WO2015068837A1 - ヒドロゲル形成性組成物及びそれより作られるヒドロゲル - Google Patents

ヒドロゲル形成性組成物及びそれより作られるヒドロゲル Download PDF

Info

Publication number
WO2015068837A1
WO2015068837A1 PCT/JP2014/079721 JP2014079721W WO2015068837A1 WO 2015068837 A1 WO2015068837 A1 WO 2015068837A1 JP 2014079721 W JP2014079721 W JP 2014079721W WO 2015068837 A1 WO2015068837 A1 WO 2015068837A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogel
water
sodium
calcium
forming composition
Prior art date
Application number
PCT/JP2014/079721
Other languages
English (en)
French (fr)
Inventor
佳宏 工藤
太一 中澤
相田 卓三
康博 石田
真吾 為末
政孝 大谷
Original Assignee
日産化学工業株式会社
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社, 国立研究開発法人理化学研究所 filed Critical 日産化学工業株式会社
Priority to CN201480060925.3A priority Critical patent/CN105705584B/zh
Priority to US15/035,891 priority patent/US10655000B2/en
Priority to JP2015546714A priority patent/JP6596791B2/ja
Priority to EP14859792.5A priority patent/EP3070128B1/en
Publication of WO2015068837A1 publication Critical patent/WO2015068837A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/011Crosslinking or vulcanising agents, e.g. accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a hydrogel, and more particularly to an organic-inorganic composite hydrogel-forming composition and an organic-inorganic composite hydrogel having a high elastic modulus and a self-supporting property capable of maintaining a shape in water.
  • hydrogels have attracted attention from the viewpoint of a soft material material that has a high biocompatibility and a low environmental load because water is the main component.
  • a high-strength hydrogel having self-supporting properties an organic-inorganic composite hydrogel obtained by conducting a polymerization reaction of a (meth) acrylamide derivative in the presence of a layered clay mineral uniformly dispersed in water has been reported (Patent Literature) 1). Further, as a similar report example, an organic-inorganic composite hydrogel having a polymer and a clay mineral partially containing a carboxylate or carboxyl anion structure group in poly (meth) acrylamide is also known (Patent Document 2). ).
  • a monomer is polymerized in an aqueous dispersion of a layered clay mineral, whereby the polymer to be formed and the clay mineral form a three-dimensional network structure to form an organic-inorganic composite hydrogel.
  • organic-inorganic composite hydrogels there is a possibility that unreacted monomers of which toxicity is a concern and reagents such as polymerization initiators remain in the gel.
  • reagents such as polymerization initiators
  • Non-Patent Document 1 As a self-supporting organic-inorganic composite hydrogel that can be produced by mixing at room temperature, a hydrogel containing a dendrimer compound having a polycationic functional group at the terminal and a layered clay mineral is known (Patent Document 3).
  • Patent Document 3 a hydrogel containing a dendrimer compound having a polycationic functional group at the terminal and a layered clay mineral.
  • An organic-inorganic composite hydrogel that can be produced simply by mixing an electrolyte polymer, clay particles, and a dispersant has also been reported (Non-Patent Document 1).
  • this organic-inorganic composite hydrogel clay particles uniformly dispersed in an electrolyte polymer are crosslinked to form a gel structure.
  • the present invention has been made in view of the above circumstances, and can be produced simply by mixing at room temperature.
  • the organic-inorganic composite hydrogel has a high elastic modulus and can maintain its shape in water.
  • the purpose is to provide.
  • Another object of the present invention is to provide a method for producing the organic-inorganic composite hydrogel using industrially readily available raw materials.
  • a water-soluble organic polymer having an organic acid structure, an organic acid salt structure or an organic acid anion structure, a silicate, and the silicate By mixing a dispersant and a compound having a positive charge of 2 or more valences or generated, an organic-inorganic composite hydrogel having a high elastic modulus and capable of maintaining a shape in water can be obtained.
  • the headline and the present invention were completed.
  • the present invention provides, as a first aspect, a hydrogel-forming composition capable of forming a hydrogel having self-supporting properties, wherein the water-soluble organic compound has an organic acid structure, an organic acid salt structure, or an organic acid anion structure.
  • a hydrogel-forming property comprising a polymer (A), a silicate (B), a dispersant (C) of the silicate, and a compound (D) having a positive charge of 2 or more. Relates to the composition.
  • the compound (D) is a salt of an element belonging to the third to fifth periods of the periodic table and a group 2 to group 14, a hydroxide of the element, an oxide of the element, a polyvalent amine.
  • hydrogel-forming composition according to the first aspect which is one or more selected from the group consisting of salts of polyvalent amines.
  • the present invention relates to the hydrogel-forming composition according to the second aspect, wherein the element is an element of Group 2 or Group 13 of the Periodic Table.
  • the compound (D) is a magnesium salt, magnesium hydroxide, magnesium oxide, calcium salt, calcium hydroxide, calcium oxide, aluminum salt, aluminum hydroxide.
  • the hydrogel-forming composition according to the second or third aspect which is one or more selected from the group consisting of oxides of aluminum, diamines, and salts of diamines.
  • the compound (D) is magnesium chloride, magnesium bromide, magnesium sulfate, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium hydroxide, magnesium oxide, calcium chloride, calcium bromide, calcium sulfate, calcium nitrate, Calcium carbonate, calcium acetate, calcium hydroxide, calcium oxide, calcium lactate, calcium phosphate, calcium diphosphate, calcium hexametaphosphate, aluminum sulfate, aluminum hydroxide, aluminum oxide, ethylenediamine, ethylenediamine dihydrochloride, ethylenediamine sulfate, bis (aminoethoxy ) One, or two or more selected from the group consisting of ethane, bis (aminoethoxy) ethane dihydrochloride, and bis (aminoethoxy) ethane sulfate It relates hydrogel-forming composition according to the fourth aspect.
  • the water-soluble organic polymer (A) is a water-soluble organic polymer having a carboxylic acid, a carboxylate structure, or a carboxy anion structure, according to any one of the first to fifth aspects.
  • the present invention relates to the hydrogel-forming composition according to the sixth aspect, wherein the water-soluble organic polymer (A) is a completely neutralized or partially neutralized polyacrylate.
  • An eighth aspect relates to the hydrogel-forming composition according to the seventh aspect, wherein the water-soluble organic polymer (A) is a completely neutralized or partially neutralized polyacrylate having a weight average molecular weight of 1,000,000 to 10,000,000. .
  • the present invention relates to the hydrogel-forming composition according to any one of the first aspect to the eighth aspect, wherein the silicate (B) is water-swellable silicate particles.
  • the silicate (B) is water-swellable silicate particles selected from the group consisting of smectite, bentonite, vermiculite, and mica.
  • the present invention relates to the hydrogel-forming composition according to any one of the first to tenth aspects, wherein the dispersant (C) is a dispersant for water-swellable silicate particles.
  • the dispersant (C) is sodium orthophosphate, sodium pyrophosphate, sodium tripolyphosphate, sodium tetraphosphate, sodium hexametaphosphate, sodium polyphosphate, sodium poly (meth) acrylate, poly (meth) acrylic.
  • the hydrogel-forming composition according to the eleventh aspect which is one or more selected from the group consisting of sodium lignin sulfonate.
  • a thirteenth aspect relates to a self-supporting hydrogel made from the hydrogel-forming composition according to any one of the first to twelfth aspects.
  • the water-soluble organic polymer (A), the silicate (B), the dispersant (C), each specified as any one of the first aspect to the twelfth aspect and a method for producing a hydrogel having self-supporting property, wherein the compound (D) and water or a water-containing solvent are mixed and gelled.
  • a hydrogel having a high elastic modulus and capable of maintaining a shape in water can be obtained simply by mixing using raw materials that are industrially available. It is done.
  • a gel having an arbitrary shape can be produced by pouring into a mold before gelation or extrusion molding. At the time of gelation, there is no need for a covalent bond forming reaction such as a polymerization reaction, and gelation can be performed even at room temperature. Therefore, there is an effect that safety is high from the viewpoint of the manufacturing process.
  • a hydrogel having arbitrary strength and transparency can be produced.
  • the term “self-supporting” of a hydrogel is usually used without being defined in academic papers or patent literature, but in the present invention, it has a sufficient strength to support a container or the like. It is used in the sense that the shape of the gel can be maintained even if there is no.
  • the elasticity modulus which the hydrogel of this invention has can be measured with a puncture strength measuring machine, for example.
  • a puncture strength measuring machine for example.
  • a cylindrical hydrogel having a diameter of 28 mm and a height of 16 mm can be prepared and measured with a creep meter RE2-30005B manufactured by Yamaden Co., Ltd.
  • the measuring method is to press a cylindrical shaft having a diameter of 3 mm (Plung-shaped cylinder made by Yamaden Co., Ltd., No.
  • the elastic modulus of the hydrogel obtained in the present invention by a puncture strength measuring instrument is 5 kPa to 10000 kPa, and for applications requiring a high elastic modulus, the lower limit values include 20 kPa, 50 kPa, and 100 kPa. As 200 kPa, 1000 kPa, and 5000 kPa. Examples thereof are 20 kPa to 1000 kPa and 100 kPa to 5000 kPa.
  • FIG. 1 is a diagram showing the measurement results of the piercing strength test in Example 9.
  • FIG. 2 is a photograph showing the results of a load test in Example 10.
  • FIG. 3 is a photograph showing the results of a load test in Example 10.
  • FIG. 4 is a diagram showing the measurement results of the piercing strength test in Example 11.
  • FIG. 5 is a diagram showing the measurement results of the piercing strength test in Example 12.
  • 6 is a photograph showing the results of a water expansion test in Example 13.
  • FIG. 7 is a photograph showing the results of a water expansion test in Example 13.
  • FIG. 8 is a photograph showing the results of the water expansion test in Example 13.
  • FIG. 9 is a photograph showing the results of the water expansion test in Example 13.
