WO2015098338A1 - フッ素ゴム組成物、並びに架橋ゴム成形体及びその製造方法 - Google Patents

フッ素ゴム組成物、並びに架橋ゴム成形体及びその製造方法 Download PDF

Info

Publication number
WO2015098338A1
WO2015098338A1 PCT/JP2014/080027 JP2014080027W WO2015098338A1 WO 2015098338 A1 WO2015098338 A1 WO 2015098338A1 JP 2014080027 W JP2014080027 W JP 2014080027W WO 2015098338 A1 WO2015098338 A1 WO 2015098338A1
Authority
WO
WIPO (PCT)
Prior art keywords
crosslinking
crosslinked
hydrogen atom
fluororubber
molding
Prior art date
Application number
PCT/JP2014/080027
Other languages
English (en)
French (fr)
Inventor
直樹 大住
清華 戸田
Original Assignee
日本バルカー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53478214&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015098338(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本バルカー工業株式会社 filed Critical 日本バルカー工業株式会社
Priority to US15/107,368 priority Critical patent/US9908980B2/en
Priority to JP2015554668A priority patent/JP6134391B2/ja
Priority to EP14874562.3A priority patent/EP3088461A4/en
Priority to SG11201605258XA priority patent/SG11201605258XA/en
Priority to CN201480070983.4A priority patent/CN105849180B/zh
Priority to KR1020167014842A priority patent/KR20160105778A/ko
Publication of WO2015098338A1 publication Critical patent/WO2015098338A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • C08L15/02Rubber derivatives containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/247Heating methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J127/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers
    • C09J127/02Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J127/12Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09J127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/14Homopolymers or copolymers of vinyl fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors

Definitions

  • the present invention relates to a fluororubber composition.
  • the present invention also relates to a crosslinked rubber molded body represented by a sealing material using the fluororubber composition and a method for producing the same.
  • a sealing material gasket, packing, etc.
  • a sealing material made of fluoro rubber is known, and fluoro rubber sealing material has relatively good heat resistance and plasma resistance (decomposition resistance by plasma). Therefore, it is also used as a sealing material for a plasma etching apparatus and a plasma CVD apparatus constituting a semiconductor manufacturing apparatus, for example, a sealing material for maintaining a vacuum in a process chamber in which a wafer is processed.
  • Fluoro rubber sealant is also used in, for example, a gate part for partitioning a chamber and a transport part in a semiconductor manufacturing apparatus. In this case, compression and release are repeated, and thus an appropriate mechanical strength is required.
  • the mechanical strength of the fluoro rubber sealant can be improved by adding an inorganic filler.
  • an inorganic filler when a sealing material blended with an inorganic filler is used for semiconductor manufacturing equipment as described above, even when a fluororubber with good plasma resistance is used, the fluororubber used as a sealing material in a harsh plasma environment Ingredients may be etched by plasma, and in this case, the blended inorganic filler is scattered in the chamber (particles are generated), which may lead to problems such as chamber contamination and defective semiconductor products. .
  • Patent Document 1 describes a fluorine-containing elastomer composition that does not contain a particulate filler that causes particle generation.
  • Patent Document 2 discloses that the amount of the non-organic resin filler or the organic resin filler is suppressed as much as possible in order to suppress the generation of particles in the fluororubber seal material. Are listed.
  • Patent Document 2 describes that polytetrafluoroethylene (PTFE) is blended as an organic resin filler in order to ensure mechanical strength and the like, but fluorine containing PTFE as a reinforcing agent is described.
  • PTFE polytetrafluoroethylene
  • the rubber sealing material is continuously used in a plasma environment, the above-mentioned particle problem does not occur, but it is clear from the examination by the present inventors that PTFE particles are precipitated on the etched sealing material surface and the surface is whitened. became. Such surface deposition (whitening) of the resin may drop in a lump larger than the particles, which may lead to problems such as chamber contamination and semiconductor product defects.
  • the present invention provides the following fluororubber composition, cross-linked rubber molded product, and production method thereof.
  • a fluororubber composition containing a hydrogen atom-containing fluororubber and a hydrogen atom-containing fluororesin containing a hydrogen atom-containing fluororubber and a hydrogen atom-containing fluororesin.
  • the hydrogen atom-containing fluororesin is composed of polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, and vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer.
  • the fluororubber composition according to any one of [1] to [3], which is at least one selected from the group consisting of:
  • a crosslinked rubber molded article comprising a crosslinked product of the fluororubber composition according to any one of [1] to [5].
  • a method for producing a crosslinked rubber molded body comprising:
  • a fluororubber composition capable of forming a crosslinked rubber molded article having no mechanical whitening problem when used in a plasma environment and having excellent mechanical strength.
  • the obtained crosslinked rubber molded article does not cause a problem of surface whitening and has excellent mechanical strength, and can be suitably used as a sealing material such as a packing or gasket, particularly as a sealing material for use in semiconductor manufacturing equipment.
  • the hydrogen atom-containing fluororubber used in the present invention is a crosslinkable rubber component capable of forming an elastomer having a crosslinked structure (crosslinked rubber) by a crosslinking reaction and contains a hydrogen atom or hydrogen. It is a polymer or copolymer comprising a monomer containing an atom and a fluorine atom as at least one constituent unit, or a fluorine-based thermoplastic elastomer containing a hydrogen atom.
  • the cross-linked rubber is one in which rubber elasticity is developed by causing a cross-linking reaction between molecular chains of a cross-linkable rubber component (hydrogen atom-containing fluoro rubber) using a cross-linking agent or the like to give a cross-linked structure.
  • a cross-linkable rubber component hydrogen atom-containing fluoro rubber
  • hydrogen atom-containing fluororubber examples include, for example, vinylidene fluoride (VDF) -hexafluoropropylene (HFP) copolymer; vinylidene fluoride (VDF) -hexafluoropropylene (HFP) -tetrafluoroethylene (TFE).
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene
  • TFE tetrafluoroethylene
  • the fluorine-based thermoplastic elastomer containing a hydrogen atom is not particularly limited.
  • “DAIEL THERMO PLASTIC” manufactured by Daikin Industries, Ltd.
  • “Cefalsoft” manufactured by Central Glass Co., Ltd.
  • the hydrogen atom-containing fluororesin used in the present invention is a resin containing hydrogen atoms and fluorine atoms in the molecule.
  • PVDF polyvinylidene fluoride
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene copolymer Tetrafluoroethylene-ethylene copolymer
  • ECTFE Chlorotrifluoroethylene-ethylene copolymer
  • PVDF Polyvinyl fluoride
  • PVDF Vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer
  • PVDF polyvinylidene fluoride
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene copolymer
  • tetrafluoro is difficult to be precipitated on the surface of the crosslinked rubber molded body or has a higher reinforcing effect.
  • One or more selected from the group consisting of ethylene-ethylene copolymer (ETFE) and vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer (VDF-HFP-TFE copolymer) are preferably used. It is done.
  • a fluororubber composition containing a VDF-HFP copolymer as a hydrogen atom-containing fluororesin provides a crosslinked rubber molded article that is excellent in rubber elasticity (smaller in hardness and modulus) while ensuring excellent tensile strength. It is advantageous in terms of obtaining. This advantage is obtained by partially crosslinking the fluororubber composition to obtain a moldable first crosslinked body, and crosslinking the first crosslinked body with ionizing radiation to obtain a second crosslinked body. This is particularly remarkable in the case of producing a crosslinked rubber molded article by the method described later including the second crosslinking step of obtaining
  • VDF-HFP copolymer A commercially available product may be used as the VDF-HFP copolymer.
  • Examples of commercial products of the VDF-HFP copolymer include “Kynar UltraFlex B” (manufactured by Arkema), “Kynar ADS2” (manufactured by Arkema) and the like under the trade name.
  • the content of the fluorine atom-containing fluororesin in the fluororubber composition (the total amount when two or more hydrogen atom-containing fluororesins are used) is 1 to 50 parts by weight per 100 parts by weight of the hydrogen atom-containing fluororubber Is preferably 5 to 20 parts by weight, more preferably 10 to 20 parts by weight.
  • Setting the content of the hydrogen atom-containing fluororesin to 1 part by weight or more is advantageous in increasing the mechanical strength (hardness and modulus) of the obtained crosslinked rubber molded product (sealing material or the like). Moreover, by making it 50 parts by weight or less, it is possible to achieve both good mechanical strength and good heat resistance (compression set characteristics).
  • the content of the hydrogen atom-containing fluororesin exceeds 50 parts by weight, the content of the elastic hydrogen atom-containing fluororubber is relatively reduced, and heat resistance (compression set properties) is deteriorated.
  • content of a hydrogen atom containing fluororesin exceeds 50 weight part, there exists a possibility that precipitation to the surface of the hydrogen atom containing fluororesin in a plasma environment cannot be suppressed effectively.
  • the fluororubber composition of the present invention includes a hydrogen atom-containing fluororubber and a hydrogen atom-containing fluororesin, and thus occurs when the crosslinked rubber molded product is used in a plasma environment.
  • the problem of surface precipitation (surface whitening) of the obtained fluororesin can be suppressed. This is because when a crosslinked rubber molding (seal material) is used in a plasma environment, the fluororubber component tends to be slightly etched by the plasma, but the structure is similar to that of a hydrogen atom-containing fluororubber.
  • the plasma resistance becomes equivalent, and the fluororubber component is etched and decomposed into gas. This is probably because the hydrogen atom-containing fluororesin is also etched and decomposed into gas.
  • a perfluoro resin such as PTFE is used, it is less likely to be decomposed by etching than the hydrogen atom-containing fluororubber. It is done.
  • a crosslinked rubber molded article having excellent mechanical strength can be provided. This is thought to be because the structure of the hydrogen atom-containing fluororesin is close to that of the hydrogen atom-containing fluororubber and the compatibility with the hydrogen atom-containing fluororubber is high. It is done. Furthermore, according to the fluororubber composition of the present invention, it is possible to provide a crosslinked rubber molded article having good elongation characteristics. This is because the crosslinked rubber molded article has a highly compatible hydrogen atom-containing fluororubber and hydrogen atom-containing fluororesin. This is considered to be because it is composed of a co-continuous phase consisting of
  • the hydrogen atom-containing fluororubber crosslinking system may be a peroxide crosslinking system, a polyamine crosslinking system, a polyol crosslinking system, etc., but has a higher heat resistance and plasma resistance and can be suitably applied to semiconductor manufacturing equipment applications. Since a body (sealant etc.) is given, it is preferable that it is a peroxide bridge system.
  • the organic peroxide (peroxide crosslinking agent) used in the peroxide crosslinking system is, for example, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane (example of commercially available product: “Perhexa 25B manufactured by NOF Corporation”.
  • Dicumyl peroxide (example of commercial product: “Parkmill D” manufactured by NOF); 2,4-dichlorobenzoyl peroxide; di-t-butyl peroxide; t-butyl dicumyl peroxide; benzoyl peroxide (commercially available)
  • the content of the organic peroxide in the fluororubber composition (the total amount when two or more organic peroxides are used) is, for example, 0.01 to 20 parts by weight per 100 parts by weight of the hydrogen atom-containing fluororubber. It is preferably 0.1 to 10 parts by weight.
  • triallyl isocyanurate (example of commercially available product: “TAIC” manufactured by Nippon Kasei Co., Ltd.); triallyl cyanurate; triallyl formal; triallyl trimellitate; N, N ′
  • examples include compounds (unsaturated polyfunctional compounds) capable of co-crosslinking with radicals such as -m-phenylene bismaleimide; dipropargyl terephthalate; diallyl phthalate; tetraallyl terephthalamide.
  • the co-crosslinking agent preferably contains triallyl isocyanurate from the viewpoint of reactivity and heat resistance of the obtained crosslinked rubber molded article.
  • the content of the co-crosslinking agent in the fluororubber composition (the total amount when two or more co-crosslinking agents are used) is, for example, 0.1 to 40 parts by weight per 100 parts by weight of the hydrogen atom-containing fluororubber, The amount is preferably 0.2 to 10 parts by weight.
  • the fluororubber composition of the present invention is an anti-aging agent, an antioxidant, a vulcanization accelerator, a processing aid (liquid rubber, oil, plasticizer, Softeners, tackifiers, etc.), stabilizers, silane coupling agents, flame retardants, mold release agents, waxes, lubricants and the like. Only 1 type may be used for an additive and it may use 2 or more types together.
  • a crosslinked rubber molded body (sealant) is used for semiconductor manufacturing equipment, volatilization, elution, or precipitation may cause contamination of the manufacturing process or decrease in semiconductor manufacturing efficiency.
  • Is preferably as small as possible for example, 10 parts by weight or less, preferably 5 parts by weight or less, more preferably 2 parts by weight or less, and even more preferably 1 part by weight or less per 100 parts by weight of the hydrogen atom-containing fluororubber). It is desirable not to contain.
  • the fluororubber composition of the present invention may contain carbon black, silica, alumina, zinc oxide, titanium oxide, clay, talc, diatomaceous earth, barium sulfate, calcium carbonate, magnesium carbonate, calcium oxide, mica, graphite, as necessary.
  • Fillers such as aluminum hydroxide, aluminum silicate, hydrotalcite, metal powder, glass powder, ceramic powder can also be included.
  • the amount of inorganic filler is It is preferably as small as possible (for example, 10 parts by weight or less, preferably 5 parts by weight or less, more preferably 2 parts by weight or less, and even more preferably 1 part by weight or less per 100 parts by weight of the hydrogen atom-containing fluororubber). It is desirable not to mix.
