WO2015098832A1 - 熱可塑性樹脂組成物及びその成形品 - Google Patents
熱可塑性樹脂組成物及びその成形品 Download PDFInfo
- Publication number
- WO2015098832A1 WO2015098832A1 PCT/JP2014/083902 JP2014083902W WO2015098832A1 WO 2015098832 A1 WO2015098832 A1 WO 2015098832A1 JP 2014083902 W JP2014083902 W JP 2014083902W WO 2015098832 A1 WO2015098832 A1 WO 2015098832A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- mass
- parts
- thermoplastic resin
- rubber
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F255/00—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
- C08F255/02—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
- C08F255/04—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms on to ethene-propene copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/06—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
Definitions
- the present invention relates to a thermoplastic resin composition containing an ethylene / ⁇ -olefin rubber-reinforced aromatic vinyl resin obtained by emulsion polymerization, which has no peeling near the gate and has a molded product appearance such as a weld appearance, and the like.
- the present invention relates to a material having excellent weld strength and suppressing generation of stagnation noise.
- Rubber-reinforced aromatic vinyl resins typified by ABS resin, which are often produced by emulsion polymerization, from the viewpoint of ease of production, performance of molded products, such as appearance and impact resistance, have excellent mechanical strength and moldability. Although it is an excellent material, it has insufficient heat resistance and impact resistance for use in materials such as automobile parts and OA parts that require heat resistance and high impact resistance, and its applications are limited. .
- Polycarbonate resins on the other hand, have excellent heat resistance and impact resistance, so they are used in a wide range of fields such as automobile parts, electrical / electronic parts, precision machine parts, but moldability and impact resistance at low temperatures. There are disadvantages such as inferior.
- a molded product made of ABS / PC alloy may generate a squeaking noise when the molded products contact each other.
- the ABS resin component of the ABS / PC alloy is added to AES. It is conventionally known that a polyolefin wax is added while being replaced with a resin (see Patent Document 1).
- This squeaking noise is known as an abnormal noise caused by a stick-slip phenomenon that occurs when two objects rub against each other, and is a property different from the sliding property of the resin.
- the stick-slip phenomenon is understood as a phenomenon in which the frictional force largely fluctuates periodically. More specifically, the stick-slip phenomenon occurs as shown in FIG. That is, as shown in the model of FIG. 16A, when an object M connected by a spring is placed on a driving table that moves at a driving speed V, the object M first moves at the driving speed V by the action of a static frictional force. It moves to the right as shown in FIG.
- the object M When the force to be restored by the spring becomes equal to the static friction force, the object M starts to slide in the direction opposite to the driving speed V. At this time, the object M receives a dynamic frictional force, so that the sliding stops at the time of FIG. 16C when the dynamic force of the spring becomes equal to the dynamic frictional force, that is, adheres to the drive base. It moves in the same direction as the driving speed V (FIG. 16 (d)). This is called a stick-slip phenomenon. As shown in FIG. 15, it is said that if the difference ⁇ between the static friction coefficient ⁇ s and the friction coefficient ⁇ l at the lower end of the sawtooth waveform is large, itching is likely to occur.
- the dynamic friction coefficient is an intermediate value between ⁇ s and ⁇ l.
- thermoplastic resin composition in which the ABS resin is replaced with the AES resin as described above may cause problems such as peeling near the gate, poor weld appearance, generation of flow marks, and decrease in weld strength depending on the use conditions. It was found that
- the present invention is a thermoplastic resin composition containing a rubber-reinforced aromatic vinyl-based resin containing an AES resin, which not only suppresses the generation of squeaking noise but also does not cause peeling near the gate.
- An object of the present invention is to provide a molded product having an excellent weld appearance and weld strength.
- the present inventors have added a polyolefin wax to a thermoplastic resin (X) containing an ethylene / ⁇ -olefin rubber-reinforced aromatic vinyl resin obtained by emulsion polymerization. It has been found that the above object can be achieved by including a low-molecular-weight olefinic (co) polymer such as the above together with a compatibilizing agent, and the present invention has been completed.
- a heat comprising at least the thermoplastic resin (X) containing the rubber-reinforced aromatic vinyl resin (B), the following component (C), and the following component (D).
- a plastic resin composition comprising: The component (B) includes the following component (B1), The content of the component (C) is 0.1 to 10 parts by mass with respect to 100 parts by mass of the component (X), and the content of the component (D) is with respect to 100 parts by mass of the component (X).
- a thermoplastic resin composition having a content of 0.1 to 15 parts by mass is provided.
- Component (B1) A rubber-reinforced aromatic vinyl resin obtained by emulsion polymerization containing ethylene / ⁇ -olefin rubber (b1) as a rubber component.
- Component (C) an olefinic (co) polymer having a weight average molecular weight of 300 to 10,000 as measured by gel permeation chromatography (GPC).
- the component (X) further comprises a polycarbonate resin (A).
- the content of the component (A) is 30 to 90% by mass with respect to 100% by mass in total of the component (A) and the component (B), and the component The content of (B) is 10 to 70% by mass with respect to 100% by mass in total of the component (A) and the component (B).
- the component (B) contains a diene rubber (b2) as a rubber component, and contains the component (b1).
- the amount is 90 to 15% by mass with respect to 100% by mass in total of the component (b1) and the component (b2), and the content of the component (b2) is the amount of the component (b1) and the component (b2). It is 10 to 85% by mass with respect to 100% by mass in total.
- the content of the rubber component of the component (B) is 3 to 20% by mass with respect to 100% by mass of the component (X). %.
- this invention provides the molded article which consists of a thermoplastic resin composition of the said invention according to another situation.
- the thermoplastic resin composition of the present invention is also useful as a molding material for articles including parts that are brought into contact with each other by fitting or the like since the occurrence of squeaking noise in the molded product is also suppressed.
- the present invention provides an article including at least two parts that are in contact with each other, wherein at least one of the parts is formed from the molded article of the present invention.
- a low molecular weight olefinic (co) polymer such as a polyolefin wax is added to a thermoplastic resin (X) containing an ethylene / ⁇ -olefin rubber-reinforced aromatic vinyl resin obtained by emulsion polymerization.
- X thermoplastic resin
- X ethylene / ⁇ -olefin rubber-reinforced aromatic vinyl resin obtained by emulsion polymerization.
- Etc. together with a compatibilizing agent the entire resin composition is homogenized, and the molded product molded from the resin composition not only suppresses the generation of squeaking noise, but also near the gate. Excellent weld appearance and weld strength without peeling.
- (A) is a bottom view of the test piece of the peel test of the example
- (b) is a cross-sectional view taken along the line AA of (a). It is sectional drawing which shows the one aspect
- FIG. 10 is a view similar to FIG. 9 showing a modification of the article of the present invention shown in FIG. 9. It is a figure similar to FIG. 9 which shows the other modification of the articles
- FIG. (A) is a top view showing an example of an article of the present invention comprising a part 18 and a frame-like part 28 that supports the part 18 so as to be rotatable around an axis 19, and (B) is a right side of (A).
- FIG. 3C is a sectional view taken along the line AA ′ in FIG. It is a top view which shows the plate-shaped test piece used for evaluation of the weld appearance in an Example.
- FIG. 15 is an explanatory diagram of the stick-slip phenomenon.
- FIGS. 16A, 16B, 16C, and 16D are model diagrams of the stick-slip phenomenon.
- (co) polymerization means homopolymerization and / or copolymerization
- (meth) acryl means acryl and / or methacryl
- (meth) acrylate Acrylate and / or methacrylate.
- Thermoplastic resin (X) used in the present invention contains a rubber-reinforced aromatic vinyl resin (B) as an essential component, and the rubber-reinforced aromatic vinyl resin (B) is an ethylene / ⁇ -olefin as a rubber component. It contains a rubber-reinforced aromatic vinyl resin (B1) obtained by emulsion polymerization, which contains a base rubber (b1), as an essential component.
- the rubber-reinforced aromatic vinyl resin (B) may be composed of only the component (B1), or may contain a rubber-reinforced aromatic vinyl resin other than the component (B1).
- thermoplastic resin (X) may contain a thermoplastic resin other than the rubber-reinforced aromatic vinyl resin (B), for example, a polycarbonate resin (A).
- the thermoplastic resin (X) constitutes a main component of the thermoplastic resin composition of the present invention, and the following components (C) and (D), which are minor components, are derived from the thermoplastic resin (X). Excluded.
- the said resin component which comprises this thermoplastic resin (X) is explained in full detail.
- examples of the rubber-reinforced aromatic vinyl resin (B) include aromatic vinyl resins having improved mechanical strength such as impact resistance by containing a rubber component.
- the rubber-reinforced aromatic vinyl resin (B) is composed of the graft copolymer resin (B-1) and a non-graft (co) polymer resin (B-2) which is a resin component not graft-polymerized to the rubber component. It is preferable that at least a rubber component that is not grafted with the resin component may be included.
- a typical form of the rubber-reinforced aromatic vinyl resin (B) is a form in which the graft copolymer resin (B-1) is dispersed in the non-graft (co) polymer resin (B-2). Can be mentioned.
- the dispersed form can be observed by using a transmission electron microscope (TEM) or the like.
- the rubber-reinforced aromatic vinyl resin (B1) in the present invention is a rubber-reinforced aromatic vinyl resin obtained by emulsion polymerization containing ethylene / ⁇ -olefin rubber (b1) as a rubber component. Emulsion polymerization is suitable for producing a component (B1) excellent in appearance and impact resistance of a molded product because it is easy to produce and the graft particle diameter is easily controlled.
- the rubber-reinforced aromatic vinyl resin (B1) contains an aromatic vinyl monomer in the presence of a latex of a rubbery polymer (b) containing, for example, an ethylene / ⁇ -olefin rubber (b1).
- the polymer formed from the structural unit derived from the vinyl monomer (a) is grafted to the rubber component derived from the rubber polymer (b). It is obtained as a mixture mainly containing a polymerized graft copolymer resin (B1-1) and a non-graft (co) polymer resin (B1-2) made of the polymer that has not been graft polymerized to the rubber component.
- Examples of the ⁇ -olefin that is a constituent unit of the component (b1) include ⁇ -olefins having 3 to 20 carbon atoms. Specific examples include propylene, 1-butene, 1-pentene, 1-hexene, Examples include 4-methyl-1-pentene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadecene, 1-eicosene and the like. These ⁇ -olefins can be used alone or in admixture of two or more.
- the carbon number of the ⁇ -olefin is preferably 3 to 20, more preferably 3 to 12, and still more preferably 3 to 8. When carbon number exceeds 20, copolymerizability will fall and the surface external appearance of the molded article which consists of a thermoplastic resin composition of this invention may become insufficient.
- the mass ratio of ethylene: ⁇ -olefin in the component (b1) is usually 5 to 95:95 to 5, preferably 50 to 95:50 to 5, more preferably 60 to 95:40 to 5, particularly preferably 70. ⁇ 90: 30 ⁇ 10.
- the mass ratio of ⁇ -olefin is in the above range, the rubber elasticity of ethylene: ⁇ -olefin is sufficient, so that the resulting rubber-reinforced aromatic vinyl resin (B1) has sufficient impact resistance. This is preferable.
- the Mooney viscosity (ML 14 and 100 ° C .; conforming to JIS K 6300) of the component (b1) is usually 5 to 80, preferably 10 to 65, more preferably 10 to 45. It is preferable that the Mooney viscosity is in the above range since the moldability of the thermoplastic resin composition of the present invention and the impact resistance of a molded product comprising the thermoplastic resin composition will be sufficient.
- the ethylene / ⁇ -olefin rubber (b1) used in the present invention preferably has a Tm (melting point) from the viewpoint of reducing squeaking noise.
- Tm is a value obtained by measuring endothermic changes at a constant temperature increase rate of 20 ° C. per minute using a DSC (differential scanning calorimeter), and reading the peak temperature of the obtained endothermic pattern. , JIS K 7121-1987.
- the Tm is preferably 0 to 120 ° C., more preferably 10 to 100 ° C., and particularly preferably 20 to 80 ° C.
- Tm is less than 0 ° C.
- the effect of reducing the squeaking noise of the molded article made of the thermoplastic resin composition of the present invention may be insufficient.
- the peak of the endothermic change is not clearly shown, it is determined that the crystal has substantially no crystallinity and does not have Tm.
- component (b1) does not have Tm, the effect of reducing the squeaking noise of the obtained molded product may be insufficient.
- the melting point (Tm) of the ethylene / ⁇ -olefin rubber (b1) means that the rubber has a crystalline part. If there is a crystalline part in the rubber, it is considered that the occurrence of the squeaking noise is suppressed since the occurrence of the stick-slip phenomenon is suppressed.
- the glass transition temperature (Tg) of the ethylene / ⁇ -olefin rubber (b1) is preferably ⁇ 20 ° C. or lower, more preferably ⁇ 30 ° C. or lower, and particularly preferably ⁇ 40 ° C. or lower. It is. A glass transition temperature of ⁇ 20 ° C. or lower is preferable because sufficient impact resistance can be obtained.
- the glass transition temperature can be determined in accordance with JIS K 7121-1987 using a DSC (differential scanning calorimeter) in the same manner as the measurement of Tm (melting point).
- the ethylene / ⁇ -olefin rubber (b1) may contain a non-conjugated diene component as another component copolymerizable therewith.
- a non-conjugated diene component such as 1,4-hexadiene, 1,5-hexadiene, 5-ethylidene-2-norbornene, dicyclopentadiene, and the like.
- the blending amount is 100% by mass of ethylene and ⁇ -olefin.
- the ethylene / ⁇ -olefin rubber (b1) is more preferably an ethylene / propylene copolymer, an ethylene / 1-butene copolymer, or an ethylene / 1-octene copolymer, and particularly preferably an ethylene / propylene copolymer.
- the weight average molecular weight of the component (b1) is usually 50,000 to 1,000,000, preferably 50,000 to 1,000,000, more preferably 80,000 to 800,000, and still more preferably 80,000. 000 to 500,000.
- the weight average molecular weight can typically be measured in terms of polystyrene using gel permeation chromatography (GPC).
- GPC gel permeation chromatography
- the rubbery polymer (b) may contain a diene rubber (b2) in addition to the component (b1).
- a diene rubber (b2) in addition to the component (b1).
- the thermoplastic resin composition of the present invention has safety. It becomes more suitable as a molding material of a molded product such as required automotive parts.
- Diene rubber (b2) includes homopolymers such as polybutadiene and polyisoprene; styrene / butadiene copolymer, styrene / butadiene / styrene copolymer, acrylonitrile / styrene / butadiene copolymer, acrylonitrile / butadiene copolymer Butadiene copolymers such as styrene / isoprene, styrene / isoprene / styrene copolymers, and isoprene copolymers such as acrylonitrile / styrene / isoprene copolymers.
- the diene rubbery polymer may be a crosslinked polymer or an uncrosslinked polymer. Further, the diene rubber may be a (co) polymer obtained by hydrogenating a (co) polymer containing a unit composed of a conjugated diene compound. These can be used alone or in combination of two or more.
- the component (B1) is a vinyl containing an aromatic vinyl compound in the presence of a latex of a rubbery polymer (b) containing an ethylene / ⁇ -olefin rubber (b1) and optionally a diene rubber (b2). It can be obtained by emulsion polymerization of the system monomer (a).
- Known methods for producing the latex include emulsion polymerization of a polymerizable monomer in the presence of an emulsifier, and homogenization of a molten rubber component by stirring shear force in water. (See Japanese Patent Publication No. 4-30970, Japanese Patent No. 3403828, Japanese Patent Laid-Open No. 11-269206, etc.).
- an aromatic vinyl compound is used as an essential component, and preferably at least one selected from a vinyl cyanide compound and a (meth) acrylic acid ester compound is additionally used. Is done.
- other vinyl monomers copolymerizable with these compounds can be additionally used as necessary. Examples of such other vinyl monomers include maleimide compounds, unsaturated acid anhydrides, carboxyl group-containing unsaturated compounds, hydroxyl group-containing unsaturated compounds, oxazoline group-containing unsaturated compounds, and the like.
- One species can be used alone, or two or more species can be used in combination.
- aromatic vinyl monomer (a) examples include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, ethylstyrene, p-tert-butylstyrene, vinyl.
- Toluene, vinyl xylene, vinyl naphthalene and the like can be mentioned. These compounds can be used alone or in combination of two or more. Of these, styrene and ⁇ -methylstyrene are preferred, and styrene is particularly preferred.
- the vinyl cyanide compound examples include acrylonitrile, methacrylonitrile, ethacrylonitrile, ⁇ -ethylacrylonitrile, ⁇ -isopropylacrylonitrile and the like. These compounds can be used alone or in combination of two or more. Of these, acrylonitrile is preferred.
- a vinyl cyanide compound is used as a compound copolymerizable with an aromatic vinyl compound, the chemical resistance of the thermoplastic resin composition of the present invention, the toughness of a molded product made thereof, and the like are further preferred.
- the (meth) acrylate compound examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and (meth) acrylate n.
- maleimide compound examples include N-phenylmaleimide and N-cyclohexylmaleimide. These compounds can be used alone or in combination of two or more.
- unsaturated acid anhydride examples include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like. These compounds can be used alone or in combination of two or more.
- carboxyl group-containing unsaturated compound examples include (meth) acrylic acid, ethacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, cinnamic acid and the like. These compounds can be used alone or in combination of two or more.
- hydroxyl group-containing unsaturated compound examples include 3-hydroxy-1-propene, 4-hydroxy-1-butene, cis-4-hydroxy-2-butene, trans-4-hydroxy-2-butene, 3 -Hydroxy-2-methyl-1-propene, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and the like. These compounds can be used alone or in combination of two or more.
- the vinyl monomer (a) constitutes structural units of the component (B1-1) and the component (B1-2) contained in the component (B1) after polymerization.
- the lower limit of the content of the structural unit derived from the aromatic vinyl compound in the component (B1) is a structural unit derived from the structural unit derived from the aromatic vinyl compound and a compound copolymerizable with the aromatic vinyl compound.
- the total is 100% by mass, it is preferably 40% by mass, more preferably 50% by mass, and still more preferably 60% by mass.
- the upper limit is usually 100% by mass.
- the content of the structural unit derived from the aromatic vinyl compound is 100% by mass in total. In this case, it is usually 40 to 90% by mass, preferably 55 to 85% by mass, and the content of the structural unit derived from the vinyl cyanide compound is 10 to 10% when the total of both is 100% by mass. It is 60% by mass, preferably 15 to 45% by mass.
- the vinyl monomer (a) may be polymerized by adding the whole amount at once in the presence of the latex of the rubbery polymer containing the component (b1), or may be divided or continuously in a small amount. They may be added and polymerized one by one. Moreover, you may superpose
- an initiator of the emulsion polymerization for example, a combination of an organic peroxide such as cumene hydroperoxide, diisopropylbenzene hydroperoxide, paramentane hydroperoxide and a reducing agent such as sugar-containing pyrophosphate and sulfoxylate is used.
- BPO benzoyl peroxide
- azobisisobutyronitrile lauroyl peroxide
- t-butylperoxylaurate t-butylperoxymonocarbonate
- a peroxide etc. are mentioned.
- the polymerization initiator may be oil-soluble or water-soluble, and may be used in combination.
- the said polymerization initiator can be used individually by 1 type or in combination of 2 or more types.
- the amount of the polymerization initiator used is preferably 0.1 to 1.5% by mass, more preferably 0.2 to 0.7% by mass, based on the total amount of the vinyl monomer (a).
- the polymerization initiator can be added to the polymerization system all at once or continuously.
- Examples of the chain transfer agent include mercaptans such as octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n-hexamethyl mercaptan, n-tetradecyl mercaptan, t-tetradecyl mercaptan; terpinolenes; ⁇ - Examples include methylstyrene dimer.
- the said chain transfer agent can be used individually by 1 type or in combination of 2 or more types.
- the upper limit of the amount of the chain transfer agent used is usually 5% by mass or less, preferably 3% by mass, based on the total amount of the vinyl monomer (a).
- the chain transfer agent can be added to the reaction system all at once or continuously.
- the emulsifier examples include anionic surfactants and nonionic surfactants.
- anionic surfactants include sulfates of higher alcohols; alkylbenzene sulfonates such as dodecylbenzene sulfonic acid; fatty acid sulfonates such as sodium lauryl sulfate; higher aliphatic sulfonates and aliphatic phosphates. It is done.
- nonionic surfactants include polyethylene glycol alkyl ester compounds and alkyl ether compounds.
- the said emulsifier can be used individually by 1 type or in combination of 2 or more types. The amount of the emulsifier used is usually 0.3 to 5% by mass with respect to the total amount of the vinyl monomer (a).
- Emulsion polymerization can be performed under known conditions depending on the type of vinyl monomer, polymerization initiator and the like.
- the latex obtained by this emulsion polymerization is usually purified by coagulation with a coagulant to form a polymer component in powder form, and then washing and drying the polymer component.
- the coagulant include inorganic salts such as calcium chloride, magnesium sulfate, magnesium chloride, and sodium chloride; inorganic acids such as sulfuric acid and hydrochloric acid; organic acids such as acetic acid and lactic acid.
- the graft ratio of component (B1-1) is usually 10 to 150% by mass, preferably 15 to 120% by mass, more preferably 20 to 100% by mass, and particularly preferably 30 to 80% by mass.
- the graft ratio of the component (B1-1) is within the above range, the moldability of the thermoplastic resin composition of the present invention and the impact resistance of a molded product comprising the same are preferable.
- 1 g of component (B1) is added to 20 ml of acetone, shaken with a shaker for 2 hours under a temperature condition of 25 ° C., and then subjected to a centrifuge (5 ° C. temperature condition).
- the mass (g) of the insoluble matter obtained by centrifuging for 60 minutes at a rotational speed of 23,000 rpm and separating the insoluble matter (component (B1-1)) and the soluble matter (component (B1-2)).
- T is the mass (g) of the rubber component contained in 1 gram of component (B1).
- the mass of the rubber component can be determined by a method of calculating from the polymerization prescription and the polymerization conversion rate.
- Graft rate is, for example, the type and amount of chain transfer agent used in graft polymerization when producing component (B1), the type and amount of polymerization initiator, the method of addition of monomer components and the addition time during polymerization, It can adjust by selecting superposition
- the intrinsic viscosity [ ⁇ ] (in methyl ethyl ketone, 30 ° C.) of the component (B1-2) in the rubber-reinforced aromatic vinyl resin (B1) is usually 0.1 to 1.5 dl / g, preferably 0.15 to It is 1.2 dl / g, more preferably 0.15 to 1.0 dl / g, particularly preferably 0.25 to 0.7 dl / g.
- the intrinsic viscosity [ ⁇ ] is in the above range, the impact resistance and molding processability of the thermoplastic resin composition become better.
- the intrinsic viscosity [ ⁇ ] was measured by the following method. First, the acetone-soluble component (component (B1-2)) of component (B1) was dissolved in methyl ethyl ketone to prepare five samples having different concentrations. The intrinsic viscosity [ ⁇ ] was determined from the results of measuring the reduced viscosity of each concentration at 30 ° C. using an Ubbelohde viscosity tube. The unit is dl / g.
- the intrinsic viscosity [ ⁇ ] is, for example, the type and amount of chain transfer agent used in emulsion polymerization of the component (B1), the type and amount of polymerization initiator, the method of adding the monomer component and the addition time during polymerization.
- the polymerization temperature, the polymerization time, etc. can be adjusted by appropriate selection. Moreover, it can adjust by selecting and mixing suitably 2 or more types of components (B1) from which intrinsic viscosity [(eta)] differs.
- the intrinsic viscosity [ ⁇ ] can also be adjusted by mixing the following rubber-reinforced aromatic vinyl resin (B2) or the following aromatic vinyl (co) polymer (B3) with the component (B1).
- the thermoplastic resin (X) used in the present invention may contain a rubber-reinforced aromatic vinyl resin other than the component (B1), and is typically a latex of a diene rubber (b2). And rubber-reinforced aromatic vinyl resin (B2) obtained by polymerizing vinyl monomer (a) containing an aromatic vinyl monomer in the presence of.
- the thermoplastic resin (X) contains the rubber-reinforced aromatic vinyl resin (B2)
- the molded product made of the thermoplastic resin composition of the present invention is ductile even under a very low temperature environment such as ⁇ 30 ° C. Since it will be destroyed, the thermoplastic resin composition of the present invention is more suitable as a molding material for automobile parts and the like that require safety during a collision.
- the diene rubber (b2) and the vinyl monomer (a) used as raw materials for the rubber-reinforced aromatic vinyl resin (B2) all of those described for the component (B1) can be used. What has been said about (B1) applies equally to component (B2). As for the graft ratio and intrinsic viscosity of the rubber-reinforced aromatic vinyl resin (B2), the same applies to the component (B2) as described for the component (B1).
- the polymerization method of the rubber-reinforced aromatic vinyl resin (B2) is not particularly limited, and a known method can be applied.
