WO2015098475A1 - 発泡成形体 - Google Patents

発泡成形体 Download PDF

Info

Publication number
WO2015098475A1
WO2015098475A1 PCT/JP2014/082394 JP2014082394W WO2015098475A1 WO 2015098475 A1 WO2015098475 A1 WO 2015098475A1 JP 2014082394 W JP2014082394 W JP 2014082394W WO 2015098475 A1 WO2015098475 A1 WO 2015098475A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
instrument panel
foamed
panel duct
mfr
Prior art date
Application number
PCT/JP2014/082394
Other languages
English (en)
French (fr)
Inventor
小野寺 正明
尊 佐野
Original Assignee
キョーラク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53478340&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015098475(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by キョーラク株式会社 filed Critical キョーラク株式会社
Priority to US15/107,968 priority Critical patent/US11111349B2/en
Priority to CN201480070796.6A priority patent/CN105849165B/zh
Priority to MX2016008487A priority patent/MX2016008487A/es
Priority to KR1020167018433A priority patent/KR102058745B1/ko
Priority to KR1020197003734A priority patent/KR102208607B1/ko
Priority to EP14874087.1A priority patent/EP3088452B1/en
Publication of WO2015098475A1 publication Critical patent/WO2015098475A1/ja
Priority to US17/394,463 priority patent/US11608420B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/0633LDPE, i.e. low density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/065HDPE, i.e. high density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)

