WO2015079867A1 - 透明樹脂積層体 - Google Patents

透明樹脂積層体 Download PDF

Info

Publication number
WO2015079867A1
WO2015079867A1 PCT/JP2014/079075 JP2014079075W WO2015079867A1 WO 2015079867 A1 WO2015079867 A1 WO 2015079867A1 JP 2014079075 W JP2014079075 W JP 2014079075W WO 2015079867 A1 WO2015079867 A1 WO 2015079867A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
synthetic resin
mass
resin laminate
laminate
Prior art date
Application number
PCT/JP2014/079075
Other languages
English (en)
French (fr)
Inventor
猛史 大西
修 柿木
康善 中安
帰心 小澤
Original Assignee
三菱瓦斯化学株式会社
Mgcフィルシート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Mgcフィルシート株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to US15/039,192 priority Critical patent/US20170136748A1/en
Priority to CN201480063248.0A priority patent/CN105745075B/zh
Priority to EP14866753.8A priority patent/EP3075533B1/en
Priority to JP2015550623A priority patent/JP6571528B2/ja
Priority to KR1020167016662A priority patent/KR20160090847A/ko
Publication of WO2015079867A1 publication Critical patent/WO2015079867A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/21Anti-static
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2590/00Signboards, advertising panels, road signs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels

Definitions

  • the present invention relates to a synthetic resin laminate, and more specifically, is used for a transparent substrate material and a protective material, and includes a polycarbonate base material layer, a resin layer containing a specific styrene copolymer resin and a specific vinyl resin ( And a synthetic resin laminate having excellent shape stability, surface hardness and / or heat resistance in a high temperature or high humidity environment.
  • Patent Document 1 proposes a method of coating the surface with an ultraviolet curable resin or the like, and a method of applying a hard coat to a substrate obtained by coextruding a polycarbonate resin and an acrylic resin.
  • a hard coat is applied to the surface of the polycarbonate resin, the required pencil hardness cannot be satisfied, and it may not be used for applications requiring the surface hardness.
  • the surface hardness is improved to some extent by the method of applying the acrylic resin to the surface layer, the application spreads to the front panel of the information display device, etc., but this method has a two-layer structure of different materials and the acrylic resin and the polycarbonate resin. Due to the difference in water absorption characteristics, warping occurs with changes in the environment, so that problems occur in applications where environmental changes occur.
  • Patent Document 2 discloses a laminate characterized by laminating a methylmethacrylate-styrene copolymer, which is a resin having a lower water absorption rate than an acrylic resin, on a polycarbonate resin as a method for suppressing warpage.
  • a methylmethacrylate-styrene copolymer which is a resin having a lower water absorption rate than an acrylic resin
  • 40 ° C / 90% of the environmental test is insufficient as a condition of high temperature and high humidity.
  • Patent Document 3 discloses a laminate characterized by laminating a high-hardness modified polycarbonate resin on a polycarbonate resin, but does not mention water absorption characteristics or shape stability when the environment changes.
  • the present invention provides a synthetic resin laminate that is used for transparent substrate materials and protective materials and has excellent shape stability, surface hardness, and heat resistance that does not cause warping even in high-temperature and high-humidity environments. For the purpose.
  • a styrene monomer unit unsaturated dicarboxylic acid on one side of a base material layer mainly composed of polycarbonate. Consists of 25 to 100% by weight of a specific styrene-unsaturated dicarboxylic acid copolymer comprising 10 to 30% by weight of an anhydride monomer unit and 10 to 35% by weight of a vinyl monomer, and ii) constitutes a vinyl monomer.
  • the inventors have found that a synthetic resin laminate excellent in shape stability and surface hardness can be obtained by laminating a resin composition in which 75 to 0% by mass of a resin as a unit is polymer-alloyed, and the present invention has been achieved. That is, the present invention provides the following synthetic resin laminate and a transparent material using the synthetic resin laminate.
  • a resin layer (high hardness layer) comprising a resin (A) containing a specific styrene-unsaturated dicarboxylic acid copolymer (a1) and a resin (a2) having a vinyl monomer as a structural unit ,
  • a synthetic resin laminate obtained by laminating on one side of a resin layer (base material layer) containing polycarbonate (B), wherein (a1) is 45 to 70% by mass of a styrene monomer unit, unsaturated dicarboxylic acid A styrene-unsaturated dicarboxylic acid copolymer comprising 10-30% by weight of an acid anhydride monomer unit and 10-35% by weight of a vinyl monomer, the ratio of (a1) in the resin (A) Is a synthetic resin laminate, wherein the ratio (a2) is 75 to 0% by mass.
  • ⁇ 2> The synthetic resin laminate according to ⁇ 1>, wherein the vinyl monomer unit (a1) is methyl methacrylate.
  • A2) The synthetic resin laminate as described in ⁇ 1> or ⁇ 2> above, comprising 75 to 0% by mass.
  • the resin layer containing the resin (A) has a thickness of 10 to 250 ⁇ m, the total thickness of the synthetic resin laminate is in the range of 0.1 to 2.0 mm, and the resin layer / synthetic resin laminate
  • ⁇ 6> The synthetic resin laminate according to any one of ⁇ 1> to ⁇ 5>, wherein the resin layer and / or the base material layer contains an ultraviolet absorber.
  • ⁇ 7> The synthetic resin laminate according to any one of ⁇ 1> to ⁇ 6>, wherein a hard coat treatment is performed on the resin layer containing the resin (A).
  • ⁇ 8> The above ⁇ 1>, wherein one or both surfaces of the synthetic resin laminate are subjected to any one or more of antireflection treatment, antifouling treatment, fingerprint resistance treatment, antistatic treatment, weather resistance treatment and antiglare treatment
  • ⁇ 9> A transparent substrate material comprising the synthetic resin laminate according to any one of ⁇ 1> to ⁇ 8>.
  • ⁇ 10> A transparent protective material comprising the synthetic resin laminate according to any one of ⁇ 1> to ⁇ 8>.
  • a touch panel front protective plate including the synthetic resin laminate according to any one of ⁇ 1> to ⁇ 8>.
  • ⁇ 12> A front plate for OA equipment or portable electronic equipment, comprising the synthetic resin laminate according to any one of ⁇ 1> to ⁇ 8>.
  • the synthetic resin laminated body which is excellent in shape stability, surface hardness, and / or impact resistance, such as curvature prevention property in a high temperature or high humidity environment, is provided, and this synthetic resin laminated body is a transparent substrate material. And used as a protective material for transparency.
  • portable display devices such as mobile phone terminals, portable electronic play equipment, portable information terminals, and mobile PCs
  • stationary display devices such as notebook PCs, desktop PC liquid crystal monitors, and liquid crystal televisions, for example
  • It is preferably used as a front plate for protecting these devices.
  • the present invention relates to a resin composition in which 25 to 100% by mass of a specific styrene-unsaturated dicarboxylic acid copolymer (a1) and 75 to 0% by mass of a resin (a2) having a vinyl monomer as a structural unit are polymer-alloyed.
  • a synthetic resin laminate obtained by laminating a resin layer (high hardness layer) containing a resin containing (A) on one side of a resin layer (base material layer) containing polycarbonate (B), wherein (a1) Is a styrene-unsaturated dicarboxylic acid copolymer comprising 45 to 70% by mass of styrene monomer units, 10 to 30% by mass of unsaturated dicarboxylic acid anhydride monomer units, and 10 to 35% by mass of vinyl monomers.
  • the synthetic resin laminate is characterized in that the ratio of (a1) in the resin (A) is 25 to 100% by mass and the ratio of (a2) is 75 to 0% by mass.
  • the (a1) used in the laminate of the present invention comprises 45 to 70% by mass of styrene monomer units, 10 to 30% by mass of unsaturated dicarboxylic anhydride monomer units, and 10 to 35 vinyl monomers. It is a styrene copolymer consisting of mass%.
  • the styrene monomer is not particularly limited, and any known styrene monomer can be used. From the viewpoint of availability, styrene, ⁇ -methylstyrene, o-methylstyrene, m- Examples thereof include methyl styrene, p-methyl styrene, and t-butyl styrene. Among these, styrene is particularly preferable from the viewpoint of compatibility. Two or more of these styrenic monomers may be mixed.
  • Examples of the unsaturated dicarboxylic anhydride monomer include acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid, and maleic anhydride is preferred from the viewpoint of compatibility with vinyl monomers. Two or more of these unsaturated dicarboxylic acid anhydride monomers may be mixed.
  • Examples of vinyl monomers include acrylonitrile, methacrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, and n methacrylate. And vinyl monomers such as butyl and 2-ethylhexyl methacrylate. From the viewpoint of compatibility with vinyl monomers, methyl methacrylate (MMA) is preferred. Two or more of these vinyl monomers may be mixed.
  • MMA methyl methacrylate
  • the weight average molecular weight of the styrene-unsaturated dicarboxylic acid copolymer (a1) is preferably 50,000 to 300,000, more preferably 100,000 to 250,000.
  • the weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw / Mn) of (a1) should be measured using gel permeation chromatography using THF or chloroform as a solvent. Can do.
  • the resin (a2) containing a vinyl monomer used in the present invention include acrylonitrile, methacrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methacrylic acid, Examples include homopolymerized vinyl monomers such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, and 2-ethylhexyl methacrylate, and methyl methacrylate is particularly preferable as the monomer unit. Further, a copolymer containing two or more kinds of the monomer units may be used.
  • the weight average molecular weight of the resin (a2) containing a vinyl monomer is determined by the ease of mixing (dispersing) with the styrene-unsaturated dicarboxylic acid copolymer (a1) and the resin (A ) Determined by ease of manufacture. That is, if the weight average molecular weight of the resin (a2) containing a vinyl monomer is too large, the difference in melt viscosity between (a1) and (a2) becomes too large, so that the mixing (dispersion) of both becomes worse. There arises a problem that the transparency of the resin (A) deteriorates or stable melt-kneading cannot be continued.
  • the weight average molecular weight of the resin (a2) containing a vinyl monomer is preferably in the range of 50,000 to 700,000, and more preferably in the range of 60,000 to 550,000. More preferably, it is in the range of 70,000 to 500,000.
  • the composition ratio of the styrene-unsaturated dicarboxylic acid copolymer (a1) and the resin (a2) containing a vinyl monomer is such that the component (a1) is 100 to 25% by mass (a2).
  • the component is 0 to 75% by mass.
  • the component (a2) is 25 to 75% by mass with respect to the component (a1) of 75 to 25% by mass. More preferably, the component (a2) is 70 to 25% by mass with respect to the component (a1) of 30 to 75% by mass.
  • the polycarbonate (B) used in the present invention contains a carbonate ester bond in the molecular main chain, that is, — [OR—OCO] —unit (where R is an aliphatic group, aromatic group, or aliphatic group). And those containing both an aromatic group and those having a straight chain structure or a branched structure) are not particularly limited, but in particular, a polycarbonate containing a structural unit of the following formula [1] is used. It is preferable to do. By using such a polycarbonate, a resin laminate excellent in impact resistance can be obtained.
  • the weight average molecular weight of the polycarbonate (B) affects the impact resistance and molding conditions of the synthetic resin laminate. That is, when the weight average molecular weight is too small, the impact resistance of the synthetic resin laminate is lowered, which is not preferable. If the weight average molecular weight is too high, an excessive heat source may be required when laminating a resin layer containing the resin (A) (hereinafter sometimes referred to as “high hardness layer”), which is not preferable. Moreover, since a high temperature is required depending on the molding method, the resin (A) is exposed to a high temperature, which may adversely affect its thermal stability.
  • the weight average molecular weight of the polycarbonate (B) is preferably 25,000 to 75,000, more preferably 30,000 to 70,000. More preferably, it is 35,000-65,000.
  • the method for forming the synthetic resin laminate of the present invention is not particularly limited. For example, a method of laminating an individually formed high hardness layer and a base material layer containing polycarbonate (B) and thermocompression bonding them, laminating an individually formed high hardness layer and a base material layer, A method of adhering with an adhesive, a method of coextrusion molding of resin (A) and polycarbonate (B), and a polycarbonate (B) in-mold molding using a pre-formed high hardness layer to integrate Although there are various methods such as a method, a co-extrusion method is preferable from the viewpoint of manufacturing cost and productivity.
  • the production method of the polycarbonate (B) used in the present invention can be appropriately selected depending on the monomers used, such as a known phosgene method (interfacial polymerization method) and transesterification method (melting method).
  • the production method of the resin (A) is not particularly limited, and necessary components are mixed in advance using a mixer such as a tumbler, a Henschel mixer, or a super mixer, and then Banbury mixer, roll, Brabender.
  • a mixer such as a tumbler, a Henschel mixer, or a super mixer
  • Banbury mixer roll, Brabender.
  • a known method such as melt kneading by a machine such as a single screw extruder, a twin screw extruder, or a pressure kneader can be applied.
  • the thickness of the high hardness layer affects the surface hardness and impact resistance of the synthetic resin laminate. That is, when the thickness of the high hardness layer is too thin, the surface hardness is lowered, which is not preferable. When the thickness of the high hardness layer is too large, the impact resistance is deteriorated, which is not preferable.
  • the thickness of the high hardness layer is preferably 10 to 250 ⁇ m, more preferably 30 to 200 ⁇ m. More preferably, it is 60 to 150 ⁇ m.
  • the total thickness of the synthetic resin laminate affects the amount of deformation (warpage) and impact resistance when the synthetic resin laminate is exposed to high temperature and high humidity.
  • the overall thickness is too thin, the amount of deformation (warpage) at the time of exposure to high temperature and high humidity increases and impact resistance decreases.
  • the overall thickness is thick, the amount of deformation (warping) when exposed to high temperature and high humidity is small and impact resistance is ensured.