  • the inorganic filler refers to a filler containing a metal element (Ba, Ti, Zn, Al, Mg, Ca, Si, etc.).
  • the fluororubber composition of the present invention uniformly contains a hydrogen atom-containing fluororubber, a hydrogen atom-containing fluororesin, a crosslinking agent (such as an organic peroxide and a co-crosslinking agent), and other compounding agents that are added as necessary. It can be prepared by kneading.
  • a kneader for example, a conventionally known one such as a mixing roll such as an open roll; a mixer such as a kneader or a Banbury mixer can be used.
  • compounding agents may be mixed and kneaded at one time, or after kneading a part of the compounding agents, kneading all the compounding agents in multiple stages such as kneading the remaining compounding agents. You may do it.
  • kneading of hydrogen atom-containing fluorororubber and hydrogen atom-containing fluororesin for example, 1) a method of kneading hydrogen atom-containing fluororubber powder and hydrogen atom-containing fluororesin powder using a mixing roll, 2) hydrogen atom A method of melt-kneading the fluorine-containing rubber powder or pellets and the hydrogen atom-containing fluorine resin powder or pellets using a mixer can be used.
  • the crosslinked rubber molded article of the present invention is composed of a crosslinked product of the above-described fluororubber composition, surface precipitation (surface whitening) of the fluororesin hardly occurs even when used in a plasma environment, and the mechanical strength is also improved. Are better. Also, good elongation characteristics and heat resistance (compression set characteristics) can be exhibited.
  • the crosslinked rubber molded body can typically be a sealing material such as a packing or a gasket.
  • the shape of the sealing material is appropriately selected according to the application, and a typical example is an O-ring having a cross-sectional shape of O-type. Since the sealing material which concerns on this invention has the above favorable physical properties, it can be used suitably especially as a sealing material for a semiconductor manufacturing apparatus use.
  • the crosslinked rubber molded body can be produced by crosslinking (vulcanizing) the fluororubber composition.
  • Crosslinking molding can be performed, for example, by preforming a fluororubber composition as necessary and then press molding using a mold.
  • the molding temperature is, for example, about 150 to 220 ° C.
  • molding can be performed by feed press molding, injection molding, extrusion molding, or the like.
  • secondary crosslinking may be performed at a temperature of about 150 to 280 ° C. as necessary.
  • compression set characteristics can be improved even when a hydrogen atom-containing fluororesin having a relatively low melting point is used.
  • first cross-linking step in which the fluororubber composition is partially cross-linked to obtain a moldable first cross-linked body, and (2) the first cross-linked body is cross-linked with ionizing radiation to form a second cross-linked cross section.
  • Second cross-linking step to obtain a body.
  • This production method is preferably performed between the first crosslinking step and the second crosslinking step. (3) It further includes a molding step of molding the first crosslinked body.
  • a cross-linking reaction is indispensable for molding into a predetermined shape, it is not suitable for continuous molding such as extrusion molding or injection molding, and it is possible to continuously produce molded bodies by continuously molding. Have difficulty, b) Once the cross-linked structure is formed and the shape is fixed, the cross-linking reaction is irreversible, and even when heated, the shape is irreversible, so even if there is any defect in the shape after molding, The molding process cannot be performed again by reusing the molded material. It has been recognized that it is difficult to improve production efficiency.
  • the fluororubber composition is partially cross-linked by any one or more of the above cross-linking systems (preferably a peroxide cross-linking system) and can be molded. Get the body.
  • Partially crosslinked means that the degree of crosslinking is higher than that in an uncrosslinked state, but the crosslinking agent (including a crosslinking aid such as a co-crosslinking agent) is insufficient, and the crosslinking agent (cross-linking such as a co-crosslinking agent).
  • a vulcanization curve of a rubber composition having a horizontal axis as a time and a vertical axis as a torque value is obtained by a curast meter (rheometer, vulcanization / curing characteristic tester).
  • the rubber composition is preferably partially crosslinked so that the maximum torque value MH is 2 to 70% of the maximum torque value MH 0 in the reference system.
  • the maximum torque value MH is more preferably 3 to 40% of MH 0 .
  • the reference system includes a crosslinking agent (including a crosslinking aid such as a co-crosslinking agent) in a sufficient amount, and when a sufficient amount of heat is applied, the maximum degree of crosslinking that can be developed. It refers to a rubber composition that can form a crosslinked product. More specifically, the cross-linked body refers to a cross-linked body in which the degree of cross-linking has progressed to a state where it does not melt even when the cross-linked body is heated to the decomposition temperature of the cross-linked portion in an air atmosphere.
  • a crosslinking agent including a crosslinking aid such as a co-crosslinking agent
  • a sufficient amount of the crosslinking agent in various crosslinking systems and a crosslinking temperature and a crosslinking time for achieving the maximum degree of crosslinking that can be expressed can be selected based on common technical knowledge in the field.
  • the decomposition temperature of the crosslinked portion is, for example, about 200 ° C. in the case of fluorine rubber crosslinked by a peroxide crosslinking system, and about 230 ° C. in the case of fluorine rubber crosslinked by a polyol crosslinking system.
  • the uncrosslinked fluororubber composition is crosslinked to a formable state.
  • “Moldable” means that the molding process itself can be performed and the shape after molding can be maintained. If the fluororubber composition remains uncrosslinked, the fluidity is too high to be molded. On the other hand, if the degree of crosslinking is too high, shaping becomes difficult due to excessive progress of shape fixing by crosslinking, and melting by heat becomes impossible.
  • the cross-linking method in this step may be cross-linking by heat, cross-linking by ionizing radiation, or a combination thereof.
  • crosslinking by heat partial crosslinking is performed by reducing the amount of the crosslinking agent and / or crosslinking assistant in the fluororubber composition by reducing the amount of the crosslinking agent and / or crosslinking auxiliary agent compared to the above reference system or by adding an additive that inhibits crosslinking. be able to.
  • the degree of crosslinking can be controlled by adjusting the blending amount of the crosslinking agent and / or crosslinking aid and the blending amount of the crosslinking inhibitor.
  • the degree of crosslinking can be controlled by adjusting the irradiation amount.
  • additives that inhibit crosslinking include 2,2-bis (4-hydroxyphenyl) hexafluoropropane; o-phenylphenol; hydroquinone; 2,4-diphenyl-4-methyl-1-pentene; -Bis (3-amino-4-hydroxyphenyl) hexafluoropropane; amine-ketone antioxidants (eg poly 2,2,4-trimethyl-1,2-dihydroquinoline); aromatic secondary amines Anti-aging agent (for example, 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine); Monophenol type anti-aging agent (for example, 2,6-di-t-butyl-4-methylphenol); Bisphenol type Anti-aging agent (for example, 4,4′-thiobis (3-methyl-6-tert-butylphenol); benzimidazole anti-aging agent (eg, If, and 2-mercaptobenzimidazole).
  • amine-ketone antioxidants eg poly 2,2,4-trimethyl-1
  • cross-linking by heat is preferably used from the viewpoint of preventing an increase in manufacturing cost.
  • an electron beam or ⁇ -ray can be used as the ionizing radiation as in the second crosslinking step described later.
  • Molding step It is preferable to include a molding step for molding the first crosslinked body after the first crosslinking step. Since the first crosslinked body is partially crosslinked to the extent that it can be molded, it can be melted by heat, for example, continuous molding using melt molding such as extrusion molding or injection molding is possible. is there. This makes it possible to continuously produce a crosslinked rubber molded body, and thus to reduce manufacturing costs.
  • the first crosslinked body when the first crosslinked body is not further crosslinked by heat due to factors such as lack of crosslinking agent or crosslinking aid, it differs from the conventional method for producing a crosslinked rubber molded body by heat. Scorch where cross-linking proceeds is difficult to occur. This is also advantageous for continuous molding using melt molding such as extrusion molding or injection molding.
  • the first cross-linked body can be melted by heat, there is some problem in the shape after molding, especially when it is not cross-linked by heat due to factors such as lack of cross-linking agent or cross-linking aid.
  • the molded material can be reused by re-melting the molded body and performing the molding process again. Reuse of such materials is also advantageous for reducing manufacturing costs.
  • the melt molding (extrusion molding or injection molding) of the first crosslinked body can be performed in the same manner as a general thermoplastic resin or thermoplastic elastomer.
  • the molding temperature can be, for example, 150 to 320 ° C.
  • Second cross-linking step In this step, the first cross-linked body or the molded body thereof is cross-linked by ionizing radiation to give a degree of cross-linking required as a final product, thereby obtaining a second cross-linked body.
  • ionizing radiation is not particularly limited, electron beams and ⁇ rays can be preferably used.
  • the dose of ionizing radiation is preferably 10 to 500 kGy, more preferably 30 to 200 kGy. When the irradiation dose is less than 10 kGy, a sufficient degree of crosslinking cannot be obtained, and the desired mechanical strength tends to be not obtained.
  • the irradiation amount 500 kGy or less, it is possible to prevent the hydrogen atom-containing fluororesin from melting and to obtain a second crosslinked body (crosslinked rubber molded body) having excellent elongation characteristics. Further, when the main crosslinking step using ionizing radiation is performed, the compression set characteristics can be sufficiently improved even when a hydrogen atom-containing fluororesin having a relatively low melting point is used.
  • heat treatment may be applied to the second cross-linked body using an oven (electric furnace, vacuum electric furnace) or the like, if necessary.
  • the heat treatment conditions can be about 150 to 280 ° C.
  • Examples 1 to 4 Comparative Examples 1 to 5> According to the composition shown in Table 1 (the unit of the blending amount in Table 1 is parts by weight), a predetermined amount of each compounding agent was kneaded with an open roll. Next, the obtained fluororubber composition was press molded at 170 ° C. for 20 minutes, and then heat treated at 200 ° C. for 4 hours to obtain a sealing material (O-ring).
  • a sealing material O-ring
  • the sealing material of Example 1 does not melt even when heated to 200 ° C. in an air atmosphere, and the kneaded product (material before press molding) contains a sufficient amount of a crosslinking agent and a co-crosslinking agent. Since sufficient heat is applied for crosslinking, the kneaded product can be regarded as the above-mentioned reference system.
  • the vulcanization curve (200 ° C., 15 minutes) of this reference system and the vulcanization curve (200 ° C., 15 minutes) in the first crosslinking step of Example 5 were measured using a curast meter (Orientec Co., Ltd.).
  • the maximum torque value MH 0 in the reference system and the maximum torque value MH of Example 5 were determined.
  • the maximum torque value MH was 10.1% when the maximum torque value MH 0 was 100%.
  • FKM 1 Vinylidene fluoride (VDF) -hexafluoropropylene (HFP) -tetrafluoroethylene (TFE) polymer [“Daiel G902” manufactured by Daikin Industries, Ltd.].
  • FKM 2 Vinylidene fluoride (VDF) -hexafluoropropylene (HFP) -tetrafluoroethylene (TFE) polymer (“Technoflon P959” manufactured by Solvay Specialty Polymers).
  • FKM 3 Fluorine-based block polymer of vinylidene fluoride (VDF) -hexafluoropropylene (HFP) -tetrafluoroethylene (TFE) polymer and tetrafluoroethylene-ethylene polymer (ETFE) Thermoplastic elastomer [Daikin Thermoplastic T-530, manufactured by Daikin Industries, Ltd.].
  • VDF vinylidene fluoride
  • HFP hexafluoropropylene
  • TFE tetrafluoroethylene
  • ETFE tetrafluoroethylene-ethylene polymer
  • Thermoplastic elastomer Thermoplastic elastomer [Daikin Thermoplastic T-530, manufactured by Daikin Industries, Ltd.].
  • PVDF polyvinylidene fluoride [“Kureha KF Polymer # 850” manufactured by Kureha Corporation].
  • ETFE Tetrafluoroethylene-ethylene copolymer ["Neofluon EP610" manufactured by Daikin Industries, Ltd.]
  • VDF-HFP Vinylidene fluoride-hexafluoropropylene copolymer (“Kynar UltraFlex B” manufactured by Arkema).
  • PTFE polytetrafluoroethylene [Mitsui / DuPont "Zonyl MP1500” manufactured by Fluorochemical Co., Ltd.].
  • FEP Tetrafluoroethylene-hexafluoropropylene copolymer [“Neofluon NC1500” manufactured by Daikin Industries, Ltd.]
  • Cross-linking agent Perhexa 25B (2,5-dimethyl-2,5-di (t-butylperoxy) hexane) [“Perhexa 25B” manufactured by NOF Corporation].
  • Co-crosslinking agent triallyl isocyanurate [“TAIC” manufactured by Nippon Kasei Co., Ltd.].