- a polymerization method emulsion polymerization, suspension polymerization, solution polymerization, bulk polymerization, or a combination of these can be used.
- known polymerization initiators, chain transfer agents (molecular weight regulators), emulsifiers and the like can be appropriately used.
- Aromatic vinyl (co) polymer (B3) The rubber-reinforced aromatic vinyl resin (B) may further contain an aromatic vinyl (co) polymer (B3).
- the aromatic vinyl (co) polymer (B3) can be produced by polymerizing the vinyl monomer (a) containing the aromatic vinyl compound in the absence of the rubbery polymer.
- the polymerization method may be the same method as the component (B1) and the component (B2), and in addition to emulsion polymerization, suspension polymerization, solution polymerization, bulk polymerization, or a polymerization method combining these may be used. You can also.
- the aromatic vinyl-based (co) polymer (B3) has the same form as the non-grafted (co) polymer resin (B-2) in that it is not grafted to the rubbery polymer, and is usually rubber-reinforced aromatic. It is used for diluting a vinyl resin or preparing the above intrinsic viscosity [ ⁇ ].
- the vinyl monomer (a) used as a raw material for the aromatic vinyl (co) polymer (B3) all of those described for the component (B1) can be used.
- the intrinsic viscosity of the aromatic vinyl-based (co) polymer (B3) the same applies to the component (B3) as described above for the component (B1).
- the thermoplastic resin (X) used in the present invention can contain the polycarbonate resin (A).
- the polycarbonate resin (A) is not particularly limited as long as it has a carbonate bond in the main chain, and examples thereof include aromatic polycarbonate, aliphatic polycarbonate, and aliphatic-aromatic polycarbonate. You may use these individually or in combination of 2 or more types. Among these, aromatic polycarbonate is preferable from the viewpoint of impact resistance, heat resistance, and the like.
- These polycarbonate resins may be modified at the ends with R—CO— groups or R′—O—CO— groups (both R and R ′ are organic groups).
- aromatic polycarbonate examples include those obtained by melting a transesterification (transesterification reaction) of an aromatic dihydroxy compound and a carbonic acid diester, those obtained by an interfacial polycondensation method using phosgene, and pyridine and phosgene. What was obtained by the pyridine method using a reaction product etc. can be used.
- the aromatic dihydroxy compound may be a compound having two hydroxyl groups in the molecule.
- the hydrocarbon group may be a halogen-substituted hydrocarbon group.
- the benzene ring may be one in which a hydrogen atom contained in the benzene ring is substituted with a halogen atom.
- the above compounds include bisphenol A, 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl-3-methylphenyl) propane, 2,2 -Bis (3-tert-butyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) methane, 1,1-bis ( p-hydroxyphenyl) ethane, 2,2-bis (p-hydroxyphenyl) butane and the like.
- bisphenol A is particularly preferable.
- Examples of the carbonic acid diester used for obtaining the aromatic polycarbonate by transesterification include dimethyl carbonate, diethyl carbonate, di-tert-butyl carbonate, diphenyl carbonate, and ditolyl carbonate. These can be used alone or in combination of two or more.
- the viscosity average molecular weight of the polycarbonate resin (A) is preferably 15,000 to 40,000, more preferably 17,000 to 30,000, and particularly preferably 18,000 to 28,000.
- two or more kinds of polycarbonate resins having different viscosity average molecular weights may be mixed and used.
- thermoplastic resin (X) In the thermoplastic resin (X) of the present invention, the content of the rubber component is preferably 3 to 20% by mass with respect to 100% by mass of the component (X) from the viewpoint of mechanical strength. It is more preferably 4 to 15% by mass, and further preferably 5 to 12% by mass.
- the rubber component in the thermoplastic resin (X) of the present invention is derived from a rubber-reinforced aromatic vinyl resin (B), that is, a rubbery polymer that is a raw material of the components (B1) and (B2).
- B rubber-reinforced aromatic vinyl resin
- the total amount of the rubber component is preferably composed of ethylene / ⁇ -olefin rubber (b1).
- a diene rubber (b2) is contained as a rubber component of the component (B1) in order to impart ductile fracture characteristics
- the component (B2) is included in the plastic resin (X).
- content of the said component (b1) is 100 mass% in total of the said component (b1) and the said component (b2).
- the content of the component (b2) is preferably 90 to 15% by mass, more preferably 80 to 30% by mass, and the total content of the component (b1) and the component (b2) is 100% by mass.
- a method of mixing the latex of the component (b1) and the latex of the component (b2) at the time of emulsion polymerization, emulsification in the presence of the component (b1) A method of mixing the latex of the component (B1) after polymerization and the latex of the component (B2) after emulsion polymerization in the presence of the component (b2), after emulsion polymerization in the presence of the component (b1)
- a method of mixing the separated component (B1) and the component (B2) isolated after emulsion polymerization in the presence of the component (b2) can be employed.
- the content is determined according to the required mechanical strength, rigidity, molding processability, and heat resistance.
- the content is preferably 30 to 90% by mass, more preferably 40 to 80% by mass, and more preferably 45 to 75% by mass with respect to 100% by mass in total of the component (A) and the component (B). % Is particularly preferred.
- the content of the component (B) is preferably 10 to 70% by mass and more preferably 20 to 60% by mass with respect to a total of 100% by mass of the component (A) and the component (B).
- the content is preferably 25 to 55% by mass. If it is this range, the molded article which consists of a thermoplastic resin composition of this invention is further excellent in various performances, such as impact strength, molding processability, an external appearance, and heat resistance, in addition to the stagnation sound suppression effect.
- the olefinic (co) polymer (C) in the present invention is not particularly limited as long as it has a weight average molecular weight of 300 to 10,000.
- the component (C) is an olefinic (co) polymer that does not exhibit rubber elasticity at room temperature.
- the weight average molecular weight of component (C) is preferably 300 to 8,000, more preferably 500 to 6,000.
- the weight average molecular weight can be measured, for example, in terms of polystyrene by gel permeation chromatography (GPC).
- Examples of the olefinic (co) polymer (C) include olefins such as ethylene, propylene, 1-butene, 1-hexene, 1-decene, 4-methyl-1-butene and 4-methyl-1-pentene. Homopolymers of these compounds, compounds copolymerizable with these olefins, for example, saturated rubonic acid and its anhydrides [(meth) acrylic acid, maleic anhydride, etc.], (meth) acrylic acid esters [(meth) acrylic acid And a copolymer with a polymerizable monomer such as methyl, (meth) acrylic acid alkyl ester such as ethyl (meth) acrylate], and the like.
- olefins such as ethylene, propylene, 1-butene, 1-hexene, 1-decene, 4-methyl-1-butene and 4-methyl-1-pentene.
- copolymers may be random copolymers, block copolymers, or graft copolymers.
- the component (C) may be modified.
- the degree of oxidative modification is determined by the acid value obtained by a titration test method using potassium hydroxide.
- the preferred degree of oxidative modification is 1 to 100 mg / g.
- component (C) examples include polyethylene wax synthesized by a high-pressure method or Ziegler method, Fischer-Tropsch wax produced by reacting carbon monoxide and hydrogen, and polypropylene wax obtained by a thermal decomposition method.
- polyethylene wax is used.
- a commercially available product can be used as the polyethylene wax, such as “Sun Wax” (manufactured by Sanyo Chemical Co., Ltd.), “Mitsui High Wax” (manufactured by Mitsui Chemicals), “SOLPLUS 310” (manufactured by Nippon Loop Resor Co., Ltd.), etc. Is mentioned.
- the melt viscosity at 140 ° C. of the part (C) is usually 10 to 50,000 mPa ⁇ s, preferably 10 to 10,000 mPa ⁇ s, more preferably 10 to 8,000 mPa ⁇ s.
- the melt viscosity can be measured using a B-type viscometer.
- a molded product comprising the thermoplastic resin composition of the present invention is preferable because the effects obtained by the present invention are further sufficient. If the melt viscosity of the component (C) is less than 10 mPa ⁇ s, mold contamination may occur, and if it exceeds 50,000 mPa ⁇ s, mold release failure may occur.
- melt viscosity at 140 ° C. of the component (B1) and the component (D) described later is usually as high as exceeding 1,000,000 mPa ⁇ s, and unlike the component (C), a B-type viscometer It is difficult to measure with.
- the melting point of the component (C) (measured by DSC method according to JIS K 7121-1987) is usually 90 to 160 ° C., preferably 100 to 140 ° C., more preferably 105 to 135 ° C.
- the softening point (JIS K 2207) of component (C) is usually 90 to 160 ° C., preferably 100 to 145 ° C., more preferably 105 to 140 ° C. It is preferable that the melting point and the softening point are within the above ranges because the effect obtained by the present invention is further sufficient.
- the content of the component (C) in the thermoplastic resin composition of the present invention is 0.1 to 10 parts by mass, preferably 0.5 to 8 parts by mass with respect to 100 parts by mass of the thermoplastic resin (X). More preferably, it is 0.5 to 5 parts by mass.
- content of a component (C) is less than 0.1 mass part, an abnormal noise risk index
- content of a component (C) exceeds 10 mass parts, pelletization will become difficult and delamination will generate
- the component (C) may be added in advance to the component (B) during and / or after the production process of the component (B).
- the compatibilizing agent (D) in the present invention is not particularly limited as long as it compatibilizes the component (C) with the component (A) and / or the component (B).
- Specific examples of the compatibilizer (D) include a block copolymer (D1) comprising at least one olefinic (co) polymer segment and at least one aromatic vinyl (co) polymer segment, And a hydrogenated product (D2) of a block copolymer comprising at least one aromatic vinyl (co) polymer segment and at least one conjugated diene polymer.
- the component (D) of the present invention does not usually exist as dispersed particles like the component (B1) in the thermoplastic resin composition, but is present on the surface of the component (B) and the component (C). it is conceivable that.
- Component (D1) olefinic (co) polymer segment includes polymers of olefinic compounds such as ethylene and propylene, and functional group-containing unsaturated compounds copolymerizable with olefinic compounds such as ethylene and propylene. Examples include copolymers with compounds. Examples of the copolymerizable functional group-containing unsaturated compound include, for example, an ethylenically unsaturated compound having an epoxy group, a carboxyl group, an ester group, a hydroxyl group, or the like as the functional group, and preferably an epoxy group.
- the functional group-containing ethylenically unsaturated compound examples include glycidyl methacrylate, methyl acrylate, ethyl acrylate, acrylic acid, methacrylic acid, and the like, and preferably glycidyl methacrylate.
- Examples of the aromatic vinyl (co) polymer segment of component (D1) and component (D2) include polymers of aromatic vinyl compounds such as styrene and ⁇ -methylstyrene, and styrene and ⁇ -methylstyrene. Examples thereof include a copolymer of an aromatic vinyl compound and a vinyl compound copolymerizable therewith. Examples of this copolymerizable vinyl compound include vinyl cyanide compounds, and acrylonitrile is preferred.
- Component (D2) conjugated diene polymers include conjugated dienes such as butadiene, isoprene, piperylene, methylpentadiene, phenylbutadiene, 3,4-dimethyl-1,3-hexadiene, 4,5-diethyl-1,3-octadiene, etc.
- a homopolymer or a copolymer of the compound, a random copolymer or a block copolymer of the conjugated diene compound and the aromatic vinyl compound, or a mixture thereof may be mentioned.
- the conjugated diene polymer preferably has 10% or more of its double bond portion hydrogenated, more preferably 70 to 100% hydrogenated, more preferably 95 to 100 It is particularly preferred that% is hydrogenated.
- component (D1) include those obtained by graft polymerization of an aromatic vinyl polymer segment made of polystyrene on an olefin polymer segment made of low density polyethylene, and an olefin copolymer made of an ethylene-glycidyl methacrylate copolymer.
- a segment-grafted polymer, an olefin copolymer segment composed of an ethylene-ethyl acrylate copolymer, and an aromatic vinyl polymer segment composed of a styrene-acrylonitrile copolymer are graft polymerized.
- an olefin copolymer segment made of ethylene-glycidyl methacrylate copolymer is grafted with an aromatic vinyl polymer segment made of styrene-acrylonitrile copolymer, ethylene-ethyl
- An olefin copolymer segment composed of an acrylate copolymer is grafted with an aromatic vinyl polymer segment composed of a styrene-acrylonitrile copolymer.
- component (D1) having a structure in which an aromatic vinyl polymer segment is graft-polymerized to an olefin copolymer segment composed of an ethylene-glycidyl methacrylate copolymer include an ethylene-glycidyl methacrylate copolymer and a styrene monomer.
- EGMA-g-PS ethylene / glycidyl methacrylate-graft-polystyrene, such as “Modiper A-4100” manufactured by NOF Corporation
- styrene monomer to ethylene-glycidyl methacrylate copolymer
- EGMA-g-AS ethylene / glycidyl methacrylate-graft-acrylonitrile / styrene, for example, “Modiper A-4400” manufactured by NOF Corporation
- the content of the olefin-based (co) polymer segment and aromatic vinyl-based segment constituting the component (D1) is usually based on the total amount of the olefin-based (co) polymer segment and aromatic vinyl-based segment as 100% by mass. It is 40 to 95% by mass, preferably 50 to 90% by mass, more preferably 60 to 90% by mass. It is preferable that the content of both be in the above range because the effect of compatibilization is further sufficient.
- component (D2) examples include styrene-ethylene-butylene-styrene copolymer (SEBS), styrene-butadiene-butylene-styrene copolymer (SBBS), and styrene-isoprene-styrene copolymer (SIS).
- SEBS styrene-ethylene-butylene-styrene copolymer
- SBBS styrene-butadiene-butylene-styrene copolymer
- SIS styrene-isoprene-styrene copolymer
- Etc the component (D2) may be a modified polymer into which a functional group such as an amino group, an alkoxy group, a hydroxyl group, an acid anhydride group, or an epoxy group is introduced. Use of such a modified polymer is preferable because peeling near the gate, poor appearance of the molded product, and a
- component (D2) examples include an amine-modified product of a styrene-butadiene-styrene hydrogenated block copolymer (for example, “Dynalon 8630P” manufactured by JSR Corporation), a styrene-butadiene-styrene hydrogenated block copolymer (for example, Commercially available products such as “Tuftec H1041” manufactured by Asahi Kasei Corporation) can be used.
- a styrene-butadiene-styrene hydrogenated block copolymer for example, “Dynalon 8630P” manufactured by JSR Corporation
- a styrene-butadiene-styrene hydrogenated block copolymer for example, Commercially available products such as “Tuftec H1041” manufactured by Asahi Kasei Corporation
- the content of the compatibilizing agent (D) in the thermoplastic resin composition of the present invention is 0.1 to 15 parts by mass, preferably 0.5 to 100 parts by mass with respect to 100 parts by mass of the thermoplastic resin (X). 12 parts by mass, more preferably 2 to 8 parts by mass.
- the content of the compatibilizing agent (D) is less than 0.1 parts by mass, the molded product is peeled near the gate, and the weld appearance and weld strength of the molded product are impaired.
- the compatibilizing agent (D) exceeds 15 parts by mass, pelletization becomes difficult, and the squeaking noise reduction performance is also inferior.
- the component (D) may be previously added to the component (B) during and / or after the production process of the component (B).
- thermoplastic resin composition and production method thereof Thermoplastic resin composition and production method thereof
- the thermoplastic resin composition of the present invention is not limited to the above components (B), (C) and (D), as long as the object of the present invention is not impaired.
- various additives may be contained. Specific examples of additives include UV absorbers, weathering agents, fillers, antioxidants, anti-aging agents, antistatic agents, flame retardants, antifogging agents, lubricants, antibacterial agents, tackifiers, plasticizers, and coloring. Agents and the like.
- the component (B) is optionally mixed with the component (A) to obtain a thermoplastic resin (X), and then the thermoplastic resin (X) is mixed with the component (C).
- the component (D) and other components may be mixed or manufactured, or all components may be mixed and manufactured, and the mixing method is not particularly limited.
- the component (C) and / or (D) is derived from what is added together with the rubbery polymer (b1) and / or the vinyl monomer (a) when the component (B) is produced. There may be.
- each component is mixed in a predetermined blending ratio with a tumbler mixer, a Henschel mixer, etc., and then a single screw extruder, a twin screw extruder, a Banbury mixer, a kneader, a roll, a feeder ruder. It can be manufactured by melt-kneading under suitable conditions using a mixer such as the above.
- a preferred kneader is a twin screw extruder.
- each component may be kneaded in a lump or may be kneaded in multiple stages.
- the melt kneading temperature is usually 200 to 300 ° C, preferably 220 to 280 ° C.
- thermoplastic resin composition of the present invention there is no limitation on the method for producing a molded product from the thermoplastic resin composition of the present invention.
- injection compression molding gas assist molding
- press molding press molding
- blow molding profile extrusion molding
- calendar Known methods such as film and sheet molding represented by molding and T-die extrusion molding may be mentioned.
- the molded product of the present invention is suitable as, for example, an electrical or electronic device, an optical device, a lighting device, an office device, a home appliance component, an automotive component, a residential component, or the like.
- the molded article made of the thermoplastic resin composition of the present invention can be suitably used as at least one part of an article including at least two parts that are in contact with each other.
- the thermoplastic resin composition of the present invention contains ethylene / ⁇ -olefin-based rubber as a rubber component, at least one of the parts constituting the article is a molded article made of the thermoplastic resin composition.
- the parts constituting the article it is preferable that two or more parts are molded articles of the thermoplastic resin composition of the present invention, and that all the parts are molded articles of the thermoplastic resin composition of the present invention. Particularly preferred.
- thermoplastic resin composition of the present invention containing ethylene / ⁇ -olefin rubber as a rubber component is such that at least two of the parts of the article are in constant or intermittent contact, and vibration, twist, impact, etc. It is suitable as a molding material for parts constituting an article in which contact portions of both parts slightly move or collide with each other when an external force is applied to the article.
- the contact mode of the contact portion may be any of surface contact, line contact, point contact, etc., and may be partially bonded.
- an article that is in contact with one surface of the component 10 and one surface of the component 20 being in contact with each other as shown in FIGS.
- an article that is in contact with a recess formed in the component 20 may be used.
- FIG. 3 As a specific example of an article that is in contact with each other in a state in which the parts are fitted, as shown in FIG. 3, the one end of the part 10 is in contact with a complementary recess formed in the part 20.
- FIG. 5 an article in which each end of the part 20 is in close contact with a complementary recess formed in each of two parts 10 arranged substantially in parallel, FIG.
- a part 20 having an outer surface dimension that is the same as the inner surface dimension of the part 10 is inserted into the part 10 in a nested manner, and the inner surface and the outer surface of both the parts 10 are closely fitted.
- an article in contact is inserted into the part 10 in a nested manner, and the inner surface and the outer surface of both the parts 10 are closely fitted.
- the two parts in the article of the present invention do not need to be closely fitted to each other, and are fitted to each other with a certain amount of gap or play as shown in FIG.
- the external force When the external force is applied to the article, it may be configured to repeat contact and non-contact with each other.
- FIG. 9 An article as shown in FIG. 9 is an example of an article that is provided with a composite contact portion as described above.
- the part 10 is a bowl-shaped part made of a rectangular parallelepiped whose bottom is all open, and the part 20 is a molded product having the same shape as the part 10 and having a rectangular opening at the center of the top surface. It is.
- the component 20 can be fitted into the component 10, and the outer peripheral surface of the component 20 and the inner peripheral surface of the component 10 are in contact with each other. Slightly deform and repeat contact and non-contact.
- the component 20 has a protrusion 30 on the opposite outer surface, and as shown in FIG.
- the component 10 has a hole for receiving the protrusion 30 of the component 20 on two opposite sides. ing.
- the projection 30 snap-fits into the hole so that the fitting of both components is not easily removed.
- the direction of the external force is not limited to the direction of FIG. 9C, and even when an external force is applied from another direction, at least one of the component 10 and the component 20 is used as the thermoplastic resin of the present invention. In the case of a molded article made of the composition, generation of stagnation noise is prevented.
- the cross-sectional shape of the protrusion 30 of FIG. 9 and the shape of the hole of the component 10 can be changed to change the configuration to press-fit both components.
- FIG. 10 shows that the part 10 and the part 20 are bonded to each other by using an adhesive 31 in place of the protrusion 30 and a hole in which the part 10 and the part 20 are snap-fitted.
- the adhesive 31 instead of the adhesive 31, the component 10 and the component 20 can be welded to each other by laser welding or the like, and this method is convenient when both components are thermoplastic resin molded articles.
- laser welding it is preferable to combine a transparent thermoplastic resin that transmits laser light and a component made of a thermoplastic resin that absorbs laser light.
- Specific products include instruments such as in-vehicle speedometers, and illumination lamps. Etc.
- holes are formed at opposing positions of the opposing side surfaces of the component 10 and the component 20, and the two components are fixed by fastening with bolts and nuts through the two holes.
- the parts 10 and 20 may be fixed using screws, pins, screws, rivets, bushes, brackets, hinges, nails or the like instead of the bolts and nuts.
- An article as shown in FIG. 13 including a frame-like component 28 that is rotatably supported around the shaft 19 is also suitable for using a molded article made of the thermoplastic resin composition of the present invention.
- the component 18 and the component 28 is a molded product made of the thermoplastic resin composition of the present invention, the component 18 is rotated around the shaft 19 or an external force such as vibration is applied to the article. , It is possible to suppress the generation of itchiness.
- the article when the frame-like component 28 includes a plurality of openings 29, the article can be suitably used as a device that adjusts the amount and direction of air flow according to the angle of the component 18.
- Examples of such devices include household and vehicle-mounted air conditioners, air purifiers, blowers and the like.
- the other article may be a molded article made of the thermoplastic resin composition of the present invention.
- the other article is a part made of a material other than the thermoplastic resin composition of the present invention, there is no particular limitation on the material of the material, for example, thermoplastic resin, thermosetting resin, rubber, organic material, inorganic material And metal materials.
- thermoplastic resin constituting the component made of a material other than the thermoplastic resin composition of the present invention examples include polyvinyl chloride, polyethylene, polypropylene, AS resin, ABS resin, AES resin, ASA resin, and polymethyl methacrylate resin.
- Examples of the rubber constituting the parts made of materials other than the thermoplastic resin composition of the present invention include chloroprene rubber, polybutadiene rubber, ethylene / propylene rubber, various synthetic rubbers such as SEBS, SBS, and SIS, and natural rubber. . These can be used alone or in combination of two or more.
- Examples of the organic material constituting the component made of a material other than the thermoplastic resin composition of the present invention include, for example, insulation board, MDF (medium fiber board), hard pod, particle board, lumbar core, LVL (single plate laminate) ), OSB (orientation board), PSL (pararam), WB (wafer board), hard fiber board, soft fiber board, lumbar core plywood, board core plywood, special core plywood, veneer core veneer board, paper impregnated with tap resin Laminated sheets / plates, boards made by heating and compressing adhesives mixed with small pieces / linear bodies of crushed (old) paper, etc., and various kinds of wood. These can be used alone or in combination of two or more.
- Examples of the inorganic material constituting the component made of a material other than the thermoplastic resin composition of the present invention include, for example, calcium silicate board, flexible board, homo-cement board, gypsum board, sizing gypsum board, reinforced gypsum board, gypsum lath board. , Decorative gypsum board, composite gypsum board, various ceramics, glass and the like. These can be used alone or in combination of two or more.
- examples of the metal material that constitutes a part made of a material other than the thermoplastic resin composition of the present invention include iron, aluminum, copper, and various alloys. These can be used alone or in combination of two or more.
- thermosetting resins thermosetting resins, thermosetting resins, and rubbers are preferable, and ABS resins, AES resins, PC resins, ABS resins, PC / AES resins, and polymethyl methacrylate resins are particularly preferable.
- At least one of the parts of the article of the present invention is a molded article made of the thermoplastic resin composition of the present invention, even if the parts repeat contact and non-contact due to vibration, sliding, etc. Generation of stagnation noise is suppressed, and it can be suitably used for automobile parts, office equipment parts, residential parts, home appliance parts, and the like.
- thermoplastic resin composition of the present invention When an automobile part is a molded article made of the thermoplastic resin composition of the present invention, for example, even when the part repeats contact and non-contact with other parts due to vibration during vehicle running, the squeaking noise is generated. It is possible to greatly reduce the occurrence.
- the thermoplastic resin composition of the present invention contains a diene rubber, a molded product made from the rubber is particularly suitable for automotive interior parts because it has excellent fracture characteristics at low temperature (ductile fracture).
- Such automotive parts include door trims, door linings, pillar garnishes, consoles, door pockets, ventilators, ducts, plate blades of air conditioners, valve shutters, louvers, meter visors, instrument panel upper garnishes, instrument panel garnishes, A / T indicator, ON / OFF switches (slide part, slide plate), grill front defroster, grill side defroster, lid cluster, cover intro, masks (mask switch, mask radio, etc.), grope box, pockets (pocket deck, pocket) Card), steering wheel horn pad, switch parts, car navigation exterior parts, and the like.
