WO2018164003A1 - 温度応答性ヒドロゲル及びその製造方法 - Google Patents

温度応答性ヒドロゲル及びその製造方法 Download PDF

Info

Publication number
WO2018164003A1
WO2018164003A1 PCT/JP2018/008088 JP2018008088W WO2018164003A1 WO 2018164003 A1 WO2018164003 A1 WO 2018164003A1 JP 2018008088 W JP2018008088 W JP 2018008088W WO 2018164003 A1 WO2018164003 A1 WO 2018164003A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
viscosity
mass
responsive hydrogel
silicate
Prior art date
Application number
PCT/JP2018/008088
Other languages
English (en)
French (fr)
Inventor
佳宏 工藤
原口 和敏
Original Assignee
日産化学株式会社
学校法人日本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社, 学校法人日本大学 filed Critical 日産化学株式会社
Priority to US16/479,377 priority Critical patent/US20190381469A1/en
Priority to EP18764540.3A priority patent/EP3581620A4/en
Priority to JP2019504546A priority patent/JPWO2018164003A1/ja
Publication of WO2018164003A1 publication Critical patent/WO2018164003A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0065Preparation of gels containing an organic phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0056Preparation of gels containing inorganic material and water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids

Definitions

  • the present invention relates to a temperature-responsive hydrogel and a method for producing the same, and more particularly to a temperature-responsive hydrogel comprising polyalkylene glycol and silicate, and a method for producing the same.
  • the temperature-responsive hydrogel is one of bio-compatible stimulus-responsive materials, and application development in the medical field such as drug delivery system (DDS), regenerative medicine, and microactuator is being promoted.
  • DDS drug delivery system
  • the temperature dependence (15 to 40 ° C.) of the viscoelasticity of an aqueous dispersion of polyethylene glycol (PEG) and a layered clay mineral which is water-swellable silicate particles has been reported (Non-patent Document 1). According to the result, the viscosity of each aqueous dispersion in which the concentration of PEG having an average molecular weight of 10,000 was fixed at 2% by mass and the concentration of clay mineral (Laponite RD) was changed to 1 to 4% by mass resulted in the Laponite RD concentration.
  • the present invention has been made in view of the above circumstances, and is a temperature-responsive hydrogel that exhibits high viscosity at high temperature and low viscosity at low temperature, that is, the viscosity at high temperature is higher than the viscosity at low temperature.
  • the purpose is to provide.
  • the present inventors have determined that a specific component composition is obtained by mixing an aqueous solution (aqueous dispersion) containing a polyalkylene glycol having a weight average molecular weight of 20,000 to 10 million and a silicate.
  • a temperature-responsive hydrogel having a high viscosity ratio at high temperature / viscosity at low temperature was obtained, and the present invention was completed.
  • the first aspect of the present invention is a temperature-responsive hydrogel containing a polyalkylene glycol (A) and a silicate (B), wherein the polyalkylene glycol (A) has a mass concentration in the hydrogel.
  • a temperature-responsive hydrogel of 0.01-1.5% by weight As a second aspect, the temperature-responsive hydrogel according to the first aspect, further comprising a silicate dispersant (C), As a third aspect, the temperature-responsive hydrogel according to the first aspect or the second aspect, wherein the polyalkylene glycol (A) is polyethylene glycol or polypropylene glycol having a weight average molecular weight of 20,000 to 10 million.
  • the temperature-responsive hydrogel according to any one of the first aspect to the third aspect wherein the mass concentration of the silicate (B) in the hydrogel is 0.5 to 10% by mass
  • the temperature-responsive hydrogel according to any one of the first to fourth aspects wherein the silicate (B) is water-swellable silicate particles
  • the temperature-responsive hydrogel according to the fifth aspect wherein the water-swellable silicate particles are water-swellable silicate particles selected from the group consisting of smectite, bentonite, vermiculite, and mica.
  • the temperature-responsive hydrogel according to any one of the first aspect to the sixth aspect As an eighth aspect, the dispersant (C) is at least one dispersant selected from the group consisting of sodium pyrophosphate, citric acid and polyphosphoric acid, according to any one of the second to seventh aspects.
  • Temperature-responsive hydrogel As a ninth aspect, the temperature responsiveness according to any one of the first to eighth aspects, wherein the viscosity in the temperature range of 50 to 100 ° C.
  • the viscosity is 600 to 10,000 mPa ⁇ s at a temperature of 50 to 100 ° C., and the viscosity is 100 to 580 mPa ⁇ s at a temperature of 0 to 25 ° C.
  • the viscosity is 3000 to 10,000 mPa ⁇ s at a temperature of 50 to 100 ° C., and the viscosity is 500 to 2980 mPa ⁇ s at a temperature of 0 to 25 ° C.
  • a twelfth aspect is a method for producing a temperature-responsive hydrogel, wherein an aqueous dispersion of a polyalkylene glycol (A) having a mass concentration of 0.02 to 3.0% by mass and a silicate (B)
  • the production method comprising a step of mixing with a liquid
  • one or both of the aqueous solution and the aqueous dispersion contain one or more water-soluble organic solvents (D).
  • the method for producing a temperature-responsive hydrogel according to the aspect, and as a fourteenth aspect the viscosity change with respect to the temperature change in the temperature-responsive hydrogel has at least one repeatability with respect to the temperature change.
  • aqueous solution aqueous dispersion
  • a specific component composition range a specific component composition range
  • Temperature-responsive hydrogel with high viscosity, low viscosity at low temperature that is, viscosity increases with increasing temperature, viscosity decreases with decreasing temperature, and ratio of high temperature viscosity / low temperature viscosity is large Is obtained.
  • the present invention relates to a temperature-responsive hydrogel gel comprising specific polyalkylene glycol (A) and silicate (B), which are components necessary for gelation, and water.
  • the temperature-responsive hydrogel of the present invention is a range of a silicate dispersant or the like, if necessary, within a range that does not impair the intended effect of the present invention or exhibits a higher effect.
  • C) or an organic solvent (D) compatible with water may be optionally blended.
  • Component (A) of the present invention is a polyalkylene glycol.
  • the polyalkylene glycol include polyethylene glycol or polypropylene glycol.
  • the weight average molecular weight of the polyalkylene glycol (A) can be measured in terms of polystyrene by gel permeation chromatography (GPC), for example, 10,000 to 10,000,000, for example, 20,000 to 10,000,000, preferably 50,000 to 5,000,000. More preferably, it is 100,000 to 2 million, and most preferably 300,000 to 1 million.
  • Component (B) of the present invention is a silicate, preferably water swellable silicate particles.
  • the silicate (B) include smectite, bentonite, vermiculite, and mica, and those that form a colloid using water or a water-containing solvent as a dispersion medium are preferable.
  • the smectite is a group name such as montmorillonite, beidellite, nontronite, saponite, hectorite, and stevensite.
  • Examples of the shape of the primary particles of the silicate particles include a disc shape, a plate shape, a spherical shape, a granular shape, a cubic shape, a needle shape, a rod shape, an amorphous shape, and the like, and a disc shape or a plate shape having a diameter of 5 nm to 1000 nm. preferable.
  • Preferable specific examples of silicates include layered silicates. Examples that can be easily obtained as commercial products include Laponite XLG (synthetic hectorite) and XLS (synthetic hectorite) manufactured by BYK Additives.
  • the component (C) of the present invention is for uniformly dispersing each component of the gel or increasing the viscosity change due to temperature, and examples thereof include sodium pyrophosphate, citric acid, and polyphosphoric acid. Among these, sodium pyrophosphate is preferable.