  • the total thickness of the synthetic resin laminate is preferably 0.1 to 2.0 mm, and more preferably 0.3 to 2.0 mm. More preferably, it is 0.5 to 1.5 mm.
  • the high-hardness layer and / or the base material layer can be used by mixing an ultraviolet absorber. If the content of the UV absorber is too low, the light resistance will be insufficient, and if the content is too high, excessive UV absorber will be scattered due to high temperature depending on the molding method, causing the molding environment and causing problems. Sometimes.
  • the content of the ultraviolet absorber is preferably 0 to 5% by mass, more preferably 0 to 3% by mass, and still more preferably 0 to 1% by mass.
  • Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, 2-hydroxy -4-octadecyloxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, etc.
  • Benzophenone UV absorber 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, 2- (2-hydroxy-3 -T-Butyl-5-methylphenyl) benzotriazo , Benzotriazole ultraviolet absorbers such as (2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol, phenyl salicylate, 2,4-di-t-butyl Benzoate UV absorbers such as phenyl-3,5-di-t-butyl-4-hydroxybenzoate, and hindered amine UV absorbers such as bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-ethoxy
  • additives can be mixed and used for the high hardness layer and / or the base material layer.
  • additives include antioxidants, anti-colorants, antistatic agents, mold release agents, lubricants, dyes, pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, organic fillers, and inorganic fillers. Examples include reinforcing materials.
  • the method of mixing is not particularly limited, and a method of compounding the whole amount, a method of dry blending the master batch, a method of dry blending the whole amount, and the like can be used.
  • a hard coat treatment may be applied to the surface on the high hardness layer side containing the resin (A) or the surface on the base material layer side.
  • the hard coat layer is formed by a hard coat process using a hard coat paint that is cured using thermal energy and / or light energy.
  • the hard coat paint that is cured using thermal energy include polyorganosiloxane-based and cross-linked acrylic-based thermosetting resin compositions.
  • a hard coat paint that is cured using light energy for example, a photocurable resin in which a photopolymerization initiator is added to a resin composition composed of monofunctional and / or polyfunctional acrylate monomers and / or oligomers. Examples thereof include a composition.
  • the hard coat coating applied on the high hardness layer and cured using thermal energy is, for example, 10 to 50% by mass of 100 parts by mass of organotrialkoxysilane and colloidal silica having a particle size of 4 to 20 nm.
  • a thermosetting resin composition in which 1 to 5 parts by mass of an amine carboxylate and / or a quaternary ammonium carboxylate is added to 100 parts by mass of a resin composition comprising 50 to 200 parts by mass of a colloidal silica solution to be contained. It is done.
  • the hard coat coating material applied on the high-hardness layer and cured using light energy includes, for example, 40 to 80% by mass of tris (acryloxyethyl) isocyanurate, tris (acryloxyethyl) isocyanurate, A photocurable resin obtained by adding 1 to 10 parts by mass of a photopolymerization initiator to 100 parts by mass of a resin composition comprising 20 to 60% by mass of a bifunctional and / or trifunctional (meth) acrylate compound capable of copolymerization Examples thereof include a composition.
  • Examples of the hard coat paint to be cured using light energy applied on the base material layer in the present invention include 20 to 60% by mass of 1,9-nonanediol diacrylate and 1,9-nonanediol diacrylate.
  • Examples thereof include a photocurable resin composition in which 1 to 10 parts by mass of a photopolymerization initiator is added to 100 parts by mass of a resin composition comprising 40 to 80% by mass of a compound comprising a functional epoxy (meth) acrylate oligomer. .
  • the method for applying the hard coat paint in the present invention is not particularly limited, and a known method can be used. Examples include spin coating, dipping, spraying, slide coating, bar coating, roll coating, gravure coating, meniscus coating, flexographic printing, screen printing, beat coating, and blurring. .
  • a pretreatment of the coated surface may be performed before the hard coat. Examples of treatment include known methods such as sandblasting, solvent treatment, corona discharge treatment, chromic acid treatment, flame treatment, hot air treatment, ozone treatment, ultraviolet treatment, and primer treatment with a resin composition. Can be mentioned.
  • each material of the high hardness layer, the base material layer and the hard coat is preferably filtered and purified by a filter treatment.
  • a filter treatment By producing or laminating through a filter, it is possible to obtain a synthetic resin laminate having few appearance defects such as foreign matters and defects.
  • the filter to be used is not particularly limited, and known filters can be used, and are appropriately selected depending on the use temperature, viscosity, and filtration accuracy of each material.
  • the filter medium is not particularly limited, but polypropylene, cotton, polyester, viscose rayon or glass fiber nonwoven fabric or roving yarn roll, phenol resin impregnated cellulose, metal fiber nonwoven fabric sintered body, metal powder sintered body, breaker plate, Alternatively, any combination of these can be used. In view of heat resistance, durability, and pressure resistance, a type in which a metal fiber nonwoven fabric is sintered is preferable.
  • the filtration accuracy is 50 ⁇ m or less, preferably 30 ⁇ m or less, and more preferably 10 ⁇ m or less for the resin (A) and the polycarbonate (B).
  • the filtration accuracy of the hard coat agent is 20 ⁇ m or less, preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less because it is applied to the outermost layer of the synthetic resin laminate.
  • a polymer filter used for thermoplastic resin melt filtration is classified into a leaf disk filter, a candle filter, a pack disk filter, a cylindrical filter and the like depending on its structure, and a leaf disk filter having a large effective filtration area is particularly suitable.
  • the synthetic resin laminate of the present invention can be subjected to one or more of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment on one side or both sides.
  • the methods of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment are not particularly limited, and known methods can be used. For example, a method of applying a reflection reducing coating, a method of depositing a dielectric thin film, a method of applying an antistatic coating, and the like can be mentioned.
  • Resin (a2) containing a styrene-unsaturated dicarboxylic acid copolymer (a1) and a vinyl monomer on the basis of a calibration curve obtained by previously dissolving standard polystyrene in chloroform and measured by gel permeation chromatography (GPC) And polycarbonate resin (B) were similarly measured by GPC.
  • the weight average molecular weight of each resin of a1, a2, and B was calculated by comparing both, that is, by comparing standard polystyrene with a1, standard polystyrene with a2, and standard polystyrene with B. In either case, the value is in terms of polystyrene.
  • the apparatus configuration of GPC is as follows. Device: Weights 2690 Column: Shodex GPC KF-805L 8 ⁇ ⁇ 300 mm 2-linked developing solvent: chloroform flow rate: 1 ml / min Temperature: 30 ° C Detector: UV ... 486nm Polycarbonate (B) RI: resin containing styrene-unsaturated dicarboxylic acid copolymer (a1) and vinyl monomer (a2)
  • the water absorption rate was measured according to JIS-K7209 A method. First, a test piece of 60 mm ⁇ 60 mm ⁇ 1.0 mm prepared by press molding was prepared, and it was dried in an oven at 50 ° C. After 24 hours, the test piece was taken out of the oven and cooled in a desiccator adjusted to 23 ° C. After 1 hour, the weight of the test piece was measured and then put into water at 23 ° C. After 480 hours, the test piece was taken out of the water, the surface moisture was wiped off, and the weight was measured. The water absorption was calculated by dividing the difference between the weight immediately after drying in water and the weight immediately after drying by the weight immediately after drying, and multiplying that value by 100.
  • the test piece was cut into a 10 cm ⁇ 6 cm square.
  • the test piece was set in a two-point support type holder, placed in an environmental test machine set at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours or more to adjust the state, and then warpage was measured (before treatment).
  • the test piece was set in a holder, put into an environmental test machine set at a temperature of 85 ° C. and a relative humidity of 85%, and kept in that state for 120 hours. Further, the holder was moved into an environmental testing machine set at a temperature of 23 ° C. and a relative humidity of 50%, and the warpage was measured again after being held for 4 hours in this state (after treatment).
  • the shape stability was evaluated using (the amount of warpage after treatment) ⁇ (the amount of warpage before treatment) as the amount of change in shape.
  • ⁇ Pencil scratch hardness test> In accordance with JIS K 5600-5-4, the hardness of the hardest pencil that did not cause scars was gradually increased by pressing the pencil against the surface of the resin (A) at an angle of 45 degrees and a load of 750 g with respect to the surface. The hardness was evaluated.
  • ⁇ Glass transition temperature measurement> DSC curve obtained by using a differential scanning calorimeter Pyris type 1 manufactured by Perkin Elmer, measured at a heating rate of 10 ° C./min after holding at 25 ° C. for 1 minute in a nitrogen atmosphere, and using a tangential method The intersection of the two tangent lines in was determined as the glass transition temperature. A glass transition temperature of 110 ° C. or higher was considered acceptable.
  • Examples of the resin A and the polycarbonate resin B include the following materials, but are not limited thereto.
  • A1 Styrene-unsaturated dicarboxylic acid copolymer: KX-378, Denki Kagaku Kogyo Co., Ltd.
  • A2 Styrene-unsaturated dicarboxylic acid copolymer: KX-381, Denki Kagaku Kogyo Co., Ltd.
  • A3 Resin containing vinyl monomer: Methyl methacrylate resin parapet HR-L manufactured by Kuraray Co., Ltd.
  • A4 Resin containing a vinyl monomer: Atoglass HT121 manufactured by Arkema Co., Ltd.
  • A5 Resin containing vinyl monomer: MS800 manufactured by Nippon Steel Chemical Co., Ltd.
  • B1 Polycarbonate resin: Iupilon S-1000 manufactured by Mitsubishi Engineering Plastics Co., Ltd.
  • the mixture was melt kneaded at a cylinder temperature of 260 ° C., extruded into a strand shape, and pelletized with a pelletizer.
  • the pellets could be manufactured stably.
  • the obtained pellets were transparent, the glass transition temperature was 110 ° C., and the water absorption was 0.9%.
  • Production Example 2 [Production of Resin (A12) Pellets] 50% by mass of the styrene-unsaturated dicarboxylic acid copolymer KX-378 used in Production Example 1 and 50% by mass of parapet HR-L as a methyl methacrylate resin were mixed and pelletized. Pelletization was performed under the same conditions as in Production Example 1. The pellets could be manufactured stably. The obtained pellets were transparent, the glass transition temperature was 118 ° C., and the water absorption rate was 0.7%.
  • Production Example 3 [Production of Resin (A13) Pellets] 75% by mass of the styrene-unsaturated dicarboxylic acid copolymer KX-378 used in Production Example 1 and 75% by mass of parapet HR-L as a methyl methacrylate resin were mixed and pelletized. Pelletization was performed under the same conditions as in Production Example 1. The pellets could be manufactured stably. The obtained pellets were transparent, the glass transition temperature was 121 ° C., and the water absorption was 0.6%.
  • pellets were manufactured stably.
  • the obtained pellets were transparent, the glass transition temperature was 114 ° C., and the water absorption rate was 0.5%.
  • Production Example 9 [Production of photocurable resin composition (C11) coated on high hardness layer]
  • a mixing vessel equipped with a stirring blade 60 parts by mass of tris (2-acryloxyethyl) isocyanurate (manufactured by Aldrich) and 40 parts by mass of neopentyl glycol oligoacrylate (manufactured by Osaka Organic Chemical Industry, trade name: 215D) 1 part by mass of 2,4,6-trimethylbenzoyldiphenylphosphine oxide (manufactured by Ciba Japan, trade name: DAROCUR TPO), 0.3 part by mass of 1-hydroxycyclohexyl phenyl ketone (manufactured by Aldrich), Introduced a composition comprising 1 part by weight of 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (Ciba Japan, trade name: TINUVIN234) And stirred for 1 hour
  • Production Example 10 [Production of photocurable resin composition (C12) coated on base material layer]
  • a mixing tank equipped with a stirring blade 40 parts by mass of 1,9-nonanediol diacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name: Biscote # 260) and a hexafunctional urethane acrylate oligomer (manufactured by Shin-Nakamura Chemical Co., Ltd., (Trade name: U-6HA) 40 parts by mass, 20 parts by mass of a condensate having a succinic acid / trimethylolethane / acrylic acid molar ratio of 1/2/4, and 2,4,6-trimethylbenzoyldiphenylphosphine 2.8 parts by mass of oxide (manufactured by Ciba Japan, trade name: DAROCUR TPO), 1 part by mass of benzophenone (manufactured by Aldrich), 2- (2H-benzotriazol-2-yl
  • the mixture was melt kneaded at a cylinder temperature of 260 ° C., extruded into a strand shape, and pelletized with a pelletizer.
  • the pellets could be manufactured stably.
  • the obtained pellets were transparent, the glass transition temperature was 100 ° C., and the water absorption rate was 1.2%.
  • Example 1 A synthetic resin laminate was molded using a multilayer extruder having a single-screw extruder having a shaft diameter of 40 mm, a single-screw extruder having a shaft diameter of 75 mm, and a multi-manifold die connected to each extruder.