- it can be particularly suitably used as a ventilator, a plate blade of an air conditioner, a valve shutter, a louver, a switch part, an exterior part for car navigation, and the like.
- an office equipment part is a molded article made of the thermoplastic resin composition of the present invention
- the part repeatedly contacts and non-contacts with other parts by, for example, vibration during operation of the equipment and opening / closing of the desk drawer. Even in this case, it is possible to significantly reduce the generation of stagnation noise.
- office equipment parts include exterior parts, interior parts, parts around switches, parts of movable parts, desk lock parts, desk drawers, and the like.
- a residential part is a molded article made of the thermoplastic resin composition of the present invention
- the door and the sliding door are opened and closed, even when the part and the other part repeatedly contact and non-contact, the squeak noise It is possible to greatly reduce the occurrence.
- residential parts include shelf doors, chair dampers, table folding leg movable parts, door opening / closing dampers, sliding door rails, curtain rails, and the like.
- the home appliance part is a molded product made of the thermoplastic resin composition of the present invention, for example, even when the part and other parts repeatedly contact and non-contact due to vibration during device operation, the squeak noise It is possible to greatly reduce the occurrence.
- home appliance parts include exterior parts such as cases and housings, interior parts, parts around switches, parts of movable parts, and the like.
- Evaluation methods 1-1 Peel Test Using an injection molding machine “ ⁇ -150” (model name) manufactured by FANAC, a test piece made of the thermoplastic resin composition shown in Table 1 or Table 2 was injection molded. The resin temperature at the time of injection molding was 260 ° C., and the mold temperature was 60 ° C.
- FIG. 1 (a) is a bottom view of the above-mentioned test piece
- FIG. 1 (b) is a cross-sectional view taken along line AA in FIG.
- incisions 3 are made at two left and right sides of the gate 2 of the test piece 1 (the length of the incision is 2 mm), the gate 2 is sandwiched with pliers, and pulled in the direction indicated by the arrow in FIG. Whether or not peeling occurs on the surface of the test piece 1 was observed and judged based on the following evaluation criteria.
- thermoplastic resin composition shown in Table 1 or Table 2 the following molded product having a resin melt joint is injection molded under conditions of a molding temperature of 260 ° C., a mold temperature of 35 ° C., and a molding cycle time of 60 seconds.
- the melt-bonded portion was visually observed and evaluated according to the following criteria.
- Test piece A square plate-shaped test piece of 2 mm thickness and 150 mm ⁇ 150 mm with a hole having a diameter of 15 mm in the center (see FIG. 14). As shown in FIG.
- this test piece was molded by flowing resin into the mold from a 4 mm ⁇ 2 mm side gate (resin inlet) provided in the mold, and in the vicinity indicated by the dotted line, A weld line (resin melt-bonding line) is generated by the flow ends of the resin flowing in the mold.
- ⁇ Evaluation criteria for color separation (a phenomenon in which the color near the resin melt bonding line appears different from the surrounding color)> ⁇ : Color separation is hardly recognized. ⁇ : Color separation is slightly recognized. X: Color separation is conspicuous.
- HDT Thermal deformation temperature
- thermoplastic resin compositions shown in Tables 1 and 2 were subjected to the conditions of a cylinder temperature of 260 ° C., an injection pressure of 50 MPa, and a mold temperature of 60 ° C. using an injection molding machine “IS-170FA” (trade name) manufactured by Toshiba Machine. From a molded product having a length of 150 mm, a width of 100 mm, and a thickness of 4 mm obtained by injection molding, a small test piece having a length of 50 mm, a width of 25 mm, and a thickness of 4 mm was cut out with a disc saw.
- the large test piece is set on the movable side stage of a stick slip tester SSP-02 manufactured by ZIEGLER, and the small test piece is set on the fixed side stage.
- the abnormal noise risk index when rubbing three times with an amplitude of 20 mm was measured and evaluated according to the following criteria.
- ⁇ Evaluation criteria> ⁇ : The highest abnormal noise risk index under the tested conditions is 1 to 3.
- ⁇ : The highest abnormal noise risk index under the tested conditions is 4-5.
- the highest abnormal noise risk index under the tested conditions is 6 to 10.
- Itching sound evaluation 2 (Practical evaluation 1) Using an injection molding machine “J-100E” (model name) manufactured by Nippon Steel Co., Ltd., five ISO dumbbell specimens made of the thermoplastic resins listed in Tables 1 and 2 were injection molded, and then the specimens were tested. Was allowed to stand for 300 hours in a thermo-hygrostat controlled at 80 ° C. and 95% RH (wet heat treatment), and then cooled at 25 ° C. for 24 hours. Next, as a part to be contacted with five ISO dumbbell test pieces made of the thermoplastic resin composition described in Tables 1 and 2 above, from PC / ABS alloy “Excelloy CK20” (trade name) manufactured by Techno Polymer Co., Ltd.
- Itching sound evaluation 3 (Practical evaluation 2) Except for using methacrylic resin “ACRYPET VH-004” (trade name) manufactured by Mitsubishi Rayon Co., Ltd. as the part to be contacted, the state of occurrence of stagnation noise was evaluated in the same manner as in the stagnation sound evaluation 2 . Evaluation was performed 5 times and evaluated according to the following criteria. ⁇ Evaluation of itchiness> ⁇ : In all five evaluations, the occurrence of itching was slight. (Triangle
- Itching sound evaluation 4 (Practical evaluation 3) Using an injection molding machine “J-100E” (model name) manufactured by Nippon Steel Co., Ltd., 10 ISO dumbbell test pieces made of the thermoplastic resins listed in Tables 1 and 2 were injection molded, and then the test pieces Was allowed to stand for 300 hours in a thermo-hygrostat controlled at 80 ° C. and 95% RH (wet heat treatment), and then cooled at 25 ° C. for 24 hours. Ten obtained ISO dumbbell test pieces were overlapped, and both ends were twisted by hand to evaluate the state of occurrence of itching sound. Evaluation was performed 5 times and evaluated according to the following criteria. ⁇ Evaluation of itchiness> ⁇ : In all five evaluations, the occurrence of itching was slight. (Triangle
- Fracture mode during low-temperature impact test Using an electric injection molding machine “Erject NEX30” (model name) manufactured by Nissei Plastic Industry Co., Ltd., 80 mm ⁇ 55 mm ⁇ 2 comprising the thermoplastic resin composition described in Tables 1 and 2 A 4 mm flat plate test piece was injection molded. The test piece was provided with a 4 mm ⁇ 1 mm side gate at the center of one side of 55 mm, the resin temperature during molding was 260 ° C., and the mold temperature was 60 ° C.
- Polycarbonate resin (A-1) A polycarbonate resin “Makrolon 2800” (trade name) manufactured by Bayer was used. The viscosity average molecular weight was 22,000.
- Ethylene-propylene rubber reinforced aromatic vinyl resin (AES-1) 2-2-1. Production of anionic polymer dispersant 21.6 parts by mass (0.3 mol) of acrylic acid, 30 parts by mass of ethyl acrylate (0.3 mol), 56.8 parts by mass of butyl methacrylate (0.4 mol), and isopropyl Charge 150 parts by mass of alcohol into a four-necked flask equipped with a stirrer, reflux condenser, thermometer and dropping funnel, replace with nitrogen gas, and add 0.6 part by mass of 2,2'-azobisisobutyronitrile. And polymerized at 80 ° C. for 3 hours.
- Aqueous dispersion 40 parts (solid content), water 170 parts, sodium hydroxide 0.01 parts, sodium pyrophosphate 0.2 parts, ferrous sulfate heptahydrate 0.01 parts, glucose 0.2 was charged.
- the reaction product latex was coagulated with an aqueous sulfuric acid solution, washed with water, and dried to obtain a polymer.
- the graft ratio of this polymer was 60%, and the intrinsic viscosity [ ⁇ ] of the acetone-soluble component was 0.42 dl / g.
- AES-2 Ethylene-propylene rubber reinforced aromatic vinyl resin (AES-2) 2-3-1.
- Cationic Polymer Dispersant N, N-dimethylaminoethyl methacrylate 62.9 parts by mass (0.4 mol), butyl methacrylate 71 parts by mass (0.5 mol), lauryl methacrylate 25.4 parts by mass (0. 1 mol), and 200 parts by mass of isopropyl alcohol were charged into a four-necked flask equipped with a stirrer, reflux condenser, thermometer, and dropping funnel, and after substitution with nitrogen gas, 2,2′-azobisisobutyronitrile 0 .9 parts by mass was added and polymerized at 80 ° C. for 3 hours.
- Aqueous dispersion 40 parts (solid content), water 170 parts, sodium hydroxide 0.01 parts, sodium pyrophosphate 0.2 parts, ferrous sulfate heptahydrate 0.01 parts, glucose 0.2 was charged.
- the reaction product latex was coagulated with an aqueous sulfuric acid solution, washed with water, and dried to obtain a polymer.
- the graft ratio of this polymer was 60%, and the intrinsic viscosity [ ⁇ ] of the acetone-soluble component was 0.42 dl / g.
- Ethylene-propylene rubber reinforced aromatic vinyl resin (AES-3) 2-4-1.
- AES-3 Ethylene-propylene rubber reinforced aromatic vinyl resin
- AES-3 Ethylene-propylene rubber reinforced aromatic vinyl resin
- the reaction product latex was coagulated with an aqueous sulfuric acid solution, washed with water, and dried to obtain a polymer.
- the graft ratio of this polymer was 62%, and the intrinsic viscosity [ ⁇ ] of the acetone-soluble component was 0.40 dl / g.
- Ethylene-propylene rubber reinforced aromatic vinyl resin (AES-4) (reference example)
- AES-4 Ethylene-propylene rubber reinforced aromatic vinyl resin
- the content of the ethylene / ⁇ -olefin rubber polymer (b1) is 22% (calculated from the polymerization conversion rate), the graft ratio is 70%,
- the intrinsic viscosity [ ⁇ ] of the acetone-soluble component was 0.47 dl / g, and the melting point measured according to JIS K 7121-1987 was 40 ° C.
- ABS Butadiene rubber reinforced aromatic vinyl resin
- ion exchange water 75 parts of ion exchange water, 0.5 part of potassium rosinate, 0.1 part of t-dodecyl mercaptan, polybutadiene latex (average particle size: 270 nm, gel content 90%) 32 Part (in terms of solid content), 8 parts of styrene-butadiene copolymer latex (styrene content 25%, average particle size 550 nm), 15 parts of styrene and 5 parts of acrylonitrile were added, and the temperature was increased while stirring in a nitrogen stream.
- ABS Butadiene rubber reinforced aromatic vinyl resin
- Styrene-acrylonitrile copolymer Two stainless steel autoclaves having a ribbon wing with an internal volume of 30 liters were connected and purged with nitrogen, and then 70 parts of styrene, 30 parts of acrylonitrile and 20 parts of toluene were continuously added to the first reaction vessel. A solution of 0.12 part of tert-dodecyl mercaptan and 5 parts of toluene as a molecular weight regulator, and 0.1 part of 1,1′-azobis (cyclohexane-1-carbonitrile) and 5 parts of toluene as a polymerization initiator Solution was continuously fed.
- AS Styrene-acrylonitrile copolymer
- the polymerization temperature of the first group was controlled at 110 ° C., the average residence time was 2.0 hours, and the polymerization conversion was 57%.
- the obtained polymer solution was continuously taken out from the first reaction vessel by the same amount as the styrene, acrylonitrile, toluene, molecular weight regulator and polymerization initiator supplied by the pump provided in the second reaction vessel.
- the reaction vessel was fed.
- the polymerization temperature of the second reaction vessel was 130 ° C., and the polymerization conversion was 75%.
- the copolymer solution obtained in the second reaction vessel was directly devolatilized from the unreacted monomer and solvent using a twin-screw, three-stage vented extruder, and the intrinsic viscosity [ ⁇ ] 0.48 dl / g of polymer was obtained.
- Olefin (co) polymer (C) 2-8-1 Olefin (co) polymer (C) 2-8-1.
- Unmodified polyethylene (C-1) Unmodified polyethylene “High Wax 200P” manufactured by Mitsui Chemicals, Inc. was used. The weight average molecular weight was 2000.
- Modified polyethylene C-2 Modified polyethylene (slight acid value) “High Wax 220MP” manufactured by Mitsui Chemicals, Inc. was used. The weight average molecular weight was 2000, and the acid value was 1 mgKOH / g (measurement method: JIS K 0070).
