JP7356304B2 - 樹脂積層体及びそれを含む透明基板材料並びに透明保護材料 - Google Patents

樹脂積層体及びそれを含む透明基板材料並びに透明保護材料 Download PDF

Info

Publication number
JP7356304B2
JP7356304B2 JP2019165188A JP2019165188A JP7356304B2 JP 7356304 B2 JP7356304 B2 JP 7356304B2 JP 2019165188 A JP2019165188 A JP 2019165188A JP 2019165188 A JP2019165188 A JP 2019165188A JP 7356304 B2 JP7356304 B2 JP 7356304B2
Authority
JP
Japan
Prior art keywords
resin
mass
thermoplastic resin
styrene copolymer
resin laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019165188A
Other languages
English (en)
Other versions
JP2021041614A (ja
Inventor
正樹 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
MGC Filsheet Co Ltd
Original Assignee
Mitsubishi Gas Chemical Co Inc
MGC Filsheet Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc, MGC Filsheet Co Ltd filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2019165188A priority Critical patent/JP7356304B2/ja
Publication of JP2021041614A publication Critical patent/JP2021041614A/ja
Application granted granted Critical
Publication of JP7356304B2 publication Critical patent/JP7356304B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、透明な基板材料や保護材料に好適に使用され、ポリカーボネート系樹脂層と、メタクリル樹脂と特定のスチレン共重合体を含む熱可塑性樹脂層とを有する樹脂積層体に関する。
アクリル樹脂は表面硬度、透明性、耐擦傷性および耐候性などに優れる。一方、ポリカーボネート樹脂は耐衝撃性などに優れる。このことからアクリル樹脂層とポリカーボネート樹脂層を有する積層体は、表面硬度、透明性、耐擦傷性、耐候性および耐衝撃性などに優れ、自動車部品、家電製品、電子機器および携帯型情報端末のディスプレイに用いられている。しかし、アクリル樹脂層とポリカーボネート樹脂層を有する積層体は、高温高湿下である屋外や車中で使用される場合に、反りが発生する問題を抱えている。
特許文献1(国際公開第2015/050051号)ではメタクリル樹脂とスチレン共重合体を含む樹脂層とポリカーボネート樹脂層を有する積層体が報告されている。かかる積層体は、85℃85%RHの高温高湿下で反りを抑えることが報告されている。
しかしながら、上記積層体のメタクリル樹脂とスチレン共重合体を含む樹脂層は特許文献1の記載範囲のビニル芳香族単量体単位と環状酸無水物単量体単位であるスチレン共重合体を使用しても、一部、メタクリル樹脂と相溶せずに白濁するため、透明シートが作製できない。
また、上記積層体のメタクリル樹脂とスチレン共重合体を含む樹脂層は特許文献1の記載範囲のメタクリル樹脂とスチレン共重合体の割合であっても、一部、85℃85%RHの高温高湿下で反り変化量が大きいため、その後の印刷加工等で不具合が発生する。
国際公開第2015/050051号
本発明は、上記従来における問題の少なくとも一つを解決することを課題とする。好ましくは、本発明は、透明な基板材料や保護材料に使用され、高温高湿下に曝されても耐反り変形性に優れ、外観良好な樹脂積層体を提供することを課題とする。
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、以下の構成からなる解決手段を見出し、本発明を完成するに至った。
[1]ポリカーボネート系樹脂(A)を含む層の少なくとも一方の面に、熱可塑性樹脂(B)を含む層を有する樹脂積層体であって、
前記熱可塑性樹脂(B)のガラス転移温度が110℃~130℃であり、
前記熱可塑性樹脂(B)は、メタクリル樹脂(C)とスチレン共重合体(D)とを含有し、メタクリル樹脂(C)とスチレン共重合体(D)との含有量の合計100質量部を基準として、メタクリル樹脂(C)の含有量が30~70質量部であり、スチレン共重合体(D)の含有量が70~30質量部であり、
前記スチレン共重合体(D)が、ビニル芳香族単量体単位(d1)及び環状酸無水物単量体単位(d2)のみからなる共重合体であり、かつ、ビニル芳香族単量体単位(d1)と環状酸無水物単量体単位(d2)との含有量の合計に対して、ビニル芳香族単量体単位(d1)の含有量が68~84質量%であり、環状酸無水物単量体単位(d2)の含有量が16~32質量%である、前記樹脂積層体である。
[2]温度85℃、相対湿度85%の環境下に120時間保持した後の反り変化量が、絶対値で200μm以下である、上記[1]に記載の樹脂積層体である。
[3]熱可塑性樹脂(B)が、メタクリル樹脂(C)とスチレン共重合体(D)とのポリマーアロイである、上記[1]または[2]に記載の樹脂積層体である。
[4]スチレン共重合体(D)に含まれるビニル芳香族単量体単位(d1)が、スチレンである、上記[1]~[3]のいずれかに記載の樹脂積層体である。
[5]スチレン共重合体(D)に含まれる環状酸無水物単量体単位(d2)が、無水マレイン酸である、上記[1]~[4]のいずれかに記載の樹脂積層体である。
[6]熱可塑性樹脂(B)を含む層の厚さが10~250μmであり、樹脂積層体の全体厚みが0.4~4.0mmの範囲である、上記[1]~[5]のいずれかに記載の樹脂積層体である。
[7]ポリカーボネート系樹脂(A)を含む層、および、熱可塑性樹脂(B)を含む層の少なくとも一層が紫外線吸収剤を含有する、上記[1]~[6]のいずれかに記載の樹脂積層体である。
[8]前記樹脂積層体の片面または両面に、耐指紋処理、反射防止処理、防眩処理、耐候性処理、帯電防止処理および防汚処理の少なくとも一つが施されてなる、上記[1]~[7]のいずれかに記載の樹脂積層体である。
[9] 上記[1]~[8]のいずれかに記載の樹脂積層体を熱曲げ加工された熱成形体である。
[10] 上記[1]~[8]のいずれかに記載の樹脂積層体、または上記[9]に記載の熱成形体を含む、透明基板材料である。
[11] 上記[1]~[8]のいずれかに記載の樹脂積層体、または上記[9]に記載の熱成形体を含む、透明保護材料である。
[12] 上記[1]~[8]のいずれかに記載の樹脂積層体、または上記[9]に記載の熱成形体を含む、タッチパネル前面保護板である。
[13]上記[1]~[8]のいずれかに記載の樹脂積層体を含む、OA機器用または携帯電子機器用の前面板である。
本発明によれば、上記従来における問題の少なくとも一つを解決することができる。更に、本発明の好ましい態様によれば、高温高湿下に曝されても耐反り変形性に優れ、外観良好な樹脂積層体が提供され、該樹脂積層体は透明基板材料や透明保護材料として用いることができる。具体的には携帯電話端末、携帯型電子遊具、携帯情報端末、モバイルPCといった携帯型のディスプレイデバイスや、ノート型PC、デスクトップ型PC液晶モニター、液晶テレビといった設置型のディスプレイデバイスなどにおいて、例えばこれらの機器を保護する前面板として、好適に使用することができる。なお、外観が良好か否かの判断は、例えば後述する実施例に記載のHazeの有無で判断することができる。
以下、本発明について製造例や実施例等を例示して詳細に説明するが、本発明は例示される製造例や実施例等に限定されるものではなく、本発明の内容を大きく逸脱しない範囲であれば任意の方法に変更して行うこともできる。
<ポリカーボネート系樹脂(A)>
本発明に使用されるポリカーボネート系樹脂(A)は、ポリカーボネート樹脂を主成分とするポリカーボネート系樹脂(A)である。ここで、「ポリカーボネート樹脂を主成分とする」とは、ポリカーボネート樹脂の含有量が50質量%を超えることを意味する。ポリカーボネート系樹脂(A)は、75質量%以上のポリカーボネート樹脂を含んでいるのが好ましく、90質量%以上のポリカーボネート樹脂を含んでいるのがより好ましく、実質的にポリカーボネート樹脂からなるのがさらに好ましい。ポリカーボネート系樹脂(A)は分子主鎖中に炭酸エステル結合を含む。即ち、-[O-R-OCO]-単位(式中、Rが脂肪族基、芳香族基、又は脂肪族基と芳香族基の双方を含むもの、さらに直鎖構造あるいは分岐構造を持つものを示す)を含むものであれば特に限定されるものではないが、特に下記式(1)の構造単位を含むポリカーボネートを使用することが好ましい。このようなポリカーボネートを使用することで、耐衝撃性に優れた樹脂積層体を得ることができる。
具体的には、ポリカーボネート系樹脂(A)として、芳香族ポリカーボネート樹脂(例えば、三菱エンジニアリングプラスチックス株式会社から市販されている、ユーピロンS-2000、ユーピロンS-1000、ユーピロンE-2000)等が使用可能である。
本発明に使用されるポリカーボネート系樹脂(A)のガラス転移温度は、120~160℃が好ましく、125~155℃がより好ましく、130℃~150℃が特に好ましい。
近年、前面板にも曲げ加工を行うような要望が増えていることから、ポリカーボネート系樹脂(A)は、下記一般式(2)で表わされる1価フェノールを末端停止剤として用いて合成することが好ましい。
(式中、Rは、炭素数8~36のアルキル基、又は炭素数8~36のアルケニル基を表し、
~Rはそれぞれ水素、ハロゲン、又は置換基を有してもよい炭素数1~20のアルキル基若しくは炭素数6~12のアリール基を表し、置換基は、ハロゲン、炭素数1~20のアルキル基、又は炭素数6~12のアリール基である。)
一般式(2)の1価フェノールは、下記一般式(3)で表わされる1価フェノールであることがより好ましい。
(式中、Rは、炭素数8~36のアルキル基、又は、炭素数8~36のアルケニル基を表す。)
