WO2016006589A1 - 合成樹脂積層体 - Google Patents

合成樹脂積層体 Download PDF

Info

Publication number
WO2016006589A1
WO2016006589A1 PCT/JP2015/069475 JP2015069475W WO2016006589A1 WO 2016006589 A1 WO2016006589 A1 WO 2016006589A1 JP 2015069475 W JP2015069475 W JP 2015069475W WO 2016006589 A1 WO2016006589 A1 WO 2016006589A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthetic resin
layer
laminate
resin
base material
Prior art date
Application number
PCT/JP2015/069475
Other languages
English (en)
French (fr)
Inventor
正樹 平林
Original Assignee
三菱瓦斯化学株式会社
Mgcフィルシート株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Mgcフィルシート株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2016532936A priority Critical patent/JP6630670B2/ja
Priority to CN201580036623.7A priority patent/CN106573454B/zh
Priority to KR1020177002712A priority patent/KR102368754B1/ko
Publication of WO2016006589A1 publication Critical patent/WO2016006589A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier

Definitions

  • the present invention relates to a synthetic resin laminate.
  • the present invention is a synthetic resin laminate that is used for a transparent substrate material or a protective material and has a base material layer and a surface resin layer (high hardness layer), such as bonding of OCA and ITO-formed PET.
  • the present invention relates to a synthetic resin laminate that suppresses curling after being left in a high-temperature and high-humidity environment in a state where the water vapor permeability on the base material layer side is small, and is excellent in surface hardness.
  • Patent Document 1 proposes a method of coating the surface with an ultraviolet curable resin or the like, and a method of applying a hard coat to a substrate obtained by coextruding a polycarbonate resin and an acrylic resin.
  • the surface of the polycarbonate resin is hard-coated, the required pencil hardness cannot be satisfied, and it may not be used for applications that require a high surface hardness.
  • laminates of acrylic resin and polycarbonate resin have improved surface hardness to some extent and have been widely used for electronic device displays and touch panel front panels, but the plate material after leaving it in a high-temperature, high-humidity environment is large. There was a problem of shape stability such as curling, and it was a serious defect in electronic equipment related applications such as liquid crystal display covers and touch panel front plates.
  • Patent Document 2 as a method of suppressing curling after being left in a high-temperature and high-humidity environment, a methylmethacrylate-styrene copolymer, which is a resin having a lower water absorption than that of an acrylic resin, is laminated on a polycarbonate resin.
  • the condition of 40 ° C./90% in the environmental test adopted here is insufficient as a condition for high temperature and high humidity.
  • Patent Document 3 discloses a laminate characterized by laminating a high-hardness modified polycarbonate resin on a polycarbonate resin, but does not mention shape stability when the environment changes. Regarding the direction of curling of the plate after being left in a high-temperature and high-humidity environment, when used for the front plate of a display, etc., curling with the surface resin layer side convex can be allowed to some extent, but the base material layer A curl having a convex side is particularly undesirable in appearance.
  • Patent Document 4 discloses a laminate characterized by laminating a resin having (meth) acrylic acid ester and aliphatic vinyl as structural units on a polycarbonate resin, and left in a high temperature and high humidity environment. The size of the later curl is suppressed. However, the direction of curl is not mentioned. Further, in Patent Document 5, the curl size after being left in a high-temperature and high-humidity environment by a method such as defining the Tg difference of different resins to be laminated is suppressed, but the curl has a convex surface resin side. Both those that do and those that make the base layer side convex are generated. Thus, until now, there has been no resin laminate in which the shape after being left in a high-temperature and high-humidity environment is directed only to curls with convex surface resin side, and the curl size is suppressed.
  • an optical adhesive sheet or the like is usually formed on the surface of the transparent resin laminate on the base layer side (surface on the surface resin side). It is bonded to ITO-formed PET or the like through an adhesive layer. In the case of bonding, the water vapor transmission rate is different between the non-bonded surface side and the bonded surface side.
  • the water vapor transmission rate is 0.6 g / m 2 when measured with a Lyssy water vapor transmission meter L80-5000 (manufactured by PBI Dansenor). -It becomes day and the water-vapor-permeation rate at the time of measuring only with a laminated body is 18.4g / m ⁇ 2 > -day. Therefore, the curl after being left in a high-temperature and high-humidity environment is greatly affected by being bonded to the touch panel specification, and it is desirable that the effect be small. However, until now, there has been no resin laminate in which the curl size is suppressed in a state where the water vapor transmission rate on only one surface side is small with respect to the shape after being left in a high temperature and high humidity environment.
  • the present invention is used for transparent substrate materials and protective materials, and can suppress curling after being left in a high-temperature and high-humidity environment in a state where the water vapor transmission rate on the base layer side is small, and has excellent surface hardness.
  • An object is to provide a synthetic resin laminate.
  • the inventors of the present invention have a laminate in which the high-hardness layer side is convex after being left in a high-temperature and high-humidity environment and has a curl shape with a curvature radius R of 2.0 m or more.
  • the present inventors have found that curling can be suppressed after leaving the body in a high-temperature and high-humidity environment with a low water vapor transmission rate on the base material layer side, and the present invention has been achieved.
  • the present invention is as follows.
  • a resin laminate (I) The thickness of the high hardness layer is 10 to 250 ⁇ m, the total thickness of the base layer and the high hardness layer is 0.1 to 2.0 mm, and the ratio of the thickness of the high hardness layer / base layer is 0.01 to 0.8, (Ii) the pencil hardness of the high hardness layer is F or more, (Iii)
  • the curl shape after leaving the synthetic resin laminate in a high-temperature and high-humidity environment has a curvature radius R ⁇ 2.0 m with the high-hardness layer side convex.
  • Synthetic resin laminate. ⁇ 2> The third layer is further laminated so that the water vapor transmission rate on the surface opposite to the high hardness layer of the base material layer is 0.2 to 0.6 g / m 2 ⁇ day, and the high temperature and high humidity ⁇ 1> synthetic resin laminate, characterized in that the curl shape after leaving in an environment is a laminate having a curvature radius R ⁇ 3.2 m with the high hardness layer side convex or the base material layer side convex body.
  • thermoplastic resin (A) contained in the base material layer is a resin containing polycarbonate (a1)
  • thermoplastic resin (B) contained in the high-hardness layer is an aromatic vinyl- (meth) acrylate ester
  • the synthetic resin laminate according to ⁇ 3>, wherein the (meth) acrylic acid ester monomer unit of (b1) is methyl methacrylate.
  • the resin (B) contains 50 to 100 parts by mass of the aromatic vinyl- (meth) acrylate-unsaturated dicarboxylic acid copolymer (b1) having a weight average molecular weight of 50,000 to 300,000,
  • ⁇ 6> The synthetic resin laminate according to any one of ⁇ 1> to ⁇ 5>, wherein the polycarbonate (a1) has a weight average molecular weight of 25,000 to 75,000.
  • ⁇ 7> The synthetic resin laminate according to any one of ⁇ 1> to ⁇ 6>, wherein the high-hardness layer and / or the base material layer contains an ultraviolet absorber.
  • ⁇ 8> The synthetic resin laminate according to any one of ⁇ 1> to ⁇ 7>, wherein a surface of the high hardness layer is subjected to a hard coat treatment.
  • ⁇ 11> The synthetic resin laminate according to any one of ⁇ 1> to ⁇ 10>, wherein the difference between the tensile elastic modulus of the high hardness layer and the tensile elastic modulus of the base material layer is 400 MPa or less.
  • ⁇ 12> A transparent substrate material comprising the synthetic resin laminate according to any one of ⁇ 1> to ⁇ 11>.
  • ⁇ 13> A transparent protective material comprising the synthetic resin laminate according to any one of ⁇ 1> to ⁇ 11>.
  • ⁇ 14> A touch panel front protective plate comprising the synthetic resin laminate according to any one of ⁇ 1> to ⁇ 11>.
  • ⁇ 15> A laminate of a low water vapor transmission rate plate comprising the synthetic resin laminate according to any one of ⁇ 1> to ⁇ 11>.
  • the synthetic resin laminate is used as a transparent substrate material or a transparent protective material.
  • the synthetic resin laminate is a portable display device such as a mobile phone terminal, a portable electronic playground equipment, a portable information terminal, and a mobile PC, a setting type such as a notebook PC, a desktop PC liquid crystal monitor, and a liquid crystal television. It is suitably used for display devices.
  • thermoplastic resin (A) is a main component which forms the base material layer of a synthetic resin laminated body.
  • the thermoplastic resin (A) is a resin mainly containing polycarbonate (a1).
  • the polycarbonate (a1) used in the present invention contains a carbonate ester bond in the molecular main chain. That is, it includes a — [O—R—OCO] — unit (wherein R includes an aliphatic group, an aromatic group, or both an aliphatic group and an aromatic group, and further has a linear structure or a branched structure). Although it will not specifically limit if it is a thing, It is preferable to use the polycarbonate containing the structural unit of following formula [1] especially. By using such a polycarbonate, a resin laminate excellent in impact resistance can be obtained.
  • an aromatic polycarbonate resin for example, Iupilon S-2000, Iupilon S-1000, Iupilon E-2000 or the like can be used as the polycarbonate (a1).
  • the weight average molecular weight of the polycarbonate (a1) affects the impact resistance and molding conditions of the synthetic resin laminate. That is, when the weight average molecular weight is too small, the impact resistance of the synthetic resin laminate is lowered, which is not preferable. When the weight average molecular weight is too high, an excessive heat source may be required when the resin layer containing the resin (a1) is laminated, which is not preferable.
  • the weight average molecular weight of the polycarbonate (a1) is preferably 15,000 to 75,000, more preferably 20,000 to 70,000. More preferably, it is 25,000 to 65,000.
  • the present invention relates to 50 to 100 parts by mass of a specific aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid copolymer (b1) and a resin (b2) 50 to 50 parts by mass of a vinyl monomer.
  • a synthetic resin laminate characterized by being a synthetic resin laminate in which a resin layer (high hardness layer) alloyed with 0 parts by mass is laminated on at least one surface of a resin layer (base material layer) containing polycarbonate (a1) Is the body.
  • thermoplastic resin (B) is a main component which forms the high hardness layer of a synthetic resin laminated body.
  • the thermoplastic resin (B) mainly contains an aromatic vinyl- (meth) acrylic ester-unsaturated dicarboxylic acid copolymer (b1) and a resin (b2) having a vinyl monomer as a structural unit. To do.
  • the (b1) used in the laminate of the present invention comprises 45 to 80% by mass of an aromatic vinyl monomer unit, 5 to 45% by mass of a (meth) acrylic acid ester monomer unit, an unsaturated dicarboxylic acid anhydride unit.
  • aromatic vinyl monomer unit examples include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, t-butylstyrene, and the like. .
  • styrene is particularly preferable from the viewpoint of compatibility.
  • These aromatic vinyl monomers may be used alone or in combination of two or more.
  • (meth) acrylic acid ester monomer unit acrylonitrile, methacrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate , N-butyl methacrylate, 2-ethylhexyl methacrylate and the like.
  • methyl methacrylate (MMA) is preferable from the viewpoint of compatibility with the vinyl monomer.
  • These (meth) acrylic acid ester monomer units may be used alone or in combination of two or more.
  • Examples of the unsaturated dicarboxylic anhydride monomer include acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid, and maleic anhydride is preferred from the viewpoint of compatibility with vinyl monomers.
  • acid anhydrides such as maleic acid, itaconic acid, citraconic acid, and aconitic acid
  • maleic anhydride is preferred from the viewpoint of compatibility with vinyl monomers.
  • One type of these unsaturated dicarboxylic acid anhydride monomers may be used, or two or more types may be used in combination.
  • the weight average molecular weight of the aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid copolymer (b1) is preferably 100,000 to 200,000, more preferably 120,000 to 180,000.
  • (b1) has a weight average molecular weight of 50,000 to 300,000
  • (b2) good compatibility with a resin having a vinyl monomer as a constituent unit.
  • the weight average molecular weight (Mw), the number average molecular weight (Mn), and the molecular weight distribution (Mw / Mn) of (b1) should be measured using gel permeation chromatography using THF or chloroform as a solvent. Can do.
  • the resin (b2) containing a vinyl monomer used in the present invention include acrylonitrile, methacrylonitrile, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, methacryl Examples include homopolymerized vinyl monomers such as acid, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, and 2-ethylhexyl methacrylate, and methyl methacrylate is particularly preferable as the monomer unit. Further, a copolymer containing two or more kinds of the monomer units may be used.
  • the weight average molecular weight of the resin (b2) having a vinyl monomer as a constitutional unit is mixed (dispersed) with the aromatic vinyl- (meth) acrylate-unsaturated dicarboxylic acid copolymer (b1). )
  • ease of production of these blended resins (B) That is, if the weight average molecular weight of the resin (b2) having a vinyl monomer as a constituent unit is too large, the difference in melt viscosity between (b1) and (b2) becomes too large, so the mixing (dispersion) of the two is poor. Thus, the transparency of the resin (B) may be deteriorated or a stable melt-kneading cannot be continued.
  • the weight average molecular weight of the resin (b2) having a vinyl monomer as a constituent unit is preferably in the range of 50,000 to 700,000, and more preferably in the range of 60,000 to 550,000. More preferably, it is in the range of 70,000 to 500,000.
  • the mass ratio of the aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid copolymer (b1) and the resin (b2) having a vinyl monomer as a structural unit is such that the component (b1) is The component (b2) is 50 to 0 parts by mass with respect to 50 to 100 parts by mass.
  • the component (b2) is 45 to 10 parts by mass with respect to the component (b1) 55 to 90 parts by mass.
  • the component (b2) is 60 to 85 parts by mass, and the component (b2) is 40 to 15 parts by mass.
  • the surface hardness is excellent while maintaining transparency, and the substrate is left in a high-temperature, high-humidity environment with a low water vapor transmission rate on the substrate layer side, such as bonding of OCA and ITO-formed PET.
  • the resin (B) is suitable for suppressing curling after the treatment.
  • the hardness of the high hardness layer is a pencil hardness F or higher, preferably a pencil hardness H or higher.
  • the production method of the polycarbonate (a1) used in the present invention can be appropriately selected depending on the monomers used, such as a known phosgene method (interfacial polymerization method) and transesterification method (melting method).
  • the method for producing the resin (B) of the high hardness layer is not particularly limited, and necessary components are mixed in advance using a mixer such as a tumbler, a Henschel mixer, or a super mixer, and then Banbury.
  • a mixer such as a tumbler, a Henschel mixer, or a super mixer
  • a known method such as melt kneading by a machine such as a mixer, a roll, a Brabender, a single screw extruder, a twin screw extruder, or a pressure kneader can be applied.
  • the thickness of the high hardness layer affects the surface hardness and impact resistance of the synthetic resin laminate. That is, when the thickness of the high hardness layer is too thin, the surface hardness is lowered, which is not preferable. When the thickness of the high hardness layer is too large, the impact resistance is deteriorated, which is not preferable.
  • the thickness of the high hardness layer is preferably 10 to 250 ⁇ m, more preferably 30 to 200 ⁇ m. More preferably, it is 60 to 150 ⁇ m.
