WO2015056293A1 - 電力制御装置及び電力制御方法 - Google Patents

電力制御装置及び電力制御方法 Download PDF

Info

Publication number
WO2015056293A1
WO2015056293A1 PCT/JP2013/077926 JP2013077926W WO2015056293A1 WO 2015056293 A1 WO2015056293 A1 WO 2015056293A1 JP 2013077926 W JP2013077926 W JP 2013077926W WO 2015056293 A1 WO2015056293 A1 WO 2015056293A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
value
target
load
unit
Prior art date
Application number
PCT/JP2013/077926
Other languages
English (en)
French (fr)
Inventor
茂文 後藤
啓介 秋保
裕久 吉川
Original Assignee
理化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理化工業株式会社 filed Critical 理化工業株式会社
Priority to PCT/JP2013/077926 priority Critical patent/WO2015056293A1/ja
Publication of WO2015056293A1 publication Critical patent/WO2015056293A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/36Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
    • G05B11/42Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/54The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads according to a pre-established time schedule
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present invention relates to a power control apparatus and a power control method for controlling power supplied to a plurality of power control objects (hereinafter simply referred to as “loads”) in a time-sharing manner.
  • Patent Documents 1 and 2 below disclose power control apparatuses that supply power to a load in proportion to an operation signal (target value) output from a PID controller that performs temperature control.
  • the load is a power control target and a temperature control target.
  • a combination of a heater that converts electric power into heat and a temperature control target is applicable.
  • control for switching on / off of power supplied to a load is performed every time corresponding to an integral multiple of a half cycle of a power supply waveform (hereinafter referred to as “unit time”).
  • unit time an integral multiple of a half cycle of a power supply waveform
  • the load The power supply to is turned on.
  • the power supply feedback signal G is set to a value of “0” when the power supply to the load is turned off, and set to a value of “1” when the power supply to the load is turned on.
  • the value when the power supply to the load is turned on is set to “1” according to the power supply voltage so that it is not affected by the power supply voltage fluctuation.
  • Patent Documents 3 to 5 when power supplied to a plurality of loads is simultaneously controlled in a time-sharing manner, the number of loads that are simultaneously supplied with power in each unit time is suppressed.
  • the sum of the power supplied to each load in time is set so as not to exceed a preset power upper limit value (for example, an upper limit value of power set based on various conditions of the power supply equipment and the apparatus).
  • peak power suppression control such control is referred to as “peak power suppression control”.
  • the total amount of power supplied to all loads in each unit time is “0” for the load for which power supply is turned off, and “1” for the load for which power supply is turned on.
  • the total value of the power supply amount to the load calculated based on the preset rated power of each load heater or the like is set so as not to exceed the upper limit power.
  • Japanese Patent No. 3022051 Japanese Patent No. 3675951 Japanese Patent No. 3794574 Japanese Patent No. 4529153 JP 2011-205731 A
  • the conventional power control apparatus Since the conventional power control apparatus is configured as described above, if the peak power suppression control disclosed in Patent Documents 3 to 5 is performed, the sum of the target power values supplied to each load is set in advance. It is possible to suppress the power upper limit value from being exceeded.
  • the conventional power control device does not have the viewpoint of optimal power supply including temperature control, the power value supplied to each load is the time required to reach the target temperature from the start of temperature rise of each load. It was calculated without considering the same. For this reason, the time required for each load to reach the target temperature may differ. In this case, for the load that has reached the target temperature first, it is necessary to wait at the target temperature until all the loads reach the target temperature, and there is a problem that wasteful energy is consumed.
  • the present invention has been made to solve the above-described problems, and is a power control apparatus capable of reducing unnecessary energy consumption by aligning the time required for the control temperature of each load to reach a target temperature. And to obtain a power control method.
  • An electric power control apparatus includes an output target value input unit that inputs an output target value of electric power supplied from a controller to a plurality of loads, and a reference power value storage unit that stores a preset reference power value.
  • an output target value input unit that inputs an output target value of electric power supplied from a controller to a plurality of loads
  • a reference power value storage unit that stores a preset reference power value.
  • the power control means controls the power supplied to the plurality of loads in a time-sharing manner
  • the total amount of power supplied to the plurality of loads is preset in each unit time.
  • peak power suppression control is performed to suppress the number of loads that simultaneously supply power.
  • the correction coefficient storage unit performs correction related to power supplied to a load having a short time from the start of temperature rise until reaching the target temperature as a correction coefficient related to power supplied to a plurality of loads. A value smaller as a coefficient is stored.
  • the target power value calculation means calculates the load from the output target value input by the output target value input unit and the reference power value stored by the reference power value storage unit for each load.
  • the target power value calculation unit that calculates the target power value that is the value of the power supplied to the power supply and the target power value calculated by the target power value calculation unit for each load are stored in the correction coefficient storage unit. It is composed of a target power value correction unit that corrects the target power value by multiplying the correction coefficient.
  • the target power value calculation means multiplies the output target value input by the output target value input unit by the correction coefficient stored in the correction coefficient storage unit for each load. From the output target value correction unit that corrects the output target value, and for each load, the target value corrected by the output target value correction unit and the reference power value stored in the reference power value storage unit, the load And a target power value calculation unit that calculates a target power value that is a value of power supplied to the.