Definitions

  • the present invention relates to a foamed molded product molded from a foamed resin in a molten state.
  • a tubular air conditioning duct for allowing air to flow is used.
  • a foam molded article using a foamed resin obtained by foaming a thermoplastic resin with a foaming agent is known.
  • the demand for expanded molded articles is increasing because they can simultaneously achieve high heat insulation and light weight.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-2411557 discloses a surface on the outer surface by foam blow molding in which a supercritical fluid is added as a foaming agent.
  • a foam duct having a roughness and a foaming ratio within a predetermined range is disclosed.
  • Patent Document 2 Japanese Patent No. 4084209 discloses that foaming is performed with a physical foaming agent using a resin in which a specific high-density polyethylene and a specific low-density polyethylene are blended in a specific ratio as a base resin for the foam layer. And a technique for forming a foamed layer is disclosed.
  • Patent Document 1 discloses an example in which a polypropylene resin is used as a raw material resin for a foam duct.
  • a polypropylene resin is generally used as a raw material resin for a foam molded article.
  • Patent Document 2 since the raw material of the polypropylene resin is expensive, in recent years, there is a resin using a polyethylene resin as disclosed in Patent Document 2 as the raw material resin for the foam molded article. Since polyethylene-based resins are generally less expensive than polypropylene-based resins, it is possible to produce foamed molded articles at low cost.
  • the present inventors tried to obtain a desired foamed molded product by using a polyethylene-based resin as a raw material resin for the foamed molded product.
  • the foamed molded product molded by clamping with a split mold is taken out from the split mold, the resin constituting the foamed molded product is divided into molds. As a result, the foamed molded product could not be easily removed from the split mold. For this reason, it is desired that the foamed molded product can be easily taken out from the split mold.
  • An object of the present disclosure is to obtain a foamed molded product that can be easily taken out from a split mold.
  • the foamed molded product according to one aspect of the present disclosure is: A foamed molded article formed by clamping a foamed resin obtained by melting and kneading a polyethylene resin with a split mold, MFR (190 degreeC, g / 10min) of the shape
  • molded said foaming molding is less than 0.8, It is characterized by the above-mentioned.
  • the polyethylene resin has an MFR (190 ° C., g / 10 min) of 1.0 or less.
  • FIG. FIG. 3 is a cross-sectional view taken along the line D-D ′ of FIG. 2.
  • It is a 1st figure which shows the example of a shaping
  • It is a 3rd figure which shows the example of a shaping
  • FIG. 1 is a diagram illustrating a configuration example of a foamed molded body 1 according to an aspect of the present disclosure.
  • FIG. 9 is a diagram for explaining a foamed molded body 1 according to an aspect of the present disclosure.
  • the foamed molded body 1 is a foamed molded body 1 formed by clamping a foamed resin obtained by melting and kneading a polyethylene resin with a split mold.
  • the foamed molded product 1 according to one embodiment of the present disclosure is characterized in that the molded foamed molded product 1 has an MFR (190 ° C., g / 10 minutes) of less than 0.8. .
  • the MFR (190 ° C., g / 10 minutes) of the polyethylene resin is 1.0 or less.
  • the molded foamed molded product 1 When the molded foamed molded product 1 is taken out from between the split molds by setting the MFR of the molded foamed molded product 1 to less than 0.8 or the MFR of the polyethylene resin to 1.0 or less, foaming is performed.
  • the foamed resin constituting the molded body 1 does not stick to the split mold, and the foam molded body 1 can be easily taken out from the split mold.
  • an embodiment of a foamed molded product 1 according to one aspect of the present disclosure will be described in detail with reference to the accompanying drawings.
  • the instrument panel duct 1 will be described as an example of the foam molded body 1.
  • FIG. 1 is a schematic plan view of the instrument panel duct 1 and shows the instrument panel duct 1 on the side having a supply unit 105 for connection to an air conditioner unit (not shown).
  • FIG. 2 is a schematic plan view of the periphery of the fitting portion 102d shown in FIG. 1, and
  • FIG. 3 is a sectional view taken along the line DD ′ of FIG.
  • the instrument panel duct 1 of the present embodiment is a lightweight instrument panel duct 1 for circulating cool and warm air supplied from an air conditioner unit to a desired part.
  • the instrument panel duct 1 of this embodiment is molded by clamping a foamed resin obtained by melting and kneading a predetermined polyethylene resin with a split mold and blow molding.
  • the instrument panel duct 1 of the present embodiment has a closed cell structure (for example, a closed cell rate of 70% or more) having a foaming ratio of 1.3 times or more and a plurality of bubbles.
  • the average thickness of the instrument panel duct 1 is 0.5 mm or more.
  • the surface roughness Rmax of the inner surface of the duct of the instrument panel duct 1 is 200 ⁇ m or less. By configuring the surface roughness Rmax to be 200 ⁇ m or less, the ventilation efficiency can be improved.
  • the instrument panel duct 1 of the present embodiment preferably has a tensile fracture elongation at ⁇ 10 ° C. of 40% or more and a tensile elastic modulus at room temperature of 1000 kg / cm 2 or more. Further, the tensile fracture elongation at ⁇ 10 ° C. is preferably 100% or more. The terms used in this embodiment are defined below.
  • Foaming ratio A value obtained by dividing the density of the foamed resin used in the molding method of the present embodiment, which will be described later, by the apparent density in the tube main body X1 (see FIG. 3) of the instrument panel duct 1 obtained by the molding method of the present embodiment. The expansion ratio was taken.
  • Tensile elongation at break After cutting out the tube main body X1 of the instrument panel duct 1 obtained by the molding method of this embodiment described later, and storing at -10 ° C, the tensile speed is 50 mm as a No. 2 type test piece according to JIS K-7113. The value measured at / min was taken as the tensile elongation at break.
  • Tensile elastic modulus The tube body X1 of the instrument panel duct 1 obtained by the molding method of this embodiment described later is cut out and pulled at a normal temperature (for example, 23 ° C.) as a No. 2 type test piece according to JIS K-7113. Was measured at 50 mm / min as the tensile elastic modulus.
  • a supply unit 105 for connection to an air conditioner unit is provided at one end of the pipe unit 101 (101a to 101d). Further, the fitting part 102 (102a to 102d) is provided at the other end of the pipe part 101 (101a to 101d). Further, a flange portion 103 (103a to 103g) is connected to a tube main body X1 (see FIG. 3) composed of the tube portion 101 (101a to 101d), the supply portion 105, and the fitting portion 102 (102a to 102d). .
  • the average thickness means an average value of the thickness measured at equal intervals of about 100 mm in the hollow drawing direction of the molded product. If it is a hollow molded product, measure the wall thickness in the direction of the 90 ° direction of each part of the two wall parts welded via the parting line, and mean the average value of the measured thickness To do. However, the above-described flange portion 103 and the like are not included in the measurement position.
  • the inner side of the pipe body X1 is configured to have a flow path through which the fluid flows, so that the cool and warm air of the air conditioner unit can be circulated.
  • the flow path of the fluid supplied from the opening 111 of the supply section 105 to the inside of the tube main body X1 is divided into four paths A, B-1, B-2, and C as shown in FIG.
  • the fluid supplied from the opening 111 of the supply unit 105 to the inside of the tube main body X1 flows out from the opening of the fitting portion 102a in the flow path A. Further, in the flow path B-1, it flows out from the opening of the fitting portion 102b. Further, in the flow path B-2, it flows out from the opening of the fitting portion 102c. Moreover, in the flow path C, it flows out from the opening part of the fitting part 102d.
  • a supply portion 105 is provided at one end of the tube portion 101a, and a fitting portion 102a is provided at the other end.
  • flange portions 103a and 103e are connected to a tube main body X1 including the tube portion 101a, the supply portion 105, and the fitting portion 102a.
  • the flange portion 103a is provided with a fixing hole 107a for fixing to another tubular member connected by the fitting portion 102a.
  • the instrument panel duct 1 can be fixed to another tubular member by passing a bolt (not shown) through the fixing hole 107a and tightening it with a nut.
  • a fixing hole 107e is also formed in the flange portion 103e.
  • a supply portion 105 is provided at one end of the tube portion 101b, and a fitting portion 102b is provided at the other end. Further, the flange portion 103b is connected to the tube main body X1 including the tube portion 101b, the supply portion 105, and the fitting portion 102b. The flange portion 103b is provided with a fixing hole 107b for fixing to another tubular member connected by the fitting portion 102b.
  • a bridging portion 104e for maintaining strength is connected to each of the pipe portions 101a and 101b at a portion where the distance between the pipe portions 101a and 101b is narrow.
  • the configuration around the channel B-2 in the instrument panel duct 1 is the same as the configuration around the channel B-1.
  • the configuration around the flow path C in the instrument panel duct 1 is the same as the configuration around the flow path A described above.
  • a flange part 103g is provided so as to be connected to the pipe parts 101b and 101c.
  • a fixing hole 107g is also formed in the flange portion 103g.
  • flange portions 103 (103a to 103g) are connected to the outside of the tube main body X1 (see FIG. 3).
  • the tube main body X1 means a portion composed of the tube portion 101 (101a to 101d), the supply portion 105, and the fitting portion 102 (102a to 102d).
  • the opening area of the opening portion 100 of the fitting portion 102 is larger than the opening area of the pipe portion 101.
  • the opening area of the pipe part 101 means the area of the opening part of the pipe part 101 cut in the direction orthogonal to the flow path traveling direction of the instrument panel duct 1 at the location of the pipe part 101.
  • the shape of the fitting part 102 can be realized by a trumpet shape.
  • the trumpet shape refers to a shape in which the opening area increases toward the opening end.
  • FIG. 4 is a view showing the open state of the split mold
  • FIG. 5 is a view showing the closed state of the split mold from the side of the split mold
  • FIG. 6 is a cross-sectional view showing the closed state of the divided molds from the contact surfaces of the two divided molds to the divided mold 12a side.
  • the foamed parison is injected from the annular die 11, and the cylindrical foamed parison 13 is pushed out between the divided molds 12a and 12b.
  • the divided molds 12a and 12b are clamped, and the foam parison 13 is sandwiched between the divided molds 12a and 12b as shown in FIG. Thereby, the foam parison 13 is accommodated in the cavities 10a and 10b of the divided molds 12a and 12b.
  • the blowing needle 14 and the blowing needle 15 are passed through predetermined holes provided in the divided molds 12 a and 12 b with the divided molds 12 a and 12 b clamped. And pierce the foam parison 13 simultaneously. As soon as the tips of the blowing needle 14 and the blowing needle 15 enter the foamed parison 13, a compressed gas such as air is blown from the blowing needle 14 into the foamed parison 13, and the blowing needle 15 passes through the foamed parison 13. Compressed gas is blown out of the tube, and blow molding is performed at a predetermined blow pressure.
  • the blowing needle 14 is pierced into a position corresponding to the opening 111 of the supply unit 105 of the instrument panel duct 1 shown in FIG. 1 to form a blowing port for blowing compressed gas into the foamed parison 13. Further, the blowing needle 15 is pierced into a position corresponding to each of the opening portions 100 (100a to 100d) of the fitting portions 102 (102a to 102d) of the instrument panel duct 1 shown in FIG. A blowout opening is formed for blowing out.
  • the compressed gas can be blown into the inside of the foam parison 13 from the blow needle 14, the compressed gas can be blown out from the blow needle 15 through the inside of the foam parison 13, and blow molding can be performed with a predetermined blow pressure.
  • compressed gas is blown into the foam parison 13 from the blow needle 14 and exhaust is performed from the cavities 10a and 10b of the split molds 12a and 12b, and a gap between the foam parison 13 and the cavities 10a and 10b is formed. Eliminate and let negative pressure. As a result, a pressure difference is set between the inside and outside of the foam parison 13 housed in the cavities 10a and 10b inside the split molds 12a and 12b (the inside of the foam parison 13 means a higher pressure than the outside), and the foam parison 13 Is pressed against the wall surfaces of the cavities 10a and 10b.
  • the step of blowing compressed gas into the foam parison 13 and the step of generating a negative pressure outside the foam parison 13 do not need to be performed at the same time, and the steps are shifted in time. It is also possible to do this.
  • the foam parison 13 is clamped with the pressing force Z by the divided molds 12a and 12b. Therefore, as described above, the portion of the foam parison 13 that becomes the tube main body X1 is pressed against the cavities 10a and 10b by a predetermined blow pressure, and the flange portions 103 (103a to 103g) and the bridging portions 104 (104e and 104f) are pressed. The portion that becomes the plate-like portion Y1 is pressed in the thickness direction and compressed to the thickness between the cavities 10a and 10b of the divided molds 12a and 12b.
  • the compressed gas such as air
  • the compressed gas from the blow needle 15 passes through the inside of the foam parison 13. Blow out.
  • the foam parison 13 is pressed against the cavities 10a and 10b by a predetermined blow pressure for a predetermined time, and about 50 to 80% of the foam parison 13 is cooled and solidified from the cavities 10a and 10b in the thickness direction of the tube body X1. .
  • the remaining foamed parison 13 in the molten state is naturally solidified with the molds clamped by the divided molds 12a and 12b.
  • the temperature of the compressed gas supplied for cooling from the blowing needle 14 into the foamed parison 13 is preferably set to 10 ° C. to 30 ° C. and set to room temperature (for example, 23 ° C.).
  • room temperature for example, 23 ° C.
  • the cooling time of the instrument panel duct 1 can be shortened.
  • the cooling time by the compressed gas is preferably 35 seconds or less.
  • the foam parison 13 is cooled and solidified from the cavities 10a and 10b in the thickness direction of the tube body X1, and the foam parison 13 on the inner surface side of the tube body X1 can be left in a molten state. it can. Thereafter, the remaining foamed parison 13 in the molten state can be naturally solidified without being cooled by the compressed gas and being clamped by the divided molds 12a and 12b.
  • the resin applicable when molding the instrument panel duct 1 of the present embodiment is preferably a foamed resin obtained by melt-kneading a predetermined polyethylene resin so that the MFR of the instrument panel duct 1 that is a molded product is less than 0.8. .
  • the MFR is a value obtained by measuring a resin obtained by heating and melting a sample piece cut out from a molded product at a test temperature of 190 ° C. and a test load of 2.16 kg according to JIS K-7210. The surface roughness, removal property, and deburring property will be described later in Examples.
  • the polyethylene resin forming the foamed resin is a low density polyethylene resin alone, a high density polyethylene resin alone, a blend resin in which a plurality of low density polyethylene resins are mixed, a blend resin in which a plurality of high density polyethylene resins are mixed, It is formed by melt-kneading a blend resin obtained by mixing a low-density polyethylene resin and a high-density polyethylene resin.
  • MFR (190 degreeC, g / 10min) of the polyethylene-type resin which forms foamed resin shall be 1.0 or less.
  • the MFR obtained by calculating the MFR of the two types of polyethylene resins by the mixing ratio of the two types of polyethylene resins is the following formula 1. Try to be satisfied.
  • A is the MFR of the first polyethylene resin
  • B is the MFR of the second polyethylene resin
  • X is the mixing ratio of the first polyethylene resin forming the foamed resin
  • the foamed resin is preferably formed using a polyethylene resin produced by an autoclave method rather than a polyethylene resin produced by a tubular method. This is because the expansion ratio of the instrument panel duct 1 that is a molded product can be increased by using a polyethylene resin produced by an autoclave method rather than a polyethylene resin produced by a tubular method.
  • the low density polyethylene resin preferably has an MFR of 1.0 to 3.0.
  • the foamed resin used when molding the instrument panel duct 1 can also be formed by using a pulverized material obtained by pulverizing burrs generated when molding the instrument panel duct 1. In this case, it is preferable to form the foamed resin by melt-kneading the pulverized material and the virgin material, rather than forming the foamed resin with 100% of the pulverized material.
  • the virgin material is an unused resin, and in the present embodiment, the above-described polyethylene-based resin is used. By using the virgin material, it is possible to avoid deterioration of the resin constituting the instrument panel duct 1.
  • the pulverized material and the virgin material are melt-kneaded to form the foamed resin, the pulverized material and the virgin material are melt-kneaded at a ratio of 90% and virgin material.