一般式(2)又は一般式(3)におけるRの炭素数は特定の数値範囲内であることがより好ましい。具体的には、Rの炭素数の上限値として36が好ましく、22がより好ましく、18が特に好ましい。また、Rの炭素数の下限値として、8が好ましく、12がより好ましい。
一般式(2)又は一般式(3)で示される1価フェノール(末端停止剤)の中でも、パラヒドロキシ安息香酸ヘキサデシルエステル、パラヒドロキシ安息香酸2-ヘキシルデシルエステルのいずれかもしくは両方を末端停止剤として使用することが特に好ましい。
一般式(2)又は一般式(3)におけるRとして、例えば、炭素数16のアルキル基を有する1価フェノール(末端停止剤)を使用した場合、ガラス転移温度、溶融流動性、成形性、耐ドローダウン性、ポリカーボネート樹脂製造時の1価フェノールの溶剤溶解性が優れており、本発明に用いるポリカーボネート樹脂に使用する末端停止剤として、特に好ましい。
一方、一般式(2)又は一般式(3)におけるRの炭素数が増加しすぎると、1価フェノール(末端停止剤)の有機溶剤溶解性が低下する傾向があり、ポリカーボネート樹脂製造時の生産性が低下することがある。
一例として、Rの炭素数が36以下であれば、ポリカーボネート樹脂を製造するにあたって生産性が高く、経済性も良い。Rの炭素数が22以下であれば、1価フェノールは、特に有機溶剤溶解性に優れており、ポリカーボネート樹脂を製造するにあたって生産性を非常に高くすることができ、経済性も向上する。
一般式(2)又は一般式(3)におけるRの炭素数が小さすぎると、ポリカーボネート樹脂のガラス転移温度が十分に低い値とはならず、熱成形性が低下することがある。
ポリカーボネート系樹脂(A)に含まれる他の樹脂としては、ポリエステル系樹脂がある。ポリエステル系樹脂は、ジカルボン酸成分として、テレフタル酸を主成分として含んでいればよく、テレフタル酸以外のジカルボン酸成分を含んでいてもよい。例えば、主成分であるエチレングリコール80~60(モル比率)に対して1,4-シクロヘキサンジメタノールを20~40(モル比率、合計100)含むグリコール成分とジカルボン酸成分とが重縮合してなるポリエステル系樹脂、所謂「PETG」が好ましい。また、ポリカーボネート系樹脂(A)には、エステル結合とカーボネート結合をポリマー骨格中に有するポリエステルカーボネート系樹脂が含まれていてもよい。
本発明において、ポリカーボネート系樹脂(A)の重量平均分子量は、樹脂積層体の耐衝撃性および成形条件に影響する。つまり、重量平均分子量が小さすぎる場合は、樹脂積層体の耐衝撃性が低下するので好ましくない。重量平均分子量が高すぎる場合は、ポリカーボネート系樹脂(A)を含む層を積層させる時に過剰な熱源を必要とする場合があり、好ましくない。また、成形法によっては高い温度が必要になるので、ポリカーボネート系樹脂(A)が高温にさらされることになり、その熱安定性に悪影響を及ぼすことがある。ポリカーボネート系樹脂(A)の重量平均分子量は、15,000~75,000が好ましく、20,000~70,000がより好ましい。さらに好ましくは25,000~65,000である。
<ポリカーボネート系樹脂(A)の重量平均分子量の測定法>
ポリカーボネート系樹脂(A)の重量平均分子量は、特開2007-179018号公報の段落0061~0064の記載に基づいて測定することができる。測定法の詳細を以下に示す。
標準ポリマーとしてポリスチレン(PS)を使用して測定を行った後、ユニバーサルキャリブレーション法により、溶出時間とポリカーボネート(PC)の分子量との関係を求めて検量線とする。そして、PCの溶出曲線(クロマトグラム)を検量線の場合と同一の条件で測定し、溶出時間(分子量)とその溶出時間のピーク面積(分子数)とから各平均分子量を求める。分子量Miの分子数をNiとすると、重量平均分子量は、以下のように表される。また換算式は以下の式を使用した。
(重量平均分子量)
Mw=Σ(NiMi)/Σ(NiMi)
(換算式)
MPC=0.47822MPS1.01470
なお、MPCはPCの分子量、MPSはPSの分子量を示す。
本発明に使用されるポリカーボネート系樹脂(A)のガラス転移温度は、示差走査熱量計を用い、昇温速度10℃/分で測定し、ベースラインと変曲点での接線の交点で算出したときの温度である。
前記ポリカーボネート系樹脂(A)のメルトフローレイトは1~30g/10分の範囲であるのが好ましく、4~10g/10分の範囲であるのがより好ましく、5~8g/10分の範囲であるのがさらに好ましい。メルトフローレイトが1~30g/10分の範囲にあると、加熱溶融成形の安定性が良好である。なお、本明細書におけるポリカーボネート系樹脂(A)のメルトフローレイトとは、メルトインデクサーを用いて、温度300℃、1.2kg荷重下の条件で測定したものである。
本発明に使用されるポリカーボネート系樹脂(A)の製造方法は、公知のホスゲン法(界面重合法)、エステル交換法(溶融法)等、使用するモノマーにより適宜選択できる。
<熱可塑性樹脂(B)>
本発明に使用される熱可塑性樹脂(B)は、メタクリル樹脂(C)とスチレン共重合体(D)とを含むが、本発明の効果を損なわない範囲で、その他の樹脂を含んでもよい。それぞれの構成要素について以下に説明する。
<メタクリル樹脂(C)>
本発明による熱可塑性樹脂(B)に含まれるメタクリル樹脂(C)は、メタクリル酸エステル単量体に由来する構造単位を含有する。
前記メタクリル樹脂(C)のメタクリル酸エステル単量体としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸tert-ブチル、メタクリル酸ペンチル、メタクリル酸ヘキシル、メタクリル酸ヘプチル、メタクリル酸2-エチルヘキシル、メタクリル酸ノニル、メタクリル酸デシル、メタクリル酸ドデシルなどのメタクリル酸アルキルエステル;メタクリル酸1-メチルシクロペンチル、メタクリル酸シクロヘキシル、メタクリル酸シクロヘプチル、メタクリル酸シクロオクチル、メタクリル酸トリシクロ[5.2.1.02,6]デカ-8-イルなどのメタクリル酸シクロアルキルエステル;メタクリル酸フェニルなどのメタクリル酸アリールエステル;メタクリル酸ベンジルなどのメタクリル酸アラルキルエステルなどが挙げられ、入手性の観点から、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、およびメタクリル酸tert-ブチルが好ましく、メタクリル酸メチルが最も好ましい。
また耐熱性の観点から、上記メタクリル樹脂(C)は、メタクリル酸メチルに由来する構造単位を80質量%以上含有することが好ましく、90質量%以上含有することがより好ましく、95質量%以上含有することがさらに好ましい。
また、前記メタクリル樹脂(C)は、メタクリル酸エステル以外の他の単量体に由来する構造単位を含んでいてもよい。かかる他の単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸tert-ブチル、アクリル酸ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ノニル、アクリル酸デシル、アクリル酸ドデシル、アクリル酸ステアリル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸4-ヒドロキシブチル、アクリル酸シクロヘキシル、アクリル酸2-メトキシエチル、アクリル酸3-メトキシブチル、アクリル酸トリフルオロメチル、アクリル酸トリフルオロエチル、アクリル酸ペンタフルオロエチル、アクリル酸グリシジル、アクリル酸アリル、アクリル酸フェニル、アクリル酸トルイル、アクリル酸ベンジル、アクリル酸イソボルニル、アクリル酸3-ジメチルアミノエチルなどのアクリル酸エステルが挙げられ、入手性の観点から、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸tert-ブチル等のアクリル酸エステルが好ましく、アクリル酸メチルおよびアクリル酸エチルがより好ましく、アクリル酸メチルが最も好ましい。メタクリル樹脂(C)におけるこれら他の単量体に由来する構造単位の含有量は、合計で20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下がさらに好ましい。
メタクリル樹脂(C)は、三連子表示のシンジオタクティシティ(rr)の下限が、50モル%以上であることが好ましく、51%モル以上であることがより好ましく、52%モル以上であることがさらに好ましい。かかる構造の含有量の下限値が50モル%以上であることで耐熱性に優れるものとなる。
ここで、三連子表示のシンジオタクティシティ(rr)(以下、単に「シンジオタクティシティ(rr)」と称することがある。)は連続する3つの構造単位の連鎖(3連子、triad)が有する2つの連鎖(2連子、diad)が、ともにラセモ(rrと表記する)である割合である。なお、ポリマー分子中の構造単位の連鎖(2連子、diad)において立体配置が同じものをメソ(meso)、逆のものをラセモ(racemo)と称し、それぞれm、rと表記する。
メタクリル樹脂(C)のシンジオタクティシティ(rr)(%)は、重水素化クロロホルム中、30℃で、1H-NMRスペクトルを測定し、そのスペクトルからテトラメチルシラン(TMS)を0ppmとした際の、0.6~0.95ppmの領域の面積(X)と0.6~1.35ppmの領域の面積(Y)とを計測し、式:(X/Y)×100にて算出することができる。
前記メタクリル樹脂(C)の重量平均分子量は、スチレン共重合体(D)との混合(分散)のしやすさ、およびこれらの熱可塑性樹脂(B)の製造の容易さで決定される。つまり、メタクリル樹脂(C)の重量平均分子量が大きすぎるとスチレン共重合体(D)との溶融粘度差が大きくなりすぎる為に、両者の混合(分散)が悪くなって前記熱可塑性樹脂(B)の透明性が悪化する、あるいは安定した溶融混練が継続できないといった不具合が起こり得る。逆に、メタクリル樹脂(C)の重量平均分子量が小さすぎると、熱可塑性樹脂(B)の強度が低下するので、樹脂積層体の耐衝撃性が低下するといった問題が発生し得る。メタクリル樹脂(C)の重量平均分子量は、50,000~700,000の範囲が好ましく、60,000~500,000の範囲がより好ましい。さらに好ましくは70,000~200,000の範囲である。上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定される、標準ポリスチレン換算の重量平均分子量である。
前記メタクリル樹脂(C)のガラス転移温度は、100℃以上であることが好ましく、105℃以上であることがより好ましく、108℃以上であることがさらに好ましい。かかるガラス転移温度が100℃以上であることで、本発明で提供される積層体が熱環境において変形や割れを生じることが少ない。なお、本明細書におけるメタクリル樹脂(C)のガラス転移温度とは、示差走査熱量計を用い、昇温速度10℃/分で測定し、ベースラインと変曲点での接線の交点で算出したときの温度である。