  • the target power value calculation means multiplies the reference power value stored in the reference power value storage unit by the correction coefficient stored in the correction coefficient storage unit for each load. From the reference power value correction unit that corrects the reference power value, the output target value input by the output target value input unit and the reference power value corrected by the reference power value correction unit for each load, It is comprised from the target electric power value calculation part which calculates the target electric power value which is the value of the electric power supplied to load.
  • the output target value input unit inputs an output target value of power to be supplied to the plurality of loads from the controller
  • the target power value calculation means outputs the output
  • a target power value calculation process for calculating a target power value, which is a value of power supplied to a plurality of loads, using a plurality of correction coefficients set with reference to the time required to reach the target temperature from the start of temperature.
  • the peak power suppression unit outputs the plurality of target power values. If the sum is higher than the power upper limit value, a plurality of target power values are lowered so that the sum is less than or equal to the power upper limit value, and then the peak power suppression processing step for outputting the plurality of target power values, and the power control means And a power control processing step for controlling power supplied to a plurality of loads in a time-sharing manner according to the target power value calculated in the target power value calculation processing step.
  • FIG. 6 is an explanatory diagram showing a record example of the maximum power for each power supply cycle when the load 1-m is collectively heated.
  • FIG. 1 is a block diagram showing a power control apparatus according to Embodiment 1 of the present invention.
  • the power control apparatus of FIG. 1 an example will be described in which power supply to M (M is an integer of 2 or more) loads is controlled in a time-sharing manner. That is, the power control device of FIG. 1 performs control to turn on / off the power supplied to the load every time corresponding to an integral multiple of a half cycle of the power waveform (hereinafter referred to as “unit time”). (Hereinafter, simply referred to as “power control”), and the PID controller is controlled by controlling a time ratio between an on-time that is a time for supplying power and an off-time that is a time for not supplying power.
  • unit time an integral multiple of a half cycle of the power waveform
  • a power amount proportional to an operation signal (a target value of power) output from is supplied to the load.
  • a cycle in which control for turning on / off power supplied to a load every unit time is repeated is referred to as a “control cycle”.
  • the temperature control cycle in which the PID controller performs PID control and the power control cycle in which the power control device controls the power are not the same. However, here, for the sake of simplicity, both are the same control cycle. The case will be described. Generally, since the PID control cycle has a longer period, a plurality of power control cycles are processed in one PID control cycle.
  • loads 1-1 to 1-M are loads of the power control apparatus, and for example, a combination of a heater that converts electric power into heat and a temperature control target.
  • the load is a power control target and a temperature control target.
  • the PID controllers 2-1 to 2-M are external devices of the power control device, and are devices that output an output target value A mn of power supplied to the load 1-m to the power control device every control cycle n. .
  • the output target value A mn of the power supplied to the load 1-m for example, a ratio expressed as a percentage of the target power with respect to the rated power of the load 1-m is assumed.
  • n is a number that identifies the control cycle supplied to the loads 1-1 to 1-M, and the time of one control cycle matches the above unit time.
  • n 1, 2,.
  • the PID controller 2-m is mounted is shown, but any controller that adjusts the temperature of the load 1-m may be used, and the invention is not limited to the PID controller.
  • the output target value input unit 3 is an interface device for the PID controllers 2-1 to 2-M, and performs a process of inputting the output target value A mn output from the PID controller 2-m.
  • the reference power value storage unit 4 is configured by a memory such as a RAM, for example, and stores a preset reference power value q m of the load 1-m (for example, a rated power of the load 1-m).
  • the correction coefficient storage units 5-1 to 5-M adjust the time required for the loads 1-1 to 1-M to reach the target temperature in order to equalize the time required for the loads 1-1 to 1-M to reach the target temperature. stores correction coefficients h m, which is set based on the time required to reach the.
  • the target power value calculation units 6-1 to 6-M are configured by, for example, multipliers, and the output target value A mn input by the output target value input unit 3 at the beginning of the control cycle n for each control cycle n. Is multiplied by the reference power value q m stored in the reference power value storage unit 4 to perform a process of calculating the target power value X mn of the load 1-m.
  • the target power value correction units 7-1 to 7-M are configured by, for example, multipliers, and load 1 ⁇ calculated by the target power value calculation unit 6-m at the beginning of the control cycle n for each control cycle n.
  • the target power value calculating means 6-1 to 6-M and the target power value correcting sections 7-1 to 7-M constitute target power value calculating means.
  • the peak power suppression unit 8 is composed of, for example, a semiconductor integrated circuit mounted with a CPU or a one-chip microcomputer, and the corrected target power output from the target power value correction units 7-1 to 7-M.
  • a processing unit that controls the power supplied to the load 1-m in a time-sharing manner according to the value X mn ′. During the unit time of the control cycle n, the total amount of power supplied to the loads 1-1 to 1-M is When the preset power upper limit value s J is exceeded, peak power suppression control is performed to suppress the number of loads that simultaneously supply power.
  • the power supply on / off devices 9-1 to 9-M are made up of, for example, thyristors and the like, and control the cycle of turning on / off the power supplied to the load 1-m under the instruction of the peak power suppression unit 8. The processing performed every time (every unit time) is performed.
  • the peak power suppression unit 8 and the power supply on / off devices 9-1 to 9-M constitute power control means.
  • an output target value input unit 3 a reference power value storage unit 4, correction coefficient storage units 5-1 to 5-M, and target power value calculation units 6-1 to 6 that are components of the power control apparatus.