Abstract

 水素原子含有フッ素ゴムと水素原子含有フッ素樹脂とを含むフッ素ゴム組成物、並びにこれを用いた架橋ゴム成形体及びその製造方法が提供される。水素原子含有フッ素樹脂は、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-エチレン共重合体及びフッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体からなる群から選択される少なくとも1種であることが好ましい。

Description

フッ素ゴム組成物、並びに架橋ゴム成形体及びその製造方法
 本発明は、フッ素ゴム組成物に関する。また本発明は、当該フッ素ゴム組成物を用いた、シール材に代表される架橋ゴム成形体及びその製造方法に関する。
 各種用途に用いられるシール材(ガスケット、パッキン等)として、フッ素ゴムからなるシール材が知られており、フッ素ゴムシール材は、耐熱性及び耐プラズマ性(プラズマによる耐分解性)が比較的良好であることから、半導体製造装置を構成するプラズマエッチング装置やプラズマCVD装置用のシール材、例えばウエハが処理されるプロセスチャンバーを真空に保つためのシール材としても用いられている。
 フッ素ゴムシール材は、例えば半導体製造装置におけるチャンバーと搬送部とを仕切るゲート部にも使用されており、この場合、圧縮と開放が繰り返されるため、適正な機械的強度が求められる。
 フッ素ゴムシール材の機械的強度は、無機充填剤を配合することによって改善することが可能である。しかし、無機充填剤を配合したシール材を上記のような半導体製造装置用途に用いると、耐プラズマ性が良好なフッ素ゴムを用いる場合であっても、過酷なプラズマ環境下でシール材のフッ素ゴム成分がプラズマによりエッチングされることがあり、この場合、配合されている無機充填剤がチャンバー内に飛散し(パーティクルが発生し)、チャンバーの汚染や半導体の製品不良といった問題を招来するおそれがある。
 特開2000-119468号公報(特許文献1)には、パーティクル発生の要因となる粒状充填剤を含有しない含フッ素エラストマー組成物が記載されている。また特開2005-113035号公報(特許文献2)には、フッ素ゴムシール材において、パーティクルの発生を抑制するために、非有機樹脂系充填剤や有機樹脂系充填剤の配合量を極力抑えることが記載されている。
特開2000-119468号公報 特開2005-113035号公報
 特許文献1に記載されるように充填剤を配合しない場合には、パーティクル発生の問題は生じないが、得られる架橋ゴム成形体に高位の機械的強度を付与し難いという問題がある。一方、特許文献2には、機械的強度等を確保するために、有機樹脂系充填剤としてポリテトラフルオロエチレン(PTFE)を配合することが記載されているが、PTFEを補強剤として含有するフッ素ゴムシール材をプラズマ環境下で使用し続けると、上述のパーティクルの問題は生じないものの、エッチングされたシール材表面にPTFE粒子が析出して表面が白化することが本発明者らの検討で明らかとなった。このような樹脂の表面析出(白化)は、パーティクルよりも大きな塊で脱落し、チャンバーの汚染や半導体の製品不良といった問題を招来するおそれがある。
 本発明の目的は、プラズマ環境下で使用されるときに上記のような表面白化の問題を生じず、かつ機械的強度(硬度やモジュラス)にも優れる架橋ゴム成形体を形成できるフッ素ゴム組成物を提供することにある。本発明の他の目的は、当該フッ素ゴム組成物を用いた、表面白化の問題を生じず、かつ機械的強度にも優れる架橋ゴム成形体及びその製造方法を提供することにある。
 本発明は、以下に示すフッ素ゴム組成物、架橋ゴム成形体及びその製造方法を提供する。
 [1] 水素原子含有フッ素ゴムと、水素原子含有フッ素樹脂とを含むフッ素ゴム組成物。
 [2] 前記水素原子含有フッ素樹脂の含有量が、前記水素原子含有フッ素ゴム100重量部あたり1~50重量部である、[1]に記載のフッ素ゴム組成物。
 [3] 有機過酸化物と、共架橋剤とをさらに含む、[1]又は[2]に記載のフッ素ゴム組成物。
 [4] 前記水素原子含有フッ素樹脂は、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-エチレン共重合体及びフッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体からなる群から選択される少なくとも1種である、[1]~[3]のいずれかに記載のフッ素ゴム組成物。
 [5] 無機充填剤を含まない、[1]~[4]のいずれかに記載のフッ素ゴム組成物。
 [6] [1]~[5]のいずれかに記載のフッ素ゴム組成物の架橋物からなる架橋ゴム成形体。
 [7] 半導体製造装置用シール材である、[6]に記載の架橋ゴム成形体。
 [8] [1]~[5]のいずれかに記載のフッ素ゴム組成物を架橋成形する工程を含む、架橋ゴム成形体の製造方法。
 [9] [1]~[5]のいずれかに記載のフッ素ゴム組成物を部分的に架橋させて、成形可能な第1架橋体を得る第1架橋工程と、
 前記第1架橋体を電離性放射線により架橋させて、第2架橋体を得る第2架橋工程と、
を含む、架橋ゴム成形体の製造方法。
 [10] 前記第1架橋工程と前記第2架橋工程との間に、前記第1架橋体を成形する成形工程をさらに含む、[9]に記載の製造方法。
 [11] 前記第1架橋体を押出成形又は射出成形により成形する、[10]に記載の製造方法。
 [12] 前記第1架橋工程において前記フッ素ゴム組成物を熱によって架橋させる、[9]~[11]のいずれかに記載の製造方法。
 本発明によれば、プラズマ環境下で使用されるときに表面白化の問題を生じず、機械的強度にも優れる架橋ゴム成形体を形成できるフッ素ゴム組成物を提供することができる。得られる架橋ゴム成形体は、表面白化の問題を生じず、機械的強度にも優れており、パッキンやガスケットのようなシール材、とりわけ半導体製造装置用途のシール材として好適に用いることができる。
 <フッ素ゴム組成物>
 〔a〕水素原子含有フッ素ゴム
 本発明で用いる水素原子含有フッ素ゴムとは、架橋反応によって架橋構造を有するエラストマー(架橋ゴム)を形成可能な架橋性ゴム成分であり、水素原子を含むか又は水素原子とフッ素原子を含むモノマーを構成単位の少なくとも1つとする重合体又は共重合体からなるもの、又は水素原子を含むフッ素系熱可塑性エラストマーである。架橋ゴムとは、架橋剤等を用いて架橋性ゴム成分(水素原子含有フッ素ゴム)の分子鎖間に架橋反応を起こさせ、架橋構造を持たせることによってゴム弾性を発現させたものである。
 水素原子含有フッ素ゴムの具体例を挙げれば、例えば、ビニリデンフルオライド(VDF)-ヘキサフルオロプロピレン(HFP)共重合体;ビニリデンフルオライド(VDF)-ヘキサフルオロプロピレン(HFP)-テトラフルオロエチレン(TFE)共重合体;テトラフルオロエチレン(TFE)-プロピレン(Pr)共重合体;ビニリデンフルオライド(VDF)-プロピレン(Pr)-テトラフルオロエチレン(TFE)共重合体;エチレン(E)-テトラフルオロエチレン(TFE)-パーフルオロメチルビニルエーテル(PMVE)共重合体;ビニリデンフルオライド(VDF)-テトラフルオロエチレン(TFE)-パーフルオロメチルビニルエーテル(PMVE)共重合体、ビニリデンフルオライド(VDF)-パーフルオロメチルビニルエーテル(PMVE)共重合体等を挙げることができる。水素原子含有フッ素ゴムは1種のみを用いてもよいし、2種以上を併用してもよい。
 水素原子を含むフッ素系熱可塑性エラストマーは特に制限されず、例えば、いずれも商品名で、「ダイエルサーモプラスチック」(ダイキン工業(株)製)、「セフラルソフト」(セントラル硝子(株)製)等を用いることができる。
 本発明で用いる水素原子含有フッ素樹脂とは、分子内に水素原子及びフッ素原子を含む樹脂であり、例えば、ポリフッ化ビニリデン(PVDF);ビニリデンフルオライド(VDF)-ヘキサフルオロプロピレン(HFP)共重合体;テトラフルオロエチレン-エチレン共重合体(ETFE);クロロトリフルオロエチレン-エチレン共重合体(ECTFE);ポリビニルフルオライド(PVF);フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体(VDF-HFP-TFE共重合体)等であることができる。水素原子含有フッ素樹脂は1種のみを用いてもよいし、2種以上を併用してもよい。
 上記の中でも、架橋ゴム成形体の表面により析出しにくく、あるいはさらに補強効果が高いことから、ポリフッ化ビニリデン(PVDF)、ビニリデンフルオライド(VDF)-ヘキサフルオロプロピレン(HFP)共重合体、テトラフルオロエチレン-エチレン共重合体(ETFE)及びフッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体(VDF-HFP-TFE共重合体)からなる群から選択される1種又は2種以上が好ましく用いられる。
 中でも、水素原子含有フッ素樹脂としてVDF-HFP共重合体を含むフッ素ゴム組成物は、優れた引張強度を確保しながらも、ゴム弾性により優れる(硬度やモジュラスがより小さい)架橋ゴム成形体を与え得る点で有利である。この有利性は、フッ素ゴム組成物を部分的に架橋させて、成形可能な第1架橋体を得る第1架橋工程と、当該第1架橋体を電離性放射線により架橋させて、第2架橋体を得る第2架橋工程とを含む後述の方法によって架橋ゴム成形体を製造する場合においてとりわけ顕著である。
 なお、VDF-HFP共重合体として市販品を用いてもよい。VDF-HFP共重合体の市販品としては、いずれも商品名で、「Kynar UltraFlex B」(アルケマ社製)、「Kynar ADS2」(アルケマ社製)等を挙げることができる。
 フッ素ゴム組成物における水素原子含有フッ素樹脂の含有量(2種以上の水素原子含有フッ素樹脂を用いる場合はその合計量)は、水素原子含有フッ素ゴム100重量部あたり1~50重量部であることが好ましく、5~20重量部であることがより好ましく、10~20重量部であることがさらに好ましい。
 水素原子含有フッ素樹脂の含有量を1重量部以上とすることは、得られる架橋ゴム成形体(シール材等)の機械的強度(硬度やモジュラス)を高めるうえで有利となる。また50重量部以下とすることにより、良好な機械的強度と良好な耐熱性(圧縮永久歪特性)との両立が可能となる。水素原子含有フッ素樹脂の含有量が50重量部を超えると、弾性を示す水素原子含有フッ素ゴムの含有量が相対的に減少して、耐熱性(圧縮永久歪特性)が悪化する。また、水素原子含有フッ素樹脂の含有量が50重量部を超えると、プラズマ環境下での水素原子含有フッ素樹脂の表面への析出を効果的に抑制できないおそれもある。