  • the tensile elastic modulus of the high-hardness layer and the base material layer in an environment of 85 ° C. affects the rigidity of the synthetic resin laminate. That is, when the tensile elastic modulus in the 85 ° C. environment is too low, deformation due to external force is increased, and workability such as coating and lamination is inferior, which is not preferable.
  • the tensile modulus of elasticity of the high-hardness layer and the base material layer is preferably 1600 MPa or more, and more preferably 1700 MPa or more, respectively. Further, the difference in tensile elastic modulus between the high hardness layer and the base material layer in an environment of 85 ° C.
  • the overall thickness of the synthetic resin laminate (sheet), the thickness of the high hardness layer, and the composition of the high hardness layer affect the curl of the synthetic resin laminate after being left in a high temperature and high humidity environment. That is, if the overall thickness is too thin, the curl after being left in a high-temperature and high-humidity environment becomes large, and if the overall thickness is thick, the curl after being left in a high-temperature and high-humidity environment becomes small. In addition, if the thickness of the high hardness layer is too thin, the curl after leaving in a high temperature and high humidity environment becomes small, but the hardness decreases, and if the surface layer is thick, the curl after leaving in a high temperature and high humidity environment is reduced.
  • the composition of the high hardness layer according to the total thickness of each and the thickness of the high hardness layer.
  • the total thickness of the base material layer and the high hardness layer is 0.1 to 2.0 mm, preferably 0.12 to 1.5 mm, more preferably 0.15 to 1.2 mm,
  • the ratio of the thickness of the high hardness layer / the base material layer is 0.01 to 0.8, preferably 0.02 to 0.7, more preferably 0.04 to 0.6.
  • the curl shape after leaving it in a high-temperature and high-humidity environment which will be described in detail later, without a further layer other than the base material layer and the high-hardness layer on the synthetic resin laminate, has a high hardness.
  • the layer side is convex and the curvature radius R ⁇ 2.0 m is preferable, and the curvature radius R ⁇ 2.2 m is more preferable. More preferably, the radius of curvature R ⁇ 2.4 m. In this case, it is preferable that the curl with the base layer side convex is not generated.
  • R curvature radius
  • the water vapor transmission rate on the base material layer side of the synthetic resin laminate is 3.0 to 20.0 g / m 2 ⁇ day.
  • the water vapor permeability on the high hardness layer side of the synthetic resin laminate is 2.0 to 20.0 g / m 2 ⁇ day.
  • connects a 3rd layer falls as mentioned above.
  • the water vapor transmission rate on the base material layer side of the synthetic resin laminate is, for example, about 0.2 to 0.6 g / m 2 ⁇ day.
  • the curled shape of the synthetic resin laminate after leaving the synthetic resin laminate in a high-temperature and high-humidity environment with the third layer further laminated is convex on the high-hardness layer side or the substrate With the layer side convex, the curvature radius R ⁇ 3.2 m. More preferably, the radius of curvature R ⁇ 4.2 m, and even more preferably, the radius of curvature R ⁇ 5.6 m.
  • the thermoplastic resin (A) that forms the base layer and / or the thermoplastic resin (B) that forms the high-hardness layer can contain components other than the main components described above.
  • an ultraviolet absorber can be mixed and used for the thermoplastic resin (A) and / or the thermoplastic resin (B). If the content of the UV absorber is too low, the light resistance will be insufficient, and if the content is too high, excessive UV absorber will be scattered due to high temperature depending on the molding method, causing the molding environment and causing problems. Sometimes.
  • the content of the ultraviolet absorber is preferably 0 to 5% by mass, more preferably 0 to 3% by mass, and still more preferably 0 to 1% by mass.
  • Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, 2-hydroxy -4-octadecyloxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, etc.
  • Benzophenone UV absorber 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, 2- (2-hydroxy-3 -T-butyl-5-methylphenyl) benzotriazole, 2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol and other benzotriazole UV absorbers, phenyl salicylate, 2,4-di-t-butylphenyl-3 Benzoate UV absorbers such as, 5-di-t-butyl-4-hydroxybenzoate, hindered amine UV absorbers such as bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate, 4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-ethoxyphenyl)
  • additives can be mixed and used for the thermoplastic resin (A) and / or (B) forming the high hardness layer and / or the base material layer.
  • additives include antioxidants, anti-colorants, antistatic agents, mold release agents, lubricants, dyes, pigments, plasticizers, flame retardants, resin modifiers, compatibilizers, organic fillers, and inorganic fillers. Examples include reinforcing materials.
  • the method of mixing is not particularly limited, and a method of compounding the whole amount, a method of dry blending the master batch, a method of dry blending the whole amount, and the like can be used.
  • the surface of the high hardness layer or the surface of the polycarbonate substrate layer may be subjected to a hard coat treatment.
  • the hard coat layer is formed by a hard coat process using a hard coat paint that is cured using thermal energy and / or light energy.
  • the hard coat paint that is cured using thermal energy include polyorganosiloxane-based and cross-linked acrylic-based thermosetting resin compositions.
  • a hard coat paint that is cured using light energy for example, a photocurable resin in which a photopolymerization initiator is added to a resin composition composed of monofunctional and / or polyfunctional acrylate monomers and / or oligomers. Examples thereof include a composition.
  • Examples of the hard coat paint to be cured using light energy applied on the base material layer in the present invention include 20 to 60% by mass of 1,9-nonanediol diacrylate and 1,9-nonanediol diacrylate.
  • Examples thereof include a photocurable resin composition in which 1 to 10 parts by mass of a photopolymerization initiator is added to 100 parts by mass of a resin composition comprising 40 to 80% by mass of a compound comprising a functional epoxy (meth) acrylate oligomer. .
  • the method for applying the hard coat paint in the present invention is not particularly limited, and a known method can be used. Examples include spin coating, dipping, spraying, slide coating, bar coating, roll coating, gravure coating, meniscus coating, flexographic printing, screen printing, beat coating, and blurring. .
  • a pretreatment of the coated surface may be performed before the hard coat. Examples of treatment include known methods such as sandblasting, solvent treatment, corona discharge treatment, chromic acid treatment, flame treatment, hot air treatment, ozone treatment, ultraviolet treatment, and primer treatment with a resin composition. Can be mentioned.
  • each material of the high hardness layer, the base material layer and the hard coat for example, the resins (A) and (B) is preferably filtered and purified by a filter treatment.
  • a filter treatment By producing or laminating through a filter, it is possible to obtain a synthetic resin laminate having few appearance defects such as foreign matters and defects.
  • the filter to be used is not particularly limited, and known filters can be used, and are appropriately selected depending on the use temperature, viscosity, and filtration accuracy of each material.
  • the filter medium is not particularly limited, but polypropylene, cotton, polyester, viscose rayon and glass fiber nonwoven fabric or roving yarn roll, phenol resin impregnated cellulose, metal fiber nonwoven fabric sintered body, metal powder sintered body, breaker plate, Alternatively, any combination of these can be used. In view of heat resistance, durability, and pressure resistance, a type in which a metal fiber nonwoven fabric is sintered is preferable.
  • the filtration accuracy is 50 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less for the polycarbonate (a1) of the base material layer.
  • the filtration accuracy of the hard coat agent is 20 ⁇ m or less, preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less because it is applied to the outermost layer of the synthetic resin laminate.
  • a polymer filter used for thermoplastic resin melt filtration.
  • the polymer filter is classified into a leaf disk filter, a candle filter, a pack disk filter, a cylindrical filter and the like depending on its structure, and a leaf disk filter having a large effective filtration area is particularly suitable.
  • the synthetic resin laminate of the present invention can be subjected to one or more of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment on one side or both sides.
  • the methods of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment are not particularly limited, and known methods can be used. For example, a method of applying a reflection reducing coating, a method of depositing a dielectric thin film, a method of applying an antistatic coating, and the like can be mentioned.
  • ⁇ Tensile elastic modulus under 85 ° C environment> Using a single-layer extruder that has an adapter and a T-die in a single-screw extruder with a shaft diameter of 50 mm, a synthetic resin single-layer body having a thickness of 1 mm is formed from various materials of a high-hardness layer and a base layer.
  • a dumbbell specimen was created at the center of the molded product. Dumbbell specimens were immersed in 23 ° C water for 3 days, wiped off water, and autograph AGS-5kNX (manufactured by Shimadzu Corp.) with a refrigerator high temperature and high humidity tank was used. The tensile modulus was measured according to the described tensile test method.
  • the taken out test piece is left horizontally in a convex state, scanned at intervals of 1 mm, and the height of the center is raised.
  • the laminated body (deposited product) was evaluated.
  • thermoplastic resin (A) and the thermoplastic resin (B) include the following materials, but are not limited thereto.
  • A1 Polycarbonate resin: Iupilon S-1000 manufactured by Mitsubishi Engineering Plastics Co., Ltd. The tensile elastic modulus in a 85 ° C. environment of a synthetic resin monolayer having a thickness of 1 mm using S-1000 was 1977 MPa.
  • B1 Specific aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid copolymer: R-200, Denki Kagaku Kogyo Co., Ltd.
  • B2 Specific aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid copolymer: R-100, Denki Kagaku Kogyo Co., Ltd.
  • B3 Resin containing vinyl monomer: Methyl methacrylate resin parapet HR-L manufactured by Kuraray Co., Ltd.
  • B4 Resin containing (meth) acrylic acid ester and aliphatic vinyl as structural units: Synthetic resin (D12)
  • Aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid copolymer (b1) R-200 (manufactured by Denki Kagaku Kogyo, weight average molecular weight: 185,000, aromatic vinyl monomer: (meth) acrylic The ratio of acid ester monomer: unsaturated dicarboxylic acid anhydride monomer 55: 25: 20) 50% by mass, and parapet as methyl methacrylate resin, which is a resin (b2) having a vinyl monomer as a structural unit HR-L (manufactured by Kuraray) 50 mass%, phosphorus additive PEP36 (manufactured by ADEKA) 500 ppm, and stearic acid monoglyceride (product name: H-100, manufactured by Riken Vitamin) 0.2% were charged and mixed in a blender for 20 minutes.
  • HR-L structural unit
  • phosphorus additive PEP36 manufactured by ADEKA
  • stearic acid monoglyceride product name: H-100,
  • Methyl which is a resin (b2) having a specific aromatic vinyl- (meth) acrylic acid ester-unsaturated dicarboxylic acid copolymer (b1) of R-200 of 60% by mass and a vinyl monomer as a structural unit
  • a methacrylate resin 40% by mass of Parapet HR-L, 500 ppm of phosphorus additive PEP36 and 0.2% of stearic acid monoglyceride were mixed and pelletized in the same manner as in Production Example 1.
  • the pellets could be manufactured stably.
  • the tensile elastic modulus in a 85 ° C. environment of a synthetic resin monolayer having a thickness of 1 mm using the above pellets was 1891 MPa.
  • Production Example 7 [Production of photocurable resin composition (C11) coated on high hardness layer]
  • a mixing vessel equipped with a stirring blade 60 parts by mass of tris (2-acryloxyethyl) isocyanurate (manufactured by Aldrich) and 40 parts by mass of neopentyl glycol oligoacrylate (manufactured by Osaka Organic Chemical Industry, trade name: 215D) 1 part by mass of 2,4,6-trimethylbenzoyldiphenylphosphine oxide (manufactured by Ciba Japan, trade name: DAROCUR TPO), 0.3 part by mass of 1-hydroxycyclohexyl phenyl ketone (manufactured by Aldrich), Introduced a composition comprising 1 part by weight of 2- (2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (Ciba Japan, trade name: TINUVIN234) And stirred for 1 hour
  • Production Example 8 [Production of photocurable resin composition (C12) coated on polycarbonate base layer]
  • a mixing tank equipped with a stirring blade 40 parts by mass of 1,9-nonanediol diacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name: Biscote # 260) and a hexafunctional urethane acrylate oligomer (manufactured by Shin-Nakamura Chemical Co., Ltd., (Trade name: U-6HA) 40 parts by mass, 20 parts by mass of a condensate having a succinic acid / trimethylolethane / acrylic acid molar ratio of 1/2/4, and 2,4,6-trimethylbenzoyldiphenylphosphine 2.8 parts by mass of oxide (manufactured by Ciba Japan, trade name: DAROCUR TPO), 1 part by mass of benzophenone (manufactured by Aldrich), 2- (2H-benzotriazol-2-
  • Continuous polymerization was carried out at 150 ° C., and the liquid level in the polymerization tank was continuously withdrawn from the bottom and introduced into a desolventizer to obtain a pellet-like vinyl copolymer resin.
  • the vinyl copolymer resin was dissolved in methyl isobutyrate (manufactured by Kanto Chemical) to prepare a 10 mass% methyl isobutyrate solution.
  • a 1000 mL autoclave apparatus was charged with 500 parts by weight of a 10% by weight methyl isobutyrate solution and 1 part by weight of 10% by weight Pd / C (manufactured by NE Chemcat), and maintained at a hydrogen pressure of 9 MPa at 200 ° C. for 15 hours to give a vinyl copolymer resin.
  • the aromatic double bond site of was hydrogenated.
  • the catalyst was removed by a filter, and the pellet obtained by introducing it into the solvent removal apparatus, 500 ppm of phosphorus additive PEP36 and stearic acid monoglyceride were mixed and pelletized in the same manner as in Production Example 1.
  • the pellets could be manufactured stably.
  • the tensile elastic modulus in a 85 ° C. environment of a synthetic resin monolayer having a thickness of 1 mm using the above pellets was 1527 MPa.
  • Example 1 Each extruder in a multi-layer extruder having a single-screw extruder with a shaft diameter of 32 mm, a single-screw extruder with a shaft diameter of 65 mm, a feed block connected to all the extruders, and a T die connected to the feed block A synthetic resin laminate was molded using a multi-layer extrusion apparatus having connected multi-manifold dies.
  • the resin (B11) obtained in Production Example 1 was continuously introduced into a single-screw extruder having a shaft diameter of 32 mm, and extruded under conditions of a cylinder temperature of 240 ° C. and a discharge rate of 2.1 kg / h.
  • Polycarbonate resin (A1) (manufactured by Mitsubishi Engineering Plastics, trade name: Iupilon S-1000, weight average molecular weight: 27,000) was continuously introduced into a single screw extruder having a shaft diameter of 65 mm, and the cylinder temperature was 270 ° C. The extrusion rate was extruded at 30.0 kg / h. The feed block connected to the whole extruder was provided with two types and two layers of distribution pins, and the temperature was set to 270 ° C. and (B11) and (A1) were introduced and laminated.
  • the result of the pencil scratch hardness test is H, and the evaluation of the curl shape after leaving in a high-temperature and high-humidity environment shows that, with the laminate alone, the high-hardness layer side is convex and the curvature radius is 42.5 m> R ⁇ It passed at 11.6 m, and in the vapor-deposited product, the base material layer side was convex and the radius of curvature was 20.3 m> R ⁇ 14.2 m.
  • Example 2 Except that the discharge amount of the high hardness layer (B11) used in Example 1 was 3.5 kg / h and the discharge amount of the polycarbonate resin (A1) was 28.7 kg / h, the same as in Example 1 (B11) ) And (A1) laminate (E12) was obtained.
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the layer made of (B11) was 100 ⁇ m near the center.
  • the result of the pencil scratch hardness test is H, and the evaluation of the curl shape after being left in a high temperature and high humidity environment is that the laminated body alone has a convexity on the convex side of the high hardness layer and a radius of curvature of 5.9 m> R. ⁇ 2.7 m was acceptable, and in the vapor-deposited product, the high hardness layer side was convex and the curvature radius was 17.1 m> R ⁇ 9.9 m.