  • -M assuming that each of the target power value correction units 7-1 to 7-M, the peak power suppression unit 8, and the power supply on / off devices 9-1 to 9-M is configured with dedicated hardware.
  • all or part of the power control apparatus may be configured by a computer.
  • FIG. 2 is a flowchart showing the processing contents (power control method) of the power control apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram showing the peak power suppression unit 8 of the power control apparatus according to Embodiment 1 of the present invention.
  • the output power measuring unit 21 includes, for example, voltage measuring means for measuring the voltage V mn applied to the loads 1-1 to 1-M, and the current I mn flowing to the loads 1-1 to 1-M. And a process of calculating a power measurement value q mn tilde that is a value of power supplied to the load 1-m in the control cycle n from the voltage V mn and the current I mn. carry out.
  • q mn with a symbol “ ⁇ ” attached to the upper part is shown as a power measurement value.
  • the symbol “ ⁇ ” is represented by q because of the electronic application. Since it cannot be attached to the upper part of mn , it is written as “q mn tilde”.
  • the value output from the output power measurement unit 21 at the beginning of the control cycle n is the power measurement value q m (n ⁇ 1) tilde measured in the previous control cycle (n ⁇ 1). .
  • the on-power estimation unit 22 is composed of, for example, a semiconductor integrated circuit on which a CPU is mounted, a one-chip microcomputer, or the like, and measures output power when power is supplied to the load 1-m before.
  • the power measurement value at the time of ON measured by the unit 21 is stored, and the power when power is supplied to the load 1-m during the unit time of the control cycle n based on the power measurement value is stored.
  • a process of estimating the value and outputting the estimated power value q mon tilde is performed.
  • the adjustment coefficient calculation integrated value calculation unit 23 includes adders 23a-1 to 23a-M, and the power difference integrated value calculated in the previous control cycle (n-1) by the intermediate integrated power value calculation unit 29.
  • s m (n ⁇ 1) and the corrected target power value X mn ′ output from the target power value correction unit 7-m at the beginning of the control cycle n are added to calculate the adjustment coefficient of the load 1-m
  • the integrated value s mn 'hat is calculated.
  • “s mn ” with the symbol “ ⁇ ” added to the upper part is shown as the adjustment coefficient calculation integrated value.
  • “ ⁇ ” 'because it can not be subjected to the top of the "s mn' the symbol s mn is expressed as a hat".
  • the total adjustment coefficient calculation integrated value calculation unit 24 is a total adjustment coefficient that is the sum of the adjustment coefficient calculation integrated values s mn 'hat of the loads 1-1 to 1-M calculated by the adjustment coefficient calculation integrated value calculation unit 23.
  • the calculation integrated value ⁇ s n ′ is calculated.
  • Power upper limit value storage unit 25 is composed of a memory, such as a RAM, storing a preset power limit s J.
  • the power value adjustment coefficient calculation unit 26 is composed of, for example, a semiconductor integrated circuit on which a CPU is mounted or a one-chip microcomputer, and is used for calculating the total adjustment coefficient calculated by the total adjustment coefficient calculation integrated value calculation unit 24.
  • the buffer (Z ⁇ 1 ) 27 acts as an operator that means a time shift to the previous time, and in the previous control cycle (n ⁇ 1), the power value adjustment coefficient calculation process n ⁇ 1 of the power value adjustment coefficient calculation unit 26. It is shown that the power value adjustment coefficient K (n ⁇ 1) calculated in (1) is used by the measured power adjustment unit 28 in the control cycle n.
  • the measured power adjustment unit 28 is constituted by, for example, a multiplier. For the measured power value q m (n ⁇ 1) tilde measured in the previous control cycle (n ⁇ 1) output from the output power measurement unit 21. Then, a process for adjusting the power measurement value q m (n ⁇ 1) tilde is performed by multiplying the power value adjustment coefficient K (n ⁇ 1) .
  • the intermediate integrated power value calculation unit 29 includes subtractors 29a-1 to 29a-M, adders 29b-1 to 29b-M, and buffers (Z ⁇ 1 ) 29c-1 to 29c-M. By subtracting the measured power value q m (n-1) 'tilde adjusted by the measured power adjustment unit 28 from the intermediate integrated power value S m (n-1) hat calculated in the cycle (n-1).
  • the latest intermediate integrated power value s mn hat is calculated by adding the power difference integrated value S m (n ⁇ 1) and the corrected target power value X mn ′ output from the target power value correcting unit 7-m. Perform the process.
  • the on / off device control unit 30 includes the intermediate integrated power values in order from the load 1-m having the largest intermediate integrated power value s mn hat calculated by the intermediate integrated power value calculating unit 29 among the loads 1-1 to 1-M.
  • the load 1-m in order from the load 1-m having the largest intermediate integrated power value s mn hat.
  • the intermediate integrated power value s mn hat of m is larger than a predetermined threshold value s th and the estimated power q mon tilde of the load 1-m estimated by the on power estimation unit 22 and the on power estimation unit 22 are estimated.