- Modified polyethylene C-3) Modified polyethylene (slight acid value) “High Wax 405MP” manufactured by Mitsui Chemicals, Inc. was used. The weight average molecular weight was 4000, and the acid value was 1 mgKOH / g (measurement method: JIS K 0070).
- Modified polyethylene (C-4) Acid-modified polyethylene “High Wax 2203A” manufactured by Mitsui Chemicals, Inc. was used. The weight average molecular weight was 2500, and the acid value was 30 mgKOH / g (measurement method: JIS K 0070).
- D-1 Functional group-containing modified polyolefin compatibilizer “Modiper A4400” (trade name; styrene-acrylonitrile copolymer grafted ethylene-glycidyl methacrylate copolymer (EGMA-g-AS) manufactured by NOF Corporation, glycidyl Methacrylate content 15wt%)
- D-2 Functional group-containing modified polyolefin compatibilizer “Modiper A5400” (trade name; styrene-acrylonitrile copolymer grafted ethylene-ethyl acrylate copolymer (EEA-g-AS) manufactured by NOF Corporation, ethyl Acrylate content 20wt%)
- D-3 Functional group-containing modified polyolefin compatibilizer “Modiper A4100” (trade name; polystyrene grafted ethylene-glycidyl methacrylate copolymer (EGMA-g-PS) manufactured by NOF Corporation, gly
- Example 1 to 23 containing the components (B1), (C) and (D) of the present application the generation of squeaking noise was reduced, and the peelability, weld appearance, flow mark and weld strength were excellent. Further, Examples 1 to 12, 14 to 17, and 21 to 23 including the component (A) were excellent in heat resistance. Furthermore, Example 14 containing diene rubber (b2) showed ductile fracture in the low temperature impact test.
- the component 10 of FIG. 11 is shape
- the component 20 of FIG. 11 is shape
- a load was repeatedly applied in the direction of the arrow in FIG. This assembly was left for 300 hours in a thermo-hygrostat controlled at 80 ° C. and 95% RH (humid heat treatment), and then repeatedly loaded in the direction of the arrow in FIG. There wasn't.
- Comparative Example 1 using the thermoplastic resin composition containing no component (C), the generation of squeaking noise was significant.
- Comparative Example 2 using the thermoplastic resin composition containing no component (D) the generation of squeaking noise was remarkable, and the peelability, weld appearance, flow mark, and weld strength were also inferior.
- Comparative Example 3 using the thermoplastic resin composition containing the component (C) in an excessive amount was remarkably inferior in peelability, weld appearance, flow mark, and weld strength, subsequent evaluation was not performed.
- Comparative Example 4 using the thermoplastic resin composition containing excessive component (D), pelletization by an extruder was difficult, the weld appearance was inferior, and the resulting molded product also showed significant occurrence of squeaking noise. It was.
- Comparative Example 5 in which a thermoplastic resin composition containing high-density polyethylene was blended in place of component (D), the occurrence of squeaking noise was remarkable, and the peelability and weld strength were inferior.
- Comparative Example 6 using the thermoplastic resin composition not containing the component (B), generation of stagnation noise was remarkable, and the weld appearance and the flow mark were inferior.
- Comparative Example 7 using the thermoplastic resin composition containing the component (B2) instead of the component (B1), generation of squeaking noise was significant.
- thermoplastic resin composition of the present invention not only suppresses the squeaking noise but also does not cause peeling near the gate, and is excellent in the appearance of the molded product such as the weld appearance and the weld strength. It is useful as a molding material for articles to be manufactured.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
【課題】AES樹脂を含む熱可塑性樹脂組成物であって、軋み音の発生が抑制され、ゲート付近での剥離がなく、ウエルド外観などの成形品外観及びウエルド強度に優れたものを提供する。 【解決手段】ゴム強化芳香族ビニル系樹脂(B)を含む熱可塑性樹脂(X)と、下記成分(C)及び(D)とを少なくとも含み、成分(B)は下記成分(B1)を含み、成分(C)及び(D)の含有量が成分(X)100質量部に対してそれぞれ0.1~10質量部及び0.1~15質量部である熱可塑性樹脂組成物。 成分(B1):ゴム成分としてエチレン・α-オレフィン系ゴム(b1)を含有する、乳化重合で得られたゴム強化芳香族ビニル系樹脂。 成分(C):ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量が300~10,000のオレフィン系(共)重合体。 成分(D):相溶化剤。 成分(X)は更にポリカーボネート樹脂(A)を含んでよい。
Description
本発明は、乳化重合で得られたエチレン・α-オレフィン系ゴム強化芳香族ビニル系樹脂を含む熱可塑性樹脂組成物であって、ゲート付近での剥離がなく、ウエルド外観などの成形品外観及びウエルド強度に優れ、軋み音の発生も抑制されたものに関する。
生産の容易さ、成形品の外観や耐衝撃性などの性能の観点から乳化重合で生産されることが多いABS樹脂に代表されるゴム強化芳香族ビニル系樹脂は、機械的強度、成形性に優れた材料であるが、耐熱性や高度の耐衝撃性を要求される自動車部品やOA部品などの材料に用いるには、耐熱性や耐衝撃性が不十分であり、用途が限定されている。一方、ポリカーボネート系樹脂は、耐熱性や耐衝撃性に優れているため、自動車部品、電気・電子部品、精密機械部品などの広い分野で使用されているが、成形性や低温での耐衝撃性に劣るなどの欠点がある。
これらのお互いの欠点を補う方法として、ポリカーボネート系樹脂とABS樹脂とをブレンドしてポリマーアロイ(ABS/PCアロイ)とすることが知られている。この方法により、ポリカーボネート系樹脂の短所であった成形性や低温での耐衝撃性が改良されるとともに、ABS樹脂の短所であった耐熱性や耐衝撃性が改良され、その結果、成形性、耐衝撃性、機械的強度及び耐熱性に優れたポリマーアロイが得られ、電気製品、コンピュータやワープロなどのOA機器のハウジング材、自動車用部材、オフィス家具等の家具用部材、住宅用部材として幅広く利用されている。
一方、ABS/PCアロイからなる成形品は、当該成形品同士が互いに接触する際に軋み音を発生することがあり、この軋み音を低減するために、ABS/PCアロイのABS樹脂成分をAES樹脂で代替するとともに、ポリオレフィン系ワックスを添加することが従来から知られている(特許文献1参照)。
この軋み音は、2つの物体が擦れ合う時に発生するスティックスリップ現象に起因して生じる異音として知られており、樹脂の摺動性とは異なる性質である。スティックスリップ現象は、図15に示されるように、摩擦力が周期的に大きく変動する現象として理解されており、より具体的には、図16に示されるようにして発生する。すなわち、図16(a)のモデルで示されるように駆動速度Vで動く駆動台の上にバネでつながれた物体Mが置かれた場合、物体Mは先ず静摩擦力の作用により駆動速度Vで移動する台とともに図16(b)のように右方向に移動する。そしてバネによって元に戻されようとする力が、この静摩擦力と等しくなったとき、物体Mは駆動速度Vと逆の方向に滑り出す。このときに、物体Mは動摩擦力を受けることになるので、バネの力とこの動摩擦力が等しくなった図16(c)の時点で滑りが止まり、すなわち駆動台に付着することになり、再び駆動速度Vと同じ方向に移動することになる(図16(d))。これをスティックスリップ現象といい、図15に示されるように、静摩擦係数μsと、ノコギリ波形下端の摩擦係数μlの差Δμが大きいと、軋み音が発生しやすくなるといわれている。尚、動摩擦係数はμsとμlの中間の値になる。よって、静摩擦係数の絶対値が小さくても、Δμが大きければ、軋み音が発生しやすくなる。これらの軋み音は、自動車室内やオフィス内、住宅室内の快適性や静粛性を損ねる大きな原因となっており、軋み音の低減が強く要求されている。
しかし、上記のようにしてABS樹脂をAES樹脂で代替した熱可塑性樹脂組成物は、使用条件によっては、ゲート付近での剥離、ウエルド外観の不良、フローマークの発生、ウエルド強度の低下等の問題を生じることが判った。
かかる実情に鑑み、本発明は、AES樹脂を含むゴム強化芳香族ビニル系樹脂を含む熱可塑性樹脂組成物であって、軋み音の発生が抑制されるだけでなく、ゲート付近での剥離がなく、ウエルド外観などの成形品外観及びウエルド強度に優れたものを提供することを目的とする。
本発明者は、上記課題を解決すべく鋭意検討を行った結果、乳化重合で得られたエチレン・α-オレフィン系ゴム強化芳香族ビニル系樹脂を含む熱可塑性樹脂(X)に、ポリオレフィン系ワックスのような低分子オレフィン系(共)重合体などを相溶化剤とともに含有させることにより、上記目的が達成できることを見出し、本発明を完成するに至った。
かくして、本発明は、一局面よれば、ゴム強化芳香族ビニル系樹脂(B)を含む熱可塑性樹脂(X)と、下記成分(C)と、下記成分(D)とを少なくとも含んでなる熱可塑性樹脂組成物であって、
前記成分(B)は下記成分(B1)を含み、
前記成分(C)の含有量が前記成分(X)100質量部に対して0.1~10質量部であり、前記成分(D)の含有量が前記成分(X)100質量部に対して0.1~15質量部である熱可塑性樹脂組成物を提供する。
成分(B1):ゴム成分としてエチレン・α-オレフィン系ゴム(b1)を含有する、乳化重合で得られたゴム強化芳香族ビニル系樹脂。
成分(C):ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量が300~10,000のオレフィン系(共)重合体。
成分(D):相溶化剤。
前記成分(B)は下記成分(B1)を含み、
前記成分(C)の含有量が前記成分(X)100質量部に対して0.1~10質量部であり、前記成分(D)の含有量が前記成分(X)100質量部に対して0.1~15質量部である熱可塑性樹脂組成物を提供する。
成分(B1):ゴム成分としてエチレン・α-オレフィン系ゴム(b1)を含有する、乳化重合で得られたゴム強化芳香族ビニル系樹脂。
成分(C):ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量が300~10,000のオレフィン系(共)重合体。
成分(D):相溶化剤。
本発明の好ましい実施形態によれば、前記成分(X)は更にポリカーボネート樹脂(A)を含む。
本発明の別の好ましい実施形態によれば、前記成分(A)の含有量は前記成分(A)及び前記成分(B)の合計100質量%に対して30~90質量%であり、前記成分(B)の含有量は前記成分(A)及び前記成分(B)の合計100質量%に対して10~70質量%である。
本発明の更に別の好ましい実施形態によれば、本発明の熱可塑性樹脂組成物において、前記成分(B)は、ゴム成分としてジエン系ゴム(b2)を含有し、前記成分(b1)の含有量が前記成分(b1)及び前記成分(b2)の合計100質量%に対して90~15質量%であり、前記成分(b2)の含有量が前記成分(b1)及び前記成分(b2)の合計100質量%に対して10~85質量%である。
本発明の更に別の好ましい実施形態によれば、本発明の熱可塑性樹脂組成物において、前記成分(B)のゴム成分の含有量は前記成分(X)100質量%に対して3~20質量%である。
また、本発明は、他の局面によれば、上記本発明の熱可塑性樹脂組成物からなる成形品を提供する。
本発明の熱可塑性樹脂組成物は、成形品の軋み音の発生も抑制されているので、嵌合等により互いに接触する部品を含む物品の成形材料として有用である。
本発明の熱可塑性樹脂組成物は、成形品の軋み音の発生も抑制されているので、嵌合等により互いに接触する部品を含む物品の成形材料として有用である。
したがって、本発明は、さらに他の局面によれば、少なくとも2個の互いに接触する部品を含む物品であって、前記部品の少なくとも1つが前記本発明の成形品からなる物品を提供する。
本発明によれば、乳化重合で得られたエチレン・α-オレフィン系ゴム強化芳香族ビニル系樹脂を含む熱可塑性樹脂(X)にポリオレフィン系ワックスのような低分子量のオレフィン系(共)重合体などを相溶化剤とともに含有させることとしたので、樹脂組成物全体が均質化され、該樹脂組成物から成形された成形品は、軋み音の発生が抑制されるだけでなく、ゲート付近での剥離を生じることなく、ウエルド外観及びウエルド強度にも優れる。
以下、本発明を詳しく説明する。本発明において、「(共)重合」とは、単独重合及び/又は共重合を意味し、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。
1.熱可塑性樹脂(X)
本発明で用いる熱可塑性樹脂(X)は、ゴム強化芳香族ビニル系樹脂(B)を必須成分として含有するとともに、ゴム強化芳香族ビニル系樹脂(B)は、ゴム成分としてエチレン・α-オレフィン系ゴム(b1)を含有し乳化重合で得られたゴム強化芳香族ビニル系樹脂(B1)を必須成分として含有する。
該ゴム強化芳香族ビニル系樹脂(B)は、上記成分(B1)のみから構成されてもよく、上記成分(B1)以外のゴム強化芳香族ビニル系樹脂を含有してもよい。
また、該熱可塑性樹脂(X)は、ゴム強化芳香族ビニル系樹脂(B)以外の熱可塑性樹脂、例えば、ポリカーボネート樹脂(A)を含有してもよい。また、該熱可塑性樹脂(X)は本発明の熱可塑性樹脂組成物の主要成分を構成するものであり、少量成分である下記成分(C)及び(D)は該熱可塑性樹脂(X)から除外される。以下、該熱可塑性樹脂(X)を構成する上記樹脂成分について詳述する。
なお、本発明において、ゴム強化芳香族ビニル系樹脂(B)としては、ゴム成分を含有することによって耐衝撃性等の機械的強度が向上した芳香族ビニル系樹脂が挙げられ、通常、ゴム質重合体に由来するゴム成分とビニル系単量体に由来する構成単位を有する樹脂成分とからなり、樹脂成分の一部はゴム成分にグラフト重合してグラフト共重合樹脂(B-1)を形成していることが好ましい。したがって、ゴム強化芳香族ビニル系樹脂(B)は、上記グラフト共重合樹脂(B-1)と、ゴム成分にグラフト重合していない樹脂成分である非グラフト(共)重合樹脂(B-2)とから少なくとも構成されることが好ましく、さらに、樹脂成分がグラフトしていないゴム成分を含んでもよい。ゴム強化芳香族ビニル系樹脂(B)の代表的な形態としては、上記グラフト共重合樹脂(B-1)が上記非グラフト(共)重合樹脂(B-2)中に分散した形態のものが挙げられる。上記の分散した形態は、透過型電子顕微鏡(TEM)等を用いることにより、観察することができる。
本発明で用いる熱可塑性樹脂(X)は、ゴム強化芳香族ビニル系樹脂(B)を必須成分として含有するとともに、ゴム強化芳香族ビニル系樹脂(B)は、ゴム成分としてエチレン・α-オレフィン系ゴム(b1)を含有し乳化重合で得られたゴム強化芳香族ビニル系樹脂(B1)を必須成分として含有する。
該ゴム強化芳香族ビニル系樹脂(B)は、上記成分(B1)のみから構成されてもよく、上記成分(B1)以外のゴム強化芳香族ビニル系樹脂を含有してもよい。
また、該熱可塑性樹脂(X)は、ゴム強化芳香族ビニル系樹脂(B)以外の熱可塑性樹脂、例えば、ポリカーボネート樹脂(A)を含有してもよい。また、該熱可塑性樹脂(X)は本発明の熱可塑性樹脂組成物の主要成分を構成するものであり、少量成分である下記成分(C)及び(D)は該熱可塑性樹脂(X)から除外される。以下、該熱可塑性樹脂(X)を構成する上記樹脂成分について詳述する。
なお、本発明において、ゴム強化芳香族ビニル系樹脂(B)としては、ゴム成分を含有することによって耐衝撃性等の機械的強度が向上した芳香族ビニル系樹脂が挙げられ、通常、ゴム質重合体に由来するゴム成分とビニル系単量体に由来する構成単位を有する樹脂成分とからなり、樹脂成分の一部はゴム成分にグラフト重合してグラフト共重合樹脂(B-1)を形成していることが好ましい。したがって、ゴム強化芳香族ビニル系樹脂(B)は、上記グラフト共重合樹脂(B-1)と、ゴム成分にグラフト重合していない樹脂成分である非グラフト(共)重合樹脂(B-2)とから少なくとも構成されることが好ましく、さらに、樹脂成分がグラフトしていないゴム成分を含んでもよい。ゴム強化芳香族ビニル系樹脂(B)の代表的な形態としては、上記グラフト共重合樹脂(B-1)が上記非グラフト(共)重合樹脂(B-2)中に分散した形態のものが挙げられる。上記の分散した形態は、透過型電子顕微鏡(TEM)等を用いることにより、観察することができる。
1-1.ゴム強化芳香族ビニル系樹脂(B1)
本発明におけるゴム強化芳香族ビニル系樹脂(B1)は、ゴム成分としてエチレン・α-オレフィン系ゴム(b1)を含有する、乳化重合で得られたゴム強化芳香族ビニル系樹脂である。乳化重合は、生産が容易で、グラフト粒子径の制御がしやすいことから、成形品の外観や耐衝撃性に優れた成分(B1)を製造するのに適している。
ゴム強化芳香族ビニル系樹脂(B1)は、例えば、エチレン・α-オレフィン系ゴム(b1)を含有するゴム質重合体(b)のラテックスの存在下に芳香族ビニル系単量体を含有するビニル系単量体(a)を乳化重合することにより得られる。
かくして得られたゴム強化芳香族ビニル系樹脂(B1)は、ビニル系単量体(a)に由来する構造単位から形成された重合体がゴム質重合体(b)に由来するゴム成分にグラフト重合したグラフト共重合樹脂(B1-1)と、上記ゴム成分にグラフト重合しなかった上記重合体からなる非グラフト(共)重合樹脂(B1-2)とを主として含有する混合物として得られる。
本発明におけるゴム強化芳香族ビニル系樹脂(B1)は、ゴム成分としてエチレン・α-オレフィン系ゴム(b1)を含有する、乳化重合で得られたゴム強化芳香族ビニル系樹脂である。乳化重合は、生産が容易で、グラフト粒子径の制御がしやすいことから、成形品の外観や耐衝撃性に優れた成分(B1)を製造するのに適している。
ゴム強化芳香族ビニル系樹脂(B1)は、例えば、エチレン・α-オレフィン系ゴム(b1)を含有するゴム質重合体(b)のラテックスの存在下に芳香族ビニル系単量体を含有するビニル系単量体(a)を乳化重合することにより得られる。
かくして得られたゴム強化芳香族ビニル系樹脂(B1)は、ビニル系単量体(a)に由来する構造単位から形成された重合体がゴム質重合体(b)に由来するゴム成分にグラフト重合したグラフト共重合樹脂(B1-1)と、上記ゴム成分にグラフト重合しなかった上記重合体からなる非グラフト(共)重合樹脂(B1-2)とを主として含有する混合物として得られる。
上記成分(b1)の構成単位であるα-オレフィンとしては、例えば、炭素数3~20のα-オレフィンが挙げられ、具体的には、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-ヘキサデセン、1-エイコセンなどが挙げられる。これらのα-オレフィンは、単独でまたは2種以上を混合して使用することができる。α-オレフィンの炭素数は、好ましくは3~20、より好ましくは3~12、さらに好ましくは3~8である。炭素数が20を超えると共重合性が低下し、本発明の熱可塑性樹脂組成物からなる成形品の表面外観が十分でなくなる場合がある。
上記成分(b1)におけるエチレン:α-オレフィンの質量比は、通常5~95:95~5、好ましくは50~95:50~5、より好ましくは60~95:40~5、特に好ましくは70~90:30~10である。α-オレフィンの質量比が上記範囲にあると、エチレン:α-オレフィンのゴム弾性が十分なものとなるため、得られるゴム強化芳香族ビニル系樹脂(B1)の耐衝撃性が十分なものとなるので好ましい。
また、上記成分(b1)のムーニー粘度(ML1十4、100℃;JIS K 6300に準拠)は、通常5~80、好ましくは10~65、より好ましくは10~45である。ムーニー粘度が上記範囲にあると、本発明の熱可塑性樹脂組成物の成形性、それからなる成形品の耐衝撃性が十分なものとなるので好ましい。
本発明に用いられるエチレン・α-オレフィン系ゴム(b1)は、軋み音を低減する観点から、Tm(融点)をもつことが好ましい。ここで、Tmは、DSC(示差走査熱量計)を用い、1分間に20℃の一定昇温速度で吸熱変化を測定し、得られた吸熱パターンのピーク温度を読みとった値であり、詳細は、JIS K 7121-1987に記載されている。上記Tmは、好ましくは0~120℃、より好ましくは10~100℃、特に好ましくは20~80℃である。Tmが0℃未満の場合、本発明の熱可塑性樹脂組成物からなる成形品の軋み音の低減効果が不十分となる場合がある。尚、DSCの測定において、吸熱変化のピークを明瞭に示さないものは、実質的に結晶性がないものであり、Tmを持たないものと判断される。成分(b1)がTmを持たない場合、得られる成形品の軋み音の低減効果が不十分となる場合がある。
エチレン・α-オレフィン系ゴム(b1)に融点(Tm)があることは、該ゴムが結晶性部分を有することを意味している。ゴム中に結晶性部分が存在すると、スティックスリップ現象の発生が抑制される為、軋み音の発生が抑制されるものと考えられる。
また、エチレン・α-オレフィン系ゴム(b1)のガラス転移温度(Tg)は、好ましくは、-20℃以下であり、より好ましくは、-30℃以下であり、特に好ましくは、-40℃以下である。ガラス転移温度が、-20℃以下であると、さらに十分な耐衝撃性が得られるので好ましい。尚、上記ガラス転移温度は、Tm(融点)の測定と同様に、DSC(示差走査熱量計)を用い、JIS K 7121-1987に準拠して求めることができる。
上記エチレン・α-オレフィン系ゴム(b1)は、エチレン及びα-オレフィンの他に、これらと共重合可能な他の成分として、非共役ジエン成分を含んでもよいが、軋み音低減の観点から、通常、非共役ジエン成分を含有しないエチレン・α-オレフィン共重合体が好ましい。非共役ジエン成分としては、1,4-ヘキサジエン、1,5-ヘキサジエン、5-エチリデン-2-ノルボルネン、ジシクロペンタジエン等が挙げられるが、その配合量は、エチレン及びα-オレフィンを100質量%として、10質量%以下が好ましく、5質量%以下がさらに好ましく、3質量%以下が特に好ましい。非共役ジエン成分の配合量が10質量%を超えると、ゴムの結晶性が低下し、得られる成形品の軋み音の低減効果が十分でなくなる可能性がある。エチレン・α-オレフィン系ゴム(b1)は、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体、エチレン・1-オクテン共重合体がさらに好ましく、エチレン・プロピレン共重合体が特に好ましい。
上記成分(b1)の重量平均分子量は、通常50,000~1,000,000、好ましくは50,000~1,000,000、より好ましくは80,000~800,000、さらに好ましくは80,000~500,000である。上記重量平均分子量は、代表的には、ゲルパーミエーションクロマトグラフー(GPC)を用い、ポリスチレン換算で測定することができる。重量平均分子量が上記範囲内にあると、本発明の熱可塑性樹脂組成物の成形性、得られる成形品の耐衝撃性及び外観がさらに十分なものとなり好ましい。
ゴム質重合体(b)は、成分(b1)以外に、ジエン系ゴム(b2)を含有してもよい。この場合、本発明の熱可塑性樹脂組成物からなる成形品は、例えば-30℃といった非常に低温の環境下においても延性破壊するようになるため、本発明の熱可塑性樹脂組成物は安全性が要求される自動車用部品などの成形品の成形材料としてさらに好適なものとなる。