  • Example 3 A laminate (E13) of (B12) and (A1) was obtained in the same manner as in Example 1 except that the high hardness layer was changed to the resin (B12) obtained in Production Example 2.
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the layer made of (B12) was 60 ⁇ m near the center.
  • the result of the pencil scratch hardness test is H, and the evaluation of the curl shape after leaving in a high-temperature and high-humidity environment shows that, with the laminate alone, the high-hardness layer side is convex and the curvature radius is 3.7 m> R ⁇ It was acceptable at 2.4 m, and in the vapor-deposited product, the substrate layer side was convex and the radius of curvature was 79.1 m> R ⁇ 26.4 m.
  • Example 4 A laminate (E14) of (B13) and (A1) was obtained in the same manner as in Example 1 except that the high hardness layer was changed to the resin (B13) obtained in Production Example 3.
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the layer made of (B13) was 60 ⁇ m near the center.
  • the result of the pencil scratch hardness test is H, and the evaluation of the curl shape after leaving in a high-temperature and high-humidity environment shows that, with the laminate alone, the high-hardness layer side is convex and the curvature radius is 4.1 m> R ⁇ It passed at 2.0 m, and in the vapor-deposited product, the high hardness side was convex and the radius of curvature was 16.9 m> R ⁇ 9.1 m.
  • Example 5 A laminate (E15) of (B14) and (A1) was obtained in the same manner as in Example 1 except that the high hardness layer was changed to the resin (B14) obtained in Production Example 4.
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the layer made of (B14) was 60 ⁇ m near the center.
  • the result of the pencil scratch hardness test is F, and the evaluation of the curl shape after being left in a high-temperature and high-humidity environment shows that, with the laminate alone, the curvature radius is 27.5 m> R ⁇ 20 with the high hardness side convex. In the vapor-deposited product, the base material layer side was convex and the curvature radius was 4.6 m> R ⁇ 3.3 m, and the overall judgment was acceptable.
  • Example 6 A laminate (E16) of (B14) and (A1) was obtained in the same manner as in Example 2 except that the high hardness layer was changed to the resin (B14) obtained in Production Example 4.
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the layer made of (B14) was 100 ⁇ m near the center.
  • the result of the pencil scratch hardness test is F, and the evaluation of the curl shape after leaving in a high-temperature and high-humidity environment shows that, with the laminate alone, the high-hardness layer side is convex and the curvature radius is 63.0 m> R ⁇ It passed at 9.5 m, and in the vapor-deposited product, the base material layer side was convex and the radius of curvature was 5.1 m> R ⁇ 3.8 m.
  • Example 7 A laminate (E17) of (B15) and (A1) was obtained in the same manner as in Example 1 except that the high hardness layer was changed to the resin (B15) obtained in Production Example 5.
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the layer made of (B15) was 60 ⁇ m near the center.
  • the result of the pencil scratch hardness test is F, and the evaluation of the curl shape after leaving in a high-temperature and high-humidity environment is as follows.
  • the high-hardness layer side is convex and the curvature radius is 41.5 m> R ⁇ It passed at 7.5 m, and in the vapor-deposited product, the base material layer side was convex and the curvature radius was 10.8 m> R ⁇ 6.1 m, which was acceptable, and the overall judgment was acceptable.
  • Example 8 A laminate (E18) of (B15) and (A1) was obtained in the same manner as in Example 2 except that the high hardness layer was changed to the resin (B15) obtained in Production Example 5.
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the layer made of (B15) was 100 ⁇ m near the center.
  • the result of the pencil scratch hardness test is F, and the evaluation of the curl shape after leaving in a high-temperature and high-humidity environment is as follows. It was acceptable at 3.4 m, and in the vapor-deposited product, the high hardness layer side was convex and the radius of curvature was 77.3 m> R ⁇ 10.4 m, and it was acceptable by comprehensive judgment.
  • Example 9 A laminate (E19) of (B16) and (A1) was obtained in the same manner as in Example 1 except that the high hardness layer was changed to the resin (B16) obtained in Production Example 6.
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the layer made of (B16) was 60 ⁇ m near the center.
  • the result of the pencil scratch hardness test is F, and the evaluation of the curl shape after leaving in a high-temperature and high-humidity environment shows that, with only the laminate, the high-hardness layer side is convex and the curvature radius is 16.4 m> R ⁇ It passed at 4.8 m, and in the vapor-deposited product, the base material layer side was convex and the radius of curvature was 18.5 m> R ⁇ 11.8 m.
  • Example 10 A laminate (E20) of (B16) and (A1) was obtained in the same manner as in Example 2 except that the high hardness layer was changed to the resin (B16) obtained in Production Example 6.
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the layer made of (B16) was 100 ⁇ m near the center.
  • the result of the pencil scratch hardness test is F, and the evaluation of the curl shape after leaving in a high-temperature and high-humidity environment shows that, with the laminate alone, the high-hardness layer side is convex and the curvature radius is 7.6 m> R ⁇ It was a pass at 3.4 m, and in the vapor-deposited product, the high hardness layer side was convex and the radius of curvature was 26.6 m> R ⁇ 11.3 m.
  • Example 11 On the high hardness layer (B12) of the laminate (E13) obtained in Example 3, the thickness of the coating film after curing the photocurable resin composition (C11) obtained in Production Example 7 is 3 to 8 ⁇ m. Coating using a bar coater, covering with a PET film and press-bonding, and coating thickness after curing the photocurable resin composition (C12) obtained in Production Example 8 on a base material layer made of (A1) was applied using a bar coater so as to have a thickness of 3 to 8 ⁇ m, covered with a PET film and pressure-bonded.
  • the PET film was peeled off by irradiating with UV light at a line speed of 1.5 m / min on a conveyor equipped with a high pressure mercury lamp with a light source distance of 12 cm and an output of 80 W / cm.
  • a laminate (F11) provided with a hard coat layer composed of (C11) and (C12) was obtained.
  • the result of the pencil scratch hardness test is 3H, and the evaluation of the curl shape after leaving in a high temperature and high humidity environment is that the laminate has only a high hardness layer side with a curvature radius of 9.4 m> R ⁇ . It passed at 3.3 m, and in the vapor-deposited product, the base material layer side was convex and the radius of curvature was 58.6 m> R ⁇ 12.5 m, and it was accepted by comprehensive judgment.
  • Example 12 (B12) and (A1) are the same as in Example 1 except that the high hardness layer is the resin (B12) obtained in Production Example 2 and the discharge rate of the polycarbonate resin (A1) is 20.4 kg / h.
  • a laminate was obtained.
  • the total thickness of the obtained laminate was 0.7 mm, and the thickness of the layer made of (B12) was 60 ⁇ m near the center.
  • a laminate (F12) was obtained in the same manner as in Example 11, comprising a hard layer made of (C11) and (C12) on the high hardness layer and the base material layer, respectively.
  • the result of the pencil scratch hardness test was 3H, and the evaluation of the curl shape after leaving in a high-temperature and high-humidity environment was that the laminate had only the high hardness layer side with a curvature radius of 30.6 m> R ⁇
  • the pass was 4.6 m, and in the vapor-deposited product, the high hardness layer side was convex and the curvature radius was 18.4 m> R ⁇ 5.3 m.
  • Comparative Example 1 A laminate (E21) of (B12) and (A1) was obtained in the same manner as in Example 2 except that the high hardness layer was changed to the resin (B12) obtained in Production Example 2.
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the layer made of (B12) was 100 ⁇ m near the center.
  • the result of the pencil scratch hardness test is H, and the evaluation of the curl shape after leaving in a high-temperature and high-humidity environment is that the laminate has only a high hardness layer side with a curvature radius of 1.8 m> R ⁇ It was rejected at 1.3 m, and in the vapor-deposited product, the base material layer side was convex and the curvature radius was 3.0 m> R ⁇ 2.4 m.
  • Comparative Example 2 A laminate (E22) of (B13) and (A1) was obtained in the same manner as in Example 2 except that the high hardness layer was changed to the resin (B13) obtained in Production Example 3.
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the layer made of (B13) was 100 ⁇ m near the center.
  • the result of the pencil scratch hardness test is H, and the evaluation of the curl shape after leaving in a high-temperature and high-humidity environment is that the laminate has only a high hardness layer side with a curvature radius of 1.6 m> R ⁇ . It was rejected at 1.0 m, and in the vapor-deposited product, the base material layer side was convex and the radius of curvature was 2.4 m> R ⁇ 2.2 m.
  • Comparative Example 3 (B12) and (A1) are the same as in Example 1 except that the high hardness layer is the resin (B12) obtained in Production Example 2 and the discharge amount of the polycarbonate resin (A1) is 19.1 kg / h.
  • a laminate (E23) was obtained. The total thickness of the obtained laminate was 0.7 mm, and the thickness of the layer made of (B12) was 60 ⁇ m near the center.
  • the result of the pencil scratch hardness test is H, and the evaluation of the curl shape after leaving in a high-temperature and high-humidity environment is that the laminate has only a high hardness layer side with a curvature radius of 1.5 m> R ⁇ It was rejected at 1.2 m, and in the vapor-deposited product, the substrate layer side was convex and the curvature radius was 1.8 m> R ⁇ 1.5 m, and it was rejected.
  • Comparative Example 4 (B12) and (A1) are the same as in Example 1 except that the high hardness layer is the resin (B12) obtained in Production Example 2 and the discharge amount of the polycarbonate resin (A1) is 19.1 kg / h.
  • a laminate (E24) was obtained.
  • the total thickness of the obtained laminate was 0.7 mm, and the thickness of the layer made of (B12) was 100 ⁇ m near the center.
  • the result of the pencil scratch hardness test is H, and the evaluation of the curl shape after leaving in a high-temperature and high-humidity environment is as follows. It was rejected at 0.9 m, and even the vapor-deposited product was rejected with a curvature radius of 1.5 m> R ⁇ 1.3 m with the base material layer side convex, and rejected by comprehensive judgment.
  • Comparative Example 5 The laminate (E21) obtained in Comparative Example 1 was laminated with a hard coat layer composed of (C11) and (C12) on the high-hardness layer and the base material layer in the same manner as in Example 11 to obtain a laminate (F13 )
  • the result of the pencil scratch hardness test is 3H, and the evaluation of the curl shape after leaving in a high-temperature and high-humidity environment shows that, with the laminate alone, the high-hardness layer side is convex and the curvature radius is 1.9 m> R ⁇ It was rejected at 1.7 m, and even the vapor-deposited product was rejected with a curvature radius of 3.0 m> R ⁇ 2.7 m with the convex side of the high-hardness layer convex, and rejected by comprehensive judgment.
  • Comparative Example 6 The laminate (E24) obtained in Comparative Example 4 was laminated with a hard coat layer composed of (C11) and (C12) on the high-hardness layer and the base material layer in the same manner as in Example 11 to obtain a laminate (F14). )
  • the result of the pencil scratch hardness test is 3H, and the evaluation of the curl shape after leaving in a high-temperature and high-humidity environment shows that, with only the laminate, the high-hardness layer side is convex and the curvature radius R is 1.8 m> ⁇ It was rejected at 1.3 m, and even the vapor-deposited product was rejected with a curvature radius of 2.0 m> R ⁇ 1.5 m with the high hardness layer side convex, and rejected by comprehensive judgment.
  • Comparative Example 7 A laminate of (D11) and (A1) was obtained in the same manner as in Example 1 except that the high hardness layer was changed to the resin (D11) obtained in Comparative Production Example 1.
  • the total thickness of the obtained laminate was 1.0 mm, and the thickness of the layer made of (D11) was 60 ⁇ m near the center.
  • the laminate (F15) was obtained in the same manner as in Example 11, comprising a hard coat layer composed of (C11) and (C12) on the high hardness layer and the base material layer, respectively.
  • the result of the pencil scratch hardness test is 4H, and the evaluation of the curl shape after leaving in a high-temperature and high-humidity environment is as follows.
  • the base layer side is convex and the curvature radius is 1.5 m> R ⁇ It was rejected at 1.2 m, and even the vapor-deposited product was rejected with a curvature radius of 1.1 m> R ⁇ 0.9 m with the base material layer side convex, and rejected by comprehensive judgment.
  • Comparative Example 8 A laminate of (D12) and (A1) was obtained in the same manner as in Example 1 except that the high hardness layer was changed to the resin (D12) obtained in Comparative Production Example 2. The total thickness of the obtained laminate was 1.0 mm, and the thickness of the layer made of (D12) was 60 ⁇ m near the center. In the same manner as in Example 11, a hard coat layer composed of (C11) and (C12) was laminated on the high hardness layer and the base material layer, respectively, to obtain a laminate (F16).
  • the result of the pencil scratch hardness test is 4H, and the evaluation of the curl shape after leaving in a high-temperature and high-humidity environment shows that, with only the laminate, the base layer side is convex and the curvature radius is 36.1 m> R ⁇ It was rejected at 15.7 m, and even the vapor-deposited product was rejected with a curvature radius of 3.0 m> R ⁇ 2.1 m with the high hardness layer side convex, and was rejected by comprehensive judgment.
  • Table 1 i) the pencil hardness of the high hardness layer (B) is F or more, and ii) the curl shape after being left in a high temperature and high humidity environment of only the laminate is a high hardness layer ( B)
  • a synthetic resin laminate having a radius of curvature R ⁇ 2.0 m with a convex curvature on the side has a curl shape after being left in a high-temperature, high-humidity environment of an Al + SiO 2 -deposited laminate that lowers the water vapor transmission rate. It was confirmed that the curvature radius R ⁇ 3.2 m was accommodated with the B) side convex or the base layer (A) side convex.
  • the synthetic resin laminate of the present invention has a high hardness and a base material layer laminated, and after being left in a high temperature and high humidity environment in a state where the water vapor permeability on the base material layer side is small. It has a feature to suppress curling.
  • the synthetic resin laminate 20 of the present invention in which a base material layer 22, a surface layer 24 (high hardness layer), and a hard coat layer 28 are laminated has a high temperature and high humidity as it is. When placed in an environment, some curling occurs so that the surface layer 24 (high hardness layer) is convex.
  • the synthetic resin laminate 20 when the synthetic resin laminate 20 is bonded to the ITO layer 26 in a high temperature and high humidity environment, the substrate layer 22 side and the surface layer 24 (high hardness layer) side are provided. As a result of the difference in water vapor transmission rate, the occurrence of curling can be greatly suppressed.
  • size of the arrow in FIG. 1 has shown the value of the water vapor transmission rate roughly, and the member to which the big arrow is attached
  • the synthetic resin laminate 10 of the conventional example after being left in a high temperature and high humidity environment as it is, the curl is formed so that the base material layer 12 is convex. Arise.
  • Such a conventional synthetic resin laminate 10 is left in a high-temperature and high-humidity environment in a state where it is laminated to the ITO layer 16, and as a result, a large curl occurs as shown in FIG. As a result, the appearance of the surface of the member including the synthetic resin laminate 10 is impaired, and in the long term, the possibility that the synthetic resin laminate 10 is peeled off from the ITO layer 16 increases. Also, increase the tensile modulus of the base layer and the surface layer (high hardness layer) and keep the difference between the tensile modulus of the base layer and the tensile modulus of the surface layer (high hardness layer) small.
  • the synthetic resin laminate of the present invention that suppresses curling that occurs when left in a high-temperature and high-humidity environment is suitably used as a transparent substrate material, a transparent protective material, and the like. It is suitably used as a display unit front plate, a touch panel substrate, or a thermal bending sheet for electronic equipment.