  • the resin (A11) obtained in Production Example 1 was continuously introduced into a single-screw extruder having a shaft diameter of 40 mm and extruded under conditions of a cylinder temperature of 240 ° C. and a discharge rate of 4.0 kg / h.
  • polycarbonate resin (B1: see Table 2) (trade name: Iupilon S-1000, aromatic polycarbonate of the above formula [1], mass average molecular weight: 33 , 000) was continuously introduced and extruded at a cylinder temperature of 270 ° C. and a discharge rate of 63.0 kg / h.
  • the resin extruded by each extruder is laminated inside the multi-manifold, formed into a sheet, pushed from the T-die, and the mirror surface is transferred from the upstream by three mirror finish rolls with temperatures of 130 ° C, 120 ° C, and 190 ° C. While cooling, a laminate (E1) of (A11) and (B1) was obtained.
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the layer made of (A11) was 60 ⁇ m near the center.
  • the result of the high-temperature and high-humidity exposure test was 200 ⁇ m, and the result of the pencil scratch hardness test was 2H.
  • Example 2 On the high hardness layer comprising (A11) of the laminate (E1) obtained in Example 1, the coating thickness after curing of the photocurable resin composition (C11) obtained in Production Example 9 was 3 to It apply
  • the photocurable resin composition (C12) obtained in Production Example 10 was applied onto the base material layer made of (B1) using a bar coater so that the coating thickness after curing was 3 to 8 ⁇ m. Then, it was covered with a PET film and pressed.
  • the PET film was peeled off by irradiating with UV light at a line speed of 1.5 m / min on a conveyor equipped with a high pressure mercury lamp with a light source distance of 12 cm and an output of 80 W / cm.
  • a laminate (E2) having a hard coat layer composed of (C11) and (C12) was obtained.
  • the result of the high temperature and high humidity exposure test was 9 ⁇ m, and the result of the pencil scratch hardness test was 4H.
  • a body (E2) was obtained.
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness layer made of (A11) was 100 ⁇ m near the center.
  • the result of the high temperature and high humidity exposure test was 300 ⁇ m, and the result of the pencil scratch hardness test was 4H.
  • Example 3 A laminate (E4) of (A12) and (B1) was obtained in the same manner as in Example 1 except that the resin (A12) was used instead of the resin (A11).
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness layer made of (A12) was 60 ⁇ m near the center.
  • the result of the high-temperature and high-humidity exposure test was 100 ⁇ m, and the result of the pencil scratch hardness test was H.
  • Example 4 Lamination of (A12) and (B1) in the same manner as in Example 3 except that the discharge rate of the 40 mm single screw extruder was 7.0 kg / h and the discharge rate of the 75 mm single screw extruder was 60.0 kg / h.
  • a body (E4) was obtained.
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness layer made of (A11) was 100 ⁇ m near the center.
  • the result of the high-temperature and high-humidity exposure test was 150 ⁇ m, and the result of the pencil scratch hardness test was 2H.
  • Example 5 On the high hardness layer composed of (A12) of the laminate (E4) obtained in Example 4, the coating thickness after curing of the photocurable resin composition (C11) obtained in Production Example 9 was 3 to It apply
  • the photocurable resin composition (C12) obtained in Production Example 10 was applied onto the base material layer made of (B1) using a bar coater so that the coating thickness after curing was 3 to 8 ⁇ m. Then, it was covered with a PET film and pressed.
  • the PET film was peeled off by irradiating with UV light at a line speed of 1.5 m / min on a conveyor equipped with a high pressure mercury lamp with a light source distance of 12 cm and an output of 80 W / cm.
  • a laminate (E5) having a hard coat layer composed of (C11) and (C12) was obtained.
  • the result of the high-temperature and high-humidity exposure test was 200 ⁇ m, and the result of the pencil scratch hardness test was 4H.
  • Example 6 A laminate (E6) of (A13) and (B1) was obtained in the same manner as in Example 1 except that the resin (A13) was used instead of the resin (A11).
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness layer made of (A12) was 60 ⁇ m near the center.
  • the result of the high temperature and high humidity exposure test was 90 ⁇ m, and the result of the pencil scratch hardness test was H.
  • Example 7 A laminate (E7) of (A14) and (B1) was obtained in the same manner as in Example 1 except that the resin (A14) was used instead of the resin (A11).
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness layer made of (A12) was 60 ⁇ m near the center.
  • the result of the high-temperature and high-humidity exposure test was 200 ⁇ m, and the result of the pencil scratch hardness test was 2H.
  • Example 8 A laminate (E8) of (A15) and (B1) was obtained in the same manner as in Example 1 except that the resin (A15) was used instead of the resin (A11).
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness layer made of (A12) was 60 ⁇ m near the center.
  • the result of the high-temperature and high-humidity exposure test was 120 ⁇ m, and the result of the pencil scratch hardness test was 2H.
  • Example 9 On the high hardness layer comprising (A15) of the laminate (E8) obtained in Example 8, the coating thickness after curing of the photocurable resin composition (C11) obtained in Production Example 9 was 3 to It apply
  • the photocurable resin composition (C12) obtained in Production Example 10 was applied onto the base material layer made of (B1) using a bar coater so that the coating thickness after curing was 3 to 8 ⁇ m. Then, it was covered with a PET film and pressed.
  • the PET film was peeled off by irradiating with UV light at a line speed of 1.5 m / min on a conveyor equipped with a high pressure mercury lamp with a light source distance of 12 cm and an output of 80 W / cm.
  • a laminate (E9) having a hard coat layer composed of (C11) and (C12) was obtained.
  • the result of the high-temperature and high-humidity exposure test was 200 ⁇ m, and the result of the pencil scratch hardness test was 4H.
  • Example 10 A laminate (E10) of (A16) and (B1) was obtained in the same manner as in Example 1 except that the resin (A16) was used instead of the resin (A11).
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness layer made of (A12) was 60 ⁇ m near the center.
  • the result of the high-temperature and high-humidity exposure test was 100 ⁇ m, and the result of the pencil scratch hardness test was H.
  • Example 11 A laminate (E11) of (A18) and (B1) was obtained in the same manner as in Example 1 except that the resin (A17) was used instead of the resin (A11).
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness layer made of (A17) was 60 ⁇ m near the center.
  • the result of the high-temperature and high-humidity exposure test was 80 ⁇ m, and the result of the pencil scratch hardness test was 2H.
  • Example 12 On the high hardness layer comprising (A17) of the laminate (E11) obtained in Example 11, the coating thickness after curing of the photocurable resin composition (C11) obtained in Production Example 9 was 3 to It applied using a bar coater so that it might become 8 micrometers, covered with PET film, and crimped
  • the photocurable resin composition (C12) obtained in Production Example 10 was applied onto the base material layer made of (B1) using a bar coater so that the coating thickness after curing was 3 to 8 ⁇ m. Then, it was covered with a PET film and pressed.
  • the PET film was peeled off by irradiating with UV light at a line speed of 1.5 m / min on a conveyor equipped with a high pressure mercury lamp with a light source distance of 12 cm and an output of 80 W / cm.
  • a laminate (E12) provided with a hard coat layer composed of (C11) and (C12) was obtained.
  • the result of the high-temperature and high-humidity exposure test was 150 ⁇ m, and the result of the pencil scratch hardness test was 3H.
  • Example 13 A laminate (E13) of (A1) and (B1) was obtained in the same manner as in Example 1 except that the resin (A1) was used instead of the resin (A11).
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness layer made of (A1) was 60 ⁇ m near the center.
  • the result of the high temperature and high humidity exposure test was 40 ⁇ m, and the result of the pencil scratch hardness test was H.
  • Example 14 A laminate (E14) of (A2) and (B1) was obtained in the same manner as in Example 1 except that the resin (A2) was used instead of the resin (A11).
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness layer made of (A2) was 60 ⁇ m near the center.
  • the result of the high-temperature and high-humidity exposure test was 80 ⁇ m, and the result of the pencil scratch hardness test was H.
  • Example 15 On the high hardness layer composed of (A2) of the laminate (E14) obtained in Example 14, the photocurable resin composition (C11) obtained in Production Example 9 has a coating thickness of 3 to 3 after curing. It apply
  • the photocurable resin composition (C12) obtained in Production Example 10 was applied onto the base material layer made of (B1) using a bar coater so that the coating thickness after curing was 3 to 8 ⁇ m. Then, it was covered with a PET film and pressed.
  • the PET film was peeled off by irradiating with UV light at a line speed of 1.5 m / min on a conveyor equipped with a high pressure mercury lamp with a light source distance of 12 cm and an output of 80 W / cm.
  • a laminate (E15) provided with a hard coat layer composed of (C11) and (C12) was obtained.
  • the result of the high-temperature and high-humidity exposure test was 100 ⁇ m, and the result of the pencil scratch hardness test was 3H.
  • Comparative Example 1 A laminate (F1) of (A3) and (B1) was obtained in the same manner as in Example 1 except that the resin (A3) was used instead of the resin (A11).
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness layer made of (A3) was 60 ⁇ m near the center.
  • the result of the high temperature and high humidity exposure test was 1000 ⁇ m, and the result of the pencil scratch hardness test was 3H.
  • Comparative Example 2 A laminate (F2) of (A4) and (B1) was obtained in the same manner as in Example 1 except that the resin (A4) was used instead of the resin (A11).
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness layer made of (A4) was 60 ⁇ m near the center.
  • the result of the high-temperature and high-humidity exposure test was 1200 ⁇ m, and the result of the pencil scratch hardness test was 3H.
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness layer made of (A3) was 60 ⁇ m near the center. Further, in the same manner as in Example 3, a laminate (F4) provided with a hard coat layer composed of (C11) and (C12) on the high hardness layer and the base material layer of the laminate (F3) was obtained.
  • the result of the high-temperature and high-humidity exposure test was 500 ⁇ m, and the result of the pencil scratch hardness test was 3H.
  • Comparative Example 4 A polycarbonate (B1) (manufactured by Mitsubishi Engineering Plastics, trade name: Iupilon S-1000, mass average molecular weight: 27,000) is used instead of the resin (A11), and a single screw extruder with a shaft diameter of 32 mm is used.
  • a laminated body (F5) of (B1) and (B1) was obtained in the same manner as in Example 1 except that the cylinder temperature was 260 ° C and the roll temperature was 130 ° C, 140 ° C and 190 ° C from the upstream. The overall thickness of the obtained laminate was 1.0 mm, and the result of the pencil scratch hardness test was 2B.
  • a laminate (F6) was obtained in which the laminate (F5) was provided with a hard coat layer composed of (C11) and (C12).
  • the result of the high temperature and high humidity exposure test was 100 ⁇ m, and the result of the pencil scratch hardness test was HB.
  • Comparative Example 5 A laminate (F7) of (D11) and (B1) was obtained in the same manner as in Example 1 except that the resin (D11) was used instead of the resin (A11).
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the high hardness layer made of (D11) was 60 ⁇ m near the center.
  • the result of the high temperature and high humidity exposure test was 700 ⁇ m, and the result of the pencil scratch hardness test was 3H.
  • a styrene monomer unit As shown in the examples and comparative examples, i) 45 to 70% by mass of a styrene monomer unit and 10 to 30% by mass of an unsaturated dicarboxylic acid anhydride monomer unit on one side of a base material layer mainly composed of polycarbonate. 25% to 100% by weight of a specific styrene-unsaturated dicarboxylic acid copolymer of 10% to 35% by weight of a vinyl monomer, and ii) 75% to 0% by weight of a resin having a vinyl monomer as a structural unit.
  • a resin laminate in which a polymer-alloyed resin composition is laminated is a resin laminate of a comparative example in which a resin alone having a vinyl monomer as a constituent unit is laminated on a base material layer containing a polycarbonate resin as a main component. In comparison, it has high surface hardness and heat resistance, and has dimensional stability in a high temperature and high humidity environment.
  • the synthetic resin laminate of the present invention has a small shape change amount (warpage amount) in a high temperature and high humidity environment and is excellent in shape stability, and is excellent in surface hardness, weather resistance and heat resistance. It was confirmed that
  • the synthetic resin laminate of the present invention is characterized by excellent shape stability such as warpage prevention in high temperature and high humidity environments, surface hardness, impact resistance, weather resistance and heat resistance, and a transparent substrate material, It is suitably used as a transparent protective material and the like, and particularly suitably used as a display unit front plate, a touch panel substrate and a thermal bending sheet for OA devices and portable electronic devices.

