vorrichtungen
WO2019007867A1 (de) 2017-07-05 2019-01-10 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2019007866A1 (de) 2017-07-05 2019-01-10 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2019052933A1 (de) 2017-09-12 2019-03-21 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2019081391A1 (de) 2017-10-24 2019-05-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2019096717A2 (de) 2017-11-14 2019-05-23 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2019121458A1 (de) 2017-12-19 2019-06-27 Merck Patent Gmbh Heterocyclische verbindung zur verwendung in electronischen vorrichtungen
WO2019145316A1 (de) 2018-01-25 2019-08-01 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2019229011A1 (de) 2018-05-30 2019-12-05 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2019233904A1 (de) 2018-06-07 2019-12-12 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
WO2020011686A1 (de) 2018-07-09 2020-01-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020053314A1 (de) 2018-09-12 2020-03-19 Merck Patent Gmbh Elektrolumineszierende vorrichtungen
WO2020053150A1 (en) 2018-09-12 2020-03-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020053315A1 (de) 2018-09-12 2020-03-19 Merck Patent Gmbh Elektrolumineszierende vorrichtungen
WO2020064666A1 (de) 2018-09-27 2020-04-02 Merck Patent Gmbh Verbindungen, die in einer organischen elektronischen vorrichtung als aktive verbindungen einsetzbar sind
WO2020064662A2 (de) 2018-09-27 2020-04-02 Merck Patent Gmbh Verfahren zur herstellung von sterisch gehinderten stickstoffhaltigen heteroaromatischen verbindungen
WO2020077710A1 (zh) * 2018-10-19 2020-04-23 华中科技大学 一种聚合物-金属螯合物阴极界面材料及其应用
WO2020094542A1 (de) 2018-11-06 2020-05-14 Merck Patent Gmbh 5,6-diphenyl-5,6-dihydro-dibenz[c,e][1,2]azaphosphorin- und 6-phenyl-6h-dibenzo[c,e][1,2]thiazin-5,5-dioxid-derivate und ähnliche verbindungen als organische elektrolumineszenzmaterialien für oleds
WO2020094539A1 (de) 2018-11-05 2020-05-14 Merck Patent Gmbh In einer organischen elektronischen vorrichtung einsetzbare verbindungen
WO2020099349A1 (de) 2018-11-14 2020-05-22 Merck Patent Gmbh Zur herstellung einer organischen elektronischen vorrichtung einsetzbare verbindungen
WO2020099307A1 (de) 2018-11-15 2020-05-22 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US10672996B2 (en) 2015-09-03 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
WO2020127165A1 (de) 2018-12-19 2020-06-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020148303A1 (de) 2019-01-17 2020-07-23 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020165064A1 (de) 2019-02-11 2020-08-20 Merck Patent Gmbh Mononukleare iridiumkomplexe mit drei ortho-metallierten bidentaten liganden und optischer orientierungsanisotropie
WO2020169241A1 (de) 2019-02-18 2020-08-27 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2020178230A1 (en) 2019-03-04 2020-09-10 Merck Patent Gmbh Ligands for nano-sized materials
WO2020182779A1 (de) 2019-03-12 2020-09-17 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020187865A1 (de) 2019-03-20 2020-09-24 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020193447A1 (de) 2019-03-25 2020-10-01 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020208051A1 (en) 2019-04-11 2020-10-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020212296A1 (de) 2019-04-15 2020-10-22 Merck Patent Gmbh Metallkomplexe
US10822361B2 (en) 2017-02-22 2020-11-03 Universal Display Corporation Organic electroluminescent materials and devices
WO2021013775A1 (de) 2019-07-22 2021-01-28 Merck Patent Gmbh Verfahren zur herstellung ortho-metallierter metallverbindungen
WO2021037401A1 (de) 2019-08-26 2021-03-04 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021043703A1 (de) 2019-09-02 2021-03-11 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021043755A1 (de) 2019-09-03 2021-03-11 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021053046A1 (de) 2019-09-20 2021-03-25 Merck Patent Gmbh Peri-kondensierte heterozyklische verbindungen als materialien für elektronische vorrichtungen
WO2021052921A1 (de) 2019-09-19 2021-03-25 Merck Patent Gmbh Mischung von zwei hostmaterialien und organische elektrolumineszierende vorrichtung damit