ジエン系ゴム(b2)としては、ポリブタジエン、ポリイソプレン等の単独重合体;スチレン・ブタジエン共重合体、スチレン・ブタジエン・スチレン共重合体、アクリロニトリル・スチレン・ブタジエン共重合体、アクリロニトリル・ブタジエン共重合体等のブタジエン系共重合体;スチレン・イソプレン共重合体、スチレン・イソプレン・スチレン共重合体、アクリロニトリル・スチレン・イソプレン共重合体等のイソプレン系共重合体等が挙げられる。これらは、ランダム共重合体であっても、ブロック共重合体であってもよい。該ジエン系ゴム質重合体は、架橋重合体であってよいし、未架橋重合体であってもよい。また、該ジエン系ゴムは、共役ジエン系化合物よりなる単位を含む(共)重合体を水素添加してなる(共)重合体であってもよい。これらは、単独でまたは2種以上を組み合わせて用いることができる。
上記成分(B1)は、エチレン・α-オレフィン系ゴム(b1)及び所望によりジエン系ゴム(b2)を含有するゴム質重合体(b)のラテックスの存在下、芳香族ビニル化合物を含有するビニル系単量体(a)を乳化重合することにより得ることができる。上記ラテックスを製造する方法としては、乳化剤の存在下で、重合性モノマーを乳化重合する方法や、溶融状態のゴム成分を水中で攪拌剪断力によって、均質化処理(ホモジナイズ)する方法等が知られている(特公平4-30970号公報、特許第3403828号、特開平11-269206号公報等参照)。
上記ビニル系単量体(a)としては、芳香族ビニル化合物が必須成分として使用され、好ましくは、シアン化ビニル化合物及び(メタ)アクリル酸エステル化合物から選ばれた少なくとも1種が追加的に使用される。さらにビニル系単量体(a)は、必要に応じて、これらの化合物と共重合可能な他のビニル系単量体を追加的に使用することができる。かかる他のビニル系単量体としては、マレイミド系化合物、不飽和酸無水物、カルボキシル基含有不飽和化合物、ヒドロキシル基含有不飽和化合物、オキサゾリン基含有不飽和化合物等が挙げられ、これらは、1種単独でまたは2種以上を組み合わせて用いることができる。
上記芳香族ビニル系単量体(a)の具体例としては、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、β-メチルスチレン、エチルスチレン、p-tert-ブチルスチレン、ビニルトルエン、ビニルキシレン、ビニルナフタレン等が挙げられる。これらの化合物は、単独でまたは2つ以上を組み合わせて用いることができる。これらのうち、スチレン及びα-メチルスチレンが好ましく、スチレンが特に好ましい。
上記シアン化ビニル化合物の具体例としては、アクリロニトリル、メタクリロニトリル、エタクリロニトリル、α-エチルアクリロニトリル、α-イソプロピルアクリロニトリル等が挙げられる。これらの化合物は、単独でまたは2つ以上を組み合わせて用いることができる。これらのうち、アクリロニトリルが好ましい。芳香族ビニル化合物と共重合可能な化合物としてシアン化ビニル化合物を用いると、本発明の熱可塑性樹脂組成物の耐薬品性、それからなる成形品の靭性等が更に優れて好ましい。
上記(メタ)アクリル酸エステル化合物の具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等が挙げられる。これらの化合物は、単独でまたは2つ以上を組み合わせて用いることができる。これらのうち、メタクリル酸メチルが好ましい。
上記マレイミド系化合物の具体例としては、N-フェニルマレイミド、N-シクロヘキシルマレイミド等が挙げられる。これらの化合物は、単独でまたは2つ以上を組み合わせて用いることができる。
上記不飽和酸無水物の具体例としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられる。これらの化合物は、単独でまたは2つ以上を組み合わせて用いることができる。
上記カルボキシル基含有不飽和化合物の具体例としては、(メタ)アクリル酸、エタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、桂皮酸等が挙げられる。これらの化合物は、単独でまたは2つ以上を組み合わせて用いることができる。
上記ヒドロキシル基含有不飽和化合物の具体例としては、3-ヒドロキシ-1-プロペン、4-ヒドロキシ-1-ブテン、シス-4-ヒドロキシ-2-ブテン、トランス-4-ヒドロキシ-2-ブテン、3-ヒドロキシ-2-メチル-1-プロペン、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル等が挙げられる。これらの化合物は、単独でまたは2つ以上を組み合わせて用いることができる。
上記ビニル系単量体(a)は、重合後に、成分(B1)に含まれる成分(B1-1)及び成分(B1-2)の構造単位を構成する。成分(B1)中の上記芳香族ビニル化合物に由来する構造単位の含有量の下限値は、芳香族ビニル化合物に由来する構造単位と、芳香族ビニル化合物と共重合可能な化合物に由来する構造単位の合計を100質量%とした場合に、好ましくは40質量%、より好ましくは50質量%、更に好ましくは60質量%である。尚、上限値は、通常、100質量%である。
成分(B1)が構造単位として、芳香族ビニル化合物及びシアン化ビニル化合物に由来する構造単位を含む場合、芳香族ビニル化合物に由来する構造単位の含有量は、両者の合計を100質量%とした場合に、通常40~90質量%であり、好ましくは55~85質量%であり、シアン化ビニル化合物に由来する構造単位の含有量は、両者の合計を100質量%とした場合に、10~60質量%であり、好ましくは15~45質量%である。
上記乳化重合には、通常使用されている重合開始剤、連鎖移動剤、乳化剤等を用いることができる。また、ビニル系単量体(a)は、成分(b1)を含有するゴム質重合体のラテックスの存在下に、一度に全量を投入して重合させてもよく、または分割もしくは連続的に少量ずつ添加して重合させてもよい。また、これらを組み合わせた方法で重合してもよい。さらにゴム質重合体のラテックスの全量または一部を重合の途中で添加して重合してもよい。
上記乳化重合の開始剤としては、例えば、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド等の有機過酸化物と、含糖ピロリン酸、スルホキシレート等の還元剤とを組み合わせたレドックス系開始剤;過硫酸カリウム等の過硫酸塩;ベンゾイルパーオキサイド(BPO)、アゾビスイソブチロニトリル、ラウロイルパーオキサイド、t-ブチルパーオキシラウレート、t-ブチルパーオキシモノカーボネート等の過酸化物等が挙げられる。上記重合開始剤は、油溶性でも水溶性でもよく、さらにはこれらを組み合わせて用いてもよい。上記重合開始剤は、1種単独で、または2種以上を組み合わせて用いることができる。上記重合開始剤の使用量は、ビニル系単量体(a)全量に対し、好ましくは0.1~1.5質量%、より好ましくは0.2~0.7質量%である。尚、重合開始剤は、重合系に一括又は連続的に添加することができる。
また、上記連鎖移動剤としては、例えばオクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ヘキサメチルメルカプタン、n-テトラデシルメルカプタン、t-テトラデシルメルカプタンなどのメルカプタン類;ターピノーレン類;α-メチルスチレンのダイマーなどが挙げられる。上記連鎖移動剤は、1種単独で、または2種以上を組み合わせて用いることができる。上記連鎖移動剤の使用量の上限は、ビニル系単量体(a)全量に対し、通常5質量%以下、好ましくは3質量%である。尚、連鎖移動剤は、反応系に一括して、又は、連続して添加することができる。
上記乳化剤としては、アニオン系界面活性剤、及び、ノニオン系界面活性剤が挙げられる。アニオン系界面活性剤としては、高級アルコールの硫酸エステル;ドデシルベンゼンスルホン酸等のアルキルベンゼンスルホン酸塩;ラウリル硫酸ナトリウム等の脂肪酸スルホン酸塩;高級脂肪族スルホン酸塩、脂肪族リン酸塩等が挙げられる。また、ノニオン系界面活性剤としては、ポリエチレングリコールのアルキルエステル型化合物、アルキルエーテル化合物等が挙げられる。上記乳化剤は、1種単独で、または2種以上を組み合わせて用いることができる。上記乳化剤の使用量は、ビニル系単量体(a)全量に対し、通常0.3~5質量%である。
乳化重合は、ビニル系単量体、重合開始剤等の種類に応じ公知の条件で行うことができる。この乳化重合により得られたラテックスは、通常、凝固剤により凝固させ、重合体成分を粉末状とし、その後、これを水洗、乾燥することによって精製される。この凝固剤としては、塩化カルシウム、硫酸マグネシウム、塩化マグネシウム、塩化ナトリウム等の無機塩;硫酸、塩酸等の無機酸;酢酸、乳酸等の有機酸等が用いられる。
成分(B1-1)のグラフト率は、通常10~150質量%、好ましくは15~120質量%、より好ましくは20~100質量%、特に好ましくは30~80質量%である。成分(B1-1)のグラフト率が前記範囲にあると、本発明の熱可塑性樹脂組成物の成形性、それからなる成形品の耐衝撃性がさらに良好となり好ましい。
グラフト率は、下記数式(1)により求めることができる。
グラフト率(質量%)=((S-T)/T)×100 …(1)
上記式中、Sは成分(B1)1グラムをアセトン20mlに投入し、25℃の温度条件下で、振とう機により2時間振とうした後、5℃の温度条件下で、遠心分離機(回転数;23,000rpm)で60分間遠心分離し、不溶分(成分(B1-1))と可溶分(成分(B1-2))とを分離して得られる不溶分の質量(g)であり、Tは成分(B1)1グラムに含まれるゴム成分の質量(g)である。このゴム成分の質量は、重合処方及び重合転化率から算出する方法で求めることができる。
グラフト率(質量%)=((S-T)/T)×100 …(1)
上記式中、Sは成分(B1)1グラムをアセトン20mlに投入し、25℃の温度条件下で、振とう機により2時間振とうした後、5℃の温度条件下で、遠心分離機(回転数;23,000rpm)で60分間遠心分離し、不溶分(成分(B1-1))と可溶分(成分(B1-2))とを分離して得られる不溶分の質量(g)であり、Tは成分(B1)1グラムに含まれるゴム成分の質量(g)である。このゴム成分の質量は、重合処方及び重合転化率から算出する方法で求めることができる。
グラフト率は、例えば成分(B1)を製造する際のグラフト重合で用いる連鎖移動剤の種類及び使用量、重合開始剤の種類及び使用量、重合時の単量体成分の添加方法及び添加時間、重合温度等を適宜選択することにより調整することができる。
上記ゴム強化芳香族ビニル系樹脂(B1)における成分(B1-2)の極限粘度[η](メチルエチルケトン中、30℃)は、通常0.1~1.5dl/g、好ましくは0.15~1.2dl/g、より好ましくは0.15~1.0dl/g、特に好ましくは0.25~0.7dl/gである。極限粘度[η]が前記範囲にあると、熱可塑性樹脂組成物の耐衝撃性、成形加工性がより良好となる。
極限粘度[η]の測定は下記方法で行った。まず、成分(B1)のアセトン可溶分(成分(B1-2))をメチルエチルケトンに溶解させ、濃度の異なるものを5点作った。ウベローデ粘度管を用い、30℃で各濃度の還元粘度を測定した結果から、極限粘度[η]を求めた。単位は、dl/gである。
極限粘度[η]は、例えば成分(B1)を乳化重合する際に用いる連鎖移動剤の種類及び使用量、重合開始剤の種類及び使用量、重合時の単量体成分の添加方法及び添加時間、重合温度、重合時間等を適宜選択することにより調整することができる。また、極限粘度[η]が異なる2種以上の成分(B1)を、適宜選択して混合することにより調整することができる。また、極限粘度[η]は、下記ゴム強化芳香族ビニル系樹脂(B2)又は下記芳香族ビニル系(共)重合体(B3)を成分(B1)に混合することにより調整することもできる。
1-2.ゴム強化芳香族ビニル系樹脂(B2)
本発明で用いる熱可塑性樹脂(X)は、上記のとおり、上記成分(B1)以外のゴム強化芳香族ビニル系樹脂を含有してもよく、代表的には、ジエン系ゴム(b2)のラテックスの存在下に芳香族ビニル系単量体を含有するビニル系単量体(a)を重合することにより得られたゴム強化芳香族ビニル系樹脂(B2)が挙げられる。熱可塑性樹脂(X)がゴム強化芳香族ビニル系樹脂(B2)を含有する場合、本発明の熱可塑性樹脂組成物からなる成形品が、例えば-30℃といった非常に低温の環境下においても延性破壊するようになるため、本発明の熱可塑性樹脂組成物は衝突時の安全性が要求される自動車用部品などの成形材料としてさらに好適なものとなる。
本発明で用いる熱可塑性樹脂(X)は、上記のとおり、上記成分(B1)以外のゴム強化芳香族ビニル系樹脂を含有してもよく、代表的には、ジエン系ゴム(b2)のラテックスの存在下に芳香族ビニル系単量体を含有するビニル系単量体(a)を重合することにより得られたゴム強化芳香族ビニル系樹脂(B2)が挙げられる。熱可塑性樹脂(X)がゴム強化芳香族ビニル系樹脂(B2)を含有する場合、本発明の熱可塑性樹脂組成物からなる成形品が、例えば-30℃といった非常に低温の環境下においても延性破壊するようになるため、本発明の熱可塑性樹脂組成物は衝突時の安全性が要求される自動車用部品などの成形材料としてさらに好適なものとなる。
ゴム強化芳香族ビニル系樹脂(B2)の原料として用いるジエン系ゴム(b2)及びビニル系単量体(a)は、上記成分(B1)について述べたものを全て使用することができ、上記成分(B1)について述べたことが成分(B2)についても全て同様に当てはまる。ゴム強化芳香族ビニル系樹脂(B2)のグラフト率及び極限粘度も、上記成分(B1)について述べたことが成分(B2)についても全て同様に当てはまる。
ゴム強化芳香族ビニル系樹脂(B2)の重合方法は、特に限定されず、公知の方法を適用することができる。重合方法としては、乳化重合、懸濁重合、溶液重合、塊状重合、又は、これらを組み合わせた重合方法とすることができる。これらの重合方法では、公知の重合開始剤、連鎖移動剤(分子量調節剤)、乳化剤等を適宜使用することができる。
1-3.芳香族ビニル系(共)重合体(B3)
ゴム強化芳香族ビニル系樹脂(B)は、さらに、芳香族ビニル系(共)重合体(B3)を含有しても良い。芳香族ビニル系(共)重合体(B3)は、ゴム質重合体の非存在下で芳香族ビニル化合物を含有するビニル系単量体(a)の重合を行うことによって製造することができる。また、重合方法は、成分(B1)及び成分(B2)と同様の方法であってよく、乳化重合以外に、懸濁重合、溶液重合、塊状重合、又は、これらを組み合わせた重合方法とすることもできる。芳香族ビニル系(共)重合体(B3)は、ゴム質重合体にグラフトしていない点で非グラフト(共)重合樹脂(B-2)と同様の形態を備え、通常、ゴム強化芳香族ビニル系樹脂を希釈したり、上記極限粘度[η]を調製したりするのに使用される。
ゴム強化芳香族ビニル系樹脂(B)は、さらに、芳香族ビニル系(共)重合体(B3)を含有しても良い。芳香族ビニル系(共)重合体(B3)は、ゴム質重合体の非存在下で芳香族ビニル化合物を含有するビニル系単量体(a)の重合を行うことによって製造することができる。また、重合方法は、成分(B1)及び成分(B2)と同様の方法であってよく、乳化重合以外に、懸濁重合、溶液重合、塊状重合、又は、これらを組み合わせた重合方法とすることもできる。芳香族ビニル系(共)重合体(B3)は、ゴム質重合体にグラフトしていない点で非グラフト(共)重合樹脂(B-2)と同様の形態を備え、通常、ゴム強化芳香族ビニル系樹脂を希釈したり、上記極限粘度[η]を調製したりするのに使用される。
芳香族ビニル系(共)重合体(B3)の原料として用いるビニル系単量体(a)は、上記成分(B1)について述べたものを全て使用することができる。芳香族ビニル系(共)重合体(B3)の極限粘度も、上記成分(B1)について述べたことが成分(B3)についても全て同様に当てはまる。
1-4.ポリカーボネート系樹脂(A)
本発明で用いる熱可塑性樹脂(X)は、上記のとおり、ポリカーボネート樹脂(A)を含有することができる。本発明において、ポリカーボネート樹脂(A)は、主鎖にカーボネート結合を有するものであれば特に限定されず、芳香族ポリカーボネート、脂肪族ポリカーボネート、脂肪族-芳香族ポリカーボネートなどが挙げられる。これらは、単独でまたは2種以上組み合わせて用いてもよい。これらの中でも、耐衝撃性、耐熱性等の観点から、芳香族ポリカーボネートが好ましい。尚、これらのポリカーボネート樹脂は、末端がR-CO-基、R’-O-CO-基(R及びR’は、いずれも有機基を示す。)に変性されたものであってもよい。
本発明で用いる熱可塑性樹脂(X)は、上記のとおり、ポリカーボネート樹脂(A)を含有することができる。本発明において、ポリカーボネート樹脂(A)は、主鎖にカーボネート結合を有するものであれば特に限定されず、芳香族ポリカーボネート、脂肪族ポリカーボネート、脂肪族-芳香族ポリカーボネートなどが挙げられる。これらは、単独でまたは2種以上組み合わせて用いてもよい。これらの中でも、耐衝撃性、耐熱性等の観点から、芳香族ポリカーボネートが好ましい。尚、これらのポリカーボネート樹脂は、末端がR-CO-基、R’-O-CO-基(R及びR’は、いずれも有機基を示す。)に変性されたものであってもよい。
上記芳香族ポリカーボネートとしては、芳香族ジヒドロキシ化合物及び炭酸ジエステルを溶融によりエステル交換(エステル交換反応)して得られたもの、ホスゲンを用いた界面重縮合法により得られたもの、ピリジンとホスゲンとの反応生成物を用いたピリジン法により得られたもの等を用いることができる。
芳香族ジヒドロキシ化合物としては、分子内にヒドロキシル基を2つ有する化合物であればよい。
上記芳香族ジヒドロキシ化合物のうち、2つのベンゼン環の間に炭化水素基を有する化合物が好ましい。尚、この化合物において、炭化水素基は、ハロゲン置換された炭化水素基であってもよい。また、ベンゼン環は、そのベンゼン環に含まれる水素原子がハロゲン原子に置換されたものであってもよい。従って、上記化合物としては、ビスフェノールA、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル-3-メチルフェニル)プロパン、2,2-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3、5-ジメチル-4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(p-ヒドロキシフェニル)エタン、2,2-ビス(p-ヒドロキシフェニル)ブタン等が挙げられる。これらのうち、特に、ビスフェノールAが好ましい。
芳香族ポリカーボネートをエステル交換反応により得るために用いる炭酸ジエステルとしては、ジメチルカーボネート、ジエチルカーボネート、ジ-tert-ブチルカーボネート、ジフェニルカーボネート、ジトリルカーボネート等が挙げられる。これらは、単独でまたは2種以上を組み合わせて用いることができる。
上記ポリカーボネート樹脂(A)の粘度平均分子量は、好ましくは15,000~40,000、より好ましくは17,000~30,000、特に好ましくは18,000~28,000である。この粘度平均分子量が高いほど、耐衝撃性が高くなる一方、流動性が十分でなく、成形加工性が不十分になる可能性がある。尚、全体としての粘度平均分子量が上記範囲に入るものであれば、異なる粘度平均分子量を有するポリカーボネート樹脂の2種以上を混合して用いてもよい。
1-5.熱可塑性樹脂(X)の組成
本発明の熱可塑性樹脂(X)において、ゴム成分の含有量は、機械的強度の観点から、成分(X)100質量%に対して3~20質量%が好ましく、4~15質量%がより好ましく、5~12質量%が更に好ましい。本発明の熱可塑性樹脂(X)におけるゴム成分は、ゴム強化芳香族ビニル系樹脂(B)、すなわち、上記成分(B1)及び(B2)の原料であるゴム質重合体に由来するものであるが、軋み音を防止する観点からは、ゴム成分の全量がエチレン・α-オレフィン系ゴム(b1)から構成されることが好ましい。一方、上述の通り、自動車部品等の安全性が要求される成形品の場合は延性破壊特性を付与するために、成分(B1)のゴム成分としてジエン系ゴム(b2)を含有させたり、熱可塑性樹脂(X)に成分(B2)を含ませたりすることが行われる。このように上記成分(X)がゴム成分としてジエン系ゴム(b2)を含有する場合、上記成分(b1)の含有量は、上記成分(b1)及び上記成分(b2)の合計100質量%に対して90~15質量%であることが好ましく、80~30質量%であることがより好ましく、上記成分(b2)の含有量は、上記成分(b1)及び上記成分(b2)の合計100質量%に対して10~85質量%であることが好ましく、20~70質量%であることがより好ましい。尚、成分(X)にジエン系ゴム(b2)を含有させる方法としては、乳化重合時に成分(b1)のラテックスと成分(b2)のラテックスを混合する方法、成分(b1)の存在下で乳化重合した後の成分(B1)のラテックスと、成分(b2)の存在下で乳化重合した後の成分(B2)のラテックスとを混合する方法、成分(b1)の存在下で乳化重合した後に単離した成分(B1)と、成分(b2)の存在下で乳化重合した後に単離した成分(B2)とを混合する方法などを採用することができる。
本発明の熱可塑性樹脂(X)において、ゴム成分の含有量は、機械的強度の観点から、成分(X)100質量%に対して3~20質量%が好ましく、4~15質量%がより好ましく、5~12質量%が更に好ましい。本発明の熱可塑性樹脂(X)におけるゴム成分は、ゴム強化芳香族ビニル系樹脂(B)、すなわち、上記成分(B1)及び(B2)の原料であるゴム質重合体に由来するものであるが、軋み音を防止する観点からは、ゴム成分の全量がエチレン・α-オレフィン系ゴム(b1)から構成されることが好ましい。一方、上述の通り、自動車部品等の安全性が要求される成形品の場合は延性破壊特性を付与するために、成分(B1)のゴム成分としてジエン系ゴム(b2)を含有させたり、熱可塑性樹脂(X)に成分(B2)を含ませたりすることが行われる。このように上記成分(X)がゴム成分としてジエン系ゴム(b2)を含有する場合、上記成分(b1)の含有量は、上記成分(b1)及び上記成分(b2)の合計100質量%に対して90~15質量%であることが好ましく、80~30質量%であることがより好ましく、上記成分(b2)の含有量は、上記成分(b1)及び上記成分(b2)の合計100質量%に対して10~85質量%であることが好ましく、20~70質量%であることがより好ましい。尚、成分(X)にジエン系ゴム(b2)を含有させる方法としては、乳化重合時に成分(b1)のラテックスと成分(b2)のラテックスを混合する方法、成分(b1)の存在下で乳化重合した後の成分(B1)のラテックスと、成分(b2)の存在下で乳化重合した後の成分(B2)のラテックスとを混合する方法、成分(b1)の存在下で乳化重合した後に単離した成分(B1)と、成分(b2)の存在下で乳化重合した後に単離した成分(B2)とを混合する方法などを採用することができる。
上記熱可塑性樹脂(X)がポリカーボネート樹脂(A)を含む場合、その含有量は、必要とする機械的強度、剛性、成形加工性、耐熱性に応じて決められるが、ポリカーボネート樹脂(A)の含有量は、上記成分(A)及び上記成分(B)の合計100質量%に対して30~90質量%であることが好ましく、40~80質量%であることがより好ましく、45~75質量%であることが特に好ましい。上記成分(B)の含有量は、上記成分(A)及び上記成分(B)の合計100質量%に対して10~70質量%であることが好ましく、20~60質量%であることがより好ましく、25~55質量%であることが特に好ましい。この範囲であれば、本発明の熱可塑性樹脂組成物からなる成形品は、軋み音抑制効果の他、衝撃強度、成形加工性、外観、耐熱性等の各種性能がさらに優れて好ましい。
3.オレフィン系(共)重合体(C)
本発明におけるオレフィン系(共)重合体(C)は、重量平均分子量が300~10,000のものであれば特に限定されない。通常、成分(C)は室温でゴム弾性を示さないオレフィン系(共)重合体である。上記成分(C)の重量平均分子量が300~10,000の範囲外の場合、軋み音低減等の本発明の効果が得られない。成分(C)の重量平均分子量は好ましくは300~8,000、より好ましくは500~6,000である。上記重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算で測定することができる。
本発明におけるオレフィン系(共)重合体(C)は、重量平均分子量が300~10,000のものであれば特に限定されない。通常、成分(C)は室温でゴム弾性を示さないオレフィン系(共)重合体である。上記成分(C)の重量平均分子量が300~10,000の範囲外の場合、軋み音低減等の本発明の効果が得られない。成分(C)の重量平均分子量は好ましくは300~8,000、より好ましくは500~6,000である。上記重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算で測定することができる。
上記オレフィン系(共)重合体(C)としては、例えば、エチレン、プロピレン、1-ブテン、1-ヘキセン、1-デセン、4-メチル-1-ブテン、4-メチル-1-ペンテン等のオレフィンの単独重合体、これらのオレフィンと共重合可能な化合物、例えば飽和力ルボン酸及びその酸無水物[(メタ)アクリル酸、無水マレイン酸等]、(メタ)アクリル酸エステル[(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等の(メタ)アクリル酸アルキルエステル等]等の重合性単量体との共重合体等が挙げられる。これらの共重合体は、ランダム共重合体であっても、ブロック共重合であっても、グラフト共重合体であってもよい。また、成分(C)は、変性されたものであってよい。例えば、成分(C)が酸変性されている場合、その酸化変性度は、水酸化カリウムによる滴定試験法により得られる酸価度により求められる。好ましい酸化変性度は、1~100mg/gである。
上記成分(C)の具体例としては、高圧法やチグラー法で合成されたポリエチレンワックス、一酸化炭素と水素を反応させて作られるフィッシャー・トロプシュワックス、熱分解法で得られるポリプロピレンワックスなどが挙げられ、好ましくはポリエチレンワックスが挙げられる。ポリエチレンワックスとしては、市販品を用いることができ、例えば、「サンワックス」(三洋化学工業社製)、「三井ハイワックス」(三井化学社製)、「SOLPLUS310」(日本ループリゾール社製)などが挙げられる。
上記分(C)の、140℃における溶融粘度は、通常10~50,000mPa・s、好ましくは10~10,000mPa・s、より好ましくは10~8,000mPa・sである。尚、上記溶融粘度は、B型粘度計を用いて測定することができる。成分(C)の溶融粘度が上記範囲内にあると、本発明の熱可塑性樹脂組成物からなる成形品は、本発明で得られる効果がさらに十分なものとなり好ましい。成分(C)の溶融粘度が10mPa・s未満では金型汚染、50,000mPa・sを超えると離型不良が発生する可能性がある。尚、成分(B1)及び、後述する成分(D)の140℃における溶融粘度は、通常1,000,000mPa・sを超えるような高いものであり、成分(C)と異なり、B型粘度計で測定することは困難である。
上記成分(C)の融点(JIS K 7121-1987に準拠してDSC法で測定)は、通常90~160℃、好ましくは100~140℃、さらに好ましくは105~135℃である。成分(C)の軟化点(JIS K 2207)は、通常90~160℃、好ましくは100~145℃、さらに好ましくは105~140°Cである。融点および軟化点が上記範囲内であると、本発明で得られる効果がさらに十分なものとなり好ましい。
本発明の熱可塑性樹脂組成物における成分(C)の含有量は、熱可塑性樹脂(X)100質量部に対して、0.1~10質量部であり、好ましくは0.5~8質量部、より好ましくは0.5~5質量部である。成分(C)の含有量が0.1質量部未満の場合、異音リスク指数が高くなり、軋み音低減性能に劣る。一方、成分(C)の含有量が10質量部を超える場合、ペレット化が困難となり、層状剥離が発生する。
なお、本発明の熱可塑性樹脂組成物において、成分(C)は、成分(B)の製造工程中及び/又は製造工程後に成分(B)に予め添加されたものであってもよい。
なお、本発明の熱可塑性樹脂組成物において、成分(C)は、成分(B)の製造工程中及び/又は製造工程後に成分(B)に予め添加されたものであってもよい。
4.相溶化剤(D)
本発明における相溶化剤(D)としては、成分(C)を成分(A)及び/又は成分(B)と相溶化させるものであれば、特に限定されない。相溶化剤(D)の具体例としては、少なくとも1個のオレフィン系(共)重合体セグメントと少なくとも1個の芳香族ビニル系(共)重合体セグメントとを備えるブロック共重合体(D1)、及び、少なくとも1個の芳香族ビニル系(共)重合体セグメントと少なくとも1個の共役ジエン系重合体とを備えたブロック共重合体の水素添加物(D2)が挙げられる。本発明の成分(D)は、通常、熱可塑性樹脂組成物中で成分(B1)の様な分散粒子としては存在せず、成分(B)及び成分(C)の表面に存在しているものと考えられる。