  • examples of the foaming agent that can be applied when the instrument panel duct 1 of the present embodiment is molded include a physical foaming agent, a chemical foaming agent, and a mixture thereof.
  • Physical foaming agents include inorganic physical foaming agents such as air, carbon dioxide, nitrogen gas, and water, organic physical foaming agents such as butane, pentane, hexane, dichloromethane, dichloroethane, and their supercritical fluids. Can be applied.
  • the supercritical fluid is preferably prepared using carbon dioxide, nitrogen, or the like. If nitrogen, the critical temperature is -149.1 ° C., the critical pressure is 3.4 MPa or more, and if carbon dioxide, the critical temperature is 31. It can be created by setting the critical pressure to 7.4 MPa or higher.
  • the molded instrument panel 1 is taken out from the divided molds 12a and 12b. Specifically, the split molds 12a and 12b are opened in a state where a burr formed on the upper part of the instrument panel duct 1 is gripped by a predetermined machine (a clip or the like), and the instrument panel duct 1 is opened between the split molds 12a and 12b. Take out.
  • a predetermined machine a clip or the like
  • the instrument panel duct 1 of the present embodiment includes all fitting portions 102 (102a to 102d) constituting the pipe body X1 and all the openings 100 (100a to 100d) formed in the supply portion 105, A flange portion 103 (103a to 103g) and a bridging portion 104 (104e, 104f) are provided in the vicinity of 111.
  • the instrument panel duct 1 of this embodiment can fix the instrument panel duct 1 to other tubular members around the openings 100 and 111. Further, the strength around the openings 100 and 111 can be strengthened.
  • the instrument panel duct 1 of the present embodiment is difficult to be taken out from the divided molds 12a and 12b because the overall outer shape is complicated.
  • the instrument panel duct 1 as the embodiment described above can be molded by, for example, the molding method shown in FIG.
  • the molding method shown in FIG. 8 replaces the molding of the cylindrical foamed parison 13 between the divided molds 12a and 12b by the molding method described above, and replaces the sheet-shaped foamed resin between the divided molds 12a and 12b. It is extruded and molded.
  • a molding apparatus used in another molding method includes two extrusion apparatuses 50a and 50b and split molds 12a and 12b similar to the above-described molding method examples. .
  • the extrusion apparatus 50 (50a, 50b) is a predetermined interval between the divided molds 12a, 12b, and the resin sheets P1, P2 made of a foamed resin in a molten state, using the same material as the foam parison 13 in the above-described molding method example. It is arranged so that it hangs down substantially in parallel. Adjustment rollers 30a and 30b are disposed below the T dies 28a and 28b for pushing out the resin sheets P1 and P2, and the thicknesses and the like are adjusted by the adjustment rollers 30a and 30b. The resin sheets P1 and P2 thus extruded are sandwiched between the molds 12a and 12b, and are clamped and molded.
  • the extrusion apparatus 50 includes a cylinder 22 provided with a hopper 21, a screw (not shown) provided in the cylinder 22, a hydraulic motor 20 connected to the screw, an accumulator 24 in which the cylinder 22 communicates with the inside, A plunger 26 provided in the accumulator 24, a T die 28, and a pair of adjusting rollers 30 are provided.
  • the resin pellets introduced from the hopper 21 are melted and kneaded by rotation of the screw by the hydraulic motor 20 in the cylinder 22, and the foamed resin in the molten state is transferred to the accumulator 24 and stored in a certain amount, and driven by the plunger 26.
  • the foamed resin is sent toward the T die 28.
  • a continuous resin sheet made of a foamed resin in a molten state is pushed out and sent downward while being pinched by a pair of adjusting rollers 30 arranged at intervals. It hangs down between the split molds 12a and 12b.
  • the T die 28 is provided with a die bolt 29 for adjusting the slit interval of the extrusion slit.
  • the slit interval adjusting mechanism may include various other known adjusting mechanisms.
  • the resin sheets P1 and P2 having bubble cells inside are extruded from the extrusion slits of the two T dies 28a and 28b, and are adjusted to have a uniform thickness in the vertical direction (meaning the extrusion direction). And is suspended between the divided molds 12a and 12b.
  • the divided molds 12a and 12b are advanced in the horizontal direction, and a mold frame (not shown) located on the outer periphery of the divided molds 12a and 12b. Is closely attached to the resin sheets P1 and P2. After the resin sheets P1 and P2 are thus held by the molds on the outer periphery of the divided molds 12a and 12b, the resin sheets P1 and P2 are vacuum-sucked into the cavities 10a and 10b of the divided molds 12a and 12b. Each P2 is shaped along the cavities 10a and 10b.
  • the divided molds 12a and 12b are advanced in the horizontal direction and clamped, and the blowing needle 14 and the blowing needle 15 are pierced into the resin sheets P1 and P2 and air is blown from the blowing needle 14 in the same manner as the molding method described above. Or the like is blown into the resin sheets P1 and P2, and the compressed gas is blown out from the blowing needle 15 via the resin sheets P1 and P2. In this way, the inside of the part which becomes the pipe body X1 of the instrument panel duct 1 is cooled.
  • the split molds 12a and 12b are moved backward in the horizontal direction, and the split molds 12a and 12b are released from the instrument panel duct 1.
  • the resin sheets P1 and P2 suspended between the pair of split molds 12a and 12b have a resin sheet thickness and an extrusion speed in order to prevent variations in thickness due to drawdown, neck-in, and the like. It is necessary to individually adjust the thickness distribution in the extrusion direction. Various adjustments such as the thickness of the resin sheet, the extrusion speed, and the thickness in the extrusion direction may be used.
  • the instrument panel duct 1 according to the present embodiment can be suitably molded by the other molding method examples shown in FIG. 8 as in the molding methods described with reference to FIGS. Further, in another example of the molding method shown in FIG. 8, the instrument panel duct 1 corresponding to various conditions is molded by making the materials, foaming magnifications, thicknesses, etc. of the two resin sheets P1, P2 different. It is also possible.
  • Example 1 As a raw material resin for the instrument panel duct 1, a foamed blow molding machine equipped with a screw-type extruder having a gas supply port in a cylinder is used as a foamed resin obtained by melting and kneading resin A at 50 parts by mass and resin B at 50 parts by mass. A supercritical fluid of nitrogen is added from the gas supply port, and a sample of the instrument panel duct 1 having the same shape as that shown in FIG. 1 is foamed and blown under the following molding conditions by the same molding method as in FIGS. Molded.
  • the MFR (190 ° C., g / 10 minutes) of the resin material calculated from the blend ratio of 50 parts by mass of resin A and 50 parts by mass of resin B is 1.00.
  • molded instrument panel duct 1 was 0.40. Moreover, the expansion ratio of the molded instrument panel duct 1 was 4.3 times. Moreover, the surface roughness Rmax of the duct inner surface of the molded instrument panel duct 1 was 200 ⁇ m or less, and the surface roughness was good ( ⁇ ). Further, when the molded instrument panel duct 1 is taken out from the split molds 12a and 12b, the foamed resin constituting the instrument panel duct 1 does not stick to the split molds 12a and 12b, and the instrument panel duct 1 is removed from the split mold 12a. , 12b can be easily taken out, and the take-out property is good ( ⁇ ). Moreover, the burr
  • MFR is a value measured at a test temperature of 190 ° C. and a test load of 2.16 kg according to JIS K-7210.
  • the expansion ratio was obtained by dividing the density of the foamed resin used when molding the instrument panel duct 1 by the apparent density in the tube body X1 of the molded instrument panel duct 1 (see FIG. 3).
  • the surface roughness Rmax indicates the maximum height measured using a surface roughness measuring machine (Surfcom 470A manufactured by Tokyo Seimitsu Co., Ltd.).
  • the measurement site of the surface roughness was the entire region of the inner surface of the instrument panel duct 1.
  • the evaluation method of the surface roughness was good ( ⁇ ) when Rmax was 200 ⁇ m or less in all regions.
  • the evaluation method of the take-out property is that, after blow molding, the split molds 12a and 12b are opened in a state where the burrs formed on the upper part of the instrument panel duct 1 are gripped by a predetermined machine (such as a clip), so When taking out from between 12a and 12b, the foamed resin constituting the instrument panel duct 1 did not stick to the split molds 12a and 12b, and the instrument panel duct 1 could be easily taken out from the split molds 12a and 12b. In the case, it was judged as good ( ⁇ ).
  • the foamed resin constituting the instrument panel duct 1 is adhered to the split molds 12a and 12b.
  • the instrument panel duct 1 moved more than a predetermined distance with the movement of 12a and 12b, it was judged as defective (x). Further, the case where the foamed resin remained in the divided molds 12a and 12b was also judged as defective (x).
  • flash formed in the upper part of the instrument panel duct 1 is the part of the foaming resin which protruded from the upper part of the division mold 12a, 12b in the state which clamped the division mold 12a, 12b.
  • the deburring property evaluation method is such that when a part of the burr formed around the instrument panel duct 1 taken out from the divided molds 12a and 12b is cut with a cutter or the like to remove the burr using a hand or the like. Was easily removed from the instrument panel duct 1 (good). Further, when the burr was removed and the burr was broken and remained in the instrument panel duct 1 or when the instrument panel duct 1 was deformed when the burr was removed, it was judged as defective (x). The burr is a part formed around the parting line of the instrument panel duct 1, and a thin part formed by pinch-off exists between the instrument panel duct 1 and the burr, and the burr is cut at the thin part. Become.
  • Example 2 The instrument panel duct 1 was molded in the same manner as in Example 1 except that the resin used for the instrument panel 1 was a foamed resin obtained by melting and kneading the resin A at 60 parts by mass and the resin B at 40 parts by mass.
  • the MFR (190 ° C., g / 10 minutes) of the resin material calculated from the blend ratio of 60 parts by mass of resin A and 40 parts by mass of resin B is 0.86.
  • molded instrument panel duct 1 was 0.37.
  • the expansion ratio of the molded instrument panel duct 1 was 3.9 times.
  • the surface roughness, removal property, and deburring property were all good ( ⁇ ).
  • Example 3 The instrument panel duct 1 was molded in the same manner as in Example 1 except that the resin used for the instrument panel 1 was a foamed resin obtained by melting and kneading the resin A at 70 parts by mass and the resin B at 30 parts by mass.
  • the MFR (190 ° C., g / 10 minutes) of the resin material calculated from the blend ratio of 70 parts by mass of resin A and 30 parts by mass of resin B is 0.72.
  • molded instrument panel duct 1 was 0.26. Moreover, the expansion ratio of the molded instrument panel duct 1 was 2.8 times. Further, the surface roughness, removal property, and deburring property were all good ( ⁇ ).
  • Example 4 The instrument panel duct 1 was molded in the same manner as in Example 1 except that the raw material resin for the instrument panel duct 1 was a foamed resin obtained by melting and kneading the resin A at 80 parts by mass and the resin B at 20 parts by mass.
  • the MFR (190 ° C., g / 10 minutes) of the resin material calculated from the blend ratio of 80 parts by mass of resin A and 20 parts by mass of resin B is 0.58.
  • molded instrument panel duct 1 was 0.22.
  • the expansion ratio of the molded instrument panel duct 1 was 2.2 times.
  • the surface roughness, removal property, and deburring property were all good ( ⁇ ).
  • Example 5 The instrument panel duct 1 was molded in the same manner as in Example 1 except that the resin used for the instrument panel 1 was a foamed resin obtained by melting and kneading the resin A at 90 parts by mass and the resin B at 10 parts by mass.
  • the MFR (190 ° C., g / 10 minutes) of the resin material calculated from the blend ratio of 90 parts by mass of resin A and 10 parts by mass of resin B is 0.44.
  • molded instrument panel duct 1 was 0.18.
  • the expansion ratio of the molded instrument panel duct 1 was 1.6 times.
  • the surface roughness, removal property, and deburring property were all good ( ⁇ ).
  • Example 6 The instrument panel duct 1 was molded in the same manner as in Example 1 except that the raw material resin for the instrument panel duct 1 was a foamed resin obtained by melting and kneading the resin A at 60 parts by mass and the resin C at 40 parts by mass.
  • the MFR (190 ° C., g / 10 minutes) of the foamed resin obtained by melt-kneading Resin A and Resin C was 0.9.
  • the MFR (190 ° C., g / 10 minutes) of the resin material calculated from the blend ratio of 60 parts by mass of resin A and 40 parts by mass of resin C is 0.90.
  • molded instrument panel duct 1 was 0.39.
  • the expansion ratio of the molded instrument panel duct 1 was 1.6 times.
  • the surface roughness, removal property, and deburring property were all good ( ⁇ ).
  • Example 7 The instrument panel duct 1 was molded in the same manner as in Example 1 except that the resin used for the instrument panel 1 was a foamed resin obtained by melting and kneading the resin A at 60 parts by mass and the resin D at 40 parts by mass.
  • the MFR (190 ° C., g / 10 minutes) of the foamed resin obtained by melt-kneading Resin A and Resin D was 0.34.
  • the MFR (190 ° C., g / 10 minutes) of the resin material calculated from the blend ratio of 60 parts by mass of resin A and 40 parts by mass of resin D is 0.34.
  • molded instrument panel duct 1 was 0.17.
  • the expansion ratio of the molded instrument panel duct 1 was 1.3 times.
  • the surface roughness, removal property, and deburring property were all good ( ⁇ ).
  • Example 8 The instrument panel duct 1 was molded in the same manner as in Example 1, except that the resin resin D was a foamed resin obtained by melting and kneading the resin D at 100 parts by mass. MFR (190 degreeC, g / 10min) of the resin material which computed resin D with the blend ratio of 100 mass parts is 0.40.
  • molded instrument panel duct 1 was 0.18.
  • the expansion ratio of the molded instrument panel duct 1 was 1.6 times.
  • the surface roughness, removal property, and deburring property were all good ( ⁇ ).
  • Example 1 The instrument panel duct 1 was molded in the same manner as in Example 1 except that the resin resin B was a foamed resin obtained by melting and kneading the resin B at 100 parts by mass. MFR (190 degreeC, g / 10min) of the resin material which calculated resin B by the blend ratio of 100 mass parts is 1.70.
  • molded instrument panel duct 1 was 0.80. Moreover, the expansion ratio of the molded instrument panel duct 1 was 5.0 times. Moreover, the surface roughness Rmax of the duct inner surface of the molded instrument panel duct 1 was 200 ⁇ m or less, and the surface roughness was good ( ⁇ ). Further, when the molded instrument panel duct 1 is taken out from the split molds 12a and 12b, the foamed resin constituting the instrument panel duct 1 sticks to the split molds 12a and 12b, and the instrument panel duct 1 is removed from the split molds 12a and 12b. It could not be easily taken out, and the takeout property was poor (x). Moreover, the burr
  • the instrument panel duct 1 was molded in the same manner as in Example 1 except that the raw material resin for the instrument panel duct 1 was a foamed resin obtained by melting and kneading the resin E at 60 parts by mass and the resin B at 40 parts by mass.
  • the MFR (190 ° C., g / 10 minutes) of the resin material calculated from the blend ratio of 60 parts by mass of resin E and 40 parts by mass of resin B is 3.68.
  • molded instrument panel duct 1 was 3.20. Moreover, the expansion ratio of the molded instrument panel duct 1 was 4.3 times. Further, the surface roughness Rmax on the inner surface of the molded instrument panel duct 1 was partially higher than 200 ⁇ m, and the surface roughness was poor ( ⁇ ). Further, when the molded instrument panel duct 1 is taken out from the split molds 12a and 12b, the foamed resin constituting the instrument panel duct 1 sticks to the split molds 12a and 12b, and the instrument panel duct 1 is removed from the split molds 12a and 12b. It could not be easily taken out, and the takeout property was poor (x). Moreover, the burr
  • FIG. 9 shows the blend ratio of the resin material used when molding the instrument panel ducts 1 of Examples 1 to 8 and Comparative Examples 1 and 2, the MFR of the resin material calculated based on the blend ratio, the molded instrument panel duct 1 MFR, foaming magnification, surface roughness, takeout property, and deburring property of the molded instrument panel duct 1 are shown.
  • the MFR of the molded instrument panel 1 is less than 0.8, or the MFR of the resin material calculated by the blend ratio is 1.0 or less, so that the surface of the instrument panel duct 1 It was found that an instrument panel duct 1 having good roughness, extractability and deburring properties was obtained. Moreover, it turned out that the instrument panel duct 1 with a high expansion ratio can be obtained by using the foamed resin which mixed the high density polyethylene-type resin and the low density polyethylene-type resin. Moreover, it became clear that the instrument panel duct 1 with a high expansion ratio can be obtained by using a foamed resin mixed with a polyethylene resin produced by an autoclave method.
  • the MFR of the molded instrument panel 1 is less than 0.8, or the MFR of the resin material calculated by the blend ratio is 1.0. It was found that the instrument panel duct 1 having the surface roughness, the take-out property, and the deburring property of the instrument panel duct 1 are all good by making the following conditions.
  • the instrument panel duct 1 has been described as an example. However, it can also be applied to a rear cooler duct or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