WO2021078831A1 (de) 2019-10-25 2021-04-29 Merck Patent Gmbh In einer organischen elektronischen vorrichtung einsetzbare verbindungen
WO2021089447A1 (de) 2019-11-04 2021-05-14 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2021089450A1 (en) 2019-11-04 2021-05-14 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021094269A1 (en) 2019-11-12 2021-05-20 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021110720A1 (de) 2019-12-04 2021-06-10 Merck Patent Gmbh Metallkomplexe
WO2021110741A1 (en) 2019-12-04 2021-06-10 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021122740A1 (de) 2019-12-19 2021-06-24 Merck Patent Gmbh Polycyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021122538A1 (de) 2019-12-18 2021-06-24 Merck Patent Gmbh Aromatische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021122535A1 (de) 2019-12-17 2021-06-24 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021151922A1 (de) 2020-01-29 2021-08-05 Merck Patent Gmbh Benzimidazol-derivate
WO2021170522A1 (de) 2020-02-25 2021-09-02 Merck Patent Gmbh Verwendung von heterocyclischen verbindungen in einer organischen elektronischen vorrichtung
WO2021175706A1 (de) 2020-03-02 2021-09-10 Merck Patent Gmbh Verwendung von sulfonverbindungen in einer organischen elektronischen vorrichtung
WO2021180614A1 (de) 2020-03-11 2021-09-16 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2021180625A1 (de) 2020-03-11 2021-09-16 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2021185712A1 (de) 2020-03-17 2021-09-23 Merck Patent Gmbh Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021185829A1 (de) 2020-03-17 2021-09-23 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021191058A1 (en) 2020-03-23 2021-09-30 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021191117A1 (de) 2020-03-24 2021-09-30 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2021191183A1 (de) 2020-03-26 2021-09-30 Merck Patent Gmbh Cyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021198213A1 (de) 2020-04-02 2021-10-07 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021204646A1 (de) 2020-04-06 2021-10-14 Merck Patent Gmbh Polycyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021239772A1 (de) 2020-05-29 2021-12-02 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
US11201298B2 (en) 2017-01-09 2021-12-14 Universal Display Corporation Organic electroluminescent materials and devices
WO2021254984A1 (de) 2020-06-18 2021-12-23 Merck Patent Gmbh Indenoazanaphthaline
WO2021259824A1 (de) 2020-06-23 2021-12-30 Merck Patent Gmbh Verfahren zur herstellung einer mischung
WO2022002771A1 (de) 2020-06-29 2022-01-06 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022002772A1 (de) 2020-06-29 2022-01-06 Merck Patent Gmbh Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022029096A1 (de) 2020-08-06 2022-02-10 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022034046A1 (de) 2020-08-13 2022-02-17 Merck Patent Gmbh Metallkomplexe
WO2022038065A1 (de) 2020-08-18 2022-02-24 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022038066A1 (de) 2020-08-19 2022-02-24 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022069422A1 (de) 2020-09-30 2022-04-07 Merck Patent Gmbh Verbindungen zur strukturierung von funktionalen schichten organischer elektrolumineszenzvorrichtungen
WO2022069421A1 (de) 2020-09-30 2022-04-07 Merck Patent Gmbh Zur strukturierung von funktionalen schichten organischer elektrolumineszenzvorrichtungen einsetzbare verbindungen
WO2022079067A1 (de) 2020-10-16 2022-04-21 Merck Patent Gmbh Verbindungen mit heteroatomen für organische elektrolumineszenzvorrichtungen
WO2022079068A1 (de) 2020-10-16 2022-04-21 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022101171A1 (de) 2020-11-10 2022-05-19 Merck Patent Gmbh Schwefelhaltige verbindungen für organische elektrolumineszenzvorrichtungen
WO2022117473A1 (de) 2020-12-02 2022-06-09 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022122682A2 (de) 2020-12-10 2022-06-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022129116A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Indolo[3.2.1-jk]carbazole-6-carbonitril-derivate als blau fluoreszierende emitter zur verwendung in oleds