  • FIG. 1 is a diagram showing the measurement results of the piercing strength test in Example 9.
  • FIG. 2 is a photograph showing the results of a load test in Example 10.
  • FIG. 4 is a diagram showing the measurement results of the piercing strength
  • FIG. 10 is a diagram showing the measurement results of the piercing strength test in Example 18.
  • FIG. 11 is a photograph of the glass beaker containing the gummy agglomerated white precipitate obtained in Comparative Example 2 tilted with a glass rod.
  • FIG. 12 is a photograph in which the glass beaker containing the hydrogel obtained in Example 3 is tilted with a glass rod.
  • a silicate (B) examples thereof include a silicate dispersant (C) and a compound (D) having a positive charge of two or more valences, or in addition to the above components, as long as the desired effect of the present invention is not impaired.
  • other components may be optionally blended.
  • Component (A) of the present invention is a water-soluble organic polymer having an organic acid structure, an organic acid salt structure, or an organic acid anion structure.
  • Examples of the water-soluble organic polymer (A) having an organic acid structure, an organic acid salt structure or an organic acid anion structure include those having a carboxyl group, such as poly (meth) acrylate, carboxyvinyl polymer salt, carboxy Methyl cellulose salts; those having a sulfonyl group; polystyrene sulfonic acid salts; those having a phosphonyl group include polyvinylphosphonates.
  • salt examples include a sodium salt, an ammonium salt, a potassium salt, and a lithium salt, and may be a completely neutralized salt or a partially neutralized salt.
  • (meth) acrylic acid refers to both acrylic acid and methacrylic acid.
  • the water-soluble organic polymer (A) preferably has a carboxylic acid structure, a carboxylate structure or a carboxy anion structure, and the water-soluble organic polymer (A) may be crosslinked or copolymerized.
  • a completely neutralized product or a partially neutralized product can be used.
  • the weight average molecular weight of the water-soluble organic polymer (A) is preferably 1 million to 10 million, more preferably 2 million to 7 million, in terms of polyethylene glycol by gel permeation chromatography (GPC). Moreover, the weight average molecular weight of the water-soluble organic polymer (A) available as a commercial product is preferably 1,000,000 to 10,000,000, more preferably 2,000,000 to 700, as the weight average molecular weight described in the commercial product. It is ten thousand.
  • the water-soluble organic polymer (A) is preferably a completely neutralized or partially neutralized polyacrylate, specifically, a completely neutralized or partially neutralized sodium polyacrylate.
  • a completely neutralized or partially neutralized non-crosslinked highly polymerized sodium polyacrylate having a weight average molecular weight of 2 million to 7 million is preferred.
  • the content of the water-soluble organic polymer (A) is 0.01% by mass to 20% by mass, preferably 0.1% by mass to 10% by mass in 100% by mass of the hydrogel. In this specification and the like, mass% is also expressed as wt%.
  • Component (B) of the present invention is a silicate, preferably water swellable silicate particles.
  • the silicate (B) include smectite, bentonite, vermiculite, and mica, and those that form a colloid using water or a water-containing solvent as a dispersion medium are preferable.
  • the smectite is a group name such as montmorillonite, beidellite, nontronite, saponite, hectorite, stevensite, and the like.
  • Examples of the shape of the primary particles of the silicate particles include a disc shape, a plate shape, a spherical shape, a granular shape, a cubic shape, a needle shape, a rod shape, an amorphous shape, and the like, and a disc shape or a plate shape having a diameter of 5 nm to 1000 nm. preferable.
  • silicates include layered silicates.
  • examples of easily available silicates include Laponite XLG (synthetic hectorite) and XLS (synthetic hectorite) manufactured by Rockwood Additives. , Containing sodium pyrophosphate as a dispersant, XL21 (sodium, magnesium, fluorosilicate), RD (synthetic hectorite), RDS (synthetic hectorite, containing inorganic polyphosphate as a dispersant), and S482 (synthetic hectorite, Containing a dispersant); Lucentite (Corp Chemical Co., Ltd.
  • SWN Synthetic smectite
  • SWF Synthetic smectite
  • Micromica Synthetic mica
  • Somasif Corp Chemical Co., Ltd. Synthetic mica
  • Kunimine Kogyo Co., Ltd. Kunipia Korean Industries Ltd. trademark, montmorillonite
  • Smecton Korean Industries Ltd. trademark
  • SA synthetic saponite
  • the content of the silicate (B) is 0.01% by mass to 20% by mass, preferably 0.1% by mass to 10% by mass in 100% by mass of the hydrogel.
  • Component (C) of the present invention is a silicate dispersant, preferably a water-swellable silicate particle dispersant.
  • silicate dispersant (C) a dispersant or a peptizer used for the purpose of improving the dispersibility of the silicate or delaminating the layered silicate can be used.
  • silicate dispersant (C) examples include, for example, sodium orthophosphate, sodium pyrophosphate, sodium tripolyphosphate, sodium tetraphosphate, sodium hexametaphosphate, sodium polyphosphate;
  • sodium pyrophosphate as the phosphate dispersant sodium polyacrylate having a weight average molecular weight of 1000 to 20,000 as the carboxylate dispersant, and polyethylene glycol (PEG 900 or the like) as the other organic peptizer are preferable.
  • Low-polymerized sodium polyacrylate having a weight average molecular weight of 1000 to 20,000 interacts with silicate particles to produce negative charges derived from carboxyl anions on the surface of the particles, and the silicate is dispersed by repulsion of charges. It is known to act as a dispersant by mechanism.
  • Content of the said dispersing agent (C) is 0.001 mass% thru
  • silicate containing a dispersing agent as said component (B)
  • Component (D) of the present invention is a compound having or resulting in a positive charge of two or more valences, and more specifically, a compound having a positive charge of two or more valences or being dissolved in a solution. Or a compound that reacts with an acid to generate a positive charge of 2 or more valences. Examples of such compounds include salts of elements in Periodic Tables 3 to 5 and Groups 2 to 14; hydroxides of the elements; oxides of the elements; polyvalent amines; And salts of divalent amines.
  • the element is preferably an element of Group 2 or Group 13 of the Periodic Table.
  • salt not only a single salt but also a double salt such as alum and magnesium aluminate silicate can be used.
  • Acids that form salts include sulfuric acid, hydrochloric acid, hydrogen bromide, hydrogen fluoride, trifluoroacetic acid, acetic acid, phosphoric acid, diphosphoric acid, hexametaphosphoric acid, polyphosphoric acid, silicic acid, aluminate, trifluoromethanesulfonic acid, Examples include methanesulfonic acid and p-toluenesulfonic acid.
  • polyvalent amine examples include ethylenediamine, diaminopropane, diaminobutane, diaminopentane, hexamethylenediamine, bis (aminoethoxy) ethane, phenylenediamine, hydrazine, spermidine, and spermine.
  • magnesium salt magnesium hydroxide, magnesium oxide, calcium salt, calcium hydroxide, calcium oxide, aluminum salt, aluminum hydroxide, aluminum examples thereof include oxides, diamines, and diamine salts, among which magnesium salts, calcium salts, and aluminum salts are preferable.
  • the compound (D) include magnesium chloride, magnesium bromide, magnesium sulfate, magnesium nitrate, magnesium carbonate, magnesium acetate, magnesium hydroxide, magnesium oxide, calcium chloride, calcium bromide, calcium sulfate, calcium nitrate, Calcium carbonate, calcium acetate, calcium hydroxide, calcium oxide, calcium lactate, calcium phosphate, calcium diphosphate, calcium hexametaphosphate, aluminum sulfate, aluminum hydroxide, aluminum oxide, ethylenediamine, ethylenediamine dihydrochloride, ethylenediamine sulfate, bis (aminoethoxy ) Ethane, bis (aminoethoxy) ethane dihydrochloride, bis (aminoethoxy) ethane sulfate, etc., among which magnesium chloride, Magnesium acid, dicalcium phosphate, and aluminum sulfate are preferred.
  • the content of the compound (D) is 0.01% by mass to 20% by mass, preferably 0.05% by mass to 10% by mass in 100% by mass of the hydrogel.
  • the hydrogel prepared from the components (A) to (C) can also be immersed in an aqueous solution.
  • the hydrogel containing the compound (D) has an improved elastic modulus, and the swelling of the hydrogel is greatly suppressed even in water.
  • magnesium chloride, calcium diphosphate or aluminum sulfate is 0.05% by mass to 10% by mass.
  • the hydrogel-forming composition of the present invention includes monovalent or polyhydric alcohols such as methanol, ethanol, ethylene glycol, formamide, hydrazine, which intercalate between layered silicate layers and promote peeling. , Dimethyl sulfoxide, urea, acetamide, potassium acetate and the like can be added.
  • the hydrogel-forming composition and hydrogel of the present invention may contain a hydrous alcohol and a hydrous polyhydric alcohol.
  • the hydrous alcohol refers to a mixed liquid of monohydric alcohol and water
  • the hydrous polyhydric alcohol refers to a mixed liquid of polyhydric alcohol and water.
  • the monohydric alcohol is preferably a water-soluble alcohol that is freely soluble in water, more preferably an alcohol having 1 to 8 carbon atoms.
  • methanol, ethanol, 2-propanol, i- Examples include butanol, pentanol, hexanol, 1-octanol, and isooctanol.
  • the polyhydric alcohol is a dihydric or higher alcohol, such as glycerin, polyglycerin (diglycerin, triglycerin, tetraglycerin, etc.), ethylene glycol, propylene glycol, polyethylene glycol (PEG 600, etc.), diethylene glycol, triethylene glycol, Tetraethylene glycol, dipropylene glycol, 1,5-pentanediol (pentamethylene glycol), 1,2,6-hexanetriol, octylene glycol (ethohexadiol), butylene glycol (1,3-butylene glycol, 1 , 4-butylene glycol, 2,3-butanediol, etc.), hexylene glycol, 1,3-propanediol (trimethylene glycol), and 1,6-hexanediol (hexamethylene glycol) Le) and the like, glycerin, diglycerin, ethylene glycol, propy
  • the content of the hydrous alcohol or hydrous polyhydric alcohol is 0% by mass to 80% by mass, and preferably 0% by mass to 60% by mass in 100% by mass of the hydrogel.
  • the content of the alcohol in the hydrous alcohol or hydrous polyhydric alcohol is 0.1% by mass to 80% by mass, preferably 0.1% by mass to 60% by mass in 100% by mass of the hydrous alcohol or hydrous polyhydric alcohol. %.
  • the hydrogel obtained by the hydrogel-forming composition of the present invention comprises a water-soluble organic polymer (A), a silicate (B), a dispersant (C), a compound (D), and water or a water-containing solvent. It can be manufactured by gelling. Also, the gel obtained after gelation by mixing an aqueous solution of the water-soluble organic polymer (A) with an aqueous dispersion of the silicate (B) and the silicate dispersant (C) Can be produced by immersing in an aqueous solution of the compound (D).