Landscapes

  • Laminated Bodies (AREA)

Abstract

 透明性の基板材料や保護材料に使用される、高温や高湿な環境における形状安定性、表面硬度に優れる合成樹脂積層体を提供することを目的とする。 上記課題は、ポリカーボネートを主成分とする基材層の片面にi)スチレン系単量体単位45~70質量%、不飽和ジカルボン酸無水物単量体単位10~30質量%、ビニル系単量体10~35質量%である特定のスチレン-不飽和ジカルボン酸共重合体25~100質量%とii)ビニル系単量体を構成単位とする樹脂75~0質量%をポリマーアロイした樹脂組成物を積層することにより、解決された。この本発明の合成樹脂積層体は、形状安定性や表面硬度に優れていて、本発明は、上述の合成樹脂積層体および該合成樹脂積層体を用いた透明性材料等を提供するものである。

Description

透明樹脂積層体
 本発明は、合成樹脂積層体に関し、詳しくは、透明性の基板材料や保護材料に使用され、ポリカーボネート系基材層と、特定のスチレン系共重合樹脂及び特定のビニル系樹脂を含む樹脂層(高硬度層)とを有し、高温や高湿な環境における形状安定性、表面硬度及び/又は耐熱性に優れる合成樹脂積層体に関する。
 ポリカーボネート樹脂板は、透明性や耐衝撃性および耐熱性に優れ、防音隔壁やカーポート、看板、グレージング材、照明用器具などに利用されているが、表面硬度が低いために傷つきやすいという欠点があり、用途が制限されている。
 特許文献1には、この欠点を改良する為に紫外線硬化樹脂などで表面をコーティングする方法や、ポリカーボネート樹脂とアクリル系樹脂を共押出した基板にハードコートを施す方法が提案されている。
 しかし、ポリカーボネート樹脂の表面にハードコートを施したものでは、要求される鉛筆硬度を満たす事ができず、表面硬度を要求する用途には使用できない場合がある。
 また、アクリル系樹脂を表層に施す方法では、表面硬度がある程度向上するので、情報表示機器前面板などに用途が広がるが、この方法は異なる材料の2層構成になりアクリル系樹脂とポリカーボネート樹脂との吸水特性の違いゆえ、環境の変化に伴い反りが発生するため、環境変化が生じる用途では不具合が発生する。
 反りを抑える方法としてポリカーボネート樹脂層の両面にアクリル系樹脂層を積層する方法があるが、その積層体の片面に面衝撃を与えた際にその反対面のアクリル系樹脂層においてクラックを生じ易く、使用方法によっては問題となることがある。
 特許文献2には、反りを抑える方法として、吸水率がアクリル樹脂より低い樹脂であるメチルメタアクリレレート-スチレン共重合体をポリカーボネート樹脂上に積層させることを特徴とする積層体が開示されているが、環境試験の40℃/90%は高温高湿の条件としては不十分である。
 特許文献3には、高硬度変性ポリカーボネート樹脂をポリカーボネート樹脂上に積層することを特徴とする積層体が開示されているが、吸水特性や環境変化時の形状安定性については言及されていない。
特開2006-103169号公報 特開2010-167659号公報 特表2009-500195号公報
 本発明は、透明性の基板材料や保護材料に使用される、高温や高湿な環境においても反りを生じさせないといった形状安定性や、表面硬度、および耐熱性に優れる合成樹脂積層体を提供することを目的とする。
 本発明者らは、上記の課題を解決するため鋭意研究を重ねた結果、ポリカーボネートを主成分とする基材層の片面にi)スチレン系単量体単位45~70質量%、不飽和ジカルボン酸無水物単量体単位10~30質量%、ビニル系単量体10~35質量%である特定のスチレン-不飽和ジカルボン酸共重合体25~100質量%とii)ビニル系単量体を構成単位とする樹脂75~0質量%をポリマーアロイした樹脂組成物を積層することにより、形状安定性や表面硬度に優れた合成樹脂積層体が得られることを見出し、本発明に到達した。
 すなわち、本発明は、以下の合成樹脂積層体および該合成樹脂積層体を用いた透明性材料を提供するものである。
<1> 特定のスチレン-不飽和ジカルボン酸系共重合体(a1)とビニル系単量体を構成単位とする樹脂(a2)を含有する樹脂(A)を含む樹脂層(高硬度層)を、ポリカーボネート(B)を含有する樹脂層(基材層)の片面に積層させて成る合成樹脂積層体であって、前記(a1)がスチレン系単量体単位45~70質量%、不飽和ジカルボン酸無水物単量体単位10~30質量%、ビニル系単量体10~35質量%からなるスチレン-不飽和ジカルボン酸系共重合体であり、樹脂(A)中の前記(a1)の比率が25~100質量%であり、前記(a2)の比率が75~0質量%であることを特徴とする合成樹脂積層体である。
<2> 前記(a1)のビニル系単量体単位がメチルメタクリレートである事を特徴とする上記<1>に記載の合成樹脂積層体である。
<3> 前記樹脂(A)が、質量平均分子量50,000~300,000の前記スチレン系共重合体(a1)25~100質量%と質量平均分子量50,000~500,000のメチルメタクリレート樹脂(a2)75~0質量%から成ることを特徴とする上記<1>または<2>に記載の合成樹脂積層体である。
<4> 前記樹脂(A)を含む樹脂層の厚さが10~250μmであり、前記合成樹脂積層体の全体厚みが0.1~2.0mmの範囲であり、該樹脂層/合成樹脂積層体の全体厚みの比が0.01~0.5であることを特徴とする上記<1>~<3>のいずれかに記載の合成樹脂積層体である。
<5> 前記ポリカーボネート(B)の質量平均分子量が25,000~75,000であることを特徴とする上記<1>~<4>のいずれかに記載の合成樹脂積層体である。
<6> 前記樹脂層および/または前記基材層が紫外線吸収剤を含有することを特徴とする上記<1>~<5>のいずれかに記載の合成樹脂積層体である。
<7> 前記樹脂(A)を含む樹脂層の上にハードコート処理を施した上記<1>~<6>のいずれかに記載の合成樹脂積層体である。
<8> 前記合成樹脂積層体の片面または両面に、反射防止処理、防汚処理、耐指紋処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上を施した上記<1>~<7>のいずれかに記載の合成樹脂積層体である。
<9> 上記<1>~<8>のいずれかに記載の合成樹脂積層体を含む透明性基板材料である。
<10> 上記<1>~<8>のいずれかに記載の合成樹脂積層体を含む透明性保護材料である。
<11> 上記<1>~<8>のいずれかに記載の合成樹脂積層体を含むタッチパネル前面保護板である。
<12> 上記<1>~<8>のいずれかに記載の合成樹脂積層体を含む、OA機器または携帯電子機器のための前面板である。
 本発明によれば、高温や高湿な環境における反り防止性などの形状安定性、表面硬度及び/又は耐衝撃性に優れる合成樹脂積層体が提供され、該合成樹脂積層体は透明性基板材料や透明性保護材料として用いられる。具体的には携帯電話端末、携帯型電子遊具、携帯情報端末、モバイルPCいった携帯型のディスプレイデバイスや、ノート型PC、デスクトップ型PC液晶モニター、液晶テレビといった設置型のディスプレイデバイスなどにおいて、例えばこれらの機器を保護する前面板として、好適に使用される。
 以下、本発明について製造例や実施例等を例示して詳細に説明するが、本発明は例示される製造例や実施例等に限定されるものではなく、本発明の内容を大きく逸脱しない範囲であれば任意の方法に変更して行なうこともできる。
 本発明は、特定のスチレン-不飽和ジカルボン酸共重合体(a1)25~100質量%とビニル系単量体を構成単位とする樹脂(a2)75~0質量%をポリマーアロイした樹脂組成物を含有する樹脂(A)を含む樹脂層(高硬度層)を、ポリカーボネート(B)を含む樹脂層(基材層)の片面に積層させて成る合成樹脂積層体であって、前記(a1)がスチレン系単量体単位45~70質量%、不飽和ジカルボン酸無水物単量体単位10~30質量%、ビニル系単量体10~35質量%からなるスチレンー不飽和ジカルボン酸系共重合体であり、樹脂(A)中の前記(a1)の比率が25~100質量%であり、前記(a2)の比率が75~0質量%であることを特徴とする合成樹脂積層体である。
<スチレン-不飽和ジカルボン酸系共重合体(a1)>
 本発明の積層体に用いられる前記(a1)は、スチレン系単量体単位45~70質量%、不飽和ジカルボン酸無水物単量体単位10~30質量%、ビニル系単量体10~35質量%からなるスチレン系共重合体である。
 スチレン系単量体とは、特に限定せず、任意の公知のスチレン系単量体を用いる事が出来るが、入手の容易性の観点からスチレン、α―メチルスチレン、o―メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン等が挙げられる。これらの中でも、相溶性の観点からスチレンが特に好ましい。これらのスチレン系単量体は2種以上を混合しても良い。
 不飽和ジカルボン酸無水物単量体としては、マレイン酸、イタコン酸、シトラコン酸、アコニット酸等の酸無水物が挙げられ、ビニル系単量体との相溶性の観点から無水マレイン酸が好ましい。これらの不飽和ジカルボン酸無水物系単量体は2種以上を混合しても良い。
 ビニル系単量体とは、例えばアクリロニトリル、メタアクリロニトリル、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n―ブチル、アクリル酸2エチルヘキシル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2エチルヘキシル等のビニル系単量体が挙げられる。ビニル系単量体との相溶性の観点からメタクリル酸メチル(MMA)が好ましい。これらのビニル系単量体は2種以上を混合しても良い。
 スチレン-不飽和ジカルボン酸系共重合体(a1)の重量平均分子量は、50,000~300,000が好ましく、100,000~250,000がより好ましい。重量平均分子量が50,000~300,000である場合において、(a2)ビニル系単量体を含有する樹脂との相溶性が良好であり、耐熱性の向上効果に優れる。なお、(a1)の重量平均分子量(Mw)、数平均分子量(Mn)、及び分子量分布(Mw/Mn)は、溶媒としてTHFやクロロホルムを用いたゲルパーミエーションクロマトグラフィーを用いて測定を行うことができる。
<ビニル系単量体を含有する樹脂(a2)>
 本発明で用いられるビニル系単量体を含有する樹脂(a2)は、例えばアクリロニトリル、メタアクリロニトリル、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n―ブチル、アクリル酸2エチルヘキシル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2エチルヘキシル等のビニル系単量体を単独重合したものが挙げられ、特に単量体単位として、メタクリル酸メチルが好ましい。また、前記単量体単位を2種類以上含んだ共重合体でも良い。
 本発明において、ビニル系単量体を含有する樹脂(a2)の重量平均分子量は、スチレン-不飽和ジカルボン酸系共重合体(a1)との混合(分散)のしやすさおよび前記樹脂(A)の製造の容易さで決定される。つまり、ビニル系単量体を含有する樹脂(a2)の重量平均分子量が大きすぎると(a1)と(a2)の溶融粘度差が大きくなりすぎる為に、両者の混合(分散)が悪くなって前記樹脂(A)の透明性が悪化する、あるいは安定した溶融混練が継続できないといった不具合が起こる。逆にビニル系単量体を含有する樹脂(a2)の重量平均分子量が小さすぎると、樹脂(A)の強度が低下するので、合成樹脂積層板の耐衝撃性が低下するといった問題が発生する。ビニル系単量体を含有する樹脂(a2)の重量平均分子量は、50,000~700,000の範囲が好ましく、60,000~550,000の範囲がより好ましい。さらに好ましくは70,000~500,000の範囲である。
<樹脂(A):スチレン-不飽和ジカルボン酸共重合体(a1)とビニル系単量体を含有する樹脂(a2)の混合体>
 本発明において、スチレン-不飽和ジカルボン酸共重合体(a1)とビニル系単量体を含有する樹脂(a2)の組成比は、(a1)成分が100~25質量%に対して(a2)成分が0~75質量%である。好ましくは、(a1)成分が75~25質量%に対して(a2)成分が25~75質量%である。より好ましくは(a1)成分が30~75質量%に対して(a2)成分が70~25質量%である。この組成比内にすることにより、透明性を維持しつつ、耐熱性および表面硬度、吸水率といった諸物性のバランスがとれた樹脂(A)となる。
<ポリカーボネート(B)>
 本発明に使用されるポリカーボネート(B)は、分子主鎖中に炭酸エステル結合を含む、即ち、-[O-R-OCO]-単位(Rが脂肪族基、芳香族基、又は脂肪族基と芳香族基の双方を含むもの、さらに直鎖構造あるいは分岐構造を持つもの)を含むものであれば特に限定されるものではないが、特に下記式[1]の構造単位を含むポリカーボネートを使用することが好ましい。このようなポリカーボネートを使用することで、耐衝撃性に優れた樹脂積層体を得ることができる。
Figure JPOXMLDOC01-appb-C000001
 本発明において、ポリカーボネート(B)の重量平均分子量は、合成樹脂積層体の耐衝撃性および成形条件に影響する。つまり、重量平均分子量が小さすぎる場合は、合成樹脂積層体の耐衝撃性が低下するので好ましくない。重量平均分子量が高すぎる場合は、樹脂(A)を含む樹脂層(以後、「高硬度層」と表記する場合がある)を積層させる時に過剰な熱源を必要とする場合があり、好ましくない。また成形法によっては高い温度が必要になるので、樹脂(A)が高温にさらされることになりその熱安定性に悪影響を及ぼすことがある。ポリカーボネート(B)の重量平均分子量は、25,000~75,000が好ましく、30,000~70,000がより好ましい。さらに好ましくは35,000~65,000である。
<各種材料製造方法>
 本発明の合成樹脂積層体の形成方法は特に限定されない。例えば、個別に形成した高硬度層とポリカーボネート(B)を含む基材層とを積層して両者を加熱圧着する方法、個別に形成した高硬度層と基材層とを積層して、両者を接着剤によって接着する方法、樹脂(A)とポリカーボネート(B)とを共押出成形する方法、予め形成しておいた高硬度層を用いて、ポリカーボネート(B)をインモールド成形して一体化する方法、などの各種方法があるが、製造コストや生産性の観点からは、共押出成形する方法が好ましい。
 本発明に使用されるポリカーボネート(B)の製造方法は、公知のホスゲン法(界面重合法)、エステル交換法(溶融法)等、使用するモノマーにより適宜選択できる。
 本発明において、樹脂(A)の製造方法は特に制限はなく、必要な成分を例えばタンブラーやヘンシェルミキサー、スーパーミキサーなどの混合機を用いて予め混合しておき、その後バンバリーミキサー、ロール、ブラベンダー、単軸押出機、二軸押出機、加圧ニーダーなどの機械で溶融混練するといった公知の方法が適用できる。
<樹脂積層体>
 本発明において、高硬度層の厚さは、合成樹脂積層体の表面硬度や耐衝撃性に影響する。つまり、高硬度層の厚さが薄すぎると表面硬度が低くなり、好ましくない。高硬度層の厚さが大きすぎると耐衝撃性が悪くなり好ましくない。高硬度層の厚さは10~250μmが好ましく、30~200μmがより好ましい。さらに好ましくは60~150μmである。
 本発明において、合成樹脂積層体(シート)の全体厚さは、合成樹脂積層体の高温高湿暴露時の変形量(反り量)と耐衝撃性に影響する。つまり全体厚さが薄すぎると高温高湿暴露時の変形量(反り量)は大きくなり耐衝撃性が低下する。全体厚さが厚い時には高温高湿暴露時の変形量(反り量)は小さくなり耐衝撃性は確保されるが、必要以上に厚い場合は基材層に過剰に原料を使用する事になり経済的でない。合成樹脂積層体のトータル厚さは、0.1~2.0mmが好ましく、0.3~2.0mmがより好ましい。さらに好ましくは0.5~1.5mmである。