WO2022129113A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Stickstoffhaltige heteroaromaten für organische elektrolumineszenzvorrichtungen
WO2022129114A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Stickstoffhaltige verbindungen für organische elektrolumineszenzvorrichtungen
WO2022148717A1 (de) 2021-01-05 2022-07-14 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022157343A1 (de) 2021-01-25 2022-07-28 Merck Patent Gmbh Stickstoffhaltige verbindungen für organische elektrolumineszenzvorrichtungen
WO2022194799A1 (de) 2021-03-18 2022-09-22 Merck Patent Gmbh Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022200638A1 (de) 2021-07-06 2022-09-29 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
EP4079742A1 (de) 2021-04-14 2022-10-26 Merck Patent GmbH Metallkomplexe
WO2022229126A1 (de) 2021-04-29 2022-11-03 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022229298A1 (de) 2021-04-29 2022-11-03 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022229234A1 (de) 2021-04-30 2022-11-03 Merck Patent Gmbh Stickstoffhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022243403A1 (de) 2021-05-21 2022-11-24 Merck Patent Gmbh Verfahren zur kontinuierlichen aufreinigung von mindestens einem funktionalen material und vorrichtung zur kontinuierlichen aufreinigung von mindestens einem funktionalen material
WO2023036976A1 (en) 2021-09-13 2023-03-16 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2023041454A1 (de) 2021-09-14 2023-03-23 Merck Patent Gmbh Borhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2023052314A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052272A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052313A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052275A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023072799A1 (de) 2021-10-27 2023-05-04 Merck Patent Gmbh Bor- und stickstoffhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2023094412A1 (de) 2021-11-25 2023-06-01 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023110742A1 (de) 2021-12-13 2023-06-22 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2023117837A1 (de) 2021-12-21 2023-06-29 Merck Patent Gmbh Verfahren zur herstellung von deuterierten organischen verbindungen
WO2023152063A1 (de) 2022-02-09 2023-08-17 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2023152346A1 (de) 2022-02-14 2023-08-17 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023161168A1 (de) 2022-02-23 2023-08-31 Merck Patent Gmbh Aromatische heterocyclen für organische elektrolumineszenzvorrichtungen
WO2023161167A1 (de) 2022-02-23 2023-08-31 Merck Patent Gmbh Stickstoffhaltige heterocyclen für organische elektrolumineszenzvorrichtungen
WO2023213837A1 (de) 2022-05-06 2023-11-09 Merck Patent Gmbh Cyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2023222559A1 (de) 2022-05-18 2023-11-23 Merck Patent Gmbh Verfahren zur herstellung von deuterierten organischen verbindungen
WO2023247662A1 (de) 2022-06-24 2023-12-28 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2023247663A1 (de) 2022-06-24 2023-12-28 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2024013004A1 (de) 2022-07-11 2024-01-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2024033282A1 (en) 2022-08-09 2024-02-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2024061948A1 (de) 2022-09-22 2024-03-28 Merck Patent Gmbh Stickstoffenthaltende heterocyclen für organische elektrolumineszenzvorrichtungen
WO2024061942A1 (de) 2022-09-22 2024-03-28 Merck Patent Gmbh Stickstoffenthaltende verbindungen für organische elektrolumineszenzvorrichtungen
US11950493B2 (en) 2019-10-15 2024-04-02 Universal Display Corporation Organic electroluminescent materials and devices

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105531348B (zh) * 2013-09-11 2017-11-07 默克专利有限公司 杂环化合物
WO2016197019A1 (en) * 2015-06-04 2016-12-08 Jian Li Transparent electroluminescent devices with controlled one-side emissive displays
US10672997B2 (en) 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
CN109937207A (zh) * 2016-10-12 2019-06-25 默克专利有限公司 金属络合物
CN107163086B (zh) * 2017-06-12 2019-08-02 安徽工业大学 一种含烷基位阻基团的哒嗪类铱配合物及其制备方法和应用
KR102360782B1 (ko) * 2017-07-20 2022-02-10 삼성디스플레이 주식회사 유기 발광 소자