 分割金型から容易に取り出すことが可能な発泡成形体を得る。 本開示の一態様にかかる発泡成形体(1)は、ポリエチレン系樹脂を溶融混練した発泡樹脂を分割金型で型締めして成形した発泡成形体(1)であって、成形した発泡成形体(1)のMFR(190℃、g/10分)が0.8未満、または、ポリエチレン系樹脂のMFR(190℃、g/10分)が1.0以下である、ことを特徴とする。

Description

発泡成形体
 本発明は、溶融状態の発泡樹脂で成形された発泡成形体に関する。
 例えば、自動車等の空調装置では、空気を通風させるための管状の空調用ダクトが用いられている。
 空調用ダクトとしては、熱可塑性樹脂を発泡剤により発泡させた発泡樹脂を用いた発泡成形体が知られている。発泡成形体は、高い断熱性と軽量化を同時に実現できることから需要が拡大している。
 こうした発泡成形体の製造方法としては、溶融状態の発泡樹脂を分割金型で型締めし、内部に空気を吹き込んで膨張させるブロー成形方法が広く知られている。
 また、本発明よりも先に出願された技術文献として、例えば、特許文献1(特開2005-241157号公報)には、発泡剤として超臨界流体を添加した発泡ブロー成形によって、外表面における表面粗さ、発泡倍率を所定の範囲内とした発泡ダクトについて開示されている。
 また、特許文献2(特許第4084209号公報)には、特定の高密度ポリエチレンと特定の低密度ポリエチレンとを特定の割合で配合した樹脂を発泡層の基材樹脂として用いて物理発泡剤によって発泡させて発泡層を形成する技術について開示されている。
特開2005-241157号公報 特許第4084209号公報
 上記特許文献1には、発泡ダクトの原料樹脂として、ポリプロピレン系樹脂を用いた実施例が開示されている。従来は、特許文献1のように、発泡成形体の原料樹脂として、ポリプロピレン系樹脂を用いているのが一般的であった。しかし、ポリプロピレン系樹脂は、原料が高価であるため、近年では、発泡成形体の原料樹脂として特許文献2のようにポリエチレン系樹脂を使用しているものもある。ポリエチレン系樹脂は、一般的にポリプロピレン系樹脂よりも原料が安価であるため、発泡成形体を安価に製造することができる。
 そこで、本発明者等は、発泡成形体の原料樹脂としてポリエチレン系樹脂を使用して所望の発泡成形体を得ることを試みた。
 しかし、発泡成形体の原料樹脂として使用するポリエチレン系樹脂によっては、分割金型で型締めして成形した発泡成形体を分割金型から取り出す際に、発泡成形体を構成する樹脂が分割金型に貼り付いてしまい、発泡成形体を分割金型から容易に取り出すことができない状況が発生した。このため、発泡成形体を分割金型から容易に取り出せるようにすることが所望されている。
 本開示の目的は、分割金型から容易に取り出すことが可能な発泡成形体を得ることにある。
 本開示の一態様にかかる発泡成形体は、
 ポリエチレン系樹脂を溶融混練した発泡樹脂を分割金型で型締めして成形した発泡成形体であって、
 成形した前記発泡成形体のMFR(190℃、g/10分)が0.8未満である、ことを特徴とする。
 または、前記ポリエチレン系樹脂のMFR(190℃、g/10分)が1.0以下である、ことを特徴とする。
 本発明によれば、分割金型から容易に取り出すことが可能な発泡成形体を得ることができる。
本実施形態のインパネダクト1を示す平面図である。 インパネダクト1における嵌め合い部102d周辺を示す図である。 図2のD-D’断面図である。 本実施形態のインパネダクト1の成形方法例を示す第1の図である。 本実施形態のインパネダクト1の成形方法例を示す第2の図である。 本実施形態のインパネダクト1の成形方法例を示す第3の図である。 分割金型での型締め時における嵌め合い部102d周辺を示す図である。 他の成形方法例を示す図である。 実施例、比較例を示す図である。
 (本開示の一態様にかかる発泡成形体1の概要)
 まず、図1、図9を参照しながら、本開示の一態様にかかる発泡成形体1の実施形態の概要について説明する。図1は、本開示の一態様にかかる発泡成形体1の構成例を示す図である。図9は、本開示の一態様にかかる発泡成形体1を説明するための図である。
 本開示の一態様にかかる発泡成形体1は、ポリエチレン系樹脂を溶融混練した発泡樹脂を分割金型で型締めして成形した発泡成形体1である。本開示の一態様にかかる発泡成形体1は、図9に示すように、成形した発泡成形体1のMFR(190℃、g/10分)が0.8未満である、ことを特徴とする。または、ポリエチレン系樹脂のMFR(190℃、g/10分)が1.0以下である、ことを特徴とする。
 成形した発泡成形体1のMFRが0.8未満、または、ポリエチレン系樹脂のMFRが1.0以下となるようにすることで、発泡成形体1を分割金型の間から取り出す際に、発泡成形体1を構成する発泡樹脂が分割金型に貼り付くことがなく、発泡成形体1を分割金型から容易に取り出すことができる。以下、添付図面を参照しながら、本開示の一態様にかかる発泡成形体1の実施形態について詳細に説明する。なお、以下の実施形態においては、発泡成形体1としてインパネダクト1を例に説明する。
 <インパネダクト1の構成例>
 まず、図1~図3を参照しながら、本実施形態のインパネダクト1の構成例について説明する。図1は、インパネダクト1の概略平面図であり、エアコンユニット(図示せず)に接続するための供給部105を有する側のインパネダクト1を示す。図2は、図1に示す嵌め合い部102d周辺の概略平面図を示し、図3は、図2のD-D’断面図を示す。
 本実施形態のインパネダクト1は、エアコンユニットから供給される冷暖風を所望の部位へ流通させるための軽量なインパネダクト1である。
 本実施形態のインパネダクト1は、所定のポリエチレン系樹脂を溶融混練した発泡樹脂を分割金型で型締めし、ブロー成形することで成形される。
 本実施形態のインパネダクト1は、発泡倍率が1.3倍以上で複数の気泡を有する独立気泡構造(例えば、独立気泡率が70%以上)で構成される。また、インパネダクト1の平均肉厚は、0.5mm以上である。また、インパネダクト1のダクト内面の表面粗さRmaxは200μm以下で構成する。表面粗さRmaxを200μm以下で構成することで、通風効率を向上させることができる。本実施形態のインパネダクト1は、-10℃における引張破壊伸びが40%以上で、かつ、常温時における引張弾性率が1000kg/cm2以上であることが好ましい。更に、-10℃における引張破壊伸びが100%以上であることが好ましい。なお、本実施形態で用いる各用語について以下に定義する。
 発泡倍率:後述する本実施形態の成形方法で用いた発泡樹脂の密度を、本実施形態の成形方法により得られたインパネダクト1の管本体X1(図3参照)における見かけ密度で割った値を発泡倍率とした。
 引張破壊伸び:後述する本実施形態の成形方法により得られたインパネダクト1の管本体X1を切り出し、-10℃で保管後に、JIS K-7113に準じて2号形試験片として引張速度を50mm/分で測定を行った値を引張破壊伸びとした。
 引張弾性率:後述する本実施形態の成形方法により得られたインパネダクト1の管本体X1を切り出し、常温(例えば、23℃)で、JIS K-7113に準じて2号形試験片として引張速度を50mm/分で測定を行った値を引張弾性率とした。
 本実施形態のインパネダクト1は、図1に示すように、エアコンユニット(図示せず)に接続するための供給部105が管部101(101a~101d)の一端に設けられている。また、嵌め合い部102(102a~102d)が管部101(101a~101d)の他端に設けられる。また、管部101(101a~101d)、供給部105、嵌め合い部102(102a~102d)から構成される管本体X1(図3参照)にフランジ部103(103a~103g)が連接されている。
 本実施形態において平均肉厚は、成形品の中空延伸方向に約100mmの等間隔で測定した肉厚の平均値を意味する。中空の成形品であれば、パーティングラインを介して溶着される2つの壁部の各々においてそれぞれパーティングライン90°方向の位置の肉厚を測定し、その測定した肉厚の平均値を意味する。但し、測定位置に、上述したフランジ部103などを含まないようにしている。
 管本体X1の内側は、流体を流通させる流路を有するように構成され、エアコンユニットの冷暖風を流通させられるようになっている。
 供給部105の開口部111から管本体X1の内側に供給される流体の流路は、図1に示すように、流路A,B-1,B-2,Cの4本に分けられる。こうした供給部105の開口部111から管本体X1の内側に供給された流体が、流路Aでは嵌め合い部102aの開口部から流出する。また、流路B-1では嵌め合い部102bの開口部から流出する。また、流路B-2では嵌め合い部102cの開口部から流出する。また、流路Cでは嵌め合い部102dの開口部から流出する。
 インパネダクト1における流路A周りの構成としては、管部101aの一端に供給部105が設けられ、他端に嵌め合い部102aが設けられている。また、管部101a、供給部105、嵌め合い部102aから構成される管本体X1にフランジ部103a、103eが連接されている。フランジ部103aには、嵌め合い部102aにより接続される他の管状部材に対して固定するための固定用孔107aが開設される。この固定用孔107aに不図示のボルトを貫通させてナットで締め付けることにより、他の管状部材に対してインパネダクト1を固定することができる。また、フランジ部103eにも固定用孔107eが開設される。
 インパネダクト1における流路B-1周りの構成としては、管部101bの一端に供給部105が設けられ、他端に嵌め合い部102bが設けられている。また、管部101b、供給部105、嵌め合い部102bから構成される管本体X1にフランジ部103bが連接されている。フランジ部103bには、嵌め合い部102bにより接続される他の管状部材に対して固定するための固定用孔107bが開設される。
 また、管部101aと101bとの間の間隔が狭い部分には、強度保持のための橋渡し部104eが、これら管部101a、101bそれぞれに連接されて設けられる。
 インパネダクト1における流路B-2周りの構成としては、上述した流路B-1周りの構成と同様に構成される。
 インパネダクト1における流路C周りの構成としては、上述した流路A周りの構成と同様に構成される。
 管部101bと101cとの間には、フランジ部103gが管部101b、101cそれぞれに連接されて設けられる。フランジ部103gにも固定用孔107gが開設される。
 本実施形態のインパネダクト1は、図1に示すように、管本体X1(図3参照)の外側にフランジ部103(103a~103g)が連接されている。管本体X1は、管部101(101a~101d)、供給部105、嵌め合い部102(102a~102d)から構成される部分を意味する。
 本実施形態のインパネダクト1は、嵌め合い部102の開口部100の開口面積を管部101の開口面積よりも大きくしている。管部101の開口面積は、管部101の箇所においてインパネダクト1の流路進行方向と直交する方向に切断した管部101の開口部の面積を意味する。嵌め合い部102の開口部100の開口面積を管部101の開口面積よりも大きくするには、例えば、嵌め合い部102の形状をラッパ形状で構成することで実現可能である。ラッパ形状とは、開口端部に向かうほど、開口面積が大きくなる形状をいう。
 <インパネダクト1の成形方法例>
 次に、図4~図6を参照しながら、本実施形態のインパネダクト1の成形方法例について説明する。図4は分割金型の開状態、図5は分割金型の閉状態を分割金型側面から示した図である。図6は、分割金型の閉状態を2つの分割金型の当接面から分割金型12a側について示す断面図である。
 まず、図4に示すように、発泡パリソンを環状ダイス11より射出し、円筒形状の発泡パリソン13を分割金型12a,12b間に押し出す。
 次に、分割金型12a,12bを型締めし、図5に示すように、発泡パリソン13を分割金型12a,12bで挟み込む。これにより、発泡パリソン13を分割金型12a,12bのキャビティ10a,10bに収納させる。
 次に、図5、図6に示すように、分割金型12a,12bを型締めした状態で、分割金型12a,12bに設けられた所定の孔に吹き込み針14と吹き出し針15とを貫通させ、発泡パリソン13に同時に突き刺す。吹き込み針14、吹き出し針15の先端が発泡パリソン13内に入ると、すぐに吹き込み針14から空気等の圧縮気体を発泡パリソン13の内部に吹き込み、発泡パリソン13の内部を経由して吹き出し針15から圧縮気体を吹き出し、所定のブロー圧でブロー成形を行う。
 吹き込み針14は、図1に示すインパネダクト1の供給部105の開口部111に相当する位置に突き刺し、圧縮気体を発泡パリソン13の内部に吹き込むための吹き込み口を形成する。また、吹き出し針15は、図1に示すインパネダクト1の嵌め合い部102(102a~102d)の開口部100(100a~100d)それぞれに相当する位置に突き刺し、圧縮気体を発泡パリソン13の内部から外部に吹き出すための吹き出し口を形成する。