  • the hydrogel-forming composition of the present invention is an aqueous solution of a water-soluble organic polymer (A) and any one of two solutions of an aqueous dispersion of a silicate (B) and a silicate dispersant (C). It is also possible to gel by mixing the two liquids after adding the compound (D) to either or both.
  • ultrasonic treatment can be used in addition to mechanical or manual stirring, but mechanical stirring is preferable.
  • mechanical stirring for example, a magnetic stirrer, propeller type stirrer, rotation / revolution mixer, disper, homogenizer, shaker, vortex mixer, ball mill, kneader, line mixer, ultrasonic oscillator, etc.
  • the mixing temperature is the freezing point or boiling point of the aqueous solution or aqueous dispersion, preferably -5 ° C to 100 ° C, more preferably 0 ° C to 50 ° C.
  • the standing time is preferably 2 hours to 100 hours.
  • the standing temperature is -5 ° C to 100 ° C, preferably 0 ° C to 50 ° C.
  • the gel of arbitrary shapes can be produced by pouring into a type
  • Example 1 Production of 0.3% Mg hydrogel 33 parts of 9% Laponite XLG aqueous dispersion produced in Production Example 1, 37 parts of 1.5% sodium polyacrylate aqueous solution produced in Production Example 2, 1% magnesium chloride added 1.5% poly produced in Production Example 3 30 parts of an aqueous solution of sodium acrylate was mixed and stirred vigorously at 25 ° C. for 1 minute. The mixture was allowed to stand at 25 ° C. for 48 hours to obtain the desired product.
  • Example 2 Production of 0.5% Mg hydrogel
  • 33 parts of 9% Laponite XLG aqueous dispersion produced in Production Example 1 17 parts of 1.5% sodium polyacrylate aqueous solution produced in Production Example 2, 1% magnesium chloride added 1.5% poly produced in Production Example 3
  • 50 parts of an aqueous solution of sodium acrylate was mixed and stirred vigorously at 25 ° C. for 1 minute. The mixture was allowed to stand at 25 ° C. for 48 hours to obtain the desired product.
  • Example 3 Production of 0.3% Al hydrogel
  • anhydrous aluminum sulfate manufactured by Kanto Chemical Co., Inc.
  • 66.7 parts of 1.5% sodium polyacrylate aqueous solution produced in Production Example 2 was added and stirred vigorously at 25 ° C. for 1 minute.
  • the mixture was allowed to stand at 25 ° C. for 48 hours to obtain the desired product.
  • the resulting 0.3% Al hydrogel is shown in FIG.
  • Example 4 Production of 0.5% Al hydrogel To 33 parts of the 9% Laponite XLG aqueous dispersion produced in Production Example 1, 0.5 part of anhydrous aluminum sulfate (manufactured by Kanto Chemical Co., Inc.) was added and stirred vigorously at 25 ° C. until uniform (about 30 minutes). 66.5 parts of the 1.5% sodium polyacrylate aqueous solution produced in Production Example 2 was added, and the mixture was vigorously stirred at 25 ° C. for 1 minute. The mixture was allowed to stand at 25 ° C. for 48 hours to obtain the desired product.
  • anhydrous aluminum sulfate manufactured by Kanto Chemical Co., Inc.
  • Example 5 Production of 1.0% Al Hydrogel 1 part of anhydrous aluminum sulfate (manufactured by Kanto Chemical Co., Inc.) was added to 33 parts of the 9% Laponite XLG aqueous dispersion produced in Production Example 1 and stirred vigorously at 25 ° C. until uniform (about 30 minutes). 66 parts of the 1.5% sodium polyacrylate aqueous solution produced in Production Example 2 was added and stirred vigorously at 25 ° C. for 1 minute. The mixture was allowed to stand at 25 ° C. for 48 hours to obtain the desired product.
  • anhydrous aluminum sulfate manufactured by Kanto Chemical Co., Inc.
  • Example 6 Production of 2.0% Al Hydrogel To 33 parts of the 9% Laponite XLG aqueous dispersion produced in Production Example 1, 2 parts of anhydrous aluminum sulfate (manufactured by Kanto Chemical Co., Inc.) was added and stirred vigorously at 25 ° C. until uniform (about 30 minutes). 65 parts of a 1.5% sodium polyacrylate aqueous solution produced in Production Example 2 was added and stirred vigorously at 25 ° C. for 1 minute. The mixture was allowed to stand at 25 ° C. for 48 hours to obtain the desired product.
  • anhydrous aluminum sulfate manufactured by Kanto Chemical Co., Inc.
  • Example 7 Production of 5% Mg-immersed sheet-like hydrogel 1
  • the sheet-like hydrogel 1 produced in Production Example 5 was immersed in a 5 wt% magnesium chloride aqueous solution and allowed to stand at 25 ° C. for 24 hours.
  • Example 8 Production of 5% Ca-immersed sheet-like hydrogel 1
  • the sheet-like hydrogel 1 produced in Production Example 5 was immersed in a 5 wt% calcium chloride aqueous solution and allowed to stand at 25 ° C. for 24 hours.
  • Example 9 Puncture strength test of Mg hydrogel
  • a cylindrical hydrogel having a diameter of 28 mm and a height of 16 mm was prepared under the conditions of Example 1, Example 2, and Production Example 4, and pierced by a creep meter RE2-30005B manufactured by Yamaden Co., Ltd. to measure the strength.
  • a cylindrical shaft with a diameter of 3 mm (plunger-shaped cylinder manufactured by Yamaden Co., Ltd., No. 3S, type P-3S) was pressed from the top of the gel at a speed of 1 mm / second, and the strain rate and stress until breakage. was measured.
  • the elastic modulus was obtained from the slope of the small strain rate region of the stress-strain curve. The measurement results are shown in Table 1 and FIG.
  • Example 10 Load test of Mg hydrogel
  • a columnar hydrogel having a diameter of 28 mm and a height of 16 mm was produced under the conditions of Example 2 and Production Example 4, and 100 g of a weight was placed thereon.
  • the shape was greatly deformed (FIG. 2).
  • the 0.5% Mg hydrogel of Example 2 almost no shape deformation was observed (FIG. 3).
  • Example 11 Puncture strength test of Al hydrogel
  • Cylindrical hydrogels having a diameter of 28 mm and a height of 16 mm were prepared under the conditions of Examples 3 to 6 and Production Example 4, and piercing strength was measured using a creep meter RE2-30005B manufactured by Yamaden Co., Ltd.
  • a cylindrical shaft with a diameter of 3 mm (plunger-shaped cylinder manufactured by Yamaden Co., Ltd., No. 3S, type P-3S) was pressed from the top of the gel at a speed of 1 mm / second, and the strain rate and stress until breakage. was measured.
  • the elastic modulus was obtained from the slope of the small strain rate region of the stress-strain curve. The measurement results are shown in Table 2 and FIG.
  • Example 12 Puncture strength test of sheet-like hydrogel 1
  • the measuring method uses a creep meter RE2-30005B manufactured by Yamaden Co., Ltd.
  • the sheet-shaped hydrogel is sandwiched between two plates with a circular hole with a diameter of 23 mm, and a cylindrical shaft with a diameter of 3 mm (Plan made by Yamaden Corporation)
  • a jar-shaped cylinder, number No. 3S, type P-3S) was pressed from the upper part of the circular hole at a speed of 1 mm / second, and the stress and strain until breakage were measured.
  • the measurement results are shown in Table 3 and FIG.
  • Example 13 Water expansion test of Al hydrogel
  • a cylindrical hydrogel having a diameter of 28 mm and a height of 16 mm was prepared under the conditions of Examples 4 to 6 and Production Example 4, and then immersed in 500 mL of pure water and allowed to stand at 25 ° C. for 3 days. The weight of the hydrogel before and after immersion was measured, and the expansion coefficient (weight after immersion / weight before immersion) was calculated. The results are shown in Table 4.
  • Fig. 6 Production Example 4: After immersion from the left, before immersion
  • Fig. 7 Example 4: After immersion from the left, before immersion
  • Fig. 8 Example 5: After immersion from the left) , Before immersion
  • FIG. 9 Example 6: after immersion from the left, before immersion).
  • Examples 14 to 17 and Comparative Example 1 Production of immersion hydrogel
  • the hydrogel 2 produced in Production Example 6 was immersed in the aqueous solution shown in Table 5 for 24 hours to obtain an immersion hydrogel.
  • Example 18 Puncture strength test of immersed hydrogel
  • a columnar hydrogel having a diameter of 28 mm and a height of 16 mm was prepared under the conditions of Examples 14 to 17, Comparative Example 1 and Production Example 6, and the piercing strength was measured using a creep meter RE2-30005B manufactured by Yamaden Co., Ltd. It was.
  • a cylindrical shaft with a diameter of 3 mm (plunger-shaped cylinder manufactured by Yamaden Co., Ltd., No. 3S, type P-3S) was pressed from the top of the gel at a speed of 1 mm / second, and the strain rate and stress until breakage. was measured.
  • the elastic modulus was obtained from the slope of the small strain rate region of the stress-strain curve. The measurement results are shown in Table 6 and FIG.
  • Example 2 Laponite XLG not added
  • the 9% laponite XLG aqueous dispersion used in Example 3 was replaced with 33 parts of water, and the same operation was performed.
  • a white precipitated gum-like aggregate shown in FIG. 11 was obtained, and a uniform gel as obtained in Example 3 shown in FIG. 12 was not obtained.
  • the hydrogel of the present invention can be easily produced, and the strength of the hydrogel such as breaking strength and elastic modulus can be adjusted by adjusting the composition components. Further, the obtained gel is highly transparent and stretchable, and is easy to process. Taking advantage of these characteristics, it can be applied to various products.
  • external medicine base materials such as wound dressings, haptics, hemostatic agents, surgical sealant materials, scaffold materials for regenerative medicine, artificial cornea, artificial lens, artificial vitreous, artificial skin, artificial joint, artificial cartilage, breast augmentation
  • Implant materials such as medical materials, medical materials such as soft contact lens materials, medium materials such as tissue culture or microbial culture, cosmetic materials such as pack sheets, sanitary materials such as diapers and sanitary napkins for children and adults , Gel material for fragrance or deodorant, gum material for confectionery or dog, material for chromatography carrier, material for bioreactor carrier, functional separation membrane material, non-combustible material for building material, fireproof coating material, humidity control material, earthquake buffer Greening materials such as wood, debris flow prevention materials, construction and civil engineering materials such as sandbags, soil water retention agents, seedling culture media, or hydroponic support for agriculture and horticulture, children's toys or models
  • Toy materials such as, stationery materials, shock absorbing materials for sports equipment such as sports shoes, protectors, cushioning materials for shoe