  • the power estimated value q 1 tilde to q Mon tilde of the loads 1-1 to 1-M, and the sum of the power estimated value q mon tilde of the load determined to be turned on in the next control cycle is the power upper limit value. s J If the power supply condition that does not increase is satisfied, the power supply on / off device 9-m of the load 1-m is controlled to be turned on (on). If the power supply condition is not satisfied, the load 1-m The process of controlling the power supply on / off device 9-m to the off state (off) is repeatedly performed to control on / off of the power supply on / off device 9 in the next control cycle for all loads.
  • FIG. 4 is an explanatory diagram showing processing timing of the power control apparatus. This indicates that the processing of the nth control cycle is executed near the boundary between the (n-1) th control cycle and the nth control cycle. Hereinafter, the operation will be described in the case where the processing of the nth control cycle is performed at the beginning of the nth control cycle.
  • On / off control is performed, but if the instruction of the on / off device control unit 30 to the power supply on / off device 9-m of the load 1-m is on in the processing of the nth control cycle, the nth time Power is supplied to the load 1-m during the control cycle.
  • the instruction of the on / off device control unit 30 for the power supply on / off device 9-m of the load 1-m is off in the process of the nth control cycle, the load 1-m is not applied during the nth control cycle. Power is not supplied.
  • the PID controllers 2-1 to 2-M output the output target value A mn of the power supplied to the load 1-m to the power control device every control cycle n.
  • the output target value A mn of the power supplied to the load 1-m a ratio expressed as a percentage of the target power with respect to the rated power of the load 1-m is assumed.
  • the first embodiment For convenience of explanation, for example, when 50% of the rated power is supplied to the load 1-m, 0.5 is output as the output target value A mn , and the rated power of the load 1-m When supplying 80%, 0.8 is output as the output target value Amn .
  • the output target value input unit 3 inputs an output target value A mn of power supplied to the load 1-m output from the controller 2-m at the beginning of the n-th control cycle, and the output target value A mn Is output to the target power value calculation unit 6-m (step ST1 in FIG. 2).
  • the target power value calculation unit 6-m receives the output target value A mn from the output target value input unit 3 in the nth control cycle, the target power value calculation unit 6-m applies the output target value A mn to the reference power value storage unit 4 By multiplying the stored reference power value q m , the target power value X mn of the load 1-m is calculated, and the target power value X mn is output to the target power value correction unit 7-m (step ST2 ).
  • the reference power value q m is the rated power of the load 1-m, but is not limited to the rated power of the load 1-m.
  • X mn A mn ⁇ q m (1)
  • Target power value correcting section 7-m at n th control cycle, if the target power value calculation unit 6-m receives a target power value X mn load 1-m, the target power value X mn load 1-m respect, by multiplying the correction coefficient h m stored by the correction coefficient storage unit 5-m, and corrects the target power value X mn load 1-m, the corrected target power value X mn ' It outputs to the peak electric power suppression part 8 (step ST3).
  • the correction coefficients h 1 to h M are used in the loads 1-1 to 1-M in order to equalize the time required for the loads 1-1 to 1-M to reach the target temperature (temperature rise completion time). This is a coefficient set with reference to the time required from the start of temperature increase until reaching the target temperature. For example, in an offline experiment, correction coefficients h 1 to h M with the same temperature increase completion time of the loads 1-1 to 1- M are obtained, and the correction coefficients h 1 to h M obtained offline are the correction coefficients. Stored in the storage units 5-1 to 5-M.
  • the temperature increase completion time of the loads 1-1 to 1-M is determined by the time from the start of temperature increase of the loads 1-1 to 1-M until the target temperature is reached.
  • the time from the start of raising the temperature to reaching the target temperature is a value determined by the power consumption of the load, the heat capacity, the characteristics of heat dissipation, and the like. For this reason, although the temperature increase completion time of the loads 1-1 to 1-M can be delayed, it cannot be accelerated unless the design of the power control device is changed. Therefore, in the first embodiment, the electric power supplied to the other loads is reduced based on the temperature increase completion time of the load having the longest time from the start of temperature increase until reaching the target temperature.
  • Control is performed so that the temperature rise completion times of all the loads 1-1 to 1-M are substantially equal to each other. Therefore, to set the correction coefficient h m where the time from the start heating to reach the target temperature according to the longest load 1, the correction coefficient times according to a short load from start heating to reach the target temperature as h m, it is set to a small value (a value of 1 or less).
  • a correction coefficient h m of time according to the longest load from start heating to reach the target temperature may be set to a value other than 1. If you set the correction coefficient h m where the time from the start heating to reach the target temperature according to the longest load to a value other than 1, the correction coefficient h m according to the load, the target temperature from the start Atsushi Nobori the value obtained by normalizing the correction factor h m of time according to the longest load to reach.
  • the peak power suppression unit 8 When the peak power suppression unit 8 receives the corrected target power value X mn ′ from the target power value correction unit 7-m in the n-th control cycle, the peak power suppression unit 8 loads 1 ⁇ according to the corrected target power value X mn ′. A control signal for controlling power supplied to m in a time-sharing manner is output to the power supply on / off device 9-m (step ST4). However, the peak power suppression unit 8 supplies power simultaneously when the total amount of power supplied to the loads 1-1 to 1-M exceeds a preset power upper limit value s J in the nth control cycle. Implement peak power suppression control to reduce the number of loads.
  • the average value of the power supplied to the load 1-m is the corrected target power value X mn ′ within a sufficiently long time.
  • a control signal for controlling on / off of power supplied to the load 1-m is output to the power supply on / off device 9-m so as to match.