 本発明において、高硬度層および/または基材層には紫外線吸収剤を混合して使用することができる。紫外線吸収剤の含有量が少なすぎると耐光性が足りなくなり、含有量が多すぎると成形法によっては過剰な紫外線吸収剤が高い温度がかかることによって飛散して成形環境を汚染するので不具合を起こすことがある。紫外線吸収剤の含有割合は0~5質量%が好ましく、0~3質量%がより好ましく、さらに好ましくは0~1質量%である。紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-4-ドデシロキシベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノンなどのベンゾフェノン系紫外線吸収剤、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)ベンゾトリアゾール、(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノールなどのベンゾトリアゾール系紫外線吸収剤、サリチル酸フェニル、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエートなどのベンゾエート系紫外線吸収剤、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケートなどのヒンダードアミン系紫外線吸収剤、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジンなどのトリアジン系紫外線吸収剤などが挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。
 本発明において、高硬度層および/または基材層には各種添加剤を混合して使用することができる。添加剤としては、例えば、抗酸化剤や抗着色剤、抗帯電剤、離型剤、滑剤、染料、顔料、可塑剤、難燃剤、樹脂改質剤、相溶化剤、有機フィラーや無機フィラーといった強化材などが挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。
 本発明において、樹脂(A)を含む高硬度層側の表面、または基材層側の表面にハードコート処理を施しても良い。例えば、熱エネルギーおよび/または光エネルギーを用いて硬化させるハードコート塗料を用いるハードコート処理によりハードコート層を形成する。熱エネルギーを用いて硬化させるハードコート塗料としては、例えば、ポリオルガノシロキサン系、架橋型アクリル系などの熱硬化性樹脂組成物が挙げられる。また、光エネルギーを用いて硬化させるハードコート塗料としては、例えば、1官能および/または多官能であるアクリレートモノマーおよび/またはオリゴマーからなる樹脂組成物に光重合開始剤が加えられた光硬化性樹脂組成物などが挙げられる。
 本発明において、高硬度層上に施す、熱エネルギーを用いて硬化させるハードコート塗料としては、例えば、オルガノトリアルコキシシラン100質量部と、粒径が4~20nmのコロイダルシリカを10~50質量%含有するコロイダルシリカ溶液50~200質量部からなる樹脂組成物100質量部に、アミンカルボキシレートおよび/または第4級アンモニウムカルボキシレートが1~5質量部添加された熱硬化性樹脂組成物などが挙げられる。
 本発明において、高硬度層上に施す、光エネルギーを用いて硬化させるハードコート塗料としては、例えば、トリス(アクロキシエチル)イソシアヌレート40~80質量%と、トリス(アクロキシエチル)イソシアヌレートと共重合可能な2官能および/または3官能の(メタ)アクリレート化合物20~60質量%とからなる樹脂組成物の100質量部に光重合開始剤が1~10質量部添加された光硬化性樹脂組成物などが挙げられる。
 本発明における基材層上に施す、光エネルギーを用いて硬化させるハードコート塗料としては、例えば、1,9-ノナンジオールジアクリレート20~60質量%と、1,9-ノナンジオールジアクリレートと共重合可能な2官能以上の多官能(メタ)アクリレートモノマーならびに2官能以上の多官能ウレタン(メタ)アクリレートオリゴマーおよび/または2官能以上の多官能ポリエステル(メタ)アクリレートオリゴマーおよび/または2官能以上の多官能エポキシ(メタ)アクリレートオリゴマーからなる化合物40~80質量%とからなる樹脂組成物の100質量部に、光重合開始剤が1~10質量部添加された光硬化性樹脂組成物などが挙げられる。
 本発明におけるハードコート塗料を塗布する方法は特に限定されず、公知の方法を用いることができる。例えば、スピンコート法、ディップ法、スプレー法、スライドコート法、バーコート法、ロールコート法、グラビアコート法、メニスカスコート法、フレキソ印刷法、スクリーン印刷法、ビートコート法、捌け法などが挙げられる。
 ハードコートの密着性を向上させる目的で、ハードコート前に塗布面の前処理を行うことがある。処理例として、サンドブラスト法、溶剤処理法、コロナ放電処理法、クロム酸処理法、火炎処理法、熱風処理法、オゾン処理法、紫外線処理法、樹脂組成物によるプライマー処理法などの公知の方法が挙げられる。
 本発明における高硬度層、基材層及びハードコートの各材料は、フィルター処理によりろ過精製されることが好ましい。フィルターを通して生成あるいは積層する事により異物や欠点といった外観不良が少ない合成樹脂積層体を得ることが出来る。ろ過方法に特に制限はなく、溶融ろ過、溶液ろ過、あるいはその組み合わせ等を使うことが出来る。
 使用するフィルターに特に制限はなく、公知のものが使用でき、各材料の使用温度、粘度、ろ過精度により適宜選ばれる。フィルターの濾材としては、特に限定されないがポリプロピレン、コットン、ポリエステル、ビスコースレイヨンやグラスファイバーの不織布あるいはロービングヤーン巻物、フェノール樹脂含浸セルロース、金属繊維不織布焼結体、金属粉末焼結体、ブレーカープレート、あるいはこれらの組み合わせなど、いずれも使用可能である。特に耐熱性や耐久性、耐圧力性を考えると金属繊維不織布を焼結したタイプが好ましい。
 ろ過精度は、樹脂(A)とポリカーボネート(B)については、50μm以下、好ましくは30μm以下、さらに好ましくは10μm以下である。またハードコート剤のろ過精度は、合成樹脂積層板の最表層に塗布される事から、20μm以下、好ましくは10μm以下、さらに好ましくは5μm以下である。
 樹脂(A)とポリカーボネート(B)のろ過については、例えば熱可塑性樹脂溶融ろ過に用いられているポリマーフィルターを使うことが好ましい。ポリマーフィルターは、その構造によりリーフディスクフィルター、キャンドルフィルター、パックディスクフィルター、円筒型フィルターなどに分類されるが、特に有効ろ過面積が大きいリーフディスクフィルターが好適である。
 本発明の合成樹脂積層体には、その片面または両面に反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上を施すことができる。反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理の方法は特に限定されず、公知の方法を用いることができる。例えば、反射低減塗料を塗布する方法、誘電体薄膜を蒸着する方法、帯電防止塗料を塗布する方法などが挙げられる。
 以下、実施例により本発明を具体的に説明する。ただし、本発明はこれらの実施例により何ら制限されるものではない。
 製造例で得られた積層樹脂の物性測定、および実施例ならびに比較例で得られた合成樹脂積層体の評価は以下のように行った。
<重量平均分子量>
 あらかじめ標準ポリスチレンをクロロホルムに溶かしてゲルパーミエーションクロマトグラフィ(GPC)で測定した検量線を基準にして、スチレン-不飽和ジカルボン酸共重合体(a1)とビニル系単量体を含有する樹脂(a2)とポリカーボネート樹脂(B)を同様にGPCで測定した。両者の比較、すなわち、標準ポリスチレンとa1、標準ポリスチレンとa2、および標準ポリスチレンとBの比較により、a1、a2、およびBのそれぞれの樹脂の重量平均分子量を算出した。いずれの場合も、ポリスチレン換算の値である。
GPCの装置構成は以下の通りである。
装置:Wates 2690
カラム:Shodex GPC KF-805L 8φ×300mm 2連結
展開溶媒:クロロホルム
流速:1ml/min
温度:30℃
検出器:UV・・・486nm ポリカーボネート(B)
    RI・・・スチレン-不飽和ジカルボン酸共重合体(a1)とビニル系単量体を含有する樹脂(a2)
<吸水率>
 JIS-K7209 A法に準処し吸水率測定を行った。まずプレス成型で作成した60mm×60mm×1.0mmの試験片を作成し、それを50℃のオーブンに入れて乾燥させた。24時間後、試験片をオーブンから取り出し、23℃に温調したデシケーター中で冷却した。1時間後、試験片の重量を測定し、その後23℃の水中に投入した。480時間後、水中から試験片を取り出し、表面の水分を拭き取った後、重量を測定した。水中投入後の重量と乾燥直後の重量の差を乾燥直後の重量で除し、その値に100を乗じることで、吸水率を算出した。
<高温高湿曝露試験>
 試験片を10cm×6cm四方に切り出した。試験片を2点支持型のホルダーにセットして温度23℃、相対湿度50%に設定した環境試験機に24時間以上投入して状態調整した後、反りを測定した(処理前)。次に試験片をホルダーにセットして温度85℃、相対湿度85%に設定した環境試験機の中に投入し、その状態で120時間保持した。さらに温度23℃、相対湿度50%に設定した環境試験機の中にホルダーごと移動し、その状態で4時間保持後に再度反りを測定した(処理後)。反りの測定には、電動ステージ具備の3次元形状測定機を使用し、取り出した試験片を上に凸の状態で水平に静置し、1mm間隔でスキャンし、中央部の盛り上がりを反りとして計測した。(処理後反り量)-(処理前反り量)を形状変化量として、形状安定性を評価した。
<鉛筆引っかき硬度試験>
 JIS K 5600-5-4に準拠し、表面に対して角度45度、荷重750gで樹脂(A)の表面に次第に硬度を増して鉛筆を押し付け、傷跡を生じなかった最も硬い鉛筆の硬度を鉛筆硬度として評価した。
<ガラス転移温度測定>
 パーキンエルマー社製の示差走査熱量計Pyris1型を用いて、窒素雰囲気下、25℃で1分間保持後、10℃/分の昇温速度下で測定し、接線法を用いて得られたDSC曲線における2つの接線の交点をガラス転移温度として求めた。ガラス転移温度が110℃以上で合格とした。
<各種材料例>
 樹脂Aおよびポリカーボネート樹脂Bについて、下記に示す材料を例示するが、これに限定されるわけではない。
A1:スチレン-不飽和ジカルボン酸系共重合体:電気化学工業(株)KX-378
A2:スチレン-不飽和ジカルボン酸系共重合体:電気化学工業(株)KX-381
A3:ビニル系単量体を含有する樹脂:クラレ(株)製メチルメタクリレート樹脂パラペットHR-L
A4:ビニル系単量体を含有する樹脂:アルケマ(株)製アトグラスHT121
A5:ビニル系単量体を含有する樹脂:新日鉄化学(株)製MS800
B1:ポリカーボネート樹脂:三菱エンジニアリングプラスチックス(株)製ユーピロンS-1000
製造例1〔樹脂(A11)ペレットの製造〕
 スチレン-不飽和ジカルボン酸系共重合体(a1)としてKX-378(電気化学工業製、重量平均分子量:170,000、スチレン系単量体:不飽和ジカルボン酸無水物単量体:ビニル系単量体の比であるb1:b2:b3=65:15:20)25質量%と、ビニル系単量体を構成単位とする樹脂(a2)であるメチルメタクリレート樹脂としてパラペットHR-L(クラレ製)75質量%と、りん系添加剤PEP36(ADEKA製) 500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン製)0.2%を仕込みブレンダーで20分混合後、スクリュー径26mmの2軸押出機を用い、シリンダー温度260℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化した。ペレットは安定して製造できた。
 得られたペレットは透明であり、ガラス転移温度は、110℃であり、吸水率は0.9%であった。
製造例2〔樹脂(A12)ペレットの製造〕
 製造例1で用いたスチレン-不飽和ジカルボン酸系共重合体KX-378を50質量%、メチルメタクリレート樹脂として、パラペットHR-Lを50質量%の比率で混合し、ペレット化した。ペレット化は製造例1と同様の条件で行った。ペレットは安定して製造できた。
 得られたペレットは透明であり、ガラス転移温度は、118℃であり、吸水率は0.7%であった。
製造例3〔樹脂(A13)ペレットの製造〕
 製造例1で用いたスチレン-不飽和ジカルボン酸系共重合体KX-378を75質量%、メチルメタクリレート樹脂として、パラペットHR-Lを25質量%の比率で混合し、ペレット化した。ペレット化は製造例1と同様の条件で行った。ペレットは安定して製造できた。
 得られたペレットは透明であり、ガラス転移温度は、121℃であり、吸水率は0.6%であった。
製造例4〔樹脂(A14)ペレットの製造〕
スチレン-不飽和ジカルボン酸系共重合体としてKX-381(電気化学工業製、重量平均分子量:185,000、b1:b2:b3=55:20:25)25質量%と、メチルメタクリレート樹脂としてパラペットHR-Lを75質量%と、りん系添加剤PEP36(ADEKA製) 500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン製)0.2%を仕込みブレンダーで20分混合後、スクリュー径26mmの2軸押出機を用い、シリンダー温度260℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化した。ペレットは安定して製造できた。
 得られたペレットは透明であり、ガラス転移温度は、114℃であり、吸水率は0.9%であり、鉛筆硬度は2Hであった。
製造例5〔樹脂(A15)ペレットの製造〕
 スチレン-不飽和ジカルボン酸系共重合体(a1:後述の表1中のB)としてKX-381(電気化学工業製、重量平均分子量:185,000、b1:b2:b3=55:20:25)50質量%と、メチルメタクリレート樹脂(a2:後述の表1中のA)としてパラペットHR-Lを50質量%と、りん系添加剤PEP36(ADEKA製) 500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン製)0.2%を仕込みブレンダーで20分混合後、スクリュー径26mmの2軸押出機を用い、シリンダー温度260℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化した。ペレットは安定して製造できた。
 得られたペレットは透明であり、ガラス転移温度は、121℃であり、吸水率は0.8%であり、鉛筆硬度はHであった。
製造例6〔樹脂(A16)ペレットの製造〕
 スチレン-不飽和ジカルボン酸系共重合体(a1:後述の表1中のB)としてKX-381(電気化学工業製、重量平均分子量:185,000、b1:b2:b3=55:20:25)75質量%と、メチルメタクリレート樹脂(a2:後述の表1中のA)としてパラペットHR-Lを25質量%と、りん系添加剤PEP36(ADEKA製) 500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン製)0.2%を仕込みブレンダーで20分混合後、スクリュー径26mmの2軸押出機を用い、シリンダー温度260℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化した。ペレットは安定して製造できた。
 得られたペレットは透明であり、ガラス転移温度は、127℃であり、吸水率は0.7%であり、鉛筆硬度はHであった。
製造例7〔樹脂(A17)ペレットの製造〕
 スチレン-不飽和ジカルボン酸系共重合体としてKX-381(電気化学工業製、重量平均分子量:185,000、b1:b2:b3=55:20:25)50質量%と、メチルメタクリレートースチレン樹脂としてエスチレンMS800(新日鉄化学製)を50質量%と、りん系添加剤PEP36(ADEKA製) 500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン製)0.2%を仕込みブレンダーで20分混合後、スクリュー径26mmの2軸押出機を用い、シリンダー温度260℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化した。ペレットは安定して製造できた。