前記メタクリル樹脂(C)のメルトフローレイトは1~10 g/10分の範囲であることが好ましい。かかるメルトフローレイトの下限値は1.2g/10分以上であることがより好ましく、1.5g/10分以上であることがさらに好ましい。また、かかるメルトフローレイトの上限値は7.0g/10分以下であることがより好ましく、4.0g/10分以下であることがさらに好ましい。メルトフローレイトが1~10g/10分の範囲にあると、加熱溶融成形の安定性が良好である。なお、本明細書におけるメタクリル樹脂(C)のメルトフローレイトとは 、メルトインデクサーを用いて、温度230℃、3.8kg荷重下で測定した値である。
<スチレン共重合体(D)>
本発明による熱可塑性樹脂(B)に含まれるスチレン共重合体(D)は、ビニル芳香族単量体単位(d1)と、環状酸無水物単量体単位(d2)とを含み、ビニル芳香族単量体単位(d1)と環状酸無水物単量体単位(d2)との合計割合が前記スチレン共重合体(D)中の全単量体単位の合計に対して70~100質量%とすることができるが、ビニル芳香族単量体単位(d1)及び環状酸無水物単量体単位(d2)のみからなる、即ち、ビニル芳香族単量体単位(d1)と環状酸無水物単量体単位(d2)との合計割合が前記スチレン共重合体(D)中の全単量体単位の合計に対して100質量%であることが、外観不良原因透明物が少なく、シート外観が良いため好ましい。これは、3元系共重合体は2元系共重合体より、環状酸無水物単量体単位(d2)が偏在しやすいためと考えられる。
なお、透明物または異物(コンタミ等)がフィルムまたは樹脂積層体の最表面にくることで、フィルムまたは樹脂積層体が凸状になる目視可能な外観不良が発生するが、透明物が起因しているものを外観不良原因透明物と言う。
前記スチレン共重合体(D)の前記ビニル芳香族単量体単位(d1)としては、特に限定されず、任意の公知の芳香族ビニル単量体を用いる事が出来るが、入手の容易性の観点から、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、t-ブチルスチレン等が挙げられる。これらの中でも、相溶性の観点からスチレンが特に好ましい。これらの芳香族ビニル単量体は2種以上を混合してもよい。
前記スチレン共重合体(D)の前記環状酸無水物単量体単位(d2)としては、マレイン酸、イタコン酸、シトラコン酸、アコニット酸等の酸無水物が挙げられ、アクリル樹脂との相溶性の観点から無水マレイン酸が好ましい。これらの不飽和ジカルボン酸無水物単量体は2種以上を混合してもよい。
本発明で用いる前記スチレン共重合体(D)において、前記ビニル芳香族単量体単位(d1)と前記環状酸無水物単量体単位(d2)との合計割合は、前記スチレン共重合体(D)中の全単量体単位の合計に対して70~100質量%、好ましくは75~100質量%、より好ましくは92~100質量%とすることができるが、上述した通り、スチレン共重合体(D)は、ビニル芳香族単量体単位(d1)及び環状酸無水物単量体単位(d2)のみからなる、即ち、ビニル芳香族単量体単位(d1)と環状酸無水物単量体単位(d2)との合計割合が前記スチレン共重合体(D)中の全単量体単位の合計に対して100質量%であることが特に好ましい。
前記スチレン共重合体(D)は、全単量体単位の合計に対して30質量%以下の範囲で、前記ビニル芳香族単量体単位(d1)と前記環状酸無水物単量体単位(d2)以外の単量体単位を含有していてもよい。前記ビニル芳香族単量体単位(d1)と前記環状酸無水物単量体単位(d2)以外の単量体単位としては、例えば、メタクリル酸エステル単量体単位、N-置換型マレイミド単量体などが挙げられる。
スチレン共重合体(D)中のメタクリル酸エステル単量体単位としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸tert-ブチル、メタクリル酸ペンチル、メタクリル酸ヘキシル、メタクリル酸ヘプチル、メタクリル酸2-エチルヘキシル、メタクリル酸ノニル、メタクリル酸デシル、メタクリル酸ドデシルなどのメタクリル酸アルキルエステル;メタクリル酸1-メチルシクロペンチル、メタクリル酸シクロヘキシル、メタクリル酸シクロヘプチル、メタクリル酸シクロオクチル、メタクリル酸トリシクロ[5.2.1.02,6]デカ-8-イルなどのメタクリル酸シクロアルキルエステル;メタクリル酸フェニルなどのメタクリル酸アリールエステル;メタクリル酸ベンジルなどのメタクリル酸アラルキルエステルなどが挙げられ、メタクリル樹脂との相溶性の観点からメタクリル酸メチルが好ましい。これらのメタクリル酸エステル単量体は2種以上を混合してもよい。
スチレン共重合体(D)中のN-置換型マレイミド単量体としては、N-フェニルマレイミド、N-クロロフェニルマレイミド、N-メチルフェニルマレイミド、N-ナフチルマレイミド、N-ヒドロキシフェニルマレイミド、N-メトキシフェニルマレイミド、N-カルボキシフェニルマレイミド、N-ニトロフェニルマレイミド、N-トリブロモフェニルマレイミドなどのN-アリールマレイミド等が挙げられ、メタクリル樹脂との相溶性の観点からN-フェニルマレイミドが好ましい。これらのN?置換型マレイミド単量体は2種以上を混合してもよい。
前記ビニル芳香族単量体単位(d1)の割合は、前記スチレン共重合体(D)中の全単量体単位の合計に対して68~84質量%であり、好ましくは70~82質量%であり、より好ましくは74~80質量%であり、さらに好ましくは、76~79質量%である。前記環状酸無水物単量体単位(d2)の割合は、前記スチレン共重合体(D)中の全単量体単位の合計に対して16~32質量%であり、好ましくは18~30質量%であり、より好ましくは20~26質量%であり、さらに好ましくは、21~24質量%である。
前記スチレン共重合体(D)中の全単量体単位の合計に対する前記ビニル芳香族単量体単位(d1)の割合が68~84質量%以外であると、メタクリル樹脂(C)との相溶性が悪くなる。また、スチレン共重合体(D)中の全単量体単位の合計に対する前記環状酸無水物単量体単位(d2)の割合が16~32質量%以外であると、メタクリル樹脂(C)との相溶性が悪くなる。
前記スチレン共重合体(D)の重量平均分子量は、特に制限はないが、メタクリル樹脂(C)との相溶性の観点から、30,000~400,000であることが好ましく、40,000~300,000であることがより好ましく、50,000~200,000であることが特に好ましい。上記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定される、標準ポリスチレン換算の重量平均分子量である。
前記スチレン共重合体(D)のガラス転移温度は、120~190℃の範囲であることが好ましく、130~170℃の範囲であることがさらに好ましい。ガラス転移温度が120℃以上であることにより本発明で提供される積層体が熱環境において変形や割れを生じることが少ない。また、190℃以下であることにより鏡面ロールや賦形ロールによる連続式熱賦形、あるいは鏡面金型や賦形金型によるバッチ式熱賦形などの加工性に優れる。なお、本明細書におけるスチレン共重合体(D)のガラス転移温度とは、示差走査熱量計を用い、昇温速度10℃/分で測定し、ベースラインと変曲点での接線の交点で算出したときの温度である。
前記スチレン共重合体(D)のメルトフローレイトは1~10g/10分の範囲であることが好ましく、4~9g/10分の範囲であることがより好ましく、6~8g/10分であることがさらに好ましい。メルトフローレイトが1~10g/10分の範囲にあると、加熱溶融成形の安定性が良好である。なお、本明細書における本発明のスチレン共重合体(D)のメルトフローレイトとは 、メルトインデクサーを用いて、温度230℃、3.8kg荷重下で測定した値である。
前記スチレン共重合体(D)の製造方法は、特に限定されないが、公知の溶液重合法、塊状重合法、懸濁重合法等、適宜選択できる。
前記スチレン共重合体(D)は、ビニル芳香族単量体単位(d1)と環状酸無水物単量体単位(d2)とを含む二元共重合体、または、多元共重合体であるが、メタクリル樹脂(C)を組み合わせて用いることで、スチレン共重合体(D)のみを用いた場合よりも硬度が高く、メタクリル樹脂(C)のみを用いた場合よりも高温高湿下に曝されても耐反り変形性に優れた樹脂積層体が得られる。
本発明において、前記メタクリル樹脂(C)と前記スチレン共重合体(D)の質量比は、メタクリル樹脂(C)とスチレン共重合体(D)との含有量の合計100質量部を基準として、前記メタクリル樹脂(C)が30~70質量部に対して前記スチレン共重合体(D)が70~30質量部であることが好ましい。より好ましくは、前記メタクリル樹脂(C)が40~60質量部に対して前記スチレン共重合体(D)が60~40質量部であり、更に好ましくは、前記メタクリル樹脂(C)が45~55質量部に対して前記スチレン共重合体(D)が55~45質量部である。この質量比内にすることにより、透明性を維持しつつ、高温高湿下に曝されても耐反り変形性に優れ、外観良好な優れた熱可塑性樹脂(B)となる。
前記熱可塑性樹脂(B)のガラス転移温度は、110~130℃の範囲であることが好ましく、115~128℃の範囲であることがさらに好ましい。他の実施形態では、前記熱可塑性樹脂(B)のガラス転移温度は、110℃以上120℃未満であることが好ましい。ガラス転移温度が110℃以上であることにより本発明で提供される積層体が熱環境において変形や割れを生じることが少ない。また、130℃以下であることにより鏡面ロールや賦形ロールによる連続式熱賦形、あるいは鏡面金型や賦形金型によるバッチ式熱賦形などの加工性に優れる。なお、本明細書における熱可塑性樹脂(B)のガラス転移温度とは、示差走査熱量計を用い、昇温速度10℃/分で測定し、ベースラインと変曲点での接線の交点で算出したときの温度である。
前記熱可塑性樹脂(B)のメルトフローレイトは1~10g/10分の範囲であることが好ましく、1.5~7g/10分の範囲であることがより好ましく、2~5g/10分であることがさらに好ましい。メルトフローレイトが1~10g/10分の範囲にあると、加熱溶融成形の安定性が良好である。なお、本明細書における熱可塑性樹脂(B)のメルトフローレイトとは 、メルトインデクサーを用いて、温度230℃、3.8kg荷重下で測定した値である。
本発明において、熱可塑性樹脂(B)の製造方法には特に制限はなく、必要な成分を、例えばタンブラーやヘンシェルミキサー、スーパーミキサーなどの混合機を用いて予め混合しておき、その後、バンバリーミキサー、ロール、ブラベンダー、単軸押出機、二軸押出機、加圧ニーダーなどの機械で溶融混練するといった公知の方法が適用できる。