 以上のように、本発明のフッ素ゴム組成物は、水素原子含有フッ素ゴムと、水素原子含有フッ素樹脂とを含むものであり、これにより、架橋ゴム成形体をプラズマ環境下で使用するときに生じ得るフッ素樹脂の表面析出(表面白化)の問題を抑制することができる。これは、架橋ゴム成形体(シール材)をプラズマ環境下で使用する場合には、僅かながら徐々にフッ素ゴム成分がプラズマによりエッチングされる傾向があるところ、水素原子含有フッ素ゴムと構造が類似する(例えばフッ素原子含有量や水素原子含有量が類似する)水素原子含有フッ素樹脂を用いることにより、耐プラズマ性も同等なものとなり、フッ素ゴム成分がエッチングされ、分解ガス化するのと同程度に水素原子含有フッ素樹脂もエッチング・分解ガス化されるためであると考えられる。これに対してPTFEのようなパーフルオロ樹脂を用いた場合には、水素原子含有フッ素ゴムよりもエッチングによる分解が生じにくいために、架橋ゴム成形体の表面に徐々に析出していくものと考えられる。
 また本発明のフッ素ゴム組成物によれば、機械的強度に優れる架橋ゴム成形体を提供することができる。これは、水素原子含有フッ素樹脂の構造が水素原子含有フッ素ゴムに近く、水素原子含有フッ素ゴムとの相溶性が高いため、水素原子含有フッ素樹脂による補強効果が高くなっていることが要因として考えられる。さらに本発明のフッ素ゴム組成物によれば、伸び特性の良好な架橋ゴム成形体を提供し得るが、これは、架橋ゴム成形体が相溶性の高い水素原子含有フッ素ゴムと水素原子含有フッ素樹脂からなる共連続相で構成されているためであると考えられる。
 水素原子含有フッ素ゴムの架橋系は、パーオキサイド架橋系、ポリアミン架橋系、ポリオール架橋系等であり得るが、耐熱性や耐プラズマ性がより高く、半導体製造装置用途に好適に適用できる架橋ゴム成形体(シール材等)を与えることから、パーオキサイド架橋系であることが好ましい。
 パーオキサイド架橋系で用いる有機過酸化物(パーオキサイド架橋剤)は、例えば、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン(市販品の例:日油製「パーヘキサ25B」);ジクミルペルオキシド(市販品の例:日油製「パークミルD」);2,4-ジクロロベンゾイルパーオキサイド;ジ-t-ブチルパーオキサイド;t-ブチルジクミルパーオキサイド;ベンゾイルペルオキシド(市販品の例:日油製「ナイパーB」);2,5-ジメチル-2,5-(t-ブチルペルオキシ)ヘキシン-3(市販品の例:日油製「パーヘキシン25B」);2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン;α,α’-ビス(t-ブチルペルオキシ-m-イソプロピル)ベンゼン(市販品の例:日油製「パーブチルP」);t-ブチルパーオキシイソプロピルカーボネート;パラクロロベンゾイルパーオキサイド等であることができる。パーオキサイド架橋剤は、1種のみを用いてもよいし、2種以上を併用してもよい。
 フッ素ゴム組成物における有機過酸化物の含有量(2種以上の有機過酸化物を用いる場合はその合計量)は、水素原子含有フッ素ゴム100重量部あたり、例えば0.01~20重量部であり、0.1~10重量部であることが好ましい。
 パーオキサイド架橋系で用いる共架橋剤としては、トリアリルイソシアヌレート(市販品の例:日本化成社製「TAIC」);トリアリルシアヌレート;トリアリルホルマール;トリアリルトリメリテート;N,N’-m-フェニレンビスマレイミド;ジプロパギルテレフタレート;ジアリルフタレート;テトラアリルテレフタルアミド等のラジカルによる共架橋が可能な化合物(不飽和多官能性化合物)を挙げることができる。共架橋剤は、1種のみを用いてもよいし、2種以上を併用してもよい。上記の中でも、反応性や得られる架橋ゴム成形体の耐熱性の観点から、共架橋剤は、トリアリルイソシアヌレートを含むことが好ましい。
 フッ素ゴム組成物における共架橋剤の含有量(2種以上の共架橋剤を用いる場合はその合計量)は、水素原子含有フッ素ゴム100重量部あたり、例えば0.1~40重量部であり、0.2~10重量部であることが好ましい。
 本発明のフッ素ゴム組成物は、加工性改善や物性調整等を目的として、必要に応じて、老化防止剤、酸化防止剤、加硫促進剤、加工助剤(液状ゴム、オイル、可塑剤、軟化剤、粘着付与剤等)、安定剤、シランカップリング剤、難燃剤、離型剤、ワックス類、滑剤等の添加剤を含むことができる。添加剤は1種のみを用いてもよいし、2種以上を併用してもよい。
 ただし、架橋ゴム成形体(シール材)を半導体製造装置用途に用いる場合には、揮発、溶出又は析出により、製造工程の汚染や半導体製造効率の低下を生じるおそれがあることから、添加剤の量はできるだけ少ないことが好ましく(例えば、水素原子含有フッ素ゴム100重量部あたり10重量部以下、好ましくは5重量部以下、より好ましくは2重量部以下、さらに好ましくは1重量部以下)、添加剤を含有しないことが望ましい。
 また本発明のフッ素ゴム組成物は、必要に応じて、カーボンブラック、シリカ、アルミナ、酸化亜鉛、酸化チタン、クレー、タルク、珪藻土、硫酸バリウム、炭酸カルシウム、炭酸マグネシウム、酸化カルシウム、マイカ、グラファイト、水酸化アルミニウム、ケイ酸アルミニウム、ハイドロタルサイト、金属粉、ガラス粉、セラミックス粉のような充填剤を含むこともできる。
 ただし、充填剤の中でも特に無機充填剤は、上述のように、パーティクルの要因となることから、架橋ゴム成形体(シール材)を半導体製造装置用途に用いる場合には、無機充填剤の量はできるだけ少ないことが好ましく(例えば、水素原子含有フッ素ゴム100重量部あたり10重量部以下、好ましくは5重量部以下、より好ましくは2重量部以下、さらに好ましくは1重量部以下)、無機充填剤を配合しないことが望ましい。なお、無機充填剤とは、金属元素(Ba、Ti、Zn、Al、Mg、Ca、Si等)を含有する充填剤をいう。
 本発明のフッ素ゴム組成物は、水素原子含有フッ素ゴム、水素原子含有フッ素樹脂、架橋剤(有機過酸化物及び共架橋剤等)、並びに必要に応じて添加されるその他の配合剤を均一に混練りすることにより調製できる。混練り機としては、例えば、オープンロールのようなミキシングロール;ニーダー、バンバリーミキサーのようなミキサー等の従来公知のものを用いることができる。これらの配合剤は、一度に混合して混練されてもよいし、一部の配合剤を混練した後、残りの配合剤を混練するといったように複数段に分けてすべての配合剤を混練するようにしてもよい。
 水素原子含有フッ素ゴムと水素原子含有フッ素樹脂との混練に関していえば、例えば、1)水素原子含有フッ素ゴム粉末と水素原子含有フッ素樹脂粉末とをミキシングロールを用いて混練する方法、2)水素原子含有フッ素ゴム粉末又はペレットと水素原子含有フッ素樹脂粉末又はペレットとをミキサーを用いて溶融混練する方法等を用いることができる。
 <架橋ゴム成形体及びその製造方法>
 本発明の架橋ゴム成形体は、上記フッ素ゴム組成物の架橋物からなるものであるため、プラズマ環境下で使用してもフッ素樹脂の表面析出(表面白化)が生じにくく、機械的強度にも優れている。また、良好な伸び特性及び耐熱性(圧縮永久歪特性)を示し得る。
 架橋ゴム成形体は、典型的には、パッキンやガスケットのようなシール材であることができる。シール材の形状はその用途に応じて適宜選択され、その代表例は、断面形状がO型であるOリングである。本発明に係るシール材は、上記のような良好な物性を兼ね備えているため、とりわけ半導体製造装置用途のシール材として好適に用いることができる。
 架橋ゴム成形体は、上記フッ素ゴム組成物を架橋成形(加硫成形)することにより製造することができる。架橋成形は、例えば、必要に応じてフッ素ゴム組成物を予備成形した後、金型を用いてプレス成形することにより行うことができる。成形温度は、例えば150~220℃程度である。場合によっては、送りプレス成形、射出成形、押出成形等により成形を行い得る。加硫成形後、必要に応じて、150~280℃程度の温度で二次架橋を行ってもよい。また、加硫成形後、電離性放射線による追加の架橋工程を行うと、比較的融点の低い水素原子含有フッ素樹脂を用いる場合であっても、圧縮永久歪特性を高めることができる。
 架橋ゴム成形体を製造するための方法として、次の工程を含む製造方法を挙げることができる。
 (1)上記フッ素ゴム組成物を部分的に架橋させて、成形可能な第1架橋体を得る第1架橋工程、及び
 (2)第1架橋体を電離性放射線により架橋させて、第2架橋体を得る第2架橋工程。
 この製造方法は、好ましくは、第1架橋工程と第2架橋工程との間に、
 (3)第1架橋体を成形する成形工程
をさらに含む。
 架橋ゴム成形体を製造するための従来の方法においては、
 a)所定の形状に成形するためには架橋反応が必須であるため、押出成形や射出成形のような連続成形に適しておらず、連続的に成形を行って成形体を連続生産することが困難である、
 b)一度架橋構造を形成して形状を固定すると、架橋反応は不可逆的であり、加熱しても溶融せず形状も不可逆的であるため、成形後の形状に何らかの不具合があった場合でも、成形後の材料を再利用して再度成形工程を実施することができない、
といった課題があり、生産効率の向上は困難であると認識されてきた。
 これに対して、上記工程を含む製造方法によれば、上記フッ素ゴム組成物を用いることによって得られる効果を維持しながらも、溶融成形による連続成形と成形工程における材料の再利用が可能となり、生産効率の向上を図ることができる。以下、各工程について詳細に説明する。
 (1)第1架橋工程
 本工程では、上記フッ素ゴム組成物を上記いずれか1以上の架橋系(好ましくはパーオキサイド架橋系である。)によって部分的に架橋させて、成形可能な第1架橋体を得る。「部分的に架橋させる」とは、未架橋の状態より架橋度は高いが、架橋剤(共架橋剤のような架橋助剤を含む。)の不足、架橋剤(共架橋剤のような架橋助剤を含む。)の失活、架橋阻害、電離性放射線の線量不足等により、最終製品として必要とされる架橋度には至っていない状態、又は架橋剤(共架橋剤のような架橋助剤を含む。)がゴム組成物中に残存しているにもかかわらず、それ以上熱を加えたり、電離性放射線を照射しても最終製品として必要とされる架橋度には至らない状態をいう。
 より具体的には、本工程では、キュラストメーター(レオメーター、加硫/硬化特性試験機)により、横軸を時間、縦軸をトルク値とするゴム組成物の加硫曲線を取得したとき、その最大トルク値MHが、参照系における最大トルク値MH0の2~70%となるようにゴム組成物を部分的に架橋させることが好ましい。最大トルク値MHは、より好ましくはMH0の3~40%である。