Landscapes

  • Laminated Bodies (AREA)

Abstract

 透明性の基板材料や保護材料に使用され、基材層側の水蒸気透過率が小さい状態において、高温高湿環境下に放置した後のカールが小さく、表面硬度に優れる合成樹脂積層体を提供することを目的とする。 i)高硬度層(24)の鉛筆硬度がF以上であり、ii)積層体のみの高温高湿環境下に放置した後のカール形状が高硬度層(24)側を凸に曲率半径R≧2.0mとなる合成樹脂積層体(20)にすることで、基材(22)側の水蒸気透過率を低下させた積層体の高温高湿環境下に放置した後のカール形状が、高硬度層(24)側を凸、又は基材層(22)側を凸のいずれについても曲率半径がR≧3.2mに収まり、表面硬度に優れた合成樹脂積層体(20)が得られる。

Description

合成樹脂積層体
 本発明は、合成樹脂積層体に関する。詳しくは、本発明は、透明性の基板材料や保護材料に使用され、基材層と表層樹脂層(高硬度層)を有する合成樹脂積層体であって、OCAとITO形成PETの貼り合せなど、基材層側の水蒸気透過率が小さい状態において、高温高湿環境下に放置した後のカールを抑制し、表面硬度に優れる合成樹脂積層体に関する。
 ポリカーボネート樹脂板は、透明性や耐衝撃性および耐熱性に優れ、防音隔壁やカーポート、看板、グレージング材、照明用器具、OA、電子機器のディスプレイやタッチパネル前面板などに利用されているが、表面硬度が低いために傷つきやすいという欠点があり、用途が制限されている。
 特許文献1には、この欠点を改良する為に紫外線硬化樹脂などで表面をコーティングする方法や、ポリカーボネート樹脂とアクリル系樹脂を共押出した基板にハードコートを施す方法が提案されている。
 しかし、ポリカーボネート樹脂の表面にハードコートを施したのでは要求される鉛筆硬度を満たす事ができず、高い表面硬度が要求される用途には使用できない場合がある。
 また、アクリル系樹脂とポリカーボネート樹脂との積層体では、表面硬度がある程度向上し、電子機器のディスプレイやタッチパネル前面板などに広く使用されていたが、高温高湿環境に放置した後の板材が大きくカールするなどの形状安定性の問題があり、液晶ディスプレイカバーやタッチパネル前面板などの電子機器関連用途において、重大な欠陥となっていた。
 高温高湿環境下に放置した後のカールを抑える方法としてポリカーボネート樹脂層の両面にアクリル系樹脂層を積層する方法があるが、その積層体の片面に面衝撃を与えた際にその反対面のアクリル系樹脂層においてクラックを生じ易く、使用方法によっては問題となることがある。
 特許文献2には、高温高湿環境下に放置した後のカールを抑える方法として、吸水率がアクリル樹脂より低い樹脂であるメチルメタアクリレレート-スチレン共重合体をポリカーボネート樹脂上に積層させることを特徴とする積層体が開示されているが、ここで採用されている環境試験の40℃/90%という条件は、高温高湿の条件として不十分である。
 特許文献3には、高硬度変性ポリカーボネート樹脂をポリカーボネート樹脂上に積層することを特徴とする積層体が開示されているが、環境変化時の形状安定性については言及されていない。高温高湿環境下に放置した後の板材のカールの方向性については、ディスプレイの前面板などに使用される場合、表層樹脂層側を凸にするカールはある程度は許容され得るが、基材層側を凸にするカールは、外観上、特に好ましくない。
 特許文献4には、(メタ)アクリル酸エステルと脂肪族ビニルを構成単位とする樹脂をポリカーボネート樹脂上に積層することを特徴とする積層体が開示されており、高温高湿環境下に放置した後のカールの大きさが抑制されている。しかしながら、カールの方向については言及されていない。また特許文献5では、積層する異樹脂のTg差を規定するなどの方法で高温高湿環境下に放置した後のカールの大きさが抑制されているが、カールは、表層樹脂側を凸にするもの、および基材層側を凸にするもののどちらも発生している。
 このように、これまで、高温高湿環境下に放置した後の形状について、表層樹脂側が凸となるカールのみに方向性を定め、なおかつカールの大きさを抑制した樹脂積層体はなかった。
 上述の事実に加え、通常、透明樹脂積層体をタッチパネルの前面板として使用する場合は、透明樹脂積層体の基材層側の面(表層樹脂側の面)に光学粘着シート(OCA)等の接着層を介してITO形成PET等に貼り合わせる。貼り合わせた場合、貼り合わせていない表面側と、貼り合わせた面側との水蒸気透過率が異なる。例えば、タッチパネル用のセンサーとして、OCA 50μmとITO形成PET 25μmを2枚ずつ積層させた場合、Lyssy水蒸気透過率計 L80-5000(PBI Dansenor製)で測定すると水蒸気透過率は0.6g/m・dayとなり、積層体のみで測定した場合の水蒸気透過率は18.4g/m・dayである。従って高温高湿環境下に放置した後のカールは、タッチパネル仕様に貼り合わせる事で大きく影響され、その影響は小さい方が望ましい。しかしながら、これまで、高温高湿環境下に放置した後の形状について、一方の表面側のみの水蒸気透過率が小さい状態におけるカールの大きさを抑制した樹脂積層体はなかった。
特開2006-103169号公報 特開2010-167659号公報 特表2009-500195号公報 特再公表2011-145630号公報 国際公開第2014/061817号公報
 本発明は、透明性の基板材料や保護材料に使用され、基材層側の水蒸気透過率が小さい状態において、高温高湿環境下に放置した後のカールが抑制可能であり、表面硬度に優れる合成樹脂積層体を提供することを目的とする。
 本発明者らは、上記の課題を解決するため鋭意研究を重ねた結果、高温高湿環境下に放置した後に高硬度層側を凸に曲率半径Rが2.0m以上のカール形状となる積層体が、基材層側の水蒸気透過率が小さい状態で、高温高湿環境下に放置した後のカール抑制ができることを見出し、本発明に到達した。具体的には、本発明は以下の通りである。
<1> 熱可塑性樹脂(A)を含む基材層、およびその少なくとも一方の面に積層された、熱可塑性樹脂(A)とは異なる熱可塑性樹脂(B)を含む高硬度層を備えた合成樹脂積層体であって、
(i)高硬度層の厚みは10~250μmで、基材層と高硬度層の合計厚みは0.1~2.0mmで、高硬度層/基材層の厚みの比が0.01~0.8であり、
(ii)高硬度層の鉛筆硬度がF以上であり、
(iii)該合成樹脂積層体を高温高湿環境下に放置した後のカール形状が高硬度層側を凸に曲率半径R≧2.0mとなる、
合成樹脂積層体。
<2> 基材層の高硬度層とは反対側の表面における水蒸気透過率が0.2~0.6g/m・dayになるように第3層がさらに積層されており、高温高湿環境下に放置した後のカール形状が高硬度層側を凸、又は基材層側を凸に曲率半径R≧3.2mとなる積層体であることを特徴とする<1>の合成樹脂積層体。
<3> 基材層に含まれる熱可塑性樹脂(A)がポリカーボネート(a1)を含有する樹脂であり、高硬度層に含まれる熱可塑性樹脂(B)が芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体(b1)とビニル系単量体を構成単位とする樹脂(b2)を含有する樹脂であって、前記(b1)が、芳香族ビニル単量体単位45~80質量%、(メタ)アクリル酸エステル単量体単位5~45質量%、不飽和ジカルボン酸無水物単量体単位10~30質量%である芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体であり、樹脂(B)が、前記(b1)の50~100質量部と前記(b2)の50~0質量部とのブレンド樹脂であることを特徴とする<1>または<2>の合成樹脂積層体。
<4> 前記(b1)の(メタ)アクリル酸エステル単量体単位がメチルメタクリレートである事を特徴とする上記<3>に記載の合成樹脂積層体。
<5> 前記樹脂(B)が、重量平均分子量50,000~300,000の前記芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体(b1)50~100質量部と、重量平均分子量50,000~500,000のメチルメタクリレート樹脂(b2)50~0質量部とのブレンド樹脂であることを特徴とする上記<3>または<4>に記載の合成樹脂積層体。
<6> 前記ポリカーボネート(a1)の重量平均分子量が25,000~75,000であることを特徴とする上記<1>~<5>のいずれかに記載の合成樹脂積層体。
<7> 前記高硬度層および/または前記基材層が紫外線吸収剤を含有することを特徴とする上記<1>~<6>のいずれかを特徴とする合成樹脂積層体。
<8> 前記高硬度層の表面上にハードコート処理を施した上記<1>~<7>のいずれかに記載の合成樹脂積層体。
<9> 前記樹脂積層体の片面または両面に、反射防止処理、防汚処理、耐指紋処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上を施した上記<1>~<8>のいずれかに記載の合成樹脂積層体。
<10> 前記高硬度層と前記基材層のそれぞれの引張弾性率が、1600MPa以上である、上記<1>~<9>のいずれかに記載の合成樹脂積層体。
<11> 前記高硬度層の引張弾性率と前記基材層の引張弾性率との差が、400MPa以下である、上記<1>~<10>のいずれかに記載の合成樹脂積層体。
<12> 上記<1>~<11>のいずれかに記載の合成樹脂積層体を含む透明性基板材料。
<13> 上記<1>~<11>のいずれかに記載の合成樹脂積層体を含む透明性保護材料。
<14> 上記<1>~<11>のいずれかに記載の合成樹脂積層体を含むタッチパネル前面保護板。
<15> 上記<1>~<11>のいずれかに記載の合成樹脂積層体を含む低水蒸気透過率板の積層体。
 本発明によれば、OCAとITO形成PETの貼り合せなど、基材層側の水蒸気透過率が小さい状態において、高温高湿環境下に放置した後のカールを抑え、表面硬度に優れる合成樹脂積層体が提供され、該合成樹脂積層体は透明性基板材料や透明性保護材料として用いられる。具体的には、合成樹脂積層体は、携帯電話端末、携帯型電子遊具、携帯情報端末、モバイルPCいった携帯型のディスプレイデバイスや、ノート型PC、デスクトップ型PC液晶モニター、液晶テレビといった設置型のディスプレイデバイスなどに好適に使用される。
本発明の合成樹脂積層体の室温および高温高湿環境下における状態を概略的に示す断面図である。 従来例の合成樹脂積層体の室温および高温高湿環境下における状態を概略的に示す断面図である。
 以下、本発明について製造例や実施例等を例示して詳細に説明するが、本発明は例示される製造例や実施例等に限定されるものではなく、本発明の内容を大きく逸脱しない範囲であれば任意の方法に変更して行なうこともできる。
<熱可塑性樹脂(A)>
 熱可塑性樹脂(A)は、合成樹脂積層体の基材層を形成する主成分である。熱可塑性樹脂(A)は、主として、ポリカーボネート(a1)を含有する樹脂である。
<ポリカーボネート(a1)>
 本発明に使用されるポリカーボネート(a1)は、分子主鎖中に炭酸エステル結合を含む。即ち、-[O-R-OCO]-単位(Rが脂肪族基、芳香族基、又は脂肪族基と芳香族基の双方を含むもの、さらに直鎖構造あるいは分岐構造を有するもの)を含むものであれば特に限定されるものではないが、特に下記式[1]の構造単位を含むポリカーボネートを使用することが好ましい。このようなポリカーボネートを使用することで、耐衝撃性に優れた樹脂積層体を得ることができる。
Figure JPOXMLDOC01-appb-C000001
 具体的には、ポリカーボネート(a1)として、芳香族ポリカーボネート樹脂(例えば、ユーピロンS-2000、ユーピロンS-1000、ユーピロンE-2000)等が使用可能である。
 本発明において、ポリカーボネート(a1)の重量平均分子量は、合成樹脂積層体の耐衝撃性および成形条件に影響する。つまり、重量平均分子量が小さすぎる場合は、合成樹脂積層体の耐衝撃性が低下するので好ましくない。重量平均分子量が高すぎる場合は、樹脂(a1)を含む樹脂層を積層させる時に過剰な熱源を必要とする場合があり、好ましくない。また成形法によっては高い温度が必要になるので、樹脂(a1)が高温にさらされることになり、その熱安定性に悪影響を及ぼすことがある。ポリカーボネート(a1)の重量平均分子量は、15,000~75,000が好ましく、20,000~70,000がより好ましい。さらに好ましくは25,000~65,000である。
 本発明は、特定の芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体(b1)50~100質量部と、ビニル系単量体を構成単位とする樹脂(b2)50~0質量部をアロイした樹脂層(高硬度層)を、ポリカーボネート(a1)を含む樹脂層(基材層)の少なくとも片面に積層させて成る合成樹脂積層体であることを特徴とする合成樹脂積層体である。
<熱可塑性樹脂(B)>
 熱可塑性樹脂(B)は、合成樹脂積層体の高硬度層を形成する主成分である。熱可塑性樹脂(B)は、主として、芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体(b1)と、ビニル系単量体を構成単位とする樹脂(b2)とを含有する。
<芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体(b1)>
 本発明の積層体に用いられる前記(b1)は、芳香族ビニル単量体単位45~80質量%、(メタ)アクリル酸エステル単量体単位5~45質量%、不飽和ジカルボン酸無水物単量体単位10~30質量%である、特定の芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体である。
 芳香族ビニル単量体単位としては、スチレン、α―メチルスチレン、o―メチルスチレン、m-メチルスチレン、p-メチルスチレン、2、4-ジメチルスチレン、エチルスチレン、t-ブチルスチレン等が挙げられる。これらの中でも、相溶性の観点からスチレンが特に好ましい。これらの芳香族ビニル単量体は1種類でも良く、2種以上の併用をしても良い。
 (メタ)アクリル酸エステル単量体単位としては、アクリロニトリル、メタアクリロニトリル、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n―ブチル、アクリル酸2エチルヘキシル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2エチルヘキシル等が挙げられる。これらの中でビニル系単量体との相溶性の観点からメタクリル酸メチル(MMA)が好ましい。これらの(メタ)アクリル酸エステル単量体単位は1種類でも良く、2種以上の併用をしても良い。
 不飽和ジカルボン酸無水物単量体としては、マレイン酸、イタコン酸、シトラコン酸、アコニット酸等の酸無水物が挙げられ、ビニル系単量体との相溶性の観点から無水マレイン酸が好ましい。これらの不飽和ジカルボン酸無水物系単量体は1種類でも良く、2種以上の併用をしても良い。
 芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体(b1)の重量平均分子量は、100,000~200,000が好ましく、120,000~180,000がより好ましい。上記(b1)の重量平均分子量が50,000~300,000において、(b2)ビニル系単量体を構成単位とする樹脂との相溶性が良好である。なお、(b1)の重量平均分子量(Mw)、数平均分子量(Mn)、及び分子量分布(Mw/Mn)は、溶媒としてTHFやクロロホルムを用いたゲルパーミエーションクロマトグラフィーを用いて測定を行うことができる。
<ビニル系単量体を構成単位とする樹脂(b2)>
 本発明で用いられるビニル系単量体を構成単位とする樹脂(b2)は、例えばアクリロニトリル、メタアクリロニトリル、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n―ブチル、アクリル酸2エチルヘキシル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸2エチルヘキシル等のビニル系単量体を単独重合したものが挙げられ、特に単量体単位として、メタクリル酸メチルが好ましい。また、前記単量体単位を2種類以上含んだ共重合体でも良い。
 本発明において、ビニル系単量体を構成単位とする樹脂(b2)の重量平均分子量は、芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体(b1)との混合(分散)のしやすさ、およびこれらのブレンド樹脂(B)の製造の容易さで決定される。つまり、ビニル系単量体を構成単位とする樹脂(b2)の重量平均分子量が大きすぎると(b1)と(b2)の溶融粘度差が大きくなりすぎる為に、両者の混合(分散)が悪くなって前記樹脂(B)の透明性が悪化する、あるいは安定した溶融混練が継続できないといった不具合が起こり得る。逆に、ビニル系単量体を構成単位とする樹脂(b2)の重量平均分子量が小さすぎると、樹脂(B)の強度が低下するので、合成樹脂積層板の耐衝撃性が低下するといった問題が発生し得る。ビニル系単量体を構成単位とする樹脂(b2)の重量平均分子量は、50,000~700,000の範囲が好ましく、60,000~550,000の範囲がより好ましい。さらに好ましくは70,000~500,000の範囲である。
<樹脂(B):芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体(b1)とビニル系単量体を構成単位とする樹脂(b2)の混合体>
 本発明において、芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体(b1)とビニル系単量体を構成単位とする樹脂(b2)の質量比は、(b1)成分が50~100質量部に対して(b2)成分が50~0質量部である。好ましくは、(b1)成分が55~90質量部に対して(b2)成分が45~10質量部である。より好ましくは(b1)成分が60~85質量部に対して(b2)成分が40~15質量部である。この質量比内にすることにより、透明性を維持しつつ、表面硬度が優れ、OCAとITO形成PETの貼り合せなど、基材層側の水蒸気透過率が小さい状態において、高温高湿環境下に放置した後のカールを抑えるのに適した樹脂(B)となる。
 高硬度層の硬度については、鉛筆硬度F以上であり、好ましくは、鉛筆硬度H以上である。
<各種材料製造方法>
 本発明の合成樹脂積層体の形成方法は、特に限定されない。例えば、個別に形成した高硬度層と、ポリカーボネート(a1)(樹脂(A))を含む基材層とを積層して両者を加熱圧着する方法、個別に形成した高硬度層と基材層とを積層して、両者を接着剤によって接着する方法、高硬度層を形成する樹脂(B)と、ポリカーボネート樹脂(a1)(樹脂(A))とを共押出成形する方法、予め形成しておいた高硬度層を用いて、ポリカーボネート樹脂(a1)をインモールド成形して一体化する方法、などの各種方法があるが、製造コストや生産性の観点からは、共押出成形する方法が好ましい。
 本発明に使用されるポリカーボネート(a1)の製造方法は、公知のホスゲン法(界面重合法)、エステル交換法(溶融法)等、使用するモノマーにより適宜選択できる。
 本発明において、高硬度層の樹脂(B)の製造方法には特に制限はなく、必要な成分を、例えばタンブラーやヘンシェルミキサー、スーパーミキサーなどの混合機を用いて予め混合しておき、その後バンバリーミキサー、ロール、ブラベンダー、単軸押出機、二軸押出機、加圧ニーダーなどの機械で溶融混練するといった公知の方法が適用できる。
<合成樹脂積層体>
 本発明において、高硬度層の厚さは、合成樹脂積層体の表面硬度や耐衝撃性に影響する。つまり、高硬度層の厚さが薄すぎると表面硬度が低くなり、好ましくない。高硬度層の厚さが大きすぎると耐衝撃性が悪くなり好ましくない。高硬度層の厚さは10~250μmが好ましく、30~200μmがより好ましい。さらに好ましくは60~150μmである。
 本発明において、高硬度層と基材層の85℃環境下の引張弾性率は、合成樹脂積層体の剛性に影響する。つまり、85℃環境下の引張弾性率が低すぎると外力に対する変形が大きくなり、塗工やラミネートなどの加工性が劣り、好ましくない。高硬度層と基材層の引張弾性率は、それぞれ1600MPa以上であることが好ましく、より好ましくは、それぞれ1700MPa以上である。
 また、高硬度層と基材層の85℃環境下の引張弾性率の差は|(高硬度層の引張弾性率)-(基材層の引張弾性率)|≦400MPaであることが好ましく、より好ましくは|(高硬度層の引張弾性率)-(基材層の引張弾性率)|≦300MPaである。このように、引張弾性率の差が小さい高硬度層と基材層とを用いることにより、高硬度層と基材層の層間での剥離を防止することができる。
 本発明において、合成樹脂積層体(シート)の全体厚さ、高硬度層厚さ、高硬度層の組成が、合成樹脂積層体の高温高湿環境下に放置した後のカールに影響する。
 つまり、全体厚さが薄すぎると高温高湿環境下に放置した後のカールが大きくなり、全体厚さが厚い時には高温高湿環境下に放置した後のカールが小さくなる。
 また、高硬度層の厚さが薄すぎると高温高湿環境下に放置した後のカールが小さくなるが硬度が低下し、表層厚さが厚い時には高温高湿環境下に放置した後のカールが大きくなるため、各々の全体厚さと高硬度層の厚さに合わせた高硬度層の組成を見出す必要がある。
 具体的には、前記基材層と前記高硬度層の合計厚みは0.1~2.0mm、好ましくは0.12~1.5mm、より好ましくは0.15~1.2mmであり、前記高硬度層/前記基材層の厚みの比が0.01~0.8であり、好ましくは0.02~0.7、より好ましくは0.04~0.6である。
 また、合成樹脂積層体に基材層と高硬度層以外の層をさらに積層させることなく、そのままの状態で、詳細を後述する高温高湿の環境下に放置した後のカール形状は、高硬度層側を凸にして、曲率半径R≧2.0mとなることが好ましく、曲率半径R≧2.2mとなることがより好ましい。さらに好ましくは、曲率半径R≧2.4mである。そしてこの場合、基材層側を凸にするカールは生じないことが好ましい。すなわち、基材層と高硬度層以外の層をさらに積層させていない状態で高温高湿環境下に放置した後のカール形状は、曲率半径R=∞となることが好ましい。
 以上のように、さらなる層を積層させない状態で高温高湿の環境下においたときに、高硬度層側を凸にしたカールのみを適当な範囲内で生じさせることにより、合成樹脂積層体の基材層側に第3層を積層させて基材層側の水蒸気透過率が低下した状態において、合成樹脂積層体に生じるカールを最小限に抑制することができる。
 合成樹脂積層体の基材層側の水蒸気透過率は、3.0~20.0g/m・dayである。また、合成樹脂積層体の高硬度層側の水蒸気透過率は、2.0~20.0g/m・dayである。
 また、合成樹脂積層体が、ITO形成PETなどの第3層と積層された場合、上述のように、第3層と接する面側の水蒸気透過率が低下する。第3層との積層により、例えば、合成樹脂積層体の基材層側の水蒸気透過率は、例えば、0.2~0.6g/m・day程度となる。このように、第3層がさらに積層された状態で、合成樹脂積層体を高温高湿環境下に放置した後の合成樹脂積層体のカール形状は、高硬度層側を凸、又は前記基材層側を凸にして、曲率半径R≧3.2mとなる。より好ましくは、曲率半径R≧4.2mとなり、さらに好ましくは、曲率半径R≧5.6mである。
 本発明において、基材層を形成する熱可塑性樹脂(A)および/または高硬度層を形成する熱可塑性樹脂(B)には、上述の主たる成分以外の成分を含めることができる。
 例えば、熱可塑性樹脂(A)および/または熱可塑性樹脂(B)には、紫外線吸収剤を混合して使用することができる。紫外線吸収剤の含有量が少なすぎると耐光性が足りなくなり、含有量が多すぎると成形法によっては過剰な紫外線吸収剤が高い温度がかかることによって飛散して成形環境を汚染するので不具合を起こすことがある。紫外線吸収剤の含有割合は0~5質量%が好ましく、0~3質量%がより好ましく、さらに好ましくは0~1質量%である。紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-4-ドデシロキシベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノンなどのベンゾフェノン系紫外線吸収剤、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)ベンゾトリアゾール、(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノールなどのベンゾトリアゾール系紫外線吸収剤、サリチル酸フェニル、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエートなどのベンゾエート系紫外線吸収剤、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケートなどのヒンダードアミン系紫外線吸収剤、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジンなどのトリアジン系紫外線吸収剤などが挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。
 本発明において、高硬度層および/または基材層を形成する熱可塑性樹脂(A)および/または(B)には、各種添加剤を混合して使用することができる。添加剤としては、例えば、抗酸化剤や抗着色剤、抗帯電剤、離型剤、滑剤、染料、顔料、可塑剤、難燃剤、樹脂改質剤、相溶化剤、有機フィラーや無機フィラーといった強化材などが挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。
 本発明において、高硬度層の表面、またはポリカーボネート基材層の表面にハードコート処理を施しても良い。例えば、熱エネルギーおよび/または光エネルギーを用いて硬化させるハードコート塗料を用いるハードコート処理によりハードコート層を形成する。熱エネルギーを用いて硬化させるハードコート塗料としては、例えば、ポリオルガノシロキサン系、架橋型アクリル系などの熱硬化性樹脂組成物が挙げられる。また、光エネルギーを用いて硬化させるハードコート塗料としては、例えば、1官能および/または多官能であるアクリレートモノマーおよび/またはオリゴマーからなる樹脂組成物に光重合開始剤が加えられた光硬化性樹脂組成物などが挙げられる。
 本発明における基材層上に施す、光エネルギーを用いて硬化させるハードコート塗料としては、例えば、1,9-ノナンジオールジアクリレート20~60質量%と、1,9-ノナンジオールジアクリレートと共重合可能な2官能以上の多官能(メタ)アクリレートモノマーならびに2官能以上の多官能ウレタン(メタ)アクリレートオリゴマーおよび/または2官能以上の多官能ポリエステル(メタ)アクリレートオリゴマーおよび/または2官能以上の多官能エポキシ(メタ)アクリレートオリゴマーからなる化合物40~80質量%とからなる樹脂組成物の100質量部に、光重合開始剤が1~10質量部添加された光硬化性樹脂組成物などが挙げられる。
 本発明におけるハードコート塗料を塗布する方法は特に限定されず、公知の方法を用いることができる。例えば、スピンコート法、ディップ法、スプレー法、スライドコート法、バーコート法、ロールコート法、グラビアコート法、メニスカスコート法、フレキソ印刷法、スクリーン印刷法、ビートコート法、捌け法などが挙げられる。
 ハードコートの密着性を向上させる目的で、ハードコート前に塗布面の前処理を行うことがある。処理例として、サンドブラスト法、溶剤処理法、コロナ放電処理法、クロム酸処理法、火炎処理法、熱風処理法、オゾン処理法、紫外線処理法、樹脂組成物によるプライマー処理法などの公知の方法が挙げられる。
 本発明における高硬度層、基材層及びハードコートの各材料、例えば、樹脂(A)および(B)等は、フィルター処理によりろ過精製されることが好ましい。フィルターを通して生成あるいは積層する事により異物や欠点といった外観不良が少ない合成樹脂積層体を得ることが出来る。ろ過方法に特に制限はなく、溶融ろ過、溶液ろ過、あるいはその組み合わせ等を使うことが出来る。
 使用するフィルターに特に制限はなく、公知のものが使用でき、各材料の使用温度、粘度、ろ過精度により適宜選ばれる。フィルターの濾材としては、特に限定されないがポリプロピレン、コットン、ポリエステル、ビスコースレイヨンやグラスファイバーの不織布あるいはロービングヤーン巻物、フェノール樹脂含浸セルロース、金属繊維不織布焼結体、金属粉末焼結体、ブレーカープレート、あるいはこれらの組み合わせなど、いずれも使用可能である。特に耐熱性や耐久性、耐圧力性を考えると金属繊維不織布を焼結したタイプが好ましい。
 ろ過精度は、基材層のポリカーボネート(a1)については、50μm以下、好ましくは30μm以下、さらに好ましくは10μm以下である。またハードコート剤のろ過精度は、合成樹脂積層板の最表層に塗布される事から、20μm以下、好ましくは10μm以下、さらに好ましくは5μm以下である。
 高硬度層の樹脂(B)と基材層のポリカーボネート(a1)(樹脂(A))のろ過については、例えば熱可塑性樹脂溶融ろ過に用いられているポリマーフィルターを使うことが好ましい。ポリマーフィルターは、その構造によりリーフディスクフィルター、キャンドルフィルター、パックディスクフィルター、円筒型フィルターなどに分類されるが、特に有効ろ過面積が大きいリーフディスクフィルターが好適である。