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

【課題】 室温で混合するだけで作製できる高い弾性率を有し、水中での形状維持が可能な自己支持性を有する有機無機複合ヒドロゲルおよびその製造方法を提供すること。 【解決手段】 自己支持性を有するヒドロゲルを形成することができるヒドロゲル形成性組成物であって、有機酸構造、有機酸塩構造又は有機酸アニオン構造を有する水溶性有機高分子(A)、ケイ酸塩(B)、前記ケイ酸塩の分散剤(C)、及び2価以上の正電荷を有する又は生ずる化合物(D)を含むことを特徴とする、ヒドロゲル形成性組成物、該組成物から作られるヒドロゲルおよびその製造方法。

Description

ヒドロゲル形成性組成物及びそれより作られるヒドロゲル
 本発明は、ヒドロゲル、より詳しくは、有機無機複合ヒドロゲル形成性組成物及びそれより作られる高い弾性率を有し、水中での形状維持が可能な自己支持性を有する有機無機複合ヒドロゲルに関する。
 ヒドロゲルは、水が主成分であるため生体適合性が高く、環境への負荷が低いソフトマテリアル素材という観点から、近年注目されている。
 自己支持性を有する高強度ヒドロゲルとして、水に均一分散している層状粘土鉱物の共存下で(メタ)アクリルアミド誘導体の重合反応を行うことにより得られる有機無機複合ヒドロゲルが報告されている(特許文献1)。また、類似の報告例として、ポリ(メタ)アクリルアミド中にカルボン酸塩又はカルボシキアニオン構造の基を一部含有する高分子と粘土鉱物を有する有機無機複合ヒドロゲルも知られている(特許文献2)。
 これらの報告例では、層状粘土鉱物の水分散液中でモノマーを重合させることで、生成する高分子と該粘土鉱物とが三次元網目構造を形成し、有機無機複合ヒドロゲルとなる。
 しかし、これら有機無機複合ヒドロゲルでは、毒性が懸念される未反応のモノマーや、重合開始剤などの試薬がゲル中に残存する可能性がある。また、非化学製造業者が有機無機複合ヒドロゲルを製造するのは困難であり、さらに化学反応後にヒドロゲルとなるため、任意の形状にゲルを成型することも困難である。
 室温で混合することで製造できる自己支持性を有する有機無機複合ヒドロゲルとして、末端にポリカチオン性の官能基を有するデンドリマー化合物と層状粘土鉱物を含有するヒドロゲルが知られている(特許文献3)。この例では、該デンドリマーは多段階の合成反応によって製造されるため、製造コストが高価になるという課題がある。
 また、電解質高分子、クレイ粒子、及び分散剤を混合するだけで作製可能な有機無機複合ヒドロゲルも報告されている(非特許文献1)。この有機無機複合ヒドロゲルは、電解質高分子に均一に分散されたクレイ粒子が架橋してゲル構造を形成している。しかし、水中ではゲルが膨潤してしまい、強度や形状の維持ができなくなるという課題がある。
 また、ポリアクリル酸とアルミニウム化合物を用いてゲル化する技術が知られている(特許文献4)。これはポリアクリル酸をアルミニウムイオンで架橋したゲルであり、ハップ剤の膏体として利用されている。このゲルはガム状のゲルで粘着性や柔軟性に優れているが、弾性率は低く、強い力に対して形状を維持するような強度はない。
特開2002-053629号公報 特開2009-270048号公報 国際公開第2011/001657号パンフレット 特開昭60-226808号公報
第61回高分子学会年次大会予稿集、Vol.61,No.1,p.683(2012)
 上述より、工業的に入手容易な原料を用いて、室温で混合するだけで、高い弾性率を有し、水中での形状維持が可能な自己支持性を有する有機無機複合ヒドロゲルを作製できる方法が望まれている。
 そこで、本発明は、上記事情に鑑みてなされたものであり、室温で混合するだけで作製できる、高い弾性率を有し、水中での形状維持が可能な自己支持性を有する有機無機複合ヒドロゲルの提供を目的とする。又、該有機無機複合ヒドロゲルを、工業的に入手容易な原料を用いて製造できる方法の提供を目的とする。
 本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、有機酸構造、有機酸塩構造又は有機酸アニオン構造を有する水溶性有機高分子と、ケイ酸塩と、該ケイ酸塩の分散剤と、2価以上の正電荷を有する又は生ずる化合物を混合することにより、高い弾性率を有し、水中での形状維持が可能な自己支持性を有する有機無機複合ヒドロゲルが得られることを見出し、本発明を完成させた。
 すなわち、本発明は、第1観点として、自己支持性を有するヒドロゲルを形成することができるヒドロゲル形成性組成物であって、有機酸構造、有機酸塩構造又は有機酸アニオン構造を有する水溶性有機高分子(A)、ケイ酸塩(B)、前記ケイ酸塩の分散剤(C)、及び2価以上の正電荷を有する又は生ずる化合物(D)を含むことを特徴とする、ヒドロゲル形成性組成物に関する。
 第2観点として、前記化合物(D)が周期律表第3周期乃至第5周期かつ第2族乃至第14族の元素の塩、該元素の水酸化物、該元素の酸化物、多価アミン、及び該多価アミンの塩からなる群から選ばれる1種又は2種以上である、第1観点に記載のヒドロゲル形成性組成物に関する。
 第3観点として、前記元素が周期律表第2族又は第13族の元素である、第2観点に記載のヒドロゲル形成性組成物に関する。
 第4観点として、前記化合物(D)がマグネシウムの塩、マグネシウムの水酸化物、マグネシウムの酸化物、カルシウムの塩、カルシウムの水酸化物、カルシウムの酸化物、アルミニウムの塩、アルミニウムの水酸化物、アルミニウムの酸化物、ジアミン、及びジアミンの塩からなる群から選ばれる1種又は2種以上である、第2観点又は第3観点に記載のヒドロゲル形成性組成物に関する。
 第5観点として、前記化合物(D)が塩化マグネシウム、臭化マグネシウム、硫酸マグネシウム、硝酸マグネシウム、炭酸マグネシウム、酢酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、塩化カルシウム、臭化カルシウム、硫酸カルシウム、硝酸カルシウム、炭酸カルシウム、酢酸カルシウム、水酸化カルシウム、酸化カルシウム、乳酸カルシウム、リン酸カルシウム、二リン酸カルシウム、ヘキサメタリン酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、酸化アルミニウム、エチレンジアミン、エチレンジアミン二塩酸塩、エチレンジアミン硫酸塩、ビス(アミノエトキシ)エタン、ビス(アミノエトキシ)エタン二塩酸塩、及びビス(アミノエトキシ)エタン硫酸塩からなる群から選ばれる1種又は2種以上である、第4観点に記載のヒドロゲル形成性組成物に関する。
 第6観点として、前記水溶性有機高分子(A)がカルボン酸、カルボン酸塩構造又はカルボキシアニオン構造を有する水溶性有機高分子である、第1観点乃至第5観点のいずれか1つに記載のヒドロゲル形成性組成物に関する。
 第7観点として、前記水溶性有機高分子(A)が完全中和又は部分中和ポリアクリル酸塩である、第6観点に記載のヒドロゲル形成性組成物に関する。
 第8観点として、前記水溶性有機高分子(A)が重量平均分子量100万乃至1000万の完全中和又は部分中和ポリアクリル酸塩である、第7観点に記載のヒドロゲル形成性組成物に関する。
 第9観点として、前記ケイ酸塩(B)が水膨潤性ケイ酸塩粒子である、第1観点乃至第8観点のいずれか1つに記載のヒドロゲル形成性組成物に関する。
 第10観点として、前記ケイ酸塩(B)がスメクタイト、ベントナイト、バーミキュライト、及び雲母からなる群より選ばれる水膨潤性ケイ酸塩粒子である、第9観点に記載のヒドロゲル形成性組成物に関する。
 第11観点として、前記分散剤(C)が水膨潤性ケイ酸塩粒子の分散剤である、第1観点乃至第10観点のいずれか1つに記載のヒドロゲル形成性組成物に関する。
 第12観点として、前記分散剤(C)が、オルトリン酸ナトリウム、ピロリン酸ナトリウム、トリポリリン酸ナトリウム、テトラリン酸ナトリウム、ヘキサメタリン酸ナトリウム、ポリリン酸ナトリウム、ポリ(メタ)アクリル酸ナトリウム、ポリ(メタ)アクリル酸アンモニウム、アクリル酸ナトリウム/マレイン酸ナトリウム共重合体、アクリル酸アンモニウム/マレイン酸アンモニウム共重合体、水酸化ナトリウム、ヒドロキシルアミン、炭酸ナトリウム、ケイ酸ナトリウム、ポリエチレングリコール、ポリプロピレングリコール、フミン酸ナトリウム、及びリグニンスルホン酸ナトリウムからなる群から選ばれる1種又は2種以上である、第11観点に記載のヒドロゲル形成性組成物に関する。
 第13観点として、第1観点乃至第12観点のいずれか1つに記載のヒドロゲル形成性組成物から作られる自己支持性を有するヒドロゲルに関する。
 第14観点として、各々第1観点乃至第12観点のいずれか1つに特定されるところの、前記水溶性有機高分子(A)、前記ケイ酸塩(B)、前記分散剤(C)、及び前記化合物(D)、並びに水又は含水溶媒を混合してゲル化させることを特徴とする自己支持性を有するヒドロゲルの製造方法に関する。
 第15観点として、各々第1観点乃至第12観点のいずれか1つに特定されるところの、前記水溶性有機高分子(A)、前記ケイ酸塩(B)、前記分散剤(C)、及び水又は含水溶媒を混合してゲル化させた後、得られたゲルを第1観点乃至第12観点のいずれか1つに特定されるところの前記化合物(D)の水又は含水溶媒の溶液に浸漬させることを特徴とする自己支持性を有するヒドロゲルの製造方法に関する。
 以上、説明したように、本発明によれば工業的に入手容易な原料を用いて混合するだけで、高い弾性率を有し、水中での形状維持が可能な自己支持性を有するヒドロゲルが得られる。ゲル化する前に型に流し込んだり、押出成型したりすることにより、任意形状のゲルを作製できる。ゲル化の際、重合反応等の共有結合形成反応が不要で、室温でもゲル化させることが可能なため、製造プロセスの観点から安全性が高いという効果がある。各成分の含量を調整することにより、任意の強度や透明性を有するヒドロゲルを作製できる。
 ヒドロゲルの「自己支持性」という用語は、学術論文や特許文献において定義されることなく使用されるのが通例であるが、本発明においては、充分な強度を有することにより、容器等の支持体がなくてもゲルの形状を保持できるといった意味で用いられている。
 また、本発明のヒドロゲルが有する弾性率は、例えば、突刺し強度測定機により測定することができる。例えば、直径28mm高さ16mmの円柱状のヒドロゲルを作製し、株式会社山電製クリープメーターRE2-33005Bにて測定できる。測定方法は、直径3mmの円柱状のシャフト(株式会社山電製プランジャー 形状円柱、番号No.3S、形式P-3S)をゲル上部から1mm/秒の速度で押し当て、応力を測定する。測定で得られた応力-ひずみ曲線の歪率の小さい領域の傾きから弾性率を求めることができる。本発明で得られるヒドロゲルの突刺し強度測定機による弾性率は、5kPa乃至10000kPaであり、高弾性率が要求される用途に関しては、下限値としては、20kPa、50kPa、100kPaが挙げられ、上限値としては、200kPa、1000kPa、5000kPaが挙げられる。その一例としては、20kPa乃至1000kPa、100kPa乃至5000kPaである。
