WO2015083665A1 - 多孔性フィルム、防水・透湿材料およびそれを用いた医療用衣服ならびに防護服 - Google Patents

多孔性フィルム、防水・透湿材料およびそれを用いた医療用衣服ならびに防護服 Download PDF

Info

Publication number
WO2015083665A1
WO2015083665A1 PCT/JP2014/081743 JP2014081743W WO2015083665A1 WO 2015083665 A1 WO2015083665 A1 WO 2015083665A1 JP 2014081743 W JP2014081743 W JP 2014081743W WO 2015083665 A1 WO2015083665 A1 WO 2015083665A1
Authority
WO
WIPO (PCT)
Prior art keywords
waterproof
porous film
moisture
moisture permeable
barrier properties
Prior art date
Application number
PCT/JP2014/081743
Other languages
English (en)
French (fr)
Inventor
生駒啓
久万琢也
大倉正寿
成田周作
武田昌信
松村一也
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020167016944A priority Critical patent/KR20160095002A/ko
Priority to RU2016126406A priority patent/RU2674199C1/ru
Priority to CN201480066183.5A priority patent/CN105764967B/zh
Priority to EP14866985.6A priority patent/EP3078704A4/en
Priority to US15/101,609 priority patent/US20160318281A1/en
Priority to JP2015506005A priority patent/JP6090428B2/ja
Publication of WO2015083665A1 publication Critical patent/WO2015083665A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/002Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches with controlled internal environment
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/12Surgeons' or patients' gowns or dresses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/05Interconnection of layers the layers not being connected over the whole surface, e.g. discontinuous connection or patterned connection
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/58Cuttability
    • B32B2307/581Resistant to cut
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/582Tearability
    • B32B2307/5825Tear resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2535/00Medical equipment, e.g. bandage, prostheses, catheter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene

Definitions

  • the present invention relates to a porous film excellent in barrier properties such as blood barrier properties and virus barrier properties, puncture strength and moisture permeability.
  • the present invention also relates to a waterproof / moisture permeable material using the porous film, which has excellent barrier properties such as blood barrier properties and virus barrier properties, reduces stuffiness when worn, and is excellent in clothing comfort.
  • the present invention relates to medical clothing and protective clothing using the waterproof / breathable material.
  • surgical gowns are known as surgical gowns worn by doctors and nurses.
  • Surgical gowns have excellent bacteria barrier and blood barrier properties, as well as excellent dust proofing properties, but they have poor breathability and moisture permeability. . Therefore, by wearing a surgical underwear called a scrub suit under a surgical gown, the feeling of stuffiness is reduced and the comfort of clothing is improved.
  • films such as polyolefin film, fluorine film, polycarbonate polyurethane film, silicone polyurethane film, and chlorosulfonated polyethylene film are laminated and bonded to the knitted fabric composed of cotton spun yarn. It is considered to prevent penetration of bacteria (viruses) such as (virus) and hepatitis (virus) (for example, Patent Documents 1 and 2).
  • viruses such as (virus) and hepatitis (virus)
  • Patent Documents 1 and 2 By using the above laminate for the fabric, it is possible to achieve sweat absorbency, water absorption, and good touch, and it is almost completed as a medical woven or knitted fabric.
  • a film is laminated and bonded to suppress transmission.
  • the film is not light and flexible, and the air flow is largely blocked by the film, so that the feeling of stuffiness cannot be sufficiently reduced and the comfort of clothing remains poor.
  • barrier properties and clothing comfort are improved by improving the fibers used in the woven fabric into fibers such as core-sheath fibers (for example, Patent Document 3).
  • the present invention takes the following means. (1) A porous film having a moisture permeability of 150 g / m 2 ⁇ h or more, a puncture strength of 100 N / mm or more, and a blood barrier property of class 4 or more, (2) A porous film having a moisture permeability of 150 g / m 2 ⁇ h or more, a puncture strength of 100 N / mm or more, and a virus barrier property of class 3 or more, (3) A porous film having a moisture permeability of 150 g / m 2 ⁇ h or more, a puncture strength of 100 N / mm or more, a blood barrier property of class 4 or more, and a virus barrier property of class 3 or more.
  • Each layer is bonded between adjacent layers, and the waterproof / moisture permeable material in which adjacent layers are bonded in an area of 50% or less per unit area of the waterproof / moisture permeable material, (9)
  • the present invention can provide a porous film excellent in barrier properties such as blood barrier properties and virus barrier properties, puncture strength and moisture permeability. Further, it is possible to provide a waterproof / moisture permeable material using the porous film which is excellent in barrier properties such as blood barrier properties and virus barrier properties, reduces the feeling of stuffiness when worn, and is excellent in clothing comfort. Furthermore, using the waterproof / moisture permeable material, providing a medical garment and a protective garment that are excellent in barrier properties such as blood barrier properties and virus barrier properties, reduce the feeling of stuffiness when worn, and have excellent clothing comfort. Can do.
  • the porous film in the waterproof / moisture permeable material of the present invention has excellent barrier properties, excellent puncture strength for maintaining the excellent barrier properties, and excellent moisture permeability for wearer comfort. It is.
  • the barrier property means blood barrier property, virus barrier property, water resistance and the like.
  • a porous film excellent in barrier properties and puncture strength is inferior in moisture permeability
  • a porous film excellent in moisture permeability is inferior in barrier properties and puncture strength.
  • the porous film in the waterproof / moisture permeable material of the present invention simultaneously has excellent barrier properties, excellent puncture strength, and excellent moisture permeability as described above.
  • the porous film of the present invention is a film having many fine through-holes penetrating both surfaces of the film and having air permeability.
  • the resin constituting the porous film may be any of polyolefin resin, polycarbonate, polyamide, polyimide, polyamideimide, aromatic polyamide, fluorine resin and the like.
  • polyolefin resins are desirable from the viewpoints of heat resistance, moldability, reduction in production cost, chemical resistance, oxidation resistance, reduction resistance, and the like.
  • Examples of the monomer component constituting the polyolefin resin include ethylene, propylene, 1-butene, 1-pentene, 3-methylpentene-1, 3-methyl-1-butene, 1-hexene, 4-methyl- 1-pentene, 5-ethyl-1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-eicosene, vinylcyclohexene And compounds having a carbon-carbon double bond such as styrene, allylbenzene, cyclopentene, norbornene, and 5-methyl-2-norbornene.
  • Examples thereof include homopolymers of the above monomer components, copolymers composed of at least two selected from the group consisting of the above monomer components, and compositions obtained by blending these homopolymers and copolymers. However, it is not limited to these. In addition to the above monomer components, for example, vinyl alcohol, maleic anhydride or the like may be copolymerized or graft polymerized, but is not limited thereto.
  • the base material for the medical fabric is preferably polyethylene using ethylene as a monomer component and / or polypropylene using propylene as a monomer component.
  • polypropylene using propylene as a monomer component is preferable from the viewpoint of heat resistance, gas permeability, porosity, and the like, and the main component is preferable.
  • the “main component” means that the proportion of a specific component in all components is 50% by mass or more, more preferably 80% by mass or more, further preferably 90% by mass or more, and most preferably Means 95% by mass or more.
  • a wet method or a dry method may be used as a method for forming the through-hole in the porous film.
  • the wet method is a method of forming voids using a solvent.
  • the polyolefin resin is used as a matrix resin, and the extract to be extracted after being formed into a sheet is added, mixed, formed into a sheet, and the extract is extracted using a good solvent for the extract after biaxial stretching or before stretching.
  • Various methods have been proposed for extracting voids by generating voids in the matrix resin.
  • the dry method is a method of forming voids at the time of stretching after film formation. Specifically, by adopting a low temperature extrusion and a high draft ratio at the time of melt extrusion, a lamella in a film before stretching formed into a sheet. There has been proposed a method (so-called lamellar stretching method) in which the structure is controlled and this is uniaxially stretched to cause cleavage at the lamella interface to form voids. In addition to this, a large amount of incompatible resin is added as inorganic particles or polypropylene, which is a matrix resin, and a sheet is formed and stretched to cause cleavage at the interface between the particles and the polypropylene resin, thereby forming voids.
  • a method of forming has also been proposed.
  • the so-called ⁇ is formed by utilizing the crystal density difference and crystal transition between ⁇ -type crystal ( ⁇ crystal) and ⁇ -type crystal ( ⁇ crystal), which are polymorphs of polypropylene, to form voids in the film.
  • ⁇ crystal ⁇ -type crystal
  • ⁇ crystal ⁇ -type crystal
  • Many proposals of a method called a crystal method have been made.
  • the ⁇ crystal forming ability of the porous film is preferably 40% or more. If the ⁇ -crystal forming ability is less than 40%, the amount of ⁇ -crystals is small at the time of film production, so the number of voids formed in the film is reduced by utilizing the transition to ⁇ -crystal, and as a result, only a film with low permeability is obtained. It may not be possible. From this viewpoint, the ⁇ crystal forming ability is more preferably 65% or more, and further preferably 70% or more.
  • the upper limit of the ⁇ -crystal forming ability is not particularly limited, but it exceeds 99.9% by adding a large amount of the ⁇ -crystal nucleating agent described later or the stereoregulation of the polypropylene resin to be used.
  • the industrial practical value is low, for example, the film forming stability is lowered. From such an industrial viewpoint, the ⁇ crystal forming ability is preferably 99.9% or less, and more preferably 95% or less.
  • a polypropylene resin with a high isotactic index is used, or a ⁇ crystal is selectively formed by adding it to a polypropylene resin called a ⁇ crystal nucleating agent.
  • the crystallization nucleating agent to be used is preferably used as an additive.
  • ⁇ crystal nucleating agents include alkali or alkaline earth metal salts of carboxylic acids such as calcium 1,2-hydroxystearate and magnesium succinate, and N, N′-dicyclohexyl-2,6-naphthalenedicarboxyamide.
  • Amide compounds such as 3,9-bis [4- (N-cyclohexylcarbamoyl) phenyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, benzenesulfonic acid
  • aromatic sulfonic acid compounds such as sodium and sodium naphthalene sulfonate, imide carboxylic acid derivatives, phthalocyanine pigments, and quinacridone pigments.
  • amide compounds disclosed in JP-A-5-310665 can be preferably used.
  • the addition amount of the ⁇ crystal nucleating agent is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, based on the whole polypropylene resin. If it is less than 0.05% by mass, formation of ⁇ crystals becomes insufficient, and the air permeability of the porous film may be lowered. On the other hand, when the addition amount of the ⁇ crystal nucleating agent exceeds 0.5% by mass based on the whole polypropylene resin, coarse voids are formed, and physical property changes during application of organic solvent and drying may increase. Therefore, it is preferably 0.5% by mass or less, and more preferably 0.3% by mass or less.
  • the polypropylene resin constituting the porous film of the present invention preferably has a melt flow rate (hereinafter referred to as MFR, measurement conditions are 230 ° C., 2.16 kg) in the range of 2 to 30 g / 10 min. It is preferable that it is an isotactic polypropylene resin.
  • MFR melt flow rate
  • measurement conditions are 230 ° C., 2.16 kg
  • the MFR is more preferably 3 g / 10 min or more.
  • the MFR exceeds 30 g / 10 min, the molecular weight becomes too low, so that the film is easily broken during stretching, and the productivity may be lowered. From this viewpoint, the MFR is more preferably 20 g / 10 min or less.
  • the isotactic index is preferably 90% or more, and more preferably 95% or more. Further, the upper limit is preferably 99.9% or less, and more preferably 99% or less. If the isotactic index is less than 90%, the crystallinity of the resin is low, and it may be difficult to achieve high air permeability.
  • a polypropylene resin in the present invention not only a homopolypropylene resin can be used, but also from the viewpoint of stability in the film-forming process, film-forming properties, and uniformity of physical properties, an ethylene component or butene is added to polypropylene.
  • a resin obtained by copolymerizing an ⁇ -olefin component such as hexene or octene in an amount of 5% by mass or less, more preferably 2.5% by mass or less can be used.
  • the form of introduction of the comonomer (copolymerization component) into polypropylene may be either random copolymerization or block copolymerization.
  • high MFR isotactic polypropylene having an MFR of 70 g / 10 min or more preferably 100 g / 10 min or more, more preferably 500 g / 10 min or more in terms of improving moisture permeability.
  • a high MFR isotactic polypropylene having an MFR of 70 g / 10 min or more has not been used in the field of films because of poor stretchability and a decrease in strength.
  • the total amount of the polypropylene resin is 100% by mass, 0.1% to 20% by mass of the high MFR isotactic polypropylene allows the high MFR isotactic polypropylene to be added in a small amount so that the molecular chain terminal at the crystal interface is Increases the concentration and promotes pore formation at the crystal interface during stretching, that is, it works as a pore opening aid, resulting in uniform pore opening and excellent barrier properties but also excellent moisture permeability and conflicting properties. It is thought that we can plan.
  • the high MFR isotactic polypropylene is preferably contained in an amount of 1% by mass or more, more preferably 2% by mass or more. It is more preferably 10% by mass or less, and still more preferably 5% by mass or less, from the viewpoint of achieving a balance between characteristics of moisture permeability, barrier properties, and puncture strength.
  • an antioxidant In the polypropylene resin that forms the porous film of the present invention, an antioxidant, a heat stabilizer, a light stabilizer, a neutralizer, an antistatic agent and a lubricant composed of organic particles, as long as the effects of the present invention are not impaired. Furthermore, you may contain various additives, such as an antiblocking agent, a filler, and an incompatible polymer.
  • an antioxidant for the purpose of suppressing the oxidative deterioration due to the thermal history of the polypropylene resin, but the amount of the antioxidant added is preferably 2 parts by mass or less with respect to 100 parts by mass of the polypropylene resin. More preferably, it is 1 mass part or less, More preferably, it is 0.5 mass part or less.
  • it is preferable not to add inorganic particles because they may fall off and may adversely affect medical work.
  • the porous film of the present invention preferably has a moisture permeability of 150 g / m 2 ⁇ h or more, which is a moisture permeability evaluation scale.
  • a moisture permeability evaluation scale 150 g / m 2 ⁇ h or more.
  • the moisture permeability is evaluated by the A-1 method described in JIS L 1099: 2012.
  • the moisture permeability can be controlled by adjusting the addition amount of the ⁇ crystal nucleating agent in the raw material and the crystallization temperature, and adjusting the content of high molecular weight isotactic polypropylene contained in the raw material.
  • the content of ⁇ crystal nucleating agent in the raw material is increased within the range of 0.05 to 0.5 mass%, the crystallization temperature is increased, or the content of high MFR isotactic polypropylene is included in the raw material.
  • the rate within the range of 0.1 to 20% by mass, the moisture permeability can be increased.
  • the porous film of the present invention preferably has a puncture strength of 100 N / mm or more.
  • the puncture strength is less than 100 N / mm
  • the porous film of the present invention is used as a base material for a medical fabric, the workability is lowered during suturing, or the porous film of the present invention is used as a base material for a medical fabric.
  • the porous film may be broken at the time of on-site work such as surgery to lower the barrier property of the porous film, and the barrier property as protective clothing may be reduced. From the viewpoint of achieving both barrier properties and moisture permeability, the upper limit of the puncture strength is actually 1,000 N / mm.
  • the puncture strength is calculated as the puncture strength per 1 mm thickness.
  • the puncture strength can be controlled by adjusting the temperature of the cast drum, the stretching ratio and temperature in the longitudinal direction, the lateral stretching speed and ratio, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone.
  • the strength can be increased by increasing the stretching temperature in the longitudinal direction within the range of 90 to 140 ° C., and the stretching ratio in the longitudinal direction can be increased within the range of 3 to 7 times,
  • the stretching speed is increased within the range of 500 to 10,000% / min
  • the transverse stretching ratio is increased within the range of 4 to 15 times
  • the temperature in the heat treatment step is within the range of 140 to 170 ° C.
  • the puncture strength can be increased by raising the temperature at a higher temperature or by increasing the relaxation rate in the relaxation zone within a range of 5 to 35%.
  • the porous film of the present invention preferably has a blood barrier property of class 4 or higher.
  • the blood barrier property is less than class 4, the barrier property of the medical protective garment using the porous film of the present invention as the base material of the medical fabric becomes insufficient, and blood may permeate depending on the operation.
  • blood barrier properties are preferably class 5 or higher, and more preferably class 6.
  • the blood barrier property is evaluated based on the procedure D described in JIS T 8060: 2007.
  • the blood barrier property can be controlled by adjusting the temperature of the cast drum, the stretching ratio and temperature in the longitudinal direction, the transverse stretching speed and ratio, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone.
  • the stretching temperature in the longitudinal direction is set to a higher temperature within the range of 90 to 140 ° C.
  • the stretching ratio in the longitudinal direction is increased within the range of 3 to 7 times
  • the transverse stretching speed is set to 500 to 10,000%.
  • the temperature in the heat treatment process within the range of 4 to 15 times, the temperature in the heat treatment process to be higher in the range of 140 to 170 ° C, in the relaxation zone
  • the blood barrier property can be increased by increasing the relaxation rate of the blood in a range of 5 to 35%.
  • the porous film of the present invention preferably has a virus barrier property of class 3 or higher.
  • the virus barrier property is less than class 3, the barrier property of the medical protective clothing using the porous film of the present invention as the base material for the medical fabric becomes insufficient, and bacteria and viruses may permeate depending on the operation.
  • the virus barrier properties are preferably class 4 or higher, more preferably class 5 or higher, and even more preferably class 6.
  • the virus barrier property is evaluated based on the procedure D1 described in JIS T 8061: 2010.
  • the virus barrier property can be controlled by adjusting the temperature of the cast drum, the stretching ratio and temperature in the longitudinal direction, the transverse stretching speed and ratio, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone.
  • the stretching temperature in the longitudinal direction is set to a higher temperature within the range of 90 to 140 ° C.
  • the stretching ratio in the longitudinal direction is increased within the range of 3 to 7 times
  • the transverse stretching speed is set to 500 to 10,000%.
  • the temperature in the heat treatment process within the range of 4 to 15 times, the temperature in the heat treatment process to be higher in the range of 140 to 170 ° C, in the relaxation zone
  • the virus barrier property can be increased by increasing the relaxation rate of the protein within a range of 5 to 35%.
  • the amount of ⁇ crystal nucleating agent added in the raw material adjustment of the crystallization temperature,
  • the amount of MFR isotactic polypropylene added, the temperature of the cast drum, the stretching ratio and temperature in the longitudinal direction, the lateral stretching speed and ratio, the temperature and time in the heat treatment step, and the relaxation rate in the relaxation zone are within the ranges described below. Can be controlled.
  • the moisture permeability becomes insufficient. Therefore, the moisture permeability, barrier properties, and puncture strength characteristics are the first by adding the amount of ⁇ -crystal nucleating agent and the crystallization temperature in the raw material within a specific range and adding a specific amount of high MFR isotactic polypropylene in the raw material. It was possible to balance the balance.
  • the porous film of the present invention preferably has an area heat shrinkage rate of 10% or less after treatment at 130 ° C. for 1 hour.
  • autoclave sterilization may be performed, and the autoclave sterilization is usually performed by increasing the temperature to 121 ° C. with saturated water vapor at 2 atm and performing the treatment for 20 minutes. If the heat shrinkage rate is greater than 10%, the porous film may shrink, moisture permeability may be reduced, and clothing comfort may be reduced.
  • the area heat shrinkage after treatment at 130 ° C. for 1 hour is more preferably 0 to 10%, more preferably 0 to 7%, and further preferably 0 to 5%.
  • the porous film of the present invention preferably has a film thickness of 5 ⁇ m or more. If the thickness is less than 5 ⁇ m, the film may break during processing or use.
  • the film thickness is more preferably 10 ⁇ m or more, and the upper limit is preferably 500 ⁇ m or less.
  • the method for producing the porous film of the present invention will be described based on a specific example.
  • the manufacturing method of the porous film of this invention is not limited to this.
  • melt blending There are dry blending and melt blending methods as the resin raw material to be used.
  • the viscosity of the polypropylene resin used may be greatly different. It is preferable to employ a melt blend because resins having different fiscal years may disperse unevenly and the characteristics may be insufficient.
  • Extruders used in melt blending may be either single-screw extruders or twin-screw extruders, but they can be mixed at high shear, and the mixing ratio is easily controlled to be uniform, raw material uniformity, resin deterioration suppression, and production. It is preferable to carry out with a twin screw extruder from a viewpoint of property.
  • polypropylene resin 96.5 parts by mass of commercially available homopolypropylene resin with MFR 4 g / 10 min, 3 parts by mass of high MFR polypropylene resin with MFR 1,000 g / 10 min, and N, N′-dicyclohexyl-2,6 as ⁇ crystal nucleating agent -Feed raw materials from a measuring hopper to a twin screw extruder so that 0.3 parts by weight of naphthalene dicarboxyamide and 0.2 parts by weight of an antioxidant are mixed at this ratio, and melt knead to form strands from a die It discharges, it cools and solidifies in a 25 degreeC water tank, cuts in chip shape, and a polypropylene raw material (a) is prepared. At this time, the melting temperature is preferably 280 to 310 ° C.