US11214587B2 (en) 2017-11-07 2022-01-04 Universal Display Corporation Organic electroluminescent materials and devices
US11515493B2 (en) * 2018-01-11 2022-11-29 Universal Display Corporation Organic electroluminescent materials and devices
US11180519B2 (en) 2018-02-09 2021-11-23 Universal Display Corporation Organic electroluminescent materials and devices
US11459348B2 (en) * 2018-04-02 2022-10-04 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the same, and diagnostic composition including the organometallic compound
CN108250228B (zh) * 2018-04-13 2020-05-15 上海泰坦科技股份有限公司 一种杂环硼酸化合物的制备方法
US11342513B2 (en) 2018-05-04 2022-05-24 Universal Display Corporation Organic electroluminescent materials and devices
US11404653B2 (en) * 2018-06-04 2022-08-02 Universal Display Corporation Organic electroluminescent materials and devices
CN108948097A (zh) * 2018-08-02 2018-12-07 瑞声科技(南京)有限公司 具有苯并环烷烃配体的金属配合物及其应用
CN111087414A (zh) * 2018-12-17 2020-05-01 广州华睿光电材料有限公司 过渡金属配合物、聚合物、混合物、组合物及有机电子器件
KR20200118943A (ko) 2019-04-08 2020-10-19 삼성디스플레이 주식회사 유기금속 화합물 및 이를 포함한 유기 발광 소자

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011157339A1 (de) * 2010-06-15 2011-12-22 Merck Patent Gmbh Metallkomplexe
WO2014094962A2 (de) * 2012-12-21 2014-06-26 Merck Patent Gmbh Metallkomplexe
WO2014094961A1 (de) * 2012-12-21 2014-06-26 Merck Patent Gmbh Metallkomplexe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097149A1 (ja) 2006-02-20 2007-08-30 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、白色発光素子、表示装置、及び照明装置
DE102009007038A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
JP5978843B2 (ja) * 2012-02-02 2016-08-24 コニカミノルタ株式会社 イリジウム錯体化合物、有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6363075B2 (ja) * 2012-08-07 2018-07-25 メルク パテント ゲーエムベーハー 金属錯体
CN104870458B (zh) * 2012-12-21 2019-02-15 默克专利有限公司 金属络合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011157339A1 (de) * 2010-06-15 2011-12-22 Merck Patent Gmbh Metallkomplexe
WO2014094962A2 (de) * 2012-12-21 2014-06-26 Merck Patent Gmbh Metallkomplexe
WO2014094961A1 (de) * 2012-12-21 2014-06-26 Merck Patent Gmbh Metallkomplexe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 2011, STOESSEL, PHILIPP ET AL: "Transition metal cyclometalated 2-arylbenzimidazole complexes as blue phosphorescent materials for organic light-emitting devices", XP002736352, retrieved from STN Database accession no. 2011:1654765 *

Cited By (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10862053B2 (en) 2014-04-04 2020-12-08 Konica Minolta, Inc. Method for synthesizing organic metal complex and organic electroluminescent element using compound synthesized by said synthesis method
JPWO2015151914A1 (ja) * 2014-04-04 2017-04-13 コニカミノルタ株式会社 有機金属錯体の合成方法及び当該合成方法により合成された化合物を用いた有機エレクトロルミネッセンス素子
US10454043B2 (en) 2014-10-31 2019-10-22 Heesung Material Ltd. Heterocyclic compound and organic light-emitting element using same
EP3214085A4 (de) * 2014-10-31 2018-04-11 Heesung Material Ltd. Heterocyclische verbindung und organisches lichtemittierendes element mit verwendung davon
EP3929201A1 (de) * 2015-05-15 2021-12-29 Universal Display Corporation Organische elektrolumineszente materialien und vorrichtungen
US11335864B2 (en) 2015-05-15 2022-05-17 Universal Display Corporation Organic electroluminescent materials and devices
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
CN106146532A (zh) * 2015-05-15 2016-11-23 环球展览公司 有机电致发光材料和装置
EP3098229A1 (de) * 2015-05-15 2016-11-30 Universal Display Corporation Organische elektrolumineszente materialien und vorrichtungen
USRE48809E1 (en) 2015-05-15 2021-11-02 Universal Display Corporation Organic electroluminescent materials and devices
US10547013B2 (en) 2015-05-15 2020-01-28 Universal Display Corporation Organic electroluminescent materials and devices
WO2016184540A1 (en) 2015-05-18 2016-11-24 Merck Patent Gmbh Materials for organic electroluminescent devices
US10672996B2 (en) 2015-09-03 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US11626563B2 (en) 2015-09-03 2023-04-11 Universal Display Corporation Organic electroluminescent materials and devices
WO2017080324A1 (zh) * 2015-11-12 2017-05-18 广州华睿光电材料有限公司 含无机纳米材料的印刷组合物及其应用