図1は、実施例9における突刺し強度試験の測定結果を示す図である。 図2は、実施例10における荷重試験の結果を示す写真である。 図3は、実施例10における荷重試験の結果を示す写真である。 図4は、実施例11における突刺し強度試験の測定結果を示す図である。 図5は、実施例12における突刺し強度試験の測定結果を示す図である。 図6は、実施例13における水膨張試験の結果を示す写真である。 図7は、実施例13における水膨張試験の結果を示す写真である。 図8は、実施例13における水膨張試験の結果を示す写真である。 図9は、実施例13における水膨張試験の結果を示す写真である。 図10は、実施例18における突刺し強度試験の測定結果を示す図である。 図11は、比較例2で得られた白色沈殿のガム状凝集物が入っているガラスビーカーを、ガラス棒で傾けている写真である。 図12は、実施例3で得られたヒドロゲルが入っているガラスビーカーを、ガラス棒で傾けている写真である。
 本発明のヒドロゲル形成性組成物及びそれより作られるヒドロゲルの成分として、有機酸構造、有機酸塩構造又は有機酸アニオン構造を有する水溶性有機高分子(A)、ケイ酸塩(B)、前記ケイ酸塩の分散剤(C)、及び2価以上の正電荷を有する又は生ずる化合物(D)が挙げられるが、上記成分の他に、本発明の所期の効果を損なわない範囲で、必要に応じて、他の成分を任意に配合してもよい。
[ヒドロゲル形成性組成物]
<成分(A):水溶性有機高分子>
 本発明の成分(A)は、有機酸構造、有機酸塩構造又は有機酸アニオン構造を有する水溶性有機高分子である。
 有機酸構造、有機酸塩構造又は有機酸アニオン構造を有する水溶性有機高分子(A)としては、例えば、カルボキシル基を有するものとして、ポリ(メタ)アクリル酸塩、カルボキシビニルポリマーの塩、カルボキシメチルセルロースの塩;スルホニル基を有するものとして、ポリスチレンスルホン酸の塩;ホスホニル基を有するものとして、ポリビニルホスホン酸塩等が挙げられる。上記塩としては、ナトリウム塩、アンモニウム塩、カリウム塩、及びリチウム塩などが挙げられ、完全中和塩でも部分中和塩でも良い。なお、本発明では、(メタ)アクリル酸とは、アクリル酸とメタクリル酸の両方をいう。
 本発明では、水溶性有機高分子(A)は、カルボン酸構造、カルボン酸塩構造又はカルボキシアニオン構造を有することが好ましく、また水溶性有機高分子(A)は架橋又は共重合されていてもよく、完全中和物又は部分中和物のいずれも使用できる。
 上記水溶性有機高分子(A)の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によるポリエチレングリコール換算で、好ましくは100万乃至1000万であり、より好ましくは200万乃至700万である。
 また、市販品で入手できる水溶性有機高分子(A)の重量平均分子量は、市販品に記載されている重量平均分子量として、好ましくは100万乃至1000万であり、より好ましくは200万乃至700万である。
 その中でも、本発明では、水溶性有機高分子(A)としては、完全中和又は部分中和ポリアクリル酸塩であることが好ましく、具体的には完全中和又は部分中和ポリアクリル酸ナトリウムが好ましく、特に重量平均分子量200万乃至700万の完全中和又は部分中和された非架橋型高重合ポリアクリル酸ナトリウムが好ましい。
 上記水溶性有機高分子(A)の含有量は、ヒドロゲル100質量%中に0.01質量%乃至20質量%、好ましくは0.1質量%乃至10質量%である。
 なお、本明細書等では、質量%をwt%とも表記する。
<成分(B):ケイ酸塩>
 本発明の成分(B)は、ケイ酸塩であって、好ましくは水膨潤性ケイ酸塩粒子である。
 ケイ酸塩(B)としては、例えば、スメクタイト、ベントナイト、バーミキュライト、及び雲母等が挙げられ、水又は含水溶媒を分散媒としたコロイドを形成するものが好ましい。なお、スメクタイトとは、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイトなどのグループ名称である。
 ケイ酸塩粒子の一次粒子の形状としては、円盤状、板状、球状、粒状、立方状、針状、棒状、無定形等が挙げられ、直径5nm乃至1000nmの円盤状又は板状のものが好ましい。
 ケイ酸塩の好ましい具体例としては、層状ケイ酸塩が挙げられ、市販品として容易に入手可能な例として、ロックウッド・アディティブズ社製のラポナイトXLG(合成ヘクトライト)、XLS(合成ヘクトライト、分散剤としてピロリン酸ナトリウム含有)、XL21(ナトリウム・マグネシウム・フルオロシリケート)、RD(合成ヘクトライト)、RDS(合成ヘクトライト、分散剤として無機ポリリン酸塩含有)、及びS482(合成ヘクトライト、分散剤含有);コープケミカル株式会社製のルーセンタイト(コープケミカル株式会社登録商標)SWN(合成スメクタイト)及びSWF(合成スメクタイト)、ミクロマイカ(合成雲母)、及びソマシフ(コープケミカル株式会社登録商標、合成雲母);クニミネ工業株式会社製のクニピア(クニミネ工業株式会社登録商標、モンモリロナイト)、スメクトン(クニミネ工業株式会社登録商標)SA(合成サポナイト);株式会社ホージュン製のベンゲル(株式会社ホージュン登録商標、天然ベントナイト精製品)等が挙げられる。
 上記ケイ酸塩(B)の含有量は、ヒドロゲル100質量%中に0.01質量%乃至20質量%、好ましくは0.1質量%乃至10質量%である。
<成分(C):ケイ酸塩の分散剤>
 本発明の成分(C)は、ケイ酸塩の分散剤であって、好ましくは水膨潤性ケイ酸塩粒子の分散剤である。
 ケイ酸塩の分散剤(C)として、ケイ酸塩の分散性の向上や、層状ケイ酸塩を層剥離させる目的で使用される分散剤又は解膠剤を使用することができる。
 ケイ酸塩の分散剤(C)としては、例えば、リン酸塩系分散剤として、オルトリン酸ナトリウム、ピロリン酸ナトリウム、トリポリリン酸ナトリウム、テトラリン酸ナトリウム、ヘキサメタリン酸ナトリウム、ポリリン酸ナトリウム;カルボン酸塩系分散剤として、ポリ(メタ)アクリル酸ナトリウム、ポリ(メタ)アクリル酸アンモニウム、アクリル酸ナトリウム/マレイン酸ナトリウム共重合体、アクリル酸アンモニウム/マレイン酸アンモニウム共重合体;アルカリとして作用するものとして、水酸化ナトリウム、ヒドロキシルアミン;多価カチオンと反応し不溶性塩又は錯塩を形成するものとして、炭酸ナトリウム、ケイ酸ナトリウム;その他の有機解膠剤として、ポリエチレングリコール、ポリプロピレングリコール、フミン酸ナトリウム、及びリグニンスルホン酸ナトリウム等が挙げられる。
 その中でも、リン酸塩系分散剤としてピロリン酸ナトリウム、カルボン酸塩系分散剤として重量平均分子量1000乃至2万のポリアクリル酸ナトリウム、その他の有機解膠剤としてポリエチレングリコール(PEG900等)が好ましい。
 重量平均分子量1000乃至2万の低重合ポリアクリル酸ナトリウムはケイ酸塩粒子と相互作用して粒子表面にカルボシキアニオン由来の負電荷を生じさせ、電荷の反発によりケイ酸塩を分散させる等の機構により分散剤として作用することが知られている。
 上記分散剤(C)の含有量は、ヒドロゲル100質量%中に0.001質量%乃至20質量%、好ましくは0.01質量%乃至10質量%である。
 なお、本発明では、上記成分(B)として分散剤を含有するケイ酸塩を使用する場合は、成分(C)である分散剤をさらに添加しても、添加しなくてもよい。
<成分(D):2価以上の正電荷を有する又は生ずる化合物>
 本発明の成分(D)は、2価以上の正電荷を有する又は生ずる化合物であって、より具体的には、それ自体が2価以上の正電荷を有する化合物であるか、又は溶液に溶解して若しくは酸と反応して2価以上の正電荷を生ずる化合物である。そのような化合物としては、周期律表第3周期乃至第5周期かつ第2族乃至第14族の元素の塩、該元素の水酸化物、該元素の酸化物、多価アミン、及び該多価アミンの塩が挙げられる。また、上記元素としては、周期律表第2族又は第13族の元素が好ましい。
 上記塩としては単塩だけでなく、ミョウバン、ケイ酸アルミン酸マグネシウム等の複塩を用いることができる。
 塩を形成する酸としては、硫酸、塩酸、臭化水素、フッ化水素、トリフルオロ酢酸、酢酸、リン酸、二リン酸、ヘキサメタリン酸、ポリリン酸、ケイ酸、アルミン酸、トリフルオロメタンスルホン酸、メタンスルホン酸、及びp-トルエンスルホン酸等が挙げられる。
 多価アミンとしては、エチレンジアミン、ジアミノプロパン、ジアミノブタン、ジアミノペンタン、ヘキサメチレンジアミン、ビス(アミノエトキシ)エタン、フェニレンジアミン、ヒドラジン、スペルミジン、及びスペルミン等が挙げられ、フリー体でも塩の形態でも良い。
 上記化合物(D)としては、マグネシウムの塩、マグネシウムの水酸化物、マグネシウムの酸化物、カルシウムの塩、カルシウムの水酸化物、カルシウムの酸化物、アルミニウムの塩、アルミニウムの水酸化物、アルミニウムの酸化物、ジアミン及びジアミンの塩等が挙げられ、その中でもマグネシウムの塩、カルシウムの塩、及びアルミニウムの塩が好ましい。
 上記化合物(D)の具体例としては、塩化マグネシウム、臭化マグネシウム、硫酸マグネシウム、硝酸マグネシウム、炭酸マグネシウム、酢酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、塩化カルシウム、臭化カルシウム、硫酸カルシウム、硝酸カルシウム、炭酸カルシウム、酢酸カルシウム、水酸化カルシウム、酸化カルシウム、乳酸カルシウム、リン酸カルシウム、二リン酸カルシウム、ヘキサメタリン酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、酸化アルミニウム、エチレンジアミン、エチレンジアミン二塩酸塩、エチレンジアミン硫酸塩、ビス(アミノエトキシ)エタン、ビス(アミノエトキシ)エタン二塩酸塩、及びビス(アミノエトキシ)エタン硫酸塩等が挙げられ、その中でも塩化マグネシウム、硫酸マグネシウム、二リン酸カルシウム、及び硫酸アルミニウムが好ましい。
 上記化合物(D)の含有量は、ヒドロゲル100質量%中に0.01質量%乃至20質量%、好ましくは0.05質量%乃至10質量%である。
 上記化合物(D)はゲル化の際に他の成分とは別に混合する方法や予め他の成分と混合させる外に、成分(A)乃至成分(C)で作製したヒドロゲルを化合物(D)の水溶液に浸漬させることもできる。
 上記化合物(D)を含有するヒドロゲルは弾性率が向上し、水中においてもヒドロゲルの膨潤が大幅に抑制される。
 上記水溶性有機高分子(A)、上記ケイ酸塩(B)、上記ケイ酸塩の分散剤(C)、及び上記化合物(D)の好ましい組合せとしては、ヒドロゲル100質量%中、成分(A)として重量平均分子量200万乃至700万の完全中和又は部分中和された非架橋型ポリアクリル酸ナトリウム0.1質量%乃至10質量%、成分(B)として水膨潤性スメクタイト又はサポナイト0.1質量%乃至10質量%、及び成分(C)としてピロリン酸ナトリウム0.01質量%乃至10質量%又は重量平均分子量1000乃至2万のポリアクリル酸ナトリウム0.01質量%乃至10質量%、及び成分(D)として塩化マグネシウム又は二リン酸カルシウム又は硫酸アルミニウム0.05質量%乃至10質量%である。