 本発明の合成樹脂積層体には、その片面または両面に反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上を施すことができる。反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理の方法は、特に限定されず、公知の方法を用いることができる。例えば、反射低減塗料を塗布する方法、誘電体薄膜を蒸着する方法、帯電防止塗料を塗布する方法などが挙げられる。
 以下、実施例により本発明を具体的に説明する。ただし、本発明はこれらの実施例により何ら制限されるものではない。
 後述する製造例で得られた積層樹脂の物性測定、および実施例ならびに比較例で得られた合成樹脂積層体の評価は、以下のように行った。
<AlとSiOの蒸着>
電子銃/抵抗加熱蒸着装置 BMC-800T(河合光学製)を使用し、基材層(A)にアルゴンでRFプラズマ処理後、Alを100μm蒸着し、さらにSiOを20μm蒸着した。その蒸着品についてLyssy水蒸気透過率計 L80-5000(PBI Dansenor製)を使用し、水蒸気透過率の測定を行うと水蒸気透過率0.2g/m・dayであり、タッチパネル用のセンサーを貼り合せた時とほぼ同様な値を示した。
<85℃環境下の引張弾性率>
 軸径50mmの単軸押出機にアダプター、Tダイとを有する単層押出装置を用いて、高硬度層と基材層の各種材料から、厚さが1mmの合成樹脂単層体をそれぞれ成形し、成形品の中央部でダンベル試験片を作成した。ダンベル試験片は23℃水中に3日間水漬けした後、水分を拭き取り、冷凍機式高温高湿槽を付属したオートグラフAGS-5kNX(島津製作所製)を使用して、85℃でJISK-7161記載の引張試験方法に準拠して、引張弾性率を測定した。
<カール形状の評価(曲率半径Rと凹凸の方向)>
 高温高湿環境に放置した後の積層体はカール形状をしているため、カールの形状を曲率半径と凹凸の方向を高硬度層(B)側を凸、又は基材層(A)側を凸で評価した。曲率半径(m)={弧長[m](=試験片の長さ)}/(8×矢高さ[m])と定義した。
<高温高湿環境下に放置した後のカール形状の評価>
 試験片を10cm×6cm四方に切り出した。試験片を2点支持型のホルダーにセットして温度23℃、相対湿度50%に設定した環境試験機に24時間以上投入して状態調整した後、ホルダーを温度85℃、相対湿度85%に設定した環境試験機の中に投入し、その状態で120時間保持した。さらに温度23℃、相対湿度50%に設定した環境試験機の中にホルダーごと移動し、その状態で4時間保持後にh(=矢高さ[m])を測定した。 矢高さの測定には、電動ステージ具備の3次元形状測定機を使用し、取り出した試験片を上に凸の状態で水平に静置し、1mm間隔でスキャンし、中央部の盛り上がりを矢高さとして測定し、(曲率半径[m])={0.116(=弧長[m])}/(8×h[m])でカールの形状を積層体のみとAlとSiOの蒸着した積層体(蒸着品)で評価した。
(積層体のみの場合) 
良好(合格):高硬度層側を凸に、曲率半径R≧2.0mとなる。
不良(不合格):上記の範囲以外。
(蒸着品の場合)
良好(合格):高硬度層凸側を凸に、曲率半径R≧3.2mとなる。または、基材層側を凸に、曲率半径R≧3.2mとなる。
不良(不合格):上記の範囲以外。
<鉛筆引っかき硬度試験>
 JIS K 5600-5-4に準拠し、表面に対して角度45度、荷重750gで基材層(樹脂(A)の層)の表面に次第に硬度を増して鉛筆を押し付け、傷跡を生じなかった最も硬い鉛筆の硬度を鉛筆硬度として評価した。
(積層体のみの場合) 
良好(合格):鉛筆硬度F以上。
不良(不合格):上記の範囲以外。
(塗装品の場合)
良好(合格):鉛筆硬度2H以上。
不良(不合格):上記の範囲以外。
<各種材料例>
 熱可塑性樹脂(A)および熱可塑性樹脂(B)について、下記に示す材料を例示するが、これに限定されるわけではない。
A1:ポリカーボネート樹脂:三菱エンジニアリングプラスチックス(株)製ユーピロンS-1000
 S-1000を用いた厚さが1mmの合成樹脂単層体の85℃環境下の引張弾性率は1977MPaであった。
B1:特定の芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体:電気化学工業(株)R-200
B2:特定の芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体:電気化学工業(株)R-100
B3:ビニル系単量体を含有する樹脂:クラレ(株)製メチルメタクリレート樹脂パラペットHR-L
B4:(メタ)アクリル酸エステルと脂肪族ビニルを構成単位とする樹脂:合成樹脂(D12)
製造例1〔樹脂(B11)ペレットの製造〕
 芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体(b1)としてR-200(電気化学工業製、重量平均分子量:185,000、芳香族ビニル単量体:(メタ)アクリル酸エステル単量体:不飽和ジカルボン酸無水物単量体の比=55:25:20)50質量%と、ビニル系単量体を構成単位とする樹脂(b2)であるメチルメタクリレート樹脂としてパラペットHR-L(クラレ製)50質量%と、りん系添加剤PEP36(ADEKA製) 500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン製) 0.2%を仕込みブレンダーで20分混合後、スクリュー径26mmの2軸押出機(東芝機械製、TEM-26SS、L/D≒40)を用い、シリンダー温度240℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化した。ペレットは安定して製造できた。
 上記のペレットを用いた厚さが1mmの合成樹脂単層体の85℃環境下の引張弾性率は1716MPaであった。
製造例2〔樹脂(B12)ペレットの製造〕
 特定の芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体(b1)としてR-200を60質量%と、ビニル系単量体を構成単位とする樹脂(b2)であるメチルメタクリレート樹脂としてパラペットHR-Lを40質量%と、りん系添加剤PEP36を500ppmおよびステアリン酸モノグリセリドを0.2%にし、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
 上記のペレットを用いた厚さが1mmの合成樹脂単層体の85℃環境下の引張弾性率は1891MPaであった。
製造例3〔樹脂(B13)ペレットの製造〕
 特定の芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体(b1)としてR-200を70質量%と、ビニル系単量体を構成単位とする樹脂(b2)であるメチルメタクリレート樹脂としてパラペットHR-Lを30質量%と、りん系添加剤PEP36を500ppmおよびステアリン酸モノグリセリドを0.2%にし、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
 上記のペレットを用いた厚さが1mmの合成樹脂単層体の85℃環境下の引張弾性率は1996MPaであった。
製造例4〔樹脂(B14)ペレットの製造〕
 特定の芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体(b1)としてR-100(電気化学工業製、重量平均分子量:170,000、芳香族ビニル単量体:(メタ)アクリル酸エステル単量体:不飽和ジカルボン酸無水物単量体の比=65:20:15)65質量%と、ビニル系単量体を構成単位とする樹脂(b2)であるメチルメタクリレート樹脂としてパラペットHR-Lを35質量%と、りん系添加剤PEP36を500ppmおよびステアリン酸モノグリセリドを0.2%にし、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
 上記のペレットを用いた厚さが1mmの合成樹脂単層体の85℃環境下の引張弾性率は1885MPaであった。
製造例5〔樹脂(B15)ペレットの製造〕
 特定の芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体(b1)としてR-100を75質量%と、ビニル系単量体を構成単位とする樹脂(b2)であるメチルメタクリレート樹脂としてパラペットHR-Lを25質量%と、りん系添加剤PEP36を500ppmおよびステアリン酸モノグリセリドを0.2%にし、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
 上記のペレットを用いた厚さが1mmの合成樹脂単層体の85℃環境下の引張弾性率は2089MPaであった。
製造例6〔樹脂(B16)ペレットの製造〕
 特定の芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体(b1)としてR-100を85質量%と、ビニル系単量体を構成単位とする樹脂(b2)であるメチルメタクリレート樹脂としてパラペットHR-Lを15質量%と、りん系添加剤PEP36を500ppmおよびステアリン酸モノグリセリドを0.2%にし、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
 上記のペレットを用いた厚さが1mmの合成樹脂単層体の85℃環境下の引張弾性率は2152MPaであった。
製造例7〔高硬度層に被覆する光硬化性樹脂組成物(C11)の製造〕
 撹拌翼を備えた混合槽に、トリス(2-アクロキシエチル)イソシアヌレート(Aldrich社製)60質量部と、ネオペンチルグリコールオリゴアクリレート(大阪有機化学工業社製、商品名:215D)40質量部と、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド(チバ・ジャパン社製、商品名:DAROCUR TPO)1質量部と、1-ヒドロキシシクロヘキシルフェニルケトン(Aldrich社製)0.3質量部と、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(チバ・ジャパン社製、商品名:TINUVIN234)1質量部からなる組成物を導入し、40℃に保持しながら1時間撹拌して光硬化性樹脂組成物(C11:後述の表1参照)を得た。
製造例8〔ポリカーボネート基材層に被覆する光硬化性樹脂組成物(C12)の製造〕
 撹拌翼を備えた混合槽に、1,9-ノナンジオールジアクリレート(大阪有機化学工業社製、商品名:ビスコート#260)40質量部と、6官能ウレタンアクリレートオリゴマー(新中村化学工業社製、商品名:U-6HA)40質量部と、コハク酸/トリメチロールエタン/アクリル酸のモル比が1/2/4である縮合物20質量部と、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド(チバ・ジャパン社製、商品名:DAROCUR TPO)2.8質量部と、ベンゾフェノン(Aldrich社製)1質量部と、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(チバ・ジャパン社製、商品名:TINUVIN234)1質量部からなる組成物を導入し、40℃に保持しながら1時間撹拌して光硬化性樹脂組成物(C12)を得た。
比較製造例1〔樹脂(D11)ペレットの製造〕
 パラペットHR-L100質量%と、りん系添加剤PEP36を500ppm、およびステアリン酸モノグリセリドを0.2%にし、製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
 上記のペレットを用いた厚さが1mmの合成樹脂単層体の85℃環境下の引張弾性率は1015MPaであった。
比較製造例2〔樹脂(D12)ペレットの製造〕
 メタクリル酸メチル酸メチル(三菱ガス化学製)77.000モル%とスチレン(和光純薬工業製)22.998モル%と、重合開始剤としてt-アルミパーオキシ-2-エチルヘキサノエート(アルケマ吉富製、商品名:ルぺロックス575)0.002モル%からなる混合液を、ヘルカルリボン翼付き10L完全混合層に1kg/hで連続的に供給し、平均滞留時間2.5時間、重合温度150℃で連続重合を行い、重合槽の液面が一定となるように底部から連続抜き出し、脱溶媒装置に導入してペレット状のビニル共重合樹脂を得た。そのビニル共重合樹脂をイソ酪酸メチル(関東化学製)に溶解し、10質量%イソ酪酸メチル溶液を調製した。1000mLオートクレーブ装置に10質量%イソ酪酸メチル溶液を500質量部、10質量%Pd/C(NEケムキャット製)を1質量部仕込み、水素圧9MPa、200℃で15時間保持して、ビニル共重合樹脂の芳香族二重結合部位を水素化した。フィルターにより触媒を除去し、脱溶剤装置に導入して得られたペレットとりん系添加剤PEP36を500ppmおよびステアリン酸モノグリセリドを製造例1と同様に混合、ペレット化を行った。ペレットは安定して製造できた。
 上記のペレットを用いた厚さが1mmの合成樹脂単層体の85℃環境下の引張弾性率は1527MPaであった。
実施例1
 軸径32mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出機に各押出機と連結したマルチマニホールドダイとを有する多層押出装置を用いて合成樹脂積層体を成形した。軸径32mmの単軸押出機に製造例1で得た樹脂(B11)を連続的に導入し、シリンダー温度240℃、吐出量を2.1kg/hの条件で押し出した。また軸径65mmの単軸押出機にポリカーボネート樹脂(A1)(三菱エンジニアリングプラスチックス社製、商品名:ユーピロンS-1000、重量平均分子量:27,000)を連続的に導入し、シリンダー温度270℃、吐出量を30.0kg/hで押し出した。全押出機に連結されたフィードブロックは2種2層の分配ピンを備え、温度270℃にして(B11)と(A1)を導入し積層した。その先に連結された温度270℃のTダイでシート状に押し出し、上流側から温度130℃、140℃、180℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却し、(B11)と(A1)の積層体(E11)を得た。得られた積層体(E11)の全体厚みは1.0mm、(B11)から成る層の厚みは中央付近で60μmであった。鉛筆引っかき硬度試験の結果はHで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、高硬度層側を凸に曲率半径が42.5m>R≧11.6mで合格であり、蒸着品では、基材層側を凸に曲率半径が20.3m>R≧14.2mで合格であり、総合判定で合格であった。
実施例2
 実施例1で使用した高硬度層(B11)の吐出量を3.5kg/hとし、ポリカーボネート樹脂(A1)の吐出量を28.7kg/hとした以外は、実施例1と同様として(B11)と(A1)の積層体(E12)を得た。得られた積層体の全体厚みは1.0mm、(B11)から成る層の厚みは中央付近で100μmであった。鉛筆引っかき硬度試験の結果はHで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、高硬度層凸側を凸に曲率半径が5.9m>R≧2.7mで合格であり、蒸着品では、高硬度層側を凸に曲率半径が17.1m>R≧9.9mで合格であり、総合判定で合格であった。