WO2017148565A1 (de) 2016-03-03 2017-09-08 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2017148564A1 (de) 2016-03-03 2017-09-08 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
CN107528004B (zh) * 2016-06-17 2019-06-14 三星Sdi株式会社 用于有机光电子装置的组合物和有机光电子装置
CN107528004A (zh) * 2016-06-17 2017-12-29 三星Sdi株式会社 用于有机光电子装置的组合物和有机光电子装置
WO2018050583A1 (de) 2016-09-14 2018-03-22 Merck Patent Gmbh Verbindungen mit carbazol-strukturen
WO2018050584A1 (de) 2016-09-14 2018-03-22 Merck Patent Gmbh Verbindungen mit spirobifluoren-strukturen
WO2018087022A1 (de) 2016-11-09 2018-05-17 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US11069864B2 (en) 2016-11-11 2021-07-20 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
EP4271163A2 (de) 2016-11-14 2023-11-01 Merck Patent GmbH Verbindungen mit einer akzeptor- und einer donorgruppe
WO2018087346A1 (de) 2016-11-14 2018-05-17 Merck Patent Gmbh Verbindungen mit einer akzeptor- und einer donorgruppe
WO2018099846A1 (de) 2016-11-30 2018-06-07 Merck Patent Gmbh Verbindungen mit valerolaktam-strukturen
WO2018104193A1 (de) 2016-12-05 2018-06-14 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
EP3978491A1 (de) 2016-12-05 2022-04-06 Merck Patent GmbH Stickstoffhaltige heterocyclen zur verwendung in oleds
WO2018104194A1 (de) 2016-12-05 2018-06-14 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018104195A1 (de) 2016-12-05 2018-06-14 Merck Patent Gmbh Stickstoffhaltige heterocyclen zur verwendung in oleds
WO2018127465A1 (de) 2017-01-04 2018-07-12 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US11201298B2 (en) 2017-01-09 2021-12-14 Universal Display Corporation Organic electroluminescent materials and devices
WO2018138039A1 (de) 2017-01-25 2018-08-02 Merck Patent Gmbh Carbazolderivate
WO2018138306A1 (de) 2017-01-30 2018-08-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018149769A1 (de) 2017-02-14 2018-08-23 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US10822361B2 (en) 2017-02-22 2020-11-03 Universal Display Corporation Organic electroluminescent materials and devices
US11697661B2 (en) 2017-02-22 2023-07-11 Universal Display Corporation Organic electroluminescent materials and devices
WO2018166932A1 (de) 2017-03-13 2018-09-20 Merck Patent Gmbh Verbindungen mit arylamin-strukturen
WO2018166934A1 (de) 2017-03-15 2018-09-20 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2018215318A1 (de) 2017-05-22 2018-11-29 Merck Patent Gmbh Hexazyklische heteroaromatische verbindungen für elektronische vorrichtungen
WO2019007866A1 (de) 2017-07-05 2019-01-10 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2019007867A1 (de) 2017-07-05 2019-01-10 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
EP4186898A1 (de) 2017-07-05 2023-05-31 Merck Patent GmbH Zusammensetzung für organische elektronische verbindungen
WO2019052933A1 (de) 2017-09-12 2019-03-21 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2019081391A1 (de) 2017-10-24 2019-05-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2019096717A2 (de) 2017-11-14 2019-05-23 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2019121458A1 (de) 2017-12-19 2019-06-27 Merck Patent Gmbh Heterocyclische verbindung zur verwendung in electronischen vorrichtungen
WO2019145316A1 (de) 2018-01-25 2019-08-01 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2019229011A1 (de) 2018-05-30 2019-12-05 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2019233904A1 (de) 2018-06-07 2019-12-12 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
WO2020011686A1 (de) 2018-07-09 2020-01-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
DE202019005924U1 (de) 2018-09-12 2023-05-10 MERCK Patent Gesellschaft mit beschränkter Haftung Elektrolumineszierende Vorrichtungen
DE202019005923U1 (de) 2018-09-12 2023-06-27 MERCK Patent Gesellschaft mit beschränkter Haftung Elektrolumineszierende Vorrichtungen
WO2020053315A1 (de) 2018-09-12 2020-03-19 Merck Patent Gmbh Elektrolumineszierende vorrichtungen
WO2020053150A1 (en) 2018-09-12 2020-03-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020053314A1 (de) 2018-09-12 2020-03-19 Merck Patent Gmbh Elektrolumineszierende vorrichtungen