  • step ST5 When the power supply on / off devices 9-1 to 9-M receive a control signal from the peak power suppression unit 8 in the nth control cycle, the power supply on / off devices 9-1 to 9-M turn on / off the power supplied to the load 1-m according to the control signal. / Off) is performed (step ST5).
  • FIG. 5 is without multiplying the correction coefficient h m with respect to the target power value X mn load 1-m, the load 1-m heated (hereinafter, referred to as "collective heating") of the temperature of the case of recording
  • FIG. 5 shows an example in which the target temperature of each load 1-m is different.
  • FIG. 6 is an explanatory diagram showing a record example of the maximum power for each power supply cycle when the load 1-m is collectively heated.
  • the maximum value of each phase of the electric power during temperature increase, the rating of each load for each phase It is the total power.
  • FIG. 7 shows an example in which the target temperature of each load 1-m is different.
  • FIG. 8 is an explanatory diagram showing a record example of the maximum power for each power cycle when the batch temperature rise and the peak power suppression control are performed. When peak power suppression control is performed, the maximum power per power cycle is suppressed to the power upper limit value or less, but the target power values X 1n to X Mn of all loads 1-1 to 1-M are uniformly reduced.
  • Figure 9 is an explanatory view showing a batch Atsushi Nobori of load 1-m, the multiplication of the correction coefficient h m, an example of recording the temperature of the load 1-m in the case of implementing the control peak power suppression.
  • FIG. 9 shows an example in which the target temperature of each load 1-m is different.
  • Figure 10 is an explanatory diagram showing an example of recording the maximum power of each power cycle in instances where the multiplication and the peak power suppression control of the load 1-m bulk heating and the correction coefficient h m of was performed.
  • Complete heating time of all the loads 1-1 ⁇ 1-M for the correction factor h m with respect to the target power value X mn are multiplied load 1-m is almost equal time.
  • FIG. 9 is an explanatory view showing a batch Atsushi Nobori of load 1-m, the multiplication of the correction coefficient h m, an example of recording the temperature of the load 1-m in the case of implementing the control peak power suppression.
  • FIG. 9 shows an example in which the target
  • the integrated power required to complete the temperature rise is compared with the case of only the batch temperature rise. About 4%.
  • the power consumption until the temperature increase is completed can be reduced by about 10%.
  • FIG. 11 is a flowchart showing the processing contents until the peak power suppression unit 8 calculates the power value adjustment coefficient.
  • FIG. 12 is a flowchart showing the processing contents for controlling the power supplied to the load by the peak power suppression unit 8.
  • the output power measuring unit 21 of the peak power suppressing unit 8 includes a voltage measuring unit that measures the voltage V m (n ⁇ 1) applied to the load 1-m, and a current I m (n that flows through the load 1-m. -1) and current measuring means for measuring, and in the (n-1) th control cycle, the voltage V m (n-1) measured by the voltage measuring means and the current measuring means From the measured current I m (n ⁇ 1) , a power measurement value q m (n ⁇ 1) tilde, which is the value of the power supplied to the load 1-m, is calculated at the beginning of the nth control cycle (FIG. 11). Step ST11).
  • the on-power estimation unit 22 stores the power measurement value measured by the output power measurement unit 21 when power is supplied to the loads 1-1 to 1-M (stores the power measurement value for each load).
  • the power measurement value qm (n-1) tilde calculated at the beginning of the nth control cycle is not zero (the load 1-m is supplied with power).
  • the stored power measurement value is updated (step ST12). If the power measurement value q m (n-1) tilde measured in the (n-1) th control cycle is zero, the stored power measurement value is not updated. Further, the on-power estimation unit 22 supplies power to the load 1-m during the unit time of the n-th control cycle based on the stored on-power measurement value in the n-th control cycle.
  • the power value in this case is estimated at the beginning of the n-th control cycle, and the power estimated value q mon tilde is output to the on / off device control unit 30 (step ST12).
  • the power measurement value q m (n ⁇ 1) tilde calculated at the beginning of the nth control cycle is used as the load 1 Output to the on / off device control unit 30 as an estimated power value q mon tilde of ⁇ m.
  • the power measurement value q m (n ⁇ 2) tilde calculated at the beginning of the (n ⁇ 1) th control cycle is output to the on / off device control unit 30 as the power estimation value q mon tilde of the load 1-m.
  • the measured power adjustment unit 28 Upon receiving the power measurement value q m (n ⁇ 1) tilde calculated at the beginning of the nth control cycle, the measured power adjustment unit 28 receives the power value adjustment coefficient K 2 ( n ⁇ 1) th control cycle. n-1) (power measurement which will be described later) for the power value adjusting coefficient K n q m (n-1 ) is multiplied to the tilde, adjusts its power measurement q m (n-1) tilde, The adjusted power measurement value q m (n-1) 'tilde is output to the intermediate integrated power value calculation unit 29 (step ST13).
  • the subtractor 29a-m of the intermediate integrated power value calculation unit 29 receives the adjusted power measurement value q m (n-1) 'tilde from the measurement power adjustment unit 28 in the nth control cycle
  • the value after passing through the buffer (Z ⁇ 1 ) 29c-m meaning a time shift, that is, the intermediate integrated power value s m (n ⁇ 1) hat calculated in the (n ⁇ 1) th control cycle is adjusted.