 これにより、吹き込み針14から圧縮気体を発泡パリソン13の内部に吹き込み、発泡パリソン13の内部を経由して吹き出し針15から圧縮気体を吹き出し、所定のブロー圧でブロー成形を行うことができる。
 本実施形態では、吹き込み針14から圧縮気体を発泡パリソン13内に吹き込むと共に、分割金型12a,12bのキャビティ10a,10bから排気を行い、発泡パリソン13とキャビティ10a,10bとの間の隙間をなくし、負圧状態にさせる。これにより、分割金型12a,12b内部のキャビティ10a,10bに収納された発泡パリソン13の内外において圧力差(発泡パリソン13の内部が外部よりも高い圧力を意味する)が設定され、発泡パリソン13は、キャビティ10a,10bの壁面に押圧される。
 なお、上述した成形工程において、発泡パリソン13の内部に圧縮気体を吹き込む工程と、発泡パリソン13の外部に負圧を発生させる工程と、は同時に行う必要はなく、互いの工程を時間的にずらして行うことも可能である。
 また、本実施形態では、図7に示すように、発泡パリソン13を分割金型12a,12bにより押圧力Zで型締めしている。このため、上述のように発泡パリソン13における管本体X1となる部分について所定のブロー圧によりキャビティ10a,10bに押圧すると共に、フランジ部103(103a~103g)や橋渡し部104(104e,104f)の板状部分Y1となる部分については、厚さ方向に押圧され、分割金型12a,12bのキャビティ10a,10b間の厚みまで圧縮されることになる。
 発泡パリソン13における管本体X1となる部分については、上述のように吹き込み針14から空気等の圧縮気体を発泡パリソン13の内部に吹き込み、発泡パリソン13の内部を経由して吹き出し針15から圧縮気体を吹き出す。そして、所定のブロー圧により所定の時間だけ発泡パリソン13をキャビティ10a,10bに押圧し、管本体X1の厚さ方向のキャビティ10a,10b側から5~8割程度の発泡パリソン13を冷却固化する。その後は、圧縮気体による冷却を行わず、分割金型12a,12bで型締めした状態で残りの溶融状態の発泡パリソン13を自然固化する。
 吹き込み針14から発泡パリソン13内に冷却のために供給する圧縮気体の温度は、10℃~30℃に設定し、室温(例えば、23℃)に設定することが好ましい。圧縮気体の温度を室温に設定することで、圧縮気体の温度を調整するための温調設備を設ける必要がないため、インパネダクト1を低コストで成形することができる。また、温調設備を設け、吹き込み針14から発泡パリソン13内に供給する圧縮気体の温度を室温よりも低くした場合は、インパネダクト1の冷却時間を短縮することができる。なお、圧縮気体の温度にもよるが、圧縮気体による冷却時間(印加時間を意味する)は、35秒以下で行うことが好ましい。これにより、管本体X1の厚さ方向のキャビティ10a,10b側から5~8割程度の発泡パリソン13を冷却固化し、管本体X1の内面側の発泡パリソン13を溶融状態のままにすることができる。その後は、圧縮気体による冷却を行わず、分割金型12a,12bで型締めした状態で溶融状態の残りの発泡パリソン13を自然に固化することができる。
 本実施形態のインパネダクト1を成形する際に適用可能な樹脂としては、成形品であるインパネダクト1のMFRが0.8未満となるように所定のポリエチレン系樹脂を溶融混練した発泡樹脂が好ましい。これは、成形品であるインパネダクト1のMFRが0.8以上だと、表面粗さ、取出性、バリ取り性が何れも良好なインパネダクト1を得ることができないためである。MFRは、成形品から切り出したサンプル片を加熱溶融して脱泡した樹脂を、JIS K-7210に準じて試験温度190℃、試験荷重2.16kgにて測定した値である。表面粗さ、取出性、バリ取り性については実施例で後述する。
 発泡樹脂を形成するポリエチレン系樹脂は、低密度ポリエチレン系樹脂単体、高密度ポリエチレン系樹脂単体、複数の低密度ポリエチレン系樹脂を混合したブレンド樹脂、複数の高密度ポリエチレン系樹脂を混合したブレンド樹脂、低密度ポリエチレン系樹脂と高密度ポリエチレン系樹脂とを混合したブレンド樹脂を溶融混練して形成する。この場合、発泡樹脂を形成するポリエチレン系樹脂のMFR(190℃、g/10分)は、1.0以下となるようにする。
 例えば、発泡樹脂を2種類のポリエチレン系樹脂で形成する場合は、その2種類のポリエチレン系樹脂のMFRをその2種類のポリエチレン系樹脂の混合割合で計算して得られるMFRが以下の式1を満足するようにする。
 A×X/100+B×Y/100≦1.0・・・式1
 Aは、第1のポリエチレン系樹脂のMFR
 Bは、第2のポリエチレン系樹脂のMFR
 Xは、発泡樹脂を形成する第1のポリエチレン系樹脂の混合割合
 Yは、発泡樹脂を形成する第2のポリエチレン系樹脂の混合割合
 X+Y=100とする。
 また、発泡樹脂は、チューブラー法で製造したポリエチレン系樹脂よりもオートクレーブ法で製造したポリエチレン系樹脂を用いて形成する方が好ましい。これは、チューブラー法で製造したポリエチレン系樹脂よりもオートクレーブ法で製造したポリエチレン系樹脂を用いた方が成形品であるインパネダクト1の発泡倍率を高くすることができるためである。また、低密度ポリエチレン系樹脂は、MFRが1.0~3.0であることが好ましい。
 インパネダクト1を成形する際に使用する発泡樹脂は、インパネダクト1を成形する際に発生するバリを粉砕した粉砕材を用いて形成することも可能である。この場合、粉砕材100%で発泡樹脂を形成するよりも、粉砕材とバージン材とを溶融混練して発泡樹脂を形成することが好ましい。バージン材は、未使用の樹脂であり、本実施形態では、上述したポリエチレン系樹脂を使用する。バージン材を使用することで、インパネダクト1を構成する樹脂が劣化することを回避することができる。粉砕材とバージン材とを溶融混練して発泡樹脂を形成する場合は、粉砕材90%、バージン材10%の割合で溶融混練して形成する。
 また、本実施形態のインパネダクト1を成形する際に適用可能な発泡剤としては、物理発泡剤、化学発泡剤及びその混合物があげられる。物理発泡剤としては、空気、炭酸ガス、窒素ガス、水等の無機系物理発泡剤、及び、ブタン、ペンタン、ヘキサン、ジクロロメタン、ジクロロエタン等の有機系物理発泡剤、更には、それらの超臨界流体を適用することができる。超臨界流体としては、二酸化炭素、窒素などを用いて作成することが好ましく、窒素であれば臨界温度が-149.1℃、臨界圧力が3.4MPa以上、二酸化炭素であれば臨界温度が31℃、臨界圧力が7.4MPa以上とすることで作成することができる。
 次に、上記成形したインパネダクト1を分割金型12a,12bから取り出す。具体的には、インパネダクト1の上部に形成されるバリを所定の機械(クリップ等)で掴んだ状態で分割金型12a,12bを開いてインパネダクト1を分割金型12a,12bの間から取り出す。
 次に、分割金型12a,12bから取り出したインパネダクト1の周囲に形成されるバリ等の不要な部分を除去する。これにより、図1に示す複雑な形状のインパネダクト1を得ることができる。
 本実施形態のインパネダクト1は、図1に示すように、管本体X1を構成する嵌め合い部102(102a~102d)や供給部105に形成された全ての開口部100(100a~100d)、111の近傍にフランジ部103(103a~103g)や橋渡し部104(104e、104f)を設けている。このため、本実施形態のインパネダクト1は、開口部100、111の周囲で他の管状部材に対してインパネダクト1を固定することができる。また、開口部100、111の周囲の強度を強固にすることができる。但し、本実施形態のインパネダクト1は、全体の外形形状が複雑な形状になるため、分割金型12a,12bから取り出し難くなっている。
 (他の成形方法例)
 上述した実施形態としてのインパネダクト1は、例えば、図8に示す成形方法で成形することも可能である。
 図8に示す成形方法は、上述した成形方法で円筒形状の発泡パリソン13を分割金型12a,12b間に押し出して成形するのに替えて、シート状の発泡樹脂を分割金型12a,12b間に押し出して成形するものである。
 他の成形方法で用いる成形装置は、図8に示すように、2台の押出装置50a,50bと、上述した成形方法例と同様の分割金型12a,12bと、を有して構成される。
 押出装置50(50a,50b)は、上述した成形方法例における発泡パリソン13と同様の材質での、溶融状態の発泡樹脂による樹脂シートP1,P2を、分割金型12a,12b間に所定の間隔で略平行に垂下させるように配置される。樹脂シートP1,P2を押し出すTダイ28a,28bの下方には調整ローラ30a,30bが配置され、この調整ローラ30a,30bにより厚さ等の調整を行う。こうして押し出された樹脂シートP1,P2を、分割金型12a,12bで挟み込んで型締めし、成形する。
 2台の押出装置50(50a,50b)の構成は同様であるため、1つの押出装置50について、図8を参照して説明する。
 押出装置50は、ホッパ21が付設されたシリンダ22と、シリンダ22内に設けられたスクリュー(図示せず)と、スクリューに連結された油圧モーター20と、シリンダ22と内部が連通したアキュムレータ24と、アキュムレータ24内に設けられたプランジャー26と、Tダイ28と、一対の調整ローラ30と、を有して構成される。
 ホッパ21から投入された樹脂ペレットが、シリンダ22内で油圧モーター20によるスクリューの回転により溶融、混練され、溶融状態の発泡樹脂がアキュムレータ24に移送されて一定量貯留され、プランジャー26の駆動によりTダイ28に向けて発泡樹脂を送る。こうして、Tダイ28下端の押出スリットから、溶融状態の発泡樹脂による連続的な樹脂シートが押し出され、間隔を隔てて配置された一対の調整ローラ30によって挟圧されながら下方へ向かって送り出され、分割金型12a,12bの間に垂下される。
 また、Tダイ28には、押出スリットのスリット間隔を調整するためのダイボルト29が設けられる。スリット間隔の調整機構は、このダイボルト29を用いた機械式の機構に加え、公知の各種調整機構を他に備えてもよい。
 こうした構成により、2つのTダイ28a,28bの押出スリットから、内部に気泡セルを有する樹脂シートP1,P2が押し出され、上下方向(押出方向を意味する)に一様な厚みを有する状態に調整され、分割金型12a,12bの間に垂下される。
 こうして樹脂シートP1,P2が分割金型12a,12b間に配置されると、この分割金型12a,12bを水平方向に前進させ、分割金型12a,12bの外周に位置する不図示の型枠を、樹脂シートP1,P2に密着させる。こうして分割金型12a,12b外周の型枠により樹脂シートP1,P2を保持した後、分割金型12a,12bのキャビティ10a,10bに樹脂シートP1,P2を真空吸引することで、樹脂シートP1,P2それぞれをキャビティ10a,10bに沿った形状にする。
 次に、分割金型12a,12bを水平方向に前進させて型締めし、上述した成形方法と同様に、吹き込み針14と吹き出し針15とを樹脂シートP1,P2に突き刺し、吹き込み針14から空気等の圧縮気体を樹脂シートP1,P2の内部に吹き込み、樹脂シートP1,P2の内部を経由して吹き出し針15から圧縮気体を吹き出す。こうして、インパネダクト1の管本体X1となる部分の内側を冷却する。
 次に、分割金型12a,12bを水平方向に後退させ、分割金型12a,12bをインパネダクト1から離型させる。
 なお、一対の分割金型12a,12bの間に垂下された樹脂シートP1,P2は、ドローダウン、ネックインなどにより肉厚のバラツキが発生するのを防止するため、樹脂シートの厚み、押出速度、押出方向の肉厚分布などを個別に調整することが必要になる。
 こうした樹脂シートの厚み、押出速度、押出方向の肉厚等の調整は、公知の各種方法を用いてよい。
 以上のように、図8に示す他の成形方法例によっても、図4~図6で説明した成形方法と同様に、本実施形態におけるインパネダクト1を好適に成形することができる。また、図8に示す他の成形方法例では、2枚の樹脂シートP1,P2の材料、発泡倍率、肉厚などを異なるものとすることで、各種の条件に対応するインパネダクト1を成形することも可能である。
 <実施例>
 次に、実施例、比較例により上述したインパネダクト1について説明する。但し、以下の実施例に限定されるものではない。
 (実施例1)
 インパネダクト1の原料樹脂として、樹脂Aを50質量部、樹脂Bを50質量部で溶融混練した発泡樹脂とし、シリンダにガス供給口を有するスクリュー式押出機を備えた発泡ブロー成形機を用い、ガス供給口より窒素の超臨界流体を添加し、上述した図4~図6と同様な成形方法で図1に示したものと同様の形状のインパネダクト1のサンプルを下記の成形条件で発泡ブロー成形した。
 樹脂Aは、高密度ポリエチレン系樹脂(旭化成ケミカルズ(株)製B470(密度=0.949g/cm3、MFR=0.3g/10min,190℃、重合法=チューブラー法)である。
 樹脂Bは、低密度ポリエチレン系樹脂(住友化学(株)製スミカセンG201F(密度=0.919g/cm3、MFR=1.7g/10min,190℃、重合法=オートクレーブ法)である。