EP4190880A1 (de) 2018-09-27 2023-06-07 Merck Patent GmbH Verbindungen, die in einer organischen elektronischen vorrichtung als aktive verbindungen einsetzbar sind
WO2020064662A2 (de) 2018-09-27 2020-04-02 Merck Patent Gmbh Verfahren zur herstellung von sterisch gehinderten stickstoffhaltigen heteroaromatischen verbindungen
WO2020064666A1 (de) 2018-09-27 2020-04-02 Merck Patent Gmbh Verbindungen, die in einer organischen elektronischen vorrichtung als aktive verbindungen einsetzbar sind
WO2020077710A1 (zh) * 2018-10-19 2020-04-23 华中科技大学 一种聚合物-金属螯合物阴极界面材料及其应用
WO2020094539A1 (de) 2018-11-05 2020-05-14 Merck Patent Gmbh In einer organischen elektronischen vorrichtung einsetzbare verbindungen
WO2020094542A1 (de) 2018-11-06 2020-05-14 Merck Patent Gmbh 5,6-diphenyl-5,6-dihydro-dibenz[c,e][1,2]azaphosphorin- und 6-phenyl-6h-dibenzo[c,e][1,2]thiazin-5,5-dioxid-derivate und ähnliche verbindungen als organische elektrolumineszenzmaterialien für oleds
WO2020099349A1 (de) 2018-11-14 2020-05-22 Merck Patent Gmbh Zur herstellung einer organischen elektronischen vorrichtung einsetzbare verbindungen
WO2020099307A1 (de) 2018-11-15 2020-05-22 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020127165A1 (de) 2018-12-19 2020-06-25 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020148303A1 (de) 2019-01-17 2020-07-23 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020165064A1 (de) 2019-02-11 2020-08-20 Merck Patent Gmbh Mononukleare iridiumkomplexe mit drei ortho-metallierten bidentaten liganden und optischer orientierungsanisotropie
CN113383002A (zh) * 2019-02-11 2021-09-10 默克专利有限公司 含有三个邻位金属化双齿配体和光学定向各向异性的单核铱络合物
WO2020169241A1 (de) 2019-02-18 2020-08-27 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2020178230A1 (en) 2019-03-04 2020-09-10 Merck Patent Gmbh Ligands for nano-sized materials
WO2020182779A1 (de) 2019-03-12 2020-09-17 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020187865A1 (de) 2019-03-20 2020-09-24 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020193447A1 (de) 2019-03-25 2020-10-01 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2020208051A1 (en) 2019-04-11 2020-10-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020212296A1 (de) 2019-04-15 2020-10-22 Merck Patent Gmbh Metallkomplexe
WO2021013775A1 (de) 2019-07-22 2021-01-28 Merck Patent Gmbh Verfahren zur herstellung ortho-metallierter metallverbindungen
WO2021037401A1 (de) 2019-08-26 2021-03-04 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021043703A1 (de) 2019-09-02 2021-03-11 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021043755A1 (de) 2019-09-03 2021-03-11 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021052921A1 (de) 2019-09-19 2021-03-25 Merck Patent Gmbh Mischung von zwei hostmaterialien und organische elektrolumineszierende vorrichtung damit
WO2021053046A1 (de) 2019-09-20 2021-03-25 Merck Patent Gmbh Peri-kondensierte heterozyklische verbindungen als materialien für elektronische vorrichtungen
US11950493B2 (en) 2019-10-15 2024-04-02 Universal Display Corporation Organic electroluminescent materials and devices
WO2021078831A1 (de) 2019-10-25 2021-04-29 Merck Patent Gmbh In einer organischen elektronischen vorrichtung einsetzbare verbindungen
WO2021089450A1 (en) 2019-11-04 2021-05-14 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021089447A1 (de) 2019-11-04 2021-05-14 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2021094269A1 (en) 2019-11-12 2021-05-20 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021110741A1 (en) 2019-12-04 2021-06-10 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021110720A1 (de) 2019-12-04 2021-06-10 Merck Patent Gmbh Metallkomplexe
WO2021122535A1 (de) 2019-12-17 2021-06-24 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021122538A1 (de) 2019-12-18 2021-06-24 Merck Patent Gmbh Aromatische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021122740A1 (de) 2019-12-19 2021-06-24 Merck Patent Gmbh Polycyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021151922A1 (de) 2020-01-29 2021-08-05 Merck Patent Gmbh Benzimidazol-derivate
WO2021170522A1 (de) 2020-02-25 2021-09-02 Merck Patent Gmbh Verwendung von heterocyclischen verbindungen in einer organischen elektronischen vorrichtung