<樹脂積層体>
本発明の樹脂積層体は、Haze≦1.0%が好ましく、Haze≦0.8%がより好ましい。Hazeが1.0%を超えると、目視で樹脂積層体が白っぽく見える場合がある。
また、本発明の樹脂積層体は、後述する実施例における<高温高湿環境下の反り試験>に従って測定した反り変化量が、絶対値で200μm以下であることが好ましく、150μm以下であることがより好ましく、100μm以下であることが特に好ましい。上記反り変化量の絶対値が200μmを超えると、目視で樹脂積層体の変形が確認できる場合がある。
本発明において、熱可塑性樹脂(B)を含む層の厚さは、樹脂積層体の表面硬度や耐衝撃性に影響する。つまり、熱可塑性樹脂(B)を含む層の厚さが薄すぎると表面硬度が低くなり、好ましくない。熱可塑性樹脂(B)を含む層の厚さが大きすぎると耐衝撃性が悪くなり、好ましくない。熱可塑性樹脂(B)を含む層の厚さは10~250μmが好ましく、20~200μmがより好ましい。さらに好ましくは30~150μmである。
本発明において、ポリカーボネート系樹脂(A)を含む層と熱可塑性樹脂(B)を含む層の合計厚みは、薄すぎても、厚すぎても成形が難しい。ポリカーボネート系樹脂(A)を含む層と熱可塑性樹脂(B)を含む層の合計厚みは、好ましくは0.04~4.0mm、より好ましくは0.05~3.5mm、さらに好ましくは0.5~3.0mmである。
本発明において、ポリカーボネート系樹脂(A)と熱可塑性樹脂(B)の屈折率差は、0~0.07の範囲であることが好ましく、0~0.06の範囲であることがより好ましく、0~0.05の範囲であることがさらに好ましい。ポリカーボネート系樹脂(A)と熱可塑性樹脂(B)の屈折率差が0.07より大きいと、ポリカーボネート系樹脂(A)を含む層/熱可塑性樹脂(B)を含む層の界面の反射光強度が大きく、干渉縞等の不具合が発生することがある。
<任意の添加剤>
本発明において、基材層を形成するポリカーボネート系樹脂(A)を含む層および/または表層を形成する熱可塑性樹脂(B)を含む層には、上述の主たる成分以外の成分を含めることができる。
例えば、ポリカーボネート系樹脂(A)を含む層および/または熱可塑性樹脂(B)を含む層には、紫外線吸収剤を混合して使用することができる。紫外線吸収剤の含有量が多過ぎると、成形法によっては過剰な紫外線吸収剤が高い温度がかかることによって飛散し、成形環境を汚染するため不具合を起こすことがある。このことから紫外線吸収剤の含有割合は0~5質量%が好ましく、0~3質量%がより好ましく、さらに好ましくは0~1質量%である。紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-4-ドデシロキシベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノンなどのベンゾフェノン系紫外線吸収剤、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-t-ブチル-5-メチルフェニル)ベンゾトリアゾール、(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノールなどのベンゾトリアゾール系紫外線吸収剤、サリチル酸フェニル、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエートなどのベンゾエート系紫外線吸収剤、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケートなどのヒンダードアミン系紫外線吸収剤、2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジンなどのトリアジン系紫外線吸収剤、2-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]エチルメタクリレート、2-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]エチルアクリレート、3-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]プロピルメタクリレート、3-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]プロピルアクリレート、4-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]ブチルメタクリレート、4-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル]ブチルアクリレート、2-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イルオキシ]エチルメタクリレート、2-[2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イルオキシ]エチルアクリレート、2-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]エチルメタクリレート、2-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]エチルアクリレート、4-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]ブチルメタクリレート、4-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]ブチルアクリレート、2-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]エチルメタクリレート、2-[3-{2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-イル}プロパノイルオキシ]エチルアクリレート、2-(メタクリロイルオキシ)エチル2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5カルボキシレート、2-(アクリロイルオキシ)エチル2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-カルボキシレート、4-(メタクリロイルオキシ)ブチル2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-カルボキシレート、4-(アクリロイルオキシ)ブチル2-(6-ヒドロキシベンゾ[1,3]ジオキソール-5-イル)-2H-ベンゾトリアゾール-5-カルボキシレート等などのセサモール型ベンゾトリアゾール系紫外線吸収剤などが挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。
本発明において、基材層を形成するポリカーボネート系樹脂(A)を含む層および/または表層を形成する熱可塑性樹脂(B)を含む層には、上記紫外線吸収剤以外にも、各種添加剤を混合して使用することができる。そのような添加剤としては、例えば、抗酸化剤や抗着色剤、抗帯電剤、離型剤、滑剤、染料、顔料、可塑剤、難燃剤、樹脂改質剤、相溶化剤、有機フィラーや無機フィラーといった強化材などが挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。
<任意の処理>
本発明において、熱可塑性樹脂(B)を含む層の表面、またはポリカーボネート系樹脂(A)を含む層の表面にハードコート処理を施してもよい。例えば、熱エネルギーおよび/または光エネルギーを用いて硬化させるハードコート塗料を用いるハードコート処理によりハードコート層を形成する。熱エネルギーを用いて硬化させるハードコート塗料としては、例えば、ポリオルガノシロキサン系、架橋型アクリル系などの熱硬化性樹脂組成物が挙げられる。また、光エネルギーを用いて硬化させるハードコート塗料としては、例えば、1官能および/または多官能であるアクリレートモノマーおよび/またはオリゴマーからなる樹脂組成物に光重合開始剤が加えられた光硬化性樹脂組成物などが挙げられる。
本発明におけるハードコート塗料を塗布する方法は特に限定されず、公知の方法を用いることができる。例えば、スピンコート法、ディップ法、スプレー法、スライドコート法、バーコート法、ロールコート法、グラビアコート法、メニスカスコート法、フレキソ印刷法、スクリーン印刷法、ビートコート法、刷毛法などが挙げられる。
ハードコートの密着性を向上させる目的で、ハードコート前に塗布面の前処理を行うことがある。処理例として、サンドブラスト法、溶剤処理法、コロナ放電処理法、クロム酸処理法、火炎処理法、熱風処理法、オゾン処理法、紫外線処理法、樹脂組成物によるプライマー処理法などの公知の方法が挙げられる。
本発明におけるポリカーボネート系樹脂(A)を含む層、熱可塑性樹脂(B)を含む層及びハードコートの各材料、例えば、ポリカーボネート系樹脂(A)および熱可塑性樹脂(B)等は、フィルター処理によりろ過精製されることが好ましい。フィルターを通して生成あるいは積層する事により異物や欠点といった外観不良が少ない樹脂積層体を得ることが出来る。ろ過方法に特に制限はなく、溶融ろ過、溶液ろ過、あるいはその組み合わせ等を使うことが出来る。
使用するフィルターに特に制限はなく、公知のものが使用でき、各材料の使用温度、粘度、ろ過精度により適宜選ばれる。フィルターの濾材としては、特に限定されないがポリプロピレン、コットン、ポリエステル、ビスコースレイヨンやグラスファイバーの不織布あるいはロービングヤーン巻物、フェノール樹脂含浸セルロース、金属繊維不織布焼結体、金属粉末焼結体、ブレーカープレート、あるいはこれらの組み合わせなど、いずれも使用可能である。特に耐熱性や耐久性、耐圧力性を考えると金属繊維不織布を焼結したタイプが好ましい。
ろ過精度は、ポリカーボネート系樹脂(A)および熱可塑性樹脂(B)については、50μm以下、好ましくは30μm以下、さらに好ましくは10μm以下である。また、ハードコート剤のろ過精度は、樹脂積層体の最表層に塗布される事から、20μm以下、好ましくは10μm以下、さらに好ましくは2μm以下である。
ポリカーボネート系樹脂(A)と熱可塑性樹脂(B)のろ過については、例えば熱可塑性樹脂溶融ろ過に用いられているポリマーフィルターを使うことが好ましい。ポリマーフィルターは、その構造によりリーフディスクフィルター、キャンドルフィルター、パックディスクフィルター、円筒型フィルターなどに分類されるが、特に有効ろ過面積が大きいリーフディスクフィルターが好適である。