  • the raw material (a) is supplied to a single screw extruder and melt extrusion is performed at 200 to 230 ° C. And after removing a foreign material, a modified polymer, etc. with the filter installed in the middle of the polymer pipe
  • the surface temperature of the cast drum is preferably 105 to 130 ° C. from the viewpoint of controlling the ⁇ crystal fraction of the cast sheet to be high.
  • the forming of the end portion of the sheet affects the subsequent stretchability, and therefore it is preferable that the end portion is sprayed with spot air to be in close contact with the drum. Further, air may be blown over the entire surface using an air knife as necessary from the state in which the entire sheet is in close contact with the drum.
  • the obtained cast sheet is biaxially oriented to form pores in the film.
  • a biaxial orientation method the film is stretched in the longitudinal direction of the film and then stretched in the width direction, or the sequential biaxial stretching method in which the film is stretched in the width direction and then stretched in the longitudinal direction.
  • a simultaneous biaxial stretching method or the like can be used, but it is preferable to adopt a sequential biaxial stretching method from the viewpoint of moisture permeability, puncture strength, and barrier properties, and in particular, stretching in the longitudinal direction and then stretching in the width direction. It is preferable.
  • the cast sheet is controlled to a temperature at which the cast sheet is stretched in the longitudinal direction.
  • a temperature control method a method using a temperature-controlled rotating roll, a method using a hot air oven, or the like can be adopted.
  • the stretching temperature in the longitudinal direction is preferably 90 to 140 ° C.
  • the stretching temperature in the longitudinal direction is less than 90 ° C., the film may be broken, the puncture strength may be decreased, or the barrier property may be decreased. If the stretching temperature in the longitudinal direction exceeds 140 ° C., moisture permeability may be reduced.
  • a more preferred longitudinal stretching temperature is 110 to 135 ° C., and a particularly preferred longitudinal stretching temperature is 125 to 130 ° C.
  • the stretching ratio in the longitudinal direction is preferably 3 to 7 times.
  • the draw ratio in the longitudinal direction is less than 3, the moisture permeability may be lowered.
  • the higher the draw ratio the higher the moisture permeability.
  • the draw ratio in the longitudinal direction exceeds 7 times, the film may be broken, the puncture strength may be lowered, or the barrier property may be lowered.
  • the draw ratio is more preferably 4.5 to 6 times.
  • the longitudinal stretching speed at this time is preferably 200,000% / min (2001 times / min) or more, more preferably 250,000% / min (2501 times / min) or more, 300 More preferably, it is at least 1,000% / min (3001 times / min).
  • the pore structure after biaxial stretching forms a network in the three-dimensional direction, making it easy to achieve both moisture permeability and barrier properties.
  • the stretching speed is too high, film breakage occurs during longitudinal stretching. May become easier, moisture permeability may deteriorate.
  • the stretching temperature in the width direction is preferably 130 to 155 ° C. If the stretching temperature in the width direction is less than 130 ° C., the film may be broken, the puncture strength may be decreased, or the barrier property may be decreased. Moreover, when the extending
  • the draw ratio in the width direction is preferably 4 to 15 times. If the draw ratio in the width direction is less than 4 times, moisture permeability may be reduced.
  • the draw ratio is preferably high, but if the draw ratio in the width direction exceeds 15 times, the film may be broken and productivity may be lowered or moisture permeability may be lowered. From the viewpoint of coexistence of moisture permeability, puncture strength, and barrier property, the draw ratio is more preferably 6 to 12 times, still more preferably 8 to 11 times.
  • the transverse stretching speed at this time is preferably 500 to 10,000% / minute (6 to 101 times / minute), and is preferably 1,500 to 7,000% / minute (16 to 71 times / minute). ) Is more preferable.
  • the area ratio (longitudinal stretch ratio ⁇ lateral stretch ratio) is preferably 30 to 90 times.
  • a heat treatment step is performed in the tenter.
  • the heat treatment step is to perform heat treatment with the width after transverse stretching, further heat treatment while relaxing the film by narrowing the width of the tenter, and performing heat treatment with the width after relaxation, moisture permeability, puncture strength From the viewpoint of controlling barrier properties, it is preferable.
  • the heat setting temperature is preferably 140 to 170 ° C.
  • the puncture strength may be lowered or the barrier property may be lowered.
  • the heat setting temperature exceeds 170 ° C., the porous film surface melts and moisture permeability decreases, or the porous film shrinks in the width direction and breaks in the heat treatment process, which may reduce productivity. is there.
  • a temperature of 150 to 168 ° C. is more preferable from the viewpoint of achieving both moisture permeability, puncture strength, and barrier properties.
  • the heat treatment time is preferably 0.1 second or more and 10 seconds or less, more preferably 3 seconds or more and 8 seconds or less, from the viewpoints of puncture strength, barrier properties, and productivity.
  • the relaxation rate is preferably 5 to 35%. If the relaxation rate is less than 5%, the puncture strength may decrease, the barrier property may decrease, or the heat shrinkage rate in the width direction in the width direction may increase. If the relaxation rate exceeds 35%, the moisture permeability may decrease or the physical property unevenness may increase. From the viewpoint of achieving both moisture permeability, puncture strength, and barrier properties, the content is more preferably 10 to 25%, and further preferably 15 to 25%.
  • the relaxation temperature is preferably 155 to 170 ° C.
  • the relaxation temperature is less than 155 ° C.
  • the contraction stress for relaxation is lowered, and the above-described high relaxation rate may not be achieved, the puncture strength may be decreased, and the barrier property may be decreased.
  • the relaxation temperature exceeds 170 ° C., the polymer around the pores melts due to the high temperature, and the moisture permeability may decrease. From the viewpoint of moisture permeability, puncture strength, and barrier properties, the temperature is more preferably 160 to 168 ° C.
  • the relaxation rate is preferably 100 to 1,000% / min. When the relaxation rate is less than 100% / min, it is necessary to slow down the film forming rate or increase the tenter length, and the productivity may be low. If it exceeds 1,000% / min, the speed at which the film shrinks will be slower than the speed at which the rail width of the tenter shrinks, the film flutters in the tenter and tears, the unevenness in the width direction increases, and flatness decreases. May occur.
  • the relaxation rate is more preferably 150 to 500% / min.
  • the heat setting temperature after relaxation is preferably 155 to 170 ° C. If the heat-fixing temperature after relaxation is less than 155 ° C., the contraction stress for relaxation becomes low, the above-mentioned high relaxation rate may not be achieved, the puncture strength may decrease, and the barrier property may decrease. . When the heat setting temperature after relaxation exceeds 170 ° C., the polymer around the pores melts due to the high temperature, and the moisture permeability may decrease. From the viewpoint of moisture permeability, puncture strength, and barrier properties, the heat setting temperature after relaxation is more preferably 160 to 168 ° C. The film after the heat treatment step is removed by slitting the ears gripped by the tenter clip, and wound around a core with a winder to obtain a product.
  • the porous film of the present invention is excellent in productivity, excellent in barrier properties such as blood barrier properties and virus barrier properties, reduces the stuffiness when worn, and is excellent in clothing comfort. Therefore, it can be suitably used as a composite with a base material or a nonwoven fabric of a medical fabric. In addition, it has excellent barrier properties such as blood barrier properties and virus barrier properties, reduces the feeling of stuffiness when worn, and provides excellent clothing comfort. Therefore, the protective clothing using the medical fabric, the base material, and the composite can be suitably used as a medical protective clothing, particularly a surgical clothing.
  • the waterproof / moisture permeable material of the present invention is a waterproof / moisture permeable material in which at least a fiber layer and the porous film are laminated, and the waterproof / moisture permeable material includes each layer constituting the waterproof / moisture permeable material. Adhering between adjacent layers, adjacent layers are bonded in an area of 50% or less per unit area of the waterproof / moisture permeable material.
  • that at least the fiber layer and the porous film are laminated means that the porous film and the fiber layer are combined into two or more layers. The laminated structure will be described later.
  • the waterproof / moisture permeable material of the present invention has (a) excellent barrier properties due to the porous film, (b) excellent barrier retention properties due to the excellent puncture strength of the porous film itself and the excellent wear strength of the fiber layer, etc. (C)
  • the porous film itself has all of excellent moisture permeability and waterproof / moisture permeable material having a specific adhesion area ratio, and is suitable for medical clothes and protective clothing. It is particularly suitable for use.
  • the fiber layer used for the waterproof / breathable material of the present invention gives the waterproof / breathable material a sufficient tensile and wear strength, and an appropriate hand feeling and softness.
  • the fabric shape used as the fiber layer include fiber structures such as woven fabric, knitted fabric, nonwoven fabric, and paper. Of these, non-woven fabrics are preferred from the viewpoints of cost, tensile strength, and wear strength.
  • Nonwoven fabrics include wet nonwoven fabrics, resin bond dry nonwoven fabrics, thermal bond dry nonwoven fabrics, spunbond dry nonwoven fabrics, needle punch dry nonwoven fabrics, water jet punch dry nonwoven paper fabrics, flash spinning dry nonwoven fabrics, etc.
  • Nonwoven fabrics produced by a papermaking method capable of uniform basis weight and thickness can also be preferably used. Of these, a spunbonded dry nonwoven fabric is preferable from the viewpoints of cost, tensile strength, and wear strength.
  • Examples of the material of the fiber layer include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polylactic acid, polycarbonate, polystyrene, polyphenylene sulfite, fluorine-based resins, and mixtures thereof.
  • polyolefins such as polyethylene and polypropylene
  • polyesters such as polyethylene terephthalate and polylactic acid
  • polycarbonate polystyrene
  • polyphenylene sulfite polyphenylene sulfite
  • fluorine-based resins fluorine-based resins
  • examples of the material of the fiber layer include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polylactic acid, polycarbonate, polystyrene, polyphenylene sulfite, fluorine-based resins, and mixtures thereof.
  • those mainly composed of polyolefin or polylactic acid are preferable from the
  • the same kind of resin means that the composition of the monomers constituting the main component is the same.
  • the lower limit of the melting point of the material constituting the fiber layer is preferably 135 ° C. or higher, more preferably 150 ° C. or higher. More preferably, the temperature is higher than or equal to ° C.
  • the upper limit of the melting point of the material constituting the fiber layer is preferably 175 ° C. or less, and more preferably 170 ° C. or less.
  • the tensile strength of the fiber layer is preferably 5 N / mm or more from the viewpoint of excellent tensile strength of the waterproof / breathable material. More preferably, it is 10 N / mm or more, More preferably, it is 15 N / mm or more.
  • the upper limit of the tensile strength is preferably 200 N / mm or less from the viewpoint of ensuring appropriate softness of the waterproof / breathable material.
  • the tensile strength is calculated as the tensile strength per 1 mm thickness.
  • the burst strength of the fiber layer is preferably 300 kPa or more, preferably 400 kpa or more, more preferably 500 kPa or more, from the viewpoint of making the waterproof / moisture permeable material excellent in burst strength, while the upper limit of the burst strength is , 2000 kPa or less, preferably 1500 kPa or less.
  • the bursting strength is 2000 kPa or less, the flexibility and light weight of the waterproof / breathable material can be improved when the waterproof / breathable material is used.
  • the abrasion strength of the fiber layer is preferably 3 or more from the viewpoint of excellent abrasion resistance of the waterproof / breathable material. More preferably, it is quaternary or higher.
  • the preferable lower limit of the thickness of the fiber layer is 0.01 mm or more, more preferably 0.1 mm or more, while the upper limit of the thickness is 5 mm or less, preferably 1 mm or less.
  • the minimum of the fabric weight of a preferable fiber layer is 10 g / m ⁇ 2 > or more, Preferably it is 20 g / m ⁇ 2 > or more,
  • the upper limit of fabric weight is 200 g / m ⁇ 2 > or less, Preferably, it is the range of 100 g / m ⁇ 2 > or less.
  • the fiber layer used in the present invention is preferably subjected to functional processing such as antistatic processing on the surface.
  • the antistatic processing is preferably a method of processing a conductive polymer on the surface or a method of processing a hygroscopic polymer on the surface.
  • the opposite surface in contact with the porous film it is preferable to process the opposite surface in contact with the porous film to be laminated.
  • the antistatic portion is in contact with the porous film, the electret performance of the fiber layer may deteriorate.
  • the moisture permeability of the waterproof / moisture permeable material of the present invention is 150 g / m 2 ⁇ h or more, preferably 200 g / m 2 ⁇ h or more, as an evaluation scale, from the viewpoint of ensuring excellent wearability. More preferably, it is 300 g / m 2 ⁇ h or more.
  • the upper limit is not particularly limited, but is preferably 1000 g / m 2 ⁇ h or less from the viewpoint of improving the barrier property.
  • the moisture permeability is evaluated by the A-1 method described in JIS L 1099: 2012.
  • the tensile strength of the waterproof / breathable material of the present invention is preferably 5 N / 50 mm or more from the viewpoint of practicality when working at the time of wearing. More preferably, it is 10 N / 50 mm or more, More preferably, it is 15 N / 50 mm or more.
  • the upper limit is not particularly limited, but is preferably 200 N / 50 mm or less from the viewpoint of ensuring appropriate softness of the waterproof / moisture permeable material.
  • the rupture strength of the waterproof / breathable material of the present invention is preferably 300 kPa or more, more preferably 400 kPa or more, and further preferably 500 kPa or more, from the viewpoint of further suppressing breakage due to external stress during wearing. Although it does not specifically limit, 2000 kPa or less is preferable and 1500 kPa is more preferable. When the burst strength is 2000 kPa or less, the waterproof and moisture-permeable material is more excellent in flexibility and light weight.
  • the abrasion strength of the waterproof / moisture permeable material of the present invention is the appearance evaluation when the surface of the waterproof / moisture permeable material is worn from the viewpoint of improving the abrasion resistance of the surface due to external stress during wearing. Is preferably tertiary or higher. More preferably, it is quaternary or higher.
  • the water pressure resistance of the waterproof / moisture permeable material of the present invention is preferably 30 kPa or more, more preferably 50 kPa or more, and further 65 kPa or more, from the viewpoint of preventing water from entering from the outside during wearing. preferable.
  • the upper limit of the water pressure resistance is preferably 300 kPa or less.
  • the water pressure resistance is 300 kPa or less, an appropriate number of through holes of the porous film can be provided, and the moisture permeability of the waterproof / moisture permeable material can be further improved.
  • the water pressure resistance of the waterproof / breathable material can also be adjusted by changing the number of nonwoven fabrics laminated on the waterproof / breathable material.
  • the blood barrier property of the waterproof / breathable material of the present invention is preferably class 4 or higher.
  • the blood barrier property is class 4 or higher, when the waterproof / moisture permeable material is used as medical clothing or protective clothing, the blood barrier property is more excellent. 5 or more is more preferable, and class 6 is more preferable.
  • the virus barrier property of the waterproof / breathable material of the present invention is preferably class 3 or higher.
  • the virus barrier property is Class 3 or higher, when the waterproof / moisture permeable material is used as medical clothes or protective clothing, the barrier property against those viruses becomes more excellent.
  • Class 4 or higher is more preferable, class 5 or higher is more preferable, and class 6 is particularly preferable.
  • the waterproof / moisture permeable material of the present invention preferably has a basis weight of 15 to 250 g / m 2 . If the basis weight is less than 15 g / m 2 , the tensile strength, burst strength, wear strength, and water pressure resistance may be insufficient. From this point of view, the basis weight, 20 g / m 2 or more preferably, 30 g / m 2 or more is more preferable. On the other hand, when the weight per unit area exceeds 250 g / m 2 , the clothes become heavier and less comfortable to wear. From this point of view, the basis weight is more preferably from 150 g / m 2 or less, 100 g / m 2 or less is more preferred.
  • the melting point difference between the material constituting the fiber layer and the material constituting the porous film is preferably 40 ° C. or less. More preferably, it is 30 degrees C or less, More preferably, it is 20 degrees C or less.
  • fusing point of the raw material which comprises a porous film is higher than melting
  • the melting point of the material composing the fiber layer and the material composing the porous film can be measured using a differential scanning calorimeter DSC-60 manufactured by Shimadzu Corporation, as will be described in detail later.
  • the melting point of the material constituting the fiber layer and the porous film may be measured for the fiber layer and the porous film before lamination, or from the laminate of the fiber layer and the porous film, the fiber layer and the porous film. May be peeled off, and a portion not heated in the laminating step, that is, a portion not bonded may be isolated, and the melting point of the material constituting each layer may be measured.
  • Examples of the laminated structure include the following (i) to (v).
  • Two-layer structure with film iii) Fiber layer, porous film and fiber layer in this order, three-layer structure sandwiching the porous film
  • iv Fiber layer with high wear strength and high tensile strength and burst strength Two layers with a fiber layer are overlapped, and a fiber laminate in which the above two fiber layers are stacked sandwiches a porous film.
  • said 3 layer structure it has the effect which a porous film is damaged and a barrier property is hard to be lost by pinching
  • a two-layer structure having a porous film on the outer surface of the garment and a fiber layer on the inner surface of the garment is also preferable.
  • the waterproof and moisture permeable material can be more excellent in moisture permeability and light weight while ensuring the desired tensile strength and bursting strength of the waterproof and moisture permeable material. it can.
  • the waterproof / breathable material of the present invention is formed by adhering each layer constituting the waterproof / breathable material between adjacent layers.
  • adjacent layers are preferably bonded in an area of 50% or less per unit area of the waterproof / moisture permeable material. If the adjoining layers are bonded to more than 50% per unit area of the waterproof / breathable material, the moisture permeability of the waterproof / breathable material is significantly reduced, and the waterproof / breathable material is used as medical clothing. In some cases, good wearability may not be obtained even when wearing protective clothing.
  • the upper limit is preferably 40% or less, more preferably 30% or less, and particularly preferably 15% or less.
  • the lower limit is preferably 3% or more, more preferably 5% or more, from the viewpoint of ensuring the adhesive strength, tensile strength, bursting strength, and water pressure resistance of the waterproof / moisture permeable material.
  • the ratio of the adhesion area per unit area of the waterproof / moisture permeable material described above (hereinafter referred to as the adhesion area ratio) is the pattern of the embossing roll in the case of ultrasonic bonding processing. In the case of heat bonding processing using a heat embossing roll having a design and a pattern height of 1 mm or more, it can be adjusted by designing the pattern of the heat embossing roll.
  • each embossing roll is not particularly limited, but patterns such as a pinpoint pattern, a cross pattern, a lattice pattern, a wave pattern, and a diagonal pattern can be used.
  • a pinpoint pattern a cross pattern
  • a lattice pattern a wave pattern
  • a diagonal pattern a pattern that is a symmetrical to the adhesive force between the porous film and the fiber layer.
  • left-right symmetry is preferable, and pinpoint patterns, cross patterns, lattice patterns, wave patterns, mesh patterns, and the like are preferable.
  • the adhesion part of a waterproof / moisture permeable material is a film
  • the thickness of the film-like portion is preferably 0.01 to 0.5 mm.
  • the area of one bonding portion is preferably 0.001 mm 2 to 100 mm 2 . These thicknesses and areas can be obtained by cutting the cross section of the bonded portion, enlarging the cross section area with an SEM photograph, and performing image processing.