  • Step ST14 Power measurement value q m (n-1) 'By subtracting the tilde, the power difference integrated value s m (n-1) up to the (n-1) th control cycle is calculated, and the power difference integrated value s m (n-1) is output to the adjustment coefficient calculation integrated value calculation unit 23 and the adder 29b-m.
  • the adder 29b-m of the intermediate integrated power value calculation unit 29 has the power difference integrated value sm (n-1) until the subtractor 29a-m reaches the (n-1) th control cycle. Is calculated by adding the power difference integrated value s m (n ⁇ 1) and the corrected target power value X mn ′ output from the target power value correction unit 7-m, so that the nth control cycle is calculated.
  • the intermediate integrated power value s mn hat at is calculated, and the intermediate integrated power value s mn hat is output to the on / off device controller 30 and the buffer (Z ⁇ 1 ) 29c-m (step ST16).
  • the buffer (Z -1) 29c-m of Z -1 is an operator refers to the time shift to the previous, intermediate accumulated power value s m (n whose output is calculated in n-1 control cycle -1) A hat.
  • the on / off device control unit 30 determines on / off of the power supply on / off device 9-m in the n-th control cycle (step ST17). Details of processing contents of the on / off device control unit 30 will be described later.
  • the adder 23a-m of the adjustment coefficient calculation integrated value calculation unit 23 supplies power from the subtracter 29a-m of the intermediate integrated power value calculation unit 29 to the (n-1) th control cycle.
  • the difference integrated value s m (n ⁇ 1) is received and the corrected target power value X mn ′ is received from the target power value correcting unit 7-m, the power difference integrated value s m (n ⁇ 1) and the corrected power difference value are corrected.
  • the total adjustment coefficient calculation integrated value calculation unit 24 sends the adjustment coefficient calculation integrated value s 1n 'hat to s from the adjustment coefficient calculation integrated value calculation unit 23.
  • the adjustment coefficient calculation integrated value s 1n ′ hat to s Mn ′ hat is calculated as a total adjustment coefficient calculation integrated value ⁇ s n ′, and the total adjustment coefficient calculation integrated value.
  • the ⁇ s n ′ hat is output to the power value adjustment coefficient calculation unit 26 (step ST29).
  • the adjustment coefficient calculation integrated value s mn ′ hat is the same value as the intermediate integrated power value s mn hat.
  • the adjustment coefficient calculation integrated value s mn ′ hat is not the adjustment coefficient calculation integrated value s mn ′ hat.
  • the intermediate integrated power value s mn hat may be received from the value calculating unit 29 and the total adjustment coefficient calculating integrated value ⁇ s n ′ hat may be calculated.
  • the power value adjustment coefficient calculation unit 26 When the power value adjustment coefficient calculation unit 26 receives the total adjustment coefficient calculation integration value ⁇ s n ′ hat from the total adjustment coefficient calculation integration value calculation unit 24 in the nth control cycle, the total adjustment coefficient calculation integration value The power upper limit s J stored in the power upper limit storage unit 25 is compared with ⁇ s n ′ hat (step ST20). If the total adjustment coefficient calculation integrated value ⁇ s n ′ hat is larger than the power upper limit value s J ( ⁇ s n ′ hat> s J ), the power value adjustment coefficient calculation unit 26 calculates the total adjustment coefficient calculation integrated value ⁇ s n.
  • step ST22 If the hat is smaller than the power upper limit value s J (? S n' a total adjustment coefficient calculating integrated value? S n hat ⁇ s J), and set to "1" to the power value adjustment factor K n, the power and it outputs the value adjustment factor K n in the buffer (Z -1) 27 (step ST22).
  • the power value adjustment coefficient K n ⁇ 1 calculated at the beginning of the ( n ⁇ 1 ) th control cycle is used in the processing of the next control cycle as indicated by the buffer (Z ⁇ 1 ) 27.
  • the power value adjustment coefficient K (n ⁇ 1) in the (n ⁇ 1) th control cycle is output to the measured power adjustment unit 28.
  • Power value adjustment factor K n which is set to calculate or "1" by the power value adjusting coefficient calculation unit 26 is stored for use in the next control cycle (step ST23).
  • the on / off device control unit 30 clears a total power estimated value ⁇ q on, which will be described later, as an initialization process for each control cycle (step ST31).
  • the on-off device control unit 30 When the on-off device control unit 30 receives the intermediate integrated power values s 1n hat to s Mn hat at the loads 1-1 to 1-M from the intermediate integrated power value calculation unit 29 in the n-th control cycle, The integrated power values s 1n hat to s Mn hat are compared, the M intermediate integrated power values s 1n hat to s Mn hat are sorted in descending order, and the load 1 ⁇ In order from m, the power supply is set as a target for determining on / off of power supply (hereinafter simply referred to as “power on / off control target”).
  • the load 1-m having the largest intermediate integrated power value s mn hat is set as a load for determining on / off of power supply.
  • the power on / off control target is “load 1 ⁇ Set in the order of “1” ⁇ “Load 1-2” ⁇ “Load 1-3”.
  • the power on / off control target is “load 1-3” ⁇ “load 1-1” " ⁇ ” Load 1-2 "in this order.