 参照系とは、架橋剤(共架橋剤のような架橋助剤を含む。)が十分な量で配合されており、十分な熱が加えられることにより、それが発現し得る最大の架橋度に至っている架橋体を形成できるゴム組成物を指す。当該架橋体とは、より具体的には、空気雰囲気下、架橋体をその架橋部の分解温度まで加熱しても溶融しない状態まで架橋度が進行した架橋体を指す。参照系に関し、各種架橋系における架橋剤の十分量や、発現し得る最大の架橋度を達成するための架橋温度及び架橋時間は、当該分野における技術常識に基づいて選択することができる。上記架橋部の分解温度は、例えばパーオキサイド架橋系により架橋されたフッ素ゴムの場合、約200℃であり、ポリオール架橋系により架橋されたフッ素ゴムの場合、約230℃となる。
 また本工程では、未架橋のフッ素ゴム組成物は、成形可能な状態まで架橋される。「成形可能」とは、成形処理自体が可能であり、かつ成形後の形状を維持することが可能であることをいう。フッ素ゴム組成物が未架橋のままであると、流動性が高すぎて成形できない。一方、架橋度が高すぎると、架橋による形状固定が過度に進行していることにより成形が困難となり、熱による溶融も不可能となる。
 本工程における架橋方法は、熱による架橋であってもよいし、電離性放射線による架橋であってもよいし、それらの併用であってもよい。熱による架橋の場合、架橋剤及び/又は架橋助剤の量を上記参照系よりも少なくしたり、架橋を阻害する添加剤をフッ素ゴム組成物に配合したりすることによって部分的な架橋を施すことができる。架橋剤及び/又は架橋助剤の配合量や、架橋阻害剤の配合量の調整によって架橋の程度を制御することができる。電離性放射線の照射により架橋を行う場合は、その照射量が十分に大きくても部分的な架橋となる傾向があるが、照射量の調整によって架橋の程度を制御することができる。
 架橋を阻害する添加剤としては、例えば、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン;o-フェニルフェノール;ハイドロキノン;2,4-ジフェニル-4-メチル-1-ペンテン;2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン;アミン-ケトン系老化防止剤(例えば、ポリ2,2,4-トリメチル-1,2-ジヒドロキノリン);芳香族第二級アミン系老化防止剤(例えば、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン);モノフェノール系老化防止剤(例えば、2,6-ジ-t-ブチル-4-メチルフェノール);ビスフェノール系老化防止剤(例えば、4,4’-チオビス(3-メチル-6-t-ブチルフェノール);ベンズイミダゾール系老化防止剤(例えば、2-メルカプトベンズイミダゾール)を挙げることができる。
 本工程における架橋方法には、製造コストの増大を防ぐ観点から、好ましくは熱による架橋が用いられる。
 電離性放射線によって第1架橋体を得る場合において、電離性放射線としては後述する第2架橋工程と同様に、電子線やγ線を用いることができる。
 (2)成形工程
 第1架橋工程の後に、第1架橋体を成形する成形工程を含むことが好ましい。第1架橋体は、成形可能な程度に部分的に架橋されたものであるので、熱溶融させることが可能であり、例えば押出成形や射出成形のような溶融成形を用いた連続成形が可能である。これにより、架橋ゴム成形体の連続生産、ひいては製造コストの削減が可能となる。
 また、架橋剤や架橋助剤の不足等の要因により第1架橋体が熱によってもそれ以上架橋しない状態にある場合には、従来の一般的な架橋ゴム成形体の製造方法と異なり、熱による架橋が進行するスコーチが起こりにくい。このことも、押出成形や射出成形のような溶融成形を用いた連続成形に有利である。
 第1架橋体は、熱溶融させることが可能であるため、とりわけ架橋剤や架橋助剤の不足等の要因により熱によってもそれ以上架橋しない状態にある場合、成形後の形状に何らかの不具合があったときに当該成形体を熱溶融し、再度成形工程を実施するなど、成形後の材料を再利用することもできる。このような材料の再利用も製造コストの削減に有利である。
 第1架橋体の溶融成形(押出成形や射出成形)は、一般的な熱可塑性樹脂や熱可塑性エラストマーと同様にして行うことができる。成形温度は、例えば150~320℃であることができる。
 (3)第2架橋工程
 本工程にて第1架橋体又はその成形体は、電離性放射線により架橋され、最終製品として必要とされる架橋度が付与され、第2架橋体が得られる。電離性放射線は特に制限されないが、電子線やγ線を好ましく用いることができる。電離性放射線の照射量は、好ましくは10~500kGyであり、より好ましくは30~200kGyである。照射量が10kGy未満であると、十分な架橋度が得られず、所望する機械的強度が得られない傾向にある。一方、照射量を500kGy以下とすることにより、水素原子含有フッ素樹脂の溶融を防止することができるとともに、伸び特性に優れる第2架橋体(架橋ゴム成形体)を得ることができる。また、電離性放射線による本架橋工程を行うと、比較的融点の低い水素原子含有フッ素樹脂を用いる場合であっても、圧縮永久歪特性を十分に高めることができる。
 第2架橋工程後、必要に応じて、オーブン(電気炉、真空電気炉)等を用いて第2架橋体に対して熱処理を加えてもよい。熱処理条件は、150~280℃程度とすることができる。
 以下、実施例及び比較例を挙げて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 <実施例1~4、比較例1~5>
 表1に示される配合組成に従って(表1における配合量の単位は重量部である。)、各配合剤の所定量をオープンロールにより混練した。次に、得られたフッ素ゴム組成物を、170℃、20分の条件でプレス成形した後、200℃、4時間の条件で熱処理を施して、シール材(Oリング)を得た。
Figure JPOXMLDOC01-appb-T000001
 <実施例5~9、比較例6~8>
 表2に示される配合組成に従って(表2における配合量の単位は重量部である。)、ニーダーにより水素原子含有フッ素ゴム及び水素原子含有フッ素樹脂の所定量を230℃で混練した後、これに架橋剤及び共架橋剤の所定量を混練して混練物を得た。得られた混練物に対し、200℃、15分の条件で熱架橋を施して第1架橋体を得た(第1架橋工程)。次いで、第1架橋体を、230℃で押出成形して、シール材(Oリング)形状の成形体を得た(成形工程)。シール材形状への押出成形(溶融成形)は容易であった。その後、80kGyの照射量で放射線(γ線)を照射して第2架橋体(架橋ゴム成形体)であるシール材(Oリング)を得た(第2架橋工程)。第1架橋体は、熱溶融性を示し、その成形体を熱溶融させ、再度成形を行うことも容易であった。
 実施例1のシール材は、空気雰囲気下で200℃まで加熱しても溶融しないものであり、また、混練物(プレス成形前の材料)には架橋剤及び共架橋剤が十分な量で配合されており、架橋のために十分な熱が加えられていることから、当該混練物は、前述の参照系とみなすことができる。この参照系の加硫曲線(200℃、15分)、及び実施例5の第1架橋工程における加硫曲線(200℃、15分)をキュラストメーター(オリエンテック社製)を用いて測定し、参照系における最大トルク値MH0及び実施例5の最大トルク値MHを求めた。最大トルク値MH0を100%としたときの、最大トルク値MHは10.1%であった。
Figure JPOXMLDOC01-appb-T000002
 実施例及び比較例で用いた各配合剤の詳細は次のとおりである。
〔1〕FKM 1:ビニリデンフルオライド(VDF)-ヘキサフルオロプロピレン(HFP)-テトラフルオロエチレン(TFE)系重合体〔ダイキン工業(株)製「ダイエルG902」〕。
〔2〕FKM 2:ビニリデンフルオライド(VDF)-ヘキサフルオロプロピレン(HFP)-テトラフルオロエチレン(TFE)系重合体〔ソルベイスペシャリティポリマーズ社製「テクノフロンP959」〕。
〔3〕FKM 3:ビニリデンフルオライド(VDF)-ヘキサフルオロプロピレン(HFP)-テトラフルオロエチレン(TFE)系重合体とテトラフルオロエチレン-エチレン系重合体(ETFE)とのブロック重合体であるフッ素系熱可塑性エラストマー〔ダイキン工業(株)製「ダイエルサーモプラスチックT-530」〕。
〔4〕PVDF:ポリフッ化ビニリデン〔株式会社クレハ製「クレハKFポリマー #850」〕。
〔5〕ETFE:テトラフルオロエチレン-エチレン共重合体〔ダイキン工業(株)製「ネオフロンEP610」〕。
〔6〕VDF-HFP:ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体〔アルケマ社製「Kynar UltraFlex B」〕。
〔7〕PTFE:ポリテトラフルオロエチレン〔三井・デュポン フロロケミカル社製「ゾニールMP1500」〕。
〔8〕FEP:テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体〔ダイキン工業(株)製「ネオフロン NC1500」〕。
〔9〕架橋剤:パーヘキサ25B(2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン)〔日油製「パーヘキサ25B」〕。
〔10〕共架橋剤:トリアリルイソシアヌレート〔日本化成社製「TAIC」〕。
 (シール材の評価)
 得られたシール材について、下記の項目を測定、評価した。結果を表1及び表2に示す。
 〔a〕シール材の機械的強度
 JIS K6250に従い、2mmの厚さに作製したシートから、JIS K6251に従い、ダンベル状3号型試験片を型抜きした。この試験片を、500mm/分で引張し、引張強度、破断伸び、100%モジュラスを測定した。また、JIS K6253に従い、タイプAデューロメータ硬さ試験機にてシートの硬度を測定した。これらの試験はすべて25℃の温度下で行った。
 〔b〕 プラズマ照射後の表面性状
 出力1000W、照射時間6時間、真空度1torr、ガス比O2:CF4=190:10の条件でプラズマを照射した後、シール材表面を目視で観察して、樹脂析出(表面白化)の有無を確認した。
 〔c〕 プラズマ照射による重量減少率
 上記条件でのプラズマ照射を行う前のシール材の重量W0と、プラズマ照射後のシール材の重量W1を測定し、下記式:
 重量減少率(%)={(W0-W1)/W0}×100%
に基づき、重量減少率を算出した。比較例2~5及び7~8において重量減少率が高いのは、表面に析出したパーフルオロ樹脂の脱落に起因するものと推察される。
 〔d〕シール材の圧縮永久歪
 JIS K 6262に準拠して、試料(AS214 Oリング)を圧縮率25%で鉄板に挟み込み、200℃×72時間の条件で電気炉で加温後、圧縮解放し、30分間放冷後の試料の圧縮永久歪を下記式:
 圧縮永久歪(%)={(T0-T1)/(T0-T2)}×100%
に基づいて算出した。T0は試験前の試料の高さ、T1は30分間放冷後の試料の高さ、T2はスペーサ-の厚み(高さ)である。