  • the waterproof / moisture permeable material manufacturing method of the present invention is a manufacturing method including a step of superposing adjacent layers constituting the waterproof / moisture permeable material, and a step of performing a heat treatment on an adhesion scheduled portion of the overlapped adjacent layers. .
  • the layers constituting the waterproof / breathable material are the porous film and the fiber layer described above. And superimposing adjacent layers constituting the waterproof / moisture permeable material means superposing these layers as adjacent layers without interposing other layers.
  • the above-described (i) to (v) are preferable examples of the laminated structure.
  • the step of applying heat treatment to the site where the adjacent layers of the stacked layers are to be bonded is a step of applying a thermal bonding process to the site where the fiber layer or porous film is desired to be bonded, and the details will be described below.
  • the adhesion between the fiber layer and the porous film will be described as an example.
  • the handle height is 1 mm or more and It is preferable to use a heat bonding process using a heat embossing roll whose surface is coated with a resin such as a fluororesin.
  • an ultrasonically vibrating blade and an adhesive material are sandwiched between embossing rolls having a specific pattern at a pressure of 0.01 MPa to 1 MPa, and a vibrator called a blade is ultrasonically vibrated at 1 to 50,000 Hz.
  • a method of oscillating and melt-bonding a pattern portion that comes into contact with the blade is exemplified.
  • the blade is mainly made of titanium, which is resistant to friction, but aluminum, stainless steel alloy, etc. are also used.
  • a blade having a width of 10 to 50 cm is used.
  • the heat bonding process using a hot embossing roll with a pattern height of 1 mm or more uses a heat embossing roll with an embossing pattern depth of 1 mm or more, and performs the bonding process without applying heat to the fabric other than the pattern.
  • the pattern height refers to the distance between the upper part and the lower part of the edge constituting the embossed pattern of the hot embossing roll.
  • the temperature of hot embossing is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, and further preferably 125 ° C. or higher. On the other hand, it is preferably 175 ° C. or lower, more preferably 165 ° C. or lower, and further preferably 155 ° C.
  • the temperature of the heat embossing is preferably between the melting point of the material constituting the porous film and the temperature 30 ° C. lower than the melting point of the material constituting the fiber layer, and the melting point of the material constituting the porous film and the fiber More preferably, it is between the melting points of the materials constituting the layer.
  • the temperature of the heat embossing is 30 ° C. lower than the melting point of the material constituting the porous film and the melting point of the material constituting the fiber layer, the heat embossing is hardly affected by the thermal shrinkage of the porous film, It becomes easy to demonstrate the characteristics.
  • a nip roll having silicon rubber having a hardness of 50 to 90 ° is used.
  • the pressing pressure of the hot embossing roll and the nip roll sandwiching it is 0.5 MPa or more, preferably 1 MPa or more, on the other hand, 10 MPa or less, preferably 5 MPa or less. Moreover, it can prevent that material is taken by a nip roll and workability worsens by applying heat from one side (heat embossing roll). In addition, if a resin such as fluororesin is coated on the surface of the hot embossing roll, the peelability between the hot embossing roll and the material will be improved, and the porous film will be damaged at the edge of the hot embossing roll, impairing the barrier properties. Can be prevented.
  • a material whose hardness is softer than that of a metal roll such as a silicon roll as the material of the receiving roll at the counter electrode of the hot embossing roll.
  • any of the above-mentioned adhesion processing methods can further suppress the application of heat to a part other than the desired adhesion part, so that there is little damage to the fiber layer and the porous film due to heat treatment, and the fiber layer is melted or the porous film
  • the shrinkage of the waterproof / breathable material due to heat applied to the film can be further suppressed.
  • the waterproof / moisture permeable material of the present invention is excellent in strength and abrasion strength and can suppress particle ingress, so that it can be suitably used for medical clothes and protective clothing.
  • the waterproof / breathable material of the present invention can be suitably used as medical clothing or protective clothing by sewing into coveralls, upper and lower divided kappa, gowns and the like.
  • a coverall-type protective clothing is preferable in order to prevent entry of contaminants.
  • ⁇ -crystal forming ability 5 mg of a porous film was sampled in an aluminum pan and measured using a differential scanning calorimeter (Seiko Denshi Kogyo RDC220).
  • the temperature is raised from room temperature to 260 ° C. at 10 ° C./min (first run) in a nitrogen atmosphere, held for 10 minutes, and then cooled to 40 ° C. at 10 ° C./min.
  • the melting peak observed when the temperature is raised again (second run) at 10 ° C / min after holding for 5 minutes is the melting peak of 145 ° C to 157 ° C.
  • the melting of the ⁇ crystal is the melting peak of the ⁇ crystal
  • the melting peak of the ⁇ crystal is taken as the melting peak of the base
  • ⁇ crystal forming ability (%) [ ⁇ H ⁇ / ( ⁇ H ⁇ + ⁇ H ⁇ )] ⁇ 100
  • the ⁇ crystal fraction in the state of the sample can be calculated by calculating the abundance ratio of the ⁇ crystal in the same manner from the melting peak observed in the first run. The measurement was performed twice for each sample, and the average value was evaluated.
  • MFR Melt flow rate
  • Puncture strength Using a universal testing machine (Autograph AG-IS, manufactured by Shimadzu Corp.), the needle entry speed was 5 mm / min, and the others were measured at 23 ° C. according to JIS Z 1707: 1997. The load applied to the film when the sample broke was read and the value divided by the thickness (mm) of the sample before the test was defined as the puncture strength (N / mm). The measurement was performed 5 times for each sample, and the average value was evaluated.
  • Thickness The thickness of the porous film was evaluated by the following measuring method. The thickness ( ⁇ m) was measured using a dial gauge thickness gauge (JIS B 7503: 1997, PURICOCK UPRIIGHT DIAL GAUGE (0.001 ⁇ 2 mm), No. 25, probe 10 mm ⁇ flat type, 50 gf load). The measurement was performed 10 times for each sample, and the average value was evaluated.
  • the thickness of the nonwoven fabric and the waterproof / breathable material was evaluated by the following measuring method. Measured based on the method A described in JIS L 1913: 2010, paragraph 6.1.1. Ten test pieces having a size of 2500 mm 2 or more were collected from the sample, and a pressure of 0.5 kPa was applied to the upper circular horizontal plate of the thickness measuring device to adjust the zero point. Thereafter, using a thickness measuring instrument, the thickness was measured to 0.01 mm by applying a pressure of 0.5 kpa to the test piece for 10 seconds in a standard state. The average value of 10 test pieces was obtained.
  • Area shrinkage (%) 100 ⁇ (L 1 (longitudinal) ⁇ L 1 (width)) / (L 0 (longitudinal) ⁇ L 0 (width)) ⁇ 100.
  • B S AB B S : burst strength (kPa)
  • Mass per unit area (weight per unit: g / m 2 ) It measured based on 6.2 of JIS L 1913: 2010. Five test pieces each having a size of 25 cm ⁇ 25 cm were taken from the sample, the weight was measured, and an average value was obtained. The average value was multiplied by 16 to obtain the mass per unit area (g / m 2 ).
  • a test piece cut into a width of 50 mm and a length of 300 mm is subjected to a tensile test with a constant-speed extension type tensile tester for three samples in both the longitudinal and lateral directions of the sheet at a gripping interval of 200 mm and a tensile speed of 100 mm / min.
  • the maximum strength when the sample is pulled until it breaks is taken as the tensile strength, and the average value in the longitudinal and transverse directions of the sheet is calculated.
  • the lower of the longitudinal and transverse tensile strengths is the tensile strength of the fiber layer.
  • the strength (N / 50 mm) was used.
  • Adhesive area ratio When the pattern of the embossed pattern is the same pattern such as a cross shape, a round shape, an ellipse, etc., a sample with a sample size of 15 cm ⁇ 15 cm is used at a magnification of 50 times using a VHX2000 manufactured by Keyence. The sample was photographed, and the maximum area measurement and threshold value ⁇ 10 were set and analyzed, and the adhesion area ratio of the sample was calculated. The adhesion area ratio was measured for five samples, and the average value was calculated.
  • the pattern of the embossed pattern is not symmetrical, and the pattern is not uniform, a sample with a sample size of 15 cm x 15 cm is photographed using a Keyence VHX2000 at a magnification of 25 times, and an automatic area measurement to extraction method (luminance) ), Analysis was performed with a threshold of ⁇ 20, and the adhesion area ratio of the sample was calculated. The adhesion area ratio was measured for five samples, and the average value was calculated.
  • Method for Producing Protective Clothing The moisture permeable and waterproof materials of Examples and Comparative Examples were cut out according to the pattern. The cut-out portion of the moisture permeable / waterproof material was sewn with a sewing machine or ultrasonic wave to produce a protective suit. A seam tape having a width of 2 cm was attached to the sewing machine.
  • the obtained polypropylene composition (A) is supplied to a uniaxial melt extruder, melt extruded at 220 ° C., foreign matter is removed with a 60 ⁇ m cut sintered filter, and the surface temperature is adjusted to 117 ° C. with a T-die.
  • a cast sheet was obtained by discharging to a controlled cast drum.
  • preheating was performed using a ceramic roll heated to 125 ° C., and the film was stretched 5 times in the longitudinal direction of the film at a stretching speed of 350,000% / min (3500 times / min).
  • the end part was introduced into a tenter type stretching machine with a clip, preheated at 152 ° C. for 3 seconds, then 9.0 times at 150 ° C., at a stretching speed of 3,500% / min (35 times / min). Stretched.
  • heat treatment was performed at 150 ° C. for 3 seconds while maintaining the distance between the clips after stretching, and further relaxation was performed at a relaxation rate of 15% at 164 ° C., and 5 ° C. at 164 ° C. while maintaining the distance between the clips after relaxation. Heat treatment was performed for 2 seconds.
  • Example 2 In the stretching process of Example 1, preheating was performed using a ceramic roll heated to 125 ° C., and stretching was performed 5 times in the longitudinal direction of the film at a stretching rate of 400,000% / min (4000 times / min). Next, the end of the tenter-type stretching machine was introduced with a clip, preheated at 152 ° C. for 3 seconds, then 9.0 times at 150 ° C., at a stretching speed of 4,500% / minute (45 times / minute). Except for stretching, the same conditions as in Example 1 were applied to obtain a porous film having a thickness of 20 ⁇ m. The evaluation results are shown in Table 1.
  • Example 3 A porous film having a thickness of 250 ⁇ m was obtained by applying the same conditions as in Example 1 except that the extrusion amount was adjusted so that the thickness of the porous film was 250 ⁇ m in the extrusion step of Example 1. The evaluation results are shown in Table 1.
  • a porous film having a thickness of 20 ⁇ m was obtained by applying the same conditions as in Example 1 except that the obtained polypropylene composition (B) was used.
  • the evaluation results are shown in Table 1.
  • a porous film having a thickness of 20 ⁇ m was obtained by applying the same conditions as in Example 1 except that the obtained polypropylene composition (C) was used.
  • the evaluation results are shown in Table 1.
  • the raw material is supplied from the weighing hopper to the twin-screw extruder so that parts by mass are mixed at this ratio, melt kneaded at 303 ° C., discharged from the die into strands, and cooled and solidified in a 25 ° C. water tank. Then, it was cut into chips to obtain a polypropylene composition (D).
  • the obtained polypropylene composition (D) is supplied to a uniaxial melt extruder, melt extruded at 220 ° C., foreign matter is removed with a 60 ⁇ m cut sintered filter, and the surface temperature is adjusted to 117 ° C. with a T-die.
  • a cast sheet was obtained by discharging to a controlled cast drum.
  • preheating was performed using a ceramic roll heated to 120 ° C., and the film was stretched 5.2 times in the longitudinal direction of the film at a stretching speed of 150,000% / min (1500 times / min).
  • the end part is introduced into a tenter type stretching machine with a clip, preheated at 152 ° C. for 3 seconds, then 5.5 times at 150 ° C., at a stretching speed of 1,200% / minute (12 times / minute). Stretched.
  • the distance between the clips in the width direction at the entrance of the tenter was 150 mm.
  • heat treatment was performed at 150 ° C. for 3 seconds while maintaining the distance between the clips after stretching, and further relaxation was performed at 164 ° C. with a relaxation rate of 15%. Heat treatment was performed for 2 seconds.
  • the polypropylene composition (A) was supplied to a uniaxial melt extruder, melt extruded at 220 ° C., foreign matter was removed with a 60 ⁇ m cut sintered filter, and the surface temperature was controlled to 117 ° C. with a T-die.
  • the cast sheet was obtained by discharging to a drum.
  • preheating was performed using a ceramic roll heated to 125 ° C., and the film was stretched 5 times in the longitudinal direction of the film at a stretching speed of 150,000% / min (1500 times / min).
  • the end part was introduced into a tenter type stretching machine with a clip, preheated at 152 ° C. for 3 seconds, then 9.0 times at 150 ° C., at a stretching speed of 1,200% / minute (12 times / minute). Stretched.
  • heat treatment was performed at 150 ° C. for 3 seconds while maintaining the distance between the clips after stretching, and further relaxation was performed at a relaxation rate of 15% at 164 ° C., and 5 ° C. at 164 ° C. while maintaining the distance between the clips after relaxation. Heat treatment was performed for 2 seconds.
  • ⁇ Spunbond 1> A spunbond nonwoven fabric made of polypropylene (40 g / m 2 in basis weight, tensile strength: 57.6 N / 50 mm, burst strength: 500 kPa, wear strength: 4.5 grade).
  • Example 101 Using a hot press roll with a mesh pattern that was adjusted so that the handle with the surface coated with a fluororesin could not be seen, the polypropylene nonwoven fabric (spunbond 1) with a basis weight of 40 g / m 2 and the porous film of Example 1
  • the handle roll temperature is 145 ° C.
  • the receiving roll temperature is 145
  • Adhesion processing was performed at 0 ° C., a roll pressure of 2 MPa, and a processing speed of 5 m / min.
  • the moisture permeable / waterproof material was cut out according to the pattern, and the sewn portion of the cut out moisture permeable / waterproof material was sewn with a sewing machine to obtain protective clothing.
  • Example 102 Adhesion processing was performed in the same manner as in Example 101 except that the porous film of Example 1 used in Example 101 was adhered as the porous film of Example 2, and a waterproof / breathable material was obtained. The moisture permeable and waterproof material was sewn in the same manner as in Example 101 to obtain protective clothing.
  • Example 103 Adhesion processing was performed in the same manner as in Example 101 except that the porous film of Example 1 used in Example 101 was adhered as the porous film of Example 4 to obtain a waterproof / moisture permeable material. The moisture permeable and waterproof material was sewn in the same manner as in Example 101 to obtain protective clothing.
  • Example 104 Adhesion processing was performed in the same manner as in Example 101 except that the porous film of Example 1 used in Example 101 was adhered as the porous film of Example 5 to obtain a waterproof / moisture permeable material. The moisture permeable and waterproof material was sewn in the same manner as in Example 101 to obtain protective clothing.
  • Example 105 Using an ultrasonic bonding machine having a lattice pattern embossing roll (8400 made by Bobson) (lattice pattern), a polypropylene nonwoven fabric (spunbond 1) having a basis weight of 40 g / m 2 , the porous film of Example 1, and the spunbond 1 The three layers were bonded to each other so as to form a cross pattern having a bonding area of 10% at a frequency of 20,000 Hz and a pressure of 0.03 MPa, to obtain a waterproof / moisture permeable material. The moisture permeable / waterproof material was cut out according to the pattern, and the sewn portion of the cut out moisture permeable / waterproof material was sewn with a sewing machine to obtain protective clothing.
  • a lattice pattern embossing roll 8400 made by Bobson
  • Example 106 A waterproof / breathable material was obtained in the same manner as in Example 105 except that the porous film of Example 2 was used instead of the porous film of Example 1 used in Example 105. The moisture permeable and waterproof material was sewn in the same manner as in Example 105 to obtain protective clothing.
  • Example 107 A waterproof / breathable material was obtained in the same manner as in Example 105 except that the porous film of Example 4 was used instead of the porous film of Example 1 used in Example 105. The moisture permeable and waterproof material was sewn in the same manner as in Example 105 to obtain protective clothing.
  • Example 108 A waterproof / breathable material was obtained in the same manner as in Example 105 except that the porous film of Example 5 was used instead of the porous film of Example 1 used in Example 105. The moisture permeable and waterproof material was sewn in the same manner as in Example 105 to obtain protective clothing.
  • Example 109 A waterproof / moisture permeable material is obtained in the same manner as in Example 101 except that the spunbond 1 and the porous film of Example 1 have a two-layer structure, the handle roll temperature is 145 ° C., the receiving roll is at room temperature, and the roll pressure is 2 MPa. It was. The moisture permeable and waterproof material was sewn in the same manner as in Example 101 to obtain protective clothing.
  • Example 110 A waterproof / moisture permeable material was obtained in the same manner as in Example 109 except that the porous film of Example 1 used in Example 109 was adhered as the porous film of Example 2. The moisture permeable and waterproof material was sewn in the same manner as in Example 109 to obtain protective clothing.
  • Example 111 A waterproof / moisture permeable material was obtained in the same manner as in Example 109 except that the porous film of Example 1 used in Example 109 was bonded as the porous film of Example 4. The moisture permeable and waterproof material was sewn in the same manner as in Example 109 to obtain protective clothing.
  • Example 112 A waterproofing / moisture permeable material was obtained in the same manner as in Example 109 except that the porous film of Example 1 used in Example 109 was adhered as the porous film of Example 5. The moisture permeable and waterproof material was sewn in the same manner as in Example 109 to obtain protective clothing.
  • Example 113 In the same manner as in Example 101, a waterproof / moisture permeable material having a bonding area of 5% by heat bonding was obtained by superposing three layers of spunbond 1, the porous film of example 1, and spunbond 1. The moisture permeable / waterproof material was cut out according to the pattern, and the sewn portion of the cut out moisture permeable / waterproof material was sewn with a sewing machine to obtain protective clothing.
  • Example 114 A waterproof / breathable material was obtained in the same manner as in Example 101 except that the adhesion area was 25%. The moisture permeable and waterproof material was sewn in the same manner as in Example 101 to obtain protective clothing.
  • Example 115 A waterproof / breathable material was obtained in the same manner as in Example 101 except that the adhesion area was 40%. The moisture permeable and waterproof material was sewn in the same manner as in Example 101 to obtain protective clothing.
  • Example 116 A waterproof / breathable material was obtained in the same manner as in Example 101 except that the adhesion area was 50%. The moisture permeable and waterproof material was sewn in the same manner as in Example 101 to obtain protective clothing.
  • Example 117 Protective clothing was obtained in the same manner as in Example 101 except that the sewing method of the protective clothing was changed to ultrasonic sewing.
  • Example 118 Protective clothing was obtained in the same manner as in Example 102 except that the sewing method of the protective clothing was changed to ultrasonic sewing.
  • Example 117 Protective clothing was obtained in the same manner as in Example 103 except that the sewing method of the protective clothing was changed to ultrasonic sewing.
  • Example 102 A waterproof / moisture permeable material was obtained in the same manner as in Example 101 except that the porous film of Example 1 of Example 101 was changed to the porous film of Comparative Example 1. The moisture permeable and waterproof material was sewn in the same manner as in Example 101 to obtain protective clothing.
  • Example 103 A waterproof / moisture permeable material was obtained in the same manner as in Example 101 except that the porous film of Example 1 of Example 101 was changed to the porous film of Comparative Example 2. The moisture permeable and waterproof material was sewn in the same manner as in Example 101 to obtain protective clothing.
  • Example 104 A waterproof / moisture permeable material was obtained in the same manner as in Example 101 except that the porous film of Example 1 of Example 101 was changed to the porous film of Comparative Example 3. The moisture permeable and waterproof material was sewn in the same manner as in Example 101 to obtain protective clothing.
  • the comparative example was insufficient as a waterproof / moisture permeable material and protective clothing because the moisture permeability, puncture strength, and barrier properties were insufficient.