 樹脂Aを50質量部、樹脂Bを50質量部のブレンド比率により計算した樹脂材料のMFR(190℃、g/10分)は、1.00である。ブレンド比率により計算した樹脂材料のMFRは、樹脂AのMFR(0.3)をブレンド比率(50%)で算出した値(0.3×50/100=0.15)と、樹脂BのMFR(1.7)をブレンド比率(50%)で算出した値(1.7×50/100=0.85)と、を加算した値(0.15+085=1.00)である。
 記
 成形条件
   パリソンの外径:120mm
   ダイの出口における樹脂温度:172℃
   パリソンの肉厚:5mm
   インパネダクト1の平均肉厚0.5mm
 成形されたインパネダクト1のMFR(190℃、g/10分)は、0.40であった。
 また、成形されたインパネダクト1の発泡倍率は、4.3倍であった。
 また、成形されたインパネダクト1のダクト内面の表面粗さRmaxは、200μm以下であり、表面粗さは良好(○)であった。
 また、成形されたインパネダクト1を分割金型12a,12bから取り出す際に、インパネダクト1を構成する発泡樹脂が分割金型12a,12bに貼り付くことがなく、インパネダクト1を分割金型12a,12bから容易に取り出すことができ、取出性は良好(○)であった。
 また、成形されたインパネダクト1のバリを容易に取り除くことができ、バリ取り性は良好(○)であった。
 MFRは、JIS K-7210に準じて試験温度190℃、試験荷重2.16kgにて測定した値である。
 発泡倍率は、インパネダクト1を成形する際に用いた発泡樹脂の密度を、成形されたインパネダクト1の管本体X1(図3参照)における見かけ密度で割った値を発泡倍率とした。
 表面粗さRmaxは、表面粗さ測定機(株式会社東京精密製サーフコム470A)を用いて計測した最大高さを示す。表面粗さの測定部位は、インパネダクト1のダクト内面の全ての領域とした。表面粗さの評価方法は、全ての領域においてRmaxが200μm以下の場合に良好(○)とした。また、Rmaxが200μmより高い部分が存在する場合に不良(×)とした。
 取出性の評価方法は、ブロー成形後に、インパネダクト1の上部に形成されるバリを所定の機械(クリップ等)で掴んだ状態で分割金型12a,12bを開いてインパネダクト1を分割金型12a,12bの間から取り出す際に、インパネダクト1を構成する発泡樹脂が分割金型12a,12bに貼り付くことがなく、インパネダクト1を分割金型12a,12bから容易に取り出すことができた場合は良好(○)とした。また、分割金型12a,12bを開いてインパネダクト1を分割金型12a,12bの間から取り出す際に、インパネダクト1を構成する発泡樹脂が分割金型12a,12bに貼り付き、分割金型12a,12bの移動に伴いインパネダクト1も所定の距離以上移動した場合は不良(×)とした。また、分割金型12a,12bに発泡樹脂が残った場合も不良(×)とした。なお、インパネダクト1の上部に形成されるバリとは、分割金型12a,12bを型締めした状態で分割金型12a,12bの上部から突出した発泡樹脂の部分である。
 バリ取り性の評価方法は、分割金型12a,12bから取り出したインパネダクト1の周囲に形成されるバリの一部にカッター等で切り込みを入れて手などを使ってバリを取り除く際に、バリをインパネダクト1から容易に取り除くことができた場合は良好(○)とした。また、バリを取り除く際に、バリがちぎれてインパネダクト1に残ってしまったり、バリを取り除く際にインパネダクト1が変形してしまったりした場合は不良(×)とした。バリは、インパネダクト1のパーティングラインの周囲に形成される部分であり、インパネダクト1とバリとの間にはピンチオフにより形成した薄肉部分が存在し、その薄肉部分でバリを切除することになる。
 (実施例2)
 インパネダクト1の原料樹脂として、樹脂Aを60質量部、樹脂Bを40質量部で溶融混練した発泡樹脂とした以外は、実施例1と同様にしてインパネダクト1を成形した。
 樹脂Aを60質量部、樹脂Bを40質量部のブレンド比率により計算した樹脂材料のMFR(190℃、g/10分)は、0.86である。
 成形されたインパネダクト1のMFR(190℃、g/10分)は、0.37であった。
 また、成形されたインパネダクト1の発泡倍率は、3.9倍であった。
 また、表面粗さ、取出性、バリ取り性は何れも良好(○)であった。
 (実施例3)
 インパネダクト1の原料樹脂として、樹脂Aを70質量部、樹脂Bを30質量部で溶融混練した発泡樹脂とした以外は、実施例1と同様にしてインパネダクト1を成形した。
 樹脂Aを70質量部、樹脂Bを30質量部のブレンド比率により計算した樹脂材料のMFR(190℃、g/10分)は、0.72である。
 成形されたインパネダクト1のMFR(190℃、g/10分)は、0.26であった。
 また、成形されたインパネダクト1の発泡倍率は、2.8倍であった。
 また、表面粗さ、取出性、バリ取り性は何れも良好(○)であった。
 (実施例4)
 インパネダクト1の原料樹脂として、樹脂Aを80質量部、樹脂Bを20質量部で溶融混練した発泡樹脂とした以外は、実施例1と同様にしてインパネダクト1を成形した。
 樹脂Aを80質量部、樹脂Bを20質量部のブレンド比率により計算した樹脂材料のMFR(190℃、g/10分)は、0.58である。
 成形されたインパネダクト1のMFR(190℃、g/10分)は、0.22であった。
 また、成形されたインパネダクト1の発泡倍率は、2.2倍であった。
 また、表面粗さ、取出性、バリ取り性は何れも良好(○)であった。
 (実施例5)
 インパネダクト1の原料樹脂として、樹脂Aを90質量部、樹脂Bを10質量部で溶融混練した発泡樹脂とした以外は、実施例1と同様にしてインパネダクト1を成形した。
 樹脂Aを90質量部、樹脂Bを10質量部のブレンド比率により計算した樹脂材料のMFR(190℃、g/10分)は、0.44である。
 成形されたインパネダクト1のMFR(190℃、g/10分)は、0.18であった。
 また、成形されたインパネダクト1の発泡倍率は、1.6倍であった。
 また、表面粗さ、取出性、バリ取り性は何れも良好(○)であった。
 (実施例6)
 インパネダクト1の原料樹脂として、樹脂Aを60質量部、樹脂Cを40質量部で溶融混練した発泡樹脂とした以外は、実施例1と同様にしてインパネダクト1を成形した。
 樹脂Cは、低密度ポリエチレン系樹脂(Schulman製CP763(密度=0.919g/cm3、MFR=1.8g/10min,190℃、重合法=チューブラー法)である。
 樹脂A、樹脂Cを溶融混練した発泡樹脂のMFR(190℃、g/10分)は、0.9であった。
 樹脂Aを60質量部、樹脂Cを40質量部のブレンド比率により計算した樹脂材料のMFR(190℃、g/10分)は、0.90である。
 成形されたインパネダクト1のMFR(190℃、g/10分)は、0.39であった。
 また、成形されたインパネダクト1の発泡倍率は、1.6倍であった。
 また、表面粗さ、取出性、バリ取り性は何れも良好(○)であった。
 (実施例7)
 インパネダクト1の原料樹脂として、樹脂Aを60質量部、樹脂Dを40質量部で溶融混練した発泡樹脂とした以外は、実施例1と同様にしてインパネダクト1を成形した。
 樹脂Dは、低密度ポリエチレン系樹脂(住友化学(株)製スミカセンF108-1(密度=0.921g/cm3、MFR=0.4g/10min,190℃、重合法=チューブラー法)である。
 樹脂A、樹脂Dを溶融混練した発泡樹脂のMFR(190℃、g/10分)は、0.34であった。
 樹脂Aを60質量部、樹脂Dを40質量部のブレンド比率により計算した樹脂材料のMFR(190℃、g/10分)は、0.34である。
 成形されたインパネダクト1のMFR(190℃、g/10分)は、0.17であった。
 また、成形されたインパネダクト1の発泡倍率は、1.3倍であった。
 また、表面粗さ、取出性、バリ取り性は何れも良好(○)であった。
 (実施例8)
 インパネダクト1の原料樹脂として、樹脂Dを100質量部で溶融混練した発泡樹脂とした以外は、実施例1と同様にしてインパネダクト1を成形した。
 樹脂Dを100質量部のブレンド比率により計算した樹脂材料のMFR(190℃、g/10分)は、0.40である。
 成形されたインパネダクト1のMFR(190℃、g/10分)は、0.18であった。
 また、成形されたインパネダクト1の発泡倍率は、1.6倍であった。
 また、表面粗さ、取出性、バリ取り性は何れも良好(○)であった。
 (比較例1)
 インパネダクト1の原料樹脂として、樹脂Bを100質量部で溶融混練した発泡樹脂とした以外は、実施例1と同様にしてインパネダクト1を成形した。
 樹脂Bを100質量部のブレンド比率により計算した樹脂材料のMFR(190℃、g/10分)は、1.70である。
 成形されたインパネダクト1のMFR(190℃、g/10分)は、0.80であった。
 また、成形されたインパネダクト1の発泡倍率は、5.0倍であった。
 また、成形されたインパネダクト1のダクト内面の表面粗さRmaxは、200μm以下であり、表面粗さは良好(○)であった。
 また、成形されたインパネダクト1を分割金型12a,12bから取り出す際に、インパネダクト1を構成する発泡樹脂が分割金型12a,12bに貼り付き、インパネダクト1を分割金型12a,12bから容易に取り出すことができず、取出性は不良(×)であった。
 また、成形されたインパネダクト1のバリを容易に取り除くことができず、バリ取り性は不良(×)であった。
 (比較例2)
 インパネダクト1の原料樹脂として、樹脂Eを60質量部、樹脂Bを40質量部で溶融混練した発泡樹脂とした以外は、実施例1と同様にしてインパネダクト1を成形した。
 樹脂Eは、高密度ポリエチレン系樹脂(旭化成ケミカルズ(株)製J240(密度=0.966g/cm3、MFR=5.0g/10min,190℃、重合法=チューブラー法)である。
 樹脂Eを60質量部、樹脂Bを40質量部のブレンド比率により計算した樹脂材料のMFR(190℃、g/10分)は、3.68である。
 成形されたインパネダクト1のMFR(190℃、g/10分)は、3.20であった。
 また、成形されたインパネダクト1の発泡倍率は、4.3倍であった。
 また、成形されたインパネダクト1のダクト内面の表面粗さRmaxは一部に200μmよりも高い部分が存在し、表面粗さは不良(×)であった。
 また、成形されたインパネダクト1を分割金型12a,12bから取り出す際に、インパネダクト1を構成する発泡樹脂が分割金型12a,12bに貼り付き、インパネダクト1を分割金型12a,12bから容易に取り出すことができず、取出性は不良(×)であった。
 また、成形されたインパネダクト1のバリを容易に取り除くことができず、バリ取り性は不良(×)であった。
 実施例1~8、比較例1、2の試験結果を図9に示す。図9は、実施例1~8、比較例1、2のインパネダクト1を成形する際に使用した樹脂材料のブレンド比率、そのブレンド比率により計算した樹脂材料のMFR、成形されたインパネダクト1のMFR、成形されたインパネダクト1の発泡倍率、表面粗さ、取出性、バリ取り性を示している。
 図9に示すように、成形されたインパネダクト1のMFRが0.8未満、または、ブレンド比率により計算した樹脂材料のMFRが1.0以下となるようにすることで、インパネダクト1の表面粗さ、取出性、バリ取り性が全て良好なインパネダクト1を得ることが判明した。
 また、高密度ポリエチレン系樹脂と低密度ポリエチレン系樹脂とを混合した発泡樹脂を用いることで、発泡倍率の高いインパネダクト1を得ることができると判明した。
 また、オートクレーブ法で製造したポリエチレン系樹脂を混合した発泡樹脂を用いることで、発泡倍率の高いインパネダクト1を得ることができると判明した。
 また、MFRが1.0~3.0の低密度ポリエチレン系樹脂を用いて、成形されたインパネダクト1のMFRが0.8未満、または、ブレンド比率により計算した樹脂材料のMFRが1.0以下となるようにすることで、インパネダクト1の表面粗さ、取出性、バリ取り性が全て良好なインパネダクト1を得ることが判明した。
 なお、上述した実施形態は本発明の好適な実施形態であり、本発明はこれに限定されることなく、本発明の技術的思想に基づいて種々変形して実施することが可能である。
 例えば、上記実施形態では、インパネダクト1を例に説明した。しかし、リアクーラーダクト等にも適用可能である。
 1  インパネダクト
 101  管部
 102  嵌め合い部
 103  フランジ部
 104  橋渡し部
 105  供給部
 107  固定用孔
 100、111  開口部
 10a、10b  キャビティ
 11  環状ダイス
 12a、12b  分割金型
 13  発泡パリソン
 14  吹き込み針
 15  吹き出し針
 16  レギュレータ
 17  背圧レギュレータ
 A,B,C,F  流路方向
 20  油圧モーター
 21  ホッパ
 22  シリンダ
 24  アキュムレータ
 26  プランジャー
 28  Tダイ
 29  ダイボルト
 30  調整ローラ
 50  押出装置
 X1  管本体
 Y1  板状部分
 Z  型締めによる押圧力