本発明の樹脂積層体には、その片面または両面に耐指紋処理、反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上を施すことができる。反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理の方法は、特に限定されず、公知の方法を用いることができる。例えば、反射低減塗料を塗布する方法、誘電体薄膜を蒸着する方法、帯電防止塗料を塗布する方法などが挙げられる。
以下、実施例により本実施形態を更に詳細に説明するが、本実施形態はこれらの実施例に限定されるものではない。
<スチレン共重合体中の単量体単位の組成比>
日本電子(株)製 JNM-AL400を用いて、H-NMR及び13C-NMR(400MHz:溶媒はCDCl)の測定値から計算した。
<ガラス転移温度>
セイコーインスツルメンツ(株)製 示差走査熱量測定装置DSC6200を用いた。窒素30ml/min.流通下、10℃/min.で30℃から200℃まで昇温し、次に50℃/min.で200℃から30℃まで降温し、再度10℃/min.で30℃から200℃まで昇温した。2回目の昇温におけるベースラインと変曲点での接線の交点をガラス転移温度として用いた。
<ペレット外観>
ペレット作製時、目視でペレット外観を評価した。下記の基準でペレット外観の合否判定を行い、〇を合格とした。
○:透明
×:半透明か、白濁
<屈折率>
射出成型機で試験片を作製し、縦40mm、横10mm、厚さ3mmに切断した。この試料の屈折率を、(株)アタゴ製 多波長アッベ屈折計DR-M2で測定した。測定温度は20℃、測定波長は589nmであり、中間液にはモノブロモナフタレンを使用した。
<全光線透過率>
反射・透過率計HR-100型(株式会社村上色彩技術研究所製)を用いて樹脂積層体の全光線透過率をJIS K7361-1に準じて測定した。
<Haze>
反射・透過率計HR-100型(株式会社村上色彩技術研究所製)を用いて樹脂積層体のHazeをJIS K7136に準じて測定した。
<鉛筆硬度>
JIS K 5600-5-4に準拠し、樹脂積層体の中央付近の熱可塑性樹脂(B)を含む層の表面または熱可塑性樹脂(B)を含む層上のハードコート層の表面に対して角度45度、荷重750gで表面に次第に硬度を増して鉛筆を押し付け、傷跡を生じなかった最も硬い鉛筆の硬度を鉛筆硬度として評価した。
<干渉縞>
樹脂積層体のポリカーボネート系樹脂(A)を含む層側または熱可塑性樹脂(B)を含む層側に黒テープ(3Mジャパン(株)製 黒色ビニールテープ型番117BLA)を貼り付け、熱可塑性樹脂(B)を含む層の表面から三波長型蛍光ランプ((有)テクニカ インバータライト60 AL-60231)で照らし、干渉縞を評価した。下記の基準で干渉縞の合否判定を行い、〇を合格とした。
○:干渉縞が見えないか、干渉縞が弱く見える
×:干渉縞が強く見える
<高温高湿環境下の反り試験>
樹脂積層体の中央付近から縦100mm、横60mmの試験片を切り出した。試験片を2点支持型のホルダーにセットして温度23℃、相対湿度50%に設定した環境試験機に24時間以上投入して状態調整した後、反りを測定した。このときの値を処理前反り量の値とした。次に試験片をホルダーにセットして温度85℃、相対湿度85%に設定した環境試験機の中に投入し、その状態で120時間保持した。さらに温度23℃、相対湿度50%に設定した環境試験機の中にホルダーごと移動し、その状態で4時間保持後に再度反りを測定した。このときの値を処理後反り量の値とした。反りの測定には、電動ステージ具備の3次元形状測定機を使用し、取り出した試験片を上に凸の状態で水平に静置し、1mm間隔でスキャンし、中央部の盛り上がりを反りとして計測した。処理前後の反り量の差、すなわち、(処理後反り量)-(処理前反り量)を反り変化量として評価した。その際、熱可塑性樹脂(B)を含む層側が凸の場合は「-」符号、ポリカーボネート系樹脂(A)を含む層側が凸の場合は「+」符号で評価した。
実施例のために、ポリカーボネート系樹脂(A-1)、熱可塑性樹脂(B-1)~(B-2)、メタクリル樹脂(C-1)~(C-2)及び、スチレン共重合体(D-1)として、下記に示す材料を使用したが、これらに限定されるわけではない。一方、比較例のために、それぞれ下記に示す熱可塑性樹脂(G-1)~(G-11)及び、スチレン共重合体(E-1)~(E-2)を使用した。
<ポリカーボネート系樹脂(A-1)、メタクリル樹脂(C-1)~(C-2)、スチレン共重合体(D-1)及び、スチレン共重合体(E-1)~(E-2)>
ポリカーボネート系樹脂(A-1):三菱エンジニアリングプラスチックス株式会社製ユーピロンS-1000(重量平均分子量:33,000、ガラス転移温度:147℃、温度300℃・1.2kg荷重下のメルトフローレイト:7.5g/10分、屈折率1.59)
メタクリル樹脂(C-1):アルケマ株式会社製ALTUGLAS(登録商標)V020(重量平均分子量:127,000、ガラス転移温度:109℃、温度230℃・3.8kg荷重下のメルトフローレイト:1.8g/10分、メタクリル酸メチル/アクリル酸メチル=96.1質量%/3.9質量%、屈折率1.49、mm/mr/rr=7.4モル%/37.4モル%/55.2モル%)
メタクリル樹脂(C-2):アルケマ株式会社製ALTUGLAS(登録商標)V040(重量平均分子量:84,100、ガラス転移温度:111℃、温度230℃・3.8kg荷重下のメルトフローレイト:3.5g/10分、メタクリル酸メチル/アクリル酸メチル=98.5質量%/1.5質量%、屈折率1.49)
スチレン共重合体(D-1):Polyscope社製XIBOND160((d1)/(d2)=スチレン/無水マレイン酸=78質量%/22質量%、重量平均分子量:69,500、ガラス転移温度:143℃、温度230℃・3.8kg荷重下のメルトフローレイト:7.6g/10分、屈折率1.58)
スチレン共重合体(E-1):Polyscope社製XIBOND140((d1)/(d2)=スチレン/無水マレイン酸=85質量%/15質量%、重量平均分子量:134,000、ガラス転移温度:129℃、温度230℃・3.8kg荷重下のメルトフローレイト:6.9g/10分、屈折率1.59)
スチレン共重合体(E-2):Polyscope社製XIBOND180((d1)/(d2)=スチレン/無水マレイン酸=67質量%/33質量%、重量平均分子量:50,100、ガラス転移温度:157℃、温度230℃・3.8kg荷重下のメルトフローレイト:1.0g/10分、屈折率1.59)
製造例1A〔熱可塑性樹脂(B-1)のペレット製造〕
メタクリル樹脂(C-1)を50質量部と、スチレン共重合体(D-1)を50質量部の合計100質量部に対して、リン系添加剤PEP-36(株式会社ADEKA製)500ppm、およびステアリン酸モノグリセリド(製品名:H-100、理研ビタミン株式会社製)0.2質量%を加え、ブレンダーで20分混合後、目開き10μmのポリマーフィルターを取り付けたスクリュー径26mmの2軸押出機(東芝機械株式会社製、TEM-26SS、L/D≒40)を用い、シリンダー温度240℃で溶融混錬して、ストランド状に押出してペレタイザーでペレット化した。熱可塑性樹脂(B-1)のペレットは安定して製造できた。
熱可塑性樹脂(B-1)のペレットは外観:〇(透明)であり、ガラス転移温度:121℃、温度230℃・3.8kg荷重下のメルトフローレイト:2.5g/10分、屈折率1.54であった。
製造例2A〔熱可塑性樹脂(B-2)のペレット製造〕
メタクリル樹脂(C-2)を50質量部と、スチレン共重合体(D-1)を50質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1Aと同様に混合、ペレット化を行った。熱可塑性樹脂(B-2)のペレットは安定して製造できた。
熱可塑性樹脂(B-2)のペレットは外観:〇(透明)であり、ガラス転移温度:125℃、温度230℃・3.8kg荷重下のメルトフローレイト:4.0g/10分、屈折率1.54であった。
製造比較例1A〔熱可塑性樹脂(G-1)のペレット製造〕
メタクリル樹脂(C-1)を25質量部と、スチレン共重合体(D-1)を75質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1Aと同様に混合、ペレット化を行った。熱可塑性樹脂(G-1)のペレットは安定して製造できた。
熱可塑性樹脂(G-1)のペレットは外観:〇(透明)であり、ガラス転移温度:132℃、温度230℃・3.8kg荷重下のメルトフローレイト:3.5g/10分、屈折率1.56であった。
製造比較例2A〔熱可塑性樹脂(G-2)のペレット製造〕
メタクリル樹脂(C-2)を25質量部と、スチレン共重合体(D-1)を75質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1Aと同様に混合、ペレット化を行った。熱可塑性樹脂(G-2)のペレットは安定して製造できた。
熱可塑性樹脂(G-2)のペレットは外観:〇(透明)であり、ガラス転移温度:136℃、温度230℃・3.8kg荷重下のメルトフローレイト:4.6g/10分、屈折率1.56であった。
製造比較例3A〔熱可塑性樹脂(G-3)のペレット製造〕
メタクリル樹脂(C-1)を75質量部と、スチレン共重合体(D-1)を25質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1Aと同様に混合、ペレット化を行った。熱可塑性樹脂(G-3)のペレットは安定して製造できた。
熱可塑性樹脂(G-3)のペレットは外観:〇(透明)であり、ガラス転移温度:113℃、温度230℃・3.8kg荷重下のメルトフローレイト:2.0g/10分、屈折率1.51であった。
製造比較例4A〔熱可塑性樹脂(G-4)のペレット製造〕
メタクリル樹脂(C-2)を75質量部と、スチレン共重合体(D-1)を25質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1Aと同様に混合、ペレット化を行った。熱可塑性樹脂(G-4)のペレットは安定して製造できた。
熱可塑性樹脂(G-4)のペレットは外観:〇(透明)であり、ガラス転移温度:117℃、温度230℃・3.8kg荷重下のメルトフローレイト:3.7g/10分、屈折率1.51であった。
製造比較例5A〔熱可塑性樹脂(G-5)のペレット製造〕
メタクリル樹脂(C-1)を100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1Aと同様に混合、ペレット化を行った。熱可塑性樹脂(G-5)のペレットは安定して製造できた。
熱可塑性樹脂(G-5)のペレットは外観:〇(透明)であり、ガラス転移温度:109℃、温度230℃・3.8kg荷重下のメルトフローレイト:1.8g/10分、屈折率1.49であった。