 また、本発明のヒドロゲル形成性組成物には、層状ケイ酸塩の層間にインターカレートし、剥離を促進させるものとして、メタノール、エタノール、エチレングリコール等の1価又は多価アルコール、ホルムアミド、ヒドラジン、ジメチルスルホキシド、尿素、アセトアミド、酢酸カリウム等を添加することができる。
<含水アルコール及び含水多価アルコール>
 本発明のヒドロゲル形成性組成物、及びヒドロゲルは、含水アルコール及び含水多価アルコールを含んでいてもよい。
 なお、本発明では、含水アルコールとは、1価のアルコールと水との混合液をいい、また含水多価アルコールとは、多価アルコールと水との混合液をいう。
 上記1価のアルコールとは、好ましくは水に自由に溶解する水溶性アルコールであり、より好ましくは炭素原子数1乃至8のアルコールであり、具体的にはメタノール、エタノール、2-プロパノール、i-ブタノール、ペンタノール、ヘキサノール、1-オクタノール、及びイソオクタノール等が挙げられる。
 上記多価アルコールとは、2価以上のアルコールであり、グリセリン、ポリグリセリン(ジグリセリン、トリグリセリン、テトラグリセリン等)、エチレングリコール、プロピレングリコール、ポリエチレングリコール(PEG600等)、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、1,5-ペンタンジオール(ペンタメチレングリコール)、1,2,6-へキサントリオール、オクチレングリコール(エトヘキサジオール)、ブチレングリコール(1,3-ブチレングリコール、1,4-ブチレングリコール、2,3-ブタンジオール等)、へキシレングリコール、1,3-プロパンジオール(トリメチレングリコール)、及び1,6-ヘキサンジオール(ヘキサメチレングリコール)等が挙げられ、グリセリン、ジグリセリン、エチレングリコール、プロピレングリコール、及びポリエチレングリコールが好ましい。
 上記含水アルコール又は含水多価アルコールの含有量は、ヒドロゲル100質量%中に0質量%乃至80質量%、好ましくは0質量%乃至60質量%である。
 また、上記含水アルコール又は含水多価アルコール中のアルコールの含有量は、含水アルコール又は含水多価アルコール100質量%中に0.1質量%乃至80質量%、好ましくは0.1質量%乃至60質量%である。
[ヒドロゲル及びその製造方法]
 本発明のヒドロゲル形成性組成物により得られるヒドロゲルは、水溶性有機高分子(A)、ケイ酸塩(B)、分散剤(C)、及び化合物(D)、並びに水又は含水溶媒を混合してゲル化させることで製造することができる。又、水溶性有機高分子(A)の水溶液とケイ酸塩(B)及び前記ケイ酸塩の分散剤(C)の水分散液とを混合することによってゲル化させた後、得られたゲルを上記化合物(D)の水溶液に浸漬することで製造することができる。さらに、本発明のヒドロゲル形成性組成物は、水溶性有機高分子(A)の水溶液並びにケイ酸塩(B)及び前記ケイ酸塩の分散剤(C)の水分散液の2液のうちいずれか一方または両方に上記化合物(D)を添加した後に、前記2液を混合することによってゲル化することも可能である。
 ヒドロゲル形成性組成物中の各成分を混合する方法としては、機械式又は手動による撹拌の他、超音波処理を用いることができるが、機械式撹拌が好ましい。機械式撹拌には、例えば、マグネチックスターラー、プロペラ式撹拌機、自転・公転式ミキサー、ディスパー、ホモジナイザー、振とう機、ボルテックスミキサー、ボールミル、ニーダー、ラインミキサー、超音波発振器等を使用することができる。その中でも、好ましくは自転・公転式ミキサーによる混合である。
 混合する際の温度は、水溶液又は水分散液の凝固点乃至沸点、好ましくは-5℃乃至100℃であり、より好ましくは0℃乃至50℃である。
 混合直後は強度が弱くゾル状であるが、静置することでゲル化する。静置時間は2時間乃至100時間が好ましい。静置温度は-5℃乃至100℃であり、好ましくは0℃乃至50℃である。また、混合直後のゲル化する前に型に流し込んだり、押出成型したりすることにより、任意形状のゲルを作製することができる。
 次に実施例を挙げて本発明の内容を具体的に説明するが、本発明はこれらに限定されるものではない。
[製造例1:9%ラポナイトXLG水分散液の製造]
 低重合ポリアクリル酸ナトリウム(ジュリマーAC-103:東亞合成株式会社製、40%水溶液、重量平均分子量6000)7.5部、尿素3部(純正化学株式会社製)、フェノキシエタノール(純正化学株式会社製)0.5部、水74部を混合し、均一な溶液になるまで25℃にて撹拌した。ラポナイトXLG(ロックウッド・アディティブズ社製)9部を少しずつ加え、均一に分散した後にクエン酸(純正化学株式会社製)の10%水溶液3部を加えた。混合物を激しく撹拌しながら80℃まで昇温し、80℃で30分撹拌を続けた。氷水浴下25℃まで冷却しながら撹拌し、クエン酸(純正化学株式会社製)の10%水溶液3部を加えた後、25℃で1時間激しく撹拌し目的物を得た。
[製造例2:1.5%ポリアクリル酸ナトリウム水溶液の製造]
 尿素3部(純正化学株式会社製)、フェノキシエタノール0.5部(純正化学株式会社製)、水95部を混合し、均一な溶液になるまで25℃にて撹拌した。激しく撹拌しながら高重合ポリアクリル酸ナトリウム(ビスコメートNP-800:昭和電工株式会社製、35%部分中和物)1.5部を少しずつ加えた。高重合ポリアクリル酸ナトリウムが完全に溶解するまで25℃で激しく撹拌を続け(約5時間)目的物を得た。
[製造例3:1%塩化マグネシウム添加1.5%ポリアクリル酸ナトリウム水溶液の製造]
 尿素3部(純正化学株式会社製)、フェノキシエタノール0.5部(純正化学株式会社製)、塩化マグネシウム1部(純正化学株式会社製)、水94部を混合し、均一な溶液になるまで25℃にて撹拌した。激しく撹拌しながら高重合ポリアクリル酸ナトリウム(ビスコメートNP-800:昭和電工株式会社製、35%部分中和物)1.5部を少しずつ加えた。高重合ポリアクリル酸ナトリウムが完全に溶解するまで25℃で激しく撹拌を続け(約5時間)目的物を得た。
[製造例4:ヒドロゲル1の製造]
 製造例1で製造した9%ラポナイトXLG水分散液33部に、製造例2で製造した1.5%ポリアクリル酸ナトリウム水溶液67部を加え、25℃で1分間激しく撹拌した。混合物を48時間25℃で静置し、目的物を得た。
[製造例5:シート状ヒドロゲル1の製造]
 製造例1で製造した9%ラポナイトXLG水分散液33部に、製造例2で製造した1.5%ポリアクリル酸ナトリウム水溶液67部を加え、25℃で1分間激しく撹拌した。混合物を2mm厚のシリコン片をスペーサーとした2枚のガラス板へ流し込み、24時間静置し、2mm厚のシート状ヒドロゲル1を得た。
[製造例6:ヒドロゲル2の製造]
 ラポナイトXLS(ロックウッド・アディティブズ社製)10部、水40部を混合し、均一な水分散液になるまでマグネチックスターラーで25℃にて撹拌した。もう一方で、ポリアクリル酸ナトリウム(和光純薬工業株式会社製:重合度22,000乃至70,000)1部、水49部を混合し、均一な水溶液になるまでマグネチックスターラーで25℃にて撹拌した。これらの2液を混合し、自転・公転式ミキサー(株式会社シンキー製ARE-310)にて25℃、2000回転で10分撹拌したのち24時間静置し、目的物を得た。
[実施例1:0.3%Mgヒドロゲルの製造]
 製造例1で製造した9%ラポナイトXLG水分散液33部、製造例2で製造した1.5%ポリアクリル酸ナトリウム水溶液37部、製造例3で製造した1%塩化マグネシウム添加1.5%ポリアクリル酸ナトリウム水溶液30部を混合し、25℃で1分間激しく撹拌した。混合物を48時間25℃で静置し、目的物を得た。
[実施例2:0.5%Mgヒドロゲルの製造]
 製造例1で製造した9%ラポナイトXLG水分散液33部、製造例2で製造した1.5%ポリアクリル酸ナトリウム水溶液17部、製造例3で製造した1%塩化マグネシウム添加1.5%ポリアクリル酸ナトリウム水溶液50部を混合し、25℃で1分間激しく撹拌した。混合物を48時間25℃で静置し、目的物を得た。
[実施例3:0.3%Alヒドロゲルの製造]
 製造例1で製造した9%ラポナイトXLG水分散液33部に、無水硫酸アルミニウム0.3部(関東化学株式会社製)を加え、均一になるまで(約30分)25℃で激しく撹拌した。製造例2で製造した1.5%ポリアクリル酸ナトリウム水溶液66.7部を加え、25℃で1分間激しく撹拌した。混合物を48時間25℃で静置し、目的物を得た。得られた0.3%Alヒドロゲルを図12に示す。
[実施例4:0.5%Alヒドロゲルの製造]
 製造例1で製造した9%ラポナイトXLG水分散液33部に、無水硫酸アルミニウム0.5部(関東化学株式会社製)を加え、均一になるまで(約30分)25℃で激しく撹拌した。製造例2で製造した1.5%ポリアクリル酸ナトリウム水溶液66.5部を加え、25℃で1分間激しく撹拌した。混合物を48時間25℃で静置し、目的物を得た。
[実施例5:1.0%Alヒドロゲルの製造]
 製造例1で製造した9%ラポナイトXLG水分散液33部に、無水硫酸アルミニウム1部(関東化学株式会社製)を加え、均一になるまで(約30分)25℃で激しく撹拌した。製造例2で製造した1.5%ポリアクリル酸ナトリウム水溶液66部を加え、25℃で1分間激しく撹拌した。混合物を48時間25℃で静置し、目的物を得た。
[実施例6:2.0%Alヒドロゲルの製造]
 製造例1で製造した9%ラポナイトXLG水分散液33部に、無水硫酸アルミニウム2部(関東化学株式会社製)を加え、均一になるまで(約30分)25℃で激しく撹拌した。製造例2で製造した1.5%ポリアクリル酸ナトリウム水溶液65部を加え、25℃で1分間激しく撹拌した。混合物を48時間25℃で静置し、目的物を得た。
[実施例7:5%Mg浸漬シート状ヒドロゲル1の製造]
 製造例5で製造したシート状ヒドロゲル1を塩化マグネシウム5wt%水溶液中に浸し、24時間25℃で静置した。
[実施例8:5%Ca浸漬シート状ヒドロゲル1の製造]
 製造例5で製造したシート状ヒドロゲル1を塩化カルシウム5wt%水溶液中に浸し、24時間25℃で静置した。
[実施例9:Mgヒドロゲルの突刺し強度試験]
 実施例1、実施例2及び製造例4の条件で直径28mm高さ16mmの円柱状のヒドロゲルを作製し、株式会社山電製クリープメーターRE2-33005Bにて突刺し強度測定を行った。測定では直径3mmの円柱状のシャフト(株式会社山電製プランジャー 形状円柱、番号No.3S、形式P-3S)をゲル上部から1mm/秒の速度で押し当て、破断までの歪率および応力を測定した。また、応力-ひずみ曲線の歪率の小さい領域の傾きから弾性率を求めた。測定結果を表1及び図1に示す。
Figure JPOXMLDOC01-appb-T000001