  • the on / off device control unit 30 compares the intermediate integrated power value s mn hat of the load 1-m with a predetermined threshold value s th (step ST33). ), When the intermediate integrated power value s mn hat of the load 1-m is larger than the predetermined threshold value s th , the power estimated value q mon tilde of the load 1-m is added to the total power estimated value ⁇ q on described later The calculated on- off determination total power estimated value ⁇ q on ′ is calculated (step ST34).
  • the on / off device control unit 30 sets the load 1-m as a load candidate for turning on the supply of power
  • the intermediate integrated power value s mn hat of the load 1-m is larger than a predetermined threshold value s th (step ST33). Further, it is determined whether or not the on / off determination total power estimation value ⁇ q on ′ satisfies a power supply condition that does not become higher than the power upper limit value s J (step ST35). That is, it is determined whether the following formulas (9) and (10) are satisfied.
  • the on / off device control unit 30 When the equations (9) and (10) are satisfied, the on / off device control unit 30 satisfies the above power supply condition, so that the power supply on / off device 9-m of the load 1-m is turned on ( ON) (step ST36). As a result, power is supplied to the load 1-m.
  • the on / off device control unit 30 does not satisfy the above power supply condition when at least one of the equations (9) and (10) is not satisfied, and therefore the power supply on / off device 9-m of the load 1-m Control to the cut-off state (off) (step ST37). As a result, no power is supplied to the load 1-m.
  • the on / off device control unit 30 determines the sum of the power estimation values q mon tilde (hereinafter referred to as “total power estimation value ⁇ q on ”) of the loads 1-1 to 1-M estimated by the on power estimation unit 22 in the nth control cycle. Is calculated) (step ST38).
  • the on / off device control unit 30 sets the power on / off control target in order from the load 1-m related to the intermediate integrated power value having a large value, and performs the above control processing until the control for all the loads 1-m is completed. (Steps ST32 to ST38) are repeatedly performed (Step ST39).
  • the output target value A mn input by the output target value input unit 3 is stored in the reference power value storage unit 4 for each control cycle n.
  • the target power value calculation unit 6-m that calculates the target power value X mn of the load 1- m by multiplying the power value q m and the target power value calculation unit 6-m for each control cycle n are calculated.
  • the target power value X mn load 1-m was, by multiplying the correction coefficient h m stored by the correction coefficient storage unit 5-m, corrects the target power value X mn load 1-m
  • a target power value correction unit 7-m is provided, and the power supplied to the load 1-m is controlled in a time-sharing manner according to the corrected target power value X mn ′ output from the target power value correction unit 7-m. Because all the loads 1-1 to 1-M are at the target temperature Align the time required to reach an effect that it is possible to suppress wasteful consumption of energy.
  • the peak power suppression unit 8 exceeds the preset power upper limit value s J during the unit time of the control cycle n when the total amount of power supplied to the loads 1-1 to 1-M exceeds a preset power upper limit value s J . Since peak power suppression control is performed to suppress the number of loads to be supplied, the total amount of power supplied to the loads 1-1 to 1-M per unit time can be suppressed to the power upper limit value s J or less. There is an effect that can be done.
  • FIG. FIG. 13 is a block diagram showing a power control apparatus according to Embodiment 2 of the present invention.
  • the output target value correction units 41-1 to 41-M are configured by, for example, multipliers, and the output target value A mn input by the output target value input unit 3 at the beginning of the control cycle n for each control cycle n. respect, by multiplying the correction coefficient h m stored by the correction coefficient storage unit 5-m, and carries out a process of correcting the output target value a mn.
  • the target power value calculation units 42-1 to 42-M are composed of, for example, multipliers, and output target values corrected by the output target value correction unit 41-m at the beginning of the control cycle n for each control cycle n.
  • a process of calculating the target power value X mn ′ of the load 1-m is performed by multiplying A mn by the reference power value q m stored in the reference power value storage unit 4.
  • the target power value calculating means is composed of the output target value correcting units 41-1 to 41-M and the target power value calculating units 42-1 to 42-M.
  • an output target value correction unit 41-m and a target power value calculation unit 42-m are mounted instead of the target power value calculation unit 6-m and the target power value correction unit 7-m.
  • the same effect can be obtained.
  • the processing contents of the output target value correction unit 41-m and the target power value calculation unit 42-m will be described below.
  • Target output value correcting unit 41-m in the n-th control cycle, receives the output target value A mn from the output target value input section 3, against the output target value A mn, the correction coefficient storage unit 5-m by multiplying the correction coefficient h m stored by, and correcting the output target value a mn, and outputs the output target value a mn of the corrected target power value calculating unit 42-m.
  • a mn ' A mn ⁇ h m (11)
  • Target power value calculating unit 42-m in the n-th control cycle, 'receives the output target value A mn' after the correction target output value A mn after correction from the output target value correcting unit 41-m based on the By multiplying the reference power value q m stored in the power value storage unit 4, the target power value X mn ′ of the load 1-m is calculated, and the target power value X mn ′ is sent to the peak power suppression unit 8. Output.
  • X mn ' A mn ' ⁇ q m (12) Since the contents of the other processing units are the same as those in the first embodiment, description thereof is omitted.
  • FIG. 14 is a block diagram showing a power control apparatus according to Embodiment 3 of the present invention.