Abstract

血液バリア性、ウィルスバリア性などのバリア性、突刺強度および透湿性に優れた多孔性フィルムを提供することにある。また、血液バリア性、ウィルスバリア性などのバリア性に優れ、着用した際の蒸れ感を軽減し着衣快適性に優れた前記多孔性フィルムを用いた防水・透湿材料を提供することを課題とする。血液バリア性、ウィルスバリア性などのバリア性、突刺強度および透湿性に優れた多孔性フィルムを提供することにある。また、血液バリア性、ウィルスバリア性などのバリア性に優れ、着用した際の蒸れ感を軽減し着衣快適性に優れた前記多孔性フィルムを用いた防水・透湿材料を提供することを課題とする。上記した課題は、透湿度が150g/m2・h以上であり、突刺強度が100N/mm以上であり、かつ血液バリア性がクラス4以上である多孔性フィルムかまたは透湿度が150g/m2・h以上であり、突刺強度が100N/mm以上であり、かつウィルスバリア性がクラス3以上である多孔性フィルムであるかまたは透湿度が150g/m2・h以上であり、突刺強度が100N/mm以上であり、血液バリア性がクラス4以上、かつウィルスバリア性がクラス3以上である多孔性フィルムによって達成される。

Description

多孔性フィルム、防水・透湿材料およびそれを用いた医療用衣服ならびに防護服
 本発明は、血液バリア性、ウィルスバリア性などのバリア性、突刺強度および透湿性に優れた多孔性フィルムに関する。また、血液バリア性、ウィルスバリア性などのバリア性に優れ、着用した際の蒸れ感を軽減し着衣快適性に優れた前記多孔性フィルムを用いた防水・透湿材料に関する。さらに、前記防水・透湿材料を用いた医療用衣服ならびに防護服に関する。
 従来から、医師、看護師が着用する手術衣としてサージカルガウンが知られている。サージカルガウンは、バクテリアバリア性や血液バリア性などに優れる他、防塵性にも優れるが、通気性、透湿性に乏しいため、着用時、蒸れ感を強く感じ、着衣快適性が悪いという欠点がある。そのため、サージカルガウンの下にスクラブスーツと呼ばれる手術下着を着用することにより、かかる蒸れ感を軽減し、着衣快適性の向上が図られている。
 このように、待機時はスクラブスーツを着用し、手術などを行う際はスクラブスーツの上からサージカルガウンを着用するのが一般的である。しかし、一刻を争う救急医療の現場などでは、ガウンを着用する時間の確保が難しく、時にはサージカルガウンを着用せずそのまま手術にあたらねばならないことがある。そのため、このような現場から、スクラブスーツ、サージカルガウン両者の特性を併せ持つ、つまり、バクテリアバリア性や血液バリア性などのバリア性と着衣快適性を両立する医療用衣服の要望がある。また、バクテリアバリア性や血液バリア性などに優れる他、防塵性にも優れた防護服があるが、通気性、透湿性に乏しいため、着用時、蒸れ感を強く感じ、着衣快適性が悪いという欠点がある。
 そこで、綿紡績糸を構成糸とする編織物に、ポリオレフィンフィルム、フッ素系フィルム、ポリカーボネートポリウレタン系フィルム、シリコーンポリウレタン系フィルム、クロロスルフォン化ポリエチレンフィルム等のフィルムを積層接着し、このフィルムによって、エイズ菌(ウィルス)や肝炎菌(ウィルス)等の細菌(ウィルス)の浸透を防止することが考えられている(たとえば特許文献1、2)。上記積層体を生地に使用することによって、吸汗性、吸水性、肌触りの良さを実現できるもので、医療用織編物として一応完成に近い形にあるが、同織編物には、菌やウイルスの透過を抑止するためにフィルムが積層接着されている。そのため、軽量性や柔軟性に欠け、さらにフィルムにより空気の流れが大きく遮られてしまうために、蒸れ感を十分には軽減できず、着衣快適性が悪いなどの問題が残されている。また、織物に用いられる繊維を芯鞘繊維のような繊維に改良することによってバリア性と着衣快適性向上することが考えられている(たとえば特許文献3)。上記織物を生地に使用することによって、吸汗性、吸水性、肌触りの良さを実現でき、菌やウイルスの透過を抑止することができるが、突刺強度が低く、手術時などの現場での作業時に織物が破れてバリア性が悪化し、防護服としてのバリア性が悪化する場合があるなど、なお問題が残されている。
特開平9-78464号公報 特表2005-515912号公報 特開2013-53386号公報
 本発明の課題は、上記した問題点を解決することである。すなわち、血液バリア性、ウィルスバリア性などのバリア性、突刺強度および透湿性に優れた多孔性フィルムを提供することである。また、血液バリア性、ウィルスバリア性などのバリア性に優れ、着用した際の蒸れ感を軽減し着衣快適性に優れた前記多孔性フィルムを用いた防水・透湿材料を提供することである。さらに、前記防水・透湿材料を用い、血液バリア性、ウィルスバリア性などのバリア性に優れ、着用した際の蒸れ感を軽減し着衣快適性に優れた医療用衣服ならびに防護服を提供することである。
 上記した課題を解決するために本発明は以下の手段をとる。
(1)透湿度が150g/m・h以上であり、突刺強度が100N/mm以上であり、かつ血液バリア性がクラス4以上である多孔性フィルム、
(2)透湿度が150g/m・h以上であり、突刺強度が100N/mm以上であり、かつウィルスバリア性がクラス3以上である多孔性フィルム、
(3)透湿度が150g/m・h以上であり、突刺強度が100N/mm以上であり、血液バリア性がクラス4以上、かつウィルスバリア性がクラス3以上である多孔性フィルム。
(4)130℃で1時間処理後の面積熱収縮率が10%以下である、(1)~(3)のいずれかの多孔性フィルム、
(5)ポリオレフィン樹脂からなる、(1)~(4)のいずれかの多孔性フィルム、
(6)ポリオレフィン樹脂がポリプロピレンである、(5)の多孔性フィルム、
(7)(1)~(6)のいずれかの多孔性フィルムを用いた医療用生地の基材、
(8)少なくとも繊維層と(1)~(6)のいずれかの多孔性フィルムとを積層した防水・透湿材料であって、前記防水・透湿材料は前記防水・透湿材料を構成する各層が隣り合う層間で接着されてなり、前記防水・透湿材料の単位面積あたり、その50%以下の面積において、隣り合う層が接着されている防水・透湿材料、
(9)前記繊維層と前記多孔性フィルムを構成する素材の融点差が40℃以下である(8)の防水・透湿材料、
(10)耐水圧が30kPa以上である(8)または(9)の防水・透湿材料、
(11)(8)~(10)のいずれかの防水・透湿材料を用いた医療用衣服、
(12)(8)~(10)のいずれかの防水・透湿材料を用いた防護服、
(13)(8)~(10)のいずれかに記載の防水・透湿材料の製造方法であって、前記防水・透湿材料を構成する隣り合う層を重ね合わせる工程と、重ね合わせた隣り合う層の接着予定部位に熱処理とを施す工程を有する防水・透湿材料の製造方法。
 本発明は、血液バリア性、ウィルスバリア性などのバリア性、突刺強度および透湿性に優れた多孔性フィルムを提供することができる。また、血液バリア性、ウィルスバリア性などのバリア性に優れ、着用した際の蒸れ感を軽減し着衣快適性に優れた前記多孔性フィルムを用いた防水・透湿材料を提供することができる。さらに、前記防水・透湿材料を用い、血液バリア性、ウィルスバリア性などのバリア性に優れ、着用した際の蒸れ感を軽減し着衣快適性に優れた医療用衣服ならびに防護服を提供することができる。
 本発明の防水・透湿材料における多孔性フィルムは、優れたバリア性、その優れたバリア性を保持するための優れた突刺強度、および着用者の快適性のための優れた透湿性を有するものである。本発明において、バリア性とは、血液バリア性、ウィルスバリア性および耐水性などを意味する。一般的に、バリア性や突刺強度に優れる多孔性フィルムは透湿性に劣るものであり、逆に透湿性に優れる多孔性フィルムはバリア性や突刺強度に劣るものである。しかし、本発明の防水・透湿材料における多孔性フィルムは、上記のとおり、優れたバリア性、優れた突刺強度、優れた透湿性を同時に有する。
<多孔性フィルム>
 本発明の多孔性フィルムは、フィルムの両表面を貫通し、透気性を有する微細な貫通孔を多数有しているフィルムである。多孔性フィルムを構成する樹脂は、ポリオレフィン樹脂、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、芳香族ポリアミド、フッ素系樹脂などいずれでも構わない。中でも耐熱性、成形性、生産コストの低減、耐薬品性、耐酸化・還元性などの観点からポリオレフィン樹脂が望ましい。
 上記ポリオレフィン樹脂を構成する単量体成分としては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、3-メチルペンテン-1、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、5-エチル-1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-エイコセン、ビニルシクロヘキセン、スチレン、アリルベンゼン、シクロペンテン、ノルボルネン、5-メチル-2-ノルボルネンなどの炭素-炭素二重結合を有する化合物が挙げられる。上記単量体成分の単独重合体や上記単量体成分からなる群より選ばれる少なくとも2種以上から構成される共重合体、およびこれら単独重合体や共重合体をブレンドした組成物などが挙げられるが、これらに限定されるわけではない。上記の単量体成分以外にも、例えば、ビニルアルコール、無水マレイン酸などを共重合、グラフト重合しても構わないが、これらに限定されるわけではない。医療用生地の基材としてはエチレンを単量体成分として用いたポリエチレンおよび/またはプロピレンを単量体成分として用いたポリプロピレンが好ましい。特に耐熱性、透気性、空孔率などの観点からプロピレンを単量体成分として用いたポリプロピレンが好ましく、主成分であることが好ましい。本発明において「主成分」とは、特定の成分が全成分中に占める割合が50質量%以上であることを意味し、より好ましくは80質量%以上、さらに好ましくは90質量%以上、最も好ましくは95質量%以上であることを意味する。
 多孔性フィルム中に貫通孔を形成する方法としては、湿式法、乾式法どちらでも構わない。
 湿式法とは、溶媒を用いて空隙を形成する方法である。具体的には、ポリオレフィン樹脂をマトリックス樹脂とし、シート化後に抽出する被抽出物を添加、混合し、シート化し、二軸延伸後もしくは延伸前に被抽出物の良溶媒を用いて被抽出物のみを抽出することで、マトリックス樹脂中に空隙を生成せしめる方法が挙げられ、種々の提案がなされている。
 乾式法とは、製膜後の延伸時に空隙を形成する方法であり、具体的には、溶融押出時に低温押出、高ドラフト比を採用することなどにより、シート化した延伸前のフィルム中のラメラ構造を制御し、これを一軸延伸することでラメラ界面での開裂を発生させ、空隙を形成する方法(所謂、ラメラ延伸法)が提案されている。これ以外にも、無機粒子またはマトリックス樹脂であるポリプロピレンなどに非相溶な樹脂を粒子として多量に添加し、シートを形成して延伸することにより粒子とポリプロピレン樹脂界面で開裂を発生させ、空隙を形成する方法も提案されている。さらに上記の他に、ポリプロピレンの結晶多形であるα型結晶(α晶)とβ型結晶(β晶)の結晶密度の差と結晶転移を利用してフィルム中に空隙を形成させる、所謂β晶法と呼ばれる方法の提案も数多くなされている。
 β晶法を用いてフィルムに貫通孔を形成するためには、多孔性フィルムのβ晶形成能が40%以上であることが好ましい。β晶形成能が40%未満ではフィルム製造時にβ晶量が少ないためにα晶への転移を利用してフィルム中に形成される空隙数が少なくなり、その結果、透過性の低いフィルムしか得られない場合がある。かかる観点から、β晶形成能は、65%以上であることがより好ましく、70%以上であることがさらに好ましい。一方、β晶形成能の上限は特に限定されるものではないが、99.9%を超えるようにするのは、後述するβ晶核剤を多量に添加したり、使用するポリプロピレン樹脂の立体規則性を極めて高くしたりする必要があり、製膜安定性が低下するなど工業的な実用価値が低い。かかる工業的な観点からβ晶形成能は99.9%以下が好ましく、95%以下がより好ましい。
 β晶形成能を40%以上に制御するためには、アイソタクチックインデックスの高いポリプロピレン樹脂を使用したり、β晶核剤と呼ばれる、ポリプロピレン樹脂中に添加することでβ晶を選択的に形成させる結晶化核剤を添加剤として用いたりすることが好ましい。β晶核剤としては、たとえば、1,2-ヒドロキシステアリン酸カルシウム、コハク酸マグネシウムなどのカルボン酸のアルカリあるいはアルカリ土類金属塩、N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミドに代表されるアミド系化合物、3,9-ビス[4-(N-シクロヘキシルカルバモイル)フェニル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンなどのテトラオキサスピロ化合物、ベンゼンスルホン酸ナトリウム、ナフタレンスルホン酸ナトリウムなどの芳香族スルホン酸化合物、イミドカルボン酸誘導体、フタロシアンニン系顔料、キナクリドン系顔料を好ましく挙げることができる。特に特開平5-310665号公報に開示されているアミド系化合物を好ましく用いることができる。β晶核剤の添加量としては、ポリプロピレン樹脂全体を基準とした場合に、0.05質量%以上であることが好ましく、0.1質量%以上であればより好ましい。0.05質量%未満では、β晶の形成が不十分となり、多孔性フィルムの透気性が低下する場合がある。一方、β晶核剤の添加量は、ポリプロピレン樹脂全体を基準とした場合に、0.5質量%を超えると、粗大ボイドを形成し、有機溶媒塗布、乾燥時の物性変化が大きくなる場合があることから、0.5質量%以下であることが好ましく、0.3質量%以下であることがより好ましい。
 本発明の多孔性フィルムを構成するポリプロピレン樹脂は、メルトフローレート(以下、MFRと表記する、測定条件は230℃、2.16kg)が2~30g/10分の範囲であることが好ましく、さらにアイソタクチックポリプロピレン樹脂であることが好ましい。MFRが2g/10分未満であると、樹脂の溶融粘度が高くなり高精度濾過が困難となり、フィルムの品位が低下する場合がある。かかる観点から、MFRは、3g/10分以上であることがより好ましい。MFRが30g/10分を超えると、分子量が低くなりすぎるため、延伸時のフィルム破れが起こりやすくなり、生産性が低下する場合がある。かかる観点から、MFRは、20g/10分以下であることがより好ましい。
 また、アイソタクチックポリプロピレン樹脂を用いる場合、アイソタクチックインデックスは90%以上であることが好ましく、95%以上であることがより好ましい。また、上限については、99.9%以下であることが好ましく、99%以下であることがより好ましい。アイソタクチックインデックスが90%未満であると、樹脂の結晶性が低く、高い透気性を達成するのが困難な場合がある。
 本発明でポリプロピレン樹脂を用いる場合、ホモポリプロピレン樹脂を用いることができるのはもちろんのこと、製膜工程での安定性や造膜性、物性の均一性の観点から、ポリプロピレンにエチレン成分やブテン、ヘキセン、オクテンなどのα-オレフィン成分を5質量%以下、より好ましくは2.5質量%以下の範囲で共重合した樹脂を用いることもできる。なお、ポリプロピレンへのコモノマー(共重合成分)の導入形態としては、ランダム共重合、ブロック共重合のいずれでも構わない。
 また、上記したポリプロピレン樹脂は、MFRが70g/10分以上、好ましくは100g/10分以上、さらに好ましくは500g/10分以上の高MFRアイソタクチックポリプロピレンを添加することが透湿性向上の点で好ましい。通常、MFRが70g/10分以上の高MFRアイソタクチックポリプロピレンは延伸性が悪く、強度の低下を招くために、フィルムの分野では使用されてこなかった。しかしながら、ポリプロピレン樹脂全体を100質量%としたときに、高MFRアイソタクチックポリプロピレンを0.1~20質量%含有することで、少量添加した高MFRアイソタクチックポリプロピレンが、結晶界面の分子鎖末端濃度を高め、延伸において結晶界面での孔形成を促進させる、すなわち開孔助剤としてはたらくことで均一な開孔が起こり、バリア性に優れていながら、透湿性にも優れる、相反する特性の両立を図ることができると考えられる。かかる観点から、ポリプロピレン樹脂全体を100質量%としたときに、高MFRアイソタクチックポリプロピレンを、好ましくは1質量%以上、さらに好ましくは2質量%以上含有させることが好ましく、上限については延伸性および透湿度、バリア性、突刺強度の特性バランス両立の観点から10質量%以下とすることがより好ましく、5質量%以下とすることがさらに好ましい。
 本発明の多孔性フィルムを形成するポリプロピレン樹脂には、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤、光安定剤、中和剤、帯電防止剤や有機粒子からなる滑剤、さらにはブロッキング防止剤や充填剤、非相溶性ポリマーなどの各種添加剤を含有させてもよい。特に、ポリプロピレン樹脂の熱履歴による酸化劣化を抑制する目的で、酸化防止剤を添加することが好ましいが、ポリプロピレン樹脂100質量部に対して酸化防止剤添加量は2質量部以下とすることが好ましく、より好ましくは1質量部以下、さらに好ましくは0.5質量部以下である。ただし、無機粒子は、脱落する場合があり、医療作業時に悪影響を及ぼす可能性があることから添加しないほうが好ましい。
 本発明の多孔性フィルムは、透湿性の評価尺度である透湿度が150g/m・h以上であることが好ましい。透湿度が150g/m・h未満では、本発明の多孔性フィルムを医療用生地の基材とした医療用防護服を着用した時、蒸れ感を強く感じ、着衣快適性が低い場合がある。バリア性および突刺強度との両立の観点から、透湿度の上限は現実的には2,000g/m・hとなる。着衣快適性の観点から、200~2,000g/m・hが好ましく、300~2,000g/m・hがより好ましく、350~2,000g/m・hがさらに好ましい。なお、透湿度はJIS L 1099:2012に記載のA-1法で評価を行う。透湿度は、原料中のβ晶核剤の添加量、結晶化温度を調整すること、原料中に含まれる高分子量アイソタクチックポリプロピレンの含有量を調整することで制御することができる。例えば、原料中のβ晶核剤の含有率を0.05~0.5質量%の範囲内でより高くしたり、結晶化温度を高くしたり、原料中の高MFRアイソタクチックポリプロピレンの含有率を0.1~20質量%の範囲内でより高くすることで透湿度を増大せしめることができる。
 本発明の多孔性フィルムは、突刺強度が100N/mm以上であることが好ましい。突刺強度が100N/mm未満では、本発明の多孔性フィルムを医療用生地の基材とした場合、縫合の際に加工性が低下したり、本発明の多孔性フィルムを医療用生地の基材とした医療用防護服の場合、手術時などの現場での作業時に多孔性フィルムが破れて多孔性フィルムのバリア性が低下し、防護服としてのバリア性が低下する場合がある。バリア性および透湿度との両立の観点から、突刺強度の上限は現実的には1,000N/mmとなる。加工性および現場での作業性の観点から、150~1000N/mmが好ましく、200~1000N/mmがより好ましい。なお、突刺強度は厚み1mmあたり突刺強度で算出を行う。突刺強度は、キャストドラムの温度、長手方向の延伸倍率と温度、横延伸速度と倍率、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を調整することで制御することができる。例えば、長手方向の延伸温度を90~140℃の範囲内でより高温にすることで高強度化することができ、長手方向の延伸倍率を3~7倍の範囲内でより高倍にしたり、横延伸速度を500~10,000%/分の範囲内でより早くしたり、横延伸倍率を4~15倍の範囲内でより高倍にしたり、熱処理工程での温度を140~170℃の範囲内でより高温にしたり、リラックスゾーンでの弛緩率を5~35%の範囲内でより高くすることで突刺強度を高くすることができる。
 本発明の多孔性フィルムは、血液バリア性がクラス4以上であることが好ましい。血液バリア性がクラス4未満では、本発明の多孔性フィルムを医療用生地の基材とした医療用防護服のバリア性が不十分となり、手術によっては血液が透過する場合がある。バリア性の観点から、血液バリア性はクラス5以上が好ましく、クラス6がより好ましい。なお、血液バリア性はJIS T 8060:2007に記載の手順Dに基づいて評価を行う。血液バリア性は、キャストドラムの温度、長手方向の延伸倍率と温度、横延伸速度と倍率、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を調整することで制御することができる。例えば、長手方向の延伸温度を90~140℃の範囲内でより高温にしたり、長手方向の延伸倍率を3~7倍の範囲内でより高倍にしたり、横延伸速度を500~10,000%/分の範囲内でより速くしたり、横延伸倍率を4~15倍の範囲内でより高倍にしたり、熱処理工程での温度を140~170℃の範囲内でより高温にしたり、リラックスゾーンでの弛緩率を5~35%の範囲内でより高くすることで血液バリア性を高くすることができる。
 本発明の多孔性フィルムは、ウィルスバリア性がクラス3以上であることが好ましい。ウィルスバリア性がクラス3未満では、本発明の多孔性フィルムを医療用生地の基材とした医療用防護服のバリア性が不十分となり、手術によっては菌やウイルスが透過する場合がある。バリア性の観点から、ウィルスバリア性はクラス4以上が好ましく、クラス5以上がより好ましく、クラス6がさらに好ましい。なお、ウィルスバリア性はJIS T 8061:2010に記載の手順D1に基づいて評価を行う。ウィルスバリア性は、キャストドラムの温度、長手方向の延伸倍率と温度、横延伸速度と倍率、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を調整することで制御することができる。例えば、長手方向の延伸温度を90~140℃の範囲内でより高温にしたり、長手方向の延伸倍率を3~7倍の範囲内でより高倍にしたり、横延伸速度を500~10,000%/分の範囲内でより速くしたり、横延伸倍率を4~15倍の範囲内でより高倍にしたり、熱処理工程での温度を140~170℃の範囲内でより高温にしたり、リラックスゾーンでの弛緩率を5~35%の範囲内でより高くすることでウィルスバリア性を高くすることができる。
 透湿度、バリア性、突刺強度の特性バランスを両立させ、本発明の多孔性フィルムを得る方法としては、原料中のβ晶核剤の添加量、結晶化温度を調整すること、原料中の高MFRアイソタクチックポリプロピレンの添加量、キャストドラムの温度、長手方向の延伸倍率と温度、横延伸速度と倍率、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率を後述する範囲内とすることにより制御することができる。特にキャストドラムの温度、長手方向の延伸倍率と温度、横延伸速度と倍率、熱処理工程での温度と時間、およびリラックスゾーンでの弛緩率といったプロセス条件のみを調整した場合には、バリア性と強度を高くすることができるが、透湿度が不十分となる。そこで、原料中のβ晶核剤の添加量および結晶化温度を特定の範囲とし、原料中に高MFRアイソタクチックポリプロピレンを特定量含有せしめることで、初めて透湿度、バリア性、突刺強度の特性バランスを両立させることができたものである。
 本発明の多孔性フィルムは、130℃で1時間処理後の面積熱収縮率が10%以下であることが好ましい。医療用防護服ではオートクレーブ滅菌処理を行う場合があり、オートクレーブ滅菌処理は通常、2気圧の飽和水蒸気によって温度を121℃に上昇させ、20分間処理を行うことから130℃で1時間処理後の面積熱収縮率が10%より大きい場合、多孔性フィルムが収縮し透湿性が低下し、着衣快適性が低くなる場合がある。130℃で1時間処理後の面積熱収縮率は0~10%がより好ましく、0~7%がより好ましく、0~5%がさらに好ましい。
 本発明の多孔性フィルムは、フィルム厚みが5μm以上であることが好ましい。厚みが5μm未満では加工時または使用時にフィルムが破断する場合がある。フィルム厚みは10μm以上であればより好ましく、上限については500μm以下であることが好ましい。
 以下に本発明の多孔性フィルムの製造方法を具体的な一例をもとに説明する。なお、本発明の多孔性フィルムの製造方法はこれに限定されるものではない。