製造比較例6A〔熱可塑性樹脂(G-6)のペレット製造〕
メタクリル樹脂(C-2)を100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1Aと同様に混合、ペレット化を行った。熱可塑性樹脂(G-6)のペレットは安定して製造できた。
熱可塑性樹脂(G-6)のペレットは外観:〇(透明)であり、ガラス転移温度:111℃、温度230℃・3.8kg荷重下のメルトフローレイト:3.5g/10分、屈折率1.49であった。
製造比較例7A〔熱可塑性樹脂(G-7)のペレット製造〕
スチレン共重合体(D-1)を100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1Aと同様に混合、ペレット化を行った。熱可塑性樹脂(G-7)のペレットは安定して製造できた。
熱可塑性樹脂(G-7)のペレットは外観:〇(透明)であり、ガラス転移温度:143℃、温度230℃・3.8kg荷重下のメルトフローレイト:7.6g/10分、屈折率1.58であった。
製造比較例8A〔熱可塑性樹脂(G-8)のペレット製造〕
メタクリル樹脂(C-1)を50質量部と、スチレン共重合体(E-1)を50質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1Aと同様に混合、ペレット化を行った。熱可塑性樹脂(G-8)のペレットは安定して製造できた。
熱可塑性樹脂(G-8)のペレットは外観:×(半透明)であった。
製造比較例9A〔熱可塑性樹脂(G-9)のペレット製造〕
メタクリル樹脂(C-2)を50質量部と、スチレン共重合体(E-1)を50質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1Aと同様に混合、ペレット化を行った。熱可塑性樹脂(G-9)のペレットは安定して製造できた。
熱可塑性樹脂(G-9)のペレットは外観:×(半透明)であった。
製造比較例10A〔熱可塑性樹脂(G-10)のペレット製造〕
メタクリル樹脂(C-1)を50質量部と、スチレン共重合体(E-2)を50質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1Aと同様に混合、ペレット化を行った。熱可塑性樹脂(G-10)のペレットは安定して製造できた。
熱可塑性樹脂(G-10)のペレットは外観:×(白濁)であった。
製造比較例11A〔熱可塑性樹脂(G-11)のペレット製造〕
メタクリル樹脂(C-2)を50質量部と、スチレン共重合体(E-2)を50質量部の合計100質量部に対して、リン系添加剤PEP-36 500ppm、およびステアリン酸モノグリセリド0.2質量%を加え、製造例1Aと同様に混合、ペレット化を行った。熱可塑性樹脂(G-11)のペレットは安定して製造できた。
熱可塑性樹脂(G-11)のペレットは外観:×(白濁)であった。
実施例1〔樹脂積層体(H-1)の製造〕
軸径32mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結された650mm幅のTダイとを有する多層押出機に各押出機と連結したマルチマニホールドダイとを有する多層押出装置を用いて、樹脂積層体を成形した。軸径32mmの単軸押出機に製造例1Aで得た熱可塑性樹脂(B-1)を連続的に導入し、シリンダー温度240℃、吐出量を2.0kg/hの条件で押し出した。また、軸径65mmの単軸押出機にポリカーボネート系樹脂(A-1)を連続的に導入し、シリンダー温度280℃、吐出量を31.8kg/hで押し出した。全押出機に連結されたフィードブロックは2種2層の分配ピンを備え、温度270℃にして熱可塑性樹脂(B-1)とポリカーボネート系樹脂(A-1)を導入し積層した。
その先に連結された温度270℃のTダイでシート状に押し出し、上流側から温度130℃、140℃、180℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却し、熱可塑性樹脂(B-1)とポリカーボネート系樹脂(A-1)の樹脂積層体(H-1)を得た。得られた樹脂積層体(H-1)の中央部の全体厚みは1000μm、表層(熱可塑性樹脂(B)を含む層)の厚みは60μmであった。この樹脂積層体(H-1)は全光線透過率:90.9%、Haze:0.3%、鉛筆硬度:H、干渉縞:〇、高温高湿環境下の反り変化量:+65μmであった。
実施例2〔樹脂積層体(H-2)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(B-2)を使用した以外は、実施例1の樹脂積層体(H-1)と同様にして熱可塑性樹脂(B-2)とポリカーボネート系樹脂(A-1)の樹脂積層体(H-2)を得た。得られた樹脂積層体(H-2)の中央部の全体厚みは1000μm、表層厚みは60μmであった。この樹脂積層体(H-2)は全光線透過率:90.9%、Haze:0.3%、鉛筆硬度:H、干渉縞:〇、高温高湿環境下の反り変化量:-86μmであった。
比較例1〔樹脂積層体(I-1)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-1)を使用した以外は、実施例1の樹脂積層体(H-1)と同様にして熱可塑性樹脂(G-1)とポリカーボネート系樹脂(A-1)の樹脂積層体(I-1)を得た。得られた樹脂積層体(I-1)の中央部の全体厚みは1000μm、表層厚みは60μmであった。この樹脂積層体(I-1)は全光線透過率:90.7%、Haze:0.5%、鉛筆硬度:H、干渉縞:〇、高温高湿環境下の反り変化量:-262μmであった。
比較例2〔樹脂積層体(I-2)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-2)を使用した以外は、実施例1の樹脂積層体(H-1)と同様にして熱可塑性樹脂(G-2)とポリカーボネート系樹脂(A-1)の樹脂積層体(I-2)を得た。得られた樹脂積層体(I-2)の中央部の全体厚みは1000μm、表層厚みは60μmであった。この樹脂積層体(I-2)は全光線透過率:90.7%、Haze:0.5%、鉛筆硬度:H、干渉縞:〇、高温高湿環境下の反り変化量:-365μmであった。
比較例3〔樹脂積層体(I-3)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-3)を使用した以外は、実施例1の樹脂積層体(H-1)と同様にして熱可塑性樹脂(G-3)とポリカーボネート系樹脂(A-1)の樹脂積層体(I-3)を得た。得られた樹脂積層体(I-3)の中央部の全体厚みは1000μm、表層厚みは60μmであった。この樹脂積層体(I-3)は全光線透過率:91.2%、Haze:0.5%、鉛筆硬度:2H、干渉縞:〇、高温高湿環境下の反り変化量:+421μmであった。
比較例4〔樹脂積層体(I-4)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-4)を使用した以外は、実施例1の樹脂積層体(H-1)と同様にして熱可塑性樹脂(G-4)とポリカーボネート系樹脂(A-1)の樹脂積層体(I-4)を得た。得られた樹脂積層体(I-4)の中央部の全体厚みは1000μm、表層厚みは60μmであった。この樹脂積層体(I-4)は全光線透過率:91.2%、Haze:0.5%、鉛筆硬度:2H、干渉縞:〇、高温高湿環境下の反り変化量:+363μmであった。
比較例5〔樹脂積層体(I-5)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-5)を使用した以外は、実施例1の樹脂積層体(H-1)と同様にして熱可塑性樹脂(G-5)とポリカーボネート系樹脂(A-1)の樹脂積層体(I-5)を得た。得られた樹脂積層体(I-5)の中央部の全体厚みは1000μm、表層厚みは60μmであった。この樹脂積層体(I-5)は全光線透過率:91.6%、Haze:0.2%、鉛筆硬度:3H、干渉縞:×、高温高湿環境下の反り変化量:+964μmであった。
比較例6〔樹脂積層体(I-6)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-6)を使用した以外は、比較例1の樹脂積層体(H-1)と同様にして熱可塑性樹脂(G-6)とポリカーボネート系樹脂(A-1)の樹脂積層体(I-6)を得た。得られた樹脂積層体(I-6)の中央部の全体厚みは1000μm、表層厚みは60μmであった。この樹脂積層体(I-6)は全光線透過率:91.6%、Haze:0.2%、鉛筆硬度:3H、干渉縞:×、高温高湿環境下の反り変化量:+1100μmであった。
比較例7〔樹脂積層体(I-7)の製造〕
熱可塑性樹脂(B-1)の代わりに熱可塑性樹脂(G-7)を使用した以外は、実施例1の樹脂積層体(H-1)と同様にして熱可塑性樹脂(G-7)とポリカーボネート系樹脂(A-1)の樹脂積層体(I-7)を得た。得られた樹脂積層体(I-7)の中央部の全体厚みは1000μm、表層厚みは60μmであった。この樹脂積層体(I-7)は全光線透過率:90.6%、Haze:0.6%、鉛筆硬度:F、干渉縞:〇、高温高湿環境下の反り変化量:-247μmであった。
以上のように、本発明の条件を満たすことで、高温高湿下に曝されても耐反り変形性に優れ、外観良好な樹脂積層体を得ることができるという有利な効果を奏する。
即ち、表2に示すように、ペレット化した熱可塑性樹脂(B)について、メタクリル樹脂(C)と特定のスチレン共重合体(D)とをブレンドした製造例1A~2A、及び製造比較例1A~4Aと、メタクリル樹脂(C)と特定のスチレン共重合体(D)以外のスチレン共重合体(E)とをブレンドした製造比較例8A~11Aとを比較すると、製造例1A~2Aの方が透明で外観良好であった。
表3に示すように、メタクリル樹脂(C)と特定のスチレン共重合体(D)とを特定の質量部でブレンドし、ペレット化した熱可塑性樹脂(B)とポリカーボネート系樹脂(A)とを積層した実施例1~2と、メタクリル樹脂(C)と特定のスチレン共重合体(D)とを特定の質量部以外でブレンドし、ペレット化した熱可塑性樹脂とポリカーボネート系樹脂(A)とを積層した比較例1~4を比較すると、実施例1~2の樹脂積層体の方が、高温高湿下に曝されても耐反り変形性に優れていた。
また、実施例1~2と、メタクリル樹脂(C)単体をペレット化した熱可塑性樹脂とポリカーボネート系樹脂(A)とを積層した比較例5~6とを比較すると、実施例1~2の樹脂積層体の方が、高温高湿下に曝されても耐反り変形性に優れていた。
更に、実施例1~2と、特定のスチレン共重合体(D)単体をペレット化した熱可塑性樹脂とポリカーボネート系樹脂(A)とを積層した比較例7とを比較すると、実施例1~2の樹脂積層体の方が、鉛筆硬度が良好で、高温高湿下に曝されても耐反り変形性に優れていた。