本発明における相溶化剤(D)としては、成分(C)を成分(A)及び/又は成分(B)と相溶化させるものであれば、特に限定されない。相溶化剤(D)の具体例としては、少なくとも1個のオレフィン系(共)重合体セグメントと少なくとも1個の芳香族ビニル系(共)重合体セグメントとを備えるブロック共重合体(D1)、及び、少なくとも1個の芳香族ビニル系(共)重合体セグメントと少なくとも1個の共役ジエン系重合体とを備えたブロック共重合体の水素添加物(D2)が挙げられる。本発明の成分(D)は、通常、熱可塑性樹脂組成物中で成分(B1)の様な分散粒子としては存在せず、成分(B)及び成分(C)の表面に存在しているものと考えられる。
成分(D1)のオレフィン系(共)重合体セグメントとしては、エチレン、プロピレン等のオレフィン系化合物の重合体、及び、エチレン、プロピレン等のオレフィン系化合物とこれと共重合可能な官能基含有不飽和化合物との共重合体が挙げられる。この共重合可能な官能基含有不飽和化合物としては、例えば、官能基としてエポキシ基、カルボキシル基、エステル基、ヒドロキシル基などを備えるエチレン系不飽和化合物が挙げられ、好ましくはエポキシ基が挙げられる。官能基含有エチレン系不飽和化合物の具体例としては、グリシジルメタクリレート、メチルアクリレート、エチルアクリレート、アクリル酸、メタクリル酸等が挙げられ、好ましくはグリシジルメタクリレートが挙げられる。
成分(D1)及び成分(D2)の芳香族ビニル系(共)重合体セグメントとしては、スチレン、α-メチルスチレン等の芳香族ビニル系化合物の重合体、及び、スチレン、α-メチルスチレン等の芳香族ビニル系化合物とこれと共重合可能なビニル系化合物との共重合体が挙げられる。この共重合可能なビニル系化合物としては、例えば、シアン化ビニル化合物が挙げられ、好ましくはアクリロニトリルである。
成分(D2)の共役ジエン系重合体としては、ブタジエン、イソプレン、ピペリレン、メチルペンタジエン、フェニルブタジエン、3,4-ジメチルー1、3―ヘキサジエン、4,5-ジエチルー1,3-オクタジエン等の共役ジエン化合物の単独重合体若しくは共重合体、上記共役ジエン化合物と上記芳香族ビニル化合物のランダム共重合体若しくはブロック共重合体、又はそれらの混合物が挙げられる。成分(D2)において、共役ジエン系重合体は、その二重結合部分の10%以上が水素添加されていることが好ましく、70~100%が水素添加されていることがより好ましく、95~100%が水素添加されていることが特に好ましい。
成分(D1)の好ましい具体例としては、低密度ポリエチレンからなるオレフィン系重合体セグメントにポリスチレンからなる芳香族ビニル系重合体セグメントがグラフト重合したもの、エチレン-グリシジルメタクリレート共重合体からなるオレフィン系共重合体セグメントにポリスチレンからなる芳香族ビニル系重合体セグメントがグラフト重合したもの、エチレン-グリシジルメタクリレート共重合体からなるオレフィン系共重合体セグメントにスチレン-アクリロニトリル共重合体からなる芳香族ビニル系重合体セグメントがグラフト重合したもの、エチレン-エチルアクリレート共重合体からなるオレフィン系共重合体セグメントにスチレン-アクリロニトリル共重合体からなる芳香族ビニル系重合体セグメントがグラフト重合したものなどが挙げられ、好ましくは、エチレン-グリシジルメタクリレート共重合体からなるオレフィン系共重合体セグメントにスチレン-アクリロニトリル共重合体からなる芳香族ビニル系重合体セグメントがグラフト重合したもの、エチレン-エチルアクリレート共重合体からなるオレフィン系共重合体セグメントにスチレン-アクリロニトリル共重合体からなる芳香族ビニル系重合体セグメントがグラフト重合したものである。これらは1種単独で、または2種以上を組み合わせて用いることもできる。
エチレン-グリシジルメタクリレート共重合体からなるオレフィン系共重合体セグメントに芳香族ビニル系重合体セグメントがグラフト重合した構造をもつ成分(D1)の具体例としては、エチレン-グリシジルメタクリレート共重合体にスチレン単量体をグラフト重合して得られるEGMA-g-PS(エチレン/グリシジルメタクリレート-グラフト-ポリスチレン、例えば日油株式会社製「モディパーA-4100」)、エチレン-グリシジルメタクリレート共重合体にスチレン単量体、アクリロニトリル単量体をグラフト重合して得られるEGMA-g-AS(エチレン/グリシジルメタクリレート-グラフト-アクリロニトリル/スチレン、例えば日油株式会社製「モディパーA-4400」)などを挙げることができる。これらは1種単独で、または2種以上を組み合わせて用いることもできる。
成分(D1)を構成するオレフィン系(共)重合体セグメント及び芳香族ビニル系セグメントの含有量は、オレフィン系(共)重合体セグメントと芳香族ビニル系セグメントの合計量を100質量%として、通常40~95質量%、好ましくは50~90質量%、より好ましくは60~90質量%である。両者の含有量が上記範囲内にあると、さらに相溶化の効果が十分なものとなり好ましい。
成分(D2)の好ましい具体例としては、スチレン―エチレン―ブチレン―スチレン共重合体(SEBS)、スチレン―ブタジエン―ブチレン―スチレン共重合体(SBBS)、スチレン-イソプレン-スチレン共重合体(SIS)などが挙げられる。さらに、成分(D2)は、アミノ基、アルコキシ基、ヒドロキシル基、酸無水物基、エポキシ基等の官能基が導入された変性重合体であってよい。かかる変性重合体を用いると、ゲート付近での剥離、成形品の外観不良、ウエルド強度の低下がさらに生じにくくなり好ましい。成分(D2)としては、例えば、スチレン-ブタジエン-スチレン水添ブロック共重合体のアミン変性物(例えば、JSR株式会社製「ダイナロン 8630P」)、スチレン-ブタジエン-スチレン水添ブロック共重合体(例えば、旭化成株式会社製「タフテック H1041」)などの市販品を使用することができる。
本発明の熱可塑性樹脂組成物中における相溶化剤(D)の含有量は、熱可塑性樹脂(X)100質量部に対して、0.1~15質量部であり、好ましくは0.5~12質量部、より好ましくは2~8質量部である。相溶化剤(D)の含有量が0.1質量部未満の場合、成形品がゲート付近で剥離を生じ、成形品のウエルド外観及びウエルド強度が損なわれる。一方、相溶化剤(D)が15質量部を超えると、ペレット化が困難となり、軋み音低減性能も劣る。
なお、本発明の熱可塑性樹脂組成物において、成分(D)は、成分(B)の製造工程中及び/又は製造工程後に成分(B)に予め添加されたものであってもよい。
なお、本発明の熱可塑性樹脂組成物において、成分(D)は、成分(B)の製造工程中及び/又は製造工程後に成分(B)に予め添加されたものであってもよい。
4.熱可塑性樹脂組成物及びその製造方法
本発明の熱可塑性樹脂組成物は、本発明の目的を損なわない限り、上記成分(B)、(C)及び(D)に加えて、上記成分(A)や、各種添加剤を含有しても良い。添加剤の具体例としては、紫外線吸収剤、耐候剤、充填剤、酸化防止剤、老化防止剤、帯電防止剤、難燃剤、防曇剤、滑剤、抗菌剤、粘着付与剤、可塑剤、着色剤等が挙げられる。
本発明の熱可塑性樹脂組成物は、本発明の目的を損なわない限り、上記成分(B)、(C)及び(D)に加えて、上記成分(A)や、各種添加剤を含有しても良い。添加剤の具体例としては、紫外線吸収剤、耐候剤、充填剤、酸化防止剤、老化防止剤、帯電防止剤、難燃剤、防曇剤、滑剤、抗菌剤、粘着付与剤、可塑剤、着色剤等が挙げられる。
本発明の熱可塑性樹脂組成物は、上記成分(B)に所望により上記成分(A)を混合して熱可塑性樹脂(X)を得た後、該熱可塑性樹脂(X)に成分(C)、成分(D)及びその他の成分を混合しても製造してもよく、全成分を一括に混合して製造しても良く、混合方法は特に制限されるものではない。また、成分(C)及び/又は(D)は、成分(B)を製造する際にゴム質重合体(b1)及び/又はビニル系単量体(a)とともに加えたものに由来するものであってもよい。例えば、本発明の熱可塑性樹脂組成物は、各成分を所定の配合比で、タンブラーミキサーやヘンシェルミキサーなどで混合した後、一軸押出機、二軸押出機、バンバリーミキサー、ニーダー、ロール、フィーダールーダー等の混合機を用いて、適当な条件下で溶融混練して製造することができる。好ましい混練機は、二軸押出機である。さらに、それぞれの成分を混練するに際しては、それぞれの成分を一括して混練しても、多段、分割配合して混練してもよい。バンバリーミキサー、ニーダー等で混練した後、押出機によりペレット化することもできる。また、充填材のうち繊維状のものは、混練中での切断を防止するためにサイドフィーダーにより押出機の途中から供給する方が好ましい。溶融混練温度は、通常200~300℃、好ましくは220~280℃である。
5.成形品
本発明の熱可塑性樹脂組成物から成形品を製造する方法には何等制限はなく、例えば、射出成形、射出圧縮成形、ガスアシスト成形、プレス成形、ブロー成形、異形押出成形の他、カレンダー成形やTダイ押出成形に代表されるフィルム及びシート成形等の公知の方法が挙げられる。
本発明の熱可塑性樹脂組成物から成形品を製造する方法には何等制限はなく、例えば、射出成形、射出圧縮成形、ガスアシスト成形、プレス成形、ブロー成形、異形押出成形の他、カレンダー成形やTダイ押出成形に代表されるフィルム及びシート成形等の公知の方法が挙げられる。
本発明の成形品は、例えば、電気若しくは電子機器、光学機器、照明機器、事務用機器、または家電用部品、自動車用部品、住宅用部品等として好適である。
本発明の熱可塑性樹脂組成物からなる成形品は、少なくとも2個の互いに接触する部品を含む物品の、少なくとも1つの部品として好適に使用することができる。特に、本発明の熱可塑性樹脂組成物はゴム成分としてエチレン・α―オレフィン系ゴムを含有するので、上記物品を構成する部品の少なくとも1つの部品をこの熱可塑性樹脂組成物からなる成形品とすることで、当該物品に軋み音が発生するのを抑制することができる。上記物品を構成する部品は、2個以上の部品が本発明の熱可塑性樹脂組成物の成形品であることが好ましく、全ての部品が本発明の熱可塑性樹脂組成物の成形品であることが特に好ましい。
ゴム成分としてエチレン・α―オレフィン系ゴムを含有する本発明の熱可塑性樹脂組成物は、上記物品の部品のうち少なくとも2個の部品が常に又は間欠的に接触し、振動、ねじれ、衝撃等の外力が物品に加わった時に両部品の接触部が互いに僅かに移動又は衝突するような物品を構成する部品の成形材料として好適である。かかる接触部の接触態様は、面接触、線接触、点接触等の何れであっても良く、部分的に接着されていてもよい。具体的には、図2に示されるように部品10の一面と部品20の一面が互いに突き合わされた状態で接触している物品、図3~7に示されるように、部品10の一部が部品20に形成された凹部に嵌合した状態で接触している物品などが挙げられる。
部品同士が嵌合した状態で接触している物品の具体例としては、図3に示されるように、部品10の一端が部品20に形成された相補的な凹部にぴったり嵌合した状態で接触している物品、図4に示されるように、部品20のコーナー部に形成された2つの相補的な凹部のそれぞれに部品10の各端部がぴったり嵌合した状態で接触している物品、図5に示されるように、略平行に配置された2つの部品10のそれぞれに形成された相補的な凹部に部品20の各端部がぴったり嵌合した状態で接触している物品、図6に示されるように、部品10の内側面寸法と同寸法の外側面寸法を備える部品20を、部品10の中に入れ子状に挿入し、両者の内側面と外側面がぴったり嵌合した状態で接触している物品などが挙げられる。
また、本発明の物品における2つの部品は、互いにぴったり嵌合している必要はなく、図7に示されるように、ある程度の空隙や遊びをもって互いに嵌合しており、振動、ねじれ、衝撃等の外力が物品に加わった時に、互いに接触及び非接触を繰り返すような構成であってもよい。
上述のような接触部を複合的に備えた物品として、図9に示されるような物品が挙げられる。図9の物品において、部品10は底面が全て開口した直方体からなる升状の部品であり、部品20は部品10と同様の形状を備えるとともに上面の中央部に矩形の開口が形成された成形品である。そして、図9に示すように、部品20は部品10の中に嵌合させることができ、部品20の外周面と部品10の内周面は互いに接触し、両者は振動等の外力を受けると僅かに変形して接触及び非接触を繰り返す。図8に良く示されるように、部品20は対向する外側面に突起30を備え、図9に示されるように、部品10は対向する2つの側面に部品20の突起30を収容する穴を備えている。そして、部品10を部品20に嵌合させた時、該穴に突起30がスナップフィットすることにより両部品の嵌合が容易に外れないようにしている。部品10及び部品20の少なくとも1つを本発明の熱可塑性樹脂組成物からなる成形品とすることにより、例えば、外力が図9(C)の矢印の方向にかけられた場合でも、軋み音の発生を防止することができる。なお、外力の方向は、図9(C)の方向に限定されるものではなく、他の方向から外力が加えられた場合でも、部品10及び部品20の少なくとも1つを本発明の熱可塑性樹脂組成物からなる成形品とした場合には、軋み音の発生は防止される。なお、図9の突起30の断面形状及び部品10の穴の形状を変更して、両部品をプレスフィットする構成に変更することもできる。
図10は、部品10及び部品20がそれぞれ突起30及びそれにスナップフィットする穴の代わりに、部品10及び部品の20の内側面と外側面の一部を接着剤31を用いて接着した以外図9の物品と同様の態様を示すものである。また、接着剤31の代わりに、部品10及び部品20を互いにレーザー溶着等により溶着することもでき、この方法は、両部品が熱可塑性樹脂成形品である場合に好都合である。特にレーザー溶着ではレーザー光を透過する透明の熱可塑性樹脂と、レーザー光を吸収する熱可塑性樹脂からなる部品を組み合わせることが好ましく、具体的な製品としては、車載速度計などの計器類、照明灯等があげられる。
図11の例は、部品10と部品20の対向する側面の対向する位置に穴が開けられており、この2つの穴を通じてボルトとナットで締結して両部品を固定するように構成されている以外図9の物品と同様の態様を示すものである。ボルトナットの代わりに、ネジ、ピン、ビス、リベット、ブッシュ、ブラケット、ヒンジ、釘等を用いて、部品10及び部品20を固定してもよい。
また、図12に示すように、長方形の板状の本体の両端から長手方向外方に円筒状の軸19が突出した形状の部品18と、この部品18の軸19を挿入させて部品18を軸19回りに回転可能に支持するフレーム状の部品28とを備える図13に示されるような物品も、本発明の熱可塑性樹脂組成物からなる成形品を用いるのに好適である。部品18及び部品28の少なくとも一方を本発明の熱可塑性樹脂組成物からなる成形品とすることにより、部品18を軸19回りに回転させた場合や、物品に振動等の外力が加わった場合に、軋み音が発生するのを抑制することができる。
図13に示されるように、フレーム状の部品28が複数の開口部29を備える場合には、該物品は、部品18の角度によって空気の流れる量や向きを調節する装置として好適に使用できる。かかる装置としては、家庭用及び車載用のエアコン、空気清浄機、送風機等の吹き出し口が挙げられる。
上記の物品において、部品10,18及び部品20,28の少なくとも何れか一方を上記本発明の熱可塑性樹脂組成物からなる成形品にすることで、軋み音の発生を著しく低減させることができる。さらに他方の物品も、本発明の熱可塑性樹脂組成物からなる成形品としてもよい。他方の物品が本発明の熱可塑性樹脂組成物以外の材料からなる部品である場合、当該材料の材質に特に制限はなく、例えば、熱可塑性樹脂、熱硬化性樹脂、ゴム、有機質材料、無機質材料、金属材料等が挙げられる。
本発明の熱可塑性樹脂組成物以外の材料からなる部品を構成する上記熱可塑性樹脂としては、例えば、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、AS樹脂、ABS樹脂、AES樹脂、ASA樹脂、ポリメチルメタクリレート樹脂、ポリスチレン樹脂、耐衝撃性ポリスチレン樹脂、エチレン-酢酸ビニル(EVA)樹脂、ポリアミド(PA)樹脂、ポリエチレンテレフタレート樹脂、ポリプチレンテレフタレート樹脂、ポリカーボネート(PC)樹脂、ポリ乳酸樹脂、PC/ABS樹脂、PC/AES樹脂、PA/ABS樹脂、PA/AES樹脂等が挙げられる。これらは、単独で又は2種以上の組み合わせで使用できる。
本発明の熱可塑性樹脂組成物以外の材料からなる部品を構成する上記熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用できる。
本発明の熱可塑性樹脂組成物以外の材料からなる部品を構成する上記ゴムとしては、クロロプレンゴム、ポリブタジエンゴム、エチレン・プロピレンゴム、SEBS、SBS、SIS等の各種合成ゴム、天然ゴム等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用できる。
本発明の熱可塑性樹脂組成物以外の材料からなる部品を構成する上記有機質材料としては、例えば、インシュレーションボード、MDF(中質繊維板)、ハードポード、パーティクルボード、ランバーコア、LVL(単板積層材)、OSB(配向性ボード)、PSL(パララム)、WB(ウェハーボード)、硬質繊維板、軟質繊維板、ランバーコア合板、ボードコア合板、特殊コアー合板、ベニアコアーベニヤ板、タップ樹脂を含浸させた紙の積層シート・板、(古)紙等を砕いた細かい小片・線状体に接着剤を混合して加熱圧縮したボード、各種の木材等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用できる。
本発明の熱可塑性樹脂組成物以外の材料からなる部品を構成する上記無機質材料としては、例えば、ケイ酸カルシウムボード、フレキシブルボード、ホモセメントボード、石膏ボード、シージング石膏ボード、強化石膏ボード、石膏ラスボード、化粧石膏ボード、複合石膏ボード、各種セラミック、ガラス等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用できる。
更に、本発明の熱可塑性樹脂組成物以外の材料からなる部品を構成する上記金属材料としては、鉄、アルミニウム、銅、各種の合金等が挙げられる。これらは、単独で又は2種以上を組み合わせて使用できる。
これらの中で、熱可性樹脂、熱硬化性樹脂、及びゴムが好ましく、ABS樹脂、AES樹脂、PC樹脂、ABS樹脂、PC/AES樹脂、ポリメチルメタクリレート樹脂が特に好ましい。
本発明の物品は、その部品の少なくとも一つが本発明の熱可塑性樹脂組成物からなる成形品とされているので、振動、摺動等により、部品同士が当接及び非当接を繰り返しても軋み音の発生が抑制され、自動車用部品、事務用機器部品、住宅用部品、家電用部品等に好適に使用できる。
自動車用部品を本発明の熱可塑性樹脂組成物からなる成形品とした場合、例えば車両走行時の振動により、該部品が他の部品と当接及び非当接を繰り返した場合でも、軋み音の発生を大幅に低減させることが可能である。また、本発明の熱可塑性樹脂組成物がジエン系ゴムを含有すると、それからなる成形品は低温での破壊特性(延性破壊する)が優れるため自動車内装用部品に特に好適である。このような自動車用部品としては、ドアトリム、ドアライニング、ピラーガーニッシュ、コンソール、ドアポケット、ベンチレータ、ダクト、エアコンの板状羽根、バルブシャッター、ルーバー、メーターバイザー、インパネアッパーガーニッシュ、インパネロアガーニッシュ、A/Tインジケーター、オンオフスイッチ類(スライド部、スライドプレート)、グリルフロントデフロスター、グリルサイドデフロスター、リッドクラスター、カバーインストロアー、マスク類(マスクスイツチ、マスクラジオなど)、グロープボックス、ポケット類(ポケットデッキ、ポケットカードなど)、ステアリングホイールホーンパッド、スイッチ部品、カーナビゲーション用外装部品等が挙げられる。その中でも、ベンチレータ、エアコンの板状羽根、バルブシャッター、ルーバー、スイッチ部品、カーナビゲーション用外装部品等として特に好適に用いることができる。
事務用機器部品を本発明の熱可塑性樹脂組成物からなる成形品とした場合、例えば機器作動時の振動、デスク引き出しの開閉により、該部品が他の部品と当接及び非当接を繰り返した場合でも、軋み音の発生を大幅に低減させることが可能である。このような事務用機器部品としては、外装部品、内装部品、スイッチまわりの部品、可動部の部品、デスクロック部品、デスク引き出し等が挙げられる。
住宅用部品を本発明の熱可塑性樹脂組成物からなる成形品とした場合、例えば扉、引き戸の開閉により、該部品と他の部品が当接及び非当接を繰り返した場合でも、軋み音の発生を大幅に低減させることが可能である。このような住宅用部品としては、シェルフ扉、チェアダンパー、テーブル折りたたみ脚可動部品、扉開閉ダンパー、引き戸レール、カーテンレール等が挙げられる。
家電用部品を本発明の熱可塑性樹脂組成物からなる成形品とした場合、例えば機器作動時の振動により、該部品と他の部品が当接及び非当接を繰り返した場合でも、軋み音の発生を大幅に低減させることが可能である。このような家電用部品としては、ケース、ハウジング等の外装部品、内装部品、スイッチまわりの部品、可動部の部品等が挙げられる。
以下、実施例により、本発明をさらに具体的に説明するが、本発明は以下の実施例のみに限定されるものではない。実施例中、部および%は特に断らない限り質量基準である。
1.評価方法
1-1.剥離試験
FANAC株式会社製の射出成形機「α-150」(型式名)を用い、表1又は表2に記載の熱可塑性樹脂組成物からなる試験片を射出成形した。射出成形時の樹脂温度は260℃、金型温度は60℃であった。
1-1.剥離試験
FANAC株式会社製の射出成形機「α-150」(型式名)を用い、表1又は表2に記載の熱可塑性樹脂組成物からなる試験片を射出成形した。射出成形時の樹脂温度は260℃、金型温度は60℃であった。
図1(a)は上記の試験片の底面図、図1(b)は図1(a)のA-A断面図である。各図中の寸法は、L=150mm、W=70mm、T=3mm、L1=45mm、L0=6mm、W1=3mm、T0=2mmである。
剥離試験は、試験片1のゲート2の左右2箇所に切り込み3を入れ(切り込みの長さは2mm)、ゲート2をペンチで挟み、図1(b)の矢示する方向へ引っ張り、その際、試験片1の表面に剥離が生じるか否かを観察し、以下の評価基準に基づいて判定した。
<評価基準>
○:ゲート付近に剥離の発生はなかった。
△:ゲートから成形品に向けて長さ5mm以下の剥離の発生があった。
×:ゲートから成形品に向けて長さ5mmを超える剥離の発生があった。
○:ゲート付近に剥離の発生はなかった。
△:ゲートから成形品に向けて長さ5mm以下の剥離の発生があった。
×:ゲートから成形品に向けて長さ5mmを超える剥離の発生があった。
1-2.ウエルド外観
表1又は表2記載の熱可塑性樹脂組成物を用いて、樹脂溶融接合部を備える下記成形品を、成形温度260℃、金型温度35℃、成形サイクル時間60秒の条件で射出成形し、この溶融接合部を目視で観察し、下記基準に従い評価した。
試験片:中央部に直径15mmの穴のある厚さ2mm、150mm×150mmの正方形の板状試験片(図14参照)。図14に示されるとおり、この試験片は、金型に設けられた4mm×2mmのサイドゲート(樹脂流入口)から樹脂を金型内に流入させることにより成形され、点線で示される付近で、金型内を流動する樹脂の流動末端が会合することによりウエルドライン(樹脂溶融接合線)を生じる。
<ウエルドライン(樹脂溶融接合線)評価基準>
○;ウエルドラインがほとんど認められない。
△;ウエルドラインが少し認められる。
×;ウエルドラインが明確に認められる。
<色分かれ(樹脂溶融接合線付近の色が周囲と比べて異なる色に見える現象)評価基準>
○;ほとんど色分かれが認められない。
△;色分かれが少し認められる。
×;色分かれが目立つ。
表1又は表2記載の熱可塑性樹脂組成物を用いて、樹脂溶融接合部を備える下記成形品を、成形温度260℃、金型温度35℃、成形サイクル時間60秒の条件で射出成形し、この溶融接合部を目視で観察し、下記基準に従い評価した。
試験片:中央部に直径15mmの穴のある厚さ2mm、150mm×150mmの正方形の板状試験片(図14参照)。図14に示されるとおり、この試験片は、金型に設けられた4mm×2mmのサイドゲート(樹脂流入口)から樹脂を金型内に流入させることにより成形され、点線で示される付近で、金型内を流動する樹脂の流動末端が会合することによりウエルドライン(樹脂溶融接合線)を生じる。
<ウエルドライン(樹脂溶融接合線)評価基準>
○;ウエルドラインがほとんど認められない。
△;ウエルドラインが少し認められる。
×;ウエルドラインが明確に認められる。
<色分かれ(樹脂溶融接合線付近の色が周囲と比べて異なる色に見える現象)評価基準>
○;ほとんど色分かれが認められない。
△;色分かれが少し認められる。
×;色分かれが目立つ。
1-3.フローマーク
日精樹脂工業(株)製の電動射出成形機「エルジェクト NEX30」(商品名)を用い、80mm×55mm×2.4mmの平板状の成形品を射出成形により得た。成形品は、55mmの一方の辺の中央に4mm×1mmのサイドゲートを備え、成形時の樹脂温度は220℃、金型温度は35℃であった。得られた成形品の表面外観を目視で観察し、下記基準に従い評価した。
<評価基準>
○:フローマークが認められない。
△:フローマークが多少認められる。
×:フローマークが認められる。
日精樹脂工業(株)製の電動射出成形機「エルジェクト NEX30」(商品名)を用い、80mm×55mm×2.4mmの平板状の成形品を射出成形により得た。成形品は、55mmの一方の辺の中央に4mm×1mmのサイドゲートを備え、成形時の樹脂温度は220℃、金型温度は35℃であった。得られた成形品の表面外観を目視で観察し、下記基準に従い評価した。
<評価基準>
○:フローマークが認められない。
△:フローマークが多少認められる。
×:フローマークが認められる。
1-4.ウエルド強度
ISO178に従ってウエルドの無い成形品(ダンベル試験片)の曲げ降伏強さ(FS0)を測定した。更に、成形品中央にウエルドを有する成形品(ダンベル試験片)について上記と同様の方法でウエルド部の曲げ降伏強さ強度(FS1)を測定し、下記式を用いてウエルド強度保持率(%)を求め、下記基準に従い評価した。保持率が高い材料ほど、ウエルド強度が強いことを示す。
保持率(%)=FS1/FS0×100
ISO178に従ってウエルドの無い成形品(ダンベル試験片)の曲げ降伏強さ(FS0)を測定した。更に、成形品中央にウエルドを有する成形品(ダンベル試験片)について上記と同様の方法でウエルド部の曲げ降伏強さ強度(FS1)を測定し、下記式を用いてウエルド強度保持率(%)を求め、下記基準に従い評価した。保持率が高い材料ほど、ウエルド強度が強いことを示す。
保持率(%)=FS1/FS0×100
<評価基準>
○:ウエルド強度保持率が、80%以上。
△:ウエルド強度保持率が、60%以上、80%未満。
×:ウエルド強度保持率が、60%未満。
○:ウエルド強度保持率が、80%以上。
△:ウエルド強度保持率が、60%以上、80%未満。
×:ウエルド強度保持率が、60%未満。
1-5.熱変形温度(HDT)
ISO75に準拠して測定した(フラットワイズB法、荷重0.45MPa)。
ISO75に準拠して測定した(フラットワイズB法、荷重0.45MPa)。
1-6.軋み音評価1(異音リスク指数)
表1及び2に記載の熱可塑性樹脂組成物を、東芝機械製の射出成形機「IS-170FA」(商品名)を用いて、シリンダー温度260℃、射出圧力50MPa、金型温度60℃の条件で射出成形することにより得た縦150mm、横100mm、厚さ4mmの成形品から、縦50mm、横25mm、厚さ4mmの小試験片をディスクソーで切り出した。次に、番手#100のサンドペーパーで試験片の端部を面取りした後、細かなバリをカッターナイフで除去し、軋み音評価用の小試験片を得た。
表1及び2に記載の熱可塑性樹脂組成物のかわりに、テクノポリマー株式会社製のPC/ABSアロイ「エクセロイ CK20」(商品名)を用いた以外、上記と同様の方法で縦60mm、横100mm、厚さ4mmの軋み音評価用の大試験片を得た。
上記大小試験片を80℃、95%RHに制御した恒温恒湿槽内で300時間放置(湿熱処理)した後、25℃で24時間冷却して湿熱処理した評価用試験片を得た。得られた評価用試験片の内、大試験片をジグラー(ZIEGLER)社製スティックスリップ試験機SSP-02の可動側ステージに、小試験片を固定側ステージにセットし、温度23℃、湿度50%RH、荷重40N、速度10mm/秒の条件で、振幅20mmで3回擦り合わせた時の異音リスク指数を測定し、下記基準に従い評価した。