実施例3
 高硬度層を製造例2で得た樹脂(B12)とした以外は、実施例1と同様にして(B12)と(A1)の積層体(E13)を得た。得られた積層体の全体厚みは1.0mm、(B12)から成る層の厚みは中央付近で60μmであった。鉛筆引っかき硬度試験の結果はHで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、高硬度層側を凸に曲率半径が3.7m>R≧2.4mで合格であり、蒸着品では、基材層側を凸に曲率半径が79.1m>R≧26.4mで合格であり、総合判定で合格であった。
実施例4
 高硬度層を製造例3で得た樹脂(B13)とした以外は、実施例1と同様にして(B13)と(A1)の積層体(E14)を得た。得られた積層体の全体厚みは1.0mm、(B13)から成る層の厚みは中央付近で60μmであった。鉛筆引っかき硬度試験の結果はHで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、高硬度層側を凸に曲率半径が4.1m>R≧2.0mで合格であり、蒸着品では、高硬度側を凸に曲率半径が16.9m>R≧9.1mで合格であり、総合判定で合格であった。
実施例5
 高硬度層を製造例4で得た樹脂(B14)とした以外は、実施例1と同様にして(B14)と(A1)の積層体(E15)を得た。得られた積層体の全体厚みは1.0mm、(B14)から成る層の厚みは中央付近で60μmであった。鉛筆引っかき硬度試験の結果はFで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、高硬度側を凸に曲率半径が27.5m>R≧20.7mで合格であり、蒸着品では、基材層側を凸に曲率半径が4.6m>R≧3.3mで合格であり、総合判定で合格であった。
実施例6
 高硬度層を製造例4で得た樹脂(B14)とした以外は、実施例2と同様にして(B14)と(A1)の積層体(E16)を得た。得られた積層体の全体厚みは1.0mm、(B14)から成る層の厚みは中央付近で100μmであった。鉛筆引っかき硬度試験の結果はFで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、高硬度層側を凸に曲率半径が63.0m>R≧9.5mで合格であり、蒸着品では、基材層側を凸に曲率半径が5.1m>R≧3.8mで合格であり、総合判定で合格であった。
実施例7
 高硬度層を製造例5で得た樹脂(B15)とした以外は、実施例1と同様にして(B15)と(A1)の積層体(E17)を得た。得られた積層体の全体厚みは1.0mm、(B15)から成る層の厚みは中央付近で60μmであった。鉛筆引っかき硬度試験の結果はFで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、高硬度層側を凸に曲率半径が41.5m>R≧7.5mで合格であり、蒸着品では、基材層側を凸に曲率半径が10.8m>R≧6.1mで合格であり、総合判定で合格であった。
実施例8
 高硬度層を製造例5で得た樹脂(B15)とした以外は、実施例2と同様にして(B15)と(A1)の積層体(E18)を得た。得られた積層体の全体厚みは1.0mm、(B15)から成る層の厚みは中央付近で100μmであった。鉛筆引っかき硬度試験の結果はFで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、高硬度層側を凸に曲率半径が8.5m>R≧3.4mで合格であり、蒸着品では、高硬度層側を凸に曲率半径が77.3m>R≧10.4mで合格であり、総合判定で合格であった。
実施例9
 高硬度層を製造例6で得た樹脂(B16)とした以外は、実施例1と同様にして(B16)と(A1)の積層体(E19)を得た。得られた積層体の全体厚みは1.0mm、(B16)から成る層の厚みは中央付近で60μmであった。鉛筆引っかき硬度試験の結果はFで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、高硬度層側を凸に曲率半径が16.4m>R≧4.8mで合格であり、蒸着品では、基材層側を凸に曲率半径が18.5m>R≧11.8mで合格であり、総合判定で合格であった。
実施例10
 高硬度層を製造例6で得た樹脂(B16)とした以外は、実施例2と同様にして(B16)と(A1)の積層体(E20)を得た。得られた積層体の全体厚みは1.0mm、(B16)から成る層の厚みは中央付近で100μmであった。鉛筆引っかき硬度試験の結果はFで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、高硬度層側を凸に曲率半径が7.6m>R≧3.4mで合格であり、蒸着品では、高硬度層側を凸に曲率半径が26.6m>R≧11.3mで合格であり、総合判定で合格であった。
実施例11
 実施例3で得た積層体(E13)の高硬度層(B12)上に、製造例7で得た光硬化性樹脂組成物(C11)を硬化後の塗膜厚さが3~8μmとなるようバーコーターを用いて塗布しPETフィルムで覆って圧着し、また(A1)から成る基材層上に製造例8で得た光硬化性樹脂組成物(C12)を硬化後の塗膜厚さが3~8μmとなるようバーコーターを用いて塗布しPETフィルムで覆って圧着した。続いて、光源距離12cm、出力80W/cmの高圧水銀灯を備えたコンベアでラインスピード1.5m/分の条件で紫外線を照射し硬化させてPETフィルムを剥離し、高硬度層および基材層上にそれぞれ(C11)および(C12)から成るハードコート層を備えた積層体(F11)を得た。鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、高硬度層側を凸に曲率半径が9.4m>R≧3.3mで合格であり、蒸着品では、基材層側を凸に曲率半径が58.6m>R≧12.5mで合格であり、総合判定で合格であった。
実施例12
 高硬度層を製造例2で得た樹脂(B12)とし、ポリカーボネート樹脂(A1)の吐出量を20.4kg/hとした以外は、実施例1と同様にして(B12)と(A1)の積層体を得た。得られた積層体の全体厚みは0.7mm、(B12)から成る層の厚みは中央付近で60μmであった。得られた積層体以外は実施例11と同様として、高硬度層および基材層上にそれぞれ(C11)および(C12)から成るハードコート層を備えた積層体(F12)を得た。鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、高硬度層側を凸に曲率半径が30.6m>R≧4.6mで合格であり、蒸着品では、高硬度層側を凸に曲率半径が18.4m>R≧5.3mで合格であり、総合判定で合格であった。
比較例1
 高硬度層を製造例2で得た樹脂(B12)とした以外は、実施例2と同様にして(B12)と(A1)の積層体(E21)を得た。得られた積層体の全体厚みは1.0mm、(B12)から成る層の厚みは中央付近で100μmであった。鉛筆引っかき硬度試験の結果はHで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、高硬度層側を凸に曲率半径が1.8m>R≧1.3mで不合格であり、蒸着品では、基材層側を凸に曲率半径が3.0m>R≧2.4mで不合格であり、総合判定で不合格であった。
比較例2
 高硬度層を製造例3で得た樹脂(B13)とした以外は、実施例2と同様にして(B13)と(A1)の積層体(E22)を得た。得られた積層体の全体厚みは1.0mm、(B13)から成る層の厚みは中央付近で100μmであった。鉛筆引っかき硬度試験の結果はHで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、高硬度層側を凸に曲率半径が1.6m>R≧1.0mで不合格であり、蒸着品では、基材層側を凸に曲率半径が2.4m>R≧2.2mで不合格であり、総合判定で不合格であった。
比較例3
 高硬度層を製造例2で得た樹脂(B12)とし、ポリカーボネート樹脂(A1)の吐出量を19.1kg/hとした以外は、実施例1と同様にして(B12)と(A1)の積層体(E23)を得た。得られた積層体の全体厚みは0.7mm、(B12)から成る層の厚みは中央付近で60μmであった。鉛筆引っかき硬度試験の結果はHで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、高硬度層側を凸に曲率半径が1.5m>R≧1.2mで不合格であり、蒸着品では、基材層側を凸に曲率半径が1.8m>R≧1.5mで不合格であり、総合判定で不合格であった。
比較例4
 高硬度層を製造例2で得た樹脂(B12)とし、ポリカーボネート樹脂(A1)の吐出量を19.1kg/hとした以外は、実施例1と同様にして(B12)と(A1)の積層体(E24)を得た。得られた積層体の全体厚みは0.7mm、(B12)から成る層の厚みは中央付近で100μmであった。鉛筆引っかき硬度試験の結果はHで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、高硬度層側を凸に曲率半径が1.3m>R≧0.9mで不合格であり、蒸着品でも、基材層側を凸に曲率半径が1.5m>R≧1.3mで不合格であり、総合判定で不合格であった。
比較例5
 比較例1で得た積層体(E21)に、実施例11と同様として、高硬度層および基材層上にそれぞれ(C11)および(C12)から成るハードコート層を積層させて積層体(F13)を得た。鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、高硬度層側を凸に曲率半径が1.9m>R≧1.7mで不合格であり、蒸着品でも、高硬度層凸側を凸に曲率半径が3.0m>R≧2.7mで不合格であり、総合判定で不合格であった。
比較例6
 比較例4で得た積層体(E24)に、実施例11と同様として、高硬度層および基材層上にそれぞれ(C11)および(C12)から成るハードコート層を積層させて積層体(F14)を得た。鉛筆引っかき硬度試験の結果は3Hで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、高硬度層側を凸に曲率半径Rが1.8m>≧1.3mで不合格であり、蒸着品でも、高硬度層側を凸に曲率半径が2.0m>R≧1.5mで不合格であり、総合判定で不合格であった。
比較例7
 高硬度層を比較製造例1で得た樹脂(D11)とした以外は、実施例1と同様にして(D11)と(A1)の積層体を得た。得られた積層体の全体厚みは1.0mm、(D11)から成る層の厚みは中央付近で60μmであった。得られた積層体以外は実施例11と同様として、高硬度層および基材層上にそれぞれ(C11)および(C12)から成るハードコート層を備えた積層体(F15)を得た。鉛筆引っかき硬度試験の結果は4Hで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、基材層側を凸に曲率半径が1.5m>R≧1.2mで不合格であり、蒸着品でも、基材層側を凸に曲率半径が1.1m>R≧0.9mで不合格であり、総合判定で不合格であった。
比較例8
 高硬度層を比較製造例2で得た樹脂(D12)とした以外は、実施例1と同様にして(D12)と(A1)の積層体を得た。得られた積層体の全体厚みは1.0mm、(D12)から成る層の厚みは中央付近で60μmであった。得られた積層体に、実施例11と同様として、高硬度層および基材層上にそれぞれ(C11)および(C12)から成るハードコート層を積層させて積層体(F16)を得た。鉛筆引っかき硬度試験の結果は4Hで合格であり、高温高湿環境下に放置した後のカール形状の評価は、積層体のみでは、基材層側を凸に曲率半径が36.1m>R≧15.7mで不合格であり、蒸着品でも、高硬度層側を凸に曲率半径が3.0m>R≧2.1mで不合格であり、総合判定で不合格であった。
 実施例及び比較例、表1により、i)高硬度層(B)の鉛筆硬度がF以上であり、ii)積層体のみの高温高湿環境下に放置した後のカール形状が高硬度層(B)側を凸に曲率半径R≧2.0mとなる合成樹脂積層体が、水蒸気透過率を低下させるAl+SiO2蒸着した積層体の高温高湿環境下に放置した後のカール形状が高硬度層(B)側を凸、又は基材層(A)側を凸に曲率半径R≧3.2mに収めることが確認された。
Figure JPOXMLDOC01-appb-T000002
 以上のように、本発明の合成樹脂積層体は、高硬度と基材層とが積層されていて、基材層側の水蒸気透過率が小さい状態において、高温高湿環境下に放置した後のカールを抑制する特徴を有する。例えば、図1(A)に示すように、基材層22と表層24(高硬度層)とハードコート層28を積層させた本発明の合成樹脂積層体20は、そのままの状態で高温高湿環境下におくと、表層24(高硬度層)を凸とするように、若干のカールを生じる。そして図1(B)に示すように、合成樹脂積層体20をITO層26に張り合わせた状態で高温高湿環境下におくと、基材層22側と表層24(高硬度層)側との水蒸気透過率に差が生じる結果、カールの発生を大幅に抑制することができる。なお、図1中の矢印の大きさは、水蒸気透過率の値を概略的に示しており、大きい矢印が付されている部材は、水蒸気透過率が高いことを意味する。
 一方、例えば、図2(A)に示すように、従来例の合成樹脂積層体10では、そのままの状態で高温高湿環境下に放置した後、基材層12を凸とするようにカールが生じる。このような従来例の合成樹脂積層体10をITO層16に張り合わせた状態で高温高湿環境下に放置した後、図2(B)に示すように、大きなカールが発生してしまう。この結果、合成樹脂積層体10を含む部材の表面の外観を損なう上に、長期的には、合成樹脂積層体10がITO層16から剥離してしまう可能性が高まる。
 また、基材層と表層(高硬度層)の引張弾性率を高くし、かつ、基材層の引張弾性率の値と表層(高硬度層)の引張弾性率の値との差を小さく抑えた各実施例においては、上述のように良好な結果が認められるのに対し、引張弾性率の値の低い表層(高硬度層)を採用し、基材層の引張弾性率の値と表層(高硬度層)の引張弾性率の値との差が大きい比較例7および8においては、特に、高温高湿環境下に放置後の積層体のカールが大きくなった。
 以上のように、高温高湿環境下に放置した際に生じるカールを抑制する本発明の合成樹脂積層体は、透明性基板材料、透明性保護材料などとして好適に用いられ、特にOA機器・携帯電子機器の表示部前面板やタッチパネル基板さらには熱曲げ加工用シートとして好適に用いられる。
10 従来例の合成樹脂積層体
20 合成樹脂積層体
12,22 基材層
14,24 表層(高硬度層)
16,26 ITO層
18,28 ハードコート層