Claims (12)

  1.  水素原子含有フッ素ゴムと、水素原子含有フッ素樹脂とを含むフッ素ゴム組成物。
  2.  前記水素原子含有フッ素樹脂の含有量が、前記水素原子含有フッ素ゴム100重量部あたり1~50重量部である、請求項1に記載のフッ素ゴム組成物。
  3.  有機過酸化物と、共架橋剤とをさらに含む、請求項1に記載のフッ素ゴム組成物。
  4.  前記水素原子含有フッ素樹脂は、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-エチレン共重合体及びフッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体からなる群から選択される少なくとも1種である、請求項1に記載のフッ素ゴム組成物。
  5.  無機充填剤を含まない、請求項1に記載のフッ素ゴム組成物。
  6.  請求項1に記載のフッ素ゴム組成物の架橋物からなる架橋ゴム成形体。
  7.  半導体製造装置用シール材である、請求項6に記載の架橋ゴム成形体。
  8.  請求項1に記載のフッ素ゴム組成物を架橋成形する工程を含む、架橋ゴム成形体の製造方法。
  9.  請求項1に記載のフッ素ゴム組成物を部分的に架橋させて、成形可能な第1架橋体を得る第1架橋工程と、
     前記第1架橋体を電離性放射線により架橋させて、第2架橋体を得る第2架橋工程と、
    を含む、架橋ゴム成形体の製造方法。
  10.  前記第1架橋工程と前記第2架橋工程との間に、前記第1架橋体を成形する成形工程をさらに含む、請求項9に記載の製造方法。
  11.  前記第1架橋体を押出成形又は射出成形により成形する、請求項10に記載の製造方法。
  12.  前記第1架橋工程において前記フッ素ゴム組成物を熱によって架橋させる、請求項9に記載の製造方法。
PCT/JP2014/080027 2013-12-27 2014-11-13 フッ素ゴム組成物、並びに架橋ゴム成形体及びその製造方法 WO2015098338A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/107,368 US9908980B2 (en) 2013-12-27 2014-11-13 Fluorine rubber composition, crosslinked rubber molded body and method for producing same
JP2015554668A JP6134391B2 (ja) 2013-12-27 2014-11-13 シール材及びその製造方法
EP14874562.3A EP3088461A4 (en) 2013-12-27 2014-11-13 Fluorine rubber composition, crosslinked rubber molded body and method for producing same
SG11201605258XA SG11201605258XA (en) 2013-12-27 2014-11-13 Fluorine rubber composition, crosslinked rubber molded body and method for producing same
CN201480070983.4A CN105849180B (zh) 2013-12-27 2014-11-13 氟橡胶组合物、以及交联橡胶成型体和其制造方法
KR1020167014842A KR20160105778A (ko) 2013-12-27 2014-11-13 불소 고무 조성물, 및 가교 고무 성형체 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013272479 2013-12-27
JP2013-272479 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015098338A1 true WO2015098338A1 (ja) 2015-07-02

Family

ID=53478214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080027 WO2015098338A1 (ja) 2013-12-27 2014-11-13 フッ素ゴム組成物、並びに架橋ゴム成形体及びその製造方法

Country Status (8)

Country Link
US (1) US9908980B2 (ja)
EP (1) EP3088461A4 (ja)
JP (1) JP6134391B2 (ja)
KR (1) KR20160105778A (ja)
CN (1) CN105849180B (ja)
SG (1) SG11201605258XA (ja)
TW (1) TWI617608B (ja)
WO (1) WO2015098338A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127358A (ja) * 2013-12-27 2015-07-09 日本バルカー工業株式会社 架橋ゴム成形体の製造方法
WO2016190050A1 (ja) * 2015-05-27 2016-12-01 日本バルカー工業株式会社 熱可塑性フッ素樹脂組成物、及び架橋体の製造方法
US20170321033A1 (en) * 2016-02-04 2017-11-09 Eastman Chemical Company Processes for forming vulcanizable elastomeric formulations and vulcanized elastomeric articles
JP2017538023A (ja) * 2014-12-19 2017-12-21 スリーエム イノベイティブ プロパティズ カンパニー 硬化性部分フッ素化ポリマー組成物
JP2019172897A (ja) * 2018-03-29 2019-10-10 三菱電線工業株式会社 未架橋ゴム組成物並びにそれを用いて製造されるゴム製品及びその製造方法
US20210171726A1 (en) * 2017-12-08 2021-06-10 Kureha Corporation Molded article and production method therefor