Claims (5)

  1.  ポリエチレン系樹脂を溶融混練した発泡樹脂を分割金型で型締めして成形した発泡成形体であって、
     成形した前記発泡成形体のMFR(190℃、g/10分)が0.8未満である、ことを特徴とする発泡成形体。
  2.  ポリエチレン系樹脂を溶融混練した発泡樹脂を分割金型で型締めして成形した発泡成形体であって、
     前記ポリエチレン系樹脂のMFR(190℃、g/10分)が1.0以下である、ことを特徴とする発泡成形体。
  3.  前記発泡樹脂は、第1のポリエチレン系樹脂と、第2のポリエチレン系樹脂と、を前記第1のポリエチレン系樹脂:前記第2のポリエチレン系樹脂=X:Yの混合割合で形成し(但し、X+Y=100とする)、
     前記第1のポリエチレン系樹脂のMFRと、前記第2のポリエチレン系樹脂のMFRと、を前記混合割合で計算して得られるMFRが以下の式1を満足する、ことを特徴とする請求項1または請求項2記載の発泡成形体。
     A×X/100+B×Y/100≦1.0・・・式1
     Aは、前記第1のポリエチレン系樹脂のMFR
     Bは、前記第2のポリエチレン系樹脂のMFR
     Xは、前記発泡樹脂を形成する前記第1のポリエチレン系樹脂の混合割合
     Yは、前記発泡樹脂を形成する前記第2のポリエチレン系樹脂の混合割合
  4.  前記第1のポリエチレン系樹脂は、高密度ポリエチレン系樹脂であり、
     前記第2のポリエチレン系樹脂は、低密度ポリエチレン系樹脂である、ことを特徴とする請求項3記載の発泡成形体。
  5.  前記低密度ポリエチレン系樹脂は、オートクレーブ法で製造したものである、ことを特徴とする請求項4記載の発泡成形体。
PCT/JP2014/082394 2013-12-27 2014-12-08 発泡成形体 WO2015098475A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/107,968 US11111349B2 (en) 2013-12-27 2014-12-08 Molded foam
CN201480070796.6A CN105849165B (zh) 2013-12-27 2014-12-08 发泡成形体
MX2016008487A MX2016008487A (es) 2013-12-27 2014-12-08 Espuma moldeada.
KR1020167018433A KR102058745B1 (ko) 2013-12-27 2014-12-08 발포 성형체
KR1020197003734A KR102208607B1 (ko) 2013-12-27 2014-12-08 발포 성형체
EP14874087.1A EP3088452B1 (en) 2013-12-27 2014-12-08 Foamed molded article
US17/394,463 US11608420B2 (en) 2013-12-27 2021-08-05 Molded foam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-272421 2013-12-27
JP2013272421A JP6331390B2 (ja) 2013-12-27 2013-12-27 発泡成形体