Claims (15)

  1.  熱可塑性樹脂(A)を含む基材層、およびその少なくとも一方の面に積層された、熱可塑性樹脂(A)とは異なる熱可塑性樹脂(B)を含む高硬度層を備えた合成樹脂積層体であって、
    (i)前記高硬度層の厚みは10~250μmで、前記基材層と前記高硬度層の合計厚みは0.1~2.0mmで、前記高硬度層/前記基材層の厚みの比が0.01~0.8であり、
    (ii)前記高硬度層の鉛筆硬度がF以上であり、
    (iii)該合成樹脂積層体を高温高湿環境下に放置した後のカール形状が前記高硬度層側を凸に曲率半径R≧2.0mとなる、
    合成樹脂積層体。
  2.  前記基材層の前記高硬度層とは反対側の表面における水蒸気透過率が0.2~0.6g/m・dayになるように第3層がさらに積層されており、高温高湿環境下に放置した後の前記合成樹脂積層体のカール形状が前記高硬度層側を凸、又は前記基材層側を凸に曲率半径R≧3.2mとなる積層体であることを特徴とする請求項1に記載の合成樹脂積層体。
  3.  前記基材層に含まれる前記熱可塑性樹脂(A)がポリカーボネート(a1)を含有する樹脂であり、前記高硬度層に含まれる前記熱可塑性樹脂(B)が芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体(b1)とビニル系単量体を構成単位とする樹脂(b2)を含有する樹脂であって、
     前記(b1)が、芳香族ビニル単量体単位45~80質量%、(メタ)アクリル酸エステル単量体単位5~45質量%、不飽和ジカルボン酸無水物単量体単位10~30質量%である芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体であり、
     前記樹脂(B)が、前記(b1)の50~100質量部と前記(b2)の50~0質量部とのブレンド樹脂であることを特徴とする請求項1または2に記載の合成樹脂積層体。
  4.  前記(b1)の(メタ)アクリル酸エステル単量体単位がメチルメタクリレートである事を特徴とする請求項3に記載の合成樹脂積層体。
  5.  前記樹脂(B)が、重量平均分子量50,000~300,000の前記芳香族ビニル-(メタ)アクリル酸エステル-不飽和ジカルボン酸共重合体(b1)50~100質量部と、重量平均分子量50,000~500,000のメチルメタクリレート樹脂(b2)50~0質量部とのブレンド樹脂であることを特徴とする請求項3または請求項4に記載の合成樹脂積層体。
  6.  前記ポリカーボネート(a1)の重量平均分子量が25,000~75,000であることを特徴とする請求項1~請求項5のいずれか記載の合成樹脂積層体。
  7.  前記高硬度層および/または前記基材層が紫外線吸収剤を含有することを特徴とする請求項1~請求項6のいずれか記載の合成樹脂積層体。
  8.  前記高硬度層の表面上にハードコート処理を施した請求項1~請求項7のいずれかを特徴とする合成樹脂積層体。
  9.  前記樹脂積層体の片面または両面に、反射防止処理、防汚処理、耐指紋処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上を施した請求項1~請求項8のいずれかに記載の合成樹脂積層体。
  10.  前記高硬度層と前記基材層のそれぞれの引張弾性率が、1600MPa以上である、請求項1~請求項9のいずれかに記載の合成樹脂積層体。
  11.  前記高硬度層の引張弾性率と前記基材層の引張弾性率との差が、400MPa以下である、請求項1~請求項10のいずれかに記載の合成樹脂積層体。
  12.  請求項1~請求項11のいずれかに記載の合成樹脂積層体を含む透明性基板材料。
  13.  請求項1~請求項11のいずれかに記載の合成樹脂積層体を含む透明性保護材料。
  14.  請求項1~請求項11のいずれかに記載の合成樹脂積層体を含むタッチパネル前面保護板。
  15.  請求項1~請求項11のいずれかに記載の合成樹脂積層体を含む低水蒸気透過率板の積層体。
PCT/JP2015/069475 2014-07-09 2015-07-07 合成樹脂積層体 WO2016006589A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016532936A JP6630670B2 (ja) 2014-07-09 2015-07-07 合成樹脂積層体
CN201580036623.7A CN106573454B (zh) 2014-07-09 2015-07-07 合成树脂叠层体
KR1020177002712A KR102368754B1 (ko) 2014-07-09 2015-07-07 합성 수지 적층체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-141671 2014-07-09
JP2014141671 2014-07-09

Publications (1)

Publication Number Publication Date
WO2016006589A1 true WO2016006589A1 (ja) 2016-01-14

Family

ID=55064220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069475 WO2016006589A1 (ja) 2014-07-09 2015-07-07 合成樹脂積層体

Country Status (5)

Country Link
JP (1) JP6630670B2 (ja)
KR (1) KR102368754B1 (ja)
CN (1) CN106573454B (ja)
TW (1) TWI661934B (ja)
WO (1) WO2016006589A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141787A1 (ja) * 2016-02-15 2017-08-24 三菱瓦斯化学株式会社 透明樹脂積層体
CN113518701A (zh) * 2019-03-07 2021-10-19 三菱瓦斯化学株式会社 高硬度成型用树脂片和使用其的成型品
WO2021241426A1 (ja) * 2020-05-27 2021-12-02 三菱瓦斯化学株式会社 樹脂積層体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7306370B2 (ja) * 2018-02-22 2023-07-11 三菱瓦斯化学株式会社 反射防止フィルム、及び、反射防止フィルムを有する積層体フィルム
JP6680347B2 (ja) * 2018-04-24 2020-04-15 住友化学株式会社 積層体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000071392A (ja) * 1998-09-01 2000-03-07 Toppan Printing Co Ltd ハードコートフィルムもしくはシート
JP2008268913A (ja) * 2007-03-29 2008-11-06 Asahi Kasei Chemicals Corp 積層光学フィルム
JP2013220590A (ja) * 2012-04-17 2013-10-28 Mitsubishi Gas Chemical Co Inc 加飾用フィルム
JP2014198454A (ja) * 2013-03-13 2014-10-23 住友化学株式会社 樹脂積層板およびそれを用いた耐擦傷性樹脂積層板
WO2015079867A1 (ja) * 2013-11-26 2015-06-04 三菱瓦斯化学株式会社 透明樹脂積層体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559321A (ja) * 1991-08-30 1993-03-09 Nippon Steel Chem Co Ltd コーテイング材料、及び被覆された成形品
JP2006072694A (ja) * 2004-09-02 2006-03-16 Matsushita Electric Ind Co Ltd タッチパネル
JP2006103169A (ja) 2004-10-06 2006-04-20 Mitsubishi Gas Chem Co Inc 液晶ディスプレーカバー用ポリカーボネート樹脂積層体
US7521119B2 (en) 2005-07-07 2009-04-21 Sabic Innovative Plastics Ip B.V. Windows and other articles made from DMBPC polycarbonate homopolymer and copolymer
WO2008047940A1 (fr) * 2006-10-20 2008-04-24 Mgc Filsheet Co., Ltd. Stratifié comprenant une résine de polycarbonate
JPWO2009031544A1 (ja) * 2007-09-04 2010-12-16 電気化学工業株式会社 熱可塑性共重合樹脂及びその光学成形体
JP2009133000A (ja) 2007-10-30 2009-06-18 Fujifilm Corp シリコン窒化物膜及びそれを用いたガスバリア膜、薄膜素子
US20110244242A1 (en) * 2008-08-28 2011-10-06 Mitsubishi Gas Chemical Company, Inc. Thermoplastic resin laminate
JP2010167659A (ja) 2009-01-22 2010-08-05 Teijin Chem Ltd 樹脂積層体
JP5549233B2 (ja) 2010-01-18 2014-07-16 凸版印刷株式会社 カラーフィルタ基板の露光方法
WO2014061817A1 (ja) 2012-10-15 2014-04-24 帝人株式会社 積層体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000071392A (ja) * 1998-09-01 2000-03-07 Toppan Printing Co Ltd ハードコートフィルムもしくはシート
JP2008268913A (ja) * 2007-03-29 2008-11-06 Asahi Kasei Chemicals Corp 積層光学フィルム
JP2013220590A (ja) * 2012-04-17 2013-10-28 Mitsubishi Gas Chemical Co Inc 加飾用フィルム
JP2014198454A (ja) * 2013-03-13 2014-10-23 住友化学株式会社 樹脂積層板およびそれを用いた耐擦傷性樹脂積層板
WO2015079867A1 (ja) * 2013-11-26 2015-06-04 三菱瓦斯化学株式会社 透明樹脂積層体

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141787A1 (ja) * 2016-02-15 2017-08-24 三菱瓦斯化学株式会社 透明樹脂積層体
CN108698393A (zh) * 2016-02-15 2018-10-23 三菱瓦斯化学株式会社 透明树脂叠层体
JPWO2017141787A1 (ja) * 2016-02-15 2018-12-13 三菱瓦斯化学株式会社 透明樹脂積層体
EP3418051A4 (en) * 2016-02-15 2019-06-19 Mitsubishi Gas Chemical Company, Inc. TRANSPARENT RESIN LAMINATE
CN113518701A (zh) * 2019-03-07 2021-10-19 三菱瓦斯化学株式会社 高硬度成型用树脂片和使用其的成型品
EP3936303A4 (en) * 2019-03-07 2022-04-06 Mitsubishi Gas Chemical Company, Inc. RESIN SHEET FOR VERY HARD MOLDING, MOLDED ARTICLE IMPLEMENTING IT
WO2021241426A1 (ja) * 2020-05-27 2021-12-02 三菱瓦斯化学株式会社 樹脂積層体

Also Published As

Publication number Publication date
KR20170031154A (ko) 2017-03-20
CN106573454B (zh) 2018-09-18
TW201615416A (zh) 2016-05-01
JP6630670B2 (ja) 2020-01-15
KR102368754B1 (ko) 2022-02-28
TWI661934B (zh) 2019-06-11
CN106573454A (zh) 2017-04-19
JPWO2016006589A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6571528B2 (ja) 透明樹脂積層体
JP6068433B2 (ja) 合成樹脂積層体
US10414133B2 (en) Synthetic resin laminate
JP6630670B2 (ja) 合成樹脂積層体
JP6832334B2 (ja) 透明樹脂積層体
JP6472385B2 (ja) 合成樹脂積層体
JP6712926B2 (ja) 透明樹脂積層体
JP6787925B2 (ja) 透明樹脂積層体
JP6565573B2 (ja) 積層体とその製造方法
JP7239314B2 (ja) 樹脂積層体並びに該樹脂積層体を含む透明基板材料及び透明保護材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819253

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016532936

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177002712

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15819253

Country of ref document: EP

Kind code of ref document: A1