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9283455B2 (en) 2011-06-01 2016-03-15 Triad Sports Inc. Collapsible and portable sports net apparatus
US9728298B2 (en) * 2015-06-26 2017-08-08 Daikin America, Inc. Radiation crosslinked fluoropolymer compositions containing low level of extractable fluorides
US11021581B2 (en) * 2016-02-04 2021-06-01 Eastman Chemical Company Durable elastomeric compositions employing cyclododecasulfur as a vulcanizing agent
US10011663B2 (en) 2016-02-04 2018-07-03 Eastman Chemical Company Vulcanizing composition containing cyclododecasulfur and improved cyclododecasulfur compound
US10011485B2 (en) 2016-03-02 2018-07-03 Eastman Chemical Company Method for the manufacture of cyclododecasulfur
US11059722B2 (en) 2016-03-02 2021-07-13 Eastman Chemical Company Method for the manufacture of cyclododecasulfur
CN108928118B (zh) * 2017-05-26 2020-01-14 精工爱普生株式会社 喷嘴板、液体喷射头、液体喷射装置以及喷嘴板的制造方法
EP3655478A1 (en) 2017-07-20 2020-05-27 3M Innovative Properties Company Fluorinated elastomers cured by actinic radiation and methods thereof
WO2019022995A1 (en) * 2017-07-25 2019-01-31 Eastman Chemical Company METHODS OF FORMING VULCANIZABLE ELASTOMERIC FORMULATIONS AND VULCANIZED ELASTOMERIC ARTICLES
JP6620132B2 (ja) * 2017-09-14 2019-12-11 三菱電線工業株式会社 シール材及びその製造方法
CN109608795B (zh) * 2018-12-27 2021-07-30 江苏金晟元特种阀门股份有限公司 部分交联的耐高温、耐蠕变、耐腐蚀阀门专用衬垫材料及其制备方法
CN114106496B (zh) * 2020-08-28 2023-04-28 中昊晨光化工研究院有限公司 一种橡胶材料及其制备方法和应用
CN112409731B (zh) * 2020-10-21 2023-02-24 浙江巨化技术中心有限公司 一种3d打印用含氟树脂组合物及其制备方法
CN113402829A (zh) * 2021-05-21 2021-09-17 王卫茂 一种耐老化橡胶材料及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268245A (ja) * 1996-03-29 1997-10-14 Nichias Corp フッ素系樹脂組成物、その製造法および成形品
JPH11315180A (ja) * 1998-03-06 1999-11-16 Nippon Mektron Ltd 含フッ素共重合体組成物
JP2000119468A (ja) 1998-10-16 2000-04-25 Nippon Valqua Ind Ltd 含フッ素エラストマー組成物、その架橋体、並びにその用途
JP2000230096A (ja) * 1999-02-12 2000-08-22 Nippon Mektron Ltd 含フッ素共重合体組成物
JP2002097329A (ja) * 2000-09-20 2002-04-02 Nippon Mektron Ltd 含フッ素共重合体組成物
JP2004134665A (ja) * 2002-10-11 2004-04-30 Asahi Glass Co Ltd 半導体装置用シール材およびその製造方法
JP2005113035A (ja) 2003-10-08 2005-04-28 Nippon Valqua Ind Ltd フッ素ゴムシール材の製造方法
WO2006038424A1 (ja) * 2004-10-04 2006-04-13 Unimatec Co., Ltd. 含フッ素共重合体架橋成形品
JP2011513554A (ja) * 2008-03-04 2011-04-28 デュポン パフォーマンス エラストマーズ エルエルシー 過酸化物硬化性フルオロエラストマー組成物およびそれらから製造される物品
JP2013189655A (ja) * 2013-07-04 2013-09-26 Asahi Glass Co Ltd 架橋ゴム物品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51145582A (en) * 1975-06-09 1976-12-14 Shinetsu Chemical Co Method of making molded fluorineerubber article
US5109071A (en) * 1986-04-22 1992-04-28 Raychem Corporation Fluoropolymer compositions
JP3663519B2 (ja) 1995-03-31 2005-06-22 株式会社日立製作所 圧力検知装置
JP2004131656A (ja) 2002-10-11 2004-04-30 Asahi Glass Co Ltd 半導体装置用シール材
AU2003272956A1 (en) 2002-10-11 2004-05-04 Asahi Glass Co., Ltd. Sealing material for semiconductor device and method for production thereof
EP1826238A4 (en) 2004-11-26 2009-08-12 Daikin Ind Ltd THERMOPLASTIC POLYMER COMPOSITION AND PROCESS FOR PRODUCING THE SAME
JP4628814B2 (ja) 2005-02-15 2011-02-09 日本バルカー工業株式会社 半導体製造装置用シール材
JP5428150B2 (ja) 2007-11-20 2014-02-26 旭硝子株式会社 架橋性に優れる架橋性含フッ素エラストマー、およびその製造方法
WO2011002080A1 (ja) 2009-07-03 2011-01-06 ダイキン工業株式会社 架橋性フッ素ゴム組成物、フッ素ゴム成形品及びその製法
JP2013082888A (ja) * 2011-09-30 2013-05-09 Daikin Industries Ltd 架橋性フッ素ゴム組成物、フッ素ゴム成形品及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268245A (ja) * 1996-03-29 1997-10-14 Nichias Corp フッ素系樹脂組成物、その製造法および成形品
JPH11315180A (ja) * 1998-03-06 1999-11-16 Nippon Mektron Ltd 含フッ素共重合体組成物
JP2000119468A (ja) 1998-10-16 2000-04-25 Nippon Valqua Ind Ltd 含フッ素エラストマー組成物、その架橋体、並びにその用途
JP2000230096A (ja) * 1999-02-12 2000-08-22 Nippon Mektron Ltd 含フッ素共重合体組成物
JP2002097329A (ja) * 2000-09-20 2002-04-02 Nippon Mektron Ltd 含フッ素共重合体組成物
JP2004134665A (ja) * 2002-10-11 2004-04-30 Asahi Glass Co Ltd 半導体装置用シール材およびその製造方法
JP2005113035A (ja) 2003-10-08 2005-04-28 Nippon Valqua Ind Ltd フッ素ゴムシール材の製造方法
WO2006038424A1 (ja) * 2004-10-04 2006-04-13 Unimatec Co., Ltd. 含フッ素共重合体架橋成形品
JP2011513554A (ja) * 2008-03-04 2011-04-28 デュポン パフォーマンス エラストマーズ エルエルシー 過酸化物硬化性フルオロエラストマー組成物およびそれらから製造される物品
JP2013189655A (ja) * 2013-07-04 2013-09-26 Asahi Glass Co Ltd 架橋ゴム物品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3088461A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015127358A (ja) * 2013-12-27 2015-07-09 日本バルカー工業株式会社 架橋ゴム成形体の製造方法
JP2017538023A (ja) * 2014-12-19 2017-12-21 スリーエム イノベイティブ プロパティズ カンパニー 硬化性部分フッ素化ポリマー組成物
EP3234011A4 (en) * 2014-12-19 2018-08-01 3M Innovative Properties Company Curable partially fluorinated polymer compositions
WO2016190050A1 (ja) * 2015-05-27 2016-12-01 日本バルカー工業株式会社 熱可塑性フッ素樹脂組成物、及び架橋体の製造方法
JP2016222752A (ja) * 2015-05-27 2016-12-28 日本バルカー工業株式会社 熱可塑性フッ素樹脂組成物、及び架橋体の製造方法
US20170321033A1 (en) * 2016-02-04 2017-11-09 Eastman Chemical Company Processes for forming vulcanizable elastomeric formulations and vulcanized elastomeric articles
US10280281B2 (en) * 2016-02-04 2019-05-07 Eastman Chemical Company Processes for forming vulcanizable elastomeric formulations and vulcanized elastomeric articles
US20210171726A1 (en) * 2017-12-08 2021-06-10 Kureha Corporation Molded article and production method therefor
JP2019172897A (ja) * 2018-03-29 2019-10-10 三菱電線工業株式会社 未架橋ゴム組成物並びにそれを用いて製造されるゴム製品及びその製造方法
JP2021105179A (ja) * 2018-03-29 2021-07-26 三菱電線工業株式会社 未架橋ゴム組成物並びにそれを用いて製造されるゴム製品及びその製造方法

Also Published As

Publication number Publication date
US9908980B2 (en) 2018-03-06
TWI617608B (zh) 2018-03-11
SG11201605258XA (en) 2016-08-30
EP3088461A1 (en) 2016-11-02
EP3088461A4 (en) 2017-08-16
KR20160105778A (ko) 2016-09-07
CN105849180A (zh) 2016-08-10
TW201533118A (zh) 2015-09-01
US20170002153A1 (en) 2017-01-05
JPWO2015098338A1 (ja) 2017-03-23
CN105849180B (zh) 2018-09-21
JP6134391B2 (ja) 2017-05-24

Similar Documents

Publication Publication Date Title
JP6134391B2 (ja) シール材及びその製造方法
KR102414274B1 (ko) 열가소성 불소 수지 조성물, 및 가교체의 제조 방법
JP6230415B2 (ja) パーフルオロエラストマー組成物、並びにシール材及びその製造方法
US11015096B2 (en) Perfluoroelastomer composition and sealing material
JP6403246B2 (ja) 架橋ゴム成形体の製造方法
JP6618506B2 (ja) パーフルオロエラストマー組成物及びシール材
KR102414805B1 (ko) 퍼플루오로 엘라스토머 조성물 및 시일재
JP7155286B2 (ja) エラストマー組成物及びシール材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554668

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167014842

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15107368

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014874562

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014874562

Country of ref document: EP