  • the component (D) of the present invention is for uniformly dispersing each component of the gel and maintaining the flexibility after drying, and is methanol, ethanol, propanol, isopropyl alcohol, acetone, glycerin, diester.
  • Examples include glycerin, ethylene glycol, and 1,3-butylene glycol. Of these, glycerin, diglycerin, ethylene glycol and 1,3-butylene glycol are preferred.
  • the concentration of each component contained in the temperature-responsive hydrogel of the present invention can be appropriately adjusted within a range not impairing the effects of the present invention.
  • the polyalkylene glycol (A) is 0 based on the total mass of the temperature-responsive hydrogel. 0.01 to 1.5% by mass concentration, preferably 0.05 to 0.5% by mass concentration, more preferably 0.1 to 0.4% by mass concentration, and silicate (B) 0.5 to 10% by mass.
  • concentration of polyalkylene glycol (A) is lower than 0.01% by mass, a gel may not be obtained.
  • concentration is higher than 1.5% by mass, high viscosity at high temperature and low at low temperature A temperature-responsive hydrogel showing viscosity may not be obtained.
  • concentration of the silicate (B) in the above range, a uniform temperature-responsive hydrogel showing a high viscosity at a high temperature and a low viscosity at a low temperature can be easily obtained without causing precipitation or the like.
  • the temperature-responsive hydrogel of the present invention has a high viscosity at a high temperature and a low viscosity at a low temperature, that is, the viscosity increases as the temperature increases (the viscosity decreases as the temperature decreases), and the high temperature A temperature-responsive hydrogel having a large ratio of the viscosity at a low temperature and the viscosity at a low temperature is obtained.
  • the temperature is the Celsius temperature (° C.) under the atmosphere.
  • the method for measuring the viscosity is not particularly limited, but is a viscosity measured by, for example, a rotary type or tuning fork vibration type viscometer.
  • high temperature refers to a relatively higher temperature of the two temperatures
  • low temperature refers to a lower temperature of the two temperatures.
  • the temperature difference between the high temperature and the low temperature is, for example, 10 ° C. or higher, 20 ° C. or higher, 25 ° C. or higher, 30 ° C. or higher, 40 ° C. or higher, 50 ° C. or higher, within the temperature range in which the temperature-responsive hydrogel exhibits gel properties. It is 70 degreeC or more and 80 degreeC or more.
  • These temperatures are not limited to a specific temperature value, but are set to, for example, a temperature higher than room temperature (for example, 25 ° C.) and a temperature lower than room temperature.
  • high viscosity refers to a relatively high viscosity among the two viscosities measured at the set high temperature and low temperature (temperature difference), while low viscosity is 2 measured at the above two temperatures. Refers to the lower of the two viscosities.
  • the ratio of the viscosity at a high temperature to the viscosity at a low temperature is, for example, as long as the ratio of the viscosity at the set high temperature to the viscosity at a low temperature is more than 1 time. For example, they are 1.2 times or more, 1.5 times or more, 2 times or more, 3 times or more, 4 times or more, 5 times or more, 10 times or more.
  • the ratio of the viscosity at high temperature to the viscosity at low temperature is twice or more.
  • These viscosities are not limited to specific viscosity values, but usually, as a combination of high viscosity and low viscosity, 300 to 2000 mPa ⁇ s and 100 to 280 mPa ⁇ s, 600 to 10000 mPa ⁇ s and 100 to 580 mPa S, 600 to 5000 mPa ⁇ s, 200 to 580 mPa ⁇ s, 600 to 5000 mPa ⁇ s and 100 to 580 mPa ⁇ s, 1000 to 7000 mPa ⁇ s and 300 to 980 mPa ⁇ s, 1000 to 2500 mPa ⁇ s and 100 to 500 mPa ⁇ s 1000-5000 mPa ⁇ s, 100-500 mPa ⁇ s, 2000-10000 mPa ⁇ s, 500-1980
  • a temperature-responsive hydrogel is preferable in which the temperature responsiveness is such that the viscosity in the range of 50 to 80 ° C. is twice or more the viscosity in the range of 0 to 25 ° C. .
  • the temperature range in which the temperature-responsive hydrogel exhibits gel properties such as ⁇ 20 ° C. to 120 ° C., ⁇ 5 ° C. to 105 ° C., 0 ° C. to 100 ° C., 0 ° C. to 90 ° C.
  • the temperature of the responsive hydrogel is increased by 10 ° C., 20 ° C., 25 ° C., 30 ° C., 40 ° C., 50 ° C., 70 ° C.
  • a temperature-responsive hydrogel exhibits a high viscosity (600 to 10,000 mPa ⁇ s) at a high temperature (50 to 100 ° C.) and a low viscosity (100 to 580 mPa ⁇ s) at a low temperature (0 to 25 ° C.). s).
  • a temperature-responsive hydrogel exhibits a high viscosity (600 to 5000 mPa ⁇ s) at a high temperature (50 to 100 ° C.) and a low viscosity (100 to 580 mPa ⁇ s) at a low temperature (0 to 25 ° C.). s).
  • a temperature-responsive hydrogel exhibits a high viscosity (1000 to 2500 mPa ⁇ s) at a high temperature (50 to 100 ° C.) and a low viscosity (100 to 500 mPa ⁇ s) at a low temperature (0 to 25 ° C.). s).
  • a temperature-responsive hydrogel exhibits a high viscosity (1000 to 5000 mPa ⁇ s) at a high temperature (50 to 100 ° C.) and a low viscosity (100 to 500 mPa ⁇ s) at a low temperature (0 to 25 ° C.). s).
  • a temperature-responsive hydrogel exhibits a high viscosity (3000 to 10,000 mPa ⁇ s) at a high temperature (50 to 100 ° C.) and a low viscosity (500 to 2980 mPa ⁇ s) at a low temperature (0 to 25 ° C.). s).
  • a temperature-responsive hydrogel exhibits a high viscosity (3000 to 10,000 mPa ⁇ s) at a high temperature (50 to 100 ° C.) and a low viscosity (1000 to 2980 mPa ⁇ s) at a low temperature (0 to 25 ° C.). s).
  • high viscosity at high temperature means that the viscosity is within the range of high viscosity at any temperature in the high temperature range
  • low viscosity at low temperature means that the viscosity is low at any temperature in the low temperature range. It refers to showing a viscosity within the range of viscosity.
  • Temperature responsive hydrogels that exhibit viscosities within the high viscosity range at all temperatures in the high temperature range and exhibit viscosities within the low viscosity range at all temperatures in the low temperature range are preferred.
  • the temperature-responsive hydrogel of the present invention is characterized in that the response (viscosity change) has a reversible property (repeatability, reproducibility) depending on the temperature. Even if the temperature-responsive hydrogel is repeatedly changed in temperature from low temperature ⁇ high temperature ⁇ low temperature ⁇ high temperature, the temperature-responsive hydrogel of the present invention increases in viscosity as the temperature rises, and the temperature is increased. It is possible to maintain the temperature responsiveness such that the viscosity decreases according to the decrease, or the viscosity decreases according to the temperature decrease, and the viscosity increases according to the decreased temperature increase.
  • the temperature-responsive hydrogel of the present invention increases the viscosity more than twice when the temperature-responsive hydrogel is raised from a low temperature to a high temperature within a temperature range in which the temperature-responsive hydrogel exhibits gel properties.
  • the temperature When the temperature is lowered to the original temperature, it preferably has a temperature responsiveness that exhibits substantially the same viscosity at the same temperature as the temperature before the temperature change.
  • the same viscosity at the same temperature means that the viscosity ratio of the temperature-responsive hydrogel after the temperature change and the viscosity of the temperature-responsive hydrogel before the temperature change is, for example, 0.5 to 1.5, for example, about 0.1. 8 to 1.2, for example 0.9 to 1.1.
  • the temperature-responsive hydrogel of the present invention exhibits substantially the same viscosity at the same temperature even when the temperature is repeatedly changed as 4 ° C. ⁇ 25 ° C. ⁇ 70 ° C. ⁇ 4 ° C.
  • This repeatability has at least once, for example, twice, for example, three times, for example, four times, for example, five times, for example six times, for example ten times
  • 50 times eg 100 times, eg 101 times or more.