[実施例10:Mgヒドロゲルの荷重試験]
 実施例2及び製造例4の条件で直径28mm高さ16mmの円柱状のヒドロゲルを作製し、100gの分銅を乗せた。製造例4のヒドロゲルでは、形状が大きく変形した(図2)。実施例2の0.5%Mgヒドロゲルでは、形状の変形がほとんど見られなかった(図3)。
[実施例11:Alヒドロゲルの突刺し強度試験]
 実施例3乃至実施例6及び製造例4の条件で直径28mm高さ16mmの円柱状のヒドロゲルを作製し、株式会社山電製クリープメーターRE2-33005Bにて突刺し強度測定を行った。測定では直径3mmの円柱状のシャフト(株式会社山電製プランジャー 形状円柱、番号No.3S、形式P-3S)をゲル上部から1mm/秒の速度で押し当て、破断までの歪率および応力を測定した。また、応力-ひずみ曲線の歪率の小さい領域の傾きから弾性率を求めた。測定結果を表2及び図4に示す。
Figure JPOXMLDOC01-appb-T000002





[実施例12:シート状ヒドロゲル1の突刺し強度試験]
 実施例7、実施例8及び製造例5の製法で製造したシート状ヒドロゲルについて、突刺し強度測定を行った。測定法は株式会社山電製クリープメーターRE2-33005Bを使用し、直径23mmの円形穴の開いた2枚のプレートでシート状ヒドロゲルを挟み、直径3mmの円柱状のシャフト(株式会社山電製プランジャー 形状円柱、番号No.3S、形式P-3S)を円形穴上部から1mm/秒の速度で押し当て、破断までの応力および歪率を測定した。測定結果を表3及び図5に示す。
Figure JPOXMLDOC01-appb-T000003


[実施例13:Alヒドロゲルの水膨張試験]
 実施例4乃至実施例6及び製造例4の条件で直径28mm高さ16mmの円柱状のヒドロゲルを作製後、純水500mL中に浸漬し、3日間25℃で静置した。浸漬前後のヒドロゲルの重量を測定し膨張率(浸漬後重量/浸漬前重量)を算出した。結果を表4に示す。浸漬前後のヒドロゲルの写真を図6(製造例4:左から浸漬後、浸漬前)、図7(実施例4:左から浸漬後、浸漬前)、図8(実施例5:左から浸漬後、浸漬前)及び図9(実施例6:左から浸漬後、浸漬前)に示す。
Figure JPOXMLDOC01-appb-T000004





[実施例14乃至実施例17及び比較例1:浸漬ヒドロゲルの製造]
 製造例6で作製したヒドロゲル2を表5に示す水溶液に24時間浸漬し、浸漬ヒドロゲルを得た。
Figure JPOXMLDOC01-appb-T000005





[実施例18:浸漬ヒドロゲルの突刺し強度試験]
 実施例14乃至実施例17、比較例1及び製造例6の条件で直径28mm高さ16mmの円柱状のヒドロゲルを作製し、株式会社山電製クリープメーターRE2-33005Bにて突刺し強度測定を行った。測定では直径3mmの円柱状のシャフト(株式会社山電製プランジャー 形状円柱、番号No.3S、形式P-3S)をゲル上部から1mm/秒の速度で押し当て、破断までの歪率および応力を測定した。また、応力-ひずみ曲線の歪率の小さい領域の傾きから弾性率を求めた。測定結果を表6および図10に示す。
Figure JPOXMLDOC01-appb-T000006





[比較例2:ラポナイトXLG未添加]
 実施例3で使用した9%ラポナイトXLG水分散液を、水33部に代えて同様の操作を行った。その結果、図11に示す白色沈殿のガム状凝集物が得られ、図12に示す実施例3で得られたような均一なゲルは得られなかった。
 本発明のヒドロゲルは、製造が容易な上、組成成分の調整により、破断強度や弾性率などのヒドロゲルの強度を調整することが可能である。また、得られたゲルは透明性が高く伸縮性もあり、加工も容易である。その特性を生かして、種々の製品に応用することができる。
 例えば、創傷被覆材、ハップ剤、止血材等の外用薬基材、外科用シーラント材料、再生医療用足場材料、人工角膜、人工水晶体、人工硝子体、人工皮膚、人工関節、人工軟骨、豊胸用材料等のインプラント材料、並びにソフトコンタクトレンズ用材料等の医療材料、組織培養又は微生物培養等の培地材料、パック用シート等の化粧品素材、子供用・成人用オムツやサニタリーナプキン等のサニタリー用材料、芳香剤又は消臭剤用ゲル素材、菓子又はイヌ用ガム材料、クロマトグラフィー担体用材料、バイオリアクター担体用材料、分離機能膜材料、建材用不燃材料、耐火被覆材、調湿材、耐震緩衝材、土石流防止材、又は土嚢等の建築・土木材料、土壌保水剤、育苗用培地、又は農園芸用の水耕栽培用支持体等の緑化材料、子供用玩具又は模型等の玩具材料、文具用材料、スポーツシューズ、プロテクター等のスポーツ用品の衝撃吸収材料、靴底のクッション材、防弾チョッキ用緩衝材、自動車等の緩衝材、輸送用緩衝材、パッキング材料、緩衝・保護マット材料、電子機器内部の衝撃緩衝、光学機器、半導体関連部品等の精密部品の運搬台車用緩衝材、産業機器の防振・制振材料、モーター使用機器やコンプレッサー等の産業機器の静音化材料、タイヤ用や輪ゴム用のゴム代替材料、並びにプラスチック代替材料等の環境調和材料装置の摩擦部分のコーティング材、塗料添加物、廃泥のゲル化剤又は逸泥防止剤等の廃棄物処理、接着材、密封用シール材、1次電池、2次電池、キャパシタ用のゲル電解質材料、並びに色素増感型太陽電池用ゲル電解質材料又は燃料電池用材料等の電子材料、写真用フィルム用材料等を挙げることができる。

Claims (15)

  1.  自己支持性を有するヒドロゲルを形成することができるヒドロゲル形成性組成物であって、有機酸構造、有機酸塩構造又は有機酸アニオン構造を有する水溶性有機高分子(A)、ケイ酸塩(B)、前記ケイ酸塩の分散剤(C)、及び2価以上の正電荷を有する又は生ずる化合物(D)を含むことを特徴とする、ヒドロゲル形成性組成物。
  2.  前記化合物(D)が周期律表第3周期乃至第5周期かつ第2族乃至第14族の元素の塩、該元素の水酸化物、該元素の酸化物、多価アミン、及び該多価アミンの塩からなる群から選ばれる1種又は2種以上である、請求項1に記載のヒドロゲル形成性組成物。
  3.  前記元素が周期律表第2族又は第13族の元素である、請求項2に記載のヒドロゲル形成性組成物。
  4.  前記化合物(D)がマグネシウムの塩、マグネシウムの水酸化物、マグネシウムの酸化物、カルシウムの塩、カルシウムの水酸化物、カルシウムの酸化物、アルミニウムの塩、アルミニウムの水酸化物、アルミニウムの酸化物、ジアミン、及びジアミンの塩からなる群から選ばれる1種又は2種以上である、請求項2又は請求項3に記載のヒドロゲル形成性組成物。
  5.  前記化合物(D)が塩化マグネシウム、臭化マグネシウム、硫酸マグネシウム、硝酸マグネシウム、炭酸マグネシウム、酢酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、塩化カルシウム、臭化カルシウム、硫酸カルシウム、硝酸カルシウム、炭酸カルシウム、酢酸カルシウム、水酸化カルシウム、酸化カルシウム、乳酸カルシウム、リン酸カルシウム、二リン酸カルシウム、ヘキサメタリン酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、酸化アルミニウム、エチレンジアミン、エチレンジアミン二塩酸塩、エチレンジアミン硫酸塩、ビス(アミノエトキシ)エタン、ビス(アミノエトキシ)エタン二塩酸塩、及びビス(アミノエトキシ)エタン硫酸塩からなる群から選ばれる1種又は2種以上である、請求項4に記載のヒドロゲル形成性組成物。
  6.  前記水溶性有機高分子(A)がカルボン酸構造、カルボン酸塩構造又はカルボキシアニオン構造を有する水溶性有機高分子である、請求項1乃至請求項5のいずれか1項に記載のヒドロゲル形成性組成物。
  7.  前記水溶性有機高分子(A)が完全中和又は部分中和ポリアクリル酸塩である、請求項6に記載のヒドロゲル形成性組成物。
  8.  前記水溶性有機高分子(A)が重量平均分子量100万乃至1000万の完全中和又は部分中和ポリアクリル酸塩である、請求項7に記載のヒドロゲル形成性組成物。
  9.  前記ケイ酸塩(B)が水膨潤性ケイ酸塩粒子である、請求項1乃至請求項8のいずれか1項に記載のヒドロゲル形成性組成物。
  10.  前記ケイ酸塩(B)がスメクタイト、ベントナイト、バーミキュライト、及び雲母からなる群より選ばれる水膨潤性ケイ酸塩粒子である、請求項9に記載のヒドロゲル形成性組成物。
  11.  前記分散剤(C)が水膨潤性ケイ酸塩粒子の分散剤である、請求項1乃至請求項10のいずれか1項に記載のヒドロゲル形成性組成物。
  12.  前記分散剤(C)が、オルトリン酸ナトリウム、ピロリン酸ナトリウム、トリポリリン酸ナトリウム、テトラリン酸ナトリウム、ヘキサメタリン酸ナトリウム、ポリリン酸ナトリウム、ポリ(メタ)アクリル酸ナトリウム、ポリ(メタ)アクリル酸アンモニウム、アクリル酸ナトリウム/マレイン酸ナトリウム共重合体、アクリル酸アンモニウム/マレイン酸アンモニウム共重合体、水酸化ナトリウム、ヒドロキシルアミン、炭酸ナトリウム、ケイ酸ナトリウム、ポリエチレングリコール、ポリプロピレングリコール、フミン酸ナトリウム、及びリグニンスルホン酸ナトリウムからなる群から選ばれる1種又は2種以上である、請求項11に記載のヒドロゲル形成性組成物。
  13.  請求項1乃至請求項12のいずれか1項に記載のヒドロゲル形成性組成物から作られる自己支持性を有するヒドロゲル。
  14.  各々請求項1乃至請求項12のいずれか1項に特定されるところの、前記水溶性有機高分子(A)、前記ケイ酸塩(B)、前記分散剤(C)、及び前記化合物(D)、並びに水又は含水溶媒を混合してゲル化させることを特徴とする自己支持性を有するヒドロゲルの製造方法。
  15.  各々請求項1乃至請求項12のいずれか1項に特定されるところの、前記水溶性有機高分子(A)、前記ケイ酸塩(B)、前記分散剤(C)、及び水又は含水溶媒を混合してゲル化させた後、得られたゲルを請求項1乃至請求項12のいずれか1項に特定されるところの前記化合物(D)の水又は含水溶媒の溶液に浸漬させることを特徴とする自己支持性を有するヒドロゲルの製造方法。
PCT/JP2014/079721 2013-11-11 2014-11-10 ヒドロゲル形成性組成物及びそれより作られるヒドロゲル WO2015068837A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480060925.3A CN105705584B (zh) 2013-11-11 2014-11-10 水凝胶形成性组合物及由其制作的水凝胶
US15/035,891 US10655000B2 (en) 2013-11-11 2014-11-10 Hydrogel forming composition and hydrogel formed thereof
JP2015546714A JP6596791B2 (ja) 2013-11-11 2014-11-10 ヒドロゲル形成性組成物及びそれより作られるヒドロゲル
EP14859792.5A EP3070128B1 (en) 2013-11-11 2014-11-10 Hydrogel-forming composition and hydrogel made therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-233312 2013-11-11
JP2013233312 2013-11-11

Publications (1)

Publication Number Publication Date
WO2015068837A1 true WO2015068837A1 (ja) 2015-05-14

Family

ID=53041610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079721 WO2015068837A1 (ja) 2013-11-11 2014-11-10 ヒドロゲル形成性組成物及びそれより作られるヒドロゲル

Country Status (6)