 使用する樹脂原料の混合方法としては、ドライブレンド、メルトブレンドなどあるが、本発明では使用するポリプロピレン樹脂の粘度が大きく異なる場合があるため、ドライブレンドで原料の混合を行うとシート化した際に年度の異なる樹脂が不均一に分散してしまい、特性が不十分になる場合があることから、メルトブレンドを採用するのが好ましい。メルトブレンドにて使用する押出機は1軸押出機、2軸押出機いずれでも良いが、高せん断にて混合できることと、混合比率が一定に制御しやすく、原料の均一性、樹脂劣化抑制、生産性の観点から2軸押出機で行うことが好ましい。
 ポリプロピレン樹脂として、MFR4g/10分の市販のホモポリプロピレン樹脂96.5質量部、MFR1,000g/10分の高MFRポリプロピレン樹脂3質量部、β晶核剤としてN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド0.3質量部、酸化防止剤0.2質量部がこの比率で混合されるように計量ホッパーから二軸押出機に原料供給して溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットして、ポリプロピレン原料(a)を準備する。この際、溶融温度は280~310℃とすることが好ましい。
 次に、原料(a)を単軸押出機に供給し、200~230℃にて溶融押出を行う。そして、ポリマー管の途中に設置したフィルターにて異物や変性ポリマーなどを除去した後、Tダイよりキャストドラム上に吐出し、未延伸のキャストシートを得る。キャストドラムは、表面温度が105~130℃であることが、キャストシートのβ晶分率を高く制御する観点から好ましい。この際、特にシートの端部の成形が、後の延伸性に影響するので、端部にスポットエアーを吹き付けてドラムに密着させることが好ましい。また、シート全体のドラム上への密着状態から、必要に応じて全面にエアナイフを用いて空気を吹き付けてもよい。
 次に、得られたキャストシートを二軸配向させ、フィルム中に空孔を形成する。二軸配向させる方法としては、フィルム長手方向に延伸後幅方向に延伸、あるいは幅方向に延伸後長手方向に延伸する逐次二軸延伸法、またはフィルムの長手方向と幅方向をほぼ同時に延伸していく同時二軸延伸法などを用いることができるが、透湿性、突刺強度、バリア性の観点で逐次二軸延伸法を採用することが好ましく、特に、長手方向に延伸後、幅方向に延伸することが好ましい。
 具体的な延伸条件としては、まず、キャストシートを長手方向に延伸する温度に制御する。温度制御の方法は、温度制御された回転ロールを用いる方法、熱風オーブンを使用する方法などを採用することができる。長手方向の延伸温度としては、90~140℃であることが好ましい。長手方向の延伸温度が90℃未満では、フィルムが破断したり、突刺強度が低下したり、バリア性が低下する場合がある。長手方向の延伸温度が140℃を超えると、透湿性が低下する場合がある。より好ましい長手方向の延伸温度は110~135℃、特に好ましい長手方向の延伸温度は125~130℃である。長手方向の延伸倍率としては、3~7倍であることが好ましい。長手方向の延伸倍率が3倍未満では透湿性が低下する場合がある。延伸倍率を高くするほど透湿性は向上委するが、長手方向の延伸倍率が7倍を超えて延伸すると、フィルムが破断したり、突刺強度が低下したり、バリア性が低下する場合がある。透湿性、突刺強度、バリア性の両立の観点から、延伸倍率は4.5~6倍であることがより好ましい。なお、このときの縦延伸速度としては、200,000%/分(2001倍/分)以上であることが好ましく、250,000%/分(2501倍/分)以上であるとより好ましく、300,000%/分(3001倍/分)以上であるとさらに好ましい。延伸速度を早くすることで二軸延伸後の孔構造が3次元方向にネットワークを形成し、透湿性とバリア性を両立させやすくなるが、延伸速度を早くし過ぎると縦延伸時にフィルム破れが起こりやすくなってしい、透湿性が悪化する場合がある。
 次に、テンター式延伸機にフィルム端部を把持させて導入し幅方向の延伸を行う。幅方向の延伸温度は、好ましくは130~155℃である。幅方向の延伸温度が130℃未満ではフィルムが破断したり、突刺強度が低下したり、バリア性が低下する場合がある。また、幅方向の延伸温度が155℃を超えると透湿性が低下する場合がある。透湿性、突刺強度、バリア性の両立の観点から、より好ましくい幅方向の延伸温度は140~155℃である。幅方向の延伸倍率は4~15倍であることが好ましい。幅方向の延伸倍率が4倍未満であると、透湿性が低下する場合がある。バリア性、突刺強度の観点から、延伸倍率は高倍が好ましいが、幅方向の延伸倍率が15倍を超えると、フィルムが破断し生産性が低下したり、透湿性が低下する場合がある。透湿性、突刺強度、バリア性の両立の観点から、延伸倍率はより好ましくは6~12倍、さらに好ましくは8~11倍である。なお、このときの横延伸速度としては、500~10,000%/分(6~101倍/分)で行うことが好ましく、1,500~7,000%/分(16~71倍/分)であればより好ましい。面積倍率(縦延伸倍率×横延伸倍率)としては、好ましくは30~90倍である。
 横延伸に続いて、テンター内で熱処理工程を行う。ここで熱処理工程は、横延伸後の幅のまま熱処理を行い、さらにテンターの幅を狭めてフィルムを弛緩させながら熱処理を行い、弛緩後の幅のまま熱処理を行うことが、透湿性、突刺強度、バリア性の制御の観点から好ましい。
 熱固定温度は、140~170℃であることが好ましい。熱固定温度が140℃未満であると、突刺強度が低下したり、バリア性が低下する場合がある。熱固定温度が170℃を超えると、多孔性フィルム表面が溶融し透湿性が低下したり、さらに多孔性フィルムが幅方向に収縮し、熱処理工程で破断してしまい、生産性が低下する場合がある。透湿性、突刺強度、バリア性の両立の観点から150~168℃であればより好ましい。
 熱処理時間は、突刺強度、バリア性と生産性の両立の観点から0.1秒以上10秒以下であることが好ましく、3秒以上8秒以下であるとより好ましい。
 本発明における弛緩率は5~35%であることが好ましい。弛緩率が5%未満であると突刺強度が低下したり、バリア性が低下したり、幅方向の幅方向の熱収縮率が大きくなる場合がある。弛緩率が35%を超えると透湿性が低下したり物性ムラが大きくなる場合がある。透湿性、突刺強度、バリア性の両立の観点から、10~25%であるとより好ましく、15~25%であるとさらに好ましい。
 弛緩温度は、155~170℃であることが好ましい。弛緩温度が155℃未満であると、弛緩の為の収縮応力が低くなり、上述した高い弛緩率を達成できなかったり、突刺強度が低下したり、バリア性が低下する場合がある。弛緩温度が170℃を超えると、高温により孔周辺のポリマーが溶けて透湿性が低下する場合がある。透湿性、突刺強度、バリア性の観点から、160~168℃であるとより好ましい。
 弛緩速度は、100~1,000%/分であることが好ましい。弛緩速度が100%/分未満であると、製膜速度を遅くしたり、テンター長さを長くする必要があり、生産性が低い場合がある。1,000%/分を超えると、テンターのレール幅が縮む速度よりフィルムが収縮する速度が遅くなり、テンター内でフィルムがばたついて破れたり、幅方向のムラが大きくなったり平面性低下を生じる場合がある。弛緩速度は、150~500%/分であることがより好ましい。
 弛緩後の熱固定温度は、155~170℃であることが好ましい。弛緩後の熱固定温度が155℃未満であると、弛緩の為の収縮応力が低くなり、上述した高い弛緩率を達成できなかったり、突刺強度が低下したり、バリア性が低下する場合がある。弛緩後の熱固定温度が170℃を超えると、高温により孔周辺のポリマーが溶けて透湿性が低下する場合がある。透湿性、突刺強度、バリア性の観点から、弛緩後の熱固定温度は160~168℃であるとより好ましい。熱処理工程後のフィルムは、テンターのクリップで把持した耳部をスリットして除去し、ワインダーでコアに巻き取って製品とする。
 本発明の多孔性フィルムは、生産性に優れ、血液バリア性、ウィルスバリア性などのバリア性に優れ、着用した際の蒸れ感を軽減し着衣快適性に優れている。そのため、医療用生地の基材や不織布との複合体として好適に用いることができる。また、血液バリア性、ウィルスバリア性などのバリア性に優れ、着用した際の蒸れ感を軽減し着衣快適性に優れている。そのため前記医療用生地、基材、複合体を用いた防護服は、医療用防護服、特に手術衣として好適に用いることができる。
 <防水・透湿材料>
 本発明の防水・透湿材料は、少なくとも繊維層と前記の多孔性フィルムとを積層した防水・透湿材料であって、前記防水・透湿材料は前記防水・透湿材料を構成する各層が隣り合う層間で接着されてなり、前記防水・透湿材料の単位面積あたり、その50%以下の面積において、隣り合う層が接着されている。本発明において、少なくとも繊維層と多孔性フィルムとを積層したとは、多孔性フィルムと繊維層とが合わせて2層以上となっていることをいう。なお、積層構成については後述する。
 本発明の防水・透湿材料は、(a)多孔性フィルムによる優れたバリア性、(b)多孔性フィルム自身の優れた突刺強度ならびに繊維層の優れた摩耗強さ等による優れたバリア保持性、および、(c)多孔性フィルム自身の優れた透湿性ならびに防水・透湿材料が特定の接着面積率を採ることによる優れた透湿性、の全てを備えるもので、医療用衣服や防護服に用いるのに特に適したものである。
 <防水・透湿材料に用いる多孔性フィルム>
 本発明の防水・透湿材料における多孔性フィルムは前述のものが用いられる。
 <防水・透湿材料に用いる繊維層>
 続いて、本発明の防水・透湿材料における繊維層について述べる。
 本発明の防水・透湿材料に用いられる繊維層は、防水・透湿材料に十分な引張ならびに摩耗強さ、および適切な手触りなどの風合いならびに柔らかさを与えるものである。繊維層として用いられる布帛形状としては、織物、編物、不織布、紙などの繊維構造体が挙げられる。なかでも、コスト、引張強さや摩耗強さの観点から不織布が好ましい。不織布としては、湿式不織布やレジンボンド式乾式不織布、サーマルボンド式乾式不織布、スパンボンド式乾式不織布、ニードルパンチ式乾式不織布、ウォータジェットパンチ式乾式不織紙布またはフラッシュ紡糸式乾式不織布等のほか、目付や厚みが均一にできる抄紙法により製造された不織布も好ましく使用できる。なかでも、スパンボンド式乾式不織布が、コスト、引張強さや摩耗強さの面から好ましい。
 繊維層の素材としては、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリ乳酸等のポリエステル、ポリカーボネート、ポリスチレン、ポリフェニレンサルファイト、フッ素系樹脂、およびこれらの混合物などを挙げることができる。これらの中でも、ポリオレフィンまたはポリ乳酸を主成分とするものは、繊維層をエレクトレット加工する場合においてエレクトレット性能の点から好ましい。さらにポリオレフィンでは、ポリプロピレンを主成分とするものが一層好ましく、前述の多孔性フィルムと同種の樹脂であることが、貼り合わせ時の接着性の観点から好ましい。ここで同種の樹脂であるとは、主成分を構成する単量体の組成が同じことを意味する。また、繊維層と多孔性フィルムとの接着力の向上の観点から、繊維層を構成する素材の融点の下限は、135℃以上であることが好ましく、150℃以上であることがより好ましく、155℃以上であることがさらに好ましい。一方、繊維層を構成する素材の融点の上限は、175℃以下であることが好ましく、170℃以下であることがより好ましい。
 繊維層の引張強さは、防水・透湿材料の引張強さを優れたものとする観点から、5N/mm以上が好ましい。さらに好ましくは、10N/mm以上、さらに好ましくは15N/mm以上である。一方、引張強さの上限は、防水・透湿材料の適度な柔らかさを担保する観点から200N/mm以下が好ましい。なお、引張強さは厚み1mmあたりの引張強さとして算出を行う。
 繊維層の破裂強さは、防水・透湿材料の破裂強さを優れたものとする観点から、300kPa以上、好ましくは400kpa以上、さらに好ましくは500kPa以上が好ましい、一方、破裂強さの上限は、2000kPa以下、1500kPa以下であることが好ましい。破裂強さが2000kPa以下であると、防水・透湿材料とした際の防水・透湿材料の柔軟性、軽量性を優れたものとすることができる。
 繊維層の摩耗強さは、防水・透湿材料の摩耗強さを優れたものとする観点から、3級以上が好ましい。さらに好ましくは、4級以上である。
 これらの条件を満たすとすると、好ましい繊維層の厚みの下限は、0.01mm以上、さらに好ましくは、0.1mm以上、一方、厚みの上限は5mm以下、好ましくは1mm以下である。
 また、好ましい繊維層の目付の下限は10g/m以上、好ましくは20g/m以上、一方、目付の上限は200g/m以下、好ましくは、100g/m以下の範囲となる。
 本発明に用いる繊維層は、表面に制電加工などの機能加工がされていると好ましい。制電加工は、導電性ポリマーを表面に加工する方法や、吸湿性ポリマーを表面に加工する方法が好ましい。
 この際、積層する多孔性フィルムに接触する反対の面に加工するのがよい。制電加工部分が多孔性フィルムと接触すると、繊維層のエレクレット性能が低下する場合がある。
 <防水・透湿材料の諸特性>
 本発明の防水・透湿材料の透湿性は、優れた着用性を担保する観点から、その評価尺度である透湿度が150g/m・h以上であり、好ましくは200g/m・h以上、さらに好ましくは300g/m・h以上である。一方、上限については特に限定はされないが、バリア性をより優れたものとする観点から1000g/m・h以下が好ましい。なお、透湿度はJIS L 1099:2012に記載のA-1法で評価を行う。
 本発明の防水・透湿材料の引張強さは、着用時に作業する際の実用性の観点から、5N/50mm以上が好ましい。より好ましくは10N/50mm以上、さらに好ましくは15N/50mm以上である。一方、上限については特に限定はされないが、防水・透湿材料の適度な柔らかさを担保する観点から200N/50mm以下が好ましい。
 本発明の防水・透湿材料の破裂強さは、着用時の外部応力による破れをより抑制する観点から、300kPa以上が好ましく、400kpa以上がより好ましく、500kPa以上がさらに好ましい、一方、上限については特に限定はされないが、2000kPa以下が好ましく、1500kPaがより好ましい。破裂強さが2000kPa以下であると、防水・透湿材料の柔軟性、軽量性により優れたものとなる。
 本発明の防水・透湿材料の摩耗強さは、着用時の外部応力による表面の耐擦過性をより優れたものとする観点から、防水・透湿材料の表面を摩耗させたときの外観評価が3級以上であることが好ましい。さらに好ましくは、4級以上である。
 本発明の防水・透湿材料の耐水圧は、着用時に外部からの水の浸入を防ぐ観点から、30kPa以上であることが好ましく、50kPa以上であることがより好ましく、65kPa以上であることがさらに好ましい。一方、耐水圧の上限は300kPa以下が好ましい。耐水圧が300kPa以下であると、多孔性フィルムの貫通孔を適当数設けることができ、防水・透湿材料の透湿性をより優れたものとすることができる。また、防水・透湿材料にさらに積層する不織布等の枚数を変更することでも、防水・透湿材料の耐水圧を調整することができる。
 本発明の防水・透湿材料の血液バリア性は、クラス4以上であることが好ましい。血液バリア性がクラス4以上であると、防水・透湿材料を医療用衣服または防護服とした際にそれらの血液に対するバリア性がより優れたものとなる。5以上がより好ましく、クラス6がさらに好ましい。
 本発明の防水・透湿材料のウィルスバリア性は、クラス3以上であることが好ましい。ウィルスバリア性がクラス3以上であると、防水・透湿材料を医療用衣服または防護服とした際にそれらのウィルスに対するバリア性がより優れたものとなる。クラス4以上がより好ましく、クラス5以上がさらに好ましく、クラス6が特に好ましい。
 本発明の防水・透湿材料は、目付が15~250g/mであることが好ましい。目付が15g/m未満の場合、引張強さ、破裂強さ、摩耗強さ、耐水圧が不十分になる場合がある。かかる観点から、目付は、20g/m以上がより好ましく、30g/m以上がさらに好ましい。一方、目付が250g/mを超える場合は、服にした場合、服が重くなり、着心地が悪くなる場合がある。かかる観点から、目付は、150g/m以下がより好ましく、100g/m以下がさらに好ましい。
 本発明の防水・透湿材料が有する繊維層と多孔性フィルムにおいては、繊維層を構成する素材と多孔性フィルムを構成する素材の融点差が、40℃以下であることが好ましい。より好ましくは、30℃以下であり、さらに好ましくは、20℃以下である。積層する繊維層と多孔性フィルムを構成する素材の融点差を小さくすることで、接着部分の接着強力が高くなる。また、多孔性フィルムを構成する素材の融点は繊維層を構成する素材の融点よりも高いことが好ましい。そのようにすることで、積層時の熱処理により多孔性フィルムの空隙が熱によってダメージを受けるのを抑制でき、防水・透湿材料の透湿性がより向上する効果が期待できる。繊維層を構成する素材と多孔性フィルムを構成する素材の融点は、詳細は後述するが、(株)島津製作所製示差走査型熱量計DSC-60型を用いて測定することができる。繊維層および多孔性フィルムを構成する素材の融点の測定は、積層前の繊維層および多孔性フィルムについて測定しても良いし、繊維層および多孔性フィルムの積層体から、繊維層および多孔性フィルムを剥がし、積層工程における熱がかかっていない部分、すなわち接着されていない部分を単離して、それぞれの層を構成する素材の融点を測定しても良い。
 積層の構成の例としては次の(i)~(v)が挙げられる。
(i)衣服の外側となる面に多孔性フィルム、衣服の内側となる面に繊維層を持つ2層構成
(ii)衣服の外側となる面に繊維層、衣服の内側となる面に多孔性フィルムを持つ2層構成
(iii)繊維層、多孔性フィルムおよび繊維層の順となり、多孔性フィルムを挟み込む3層構成
(iv)摩耗強さの高い繊維層と引張強さおよび破裂強さの高い繊維層との2層を重ねあわせ、上記の2つの繊維層を重ね合わせた繊維積層体が多孔性フィルムを挟み込む5層構成
(v)繊維層、特性の異なる多孔性フィルムを2層、さらに繊維層をこの順に重ねた4層構成
 中でも、(iii)繊維層、多孔性フィルムおよび繊維層の順となり、多孔性フィルムを挟み込む3層構成が好ましい。上記の3層構成とすることで、多孔性フィルムを繊維層により挟み込むことで、多孔性フィルムが傷つきバリア性が失われにくくする効果を有する。
 また、(i)衣服の外側となる面に多孔性フィルム、衣服の内側となる面に繊維層を持つ2層構成も好ましい。上記の2層構成とすることで、防水・透湿材料の所望の引張強さおよび破裂強さを担保しつつ、防水・透湿材料の透湿性および軽量性をより優れたものとすることができる。
 本発明の防水・透湿材料は、防水・透湿材料を構成する各層が隣り合う層間で接着されてなる。また、本発明の防水・透湿材料は、防水・透湿材料の単位面積あたり、その50%以下の面積において、隣り合う層が接着されていることが好ましい。防水・透湿材料の単位面積あたり、その50%を超えて、隣り合う層が接着されていると、防水・透湿材料の透湿性が著しく低下し、その防水・透湿材料を医療用衣服や防護服にした際にも良好な着用性が得られない場合がある。上記の観点から、上限は、40%以下が好ましく、30%以下がより好ましく、15%以下が特に好ましい。一方、下限については、防水・透湿材料の層間の接着力、引張強さ、破裂強さおよび耐水圧を担保する観点から、3%以上が好ましく、5%以上はより好ましい。なお、製造方法については後述するが、上述した防水・透湿材料の単位面積あたりの接着面積の比率(以下、接着面積比率と記す)は、超音波接着加工の場合にはエンボスロールのパターンの設計、柄高さが1mm以上の熱エンボスロールを用いた熱接着加工の場合には熱エンボスロールのパターンの設計により調整することができる。上記の各エンボスロールのパターンは、特に限定されないが、ピンポイント柄、クロス柄、格子柄、波柄、斜線柄などの柄を用いることができる。多孔性フィルムと繊維層との接着力および縫製等を考慮すると、左右対称が好ましく、ピンポイント柄、クロス柄、格子柄、波柄または網目柄などが好ましい。
 また、防水・透湿材料の接着部分は、繊維層を構成する繊維の一部または全部が溶融され膜状となっていることが好ましい。膜状部分の厚みは、0.01~0.5mmであることが好ましい。また、接着部分一つの面積は、0.001mm~100mmであることが好ましい。これらの厚み、面積は、接着部分の断面を切断し、SEM写真にて断面の面積を拡大撮影し、画像処理により求めることができる。
<防水・透湿材料の製造方法>
 本発明の防水・透湿材料の製造方法は、防水・透湿材料を構成する隣り合う層を重ね合わせる工程、重ね合わせた隣り合う層の接着予定部位に熱処理を施す工程を有する製造方法である。
 防水・透湿材料を構成する隣り合う層を重ね合わせる工程において、防水・透湿材料を構成する層とは、前述した多孔性フィルムと繊維層とである。そして、防水・透湿材料を構成する隣り合う層を重ね合わせるとは、これらを隣り合う層として他の層を介さずに重ね合わせることを言う。なお、積層の構成としては、前述の(i)~(v)が好ましい例として挙げられる。
 重ね合わせた隣り合う層の接着予定部位に熱処理を施す工程は、繊維層や多孔性フィルムの接着を所望する部位に熱接着加工を加えて接着せしめる工程であり、詳細を以下に記す。
 繊維層と多孔性フィルムなど、本発明の防水・透湿材料を構成する層の層間を接着する方法として、繊維層と多孔性フィルムの接着を例に説明する。繊維層や多孔性フィルムの接着を所望する部位以外にも熱がかかり、接着を所望する部位以外の部位での接着を抑制する観点から、超音波接着加工や、柄高さが1mm以上でかつ表面にフッ素樹脂などの樹脂をコーティングした熱エンボスロールを用いた熱接着加工を用いることが好ましい。
 超音波接着加工は、超音波振動するブレードと接着材料を特定のパターンを有するエンボスロールの間に0.01MPa~1MPaの圧力で挟み込み、ブレードと呼ばれる振動子を超音波振動1~5万Hzで振動させ、ブレードと接触するパターン部分を溶融接着させる方法が例示される。ブレードは、おもに摩擦に強いチタン製が用いられるが、その他、アルミ、ステンレス合金などが用いられる。また、ブレード幅は、10~50cm幅のものが用いられる。
 柄高さが1mm以上の熱エンボスロールを用いた熱接着加工は、エンボスパターンの深さが1mm以上の熱エンボスロールを用い、パターン以外には、布帛に熱をかけずに、接着加工を行う。柄高さとは、熱エンボスロールのエンボス柄を構成するエッジの上部と下部との距離をいう。熱エンボスの温度は、60℃以上が好ましく、より好ましくは70℃以上、さらに好ましくは125℃以上である。一方、175℃以下が好ましく、より好ましくは165℃以下、さらに好ましくは155℃以下である。熱エンボスの温度は、多孔性フィルムを構成する素材の融点と、繊維層を構成する素材の融点より30℃低い温度との間であることが好ましく、多孔性フィルムを構成する素材の融点と繊維層を構成する素材の融点との間であることがより好ましい。熱エンボスの温度が、多孔性フィルムを構成する素材の融点と、繊維層を構成する素材の融点より30℃低い温度の場合、多孔性フィルムの熱収縮による影響を受けにくく、多孔性フィルム本来の特性を発揮しやすくなる。また、ニップロールには、硬度が50~90°のシリコンゴムを有するものを用いる。熱エンボスロールとそれを挟み込むニップロールの押し圧力は、0.5MPa以上、好ましくは1MPa以上、一方、10MPa以下、好ましくは5MPa以下である。また、片面(熱エンボスロール)より、熱をかけることにより、ニップロールに材料が取られて加工性が悪くなることを防ぐことが出来る。また、フッ素樹脂などの樹脂を熱エンボスロール表面へコーティングすると、熱エンボスロールと材料との剥離性が良くなるほか、熱エンボスロールのエッジ部分で多孔性フィルムが傷つけられ、バリア性が損なわれることを防ぐことが出来る。また、熱エンボスロールの対極にある受けロールの材質をシリコンロールなどの金属ロールよりも硬度が柔らかい材質を採用することが好ましい。受けロールの材質の硬度を金属よりも柔らかくすることで、多孔性フィルムが熱接着工程により損傷を受けることを抑制することができ、防水・透湿材料のバリア性を向上させることができる。
 上記いずれの接着加工方法も、所望の接着部位以外に、熱がかかるのをより抑制することができるため、熱処理による繊維層および多孔性フィルムへのダメージが少なく、繊維層の溶融や多孔性フィルムに熱がかかることによる防水・透湿材料の収縮などをより抑制することができる。
 本発明の防水・透湿材料は、強度、摩耗強さに優れ、粒子進入を抑制できるので、医療用衣服や防護服に好適に使用することができる。