  • the method for preparing the temperature-responsive hydrogel of the present invention is not particularly limited as long as it is a method of mixing each component of polyalkylene glycol (A), silicate (B), and water.
  • polyalkylene glycol examples thereof include a method in which an aqueous solution of A) and an aqueous dispersion of silicate (B) are prepared in advance and the two liquids are mixed.
  • the dispersant (C) and / or the water-soluble organic solvent (D) may be added at each stage, for example, before, during, or after mixing the aqueous solution and the aqueous dispersion.
  • aqueous solution of polyalkylene glycol (A) or the aqueous dispersion of silicate (B) either or both of the aqueous solution and the aqueous dispersion are dispersed in the dispersant (C) and / or water-soluble.
  • the organic solvent (D) it is easy to obtain a temperature-responsive gel in which each component is uniformly dispersed.
  • each component in order to increase the fluidity at the time of molding of the temperature-responsive hydrogel, it is preferable to prepare such that each component is contained at a low content in the mixed solution obtained by mixing the aqueous solution and the aqueous dispersion.
  • ultrasonic treatment can be used in addition to mechanical or manual stirring, but mechanical stirring is preferable.
  • mechanical stirring for example, a magnetic stirrer, blade-type stirrer, rotation / revolution mixer, disper, homogenizer, shaker, vortex mixer, ball mill, kneader, line mixer, ultrasonic oscillator, etc. can be used. it can.
  • the temperature at which the preparation liquid (aqueous solution and aqueous dispersion) is mixed is the freezing point or boiling point of the aqueous solution or aqueous dispersion, preferably ⁇ 5 ° C. to 100 ° C., more preferably 0 ° C. to 70 ° C.
  • the aqueous solution of the polyalkylene glycol (A) and the aqueous dispersion of the silicate (B) are mixed and poured into a container such as a petri dish, bat, tray, etc., and can be molded into an arbitrary shape such as a sheet. It can also be thinned by coating or spin coating.
  • the temperature during the gelation is ⁇ 5 ° C. to 200 ° C., preferably 0 ° C. to 150 ° C., more preferably 10 ° C. to 90 ° C.
  • Example 1 A transparent aqueous dispersion containing 4.0% by mass of a water-swelling layered clay mineral (synthetic hectorite: Laponite XLG manufactured by Wilber Ellis Co., Ltd.) as a silicate was prepared, while polyethylene glycol 500,000 was used as a polyalkylene glycol. A PEG aqueous solution containing 0.2% by mass of (PEG) (molecular weight of about 500,000 manufactured by Wako Pure Chemical Industries) was prepared. Next, while stirring the Laponite XLG aqueous dispersion, an equal amount of each PEG aqueous solution was added dropwise thereto, and after completion of the addition, the mixture was further stirred for 1 hour. The concentration of Laponite XLG was 2.0% by mass, and a Laponite XLG / PEG aqueous dispersion having a PEG concentration of 0.1% by mass was obtained.
  • PEG polyethylene glycol 500,000
  • Example 2 A Laponite XLG / PEG aqueous dispersion was prepared in the same procedure as in Example 1 except that a PEG aqueous solution containing 0.4% by mass was prepared and used as the PEG aqueous solution.
  • the concentration of Laponite XLG was 2.0 mass.
  • % Laponite XLG / PEG aqueous dispersion having a PEG concentration of 0.2% by mass was obtained.
  • Example 3 Except for preparing and using a PEG aqueous solution containing 0.8% by mass of polyethylene glycol PEG as an PEG aqueous solution, a Laponite XLG / PEG aqueous dispersion was prepared in the same procedure as in Example 1, and the concentration of Laponite XLG was Laponite XLG / PEG aqueous dispersion having 2.0% by mass and PEG concentration of 0.4% by mass was obtained.
  • Example 1 A laponite XLG / PEG aqueous dispersion was prepared in the same procedure as in Example 1 except that water containing no polyethylene glycol PEG was used as the PEG aqueous solution, and the concentration of laponite XLG was 2.0% by mass. A Laponite XLG / PEG aqueous dispersion having a PEG concentration of 0% by mass was obtained.
  • a Laponite XLG / PEG aqueous dispersion was prepared in the same procedure as in Example 1 except that a PEG aqueous solution containing 2.0% by mass of polyethylene glycol PEG was prepared and used as the PEG aqueous solution.
  • the concentration of Laponite XLG was Laponite XLG / PEG aqueous dispersion having 2.0% by mass and PEG concentration of 1.0% by mass was obtained.
  • Example 2 ⁇ Change in viscosity with temperature> Prepared in Example 2 by repeatedly changing the measurement temperature in the order of 4 ° C. ⁇ 25 ° C. ⁇ 70 ° C. ⁇ 4 ° C. using a tuning fork vibrating viscometer (SV-100) manufactured by A & D Co., Ltd. The viscosity of the Laponite XLG / PEG aqueous dispersion was measured. For the viscosity, an average value for 5 minutes from the start of measurement was used, and the change in measurement temperature was repeated 6 times. Table 2 shows the average value of measured viscosities at each temperature repeated six times. In 6 repetitions, the viscosity was higher at higher temperatures and lower at lower temperatures. As shown in Table 2, a temperature response was observed that the ratio of the viscosity at 70 ° C. to the viscosity at 4 ° C. was about 6 times.
  • SV-100 tuning fork vibrating viscometer
  • Example 4 A laponite XLG / PEG aqueous dispersion was prepared in the same procedure as in Example 1 except that a transparent aqueous dispersion containing 6.0% by mass of laponite XLG was used as the aqueous dispersion, and the concentration of laponite XLG was determined. Was 3.0% by mass, and a PON concentration of 0.1% by mass was obtained as Laponite XLG / PEG aqueous dispersion.
  • Example 5 Example 1 except that a transparent aqueous dispersion containing 6.0% by mass of Laponite XLG was used as the aqueous dispersion, and an aqueous PEG solution containing 0.4% by mass of PEG was prepared and used as the aqueous PEG solution.
  • a Laponite XLG / PEG aqueous dispersion was prepared, and a Laponite XLG / PEG aqueous dispersion having a Laponite XLG concentration of 3.0% by mass and a PEG concentration of 0.2% by mass was obtained.
  • Example 6 Laponite XLG / PEG was prepared in the same manner as in Example 1 except that a clear aqueous dispersion containing 6.0% by mass of Laponite XLG and a PEG aqueous solution containing 1.2% by mass of polyethylene glycol PEG were prepared and used. An aqueous dispersion was prepared, and a laponite XLG / PEG aqueous dispersion having a concentration of laponite XLG of 3.0% by mass and a PEG concentration of 0.6% by mass was obtained.
  • Laponite XLG / PEG was prepared in the same manner as in Example 1 except that a transparent aqueous dispersion containing 6.0% by mass of Laponite XLG and an aqueous PEG solution containing 4.0% by mass of polyethylene glycol PEG were prepared and used. An aqueous dispersion was prepared, and a Laponite XLG / PEG aqueous dispersion having a Laponite XLG concentration of 3.0% by mass and a PEG concentration of 2.0% by mass was obtained.
  • Hydrogels were obtained with the Laponite XLG / PEG aqueous dispersions prepared in Examples 4 to 6, and a high viscosity of about 2000 to 3000 mPa ⁇ s was observed.
  • the Laponite XLG / PEG aqueous dispersion prepared in Comparative Example 3 had a low viscosity of 167 mPa ⁇ s although the PEG concentration was high.
  • Viscosity was measured by repeatedly changing the aqueous solution prepared in Comparative Example 4 and the aqueous dispersion prepared in Comparative Example 5 as 4 ° C. ⁇ 25 ° C. ⁇ 70 ° C. ⁇ 4 ° C. As a result, all of them were high temperature (70 ° C.) and low viscosity (12.9 mPa ⁇ s (Comparative Example 4), 3.5 mPa ⁇ s (Comparative Example 5)), and low viscosity (4 ° C.) and high viscosity (15. The result which showed the normal temperature dependence used as 7 mPa * s (comparative example 4) and 4.6 mPa * s (comparative example 5)) was obtained.
  • the hydrogel of the present invention can be prepared simply by mixing without using a chemical reaction such as radical polymerization, using an inexpensive raw material. Taking advantage of its properties, it can be used as a temperature-responsive hydrogel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Colloid Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