<評価基準>
○:試験した条件で最も高い異音リスク指数が1~3。
△:試験した条件で最も高い異音リスク指数が4~5。
×:試験した条件で最も高い異音リスク指数が6~10。
表1及び2に記載の熱可塑性樹脂組成物を、東芝機械製の射出成形機「IS-170FA」(商品名)を用いて、シリンダー温度260℃、射出圧力50MPa、金型温度60℃の条件で射出成形することにより得た縦150mm、横100mm、厚さ4mmの成形品から、縦50mm、横25mm、厚さ4mmの小試験片をディスクソーで切り出した。次に、番手#100のサンドペーパーで試験片の端部を面取りした後、細かなバリをカッターナイフで除去し、軋み音評価用の小試験片を得た。
表1及び2に記載の熱可塑性樹脂組成物のかわりに、テクノポリマー株式会社製のPC/ABSアロイ「エクセロイ CK20」(商品名)を用いた以外、上記と同様の方法で縦60mm、横100mm、厚さ4mmの軋み音評価用の大試験片を得た。
上記大小試験片を80℃、95%RHに制御した恒温恒湿槽内で300時間放置(湿熱処理)した後、25℃で24時間冷却して湿熱処理した評価用試験片を得た。得られた評価用試験片の内、大試験片をジグラー(ZIEGLER)社製スティックスリップ試験機SSP-02の可動側ステージに、小試験片を固定側ステージにセットし、温度23℃、湿度50%RH、荷重40N、速度10mm/秒の条件で、振幅20mmで3回擦り合わせた時の異音リスク指数を測定し、下記基準に従い評価した。
<評価基準>
○:試験した条件で最も高い異音リスク指数が1~3。
△:試験した条件で最も高い異音リスク指数が4~5。
×:試験した条件で最も高い異音リスク指数が6~10。
異音リスク指数は大きい程、軋み音が発生しやすくなる。尚、ドイツ自動車工業会の基準(VDA203-260)によれば、異音リスク指数が3以下であれば、軋み音が発生するリスクは低くなり、実用品として合格レベルであるとされている。
1-7.軋み音評価2(実用評価1)
株式会社日本製鋼所製の射出成形機「J―100E」(形式名)を用い、表1及び2に記載の熱可塑性樹脂からなる、ISOダンベル試験片5枚を射出成形し、その後、試験片を80℃、95%RHに制御した恒温恒湿槽内で300時間放置(湿熱処理)した後、25℃で24時間冷却した。
次に、上記表1及び2に記載の熱可塑性樹脂組成物からなるISOダンベル試験片5枚と、接触する部品として、テクノポリマー株式会社製のPC/ABSアロイ「エクセロイ CK20」(商品名)からなり、同様に80℃、95%RHに制御した恒温恒湿槽内で300時間放置(湿熱処理)した後、25℃で24時間冷却したISOダンベル試験片5枚を交互に重ね合わせ、この両端を手でひねって、軋み音の発生の状況を評価した。評価は5回行ない、下記基準に従い評価した。
<軋み音の評価>
○:5回の評価全てにおいて、軋み音の発生はわずかであった。
△:5回の評価において、軋み音の発生が顕著な場合が含まれていた。
×:5回の評価全てにおいて、軋み音の発生が顕著であった。
株式会社日本製鋼所製の射出成形機「J―100E」(形式名)を用い、表1及び2に記載の熱可塑性樹脂からなる、ISOダンベル試験片5枚を射出成形し、その後、試験片を80℃、95%RHに制御した恒温恒湿槽内で300時間放置(湿熱処理)した後、25℃で24時間冷却した。
次に、上記表1及び2に記載の熱可塑性樹脂組成物からなるISOダンベル試験片5枚と、接触する部品として、テクノポリマー株式会社製のPC/ABSアロイ「エクセロイ CK20」(商品名)からなり、同様に80℃、95%RHに制御した恒温恒湿槽内で300時間放置(湿熱処理)した後、25℃で24時間冷却したISOダンベル試験片5枚を交互に重ね合わせ、この両端を手でひねって、軋み音の発生の状況を評価した。評価は5回行ない、下記基準に従い評価した。
<軋み音の評価>
○:5回の評価全てにおいて、軋み音の発生はわずかであった。
△:5回の評価において、軋み音の発生が顕著な場合が含まれていた。
×:5回の評価全てにおいて、軋み音の発生が顕著であった。
1-8.軋み音評価3(実用評価2)
接触する部品として、三菱レイヨン株式会社製のメタクリル樹脂「アクリペット VH-004」(商品名)を用いた以外は、上記軋み音評価2と同様の方法で、軋み音の発生の状況を評価した。評価は5回行ない、下記基準に従い評価した。
<軋み音の評価>
○:5回の評価全てにおいて、軋み音の発生はわずかであった。
△:5回の評価において、軋み音の発生が顕著な場合が含まれていた。
×:5回の評価全てにおいて、軋み音の発生が顕著であった。
接触する部品として、三菱レイヨン株式会社製のメタクリル樹脂「アクリペット VH-004」(商品名)を用いた以外は、上記軋み音評価2と同様の方法で、軋み音の発生の状況を評価した。評価は5回行ない、下記基準に従い評価した。
<軋み音の評価>
○:5回の評価全てにおいて、軋み音の発生はわずかであった。
△:5回の評価において、軋み音の発生が顕著な場合が含まれていた。
×:5回の評価全てにおいて、軋み音の発生が顕著であった。
1-9.軋み音評価4(実用評価3)
株式会社日本製鋼所製の射出成形機「J-100E」(形式名)を用い、表1及び2に記載の熱可塑性樹脂からなる、ISOダンベル試験片10枚を射出成形し、その後、試験片を80℃、95%RHに制御した恒温恒湿槽内で300時間放置(湿熱処理)した後、25℃で24時間冷却した。得られたISOダンベル試験片10枚を重ね合わせ、この両端を手でひねって、軋み音の発生の状況を評価した。評価は5回行ない、下記基準に従い評価した。
<軋み音の評価>
○:5回の評価全てにおいて、軋み音の発生はわずかであった。
△:5回の評価において、軋み音の発生が顕著な場合が含まれていた。
×:5回の評価全てにおいて、軋み音の発生が顕著であった。
株式会社日本製鋼所製の射出成形機「J-100E」(形式名)を用い、表1及び2に記載の熱可塑性樹脂からなる、ISOダンベル試験片10枚を射出成形し、その後、試験片を80℃、95%RHに制御した恒温恒湿槽内で300時間放置(湿熱処理)した後、25℃で24時間冷却した。得られたISOダンベル試験片10枚を重ね合わせ、この両端を手でひねって、軋み音の発生の状況を評価した。評価は5回行ない、下記基準に従い評価した。
<軋み音の評価>
○:5回の評価全てにおいて、軋み音の発生はわずかであった。
△:5回の評価において、軋み音の発生が顕著な場合が含まれていた。
×:5回の評価全てにおいて、軋み音の発生が顕著であった。
1-10.低温衝撃試験時の破壊形態
日精樹脂工業株式会社製の電動射出成形機「エルジェクト NEX30」(型式名)を用い、表1及び2に記載の熱可塑性樹脂組成物からなる、80mm×55mm×2.4mmの平板型の試験片を射出成形した。試験片は、55mmの一方の辺の中央に4mm×1mmのサイドゲートを備え、成形時の樹脂温度は260℃、金型温度は60℃であった。次に、株式会社島津製作所の島津ハイドロショット・高速パンクチャー衝撃試験機「HITS-P10」(型式名)を用い、以下に示す条件で上記試験片を打ち抜いて、評価プレートの打ち抜き部分周辺の割れを観察し、打ち抜き部分の端部からの割れ長さが5mm以内の場合を延性破壊、5mm超過の場合を脆性破壊として評価した。衝突時に部品が脆性破壊をおこすと、部品の割れて尖った部分や、周囲に飛散した尖った破片等により、乗員の安全性が十分に確保できない恐れがあることから、部品は延性破壊することが好ましい。特に、自動車内装用途では、延性破壊することが求められる。
測定温度 : -30℃
打ち抜き速度 : 6.7mm/s
打ち抜き試験用ジグのストライカ先端 : φ12.7mm
試験片受け台のダイス径 : 43mm
日精樹脂工業株式会社製の電動射出成形機「エルジェクト NEX30」(型式名)を用い、表1及び2に記載の熱可塑性樹脂組成物からなる、80mm×55mm×2.4mmの平板型の試験片を射出成形した。試験片は、55mmの一方の辺の中央に4mm×1mmのサイドゲートを備え、成形時の樹脂温度は260℃、金型温度は60℃であった。次に、株式会社島津製作所の島津ハイドロショット・高速パンクチャー衝撃試験機「HITS-P10」(型式名)を用い、以下に示す条件で上記試験片を打ち抜いて、評価プレートの打ち抜き部分周辺の割れを観察し、打ち抜き部分の端部からの割れ長さが5mm以内の場合を延性破壊、5mm超過の場合を脆性破壊として評価した。衝突時に部品が脆性破壊をおこすと、部品の割れて尖った部分や、周囲に飛散した尖った破片等により、乗員の安全性が十分に確保できない恐れがあることから、部品は延性破壊することが好ましい。特に、自動車内装用途では、延性破壊することが求められる。
測定温度 : -30℃
打ち抜き速度 : 6.7mm/s
打ち抜き試験用ジグのストライカ先端 : φ12.7mm
試験片受け台のダイス径 : 43mm
1-11.融点(Tm)
JIS K 7121-1987に従い、TA Instruments社製の示差走査熱量計「DSC2910」(型式名)を用い、1分間に20℃の一定昇温速度で吸熱変化を測定し、得られた吸熱パターンのピーク温度から求めた。
JIS K 7121-1987に従い、TA Instruments社製の示差走査熱量計「DSC2910」(型式名)を用い、1分間に20℃の一定昇温速度で吸熱変化を測定し、得られた吸熱パターンのピーク温度から求めた。
2.使用原料
2-1.ポリカーボネート系樹脂(A-1)
Bayer社製のポリカーボネート樹脂「Makrolon 2800」(商品名)を用いた。粘度平均分子量は、22,000であった。
2-1.ポリカーボネート系樹脂(A-1)
Bayer社製のポリカーボネート樹脂「Makrolon 2800」(商品名)を用いた。粘度平均分子量は、22,000であった。
2-2.エチレン-プロピレンゴム強化芳香族ビニル系樹脂(AES-1)
2-2-1.アニオン性高分子分散剤の製造
アクリル酸21.6質量部(0.3モル)、エチルアクリレート30質量部(0.3モル)、ブチルメタクリレート56.8質量部(0.4モル)、及びイソプロピルアルコール150質量部を攪拌機、還流冷却管、温度計及び滴下ロートを装着した4つ口フラスコ内に仕込み、窒素ガス置換後、2,2’-アゾビスイソブチロニトリル0.6質量部を添加し、80℃にて3時間重合した。次に、重合体中のカルボキシル基を28質量%アンモニア水溶液18.2質量部(0.3モル)で中和した後、イソプロピルアルコールを留去しながら水を添加して置換し、固形分30質量%の粘稠なアニオン性のアクリル系共重合体を得た。
2-2-1.アニオン性高分子分散剤の製造
アクリル酸21.6質量部(0.3モル)、エチルアクリレート30質量部(0.3モル)、ブチルメタクリレート56.8質量部(0.4モル)、及びイソプロピルアルコール150質量部を攪拌機、還流冷却管、温度計及び滴下ロートを装着した4つ口フラスコ内に仕込み、窒素ガス置換後、2,2’-アゾビスイソブチロニトリル0.6質量部を添加し、80℃にて3時間重合した。次に、重合体中のカルボキシル基を28質量%アンモニア水溶液18.2質量部(0.3モル)で中和した後、イソプロピルアルコールを留去しながら水を添加して置換し、固形分30質量%の粘稠なアニオン性のアクリル系共重合体を得た。
2-2-2.エチレン-プロピレンゴムラテックスの製造
エチレン-プロピレン共重合体(エチレン/プロピレン=78/22(%)、ムーニー粘度(ML1+4、100℃)は20、融点(Tm)は40℃、ガラス転移温度(Tg)は-50℃)100質量部を95℃に加温した2軸スクリュー型ニーダー(Irie Shoukai Co,Ltd.社製:PBV-03型)に仕込み12rpmで2分間撹拌しながら半溶融状態とした。そして、水11質量部と上記2-2-1で得られたアニオン性高分子分散剤6質量部(固形分)を加えて粘度12000mPa・sに調整したものを投入し、95℃、50rpmで30分間混練した。その後、95℃の温水を添加して固形分45質量%の乳白色の水性分散液を得た。
エチレン-プロピレン共重合体(エチレン/プロピレン=78/22(%)、ムーニー粘度(ML1+4、100℃)は20、融点(Tm)は40℃、ガラス転移温度(Tg)は-50℃)100質量部を95℃に加温した2軸スクリュー型ニーダー(Irie Shoukai Co,Ltd.社製:PBV-03型)に仕込み12rpmで2分間撹拌しながら半溶融状態とした。そして、水11質量部と上記2-2-1で得られたアニオン性高分子分散剤6質量部(固形分)を加えて粘度12000mPa・sに調整したものを投入し、95℃、50rpmで30分間混練した。その後、95℃の温水を添加して固形分45質量%の乳白色の水性分散液を得た。
2-2-3.AES-1の重合
リボン型攪拌機翼、助剤連続添加装置、温度計などを装備した容積20リットルのステンレス製オートクレーブを窒素置換した後、窒素気流中で、上記2-2-2で得られた水性分散液40部(固形分)、水170部、水酸化ナトリウム0.01部、ピロリン酸ナトリウム0.2部、硫酸第一鉄7水和物0.01部、ブドウ糖0.2からなる水溶液を仕込んだ。重合温度80℃で一定温度として、ビニル系単量体として、アクリロニトリル15部、スチレン45部、更にtert-ドデシルメルカプタン0.05部からなる溶液とクメンハイドロパーオキシド0.1部を3時間かけて連続的に添加しながら重合を行い、その後、重合温度を維持したまま1時間重合を継続し、重合体AES-1のラテックスを得た。得られたラテックスの重合転化率は、98%であった。このラテックスに、2,2´-メチレン-ビス(4-エチル-6-tert-ブチルフェノール)0.2部を添加して重合を終了させた。この反応生成物のラテックスを硫酸水溶液で凝固、水洗した後、乾燥して重合体を得た。この重合体のグラフト率は60%、アセトン可溶分の極限粘度[η]は0.42dl/gであった。
リボン型攪拌機翼、助剤連続添加装置、温度計などを装備した容積20リットルのステンレス製オートクレーブを窒素置換した後、窒素気流中で、上記2-2-2で得られた水性分散液40部(固形分)、水170部、水酸化ナトリウム0.01部、ピロリン酸ナトリウム0.2部、硫酸第一鉄7水和物0.01部、ブドウ糖0.2からなる水溶液を仕込んだ。重合温度80℃で一定温度として、ビニル系単量体として、アクリロニトリル15部、スチレン45部、更にtert-ドデシルメルカプタン0.05部からなる溶液とクメンハイドロパーオキシド0.1部を3時間かけて連続的に添加しながら重合を行い、その後、重合温度を維持したまま1時間重合を継続し、重合体AES-1のラテックスを得た。得られたラテックスの重合転化率は、98%であった。このラテックスに、2,2´-メチレン-ビス(4-エチル-6-tert-ブチルフェノール)0.2部を添加して重合を終了させた。この反応生成物のラテックスを硫酸水溶液で凝固、水洗した後、乾燥して重合体を得た。この重合体のグラフト率は60%、アセトン可溶分の極限粘度[η]は0.42dl/gであった。
2-3.エチレン-プロピレンゴム強化芳香族ビニル系樹脂(AES-2)
2-3-1.カチオン性高分子分散剤の製造
N,N-ジメチルアミノエチルメタクリレート62.9質量部(0.4モル)、ブチルメタクリレート71質量部(0.5モル)、ラウリルメタクリレート25.4質量部(0.1モル)、及びイソプロピルアルコール200質量部を攪拌機、還流冷却管、温度計及び滴下ロートを装着した4つ口フラスコ内に仕込み、窒素ガス置換後、2,2’-アゾビスイソブチロニトリル0.9質量部を添加し、80℃にて3時間重合した。次に、重合体中のジメチルアミノエチル基を酢酸24質量部(0.4モル)で中和した後、イソプロピルアルコールを留去しながら水を添加して置換し、固形分35質量%の粘稠なカチオン性のアクリル系共重合体を得た。
2-3-1.カチオン性高分子分散剤の製造
N,N-ジメチルアミノエチルメタクリレート62.9質量部(0.4モル)、ブチルメタクリレート71質量部(0.5モル)、ラウリルメタクリレート25.4質量部(0.1モル)、及びイソプロピルアルコール200質量部を攪拌機、還流冷却管、温度計及び滴下ロートを装着した4つ口フラスコ内に仕込み、窒素ガス置換後、2,2’-アゾビスイソブチロニトリル0.9質量部を添加し、80℃にて3時間重合した。次に、重合体中のジメチルアミノエチル基を酢酸24質量部(0.4モル)で中和した後、イソプロピルアルコールを留去しながら水を添加して置換し、固形分35質量%の粘稠なカチオン性のアクリル系共重合体を得た。
2-3-2.エチレン-プロピレンゴムラテックスの製造
エチレン-プロピレン共重合体(エチレン/プロピレン=78/22(%)、ムーニー粘度(ML1+4、100℃)は20、融点(Tm)は40℃、ガラス転移温度(Tg)は-50℃)100質量部を95℃に加温した2軸スクリュー型ニーダー(Irie Shoukai Co,Ltd.社製:PBV-03型)に仕込み12rpmで2分間撹拌しながら半溶融状態とした。そして、水18質量部と上記2-3-1で得られたカチオン性高分子分散剤6質量部(固形分)を加えて粘度6000mPa・sに調整したものを投入し、95℃、50rpmで30分間混練した。その後、95℃の温水を添加して固形分45質量%の乳白色の水性分散液を得た。
エチレン-プロピレン共重合体(エチレン/プロピレン=78/22(%)、ムーニー粘度(ML1+4、100℃)は20、融点(Tm)は40℃、ガラス転移温度(Tg)は-50℃)100質量部を95℃に加温した2軸スクリュー型ニーダー(Irie Shoukai Co,Ltd.社製:PBV-03型)に仕込み12rpmで2分間撹拌しながら半溶融状態とした。そして、水18質量部と上記2-3-1で得られたカチオン性高分子分散剤6質量部(固形分)を加えて粘度6000mPa・sに調整したものを投入し、95℃、50rpmで30分間混練した。その後、95℃の温水を添加して固形分45質量%の乳白色の水性分散液を得た。
2-3-3.AES-2の重合
リボン型攪拌機翼、助剤連続添加装置、温度計などを装備した容積20リットルのステンレス製オートクレーブを窒素置換した後、窒素気流中で、上記2-3-2で得られた水性分散液40部(固形分)、水170部、水酸化ナトリウム0.01部、ピロリン酸ナトリウム0.2部、硫酸第一鉄7水和物0.01部、ブドウ糖0.2からなる水溶液を仕込んだ。重合温度80℃で一定温度として、ビニル系単量体として、アクリロニトリル15部、スチレン45部、更にtert-ドデシルメルカプタン0.05部からなる溶液とクメンハイドロパーオキシド0.1部を3時間かけて連続的に添加しながら重合を行い、その後、重合温度を維持したまま1時間重合を継続し、重合体AES-2のラテックスを得た。得られたラテックスの重合転化率は、98%であった。このラテックスに、2,2´-メチレン-ビス(4-エチル-6-tert-ブチルフェノール)0.2部を添加して重合を終了させた。この反応生成物のラテックスを硫酸水溶液で凝固、水洗した後、乾燥して重合体を得た。この重合体のグラフト率は60%、アセトン可溶分の極限粘度[η]は0.42dl/gであった。
リボン型攪拌機翼、助剤連続添加装置、温度計などを装備した容積20リットルのステンレス製オートクレーブを窒素置換した後、窒素気流中で、上記2-3-2で得られた水性分散液40部(固形分)、水170部、水酸化ナトリウム0.01部、ピロリン酸ナトリウム0.2部、硫酸第一鉄7水和物0.01部、ブドウ糖0.2からなる水溶液を仕込んだ。重合温度80℃で一定温度として、ビニル系単量体として、アクリロニトリル15部、スチレン45部、更にtert-ドデシルメルカプタン0.05部からなる溶液とクメンハイドロパーオキシド0.1部を3時間かけて連続的に添加しながら重合を行い、その後、重合温度を維持したまま1時間重合を継続し、重合体AES-2のラテックスを得た。得られたラテックスの重合転化率は、98%であった。このラテックスに、2,2´-メチレン-ビス(4-エチル-6-tert-ブチルフェノール)0.2部を添加して重合を終了させた。この反応生成物のラテックスを硫酸水溶液で凝固、水洗した後、乾燥して重合体を得た。この重合体のグラフト率は60%、アセトン可溶分の極限粘度[η]は0.42dl/gであった。
2-4.エチレン-プロピレンゴム強化芳香族ビニル系樹脂(AES-3)
2-4-1.エチレン-プロピレンゴムラテックスの製造
エチレン-プロピレン共重合体(エチレン/プロピレン=78/22(%)、ムーニー粘度(ML1+4、100℃)は20、融点(Tm)は40℃、ガラス転移温度(Tg)は-50℃)100部をn-ヘキサン566部に溶解した後、成分(C)として三井化学(株)製酸変性型ポリエチレン(商品名:ハイワックス2203A、重量平均分子量:2500 酸価:30mgKOH/g(測定方法:JIS K 0070))10部を添加し、さらにオレイン酸4.5部を加えて完全に溶解し、重合体溶液を調製した。これとは別に水700部に水酸化カリウム0.9部を溶解した水溶液にエチレングリコール0.6部を加え60℃に保ち、これに先に調製した上記重合体溶液を少しずつ加えて乳化した後、ホモミキサーで撹拌した。次いで、溶剤と水の一部を留去して粒子径300~600nmのラテックスを得た。このラテックスにエチレン-プロピレン共重合体100部に対して、ジビニルベンゼン1.5部、ジ-tert-ブチルパーオキシトリメチルシクロヘキサン1.0部を添加して、120℃で1時間反応させて、エチレン-プロピレンゴムラテックスを得た。
2-4-1.エチレン-プロピレンゴムラテックスの製造
エチレン-プロピレン共重合体(エチレン/プロピレン=78/22(%)、ムーニー粘度(ML1+4、100℃)は20、融点(Tm)は40℃、ガラス転移温度(Tg)は-50℃)100部をn-ヘキサン566部に溶解した後、成分(C)として三井化学(株)製酸変性型ポリエチレン(商品名:ハイワックス2203A、重量平均分子量:2500 酸価:30mgKOH/g(測定方法:JIS K 0070))10部を添加し、さらにオレイン酸4.5部を加えて完全に溶解し、重合体溶液を調製した。これとは別に水700部に水酸化カリウム0.9部を溶解した水溶液にエチレングリコール0.6部を加え60℃に保ち、これに先に調製した上記重合体溶液を少しずつ加えて乳化した後、ホモミキサーで撹拌した。次いで、溶剤と水の一部を留去して粒子径300~600nmのラテックスを得た。このラテックスにエチレン-プロピレン共重合体100部に対して、ジビニルベンゼン1.5部、ジ-tert-ブチルパーオキシトリメチルシクロヘキサン1.0部を添加して、120℃で1時間反応させて、エチレン-プロピレンゴムラテックスを得た。
2-4-2.AES-3の重合
リボン型攪拌機翼、助剤連続添加装置、温度計などを装備した容積20リットルのステンレス製オートクレーブを窒素置換した後、窒素気流中で、上記2-3-2で得られたエチレン-プロピレンンゴムラテックス40部(固形分)、水170部、水酸化ナトリウム0.01部、ピロリン酸ナトリウム0.2部、硫酸第一鉄7水和物0.01部、ブドウ糖0.2からなる水溶液を仕込んだ。重合温度80℃で一定温度として、ビニル系単量体として、アクリロニトリル15部、スチレン45部、更にtert-ドデシルメルカプタン0.05部からなる溶液とクメンハイドロパーオキシド0.1部を3時間かけて連続的に添加しながら重合を行い、その後、重合温度を維持したまま1時間重合を継続し、重合体AES-3のラテックスを得た。得られたラテックスの重合転化率は、98%であった。このラテックスに、2,2´-メチレン-ビス(4-エチル-6-tert-ブチルフェノール)0.2部を添加して重合を終了させた。この反応生成物のラテックスを硫酸水溶液で凝固、水洗した後、乾燥して重合体を得た。この重合体のグラフト率は62%、アセトン可溶分の極限粘度[η]は0.40dl/gであった。
リボン型攪拌機翼、助剤連続添加装置、温度計などを装備した容積20リットルのステンレス製オートクレーブを窒素置換した後、窒素気流中で、上記2-3-2で得られたエチレン-プロピレンンゴムラテックス40部(固形分)、水170部、水酸化ナトリウム0.01部、ピロリン酸ナトリウム0.2部、硫酸第一鉄7水和物0.01部、ブドウ糖0.2からなる水溶液を仕込んだ。重合温度80℃で一定温度として、ビニル系単量体として、アクリロニトリル15部、スチレン45部、更にtert-ドデシルメルカプタン0.05部からなる溶液とクメンハイドロパーオキシド0.1部を3時間かけて連続的に添加しながら重合を行い、その後、重合温度を維持したまま1時間重合を継続し、重合体AES-3のラテックスを得た。得られたラテックスの重合転化率は、98%であった。このラテックスに、2,2´-メチレン-ビス(4-エチル-6-tert-ブチルフェノール)0.2部を添加して重合を終了させた。この反応生成物のラテックスを硫酸水溶液で凝固、水洗した後、乾燥して重合体を得た。この重合体のグラフト率は62%、アセトン可溶分の極限粘度[η]は0.40dl/gであった。
2-5.エチレン-プロピレンゴム強化芳香族ビニル系樹脂(AES-4)(参考例)
リボン型攪拌機翼、助剤連続添加装置、温度計などを装備した容積20リットルのステンレス製オートクレーブに、エチレン-プロピレン共重合体(エチレン/プロピレン=78/22(%)、ムーニー粘度(ML1+4 、100℃)は20、融点(Tm)は40℃、ガラス転移温度(Tg)は-50℃)22部、スチレン55部、アクリロニトリル23部、t-ドデシルメルカプタン0.5部、トルエン110部を仕込み、内温を75℃に昇温して、オートクレーブ内容物を1時間攪拌して均一溶液とした。その後、t-ブチルパーオキシイソプロピルモノカーボネート0.45部を添加し、内温を更に昇温して、100℃に達した後は、この温度を保持しながら、攪拌回転数100rpmとして重合反応を行った。重合反応開始後4時間目から、内温を120℃に昇温し、この温度を保持しながら更に2時間反応を行って重合反応を終了した。重合転化率は98%であった。その後、内温を100℃まで冷却し、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェノール)-プロピオネート0.2部、ジメチルシリコーンオイル;KF-96-100cSt(商品名:信越シリコーン株式会社製)0.02部を添加した後、反応混合物をオートクレーブより抜き出し、水蒸気蒸留により未反応物と溶媒を留去し、さらに40mmφベント付き押出機(シリンダー温度220℃、真空度760mmHg)を用いて揮発分を実質的に脱気させ、ペレット化した。得られたゴム強化芳香族ビニル系樹脂(AES-4)において、エチレン・α-オレフィン系ゴム質重合体(b1)の含有量は22%(重合転化率から計算)、グラフト率は70%、アセトン可溶分の極限粘度[η]は0.47dl/g、JIS K 7121-1987に従って測定した融点が40℃であった。
リボン型攪拌機翼、助剤連続添加装置、温度計などを装備した容積20リットルのステンレス製オートクレーブに、エチレン-プロピレン共重合体(エチレン/プロピレン=78/22(%)、ムーニー粘度(ML1+4 、100℃)は20、融点(Tm)は40℃、ガラス転移温度(Tg)は-50℃)22部、スチレン55部、アクリロニトリル23部、t-ドデシルメルカプタン0.5部、トルエン110部を仕込み、内温を75℃に昇温して、オートクレーブ内容物を1時間攪拌して均一溶液とした。その後、t-ブチルパーオキシイソプロピルモノカーボネート0.45部を添加し、内温を更に昇温して、100℃に達した後は、この温度を保持しながら、攪拌回転数100rpmとして重合反応を行った。重合反応開始後4時間目から、内温を120℃に昇温し、この温度を保持しながら更に2時間反応を行って重合反応を終了した。重合転化率は98%であった。その後、内温を100℃まで冷却し、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェノール)-プロピオネート0.2部、ジメチルシリコーンオイル;KF-96-100cSt(商品名:信越シリコーン株式会社製)0.02部を添加した後、反応混合物をオートクレーブより抜き出し、水蒸気蒸留により未反応物と溶媒を留去し、さらに40mmφベント付き押出機(シリンダー温度220℃、真空度760mmHg)を用いて揮発分を実質的に脱気させ、ペレット化した。得られたゴム強化芳香族ビニル系樹脂(AES-4)において、エチレン・α-オレフィン系ゴム質重合体(b1)の含有量は22%(重合転化率から計算)、グラフト率は70%、アセトン可溶分の極限粘度[η]は0.47dl/g、JIS K 7121-1987に従って測定した融点が40℃であった。
2-6.ブタジエンゴム強化芳香族ビニル系樹脂(ABS)