 本発明の防水・透湿材料は、カバーオール、上下分割されたカッパ、ガウン等の形に縫製することで医療用衣服や防護服として好適に使用することができる。特に、汚染物質の進入を防ぐ上で、カバーオール型の防護服が好ましい。
 各特性は以下の方法により測定、評価を行った。
 (1)β晶形成能
 多孔性フィルム5mgを試料としてアルミニウム製のパンに採取し、示差走査熱量計(セイコー電子工業製RDC220)を用いて測定した。まず、窒素雰囲気下で室温から260℃まで10℃/分で昇温(ファーストラン)し、10分間保持した後、40℃まで10℃/分で冷却する。5分保持後、再度10℃/分で昇温(セカンドラン)した際に観測される融解ピークについて、145~157℃の温度領域にピークが存在する融解をβ晶の融解ピーク、158℃以上にピークが観察される融解をα晶の融解ピークとして、高温側の平坦部を基準に引いたベースラインとピークに囲まれる領域の面積から、それぞれの融解熱量を求め、α晶の融解熱量をΔHα、β晶の融解熱量をΔHβとしたとき、以下の式で計算される値をβ晶形成能とする。なお、融解熱量の校正はインジウムを用いて行った。
 β晶形成能(%) = 〔ΔHβ / (ΔHα + ΔHβ)〕 × 100
 なお、ファーストランで観察される融解ピークから同様にβ晶の存在比率を算出することで、その試料の状態でのβ晶分率を算出することができる。測定は各サンプル2回ずつ行い、その平均値で評価を行った。
 (2)血液バリア性
 JIS T 8060:2007に記載の手順Dに基づき、血液バリア性を測定し、クラス1~6で評価した。
 (3)ウィルスバリア性
 JIS T 8061:2010に記載の手順D1に基づき、ウィルスバリア性を測定し、クラス1~6で評価した。
 (4)透湿度
 JIS L 1099:2012に記載のA-1法(塩化カルシウム法)に基づき、透湿度を測定し、単位:g/m・hで評価した。
 (5)メルトフローレート(MFR)
 ポリプロピレン樹脂のMFRは、JIS K 7210:1995に記載の条件M(230℃、2.16kg)に基づき、測定する。ポリエチレン樹脂は、JIS K 7210:1995に記載の条件D(190℃、2.16kg)に基づき、測定する。
 (6)突刺強度
 万能試験機(島津製作所製オートグラフAG-IS)を用いて、針進入速度を5mm/分とし、それ以外はJIS Z 1707:1997に準じて23℃で測定した。サンプルが破膜したときにフィルムにかかっていた荷重を読み取り、試験前の試料の厚み(mm)で除した値を突刺強度(N/mm)とした。測定は各サンプル5回ずつ行い、その平均値で評価を行った。
 (7)厚み
 多孔性フィルムの厚みは以下の測定方法で評価した。ダイヤルゲージ式厚み計(JIS B 7503:1997、PEACOCK製UPRIGHT DIAL GAUGE(0.001×2mm)、No.25、測定子10mmφ平型、50gf荷重)を用いて、厚み(μm)を測定した。測定は各サンプル10回ずつ行い、その平均値で評価を行った。
 不織布および防水・透湿材料の厚みは以下の測定方法で評価した。JIS L 1913:2010の6.1.1項に記載のA法に基づき測定した。試料から2500mm以上の大きさの試験片を10枚採取し、厚さ測定器の上側円形水平板に0.5kPaの圧力をかけ、0点を調整した。その後、厚さ測定器を用いて,標準状態で試験片に0.5kpaの圧力を10秒間かけて、厚さを 0.01mmまで測定した。試験片10枚の平均値を求めた。
 (8)面積熱収縮率
 多孔性フィルムを長手方向150mm×幅方向150mmの正方形に切り出しサンプルとした。各辺のサンプルの中央部に標線を描き、加熱前の標線間距離L(長手)、L(幅)を測定した。サンプルを紙ではさみ、130℃に加熱した熱風オーブン内に吊り下げて60分間静置し加熱処理を行った。熱処理後、放冷したあと、加熱後の標線間距離L(長手)、L(幅)を測定し、以下の式で計算される値を熱収縮率とした。測定は各サンプルにつき5回実施して平均値を面積熱収縮率として表1に記した。
 面積収縮率(%)= 100-(L(長手)×L(幅))/(L(長手)×L(幅))×100。
 (9)融点(℃)
 (株)島津製作所製示差走査型熱量計DSC-60型を用い、試料2mg、窒素中、昇温速度10℃/分、50~300℃の温度まで昇温させたときの最大融解吸熱ピーク温度を融点(Tm)とした。測定は各サンプル2回ずつ行い、その平均値で評価を行った。
 (10)破裂強さ
 JIS L 1096:1999の8.16.1項に記載のA法に基づき測定した。15cm×15cmの試験片を5枚採取し、ミューレン形破裂試験機を用い、試験片を上にして、しわ及びたるみを生じないように均一な張力を加えてクランプでつかみ圧力を加えてゴム膜が試験片を突き破る強さ及び破断時のゴム膜だけの強さを測り、次の式によって破裂強さを求め、その平均値を算出した。
     B=A-B
      BS :破裂強さ(kPa)
      A :ゴム膜が試験片を突き破る強さ
      B :破断時のゴム膜だけの強さ
 (11)単位面積当たりの質量(目付:g/m
 JIS L 1913:2010の6.2項に基づいて測定した。試料から25cm×25cmの大きさの試験片を5枚採取し、その重さを測定し、平均値を求めた。その平均値を16倍し、単位面積当たりの質量(g/m)とした。
 (12)引張強さ
 JIS L 1913:2010の6.3.1項に基づき測定した。幅50mm 、長さ 300mmに切り出した試験片を、つかみ間隔200mm 、引張速度100mm/分の条件でシート縦方向、横方向とも3個のサンプルについて定速伸長型引張試験機にて引張試験を行い、サンプルが破断するまで引っ張ったときの最大強力を引張強さとし、シート縦方向、横方向それぞれの平均値について算出し、縦方向、横方向の引張強さのうち、低い方を繊維層の引張強さ(N/50mm)とした。
     (13)摩耗強さ
 JIS L 1913:2010の6.6.2項に基づき測定した。直径13cmの円形試験片を5枚採取し、各試験片の中心に直径約6mmの孔を開け、テーバー形摩耗試験機を用い、試験片の表面を上にして荷重2.45N、摩耗輪(CS-10)を用い、約70min-1で100回、回転摩擦し、外観を限度写真(JIS L1913:2010の図14)により級判定した。
     (14)耐水圧
 JIS L 1092:2009の7.1.1項に記載のB法に基づき測定した。試料から約150mm×150mmの試験片を5枚採取し、耐水度試験装置の表側に水があたるよう取り付け、シリンダに水を入れ、ピストンハンドルを回して1分間に100kPaの割合で水圧を加えて、試験片の裏側に3か所から水が出たときまたは防水・透湿材料が破裂した際の水圧(kPa)を測定し、5回の平均値を耐水圧とした。
 (15)着用性
 夏場の外気温を想定した35℃、50%Rhに設定した恒温恒湿室に、被験者がシャツ1枚、作業ズボン1枚の上から作製した化学防護服を着用し入室した。被験者は、胸の中心付近に熱電対をシャツの上から貼り付け、入室後の防護服内の温度を熱電対にて測定した。これを3人の被験者に対して実施した。3人の被験者のデータをそれぞれ比較例101の防護服と比較して、30分後の防護服内の湿度が10%以上低いものをgood、平均湿度差が10%未満のものをbadと評価した。
 (16)接着面積率
 エンボスパターンの柄が十字型や丸型、楕円等のように同一のパターンの場合には、試料サイズ15cm×15cmの試料を、キーエンス製VHX2000を用い、倍率50倍にて撮影し、最大面積計測、しきい値±10の範囲内に設定して解析し、試料の接着面積率を算出した。接着面積率は、5枚の試料について測定し、その平均値を算出した。
 エンボスパターンの柄が左右対称でなはなく、不均一な柄の場合、試料サイズ15cm×15cmの試料を、キーエンス製VHX2000を用い、倍率25倍にて撮影し、自動面積計測~抽出法(輝度)、しきい値-20の設定にて解析し、試料の接着面積率を算出した。接着面積率は、5枚の試料について測定し、その平均値を算出した。
防護服の作製方法
 実施例および比較例の透湿・防水材料を、型紙に合わせて切り出した。切り出した透湿・防水材料の縫製部分をミシンまたは超音波にて縫製し、防護服を作製した。ミシン縫いした箇所には、2cm幅のシームテープを張り付けた。
 以下に実施例に基づいて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
 (実施例1)
 ポリプロピレン樹脂として、MFR=4.0g/10分のプライムポリマー(株)製ホモポリプロピレンを96.5質量部、MFR1,000g/10分のプライムポリマー(株)製ホモポリプロピレンS10CLを3質量部、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、さらに酸化防止剤であるBASF製“IRGANOX”(登録商標)1010、“IRGAFOS”(登録商標)168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、303℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(A)を得た。
 得られたポリプロピレン組成物(A)を単軸の溶融押出機に供給し、220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて117℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、125℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5倍に、延伸速度350,000%/分(3500倍/分)延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、152℃で3秒間予熱後、150℃で9.0倍に、延伸速度3,500%/分(35倍/分)で延伸した。
 続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で3秒間熱処理し、さらに164℃において弛緩率15%でリラックスを行い、弛緩後のクリップ間距離に保ったまま164℃で5秒間熱処理を行った。
 その後、テンタークリップで把持したフィルムの耳部をスリットして除去し、ワインダーで多孔性フィルムをコアに500m巻き取り、厚み20μmの多孔性フィルムを得た。評価結果を表1に示す。
 (実施例2)
 実施例1の延伸工程において125℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5倍に、延伸速度400,000%/分(4000倍/分)で延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、152℃で3秒間予熱後、150℃で9.0倍に、延伸速度4,500%/分(45倍/分)で延伸した以外は実施例1と同じ条件を適用して、厚み20μmの多孔性フィルムを得た。評価結果を表1に示す。
 (実施例3)
 実施例1の押出工程において多孔性フィルムの厚みが250μmになるように押出量を調整した以外は実施例1と同じ条件を適用して、厚み250μmの多孔性フィルムを得た。評価結果を表1に示す。
 (実施例4)
 ポリプロピレン樹脂として、MFR=4.0g/10分のプライムポリマー(株)製ホモポリプロピレンを94.5質量部、MFR1,000g/10分のプライムポリマー(株)製ホモポリプロピレンS10CLを5質量部、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、さらに酸化防止剤であるBASF製“IRGANOX”(登録商標)1010、“IRGAFOS”(登録商標)168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、303℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(B)を得た。
 得られたポリプロピレン組成物(B)を用いた以外は実施例1と同じ条件を適用して、厚み20μmの多孔性フィルムを得た。評価結果を表1に示す。
 (実施例5)
 ポリプロピレン樹脂として、MFR=4.0g/10分のプライムポリマー(株)製ホモポリプロピレンを98.5質量部、MFR1,000g/10分のプライムポリマー(株)製ホモポリプロピレンS10CLを1質量部、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、さらに酸化防止剤であるBASF製“IRGANOX”(登録商標)1010、“IRGAFOS”(登録商標)168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、303℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(C)を得た。
 得られたポリプロピレン組成物(C)を用いた以外は実施例1と同じ条件を適用して、厚み20μmの多孔性フィルムを得た。評価結果を表1に示す。
 (比較例1)
 ポリプロピレン樹脂として、MFR=7.5g/10分の住友化学(株)製ホモポリプロピレンFLX80E4を99.5質量部、β晶核剤であるN,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキシアミド(新日本理化(株)製、NU-100)を0.3質量部、さらに酸化防止剤であるBASF製“IRGANOX”(登録商標)1010、“IRGAFOS”(登録商標)168を各々0.1質量部ずつがこの比率で混合されるように計量ホッパーから二軸押出機に原料供給し、303℃で溶融混練を行い、ストランド状にダイから吐出して、25℃の水槽にて冷却固化し、チップ状にカットしてポリプロピレン組成物(D)を得た。
 得られたポリプロピレン組成物(D)を単軸の溶融押出機に供給し、220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて117℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、120℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5.2倍に、延伸速度150,000%/分(1500倍/分)で延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、152℃で3秒間予熱後、150℃で5.5倍に、延伸速度1,200%/分(12倍/分)で延伸した。なお、テンター入り口の幅方向クリップ間距離は150mmであった。
 続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で3秒間熱処理し、さらに164℃で弛緩率15%でリラックスを行い、弛緩後のクリップ間距離に保ったまま164℃で5秒間熱処理を行った。
 その後、テンタークリップで把持したフィルムの耳部をスリットして除去し、ワインダーで多孔性フィルムをコアに500m巻き取り、厚み20μmの多孔性フィルムを得た。評価結果を表1に示す。
 (比較例2)
 ポリプロピレン組成物(A)を単軸の溶融押出機に供給し、220℃で溶融押出を行い、60μmカットの焼結フィルターで異物を除去後、Tダイにて117℃に表面温度を制御したキャストドラムに吐出してキャストシートを得た。ついで、125℃に加熱したセラミックロールを用いて予熱を行いフィルムの長手方向に5倍に、延伸速度150,000%/分(1500倍/分)で延伸を行った。次にテンター式延伸機に端部をクリップで把持させて導入し、152℃で3秒間予熱後、150℃で9.0倍に、延伸速度1,200%/分(12倍/分)で延伸した。
 続く熱処理工程で、延伸後のクリップ間距離に保ったまま150℃で3秒間熱処理し、さらに164℃において弛緩率15%でリラックスを行い、弛緩後のクリップ間距離に保ったまま164℃で5秒間熱処理を行った。
 その後、テンタークリップで把持したフィルムの耳部をスリットして除去し、ワインダーで多孔性フィルムをコアに500m巻き取り、厚み20μmの多孔性フィルムを得た。評価結果を表1に示す。
 (比較例3)
 高密度ポリエチレン粉末(“ハイゼックス”(登録商標)340M、三井化学(株)製、)40質量部と、ポリエチレンワックス(“ハイワックス” (登録商標)110P、三井化学(株)製)30質量部と、炭酸カルシウム(商品名:“スターピゴット” (登録商標)15A、白石カルシウム(株)製、平均粒子径0.15μm)30質量部を混合した組成物を二軸押出機に供給して200℃で溶融混合した後、Tダイ口金内を通してシート状に押出成形し、表面温度30℃のキャストドラム上に密着させ、非ドラム面側より20℃の冷風を吹き付けて未延伸フィルムを作製した。次に、該未延伸フィルムを125℃に加熱保持されたオーブンに導いて予熱後、長手方向に3倍延伸し20℃のロールで冷却した。続いて、長手方向に延伸したフィルムの両端をクリップで把持しながらテンターに導き、120℃に加熱した雰囲気中で5倍延伸して(面積倍率:縦延伸倍率×横延伸倍率=15倍)、厚さ20μmの多孔性ポリエチレンフィルムを得た。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 繊維層用の布帛には次の<スパンボンド1>を用いた。物性を表2に示す。
 <スパンボンド1>
 ポリプロピレン製スパンボンド不織布(目付40g/m、引張強力:57.6N/50mm、破裂強さ:500kPa、摩耗強さ:4.5級)。
Figure JPOXMLDOC01-appb-T000002
 (実施例101)
 表面をフッ素樹脂にてコーティングした柄癖が見えないように調整した網目柄の熱プレスロールを用い、目付40g/mのポリプロピレン製不織布(スパンボンド1)、と実施例1の多孔性フィルムをスパンボンド1、実施例1の多孔性フィルム、スパンボンド1の構成にて、接着部分以外はロール面が布帛に触れない柄高さ3mmのロールを用い、柄ロール温度145℃、受けロール温度145℃、ロール圧2MPa、加工速度5m/分で、接着加工を行い、接着面積が10%の防水・透湿材料を得た。本透湿・防水材料を、型紙に合わせて切り出し、切り出した透湿・防水材料の縫製部分をミシンにて縫製し、防護服を得た。
 (実施例102)
 実施例101に用いた実施例1の多孔性フィルムを実施例2の多孔性フィルムとして接着した以外は、実施例101と同様にして接着加工を行い、防水・透湿材料を得た。本透湿・防水材料を、実施例101と同様にミシン縫製し、防護服を得た。
(実施例103)
実施例101に用いた実施例1の多孔性フィルムを実施例4の多孔性フィルムとして接着した以外は、実施例101と同様にして接着加工を行い、防水・透湿材料を得た。本透湿・防水材料を、実施例101と同様にミシン縫製し、防護服を得た。
 (実施例104)
 実施例101に用いた実施例1の多孔性フィルムを実施例5の多孔性フィルムとして接着した以外は、実施例101と同様にして接着加工を行い、防水・透湿材料を得た。本透湿・防水材料を、実施例101と同様にミシン縫製し、防護服を得た。
 (実施例105)
 格子柄のエンボスロールを有する超音波接着機(ボブソン製8400)(格子柄)を用い、目付40g/mのポリプロピレン製不織布(スパンボンド1)と実施例1の多孔性フィルムとスパンボンド1の3層を、振動数2万Hz、圧力0.03MPaにて接着面積が10%のクロス柄となるよう相互の層に接着加工を行い、防水・透湿材料を得た。本透湿・防水材料を、型紙に合わせて切り出し、切り出した透湿・防水材料の縫製部分をミシンにて縫製し、防護服を得た。
 (実施例106)
 実施例105に用いた実施例1の多孔性フィルムの代わりに、実施例2の多孔性フィルムを用いた以外は、実施例105と同様にして防水・透湿材料を得た。本透湿・防水材料を、実施例105と同様にミシン縫製し、防護服を得た。
 (実施例107)
 実施例105に用いた実施例1の多孔性フィルムの代わりに、実施例4の多孔性フィルムを用いた以外は、実施例105と同様にして防水・透湿材料を得た。本透湿・防水材料を、実施例105と同様にミシン縫製し、防護服を得た。
 (実施例108)
 実施例105に用いた実施例1の多孔性フィルムの代わりに、実施例5の多孔性フィルムを用いた以外は、実施例105と同様にして防水・透湿材料を得た。本透湿・防水材料を、実施例105と同様にミシン縫製し、防護服を得た。
 (実施例109)
 スパンボンド1、実施例1の多孔性フィルムの2層構成とし、柄ロール温度145℃、受けロールが常温、ロール圧2MPaとした以外は、実施例101と同様にして防水・透湿材料を得た。本透湿・防水材料を、実施例101と同様にミシン縫製し、防護服を得た。
 (実施例110)
 実施例109で用いた実施例1の多孔性フィルムを実施例2の多孔性フィルムとして接着した以外は、実施例109と同様にして防水・透湿材料を得た。本透湿・防水材料を、実施例109と同様にミシン縫製し、防護服を得た。
 (実施例111)
 実施例109で用いた実施例1の多孔性フィルムを実施例4の多孔性フィルムとして接着した以外は、実施例109と同様にして融着加工を行い防水・透湿材料を得た。本透湿・防水材料を、実施例109と同様にミシン縫製し、防護服を得た。
 (実施例112)
 実施例109で用いた実施例1の多孔性フィルムを実施例5の多孔性フィルムとして接着した以外は、実施例109と同様にして接着加工を行い防水・透湿材料を得た。本透湿・防水材料を、実施例109と同様にミシン縫製し、防護服を得た。
 (実施例113)
 実施例101と同様に、スパンボンド1、実施例1の多孔性フィルム、スパンボンド1の3層の重ね合わせにて、熱接着加工による接着面積が5%の防水・透湿材料を得た。本透湿・防水材料を、型紙に合わせて切り出し、切り出した透湿・防水材料の縫製部分をミシンにて縫製し、防護服を得た。
 (実施例114)
 接着面積が25%とした以外は、実施例101と同様にして防水・透湿材料を得た。本透湿・防水材料を、実施例101と同様にミシン縫製し、防護服を得た。
 (実施例115)
 接着面積が40%とした以外は、実施例101と同様にして防水・透湿材料を得た。本透湿・防水材料を、実施例101と同様にミシン縫製し、防護服を得た。
 (実施例116)
 接着面積が50%とした以外は、実施例101と同様にして防水・透湿材料を得た。本透湿・防水材料を、実施例101と同様にミシン縫製し、防護服を得た。
 (実施例117)
 防護服の縫製方法を超音波縫製とした以外は、実施例101と同様にして、防護服を得た。
 (実施例118)
 防護服の縫製方法を超音波縫製とした以外は、実施例102と同様にして、防護服を得た。
 (実施例117)
 防護服の縫製方法を超音波縫製とした以外は、実施例103と同様にして、防護服を得た。
 (比較例101)
 市販の旭・デュポンフラッシュスパンプロダクツ(株)製のタイベックソフトウェアIII型を使用した。
 (比較例102)
 実施例101の実施例1の多孔性フィルムを比較例1の多孔性フィルムとした以外は、実施例101同様にして防水・透湿材料を得た。本透湿・防水材料を、実施例101と同様にミシン縫製し、防護服を得た。
 (比較例103)
 実施例101の実施例1の多孔性フィルムを比較例2の多孔性フィルムとした以外は、実施例101と同様にして防水・透湿材料を得た。本透湿・防水材料を、実施例101と同様にミシン縫製し、防護服を得た。
 (比較例104)
 実施例101の実施例1の多孔性フィルムを比較例3の多孔性フィルムとした以外は、実施例101と同様にして防水・透湿材料を得た。本透湿・防水材料を、実施例101と同様にミシン縫製し、防護服を得た。
 (参考例201)
 接着面積が70%とした以外は、実施例101と同様にして防水・透湿材料を得た。本透湿・防水材料を、実施例101と同様にミシン縫製し、防護服を得た。
 (参考例202)
 熱プレスロールを用いた接着法を用いた。実施例101と同じスパンボンド1、実施例1の多孔性フィルム、スパンボンド1の構成にて、柄高さ0.3mmのロールを用い、ロール温度150℃、ロール圧3MPa、加工速度2m/分で、接着加工を行い、防水・透湿材料を得た。本透湿・防水材料を、型紙に合わせて切り出し、切り出した透湿・防水材料の縫製部分をミシンにて縫製し、防護服を得た。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明の要件を満足する実施例では血液バリア性、ウィルスバリア性などのバリア性に優れ、着用した際の蒸れ感を軽減し着衣快適性に優れた防水・透湿材料、防護服として好適に用いることが可能である。一方、比較例では、透湿性、突刺強度、バリア性の両立が不十分であったため、防水・透湿材料、防護服として不十分であった。