【課題】 簡便な方法(混合)により、高温で高粘度、低温で低粘度となる特性を示す温度応答性ヒドロゲルを提供すること。 【解決手段】 重量平均分子量2万乃至1000万のポリアルキレングリコール(A)とケイ酸塩(B)をそれぞれ含む水溶液を混合する方法により、特定の成分組成範囲、具体的には、Aの質量濃度が0.01~1.5質量%、より好ましくは0.1~0.4質量%、Bの質量濃度が0.5~10質量%、より好ましくは1~5質量%からなり、且つ、AとBとの質量比R(R=[Aの質量]/[Bの質量])が0.01~0.5の範囲で構成される組成範囲において、高温で高粘度、低温で低粘度であり、且つ、高温/低温の粘度比が大きい温度応答性ヒドロゲルが得られることを見出し、本発明を完成させた。

Description

温度応答性ヒドロゲル及びその製造方法
 本発明は、温度応答性ヒドロゲル及びその製造方法に関し、より詳しくは、ポリアルキレングリコール及びケイ酸塩を含んでなる温度応答性ヒドロゲル、及びその製造方法に関する。
 温度応答性ヒドロゲルは、生体適合性を有する刺激応答性材料のひとつとして、ドラッグデリバリーシステム(DDS)、再生医療、マイクロアクチュエータといった医療分野等での用途開発が進められている。
 ポリエチレングリコール(PEG)と水膨潤性ケイ酸塩粒子である層状粘土鉱物との水分散液の粘弾性の温度依存性(15~40℃)が報告されている(非特許文献1)。それによると平均分子量10,000のPEG濃度を2質量%に固定し、粘土鉱物(ラポナイトRD)の濃度を1~4質量%に変化させた各水分散液の粘度測定の結果、ラポナイトRD濃度が1~3質量%のときは温度が高くなるほどゼロシェア粘度が低下するという通常の変化を示すが、ラポナイトRD濃度が4質量%のときは、室温より35℃の方がゼロシェア粘度が高くなる(40℃になると再び若干低下する)温度応答性を示すことが観測された。このようにPEG濃度が比較的高い2質量%で、且つ、粘土鉱物濃度が更に高い4質量%という限定された組成において通常とは異なる粘度の温度依存性(高温で高粘度)が観測されたが、実用化のためには、水分散液としてより少ない成分濃度で且つ大きく変化する温度応答性が必要である。また、これまで平均分子量数十万以上の高分子量PEGを用いた場合の温度依存性は検討されていない。
JOURNAL of Physical Chemistry B (2012),116(1),48-54
 本発明は、上記事情に鑑みてなされたものであり、高温で高粘度、低温で低粘度を示す、即ち高温での粘度の方が低温での粘度よりも高い粘度を示す温度応答性ヒドロゲルを提供することを目的とする。
 本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、重量平均分子量2万乃至1000万のポリアルキレングリコールとケイ酸塩を含む水溶液(水分散液)の混合により、特定の成分組成範囲において、高温での粘度/低温での粘度比の大きい温度応答性ヒドロゲルが得られることを見出し、本発明を完成させた。
 すなわち、本発明は、第1観点として、ポリアルキレングリコール(A)及びケイ酸塩(B)を含む、温度応答性ヒドロゲルであって、前記ポリアルキレングリコール(A)のヒドロゲル中での質量濃度が0.01~1.5質量%である、温度応答性ヒドロゲル、
第2観点として、さらに、ケイ酸塩の分散剤(C)を含む、第1観点に記載の温度応答性ヒドロゲル、
第3観点として、前記ポリアルキレングリコール(A)が重量平均分子量2万乃至1000万のポリエチレングリコール又はポリプロピレングリコールである、第1観点又は第2観点に記載の温度応答性ヒドロゲル、
第4観点として、前記ケイ酸塩(B)のヒドロゲル中での質量濃度が0.5~10質量%である、第1観点及至第3観点の何れか1つに記載の温度応答性ヒドロゲル、
第5観点として、前記ケイ酸塩(B)が水膨潤性ケイ酸塩粒子である、第1観点乃至第4観点の何れか1つに記載の温度応答性ヒドロゲル、
第6観点として、前記水膨潤性ケイ酸塩粒子がスメクタイト、ベントナイト、バーミキュライト、及び雲母からなる群より選ばれる水膨潤性ケイ酸塩粒子である、第5観点に記載の温度応答性ヒドロゲル、
第7観点として、前記ポリアルキレングリコール(A)と前記ケイ酸塩(B)との質量比R(R=[Aの質量]/[Bの質量])が0.01~0.5である、第1観点乃至第6観点の何れか1つに記載の温度応答性ヒドロゲル、
第8観点として、前記分散剤(C)がピロリン酸ナトリウム、クエン酸及びポリリン酸からなる群より選ばれる少なくとも一種の分散剤である、第2観点乃至第7観点の何れか1つに記載の温度応答性ヒドロゲル、
第9観点として、温度50~100℃の範囲の粘度が、温度0~25℃の範囲の粘度の2倍以上となる、第1観点乃至第8観点の何れか1つに記載の温度応答性ヒドロゲル、
第10観点として、温度50~100℃で粘度600~10000mPa・sを示し、かつ、温度0~25℃で粘度100~580mPa・sを示す、第1観点乃至第8観点の何れか1つに記載の温度応答性ヒドロゲル、
第11観点として、温度50~100℃で粘度3000~10000mPa・sを示し、かつ、温度0~25℃で粘度500~2980mPa・sを示す、第1観点及至第8観点の何れか1つに記載の温度応答性ヒドロゲル、
第12観点として、温度応答性ヒドロゲルの製造方法であって、質量濃度が0.02~3.0質量%であるポリアルキレングリコール(A)の水溶液と、ケイ酸塩(B)を含む水分散液とを混合する工程を含む、該製造方法、
第13観点として、混合前において、前記水溶液及び前記水分散液の何れか一方又は両方に、1種又は2種以上の水溶性有機溶媒(D)が含まれていることを特徴とする第11観点に記載の温度応答性ヒドロゲルの製造方法、並びに
第14観点として、前記温度応答性ヒドロゲルにおける温度変化に対する粘度変化が、温度変化に対し少なくとも1回の繰り返し性を有する、第9観点乃至第11観点の何れか1つに記載の温度応答性ヒドロゲル、
に関する。
 以上、説明したように、本発明によれば重量平均分子量2万乃至1000万のポリアルキレングリコールとケイ酸塩とを含む水溶液(水分散液)の混合により、特定の成分組成範囲において、高温で高粘度、低温で低粘度であり、即ち温度の上昇にともなって粘度が大きくなり、温度の下降にともなって粘度が小さくなり、且つ、高温の粘度/低温の粘度の比が大きい温度応答性ヒドロゲルが得られる。
 本発明は、ゲル化に必要な成分である特定のポリアルキレングリコール(A)及びケイ酸塩(B)と水とからなる温度応答性ヒドロゲルゲルに関する。
 本発明の温度応答性ヒドロゲルは、上記成分の他に、本発明の所期の効果を損なわないまたはより高い効果を示す範囲で、必要に応じて、ケイ酸塩の分散剤等の分散剤(C)または水と相溶性のある有機溶媒(D)を任意に配合してもよい。
<成分(A):ポリアルキレングリコール>
 本発明の成分(A)は、ポリアルキレングリコールである。ポリアルキレングリコールとしては、例えばポリエチレングリコール又はポリプロピレングリコールが挙げられる。ポリアルキレングリコール(A)の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によるポリスチレン換算で測定することができ、例えば1万乃至1000万、例えば2万乃至1000万、好ましくは5万及至500万であり、より好ましくは10万及至200万であり、最も好ましくは30万及至100万である。
<成分(B):ケイ酸塩>
 本発明の成分(B)は、ケイ酸塩であって、好ましくは水膨潤性ケイ酸塩粒子である。
 ケイ酸塩(B)としては、例えば、スメクタイト、ベントナイト、バーミキュライト、及び雲母等が挙げられ、水又は含水溶媒を分散媒としたコロイドを形成するものが好ましい。なお、スメクタイトとは、モンモリロナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スティブンサイトなどのグループ名称である。
 ケイ酸塩粒子の一次粒子の形状としては、円盤状、板状、球状、粒状、立方状、針状、棒状、無定形等が挙げられ、直径5nm乃至1000nmの円盤状又は板状のものが好ましい。
 ケイ酸塩の好ましい具体例としては、層状ケイ酸塩が挙げられ、市販品として容易に入手可能な例として、BYKアディティブズ社製のラポナイトXLG(合成ヘクトライト)、同XLS(合成ヘクトライト、分散剤としてピロリン酸ナトリウム含有)、同XL21(ナトリウム・マグネシウム・フルオロシリケート)、同RD(合成ヘクトライト)、同RDS(合成ヘクトライト、分散剤として無機ポリリン酸塩含有)、同S482(合成ヘクトライト、分散剤含有)及び同EP(有機変性ヘクトライト);クニミネ工業株式会社製のクニピア(クニミネ工業株式会社登録商標、モンモリロナイト)、スメクトン(クニミネ工業株式会社登録商標)SA(合成サポナイト)、同ST(合成スティブンサイト)、同SWN(合成ヘクトライト)、同SWF(フルオロ合成ヘクトライト);株式会社ホージュン製のベンゲル(株式会社ホージュン登録商標、天然ベントナイト精製品)等が挙げられる。