撹拌機を備えたガラス製反応容器に、イオン交換水75部、ロジン酸カリウム0.5部、t-ドデシルメルカプタン0.1部、ポリブタジエンラテックス(平均粒子径:270nm、ゲル含率90%)32部(固形分換算)、スチレン-ブタジエン共重合ラテックス(スチレン含率25%、平均粒子径550nm)8部、スチレン15部及びアクリロニトリル5部を入れ、窒素気流中で攪拌しながら昇温した。内温が45℃に達した時点でピロリン酸ナトリウム0.2部、硫酸第一鉄7水和物0.01部及びブドウ糖0.2部をイオン交換水20部に溶解した溶液を加えた。その後、クメンハイドロパーオキサイド0.07部を加えて重合を開始し、1時間重合させた。次いで、イオン交換水50部、ロジン酸カリウム0.7部、スチレン30部、アクリロニトリル10部、t-ドデシルメルカプタン0.05部及びクメンハイドロパーオキサイド0.01部を3時間かけて連続的に添加した。1時間重合させた後2,2´-メチレン-ビス(4-エチレン-6-t-ブチルフェノール)0.2部を添加し重合を完結させた。このラテックスに硫酸マグネシウムを添加し、樹脂成分を凝固させた。その後、水洗、更に乾燥することによりブタジエンゴム強化芳香族ビニル系樹脂を得た。グラフト率は72%、アセトン可溶分の極限粘度[η]は0.47dl/gであった。
撹拌機を備えたガラス製反応容器に、イオン交換水75部、ロジン酸カリウム0.5部、t-ドデシルメルカプタン0.1部、ポリブタジエンラテックス(平均粒子径:270nm、ゲル含率90%)32部(固形分換算)、スチレン-ブタジエン共重合ラテックス(スチレン含率25%、平均粒子径550nm)8部、スチレン15部及びアクリロニトリル5部を入れ、窒素気流中で攪拌しながら昇温した。内温が45℃に達した時点でピロリン酸ナトリウム0.2部、硫酸第一鉄7水和物0.01部及びブドウ糖0.2部をイオン交換水20部に溶解した溶液を加えた。その後、クメンハイドロパーオキサイド0.07部を加えて重合を開始し、1時間重合させた。次いで、イオン交換水50部、ロジン酸カリウム0.7部、スチレン30部、アクリロニトリル10部、t-ドデシルメルカプタン0.05部及びクメンハイドロパーオキサイド0.01部を3時間かけて連続的に添加した。1時間重合させた後2,2´-メチレン-ビス(4-エチレン-6-t-ブチルフェノール)0.2部を添加し重合を完結させた。このラテックスに硫酸マグネシウムを添加し、樹脂成分を凝固させた。その後、水洗、更に乾燥することによりブタジエンゴム強化芳香族ビニル系樹脂を得た。グラフト率は72%、アセトン可溶分の極限粘度[η]は0.47dl/gであった。
2-7.スチレン-アクリロニトリル共重合体(AS)
内容積30リットルのリボン翼を備えたステンレス製オートクレーブを2基連結し、窒素置換した後、1基目の反応容器にスチレン70部、アクリルニトリル30部、トルエン20部を連続的に添加した。分子量調節剤としてtert-ドデシルメルカプタン0.12部およびトルエン5部の溶液、および重合開始剤として、1,1´―アゾビス( シクロへキサン-1-カーボニトリル)0.1部、およびトルエン5部の溶液を連続的に供給した。1基目の重合温度は110℃にコントロールし、平均滞留時間2.0時間、重合転化率57%であった。得られた重合体溶液は、1基目の反応容器の外部に設けられたポンプによりスチレン、アクリロニトリル、トルエン、分子量調節剤及び重合開始剤の供給量と同量を連続的に取り出し2基目の反応容器に供給した。2基目の反応容器の重合温度は、130℃で行い、重合転化率は75%であった。2基目の反応容器で得られた共重合体溶液は、2軸3段ベント付き押出機を用いて、直接未反応単量体と溶剤を脱揮し、極限粘度〔η〕0.48dl/gの重合体を得た。
内容積30リットルのリボン翼を備えたステンレス製オートクレーブを2基連結し、窒素置換した後、1基目の反応容器にスチレン70部、アクリルニトリル30部、トルエン20部を連続的に添加した。分子量調節剤としてtert-ドデシルメルカプタン0.12部およびトルエン5部の溶液、および重合開始剤として、1,1´―アゾビス( シクロへキサン-1-カーボニトリル)0.1部、およびトルエン5部の溶液を連続的に供給した。1基目の重合温度は110℃にコントロールし、平均滞留時間2.0時間、重合転化率57%であった。得られた重合体溶液は、1基目の反応容器の外部に設けられたポンプによりスチレン、アクリロニトリル、トルエン、分子量調節剤及び重合開始剤の供給量と同量を連続的に取り出し2基目の反応容器に供給した。2基目の反応容器の重合温度は、130℃で行い、重合転化率は75%であった。2基目の反応容器で得られた共重合体溶液は、2軸3段ベント付き押出機を用いて、直接未反応単量体と溶剤を脱揮し、極限粘度〔η〕0.48dl/gの重合体を得た。
2-8.オレフィン系(共)重合体(C)
2-8-1.未変性ポリエチレン(C-1)
三井化学株式会社製の未変性ポリエチレン「ハイワックス200P」を用いた。重量平均分子量は2000であった。
2-8-1.未変性ポリエチレン(C-1)
三井化学株式会社製の未変性ポリエチレン「ハイワックス200P」を用いた。重量平均分子量は2000であった。
2-8-2.変性型ポリエチレン(C-2)
三井化学株式会社製の変性型ポリエチレン(微酸価)「ハイワックス220MP」を用いた。重量平均分子量は2000、酸価は1mgKOH/g(測定方法:JIS K 0070)であった。
三井化学株式会社製の変性型ポリエチレン(微酸価)「ハイワックス220MP」を用いた。重量平均分子量は2000、酸価は1mgKOH/g(測定方法:JIS K 0070)であった。
2-8-3.変性型ポリエチレン(C-3)
三井化学株式会社製の変性型ポリエチレン(微酸価)「ハイワックス405MP」を用いた。重量平均分子量は4000、酸価は1mgKOH/g(測定方法:JIS K 0070)であった。
三井化学株式会社製の変性型ポリエチレン(微酸価)「ハイワックス405MP」を用いた。重量平均分子量は4000、酸価は1mgKOH/g(測定方法:JIS K 0070)であった。
2-8-4.変性型ポリエチレン(C-4)
三井化学株式会社製の酸変性型ポリエチレン「ハイワックス2203A」を用いた。重量平均分子量は2500、酸価は30mgKOH/g(測定方法:JIS K 0070)であった。
三井化学株式会社製の酸変性型ポリエチレン「ハイワックス2203A」を用いた。重量平均分子量は2500、酸価は30mgKOH/g(測定方法:JIS K 0070)であった。
2-9.相溶化剤(D)
D-1:官能基含有変性ポリオレフィン系相溶化剤「モディパーA4400」(商品名;日油株式会社製スチレン-アクリロニトリル共重合体グラフト化エチレン-グリシジルメタクリレート共重合体(EGMA-g-AS)、グリシジルメタクリレート含有量 15wt%)
D-2:官能基含有変性ポリオレフィン系相溶化剤「モディパーA5400」(商品名;日油株式会社製スチレン-アクリロニトリル共重合体グラフト化エチレン-エチルアクリレート共重合体(EEA-g-AS)、エチルアクリレート含有量 20wt%)
D-3:官能基含有変性ポリオレフィン系相溶化剤「モディパーA4100」(商品名;日油株式会社製ポリスチレングラフト化エチレン-グリシジルメタクリレート共重合体(EGMA-g-PS)、グリシジルメタクリレート含有量 15wt%)
D-4:官能基非含有変性ポリオレフィン系相溶化剤「モディパーA1100」(商品名;日油株式会社製ポリスチレングラフト化低密度ポリエチレン(LDPE-g-PS))
D-5(対照):高密度ポリエチレン「HJ560」(商品名;日本ポリエチレン株式会社製、メルトフローレート10g/10min(測定規格:JIS K 6922-2))
D-6:スチレン-ブタジエン-スチレン水添ブロック共重合体「タフテック H1041」(商品名;旭化成株式会社製、スチレン含量30質量%、MFR(230℃、2.16kg)5g/10分、比重0.91)
D-7:スチレン-ブタジエン-スチレン水添ブロック共重合体のアミン変性物「ダイナロン 8630P」(商品名;JSR株式会社製、スチレン含量15質量%、MFR(230℃、2.16kg)15g/10分、密度0.89g/cm3)
D-1:官能基含有変性ポリオレフィン系相溶化剤「モディパーA4400」(商品名;日油株式会社製スチレン-アクリロニトリル共重合体グラフト化エチレン-グリシジルメタクリレート共重合体(EGMA-g-AS)、グリシジルメタクリレート含有量 15wt%)
D-2:官能基含有変性ポリオレフィン系相溶化剤「モディパーA5400」(商品名;日油株式会社製スチレン-アクリロニトリル共重合体グラフト化エチレン-エチルアクリレート共重合体(EEA-g-AS)、エチルアクリレート含有量 20wt%)
D-3:官能基含有変性ポリオレフィン系相溶化剤「モディパーA4100」(商品名;日油株式会社製ポリスチレングラフト化エチレン-グリシジルメタクリレート共重合体(EGMA-g-PS)、グリシジルメタクリレート含有量 15wt%)
D-4:官能基非含有変性ポリオレフィン系相溶化剤「モディパーA1100」(商品名;日油株式会社製ポリスチレングラフト化低密度ポリエチレン(LDPE-g-PS))
D-5(対照):高密度ポリエチレン「HJ560」(商品名;日本ポリエチレン株式会社製、メルトフローレート10g/10min(測定規格:JIS K 6922-2))
D-6:スチレン-ブタジエン-スチレン水添ブロック共重合体「タフテック H1041」(商品名;旭化成株式会社製、スチレン含量30質量%、MFR(230℃、2.16kg)5g/10分、比重0.91)
D-7:スチレン-ブタジエン-スチレン水添ブロック共重合体のアミン変性物「ダイナロン 8630P」(商品名;JSR株式会社製、スチレン含量15質量%、MFR(230℃、2.16kg)15g/10分、密度0.89g/cm3)
3.成形体の製造及び評価
実施例1~23、比較例1~7、参考例1
表1又は表2記載の成分を各表に記載の配合割合でヘンシェルミキサーにより混合した後、ベント付き二軸押出機(日本製鋼所社製、TEX44、バレル設定温度260℃)を用いて溶融混練し、ペレット化した。得られたぺレットを十分に乾燥したのち、このペレットを用いて前記方法で試験片を成形し、そして得られた試験片を用いて、前記方法で評価した。評価結果を表1及び表2に示した。
実施例1~23、比較例1~7、参考例1
表1又は表2記載の成分を各表に記載の配合割合でヘンシェルミキサーにより混合した後、ベント付き二軸押出機(日本製鋼所社製、TEX44、バレル設定温度260℃)を用いて溶融混練し、ペレット化した。得られたぺレットを十分に乾燥したのち、このペレットを用いて前記方法で試験片を成形し、そして得られた試験片を用いて、前記方法で評価した。評価結果を表1及び表2に示した。
表1および表2から、以下のことがわかる。
本願の成分(B1)、(C)及び(D)を含有する実施例1~23は、軋み音の発生が低減され、剥離性、ウエルド外観、フローマーク、ウエルド強度が優れていた。また、成分(A)を含む実施例1~12、14~17、21~23は耐熱性にも優れていた。さらにジエン系ゴム(b2)を含む実施例14は、低温衝撃試験において延性破壊を示した。
本願の成分(B1)、(C)及び(D)を含有する実施例1~23は、軋み音の発生が低減され、剥離性、ウエルド外観、フローマーク、ウエルド強度が優れていた。また、成分(A)を含む実施例1~12、14~17、21~23は耐熱性にも優れていた。さらにジエン系ゴム(b2)を含む実施例14は、低温衝撃試験において延性破壊を示した。
なお、実施例1の熱可塑性樹脂を用いて図11の部品10を成形し、比較例7の熱可塑性樹脂を用いて図11の部品20を成形し、両者を図11に示されるように嵌め込んでボルトナットで締結して組み立てた後、図11の矢印の方向に繰り返し荷重をかけたところ、軋み音は発生しなかった。この組立体を80℃、95%RHに制御した恒温恒湿槽内で300時間放置(湿熱処理)した後、図11の矢印の方向に繰り返し荷重をかけたところ、同様に軋み音は発生しなかった。
成分(C)を含有しない熱可塑性樹脂組成物を用いた比較例1は、軋み音の発生が顕著であった。成分(D)を含有しない熱可塑性樹脂組成物を用いた比較例2は、軋み音の発生が顕著であり、剥離性、ウエルド外観、フローマーク、ウエルド強度も劣った。成分(C)を過剰に含有する熱可塑性樹脂組成物を用いた比較例3は、剥離性、ウエルド外観、フローマーク、ウエルド強度が著しく劣ったため、その後の評価は行なわなかった。成分(D)を過剰に含有する熱可塑性樹脂組成物を用いた比較例4は、押出機によるペレット化が困難で、ウエルド外観に劣り、得られた成形品も軋み音の発生が顕著であった。成分(D)の代わりに高密度ポリエチレンを含有する熱可塑性樹脂組成物を配合した比較例5は、軋み音の発生が顕著であり、剥離性、ウエルド強度が劣った。成分(B)を含有しない熱可塑性樹脂組成物を用いた比較例6は、軋み音の発生が顕著であり、ウエルド外観、フローマークが劣った。成分(B1)にかえて成分(B2)を含有する熱可塑性樹脂組成物を用いた比較例7は、軋み音の発生が顕著であった。
本発明の熱可塑性樹脂組成物は、軋み音が抑制されているだけでなく、ゲート付近での剥離を生じることなく、ウエルド外観などの成形品外観及びウエルド強度にも優れるので、軋み音が忌避される物品の成形材料として有用である。
Claims (7)
- ゴム強化芳香族ビニル系樹脂(B)を含む熱可塑性樹脂(X)と、下記成分(C)と、下記成分(D)とを少なくとも含んでなる熱可塑性樹脂組成物であって、
前記成分(B)は下記成分(B1)を含み、
前記成分(C)の含有量が前記成分(X)100質量部に対して0.1~10質量部であり、
前記成分(D)の含有量が前記成分(X)100質量部に対して0.1~15質量部である熱可塑性樹脂組成物。
成分(B1):ゴム成分としてエチレン・α-オレフィン系ゴム(b1)を含有する、乳化重合で得られたゴム強化芳香族ビニル系樹脂。
成分(C):ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量が300~10,000のオレフィン系(共)重合体。
成分(D):相溶化剤。 - 前記成分(X)が更にポリカーボネート樹脂(A)を含む請求項1に記載の熱可塑性樹脂組成物。
- 前記成分(A)の含有量が前記成分(A)及び前記成分(B)の合計100質量%に対して30~90質量%であり、前記成分(B)の含有量が前記成分(A)及び前記成分(B)の合計100質量%に対して10~70質量%である請求項2に記載の熱可塑性樹脂組成物。
- 前記成分(B)は、ゴム成分としてジエン系ゴム(b2)を含有し、前記成分(b1)の含有量が前記成分(b1)及び前記成分(b2)の合計100質量%に対して90~15質量%であり、前記成分(b2)の含有量が前記成分(b1)及び前記成分(b2)の合計100質量%に対して10~85質量%である請求項1乃至3の何れか1項に記載の熱可塑性樹脂組成物。
- 前記成分(B)のゴム成分の含有量が前記成分(X)100質量%に対して3~20質量%である請求項1乃至4の何れか1項に記載の熱可塑性樹脂組成物。
- 請求項1乃至5の何れか1項に記載の熱可塑性樹脂組成物からなる成形品。
- 少なくとも2個の互いに接触する部品を含む物品であって、前記部品の少なくとも1つが請求項6に記載の成形品からなる物品。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015554880A JP6671175B2 (ja) | 2013-12-26 | 2014-12-22 | 熱可塑性樹脂組成物及びその成形品 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013270405 | 2013-12-26 | ||
JP2013-270405 | 2013-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015098832A1 true WO2015098832A1 (ja) | 2015-07-02 |
Family
ID=53478686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/083902 WO2015098832A1 (ja) | 2013-12-26 | 2014-12-22 | 熱可塑性樹脂組成物及びその成形品 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6671175B2 (ja) |
WO (1) | WO2015098832A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018028046A (ja) * | 2016-08-19 | 2018-02-22 | ユーエムジー・エービーエス株式会社 | 熱可塑性樹脂組成物、その製造方法および成形品 |
WO2020222510A1 (ko) * | 2019-04-30 | 2020-11-05 | 롯데케미칼 주식회사 | 열가소성 수지 조성물 및 이를 이용한 성형품 |
WO2020222511A1 (ko) * | 2019-04-30 | 2020-11-05 | 롯데케미칼 주식회사 | 열가소성 수지 조성물 및 이를 이용한 성형품 |
US20210002435A1 (en) * | 2018-03-07 | 2021-01-07 | Mitsui Chemicals, Inc. | Resin composition for masterbatch |
US11603465B1 (en) * | 2021-03-17 | 2023-03-14 | Techno-Umg Co., Ltd. | Thermoplastic composition and molded article thereof |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58167645A (ja) * | 1982-03-29 | 1983-10-03 | Sumitomo Naugatuck Co Ltd | 熱可塑性樹脂組成物 |
JPH0726102A (ja) * | 1993-07-14 | 1995-01-27 | Japan Synthetic Rubber Co Ltd | 難燃性樹脂組成物 |
JPH0733947A (ja) * | 1993-07-20 | 1995-02-03 | Japan Synthetic Rubber Co Ltd | 熱可塑性樹脂組成物 |
JPH0834915A (ja) * | 1994-07-22 | 1996-02-06 | Asahi Chem Ind Co Ltd | ポリカーボネート含有スチレン系樹脂組成物 |
JPH10298373A (ja) * | 1997-04-23 | 1998-11-10 | Asahi Chem Ind Co Ltd | 高衝撃性ポリカーボネート系樹脂組成物 |
JP2000169687A (ja) * | 1998-12-03 | 2000-06-20 | Teijin Chem Ltd | 熱可塑性樹脂組成物 |
JP2004143433A (ja) * | 2002-09-30 | 2004-05-20 | Techno Polymer Co Ltd | ゴム強化ビニル系樹脂、ゴム強化ビニル系樹脂の製造方法、ゴム強化ビニル系樹脂組成物 |
JP2011137067A (ja) * | 2009-12-28 | 2011-07-14 | Techno Polymer Co Ltd | 軋み音を低減した自動車内装部品 |
JP2011168186A (ja) * | 2010-02-19 | 2011-09-01 | Techno Polymer Co Ltd | 軋み音を低減した自動車内装部品 |
JP2012046669A (ja) * | 2010-08-27 | 2012-03-08 | Techno Polymer Co Ltd | 軋み音を低減した熱可塑性樹脂組成物製接触用部品 |
JP2012072202A (ja) * | 2010-09-27 | 2012-04-12 | Nippon A&L Inc | 熱可塑性樹脂組成物及び成形体 |
JP2012077274A (ja) * | 2010-10-06 | 2012-04-19 | Techno Polymer Co Ltd | 軋み音を低減した熱可塑性樹脂組成物製接触用部品 |
JP2012077275A (ja) * | 2010-10-06 | 2012-04-19 | Techno Polymer Co Ltd | 軋み音を低減した熱可塑性樹脂組成物製接触用部品 |
-
2014
- 2014-12-22 JP JP2015554880A patent/JP6671175B2/ja active Active
- 2014-12-22 WO PCT/JP2014/083902 patent/WO2015098832A1/ja active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58167645A (ja) * | 1982-03-29 | 1983-10-03 | Sumitomo Naugatuck Co Ltd | 熱可塑性樹脂組成物 |
JPH0726102A (ja) * | 1993-07-14 | 1995-01-27 | Japan Synthetic Rubber Co Ltd | 難燃性樹脂組成物 |
JPH0733947A (ja) * | 1993-07-20 | 1995-02-03 | Japan Synthetic Rubber Co Ltd | 熱可塑性樹脂組成物 |
JPH0834915A (ja) * | 1994-07-22 | 1996-02-06 | Asahi Chem Ind Co Ltd | ポリカーボネート含有スチレン系樹脂組成物 |
JPH10298373A (ja) * | 1997-04-23 | 1998-11-10 | Asahi Chem Ind Co Ltd | 高衝撃性ポリカーボネート系樹脂組成物 |
JP2000169687A (ja) * | 1998-12-03 | 2000-06-20 | Teijin Chem Ltd | 熱可塑性樹脂組成物 |
JP2004143433A (ja) * | 2002-09-30 | 2004-05-20 | Techno Polymer Co Ltd | ゴム強化ビニル系樹脂、ゴム強化ビニル系樹脂の製造方法、ゴム強化ビニル系樹脂組成物 |
JP2011137067A (ja) * | 2009-12-28 | 2011-07-14 | Techno Polymer Co Ltd | 軋み音を低減した自動車内装部品 |
JP2011168186A (ja) * | 2010-02-19 | 2011-09-01 | Techno Polymer Co Ltd | 軋み音を低減した自動車内装部品 |
JP2012046669A (ja) * | 2010-08-27 | 2012-03-08 | Techno Polymer Co Ltd | 軋み音を低減した熱可塑性樹脂組成物製接触用部品 |
JP2012072202A (ja) * | 2010-09-27 | 2012-04-12 | Nippon A&L Inc | 熱可塑性樹脂組成物及び成形体 |
JP2012077274A (ja) * | 2010-10-06 | 2012-04-19 | Techno Polymer Co Ltd | 軋み音を低減した熱可塑性樹脂組成物製接触用部品 |
JP2012077275A (ja) * | 2010-10-06 | 2012-04-19 | Techno Polymer Co Ltd | 軋み音を低減した熱可塑性樹脂組成物製接触用部品 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018028046A (ja) * | 2016-08-19 | 2018-02-22 | ユーエムジー・エービーエス株式会社 | 熱可塑性樹脂組成物、その製造方法および成形品 |
US20210002435A1 (en) * | 2018-03-07 | 2021-01-07 | Mitsui Chemicals, Inc. | Resin composition for masterbatch |
US11767404B2 (en) * | 2018-03-07 | 2023-09-26 | Mitsui Chemicals, Inc. | Resin composition for masterbatch |
WO2020222510A1 (ko) * | 2019-04-30 | 2020-11-05 | 롯데케미칼 주식회사 | 열가소성 수지 조성물 및 이를 이용한 성형품 |
WO2020222511A1 (ko) * | 2019-04-30 | 2020-11-05 | 롯데케미칼 주식회사 | 열가소성 수지 조성물 및 이를 이용한 성형품 |
CN113795546A (zh) * | 2019-04-30 | 2021-12-14 | 乐天化学株式会社 | 热塑性树脂组合物及利用它而成的成型品 |
US11603465B1 (en) * | 2021-03-17 | 2023-03-14 | Techno-Umg Co., Ltd. | Thermoplastic composition and molded article thereof |
US20230087173A1 (en) * | 2021-03-17 | 2023-03-23 | Techno-Umg Co., Ltd. | Thermoplastic composition and molded article thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6671175B2 (ja) | 2020-03-25 |
JPWO2015098832A1 (ja) | 2017-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10227486B2 (en) | Contacting part made of thermoplastic resin composition with reduced squeaking noises | |
WO2010117020A1 (ja) | 軋み音を低減した自動車内装部品 | |
WO2015098832A1 (ja) | 熱可塑性樹脂組成物及びその成形品 | |
JP6285179B2 (ja) | 熱可塑性樹脂組成物及び成形品 | |
JP6357030B2 (ja) | 熱可塑性樹脂組成物及びその成形品 | |
JP6370682B2 (ja) | 熱可塑性樹脂組成物及びその成形品 | |
WO2021070633A1 (ja) | 熱可塑性樹脂組成物およびその成形品 | |
JP6055010B2 (ja) | 軋み音を低減した熱可塑性樹脂組成物製接触用部品 | |
JP6087330B2 (ja) | 軋み音を低減した熱可塑性樹脂組成物及び成形品 | |
JP5820040B2 (ja) | 軋み音を低減した熱可塑性樹脂組成物製接触用部品 | |
JP6307271B2 (ja) | 熱可塑性樹脂組成物及び成形品 | |
JP6266964B2 (ja) | 熱可塑性樹脂組成物及びその成形品 | |
JP6344749B2 (ja) | 熱可塑性樹脂組成物製接触用部品 | |
JP6010170B2 (ja) | 熱可塑性樹脂組成物及び成形品 | |
JP6085016B2 (ja) | 熱可塑性樹脂組成物及び成形品 | |
JP2018115344A (ja) | 熱可塑性樹脂組成物及び成形品 | |
JP2018138680A (ja) | 熱可塑性樹脂組成物及びその成形品 | |
JP6379492B2 (ja) | 軋み音低減接触用部品 | |
JP2012077275A (ja) | 軋み音を低減した熱可塑性樹脂組成物製接触用部品 | |
JP6444364B2 (ja) | 熱可塑性樹脂組成物及び成形品 | |
JP6251323B2 (ja) | 熱可塑性樹脂組成物成形品の製造方法 | |
JP5889351B2 (ja) | 軋み音を低減した熱可塑性樹脂組成物製接触用部品 | |
JP2015120939A (ja) | 熱可塑性樹脂組成物及び成形品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14874274 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015554880 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14874274 Country of ref document: EP Kind code of ref document: A1 |