WO2021175706A1 (de) 2020-03-02 2021-09-10 Merck Patent Gmbh Verwendung von sulfonverbindungen in einer organischen elektronischen vorrichtung
WO2021180614A1 (de) 2020-03-11 2021-09-16 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2021180625A1 (de) 2020-03-11 2021-09-16 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2021185712A1 (de) 2020-03-17 2021-09-23 Merck Patent Gmbh Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021185829A1 (de) 2020-03-17 2021-09-23 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021191058A1 (en) 2020-03-23 2021-09-30 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2021191117A1 (de) 2020-03-24 2021-09-30 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2021191183A1 (de) 2020-03-26 2021-09-30 Merck Patent Gmbh Cyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021198213A1 (de) 2020-04-02 2021-10-07 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2021204646A1 (de) 2020-04-06 2021-10-14 Merck Patent Gmbh Polycyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021239772A1 (de) 2020-05-29 2021-12-02 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2021254984A1 (de) 2020-06-18 2021-12-23 Merck Patent Gmbh Indenoazanaphthaline
WO2021259824A1 (de) 2020-06-23 2021-12-30 Merck Patent Gmbh Verfahren zur herstellung einer mischung
WO2022002772A1 (de) 2020-06-29 2022-01-06 Merck Patent Gmbh Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022002771A1 (de) 2020-06-29 2022-01-06 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022029096A1 (de) 2020-08-06 2022-02-10 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022034046A1 (de) 2020-08-13 2022-02-17 Merck Patent Gmbh Metallkomplexe
WO2022038065A1 (de) 2020-08-18 2022-02-24 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022038066A1 (de) 2020-08-19 2022-02-24 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022069421A1 (de) 2020-09-30 2022-04-07 Merck Patent Gmbh Zur strukturierung von funktionalen schichten organischer elektrolumineszenzvorrichtungen einsetzbare verbindungen
WO2022069422A1 (de) 2020-09-30 2022-04-07 Merck Patent Gmbh Verbindungen zur strukturierung von funktionalen schichten organischer elektrolumineszenzvorrichtungen
WO2022079067A1 (de) 2020-10-16 2022-04-21 Merck Patent Gmbh Verbindungen mit heteroatomen für organische elektrolumineszenzvorrichtungen
WO2022079068A1 (de) 2020-10-16 2022-04-21 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022101171A1 (de) 2020-11-10 2022-05-19 Merck Patent Gmbh Schwefelhaltige verbindungen für organische elektrolumineszenzvorrichtungen
WO2022117473A1 (de) 2020-12-02 2022-06-09 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022122682A2 (de) 2020-12-10 2022-06-16 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022129113A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Stickstoffhaltige heteroaromaten für organische elektrolumineszenzvorrichtungen
WO2022129114A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Stickstoffhaltige verbindungen für organische elektrolumineszenzvorrichtungen
WO2022129116A1 (de) 2020-12-18 2022-06-23 Merck Patent Gmbh Indolo[3.2.1-jk]carbazole-6-carbonitril-derivate als blau fluoreszierende emitter zur verwendung in oleds
WO2022148717A1 (de) 2021-01-05 2022-07-14 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022157343A1 (de) 2021-01-25 2022-07-28 Merck Patent Gmbh Stickstoffhaltige verbindungen für organische elektrolumineszenzvorrichtungen
WO2022194799A1 (de) 2021-03-18 2022-09-22 Merck Patent Gmbh Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen
EP4079742A1 (de) 2021-04-14 2022-10-26 Merck Patent GmbH Metallkomplexe
WO2022229126A1 (de) 2021-04-29 2022-11-03 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022229298A1 (de) 2021-04-29 2022-11-03 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2022229234A1 (de) 2021-04-30 2022-11-03 Merck Patent Gmbh Stickstoffhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2022243403A1 (de) 2021-05-21 2022-11-24 Merck Patent Gmbh Verfahren zur kontinuierlichen aufreinigung von mindestens einem funktionalen material und vorrichtung zur kontinuierlichen aufreinigung von mindestens einem funktionalen material