<成分(C):分散剤>
 本発明の成分(C)は、ゲルの各成分を均一に分散したり、温度による粘度変化を大きくしたりするためのものであり、ピロリン酸ナトリウム、クエン酸、ポリリン酸等が挙げられる。その中でも、ピロリン酸ナトリウムが好ましい。
<成分(D):水溶性有機溶媒>
 本発明の成分(D)は、ゲルの各成分を均一に分散したり、乾燥後の柔軟性を保持したりするためのものであり、メタノール、エタノール、プロパノール、イソプロピルアルコール、アセトン、グリセリン、ジグリセリン、エチレングリコール及び1,3-ブチレングリコール等が挙げられる。その中でも、グリセリン、ジグリセリン、エチレングリコール及び1,3-ブチレングリコールが好ましい。
 本発明の温度応答性ヒドロゲルに含まれる各成分の濃度は、本発明の効果を損なわない範囲で適宜調製でき、例えば、温度応答性ヒドロゲルの全質量に基づいて、ポリアルキレングリコール(A)は0.01~1.5質量%濃度、好ましくは0.05~0.5質量%濃度、より好ましくは0.1~0.4質量%濃度、ケイ酸塩(B)は0.5~10質量%濃度、好ましくは1~5質量%濃度、分散剤(C)は0.1~10質量%濃度、水溶性有機溶媒(D)は1~50質量%濃度である。
 ポリアルキレングリコール(A)の濃度が0.01質量%濃度よりも低い場合、ゲルが得られない可能性があり、また1.5質量%濃度よりも高い場合、高温で高い粘度、低温で低い粘度を示す温度応答性ヒドロゲルが得られない可能性がある。
 また、ケイ酸塩(B)の濃度を上記範囲とすることで、沈殿等が生じることなく、高温で高い粘度、低温で低い粘度を示す均一な温度応答性ヒドロゲルが得られやすくなる。
 また、本発明の温度応答性ヒドロゲルに含まれるポリアルキレングリコール(A)と、ケイ酸塩(B)との質量比R(R=[Aの質量]/[Bの質量])は、本発明の効果を損なわない範囲で適宜調製でき、例えば0.01~0.5、好ましくは0.02~0.3、より好ましくは0.03~0.2である。
 ポリアルキレングリコール(A)と、ケイ酸塩(B)との質量比Rを上記範囲にすることで、高温の粘度/低温の粘度の比が大きい温度応答性ヒドロゲルが得られる。
 また、本発明の温度応答性ヒドロゲルは、高温で高粘度、低温で低粘度であり、即ち温度の上昇にともなって粘度が大きくなり(温度の下降にともなって粘度が小さくなり)、且つ、高温における粘度と低温における粘度との比が大きい温度応答性ヒドロゲルが得られる。
 温度とは、大気下でのセ氏温度(℃)である。
 粘度測定方法は、特に限定されないが、例えば回転式、音叉振動式粘度計で測定される粘度である。
 ここで、高温とは、2つの温度のうち相対的により高い温度を指し、一方低温とは、その2つの温度のうちより低い温度を示す。高温と低温との温度差は、温度応答性ヒドロゲルがゲルとしての性質を示す温度範囲内で、例えば10℃以上、20℃以上、25℃以上、30℃以上、40℃以上、50℃以上、70℃以上、80℃以上である。これらの温度はある特定の温度値に限定されるものではないが、例えば室温(例えば25℃)よりも高い温度と室温よりも低い温度に設定され、通常、高温としては、室温よりも高い温度、室温~200℃、50~100℃、50~80℃、50~70℃等に設定され、低温としては、室温よりも低い温度、-5℃~室温、0℃~室温、0℃~10℃等に設定される。
 また、高粘度とは、上記設定された高温及び低温の温度(温度差)で測定した2つの粘度のうち相対的に高い粘度を指し、一方低粘度とは、上記2つの温度で測定した2つ粘度のうちより低い粘度を指す。本発明の温度応答性ヒドロゲルにおいて、高温における粘度と低温における粘度との比が大きいとは、例えば、上記の設定された高温における粘度と低温における粘度との比が1倍よりも大きければよく、例えば、1.2倍以上、1.5倍以上、2倍以上、3倍以上、4倍以上、5倍以上、10倍以上である。好ましくは、高温における粘度と低温における粘度との比が大きいとは2倍以上である。これら粘度はある特定の粘度値に限定されるものではないが、通常、高粘度と低粘度との組合せとして、300~2000mPa・sと100~280mPa・s、600~10000mPa・sと100~580mPa・s、600~5000mPa・sと200~580mPa・s、600~5000mPa・sと100~580mPa・s、1000~7000mPa・sと300~980mPa・s、1000~2500mPa・sと100~500mPa・s、1000~5000mPa・sと100~500mPa・s、2000~10000mPa・sと500~1980mPa・s、3000~10000mPa・sと500~2980mPa・s、3000~10000mPa・sと1000~2980mPa・s等が挙げられる。
 具体的な一例としては、温度応答性が、温度50~80℃の範囲の粘度が、温度0~25℃の範囲の粘度の2倍以上となる温度応答性である、温度応答性ヒドロゲルが好ましい。
 例えば、温度応答性ヒドロゲルがゲルとしての性質を示す温度範囲、例えば、-20℃~120℃、-5℃~105℃、0℃~100℃、0℃~90℃の温度範囲内で、温度応答性ヒドロゲルの温度を10℃、20℃、25℃、30℃、40℃、50℃、70℃又は80℃上昇させたときに、温度上昇後の粘度が温度上昇前の粘度の2倍以上であることが好ましい。
 具体的な一例としては、温度応答性ヒドロゲルは、高温(50~100℃)で高粘度(600~10000mPa・s)を示し、かつ、低温(0~25℃)で低粘度(100~580mPa・s)を示す。
 具体的な一例としては、温度応答性ヒドロゲルは、高温(50~100℃)で高粘度(600~5000mPa・s)を示し、かつ、低温(0~25℃)で低粘度(100~580mPa・s)を示す。
 具体的な一例としては、温度応答性ヒドロゲルは、高温(50~100℃)で高粘度(1000~2500mPa・s)を示し、かつ、低温(0~25℃)で低粘度(100~500mPa・s)を示す。
 具体的な一例としては、温度応答性ヒドロゲルは、高温(50~100℃)で高粘度(1000~5000mPa・s)を示し、かつ、低温(0~25℃)で低粘度(100~500mPa・s)を示す。
 具体的な一例としては、温度応答性ヒドロゲルは、高温(50~100℃)で高粘度(3000~10000mPa・s)を示し、かつ、低温(0~25℃)で低粘度(500~2980mPa・s)を示す。
 具体的な一例としては、温度応答性ヒドロゲルは、高温(50~100℃)で高粘度(3000~10000mPa・s)を示し、かつ、低温(0~25℃)で低粘度(1000~2980mPa・s)を示す。
 また、高温で高粘度を示すとは、高温の範囲の任意の温度で高粘度の範囲内の粘度を示すことをいい、低温で低粘度を示すとは、低温の範囲の任意の温度で低粘度の範囲内の粘度を示すことをいう。高温の範囲の全ての温度で高粘度の範囲内の粘度を示し、かつ、低温の範囲の全ての温度で低粘度の範囲内の粘度を示す温度応答性ヒドロゲルが好ましい。
 さらに、本発明の温度応答性ヒドロゲルは、その温度に応じて、応答性(粘度変化)が可逆的な性質(繰り返し性、再現性)を有するという特徴がある。温度応答性ヒドロゲルの温度を低温→高温→低温→高温という温度変化を繰り返しても、本発明の温度応答性ヒドロゲルは、温度の上昇に応じて粘度が増加し、かつ、該上昇させた温度の降下に応じて粘度が低下するか、又は温度の降下に応じて粘度が低下し、かつ、該低下させた温度の上昇に応じて粘度が増加するという温度応答性を維持できる。
 例えば、本発明の温度応答性ヒドロゲルは、温度応答性ヒドロゲルがゲルとしての性質を示す温度範囲内で、低温から高温まで、上昇させたときに粘度が2倍以上に増加し、かつ、上昇させた温度を元の温度まで降下させたときに、温度変化前の温度での粘度と同温度でほぼ同粘度を示す温度応答性を有していることが好ましい。同温度で同粘度を示すとは、温度変化後の温度応答性ヒドロゲルの粘度と、温度変化前の温度応答性ヒドロゲルの粘度との粘度比が、例えば0.5~1.5、例えば0.8~1.2、例えば0.9~1.1であることをいう。
 具体的には実施例のように、本発明の温度応答性ヒドロゲルは、温度を4℃→25℃→70℃→4℃のように繰り返し変化させても、同温度ではほぼ同粘度を示す。この繰り返し性(再現性)は、少なくとも1回有し、例えば2回有し、例えば3回有し、例えば4回有し、例えば5回有し、例えば6回有し、例えば10回有し、例えば50回有し、例えば100回有し、例えば101回以上有する。
[温度応答性ヒドロゲルの調製]