Claims (15)

  1. 透湿度が150g/m・h以上であり、突刺強度が100N/mm以上であり、かつ血液バリア性がクラス4以上である多孔性フィルム。
  2. 透湿度が150g/m・h以上であり、突刺強度が100N/mm以上であり、かつウィルスバリア性がクラス3以上である多孔性フィルム。
  3. 透湿度が150g/m・h以上であり、突刺強度が100N/mm以上であり、血液バリア性がクラス4以上、かつウィルスバリア性がクラス3以上である多孔性フィルム。
  4. 130℃で1時間処理後の面積熱収縮率が10%以下である、請求項1~3のいずれかに記載の多孔性フィルム。
  5. ポリオレフィン樹脂からなる、請求項1~4のいずれかに記載の多孔性フィルム。
  6. 前記ポリオレフィン樹脂がポリプロピレンである、請求項5に記載の多孔性フィルム。
  7. 請求項1~6のいずれかに記載の前記多孔性フィルムを用いた医療用生地の基材。
  8. 少なくとも繊維層と請求項1~6のいずれかに記載の多孔性フィルムとを積層した防水・透湿材料であって、前記防水・透湿材料は前記防水・透湿材料を構成する各層が隣り合う層間で接着されてなり、前記防水・透湿材料の単位面積あたり、その50%以下の面積において、隣り合う層が接着されている防水・透湿材料。
  9. 透湿度が150g/m・h以上である請求項8に記載の防水・透湿材料。
  10.  ウィルスバリア性がクラス3以上である請求項8または9に記載の防水・透湿材料。
  11. 前記繊維層と前記多孔性フィルムを構成する素材の融点差が40℃以下である請求項8~10のいずれかに記載の防水・透湿材料。
  12.  耐水圧が30kPa以上である請求項8~11のいずれかに記載の防水・透湿材料。
  13.  請求項8~12のいずれかに記載の防水・透湿材料を用いた医療用衣服。
  14.  請求項8~12いずれかに記載の防水・透湿材料を用いた防護服。
  15. 請求項8~12のいずれかに記載の防水・透湿材料の製造方法であって、前記防水・透湿材料を構成する隣り合う層を重ね合わせる工程と、重ね合わせた隣り合う層の接着予定部位に熱処理を施す工程とを有する防水・透湿材料の製造方法。
PCT/JP2014/081743 2013-12-03 2014-12-01 多孔性フィルム、防水・透湿材料およびそれを用いた医療用衣服ならびに防護服 WO2015083665A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020167016944A KR20160095002A (ko) 2013-12-03 2014-12-01 다공성 필름, 방수·투습 재료 및 그것을 사용한 의료용 의복 및 방호복
RU2016126406A RU2674199C1 (ru) 2013-12-03 2014-12-01 Пористая пленка, водонепроницаемый и влагопроницаемый материал, а также использующие их медицинская одежда и защитная одежда
CN201480066183.5A CN105764967B (zh) 2013-12-03 2014-12-01 多孔性膜、防水透湿材料和使用其的医疗用衣服以及防护服
EP14866985.6A EP3078704A4 (en) 2013-12-03 2014-12-01 Porous film, water-resistant and moisture-transmitting material, and medical garment and protective garment using water-resistant and moisture-transmitting material
US15/101,609 US20160318281A1 (en) 2013-12-03 2014-12-01 Porous film, waterproof and moisture-permeable material, and medical clothing and protective clothing that use the same
JP2015506005A JP6090428B2 (ja) 2013-12-03 2014-12-01 防水・透湿材料およびそれを用いた医療用衣服ならびに防護服

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013249827 2013-12-03
JP2013-249827 2013-12-03
JP2014013317 2014-01-28
JP2014-013317 2014-01-28
JP2014098284 2014-05-12
JP2014-098284 2014-05-12

Publications (1)

Publication Number Publication Date
WO2015083665A1 true WO2015083665A1 (ja) 2015-06-11

Family

ID=53273427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081743 WO2015083665A1 (ja) 2013-12-03 2014-12-01 多孔性フィルム、防水・透湿材料およびそれを用いた医療用衣服ならびに防護服

Country Status (7)

Country Link
US (1) US20160318281A1 (ja)
EP (1) EP3078704A4 (ja)
JP (1) JP6090428B2 (ja)
KR (1) KR20160095002A (ja)
CN (1) CN105764967B (ja)
RU (1) RU2674199C1 (ja)
WO (1) WO2015083665A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017035826A (ja) * 2015-08-10 2017-02-16 ユニチカトレーディング株式会社 積層布帛、シームテープ及びリペアパッチ、並びに医療用外衣
JP2017105031A (ja) * 2015-12-08 2017-06-15 三菱樹脂株式会社 透湿性積層体
JP2017105032A (ja) * 2015-12-08 2017-06-15 三菱樹脂株式会社 透湿性積層体
WO2017119355A1 (ja) * 2016-01-06 2017-07-13 東レ株式会社 防護服
JP2019064262A (ja) * 2017-10-03 2019-04-25 儀城企業有限公司 複合型紡織製品
EP3652246A4 (en) * 2017-07-13 2020-11-25 Enzpire Industry Co., Ltd. STERILIZABLE MEDICAL PACKAGING WITH LIVE PORES
WO2021216389A1 (en) * 2020-04-20 2021-10-28 Celgard, Llc Seam tape and related methods and products
JP2022544869A (ja) * 2019-12-18 2022-10-21 山東君泰医用防護用品科技有限公司 医療用複合材料及びその製造プロセス

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107662384B (zh) * 2016-07-27 2020-06-16 佛山金万达科技股份有限公司 一种透汽隔病毒面料接缝处的液体不能渗透的缝合方法
MX2022002795A (es) * 2019-09-11 2022-04-06 Toray Industries Prenda protectora.
TWI741403B (zh) * 2019-11-04 2021-10-01 黃振正 可易回收薄層物
KR102235485B1 (ko) * 2020-06-17 2021-04-05 (주)이지켐 바이러스 차단성능이 우수한 보호복원단 및 이의 제조방법
CN114474905A (zh) * 2020-11-13 2022-05-13 贝里国际公司 透气阻隔层合体
US20220205170A1 (en) * 2020-12-28 2022-06-30 Standard Textile Co., Inc. Coated barrier fabric for a reusable medical product
KR102357761B1 (ko) * 2021-03-26 2022-02-09 (주)이지켐 기능성 원단, 이로부터 제조되는 의류 및 이의 제조방법.
CN113430714B (zh) * 2021-06-08 2022-04-05 南通大学 一种β晶聚丙烯抗老化土工布及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310665A (ja) 1992-04-27 1993-11-22 New Japan Chem Co Ltd 新規なアミド系化合物
JPH0978464A (ja) 1995-09-18 1997-03-25 Unitika Ltd 医療用積層生地
JP2003500258A (ja) * 1999-06-02 2003-01-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 複合シート材料
JP2003306564A (ja) * 2002-04-17 2003-10-31 Sumitomo Chem Co Ltd マスク用フィルターおよびマスク
JP2005515912A (ja) 2001-12-12 2005-06-02 キンバリー クラーク ワールドワイド インコーポレイテッド バリア特性をもつフィラー入り不織ラミネート
JP2007100056A (ja) * 2005-10-07 2007-04-19 Mitsui Chemicals Inc 多孔質フィルムの製造方法および多孔質フィルム
JP2011184807A (ja) * 2010-03-04 2011-09-22 Unitika Trading Co Ltd 医療用織編物
JP2011256402A (ja) * 2009-06-19 2011-12-22 Mitsubishi Plastics Inc 多孔性ポリプロピレンフィルム
JP2013053386A (ja) 2011-09-02 2013-03-21 Unitika Trading Co Ltd 医療用織物

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69214984T2 (de) * 1991-03-22 1997-03-06 Kappler Safety Group Luftdurchlässiger Verbundstoff
US5169712A (en) * 1991-08-23 1992-12-08 Amoco Corporation Porous film composites
US5935370A (en) * 1991-10-18 1999-08-10 #M Innovative Properties Company Minnesota Mining And Manufacturing Co. Method for laminating a viral barrier microporous membrane to a nonwoven web to prevent transmission of viral pathogens
JPH06114991A (ja) * 1992-10-02 1994-04-26 Toray Ind Inc 複合不織布
US5532053A (en) * 1994-03-01 1996-07-02 W. R. Grace & Co.-Conn. High moisture transmission medical film
WO1996016562A1 (en) * 1994-11-28 1996-06-06 Langley John D A breathable non-woven composite fabric
US5786058A (en) * 1995-04-03 1998-07-28 Minnesota Mining & Mfg Thermally bonded viral barrier composite
US6114024A (en) * 1995-08-01 2000-09-05 Kimberly-Clark Worldwide, Inc. Multilayer breathable film
US6159590A (en) * 1996-07-03 2000-12-12 Higher Dimension Medical, Inc. Puncture and cut resistant fabric
JP3157107B2 (ja) * 1996-08-21 2001-04-16 沖電気工業株式会社 通信データバッファの切替回路
US20030124324A1 (en) * 2001-11-27 2003-07-03 Kappler Safety Group Breathable blood and viral barrier fabric
JP2003210565A (ja) * 2002-01-22 2003-07-29 Sumitomo Chem Co Ltd 医療用多孔性フィルム
EP1572450B1 (en) * 2002-12-12 2019-07-24 Ahlstrom-Munksjo Nonwovens LLC Ethylene oxide sterilizable, low cost nonwoven laminates with high wet peel strength and improved barrier properties
KR100523474B1 (ko) * 2005-03-29 2005-10-24 삼성토탈 주식회사 매우 높은 용융흐름성을 갖는 프로필렌 중합체의 제조방법
CN101250820B (zh) * 2008-03-24 2010-06-16 天津工业大学 一种医用防护服材料及其制备方法
KR101661006B1 (ko) * 2009-10-07 2016-09-28 도레이 카부시키가이샤 다공성 폴리프로필렌 필름 롤
CN101831811A (zh) * 2010-05-21 2010-09-15 世源科技(嘉兴)医疗电子有限公司 一次性防护服用高阻隔性多层复合材料及其生产工艺
US9252412B2 (en) * 2012-03-26 2016-02-02 Mitsubishi Plastics, Inc. Multilayer porous film, separator for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310665A (ja) 1992-04-27 1993-11-22 New Japan Chem Co Ltd 新規なアミド系化合物
JPH0978464A (ja) 1995-09-18 1997-03-25 Unitika Ltd 医療用積層生地
JP2003500258A (ja) * 1999-06-02 2003-01-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 複合シート材料
JP2005515912A (ja) 2001-12-12 2005-06-02 キンバリー クラーク ワールドワイド インコーポレイテッド バリア特性をもつフィラー入り不織ラミネート
JP2003306564A (ja) * 2002-04-17 2003-10-31 Sumitomo Chem Co Ltd マスク用フィルターおよびマスク
JP2007100056A (ja) * 2005-10-07 2007-04-19 Mitsui Chemicals Inc 多孔質フィルムの製造方法および多孔質フィルム
JP2011256402A (ja) * 2009-06-19 2011-12-22 Mitsubishi Plastics Inc 多孔性ポリプロピレンフィルム
JP2011184807A (ja) * 2010-03-04 2011-09-22 Unitika Trading Co Ltd 医療用織編物
JP2013053386A (ja) 2011-09-02 2013-03-21 Unitika Trading Co Ltd 医療用織物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3078704A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017035826A (ja) * 2015-08-10 2017-02-16 ユニチカトレーディング株式会社 積層布帛、シームテープ及びリペアパッチ、並びに医療用外衣
JP2017105031A (ja) * 2015-12-08 2017-06-15 三菱樹脂株式会社 透湿性積層体
JP2017105032A (ja) * 2015-12-08 2017-06-15 三菱樹脂株式会社 透湿性積層体
WO2017119355A1 (ja) * 2016-01-06 2017-07-13 東レ株式会社 防護服
EP3652246A4 (en) * 2017-07-13 2020-11-25 Enzpire Industry Co., Ltd. STERILIZABLE MEDICAL PACKAGING WITH LIVE PORES
JP2019064262A (ja) * 2017-10-03 2019-04-25 儀城企業有限公司 複合型紡織製品
JP2022544869A (ja) * 2019-12-18 2022-10-21 山東君泰医用防護用品科技有限公司 医療用複合材料及びその製造プロセス
WO2021216389A1 (en) * 2020-04-20 2021-10-28 Celgard, Llc Seam tape and related methods and products

Also Published As

Publication number Publication date
JPWO2015083665A1 (ja) 2017-03-16
EP3078704A4 (en) 2017-07-19
JP6090428B2 (ja) 2017-03-08
CN105764967A (zh) 2016-07-13
EP3078704A1 (en) 2016-10-12
US20160318281A1 (en) 2016-11-03
CN105764967B (zh) 2019-03-08
KR20160095002A (ko) 2016-08-10
RU2674199C1 (ru) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6090428B2 (ja) 防水・透湿材料およびそれを用いた医療用衣服ならびに防護服
JP6497082B2 (ja) 多孔性積層体
JP6702888B2 (ja) 通気性を有する微孔性熱可塑性の薄いフィルム
KR100941184B1 (ko) 다층 미공성 필름 및 그 제조 방법
TWI289103B (en) Multi-capable elastic laminate process
JP6716546B2 (ja) ポリオレフィン系伸縮性フィルム構造、積層体、及びその方法
EP3214216B1 (en) Use of a spunbond non-woven fabric as a drape or medical clothing, non-woven fabric laminate, medical clothing, and drape
CN106457806B (zh) 多层薄膜及由其制造的制品
KR20040029070A (ko) 파단성 표피층을 갖는 통기성 다층 필름
EP3386712B1 (en) Multilayer polyethylene films, and articles made therefrom
JP2002316359A (ja) 多孔フィルム・不織布複合シート及びその製造方法
US11780996B2 (en) Breathable film
JP6337422B2 (ja) 複合フィルム
JPWO2015115289A1 (ja) 多孔性フィルム、透湿防水シート、複合体および防護服
JP2015163464A (ja) 透湿防水シート
JP2002096432A (ja) 透湿性フィルム・不織布複合体
JP2016102203A (ja) 多孔性フィルム、および透湿防水シート
JP2016102201A (ja) 多孔性フィルム
EP3386742B1 (en) Monolayer films, and articles made therefrom
JP2015229721A (ja) 透湿性フィルム
JP2016102202A (ja) 多孔性フィルム、透湿防水シート、複合体および防護服
JP2016203594A (ja) 複合シート及びその製造方法
JP2023151346A (ja) 樹脂シート及び樹脂シートの製造方法
JP2017128079A (ja) 透湿性シート
JP2015229720A (ja) 透湿性フィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015506005

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15101609

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167016944

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014866985

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014866985

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016126406

Country of ref document: RU

Kind code of ref document: A