 得られたペレットは透明であり、ガラス転移温度は、114℃であり、吸水率は0.5%であった。
製造例9〔高硬度層に被覆する光硬化性樹脂組成物(C11)の製造〕
 撹拌翼を備えた混合槽に、トリス(2-アクロキシエチル)イソシアヌレート(Aldrich社製)60質量部と、ネオペンチルグリコールオリゴアクリレート(大阪有機化学工業社製、商品名:215D)40質量部と、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド(チバ・ジャパン社製、商品名:DAROCUR TPO)1質量部と、1-ヒドロキシシクロヘキシルフェニルケトン(Aldrich社製)0.3質量部と、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(チバ・ジャパン社製、商品名:TINUVIN234)1質量部からなる組成物を導入し、40℃に保持しながら1時間撹拌して光硬化性樹脂組成物(C11:後述の表2参照)を得た。
製造例10〔基材層に被覆する光硬化性樹脂組成物(C12)の製造〕
 撹拌翼を備えた混合槽に、1,9-ノナンジオールジアクリレート(大阪有機化学工業社製、商品名:ビスコート#260)40質量部と、6官能ウレタンアクリレートオリゴマー(新中村化学工業社製、商品名:U-6HA)40質量部と、コハク酸/トリメチロールエタン/アクリル酸のモル比が1/2/4である縮合物20質量部と、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド(チバ・ジャパン社製、商品名:DAROCUR TPO)2.8質量部と、ベンゾフェノン(Aldrich社製)1質量部と、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(チバ・ジャパン社製、商品名:TINUVIN234)1質量部からなる組成物を導入し、40℃に保持しながら1時間撹拌して光硬化性樹脂組成物(C12)を得た。
比較製造例1〔樹脂(D11)ペレットの製造〕
 スチレン-不飽和ジカルボン酸系共重合体としてKX-378(電気化学工業製、重量平均分子量:170,000、b1:b2:b3=65:15:20)10質量%と、メチルメタクリレート樹脂としてパラペットHR-L(クラレ製)90質量%と、りん系添加剤PEP36(ADEKA製) 500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン製)0.2%を仕込みブレンダーで20分混合後、スクリュー径26mmの2軸押出機を用い、シリンダー温度260℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化した。ペレットは安定して製造できた。
 得られたペレットは透明であり、ガラス転移温度は、100℃であり、吸水率は1.2%であった。
実施例1
 軸径40mmの単軸押出機と、軸径75mmの単軸押出機と、各押出機と連結したマルチマニホールドダイとを有する多層押出装置を用いて合成樹脂積層体を成形した。軸径40mmの単軸押出機に製造例1で得た樹脂(A11)を連続的に導入し、シリンダー温度240℃、吐出量4.0kg/hの条件で押し出した。また軸径75mmの単軸押出機にポリカーボネート樹脂(B1:表2参照)(三菱エンジニアリングプラスチックス社製、商品名:ユーピロンS-1000、上記式[1]の芳香族ポリカーボネート、質量平均分子量:33,000)を連続的に導入し、シリンダー温度270℃、吐出量63.0kg/hで押し出した。各押出機で押し出された樹脂をマルチマニホールド内部で積層し、シート状にしてTダイから押し、上流側から温度130℃、120℃、190℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却し、(A11)と(B1)の積層体(E1)を得た。得られた積層体の全体厚みは1.0mm、(A11)から成る層の厚みは中央付近で60μmであった。高温高湿暴露試験の結果は200μmであり、鉛筆引っかき硬度試験の結果は2Hであった。
実施例2
 実施例1で得た積層体(E1)の(A11)から成る高硬度層上に、製造例9で得た光硬化性樹脂組成物(C11)を、硬化後の塗膜厚さが3~8μmとなるようバーコーターを用いて塗布し、PETフィルムで覆って圧着した。また、(B1)から成る基材層上に製造例10で得た光硬化性樹脂組成物(C12)を、硬化後の塗膜厚さが3~8μmとなるようバーコーターを用いて塗布し、PETフィルムで覆って圧着した。続いて、光源距離12cm、出力80W/cmの高圧水銀灯を備えたコンベアでラインスピード1.5m/分の条件で紫外線を照射し硬化させてPETフィルムを剥離し、高硬度層および基材層上にそれぞれ(C11)および(C12)から成るハードコート層を備えた積層体(E2)を得た。高温高湿暴露試験の結果は9μmであり、鉛筆引っかき硬度試験の結果は4Hであった。40mm単軸押出機の吐出量を7.0kg/h、75mm単軸押出機の吐出量を60.0kg/hとした以外は、実施例1と同様にして(A11)と(B1)の積層体(E2)を得た。
 得られた積層体の全体厚みは1.0mm、(A11)から成る高硬度層の厚みは中央付近で100μmであった。高温高湿暴露試験の結果は300μmであり、鉛筆引っかき硬度試験の結果は4Hであった。
実施例3
 樹脂(A11)の代わりに樹脂(A12)を使用した以外は、実施例1と同様にして(A12)と(B1)の積層体(E4)を得た。得られた積層体の全体厚みは1.0mm、(A12)から成る高硬度層の厚みは中央付近で60μmであった。高温高湿暴露試験の結果は100μmであり、鉛筆引っかき硬度試験の結果はHであった。
実施例4
 40mm単軸押出機の吐出量を7.0kg/h、75mm単軸押出機の吐出量を60.0kg/hとした以外は、実施例3と同様にして(A12)と(B1)の積層体(E4)を得た。得られた積層体の全体厚みは1.0mm、(A11)から成る高硬度層の厚みは中央付近で100μmであった。高温高湿暴露試験の結果は150μmであり、鉛筆引っかき硬度試験の結果は2Hであった。
実施例5
 実施例4で得た積層体(E4)の(A12)から成る高硬度層上に、製造例9で得た光硬化性樹脂組成物(C11)を、硬化後の塗膜厚さが3~8μmとなるようバーコーターを用いて塗布し、PETフィルムで覆って圧着した。また、(B1)から成る基材層上に製造例10で得た光硬化性樹脂組成物(C12)を、硬化後の塗膜厚さが3~8μmとなるようバーコーターを用いて塗布し、PETフィルムで覆って圧着した。続いて、光源距離12cm、出力80W/cmの高圧水銀灯を備えたコンベアでラインスピード1.5m/分の条件で紫外線を照射し硬化させてPETフィルムを剥離し、高硬度層および基材層上にそれぞれ(C11)および(C12)から成るハードコート層を備えた積層体(E5)を得た。高温高湿暴露試験の結果は200μmであり、鉛筆引っかき硬度試験の結果は4Hであった。
実施例6
 樹脂(A11)の代わりに樹脂(A13)を使用した以外は、実施例1と同様にして(A13)と(B1)の積層体(E6)を得た。得られた積層体の全体厚みは1.0mm、(A12)から成る高硬度層の厚みは中央付近で60μmであった。高温高湿暴露試験の結果は90μmであり、鉛筆引っかき硬度試験の結果はHであった。
実施例7
 樹脂(A11)の代わりに樹脂(A14)を使用した以外は、実施例1と同様にして(A14)と(B1)の積層体(E7)を得た。得られた積層体の全体厚みは1.0mm、(A12)から成る高硬度層の厚みは中央付近で60μmであった。高温高湿暴露試験の結果は200μmであり、鉛筆引っかき硬度試験の結果は2Hであった。
実施例8
 樹脂(A11)の代わりに樹脂(A15)を使用した以外は、実施例1と同様にして(A15)と(B1)の積層体(E8)を得た。得られた積層体の全体厚みは1.0mm、(A12)から成る高硬度層の厚みは中央付近で60μmであった。高温高湿暴露試験の結果は120μmであり、鉛筆引っかき硬度試験の結果は2Hであった。
実施例9
 実施例8で得た積層体(E8)の(A15)から成る高硬度層上に、製造例9で得た光硬化性樹脂組成物(C11)を、硬化後の塗膜厚さが3~8μmとなるようバーコーターを用いて塗布し、PETフィルムで覆って圧着した。また、(B1)から成る基材層上に製造例10で得た光硬化性樹脂組成物(C12)を、硬化後の塗膜厚さが3~8μmとなるようバーコーターを用いて塗布し、PETフィルムで覆って圧着した。続いて、光源距離12cm、出力80W/cmの高圧水銀灯を備えたコンベアでラインスピード1.5m/分の条件で紫外線を照射し硬化させてPETフィルムを剥離し、高硬度層および基材層上にそれぞれ(C11)および(C12)から成るハードコート層を備えた積層体(E9)を得た。高温高湿暴露試験の結果は200μmであり、鉛筆引っかき硬度試験の結果は4Hであった。
実施例10
 樹脂(A11)の代わりに樹脂(A16)を使用した以外は、実施例1と同様にして(A16)と(B1)の積層体(E10)を得た。得られた積層体の全体厚みは1.0mm、(A12)から成る高硬度層の厚みは中央付近で60μmであった。高温高湿暴露試験の結果は100μmであり、鉛筆引っかき硬度試験の結果はHであった。
実施例11
 樹脂(A11)の代わりに樹脂(A17)を使用した以外は、実施例1と同様にして(A18)と(B1)の積層体(E11)を得た。得られた積層体の全体厚みは1.0mm、(A17)から成る高硬度層の厚みは中央付近で60μmであった。高温高湿暴露試験の結果は80μmであり、鉛筆引っかき硬度試験の結果は2Hであった。
実施例12
 実施例11で得た積層体(E11)の(A17)から成る高硬度層上に、製造例9で得た光硬化性樹脂組成物(C11)を、硬化後の塗膜厚さが3~8μmとなるようバーコーターを用いて塗布しPETフィルムで覆って圧着した。また、(B1)から成る基材層上に製造例10で得た光硬化性樹脂組成物(C12)を、硬化後の塗膜厚さが3~8μmとなるようバーコーターを用いて塗布し、PETフィルムで覆って圧着した。続いて、光源距離12cm、出力80W/cmの高圧水銀灯を備えたコンベアでラインスピード1.5m/分の条件で紫外線を照射し硬化させてPETフィルムを剥離し、高硬度層および基材層上にそれぞれ(C11)および(C12)から成るハードコート層を備えた積層体(E12)を得た。高温高湿暴露試験の結果は150μmであり、鉛筆引っかき硬度試験の結果は3Hであった。
実施例13
 樹脂(A11)の代わりに樹脂(A1)を使用した以外は、実施例1と同様にして(A1)と(B1)の積層体(E13)を得た。得られた積層体の全体厚みは1.0mm、(A1)から成る高硬度層の厚みは中央付近で60μmであった。高温高湿暴露試験の結果は40μmであり、鉛筆引っかき硬度試験の結果はHであった。
実施例14
 樹脂(A11)の代わりに樹脂(A2)を使用した以外は、実施例1と同様にして(A2)と(B1)の積層体(E14)を得た。得られた積層体の全体厚みは1.0mm、(A2)から成る高硬度層の厚みは中央付近で60μmであった。高温高湿暴露試験の結果は80μmであり、鉛筆引っかき硬度試験の結果はHであった。
実施例15
 実施例14で得た積層体(E14)の(A2)から成る高硬度層上に、製造例9で得た光硬化性樹脂組成物(C11)を、硬化後の塗膜厚さが3~8μmとなるようバーコーターを用いて塗布し、PETフィルムで覆って圧着した。また、(B1)から成る基材層上に製造例10で得た光硬化性樹脂組成物(C12)を、硬化後の塗膜厚さが3~8μmとなるようバーコーターを用いて塗布し、PETフィルムで覆って圧着した。続いて、光源距離12cm、出力80W/cmの高圧水銀灯を備えたコンベアでラインスピード1.5m/分の条件で紫外線を照射し硬化させてPETフィルムを剥離し、高硬度層および基材層上にそれぞれ(C11)および(C12)から成るハードコート層を備えた積層体(E15)を得た。高温高湿暴露試験の結果は100μmであり、鉛筆引っかき硬度試験の結果は3Hであった。
比較例1
 樹脂(A11)の代わりに樹脂(A3)を使用した以外は、実施例1と同様にして(A3)と(B1)の積層体(F1)を得た。得られた積層体の全体厚みは1.0mm、(A3)から成る高硬度層の厚みは中央付近で60μmであった。高温高湿暴露試験の結果は1000μmであり、鉛筆引っかき硬度試験の結果は3Hであった。
比較例2
 樹脂(A11)の代わりに樹脂(A4)を使用した以外は、実施例1と同様にして(A4)と(B1)の積層体(F2)を得た。得られた積層体の全体厚みは1.0mm、(A4)から成る高硬度層の厚みは中央付近で60μmであった。高温高湿暴露試験の結果は1200μmであり、鉛筆引っかき硬度試験の結果は3Hであった。
比較例3
 樹脂(A11)の代わりに、メチルメタクリレート-スチレン共重合体(A5)(新日鐵化学製MS樹脂。商品名:MS800)を、ポリカーボネート(B1)(三菱エンジニアリングプラスチックス社製、商品名:ユーピロンS-1000、質量平均分子量:27,000)を使用して、軸径32mmの単軸押出機のシリンダー温度を220℃に、ロール温度を上流から130℃、140℃、190℃とした以外は、実施例1と同様にして(A5)と(B1)の積層体(F3)を得た。得られた積層体の全体厚みは1.0mm、(A3)から成る高硬度層の厚みは中央付近で60μmであった。さらに実施例3と同様にして積層体(F3)の高硬度層及び基材層上にそれぞれ(C11)および(C12)から成るハードコート層を備えた積層体(F4)を得た。高温高湿暴露試験の結果は500μmであり、鉛筆引っかき硬度試験の結果は3Hであった。
比較例4
 樹脂(A11)の代わりに、ポリカーボネート(B1)(三菱エンジニアリングプラスチックス社製、商品名:ユーピロンS-1000、質量平均分子量:27,000)を使用して、軸径32mmの単軸押出機のシリンダー温度を260℃に、ロール温度を上流から130℃、140℃、190℃とした以外は、実施例1と同様にして(B1)と(B1)の積層体(F5)を得た。得られた積層体の全体厚みは1.0mmであり、鉛筆引掻き硬度試験の結果は、2Bであった。さらに実施例3と同様にして積層体(F5)にそれぞれ(C11)および(C12)から成るハードコート層を備えた積層体(F6)を得た。高温高湿暴露試験の結果は100μmであり、鉛筆引っかき硬度試験の結果はHBであった。
比較例5
 樹脂(A11)の代わりに樹脂(D11)を使用した以外は、実施例1と同様にして(D11)と(B1)の積層体(F7)を得た。得られた積層体の全体厚みは1.0mm、(D11)から成る高硬度層の厚みは中央付近で60μmであった。高温高湿暴露試験の結果は700μmであり、鉛筆引っかき硬度試験の結果は3Hであった。
 実施例及び比較例にあるように、ポリカーボネートを主成分とする基材層の片面にi)スチレン系単量体単位45~70質量%、不飽和ジカルボン酸無水物単量体単位10~30質量%、ビニル系単量体10~35質量%である特定のスチレン-不飽和ジカルボン酸共重合体25~100質量%とii)ビニル系単量体を構成単位とする樹脂75~0質量%をポリマーアロイした樹脂組成物を積層した樹脂積層体は、ビニル系単量体を構成単位とする樹脂単独を、ポリカーボネート樹脂を主成分とする基材層に積層させてなる比較例の樹脂積層体と比較して、高い表面硬度および耐熱性を有し、且つ高温高湿環境下での寸法安定性を有する。
 表1および2より、本発明の合成樹脂積層体は、高温や高湿な環境における形状変化量(反り量)が小さくて形状安定性に優れ、かつ表面硬度、耐候性および耐熱性にも優れていることが確認された。
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
 本発明の合成樹脂積層体は、高温や高湿な環境における反り防止性などの形状安定性、表面硬度、耐衝撃性、耐候性および耐熱性に優れるという特徴を有し、透明性基板材料、透明性保護材料などとして好適に用いられ、特にOA機器・携帯電子機器の表示部前面板やタッチパネル基板さらには熱曲げ加工用シートとして好適に用いられる。