 本発明の温度応答性ヒドロゲルの調製方法としては、ポリアルキレングリコール(A)、ケイ酸塩(B)、及び水の各成分を混合する方法であれば特に限定されないが、例えば、ポリアルキレングリコール(A)の水溶液と、ケイ酸塩(B)の水分散液をあらかじめ調製し、2液を混合する方法が挙げられる。必要に応じ、各段階、例えば上記水溶液と表記水分散液の混合前、混合中又は混合後において分散剤(C)及び/又は水溶性有機溶媒(D)を添加してもよい。特に、ポリアルキレングリコール(A)の水溶液又はケイ酸塩(B)の水分散液の混合前において、該水溶液又は該水分散液の何れか一方又は両方に分散剤(C)及び/又は水溶性有機溶媒(D)を添加することにより、各成分が均一に分散された温度応答性ゲルを得やすい。
 本発明において、温度応答性ヒドロゲルの成型加工時の流動性を高くするため、上記水溶液及び水分散液を混合した混合液に各成分が低含有率で含まれるように調製するのが好ましい。
 上記水溶液又は水分散液中の各成分を混合する方法としては、機械式又は手動による撹拌の他、超音波処理を用いることができるが、機械式撹拌が好ましい。機械式撹拌には、例えば、マグネチックスターラー、翼式撹拌機、自転・公転式ミキサー、ディスパー、ホモジナイザー、振とう機、ボルテックスミキサー、ボールミル、ニーダー、ラインミキサー、超音波発振器等を使用することができる。その中でも、好ましくはマグネチックスターラー、翼式撹拌機、自転・公転式ミキサー、ラインミキサーによる混合である。
 前記調製液(水溶液及び水分散液)の混合する際の温度は、水溶液又は水分散液の凝固点乃至沸点、好ましくは-5℃乃至100℃であり、より好ましくは0℃乃至70℃である。
[温度応答性ヒドロゲルの成型加工]
 前記ポリアルキレングリコール(A)の水溶液とケイ酸塩(B)の水分散液を混合し、シャーレやバット、トレー等の容器に流し込むことによりシート状等、任意の形状に成型することができる。また、塗布又はスピンコートすることにより薄膜化することもできる。
 上記ゲル化の際の温度は-5℃乃至200℃であり、好ましくは0℃乃至150℃、さらに好ましくは10℃乃至90℃である。
 次に実施例を挙げ本発明の内容を具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
 ケイ酸塩として水膨潤性の層状粘土鉱物(ウィルバーエリス社製合成ヘクトライト:ラポナイトXLG)を4.0質量%含む透明な水分散液を調製し、一方、ポリアルキレングリコールとしてポリエチレングリコール500,000(PEG)(和光純薬工業製 分子量約50万)を0.2質量%含むPEG水溶液を調製した。次いで、ラポナイトXLG水分散液を撹拌しながら、ここに等量の各PEG水溶液を滴下し、滴下終了後、更に1時間撹拌した。ラポナイトXLGの濃度は、2.0質量%であり、PEG濃度は、0.1質量%であるラポナイトXLG/PEG水分散液を得た。
[実施例2]
 PEG水溶液として0.4質量%を含むPEG水溶液を調製し使用した以外は、実施例1と同様の手順で、ラポナイトXLG/PEG水分散液を調製し、ラポナイトXLGの濃度は、2.0質量%であり、PEG濃度は、0.2質量%であるラポナイトXLG/PEG水分散液を得た。
[実施例3]
 PEG水溶液としてポリエチレングリコールPEGを0.8質量%を含むPEG水溶液を調製し使用した以外は、実施例1と同様の手順で、ラポナイトXLG/PEG水分散液を調製し、ラポナイトXLGの濃度は、2.0質量%であり、PEG濃度は、0.4質量%であるラポナイトXLG/PEG水分散液を得た。
[比較例1]
 PEG水溶液としてポリエチレングリコールPEGを含まない水を使用した以外は、実施例1と同様の手順で、ラポナイトXLG/PEG水分散液を調製し、ラポナイトXLGの濃度は、2.0質量%であり、PEG濃度は、0質量%であるラポナイトXLG/PEG水分散液を得た。
[参考例1]
 PEG水溶液としてポリエチレングリコールPEGを2.0質量%を含むPEG水溶液を調製し使用した以外は、実施例1と同様の手順で、ラポナイトXLG/PEG水分散液を調製し、ラポナイトXLGの濃度は、2.0質量%であり、PEG濃度は、1.0質量%であるラポナイトXLG/PEG水分散液を得た。
<粘度測定>
 エー・アンド・デイ(株)製音叉振動式粘度計(SV-100)を用いて、25℃で、実施例1乃至3、比較例1及び参考例1で調製したラポナイトXLG/PEG水分散液の粘度測定を行った。粘度は測定開始から5分間の平均値を用いた。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、PEG濃度が0.1、0.2、および0.4質量%の実施例1乃至3のラポナイトXLG/PEG水分散液においてはヒドロゲルとなり、特にPEG濃度が0.2質量%である実施例2のラポナイトXLG/PEG水分散液は、本実施例の測定値のなかで極大かつ最大の粘度を示した。一方、PEGを含まない比較例1およびPEG濃度が1質量%である参考例1では極めて低い粘度を示し、いずれもゾル(水溶液)であった。
<粘度の温度による変化>
 エー・アンド・デイ(株)製音叉振動式粘度計(SV-100)を用いて、測定温度を4℃→25℃→70℃→4℃のように繰り返し変化させて、実施例2で調製したラポナイトXLG/PEG水分散液の粘度測定を行った。粘度は測定開始から5分間の平均値を用い、測定温度変化を6回繰り返した。
 6回繰り返した各温度での測定粘度の平均値を表2に示す。6回の繰り返しにおいて、いずれも高温ほど粘度が高く、低温ほど粘度が低い結果が得られた。表2に示すように、4℃での粘度に対する70℃の粘度の比は約6倍であるという温度応答性が観測された。
Figure JPOXMLDOC01-appb-T000002
[実施例4]
 水分散液としてラポナイトXLGを6.0質量%含む透明な水分散液を調製し使用した以外は、実施例1と同様の手順で、ラポナイトXLG/PEG水分散液を調製し、ラポナイトXLGの濃度は3.0質量%であり、PEG濃度は、0.1質量%であるラポナイトXLG/PEG水分散液を得た。
[実施例5]
 水分散液としてラポナイトXLGを6.0質量%含む透明な水分散液を使用し、及びPEG水溶液としてPEGを0.4質量%を含むPEG水溶液を調製し使用した以外は、実施例1と同様の手順で、ラポナイトXLG/PEG水分散液を調製し、ラポナイトXLGの濃度は3.0質量%であり、PEG濃度は、0.2質量%であるラポナイトXLG/PEG水分散液を得た。
[実施例6]
 ラポナイトXLGを6.0質量%含む透明な水分散液、及びポリエチレングリコールPEGを1.2質量%を含むPEG水溶液を調製し使用した以外は、実施例1と同様の手順で、ラポナイトXLG/PEG水分散液を調製し、ラポナイトXLGの濃度は3.0質量%であり、PEG濃度は、0.6質量%であるラポナイトXLG/PEG水分散液を得た。
[比較例3]
 ラポナイトXLGを6.0質量%含む透明な水分散液、及びポリエチレングリコールPEGを4.0質量%を含むPEG水溶液を調製し使用した以外は、実施例1と同様の手順で、ラポナイトXLG/PEG水分散液を調製し、ラポナイトXLGの濃度は3.0質量%であり、PEG濃度は、2.0質量%であるラポナイトXLG/PEG水分散液を得た。
<粘度測定>
 エー・アンド・デイ(株)製音叉振動式粘度計(SV-100)を用いて、25℃で、実施例4乃至6及び比較例3で調製したラポナイトXLG/PEG水分散液の粘度測定を行った。粘度は測定開始から5分間の平均値を用いた。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例4ないし6で調製したラポナイトXLG/PEG水分散液ではヒドロゲルが得られ、約2000-3000mPa・sの高い粘度が観測された。一方、比較例3で調製したラポナイトXLG/PEG水分散液はPEG濃度が高いにも拘わらず、167mPa・sの低い粘度であった。
 また、実施例6で調製したラポナイトXLG/PEG水分散液を、実施例2と同様に粘度の温度による変化を測定した結果、高温(70℃)での粘度が5500mPa・sであり、低温(25℃)での粘度が1890mPa・sであった。つまり、実施例6で調製したラポナイトXLG/PEG水分散液も、高温での粘度が低温での粘度より高くなるという、温度応答性が観測された。
[比較例4]
 ポリエチレングリコール500,000(PEG)(分子量約50万)のみを0.2質量%含む水溶液を調製した。
[比較例5]
 Laponaite XLGのみを2質量%含む水分散液を調製した。
<粘度の温度依存性試験>
 比較例4で調製した水溶液及び比較例5で調製した水分散液を、4℃→25℃→70℃→4℃のように繰り返し変化させて粘度測定を行った。その結果、いずれも高温(70℃)で低粘度(12.9mPa・s(比較例4)、3.5mPa・s(比較例5))であり、低温(4℃)で高粘度(15.7mPa・s(比較例4)、4.6mPa・s(比較例5))となる通常の温度依存性を示す結果が得られた。
Figure JPOXMLDOC01-appb-T000004
 本発明のヒドロゲルは、安価な原料を用いることができ、ラジカル重合等の化学反応を用いず、混合するだけで調製することができる。その特性を生かして、温度応答性ヒドロゲルとして使用することができる。