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/107,968 A-371-Of-International US11111349B2 (en) 2013-12-27 2014-12-08 Molded foam
US17/394,463 Continuation US11608420B2 (en) 2013-12-27 2021-08-05 Molded foam

Publications (1)

Publication Number Publication Date
WO2015098475A1 true WO2015098475A1 (ja) 2015-07-02

Family

ID=53478340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082394 WO2015098475A1 (ja) 2013-12-27 2014-12-08 発泡成形体

Country Status (7)

Country Link
US (2) US11111349B2 (ja)
EP (1) EP3088452B1 (ja)
JP (1) JP6331390B2 (ja)
KR (2) KR102208607B1 (ja)
CN (2) CN105849165B (ja)
MX (1) MX2016008487A (ja)
WO (1) WO2015098475A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107849282A (zh) * 2015-08-18 2018-03-27 京洛株式会社 发泡成型用树脂、发泡成型体的制造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6331390B2 (ja) * 2013-12-27 2018-05-30 キョーラク株式会社 発泡成形体
JP6850967B2 (ja) * 2017-03-30 2021-03-31 パナソニックIpマネジメント株式会社 発泡成形金型
JP6920610B2 (ja) * 2017-04-27 2021-08-18 キョーラク株式会社 発泡ダクト
JP7132487B2 (ja) * 2018-03-29 2022-09-07 キョーラク株式会社 発泡成形体の製造方法
JP6779537B2 (ja) * 2019-05-15 2020-11-04 独立行政法人国立高等専門学校機構 揺れ検知駆動装置および揺れ検知駆動方法
CN114786918A (zh) 2019-12-26 2022-07-22 京洛株式会社 发泡成型体及成型体的制造方法
CN114379061B (zh) * 2022-01-18 2024-01-09 浙江吉利控股集团有限公司 重型商用车进气道的制备方法
WO2024079256A1 (en) 2022-10-14 2024-04-18 Sabic Global Technologies B.V. Foamed article

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196248A (ja) * 1982-04-27 1983-11-15 ビ−ピ−・ケミカルズ・リミテツド ポリエチレンブレンドとそれを用いたフイルム
JPH11140239A (ja) * 1997-11-05 1999-05-25 Asahi Chem Ind Co Ltd 機械的強度に優れたブロー成形体
JP2004249680A (ja) * 2003-02-21 2004-09-09 Jsp Corp 発泡成形体及びその製造方法
JP2005241157A (ja) 2004-02-27 2005-09-08 Kyoraku Co Ltd 発泡体ダクト
JP2011052038A (ja) * 2009-08-31 2011-03-17 Japan Polyethylene Corp 発泡中空成形用ポリエチレン
JP2012107222A (ja) * 2010-10-29 2012-06-07 Sumitomo Chemical Co Ltd エチレン樹脂組成物、架橋発泡体、履き物用部材および履き物
JP2013166896A (ja) * 2012-02-16 2013-08-29 Kyoraku Co Ltd 発泡成形体

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2870131A (en) * 1956-06-12 1959-01-20 Eastman Kodak Co High density polyethylene by high pressure polymerization with hydrogen and azo catalyst
JPS57191029A (en) * 1981-05-21 1982-11-24 Sanwa Kako Kk Manufacture of bridged polyolefinic foamed material
JPH01254742A (ja) * 1988-04-05 1989-10-11 Sekisui Plastics Co Ltd ポリエチレン系樹脂発泡体の製造方法
WO1999028111A1 (fr) 1997-11-28 1999-06-10 Jsp Corporation Mousse moulee par soufflage et procede de fabrication
JP2000248096A (ja) * 1999-02-26 2000-09-12 Nippon Zeon Co Ltd 発泡性ゴム組成物およびゴム発泡体
JP4329915B2 (ja) * 1999-10-26 2009-09-09 株式会社イノアックコーポレーション 空調ダクトの接続構造
JP4238032B2 (ja) 2001-03-09 2009-03-11 ダウ グローバル テクノロジーズ インコーポレイティド 改良された弾性率ならびに溶融強度を備えたエチレンポリマーのブレンドおよびこれらのブレンドから製造した物品
JP3945758B2 (ja) 2002-06-05 2007-07-18 日東工業株式会社 光接続箱の光ファイバケーブル保持具
JP4087209B2 (ja) 2002-10-04 2008-05-21 株式会社ジェイエスピー ポリオレフィン系樹脂中空発泡成形体
EP1935621B1 (en) * 2005-09-22 2012-06-06 Mitsubishi Plastics, Inc. Process for producing porous laminate and porous laminate
JP4952988B2 (ja) * 2006-10-06 2012-06-13 日立化成工業株式会社 架橋発泡体用ポリエチレン樹脂組成物、ポリエチレン樹脂架橋発泡体の製造法およびそれにより得られるポリエチレン樹脂架橋発泡体
SI2164893T1 (sl) * 2007-05-31 2013-11-29 Saudi Basic Industries Corporation Polietilenska pena
JP5025549B2 (ja) * 2008-03-31 2012-09-12 キョーラク株式会社 発泡ブロー成形品およびその製造方法
WO2009139333A1 (ja) * 2008-05-14 2009-11-19 株式会社小松製作所 排気処理装置及びその製造方法
JP5365396B2 (ja) 2009-07-27 2013-12-11 東ソー株式会社 発泡中空成形体
JP5403246B2 (ja) * 2009-09-01 2014-01-29 キョーラク株式会社 樹脂成形品の成形方法および成形装置、並びに熱可塑性樹脂製シートの厚みの調整装置
JP5609423B2 (ja) * 2009-09-30 2014-10-22 キョーラク株式会社 空調ダクトの製造方法、及び空調ダクト
US8343413B2 (en) * 2009-10-30 2013-01-01 Kyoraku Co. Ltd. Method for manufacturing molded foam
JP5636669B2 (ja) * 2009-11-30 2014-12-10 キョーラク株式会社 発泡成形品の製造方法
JP5493834B2 (ja) 2009-12-25 2014-05-14 キョーラク株式会社 フロアダクト、輸送機及び成形方法
CN102812005B (zh) * 2010-02-24 2014-12-10 生命医药公司 β-分泌酶抑制剂
JP5709390B2 (ja) 2010-03-19 2015-04-30 株式会社イノアックコーポレーション 自動車用ダクト
JP5565133B2 (ja) 2010-06-23 2014-08-06 キョーラク株式会社 中空発泡成形体の製造方法及び中空発泡成形体
US9079352B2 (en) * 2010-09-14 2015-07-14 Kyoraku Co., Ltd. Duct molding method and duct
AR083077A1 (es) * 2010-09-30 2013-01-30 Dow Global Technologies Llc Proceso de polimerizacion para elaborar polietileno de baja densidad
JP2012136599A (ja) 2010-12-24 2012-07-19 Tosoh Corp 発泡中空成形体
JP5867077B2 (ja) 2011-01-31 2016-02-24 キョーラク株式会社 樹脂成形品の成形方法
JP5367884B2 (ja) * 2011-08-31 2013-12-11 キョーラク株式会社 板状部分付き管状発泡成形体及びその成形方法
US9266259B2 (en) * 2011-12-23 2016-02-23 Kyoraku Co. Ltd. Method of forming hollow blow-molded foam and such hollow blow-molded foam
WO2013114996A1 (ja) 2012-01-30 2013-08-08 キョーラク株式会社 発泡成形品の製造方法および発泡成形品
WO2014057786A1 (ja) * 2012-10-10 2014-04-17 キョーラク株式会社 発泡成形体及びその成形方法
JP6331390B2 (ja) * 2013-12-27 2018-05-30 キョーラク株式会社 発泡成形体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58196248A (ja) * 1982-04-27 1983-11-15 ビ−ピ−・ケミカルズ・リミテツド ポリエチレンブレンドとそれを用いたフイルム
JPH11140239A (ja) * 1997-11-05 1999-05-25 Asahi Chem Ind Co Ltd 機械的強度に優れたブロー成形体
JP2004249680A (ja) * 2003-02-21 2004-09-09 Jsp Corp 発泡成形体及びその製造方法
JP4084209B2 (ja) 2003-02-21 2008-04-30 株式会社ジェイエスピー 発泡成形体及びその製造方法
JP2005241157A (ja) 2004-02-27 2005-09-08 Kyoraku Co Ltd 発泡体ダクト
JP2011052038A (ja) * 2009-08-31 2011-03-17 Japan Polyethylene Corp 発泡中空成形用ポリエチレン
JP2012107222A (ja) * 2010-10-29 2012-06-07 Sumitomo Chemical Co Ltd エチレン樹脂組成物、架橋発泡体、履き物用部材および履き物
JP2013166896A (ja) * 2012-02-16 2013-08-29 Kyoraku Co Ltd 発泡成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3088452A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107849282A (zh) * 2015-08-18 2018-03-27 京洛株式会社 发泡成型用树脂、发泡成型体的制造方法
EP3339357A4 (en) * 2015-08-18 2018-06-27 Kyoraku Co., Ltd. Foam molding resin and method for manufacturing foam molded article
CN107849282B (zh) * 2015-08-18 2020-07-10 京洛株式会社 发泡成型用树脂、发泡成型体的制造方法
US10988592B2 (en) 2015-08-18 2021-04-27 Kyoraku Co., Ltd. Foam molding resin and method for manufacturing foam molded article

Also Published As

Publication number Publication date
JP6331390B2 (ja) 2018-05-30
CN105849165A (zh) 2016-08-10
EP3088452A4 (en) 2017-08-02
US11111349B2 (en) 2021-09-07
KR102208607B1 (ko) 2021-01-27
JP2015124380A (ja) 2015-07-06
MX2016008487A (es) 2016-09-13
KR20190016606A (ko) 2019-02-18
EP3088452A1 (en) 2016-11-02
EP3088452B1 (en) 2021-09-08
US11608420B2 (en) 2023-03-21
US20210363318A1 (en) 2021-11-25
KR20160097305A (ko) 2016-08-17
US20160333159A1 (en) 2016-11-17
CN110054823B (zh) 2022-02-25
CN110054823A (zh) 2019-07-26
CN105849165B (zh) 2019-03-29
KR102058745B1 (ko) 2019-12-23

Similar Documents

Publication Publication Date Title
JP6331390B2 (ja) 発泡成形体
JP5367884B2 (ja) 板状部分付き管状発泡成形体及びその成形方法
JP6429009B2 (ja) ブロー成形方法及びブロー成形装置
JP5878034B2 (ja) 発泡成形体
WO2014057786A1 (ja) 発泡成形体及びその成形方法
JP5867077B2 (ja) 樹脂成形品の成形方法
JP6741967B2 (ja) ダクト
US20210283819A1 (en) Molded foam
JP6011226B2 (ja) 発泡成形体及びその成形方法
JP6051795B2 (ja) 発泡成形体
JP2013199128A (ja) 樹脂製車両用空調ダクトの成形方法
JP2013199129A (ja) 樹脂製車両用空調ダクトの成形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874087

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15107968

Country of ref document: US

Ref document number: MX/A/2016/008487

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014874087

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014874087

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167018433

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201604916

Country of ref document: ID