Claims (12)

  1.  特定のスチレン-不飽和ジカルボン酸系共重合体(a1)とビニル系単量体を構成単位とする樹脂(a2)を含有する樹脂(A)を含む樹脂層(高硬度層)を、ポリカーボネート(B)を含有する樹脂層(基材層)の片面に積層させて成る合成樹脂積層体であって、前記(a1)がスチレン系単量体単位45~70質量%、不飽和ジカルボン酸無水物単量体単位10~30質量%、ビニル系単量体10~35質量%からなるスチレン-不飽和ジカルボン酸系共重合体であり、樹脂(A)中の前記(a1)の比率が25~100質量%であり、前記(a2)の比率が75~0質量%であることを特徴とする合成樹脂積層体。
  2.  前記(a1)のビニル系単量体単位がメチルメタクリレートであることを特徴とする請求項1に記載の合成樹脂積層体。
  3.  前記樹脂(A)が、質量平均分子量50,000~300,000の前記スチレン系共重合体(a1)25~100質量%と質量平均分子量50,000~500,000のメチルメタクリレート樹脂(a2)75~0質量%から成ることを特徴とする請求項1または請求項2に記載の合成樹脂積層体。
  4.  前記樹脂(A)を含む樹脂層の厚さが10~250μmであり、前記合成樹脂積層体の全体厚みが0.1~2.0mmの範囲であり、該樹脂層/合成樹脂積層体の全体厚みの比が0.01~0.5であることを特徴とする請求項1~請求項3のいずれかに記載の合成樹脂積層体。
  5.  前記ポリカーボネート(B)の質量平均分子量が25,000~75,000であることを特徴とする請求項1~請求項4のいずれかに記載の合成樹脂積層体。
  6.  前記樹脂層および/または前記基材層が紫外線吸収剤を含有することを特徴とする請求項1~請求項5のいずれかに記載の合成樹脂積層体。
  7.  前記樹脂(A)を含む樹脂層の表面にハードコート処理を施した請求項1~請求項6のいずれかに記載の合成樹脂積層体。
  8.  前記合成樹脂積層体の片面または両面に、反射防止処理、防汚処理、耐指紋処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上を施した請求項1~請求項7のいずれかに記載の合成樹脂積層体。
  9.  請求項1~8のいずれかに記載の合成樹脂積層体を含む透明性基板材料。
  10.  請求項1~8のいずれかに記載の合成樹脂積層体を含む透明性保護材料。
  11.  請求項1~8のいずれかに記載の合成樹脂積層体を含むタッチパネル前面保護板。
  12.  請求項1~8のいずれかに記載の合成樹脂積層体を含む、OA機器または携帯電子機器のための前面板。
PCT/JP2014/079075 2013-11-26 2014-10-31 透明樹脂積層体 WO2015079867A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/039,192 US20170136748A1 (en) 2013-11-26 2014-10-31 Transparent resin laminate
CN201480063248.0A CN105745075B (zh) 2013-11-26 2014-10-31 透明树脂叠层体
EP14866753.8A EP3075533B1 (en) 2013-11-26 2014-10-31 Transparent resin laminate
JP2015550623A JP6571528B2 (ja) 2013-11-26 2014-10-31 透明樹脂積層体
KR1020167016662A KR20160090847A (ko) 2013-11-26 2014-10-31 투명 수지 적층체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-244251 2013-11-26
JP2013244251 2013-11-26

Publications (1)

Publication Number Publication Date
WO2015079867A1 true WO2015079867A1 (ja) 2015-06-04

Family

ID=53198815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079075 WO2015079867A1 (ja) 2013-11-26 2014-10-31 透明樹脂積層体

Country Status (7)

Country Link
US (1) US20170136748A1 (ja)
EP (1) EP3075533B1 (ja)
JP (2) JP6571528B2 (ja)
KR (1) KR20160090847A (ja)
CN (1) CN105745075B (ja)
TW (1) TWI655091B (ja)
WO (1) WO2015079867A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006589A1 (ja) * 2014-07-09 2016-01-14 三菱瓦斯化学株式会社 合成樹脂積層体
WO2016009831A1 (ja) * 2014-07-14 2016-01-21 三菱樹脂株式会社 積層体
WO2016132743A1 (ja) * 2015-02-20 2016-08-25 株式会社クラレ 樹脂組成物、成形品および積層体
JP2018020522A (ja) * 2016-08-05 2018-02-08 三菱瓦斯化学株式会社 透明樹脂積層体
WO2018034315A1 (ja) * 2016-08-18 2018-02-22 三菱瓦斯化学株式会社 2段硬化性積層板
CN107849327A (zh) * 2015-08-18 2018-03-27 株式会社可乐丽 树脂组合物、成型品和层叠体
WO2018084068A1 (ja) * 2016-11-01 2018-05-11 デンカ株式会社 加飾フィルム
JPWO2017094282A1 (ja) * 2015-12-01 2018-09-20 三菱瓦斯化学株式会社 透明樹脂積層体
CN108698393A (zh) * 2016-02-15 2018-10-23 三菱瓦斯化学株式会社 透明树脂叠层体
JP2020011516A (ja) * 2014-07-14 2020-01-23 三菱ケミカル株式会社 積層体
JP2020097197A (ja) * 2018-12-19 2020-06-25 三菱瓦斯化学株式会社 樹脂積層体並びに該樹脂積層体を含む透明基板材料及び透明保護材料
JP2021041614A (ja) * 2019-09-11 2021-03-18 三菱瓦斯化学株式会社 樹脂積層体及びそれを含む透明基板材料並びに透明保護材料

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102541655B1 (ko) * 2020-12-18 2023-06-14 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 다층체 및 성형품

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102614A (en) * 1979-01-29 1980-08-06 Asahi Chem Ind Co Ltd Styrene copolymer and its preparation
JP2006103169A (ja) 2004-10-06 2006-04-20 Mitsubishi Gas Chem Co Inc 液晶ディスプレーカバー用ポリカーボネート樹脂積層体
JP2008268913A (ja) * 2007-03-29 2008-11-06 Asahi Kasei Chemicals Corp 積層光学フィルム
JP2009500195A (ja) 2005-07-07 2009-01-08 ゼネラル・エレクトリック・カンパニイ Dmbpcポリカーボネートホモポリマー及びコポリマー製の窓及び別の物品
JP2010167659A (ja) 2009-01-22 2010-08-05 Teijin Chem Ltd 樹脂積層体
JP2014198454A (ja) * 2013-03-13 2014-10-23 住友化学株式会社 樹脂積層板およびそれを用いた耐擦傷性樹脂積層板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041780B2 (en) * 2003-08-26 2006-05-09 General Electric Methods of preparing a polymeric material composite
DE102006051305A1 (de) * 2006-10-31 2008-05-08 Bayer Materialscience Ag Verfahren zur Filtration von Substratmaterialien
CN101755006A (zh) * 2007-10-29 2010-06-23 帝人化成株式会社 聚碳酸酯树脂层叠体
KR101091537B1 (ko) * 2009-01-06 2011-12-13 주식회사 엘지화학 광학 필름 및 이를 포함하는 액정 표시 장치
JP2011026563A (ja) * 2009-06-22 2011-02-10 Asahi Kasei Chemicals Corp 耐熱アクリル系樹脂組成物、及びその成形体
JP2012000812A (ja) * 2010-06-15 2012-01-05 Daicel Corp 積層フィルム及びその製造方法並びに電子デバイス
EP3003719B1 (de) * 2013-05-24 2016-12-14 Evonik Röhm GmbH Verbundsystem mit hoher schlagzähigkeit und wärmeformbeständigkeit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102614A (en) * 1979-01-29 1980-08-06 Asahi Chem Ind Co Ltd Styrene copolymer and its preparation
JP2006103169A (ja) 2004-10-06 2006-04-20 Mitsubishi Gas Chem Co Inc 液晶ディスプレーカバー用ポリカーボネート樹脂積層体
JP2009500195A (ja) 2005-07-07 2009-01-08 ゼネラル・エレクトリック・カンパニイ Dmbpcポリカーボネートホモポリマー及びコポリマー製の窓及び別の物品
JP2008268913A (ja) * 2007-03-29 2008-11-06 Asahi Kasei Chemicals Corp 積層光学フィルム
JP2010167659A (ja) 2009-01-22 2010-08-05 Teijin Chem Ltd 樹脂積層体
JP2014198454A (ja) * 2013-03-13 2014-10-23 住友化学株式会社 樹脂積層板およびそれを用いた耐擦傷性樹脂積層板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3075533A4

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102368754B1 (ko) 2014-07-09 2022-02-28 미츠비시 가스 가가쿠 가부시키가이샤 합성 수지 적층체
KR20170031154A (ko) * 2014-07-09 2017-03-20 미츠비시 가스 가가쿠 가부시키가이샤 합성 수지 적층체
JPWO2016006589A1 (ja) * 2014-07-09 2017-04-27 三菱瓦斯化学株式会社 合成樹脂積層体
WO2016006589A1 (ja) * 2014-07-09 2016-01-14 三菱瓦斯化学株式会社 合成樹脂積層体
WO2016009831A1 (ja) * 2014-07-14 2016-01-21 三菱樹脂株式会社 積層体
JP2016020052A (ja) * 2014-07-14 2016-02-04 三菱樹脂株式会社 積層体
JP2020011516A (ja) * 2014-07-14 2020-01-23 三菱ケミカル株式会社 積層体
WO2016132743A1 (ja) * 2015-02-20 2016-08-25 株式会社クラレ 樹脂組成物、成形品および積層体
JPWO2016132743A1 (ja) * 2015-02-20 2017-11-30 株式会社クラレ 樹脂組成物、成形品および積層体
CN107250261A (zh) * 2015-02-20 2017-10-13 株式会社可乐丽 树脂组合物、成型品和层叠体
KR102516911B1 (ko) * 2015-08-18 2023-03-31 주식회사 쿠라레 수지 조성물, 성형품 및 적층체
CN107849327A (zh) * 2015-08-18 2018-03-27 株式会社可乐丽 树脂组合物、成型品和层叠体
KR20180041616A (ko) * 2015-08-18 2018-04-24 주식회사 쿠라레 수지 조성물, 성형품 및 적층체
CN107849327B (zh) * 2015-08-18 2020-10-16 株式会社可乐丽 树脂组合物、成型品和层叠体
JPWO2017094282A1 (ja) * 2015-12-01 2018-09-20 三菱瓦斯化学株式会社 透明樹脂積層体
CN108698393A (zh) * 2016-02-15 2018-10-23 三菱瓦斯化学株式会社 透明树脂叠层体
EP3418051A4 (en) * 2016-02-15 2019-06-19 Mitsubishi Gas Chemical Company, Inc. TRANSPARENT RESIN LAMINATE
JPWO2017141787A1 (ja) * 2016-02-15 2018-12-13 三菱瓦斯化学株式会社 透明樹脂積層体
JP2018020522A (ja) * 2016-08-05 2018-02-08 三菱瓦斯化学株式会社 透明樹脂積層体
WO2018034315A1 (ja) * 2016-08-18 2018-02-22 三菱瓦斯化学株式会社 2段硬化性積層板
JPWO2018034315A1 (ja) * 2016-08-18 2019-06-20 三菱瓦斯化学株式会社 2段硬化性積層板
KR20190042023A (ko) * 2016-08-18 2019-04-23 미츠비시 가스 가가쿠 가부시키가이샤 2단 경화성 적층판
KR102445018B1 (ko) 2016-08-18 2022-09-21 미츠비시 가스 가가쿠 가부시키가이샤 2단 경화성 적층판
US11421093B2 (en) 2016-08-18 2022-08-23 Mitsubishi Gas Chemical Company, Inc. Two-stage curable laminate
JPWO2018084068A1 (ja) * 2016-11-01 2019-09-19 デンカ株式会社 加飾フィルム
WO2018084068A1 (ja) * 2016-11-01 2018-05-11 デンカ株式会社 加飾フィルム
JP7239314B2 (ja) 2018-12-19 2023-03-14 三菱瓦斯化学株式会社 樹脂積層体並びに該樹脂積層体を含む透明基板材料及び透明保護材料
JP2020097197A (ja) * 2018-12-19 2020-06-25 三菱瓦斯化学株式会社 樹脂積層体並びに該樹脂積層体を含む透明基板材料及び透明保護材料
JP2021041614A (ja) * 2019-09-11 2021-03-18 三菱瓦斯化学株式会社 樹脂積層体及びそれを含む透明基板材料並びに透明保護材料
JP7356304B2 (ja) 2019-09-11 2023-10-04 三菱瓦斯化学株式会社 樹脂積層体及びそれを含む透明基板材料並びに透明保護材料

Also Published As

Publication number Publication date
EP3075533B1 (en) 2018-02-21
JP2019162885A (ja) 2019-09-26
KR20160090847A (ko) 2016-08-01
JPWO2015079867A1 (ja) 2017-03-16
CN105745075A (zh) 2016-07-06
TW201532817A (zh) 2015-09-01
JP6571528B2 (ja) 2019-09-04
EP3075533A4 (en) 2017-07-26
EP3075533A1 (en) 2016-10-05
TWI655091B (zh) 2019-04-01
US20170136748A1 (en) 2017-05-18
CN105745075B (zh) 2018-12-04

Similar Documents

Publication Publication Date Title
JP6571528B2 (ja) 透明樹脂積層体
TWI620660B (zh) Synthetic resin laminate
JP6068433B2 (ja) 合成樹脂積層体
JP6472385B2 (ja) 合成樹脂積層体
WO2017141787A1 (ja) 透明樹脂積層体
JP6630670B2 (ja) 合成樹脂積層体
JP6712926B2 (ja) 透明樹脂積層体
WO2017094282A1 (ja) 透明樹脂積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015550623

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15039192

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014866753

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014866753

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167016662

Country of ref document: KR

Kind code of ref document: A