Claims (14)

  1.  ポリアルキレングリコール(A)及びケイ酸塩(B)を含む、温度応答性ヒドロゲルであって、前記ポリアルキレングリコール(A)のヒドロゲル中での質量濃度が0.01~1.5質量%である、温度応答性ヒドロゲル。
  2.  さらに、ケイ酸塩の分散剤(C)を含む、請求項1に記載の温度応答性ヒドロゲル。
  3.  前記ポリアルキレングリコール(A)が重量平均分子量2万乃至1000万のポリエチレングリコール又はポリプロピレングリコールである、請求項1又は請求項2に記載の温度応答性ヒドロゲル。
  4.  前記ケイ酸塩(B)のヒドロゲル中での質量濃度が0.5~10質量%である、請求項1及至請求項3の何れか1項に記載の温度応答性ヒドロゲル。
  5.  前記ケイ酸塩(B)が水膨潤性ケイ酸塩粒子である、請求項1乃至請求項4の何れか1項に記載の温度応答性ヒドロゲル。
  6.  前記水膨潤性ケイ酸塩粒子がスメクタイト、ベントナイト、バーミキュライト、及び雲母からなる群より選ばれる水膨潤性ケイ酸塩粒子である、請求項5に記載の温度応答性ヒドロゲル。
  7.  前記ポリアルキレングリコール(A)と前記ケイ酸塩(B)との質量比R(R=[Aの質量]/[Bの質量])が0.01~0.5である、請求項1乃至請求項6の何れか1項に記載の温度応答性ヒドロゲル。
  8.  前記分散剤(C)がピロリン酸ナトリウム、クエン酸及びポリリン酸からなる群より選ばれる少なくとも一種の分散剤である、請求項2乃至請求項7の何れか1項に記載の温度応答性ヒドロゲル。
  9.  温度50~100℃の範囲の粘度が、温度0~25℃の範囲の粘度の2倍以上となる、請求項1乃至請求項8の何れか一項に記載の温度応答性ヒドロゲル。
  10.  温度50~100℃で粘度600~10000mPa・sを示し、かつ、温度0~25℃で粘度100~580mPa・sを示す、請求項1及至請求項8の何れか1項に記載の温度応答性ヒドロゲル。
  11. 温度50~100℃で粘度3000~10000mPa・sを示し、かつ、温度0~25℃で粘度500~2980mPa・sを示す、請求項1及至請求項8の何れか1項に記載の温度応答性ヒドロゲル。
  12.  温度応答性ヒドロゲルの製造方法であって、質量濃度が0.02~3.0質量%であるポリアルキレングリコール(A)の水溶液と、ケイ酸塩(B)を含む水分散液とを混合する工程を含む、該製造方法。
  13.  混合前において前記水溶液及び前記水分散液の何れか一方又は両方に、1種又は2種以上の水溶性有機溶媒(D)が含まれていることを特徴とする請求項11に記載の温度応答性ヒドロゲルの製造方法。
  14.  前記温度応答性ヒドロゲルにおける温度変化による粘度変化が、温度変化に対して少なくとも1回の繰り返し性を有する、請求項9乃至請求項11の何れか1項に記載の温度応答性ヒドロゲル。
PCT/JP2018/008088 2017-03-09 2018-03-02 温度応答性ヒドロゲル及びその製造方法 WO2018164003A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/479,377 US20190381469A1 (en) 2017-03-09 2018-03-02 Temperature-responsive hydrogel and method for producing the same
EP18764540.3A EP3581620A4 (en) 2017-03-09 2018-03-02 TEMPERATURE SENSITIVE HYDROGEL AND PROCESS FOR PRODUCING THE SAME
JP2019504546A JPWO2018164003A1 (ja) 2017-03-09 2018-03-02 温度応答性ヒドロゲル及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017045190 2017-03-09
JP2017-045190 2017-03-09