Country Link
US (1) US10655000B2 (ja)
EP (1) EP3070128B1 (ja)
JP (1) JP6596791B2 (ja)
CN (1) CN105705584B (ja)
TW (1) TWI653278B (ja)
WO (1) WO2015068837A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063836A1 (ja) * 2014-10-23 2016-04-28 日産化学工業株式会社 液体を吸収又は放出するヒドロゲル成形体
CN105561933A (zh) * 2015-12-17 2016-05-11 梅庆波 一种改性磁性水凝胶重金属离子吸附剂的制备方法
WO2016158349A1 (ja) * 2015-03-27 2016-10-06 日産化学工業株式会社 ヒドロゲル形成性組成物及びそれより作られる高強度ヒドロゲル
CN106317321A (zh) * 2015-07-06 2017-01-11 中国石油化工股份有限公司 用于制备井下交联复合凝胶的组合物以及由其制备的交联复合凝胶
WO2018117165A1 (ja) * 2016-12-20 2018-06-28 国立大学法人北海道大学 体積相転移を示さないlcstを有する温度応答性ゲル及びその製造方法
WO2018164003A1 (ja) * 2017-03-09 2018-09-13 日産化学株式会社 温度応答性ヒドロゲル及びその製造方法
WO2018168933A1 (ja) * 2017-03-17 2018-09-20 日産化学株式会社 吸水性ヒドロゲルおよびその製造方法
WO2019009025A1 (ja) * 2017-07-03 2019-01-10 Dic株式会社 有機無機複合ヒドロゲルの製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10059812B2 (en) 2014-02-24 2018-08-28 Nissan Chemical Industries, Ltd. Method for producing gel
CN106836805B (zh) * 2016-12-27 2019-01-25 四川省三台县波特兰商品砼有限公司 一种砼现浇板裂缝快速自愈处理方法
JP6684742B2 (ja) 2017-03-17 2020-04-22 日産化学株式会社 エンジンオイル用吸放水体、該吸放水体を備えた自動車部品およびエンジンオイル用吸放水体の製造方法
JP6439019B1 (ja) * 2017-08-24 2018-12-19 積水化成品工業株式会社 ハイドロゲル、その用途及びその製造方法
EP3705533A4 (en) * 2017-11-06 2020-11-04 National University Corporation Gunma University SELF-SUPPORTING HYDROGEL AND PROCESS FOR ITS MANUFACTURING
NL2020311B1 (en) * 2018-01-24 2019-07-30 Rubber Nano Products Pty Limited Polymer based vulcanization compositions and method for preparing the compositions
US20220161233A1 (en) * 2019-04-05 2022-05-26 Qidni Labs Inc. Sorbent for use in renal therapy
WO2023177914A1 (en) * 2022-03-18 2023-09-21 Henkel Ag & Co. Kgaa Peroxide hydrogel compositions and their use for fiber bleaching

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226808A (ja) 1985-03-11 1985-11-12 Watanabe Yakuhin Kogyo Kk シツプ薬
JP2002053629A (ja) 2000-05-29 2002-02-19 Kawamura Inst Of Chem Res 有機・無機複合ヒドロゲル及びその製造方法
JP2005536598A (ja) * 2002-08-23 2005-12-02 ビーエーエスエフ アクチェンゲゼルシャフト 高吸収性ポリマーおよびその製造方法
JP2009096779A (ja) * 2007-10-19 2009-05-07 Dai Ichi Kogyo Seiyaku Co Ltd 噴霧可能な水性ゲル状組成物
JP2009270048A (ja) 2008-05-09 2009-11-19 Kawamura Inst Of Chem Res カルボン酸塩構造又はカルボキシアニオン構造の基を有する有機無機複合ヒドロゲルの製造方法
WO2011001657A1 (ja) 2009-07-01 2011-01-06 独立行政法人科学技術振興機構 ポリイオンデンドリマー、及びそれよりなるハイドロゲル
WO2012072466A1 (de) * 2010-11-29 2012-06-07 Construction Research & Technology Gmbh Pulverförmiger beschleuniger

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002000636A (ja) * 2000-06-19 2002-01-08 Lion Corp 含水ゲル組成物を有する粘着性アイマスク
JP4693340B2 (ja) * 2002-06-19 2011-06-01 昭和電工株式会社 含水ゲル体、該含水ゲル体の製造方法およびその用途
WO2004000918A1 (en) * 2002-06-19 2003-12-31 Showa Denko K. K. Hydrous gel and production process and use of the hydrous gel
WO2006112533A1 (en) * 2005-04-18 2006-10-26 Showa Denko K.K. Water-containing gel form and production method thereof
JP5147207B2 (ja) * 2006-09-22 2013-02-20 帝國製薬株式会社 ハイドロゲル創傷被覆材
JP2009108007A (ja) * 2007-10-31 2009-05-21 Fujifilm Corp ゲルシートおよびそれを用いたシート状化粧料
JP5503888B2 (ja) * 2009-03-25 2014-05-28 積水化成品工業株式会社 化粧品パック用ゲルシート
EP2607404A1 (en) * 2011-12-21 2013-06-26 Université de Liège Composition and preparation of hydrogel nanocomposites with improved mechanical properties and use thereof.
TWI586736B (zh) * 2012-09-18 2017-06-11 日產化學工業股份有限公司 水凝膠形成性組成物及藉此所製作之水凝膠
US8962742B2 (en) * 2012-09-18 2015-02-24 National University Corporation Gunma University Hydrogel-forming composition and hydrogel produced from the same
JP6265497B2 (ja) * 2012-09-18 2018-01-24 日産化学工業株式会社 ヒドロゲル形成性組成物及びそれより作られるヒドロゲル
US8957145B2 (en) * 2012-09-18 2015-02-17 National University Corporation Gunma University Hydrogel-forming composition and hydrogel produced from the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226808A (ja) 1985-03-11 1985-11-12 Watanabe Yakuhin Kogyo Kk シツプ薬
JP2002053629A (ja) 2000-05-29 2002-02-19 Kawamura Inst Of Chem Res 有機・無機複合ヒドロゲル及びその製造方法
JP2005536598A (ja) * 2002-08-23 2005-12-02 ビーエーエスエフ アクチェンゲゼルシャフト 高吸収性ポリマーおよびその製造方法
JP2009096779A (ja) * 2007-10-19 2009-05-07 Dai Ichi Kogyo Seiyaku Co Ltd 噴霧可能な水性ゲル状組成物
JP2009270048A (ja) 2008-05-09 2009-11-19 Kawamura Inst Of Chem Res カルボン酸塩構造又はカルボキシアニオン構造の基を有する有機無機複合ヒドロゲルの製造方法
WO2011001657A1 (ja) 2009-07-01 2011-01-06 独立行政法人科学技術振興機構 ポリイオンデンドリマー、及びそれよりなるハイドロゲル
WO2012072466A1 (de) * 2010-11-29 2012-06-07 Construction Research & Technology Gmbh Pulverförmiger beschleuniger

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PREPRINTS OF THE 61 ST ANNUAL MEETING OF THE SOCIETY OF POLYMER SCIENCE OF JAPAN, vol. 61, no. 1, 2012, pages 683
See also references of EP3070128A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016063836A1 (ja) * 2014-10-23 2017-08-03 日産化学工業株式会社 液体を吸収又は放出するヒドロゲル成形体
WO2016063836A1 (ja) * 2014-10-23 2016-04-28 日産化学工業株式会社 液体を吸収又は放出するヒドロゲル成形体
US10414877B2 (en) 2015-03-27 2019-09-17 Nissan Chemical Industries, Ltd. Hydrogel-formable composition and high strength hydrogel formed from the same
WO2016158349A1 (ja) * 2015-03-27 2016-10-06 日産化学工業株式会社 ヒドロゲル形成性組成物及びそれより作られる高強度ヒドロゲル
JPWO2016158349A1 (ja) * 2015-03-27 2018-01-18 日産化学工業株式会社 ヒドロゲル形成性組成物及びそれより作られる高強度ヒドロゲル
CN106317321A (zh) * 2015-07-06 2017-01-11 中国石油化工股份有限公司 用于制备井下交联复合凝胶的组合物以及由其制备的交联复合凝胶
CN105561933A (zh) * 2015-12-17 2016-05-11 梅庆波 一种改性磁性水凝胶重金属离子吸附剂的制备方法
JPWO2018117165A1 (ja) * 2016-12-20 2019-10-31 国立大学法人北海道大学 体積相転移を示さないlcstを有する温度応答性ゲル及びその製造方法
WO2018117165A1 (ja) * 2016-12-20 2018-06-28 国立大学法人北海道大学 体積相転移を示さないlcstを有する温度応答性ゲル及びその製造方法
JP6999942B2 (ja) 2016-12-20 2022-02-10 国立大学法人北海道大学 体積相転移を示さないlcstを有する温度応答性ゲル及びその製造方法
US11248104B2 (en) 2016-12-20 2022-02-15 National University Corporation Hokkaido University Temperature-responsive gel having LCST with no volume phase transition, and production method therefor
WO2018164003A1 (ja) * 2017-03-09 2018-09-13 日産化学株式会社 温度応答性ヒドロゲル及びその製造方法
WO2018168933A1 (ja) * 2017-03-17 2018-09-20 日産化学株式会社 吸水性ヒドロゲルおよびその製造方法
JPWO2018168933A1 (ja) * 2017-03-17 2020-01-16 日産化学株式会社 吸水性ヒドロゲルおよびその製造方法
JP7157384B2 (ja) 2017-03-17 2022-10-20 日産化学株式会社 吸水性ヒドロゲルおよびその製造方法
WO2019009025A1 (ja) * 2017-07-03 2019-01-10 Dic株式会社 有機無機複合ヒドロゲルの製造方法
JPWO2019009025A1 (ja) * 2017-07-03 2019-07-04 Dic株式会社 有機無機複合ヒドロゲルの製造方法

Also Published As

Publication number Publication date
CN105705584A (zh) 2016-06-22
US10655000B2 (en) 2020-05-19
TW201533130A (zh) 2015-09-01
US20160272806A1 (en) 2016-09-22
JPWO2015068837A1 (ja) 2017-03-09
CN105705584B (zh) 2020-05-12
TWI653278B (zh) 2019-03-11
JP6596791B2 (ja) 2019-10-30
EP3070128A4 (en) 2018-01-24
EP3070128B1 (en) 2019-05-08
EP3070128A1 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
JP6596791B2 (ja) ヒドロゲル形成性組成物及びそれより作られるヒドロゲル
JP6265498B2 (ja) ヒドロゲル形成性組成物及びそれより作られるヒドロゲル
JP6265497B2 (ja) ヒドロゲル形成性組成物及びそれより作られるヒドロゲル
WO2016158349A1 (ja) ヒドロゲル形成性組成物及びそれより作られる高強度ヒドロゲル
JP6660022B2 (ja) ゲルの製造方法
JP7157384B2 (ja) 吸水性ヒドロゲルおよびその製造方法
JPWO2014046124A1 (ja) ヒドロゲルの接着方法
WO2018221418A1 (ja) ヒドロゲル形成性組成物及びそれより作られる高透明性ヒドロゲル
JP6276927B2 (ja) ハイドロゲル形成性組成物及びそれより作られるハイドロゲル
JP2021080385A (ja) ヒドロゲル形成組成物
JP2015199810A (ja) ヒドロゲルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859792

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546714

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15035891

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014859792

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014859792

Country of ref document: EP