WO2022200638A1 (de) 2021-07-06 2022-09-29 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2023036976A1 (en) 2021-09-13 2023-03-16 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2023041454A1 (de) 2021-09-14 2023-03-23 Merck Patent Gmbh Borhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2023052314A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052275A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052313A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023052272A1 (de) 2021-09-28 2023-04-06 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023072799A1 (de) 2021-10-27 2023-05-04 Merck Patent Gmbh Bor- und stickstoffhaltige, heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2023094412A1 (de) 2021-11-25 2023-06-01 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023110742A1 (de) 2021-12-13 2023-06-22 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2023117837A1 (de) 2021-12-21 2023-06-29 Merck Patent Gmbh Verfahren zur herstellung von deuterierten organischen verbindungen
WO2023152063A1 (de) 2022-02-09 2023-08-17 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2023152346A1 (de) 2022-02-14 2023-08-17 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2023161168A1 (de) 2022-02-23 2023-08-31 Merck Patent Gmbh Aromatische heterocyclen für organische elektrolumineszenzvorrichtungen
WO2023161167A1 (de) 2022-02-23 2023-08-31 Merck Patent Gmbh Stickstoffhaltige heterocyclen für organische elektrolumineszenzvorrichtungen
WO2023213837A1 (de) 2022-05-06 2023-11-09 Merck Patent Gmbh Cyclische verbindungen für organische elektrolumineszenzvorrichtungen
WO2023222559A1 (de) 2022-05-18 2023-11-23 Merck Patent Gmbh Verfahren zur herstellung von deuterierten organischen verbindungen
WO2023247663A1 (de) 2022-06-24 2023-12-28 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2023247662A1 (de) 2022-06-24 2023-12-28 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2024013004A1 (de) 2022-07-11 2024-01-18 Merck Patent Gmbh Materialien für elektronische vorrichtungen
WO2024033282A1 (en) 2022-08-09 2024-02-15 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2024061948A1 (de) 2022-09-22 2024-03-28 Merck Patent Gmbh Stickstoffenthaltende heterocyclen für organische elektrolumineszenzvorrichtungen
WO2024061942A1 (de) 2022-09-22 2024-03-28 Merck Patent Gmbh Stickstoffenthaltende verbindungen für organische elektrolumineszenzvorrichtungen

Also Published As

Publication number Publication date
TW201540720A (zh) 2015-11-01
EP3094638B1 (de) 2017-11-08
TWI660959B (zh) 2019-06-01
KR102378657B1 (ko) 2022-03-24
JP6618927B2 (ja) 2019-12-11
EP3094638A1 (de) 2016-11-23
CN105916868A (zh) 2016-08-31
US20160365520A1 (en) 2016-12-15
JP2017503856A (ja) 2017-02-02
CN105916868B (zh) 2020-06-23
US11005050B2 (en) 2021-05-11
KR20160107305A (ko) 2016-09-13

Similar Documents

Publication Publication Date Title
EP3094638B1 (de) Metallkomplexe
EP2882763B1 (de) Metallkomplexe
EP3102650B1 (de) Metallkomplexe
EP2906575B1 (de) Metallkomplexe
EP2935291B1 (de) Iridiumkomplexe und deren verwendung in oligomeren, polymeren oder dendrimeren in elektronischen vorrichtungen
EP3044284B1 (de) Metallkomplexe
EP3046927B1 (de) Polycyclische phenyl-pyridin iridiumkomplexe und derivate davon für oled
EP2935292B1 (de) Metallkomplexe
EP3160976B1 (de) Metallkomplexe
WO2016015815A1 (de) Metallkomplexe
EP3526226A1 (de) Metallkomplexe
EP3526228A1 (de) Metallkomplexe
EP3328872B1 (de) Elektrolumineszierende überbrückte metallkomplexe zur verwendung in elektronischen vorrichtungen
EP3532480A1 (de) Metallkomplexe
WO2014044347A1 (de) Metallkomplexe
WO2021110720A1 (de) Metallkomplexe
EP3956338A1 (de) Metallkomplexe
WO2017097397A1 (de) Metallkomplexe
DE102015006708A1 (de) Metallkomplexe
DE102014012818A1 (de) Metallkomplexe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818877

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014818877

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014818877

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15110770

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016563244

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167022022

Country of ref document: KR

Kind code of ref document: A