Publications (1)

Publication Number Publication Date
WO2018164003A1 true WO2018164003A1 (ja) 2018-09-13

Family

ID=63447544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008088 WO2018164003A1 (ja) 2017-03-09 2018-03-02 温度応答性ヒドロゲル及びその製造方法

Country Status (4)

Country Link
US (1) US20190381469A1 (ja)
EP (1) EP3581620A4 (ja)
JP (1) JPWO2018164003A1 (ja)
WO (1) WO2018164003A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088289A1 (ja) * 2017-11-06 2019-05-09 国立大学法人群馬大学 自己支持性を有するハイドロゲル及びその製造方法
JP2023171295A (ja) * 2022-05-18 2023-12-01 浙江大学 耐凍結性ハイドロゲルの製造方法、及び極低温応答に適した可撓性温度センサの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210213181A1 (en) * 2018-05-29 2021-07-15 The Brigham And Women's Hospital, Inc. Anti-Adhesive Shear Thinning Hydrogels
WO2020129606A1 (ja) * 2018-12-17 2020-06-25 Dic株式会社 有機無機複合ヒドロゲル前駆体組成物、及び有機無機複合ヒドロゲル

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053629A (ja) * 2000-05-29 2002-02-19 Kawamura Inst Of Chem Res 有機・無機複合ヒドロゲル及びその製造方法
JP2008510004A (ja) * 2004-08-16 2008-04-03 プロセリックス・ソルト・レイク・シティ,インコーポレーテッド 逆温度応答性ゲル化特性を有する生分解性ジブロック共重合体およびその使用方法
JP2010018665A (ja) * 2008-07-09 2010-01-28 Kawamura Inst Of Chem Res 有機・無機複合ヒドロゲルの製造方法
WO2011018995A1 (ja) * 2009-08-11 2011-02-17 財団法人川村理化学研究所 有機無機複合ヒドロゲルおよびその製造方法
WO2014046136A1 (ja) * 2012-09-18 2014-03-27 日産化学工業株式会社 ヒドロゲル形成性組成物及びそれより作られるヒドロゲル
JP2015040276A (ja) * 2013-08-23 2015-03-02 旭化成株式会社 生分解性ポリマーと粘土鉱物とを複合してなるヒドロゲル化剤
WO2015068837A1 (ja) * 2013-11-11 2015-05-14 日産化学工業株式会社 ヒドロゲル形成性組成物及びそれより作られるヒドロゲル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053629A (ja) * 2000-05-29 2002-02-19 Kawamura Inst Of Chem Res 有機・無機複合ヒドロゲル及びその製造方法
JP2008510004A (ja) * 2004-08-16 2008-04-03 プロセリックス・ソルト・レイク・シティ,インコーポレーテッド 逆温度応答性ゲル化特性を有する生分解性ジブロック共重合体およびその使用方法
JP2010018665A (ja) * 2008-07-09 2010-01-28 Kawamura Inst Of Chem Res 有機・無機複合ヒドロゲルの製造方法
WO2011018995A1 (ja) * 2009-08-11 2011-02-17 財団法人川村理化学研究所 有機無機複合ヒドロゲルおよびその製造方法
WO2014046136A1 (ja) * 2012-09-18 2014-03-27 日産化学工業株式会社 ヒドロゲル形成性組成物及びそれより作られるヒドロゲル
JP2015040276A (ja) * 2013-08-23 2015-03-02 旭化成株式会社 生分解性ポリマーと粘土鉱物とを複合してなるヒドロゲル化剤
WO2015068837A1 (ja) * 2013-11-11 2015-05-14 日産化学工業株式会社 ヒドロゲル形成性組成物及びそれより作られるヒドロゲル

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF PHYSICAL CHEMISTRY B, vol. 116, no. 1, 2012, pages 48 - 54
See also references of EP3581620A4
SIMONA MORARIU ET AL.: "Effect of Temperature and Aging Time on the Rheological Behavior of Aqueous Poly(ethylene glycol)/Laponite RD Dispersions", THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 116, no. 1, 13 December 2011 (2011-12-13), pages 48 - 54, XP055555139, Retrieved from the Internet <URL:DOI:10.1021/jp208136g> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088289A1 (ja) * 2017-11-06 2019-05-09 国立大学法人群馬大学 自己支持性を有するハイドロゲル及びその製造方法
JP2023171295A (ja) * 2022-05-18 2023-12-01 浙江大学 耐凍結性ハイドロゲルの製造方法、及び極低温応答に適した可撓性温度センサの製造方法
JP7397542B2 (ja) 2022-05-18 2023-12-15 浙江大学 耐凍結性ハイドロゲルの製造方法、及び極低温応答に適した可撓性温度センサの製造方法

Also Published As

Publication number Publication date
EP3581620A1 (en) 2019-12-18
EP3581620A4 (en) 2020-01-01
JPWO2018164003A1 (ja) 2020-03-26
US20190381469A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
WO2018164003A1 (ja) 温度応答性ヒドロゲル及びその製造方法
Chen et al. Facile fabrication of poly (vinyl alcohol) gels and derivative aerogels
Wilhelm et al. Starch films reinforced with mineral clay
Bengisu et al. Gelcasting of alumina and zirconia using chitosan gels
Patel et al. Colloidal complexation of a macromolecule with a small molecular weight natural polyphenol: implications in modulating polymer functionalities
Benslimane et al. Thermal gelation properties of carboxymethyl cellulose and bentonite-carboxymethyl cellulose dispersions: Rheological considerations
Peng et al. Conductive nanocomposite hydrogels with self-healing property
CN104053454B (zh) 具有改进的热凝胶强度的纤维素醚
Felix et al. Effect of pH and nanoclay content on the morphology and physicochemical properties of soy protein/montmorillonite nanocomposite obtained by extrusion
KR102387034B1 (ko) 하이드로겔 형성성 조성물 및 이로부터 제조되는 하이드로겔
US9475909B2 (en) Hydrogel-forming composition and hydrogel produced from the same
JPH04227677A (ja) 水溶性重合体懸濁物
JP7221520B2 (ja) 生分解性ポリマーの水性の加水分解安定性分散液
Yang et al. Phenyl groups in supramolecular nanofibers confer hydrogels with high elasticity and rapid recovery
Kimura et al. Clay–alcohol–water dispersions: anomalous viscosity changes due to network formation of clay nanosheets induced by alcohol clustering
Zheng et al. Miscibility, morphology, structure, and properties of porous cellulose–soy protein isolate hybrid hydrogels
Phang et al. Release behaviour study on controlled-release phosphorous fertilizer encapsulated by starch-alginate superabsorbent composite
Fitzpatrick et al. Protein-based aerogels: processing and morphology
Madhavan et al. Exploiting kaolinite-alumina heteroaggregation in Pickering emulsion stabilisation and porous mullite fabrication
Wypych Handbook of Rheological Additives
Chao et al. Ultralow density silica aerogels prepared with PEDS
WO2019088289A1 (ja) 自己支持性を有するハイドロゲル及びその製造方法
US9475915B2 (en) Hydrogel-forming composition and hydrogel produced from the same
JP2005194308A (ja) 徐放性香料担体及びそれを用いた徐放性香料
JP6276927B2 (ja) ハイドロゲル形成性組成物及びそれより作られるハイドロゲル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504546

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018764540

Country of ref document: EP

Effective date: 20190909