Claims (12)

  1. ポリカーボネート系樹脂(A)のみを含む層の一方の面のみに、熱可塑性樹脂(B)を含む層を有する樹脂積層体であって、
    前記ポリカーボネート系樹脂(A)が、90質量%以上のポリカーボネート樹脂を含み、
    前記熱可塑性樹脂(B)のガラス転移温度が110℃~130℃であり、
    前記熱可塑性樹脂(B)は、メタクリル樹脂(C)とスチレン共重合体(D)とを含有し、メタクリル樹脂(C)とスチレン共重合体(D)との含有量の合計100質量部を基準として、メタクリル樹脂(C)の含有量が30~70質量部であり、スチレン共重合体(D)の含有量が70~30質量部であり、
    前記スチレン共重合体(D)が、ビニル芳香族単量体単位(d1)及び環状酸無水物単量体単位(d2)のみからなる共重合体であり、かつ、ビニル芳香族単量体単位(d1)と環状酸無水物単量体単位(d2)との含有量の合計に対して、ビニル芳香族単量体単位(d1)の含有量が68~84質量%であり、環状酸無水物単量体単位(d2)の含有量が16~32質量%であり、
    前記熱可塑性樹脂(B)を含む層の厚さが30~150μmであり、前記ポリカーボネート系樹脂(A)のみを含む層と前記熱可塑性樹脂(B)を含む層の合計厚みが、0.5~3.0mmである、前記樹脂積層体。
  2. 温度85℃、相対湿度85%の環境下に120時間保持した後の反り変化量が、絶対値で200μm以下である、請求項1に記載の樹脂積層体。
  3. 熱可塑性樹脂(B)が、メタクリル樹脂(C)とスチレン共重合体(D)とのポリマーアロイである、請求項1または2に記載の樹脂積層体。
  4. スチレン共重合体(D)に含まれるビニル芳香族単量体単位(d1)が、スチレンである、請求項1~3のいずれかに記載の樹脂積層体。
  5. スチレン共重合体(D)に含まれる環状酸無水物単量体単位(d2)が、無水マレイン酸である、請求項1~4のいずれかに記載の樹脂積層体。
  6. ポリカーボネート系樹脂(A)を含む層、および、熱可塑性樹脂(B)を含む層の少なくとも一層が紫外線吸収剤を含有する、請求項1~のいずれかに記載の樹脂積層体。
  7. 前記樹脂積層体の片面または両面に、耐指紋処理、反射防止処理、防眩処理、耐候性処理、帯電防止処理および防汚処理の少なくとも一つが施されてなる、請求項1~のいずれかに記載の樹脂積層体。
  8. 請求項1~のいずれかに記載の樹脂積層体を熱曲げ加工された熱成形体。
  9. 請求項1~のいずれかに記載の樹脂積層体、または請求項に記載の熱成形体を含む、透明基板材料。
  10. 請求項1~のいずれかに記載の樹脂積層体、または請求項に記載の熱成形体を含む、透明保護材料。
  11. 請求項1~のいずれかに記載の樹脂積層体、または請求項に記載の熱成形体を含む、タッチパネル前面保護板。
  12. 請求項1~のいずれかに記載の樹脂積層体を含む、カーナビ用、OA機器用または携帯電子機器用の前面板。
JP2019165188A 2019-09-11 2019-09-11 樹脂積層体及びそれを含む透明基板材料並びに透明保護材料 Active JP7356304B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019165188A JP7356304B2 (ja) 2019-09-11 2019-09-11 樹脂積層体及びそれを含む透明基板材料並びに透明保護材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019165188A JP7356304B2 (ja) 2019-09-11 2019-09-11 樹脂積層体及びそれを含む透明基板材料並びに透明保護材料

Publications (2)

Publication Number Publication Date
JP2021041614A JP2021041614A (ja) 2021-03-18
JP7356304B2 true JP7356304B2 (ja) 2023-10-04

Family

ID=74861489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019165188A Active JP7356304B2 (ja) 2019-09-11 2019-09-11 樹脂積層体及びそれを含む透明基板材料並びに透明保護材料

Country Status (1)

Country Link
JP (1) JP7356304B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023048054A1 (ja) * 2021-09-21 2023-03-30

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268913A (ja) 2007-03-29 2008-11-06 Asahi Kasei Chemicals Corp 積層光学フィルム
JP2012117897A (ja) 2010-11-30 2012-06-21 Kyocera Document Solutions Inc 検出装置及び画像形成装置
WO2015079867A1 (ja) 2013-11-26 2015-06-04 三菱瓦斯化学株式会社 透明樹脂積層体
JP2015108064A (ja) 2013-12-04 2015-06-11 株式会社タムラ製作所 難燃性樹脂組成物、bステージ化した樹脂フィルム、樹脂付き金属箔およびカバーレイフィルム
JP2016155274A (ja) 2015-02-24 2016-09-01 帝人株式会社 樹脂積層体
JP2018114757A (ja) 2013-03-13 2018-07-26 住友化学株式会社 樹脂積層板およびそれを用いた耐擦傷性樹脂積層板
WO2019049704A1 (ja) 2017-09-06 2019-03-14 三菱瓦斯化学株式会社 高硬度成形用樹脂シートおよびそれを用いた成形品

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117897A1 (ja) * 2011-02-28 2012-09-07 日本ゼオン株式会社 複層フィルム及び複層フィルムの製造方法
JP5930138B2 (ja) * 2014-01-17 2016-06-08 三菱瓦斯化学株式会社 熱可塑性樹脂積層体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268913A (ja) 2007-03-29 2008-11-06 Asahi Kasei Chemicals Corp 積層光学フィルム
JP2012117897A (ja) 2010-11-30 2012-06-21 Kyocera Document Solutions Inc 検出装置及び画像形成装置
JP2018114757A (ja) 2013-03-13 2018-07-26 住友化学株式会社 樹脂積層板およびそれを用いた耐擦傷性樹脂積層板
WO2015079867A1 (ja) 2013-11-26 2015-06-04 三菱瓦斯化学株式会社 透明樹脂積層体
JP2015108064A (ja) 2013-12-04 2015-06-11 株式会社タムラ製作所 難燃性樹脂組成物、bステージ化した樹脂フィルム、樹脂付き金属箔およびカバーレイフィルム
JP2016155274A (ja) 2015-02-24 2016-09-01 帝人株式会社 樹脂積層体
WO2019049704A1 (ja) 2017-09-06 2019-03-14 三菱瓦斯化学株式会社 高硬度成形用樹脂シートおよびそれを用いた成形品

Also Published As

Publication number Publication date
JP2021041614A (ja) 2021-03-18

Similar Documents

Publication Publication Date Title
JP6832334B2 (ja) 透明樹脂積層体
JP6571528B2 (ja) 透明樹脂積層体
JPWO2016006589A1 (ja) 合成樹脂積層体
JP6712926B2 (ja) 透明樹脂積層体
JP7356304B2 (ja) 樹脂積層体及びそれを含む透明基板材料並びに透明保護材料
JP6787925B2 (ja) 透明樹脂積層体
JP7265960B2 (ja) 透明樹脂積層体並びにそれを用いた透明基板材料及び透明保護材料
JP6420925B1 (ja) 曲面状樹脂積層体
WO2022131014A1 (ja) 樹脂組成物、平板状成形体、多層体、成形品および成形品の製造方法
JP2022080270A (ja) 樹脂組成物、平板状成形体、多層体、成形品および成形品の製造方法
JP7239314B2 (ja) 樹脂積層体並びに該樹脂積層体を含む透明基板材料及び透明保護材料
JP2021080345A (ja) 樹脂組成物、平板状成形体、多層体および反射防止フィルム
JP7231466B2 (ja) 透明樹脂積層体
WO2023048054A1 (ja) 樹脂積層体
WO2020261783A1 (ja) 樹脂積層体及びそれを含む透明基板材料並びに透明保護材料
JP2023137992A (ja) 多層体、透明基板、透明保護フィルム、タッチパネル前面保護フィルム、および、ディスプレイデバイス用の前面板
JP7524450B2 (ja) 樹脂組成物、平板状成形体、多層体、および、成形品
JP7413071B2 (ja) 透明樹脂積層体並びにそれを用いた透明基板材料及び透明保護材料
WO2021100660A1 (ja) 樹脂組成物、平板状成形体、多層体および反射防止フィルム
JP2023088417A (ja) 樹脂組成物、平板状成形体、多層体、および、成形品
JP2022158929A (ja) 樹脂組成物、平板状成形体、および、多層体
JP2023063089A (ja) 樹脂シート
JP2024008420A (ja) 一軸延伸シートおよびその応用
WO2022034837A1 (ja) 樹脂積層体並びにそれを用いた透明基板材料及び透明保護材料

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230922

R150 Certificate of patent or registration of utility model

Ref document number: 7356304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150