  • the reference power value correction units 51-1 to 51-M are composed of, for example, multipliers, and the reference power value q stored in the reference power value storage unit 4 at the beginning of the control cycle n for each control cycle n. respect m, the correction coefficient storage unit 5-m by multiplying the correction coefficient h m stored by, and corrects the reference power value q m, the target power value calculating a reference power value q m 'of the corrected The process of outputting to the unit 52-m is performed.
  • the target power value calculation units 52-1 to 52-M are composed of, for example, multipliers, and the output target value A mn input by the output target value input unit 3 at the beginning of the control cycle n for each control cycle n. Is multiplied by the corrected reference power value q m ′ output from the reference power value correction unit 51-m, thereby performing a process of calculating the target power value X mn ′ of the load 1-m.
  • the reference power value correction units 51-1 to 51-M and the target power value calculation units 52-1 to 52-M constitute target power value calculation means.
  • a reference power value correction unit 51-m and a target power value calculation unit 52-m are mounted instead of the target power value calculation unit 6-m and the target power value correction unit 7-m.
  • the same effect can be obtained.
  • the processing contents of the reference power value correction unit 51-m and the target power value calculation unit 52-m will be described below.
  • Reference power value correcting unit 51-m in the n-th control cycle, the reference power value q m stored by the reference power value storing unit 4, correction stored by the correction coefficient storage unit 5-m by multiplying the coefficients h m, and corrects the reference power value q m, and outputs the reference power value q m 'of the corrected target power value calculating unit 52-m.
  • h m ' q m xh m (13)
  • the target power value calculation unit 52-m When the target power value calculation unit 52-m receives the output target value A mn from the output target value input unit 3 in the nth control cycle, the target power value calculation unit 52-m outputs the output target value A mn from the reference power value correction unit 51-m. By multiplying the corrected reference power value q m ′, the target power value X mn ′ of the load 1-m is calculated, and the target power value X mn ′ is output to the peak power suppression unit 8.
  • X mn ' A mn ⁇ q m' (14) Since the contents of the other processing units are the same as those in the first embodiment, description thereof is omitted.
  • the reference power value correcting unit 51-m is, corrects the reference power value q m by multiplying the correction coefficient h m with respect to the reference power value q m, the corrected reference power value q
  • m ′ is output to the target power value calculation unit 52-m
  • the reference power value correction unit 51-m has previously corrected the reference power value q m ′ corrected by the reference power value correction unit 51-m.
  • the corrected reference power value q m ′ may be output to the target power value calculation unit 52-m.
  • the correction coefficient storage unit 5-m and the reference power value correction unit 51-m can be omitted.
  • Embodiment 4 FIG.
  • the PID controller 2-m outputs the output target value A mn of the power supplied to the load 1-m to the power control device every control cycle n. multiplying the correction factor h m for the output target value a mn, sometimes proportional gain in the PID control calculation of PID adjusting meter 2-m is changed. Therefore, as shown in FIG. 15, and multiplied by the proportional gain in the PID control calculation of PID adjusting meter 2-m, the inverse of the correction coefficients h m stored by the correction coefficient storage unit 5-m, the multiplication The result may be output as an output target value A mn to the power control apparatus. Thereby, since the change of the proportional gain in PID control calculation can be prevented, favorable control becomes possible.
  • FIG. 16 is an explanatory diagram showing an example of recording the temperature of the load 1-m in the case of inverse of the correction coefficient h m is multiplied.
  • FIG. 17 is an explanatory diagram showing an example of recording the maximum power of 1 per power cycle in the case where the inverse of the correction coefficient h m is multiplied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

 出力目標値入力部3により入力された出力目標値Amnを基準電力値記憶部4により記憶されている基準電力値qに乗算することで、負荷1-mの目標電力値Xmnを算出する目標電力値算出部6-mと、目標電力値算出部6-mにより算出された負荷1-mの目標電力値Xmnに対して、補正係数記憶部5-mにより記憶されている補正係数hを乗算することで、負荷1-mの目標電力値Xmnを補正する目標電力値補正部7-mとを設ける。

Description

電力制御装置及び電力制御方法
 この発明は、複数の電力制御対象(以後、単に「負荷」という)に供給する電力を時分割で制御する電力制御装置及び電力制御方法に関するものである。
 例えば、温度制御を行うPID調節計から出力される操作信号(目標値)に比例する電力を負荷に供給する電力制御装置が以下の特許文献1,2に開示されている。
 なお、負荷は電力制御対象であり、且つ温度制御対象であり、例えば、電力を熱に変換するヒータなどと温度制御対象を組み合わせたものが該当する。
 この電力制御装置では、電源波形の半サイクルの整数倍に相当する時間(以下、「単位時間」と称する)毎に、負荷に供給する電力の入切(オン/オフ)を切り換える制御を行うものであり、電力を供給する時間であるオン時間と、電力を供給しない時間であるオフ時間との時間的割合を制御することで、PID調節計から出力される操作信号(目標値)に比例する電力量を負荷に供給するようにしている。
 具体的には、例えば、PID調節計から出力される操作信号が示す目標値を負荷率X(0≦X≦1)で表して、その負荷率Xから電力供給帰還信号Gを減算するとともに、その減算値Y(=X-G)を積算し、その積算値ΣYが基準値を超えない状況下では、負荷に対する電力の供給をオフする一方、その積算値ΣYが基準値を超えると、負荷に対する電力の供給をオンするようにしている。
 ここで、電力供給帰還信号Gは、負荷に対する電力の供給がオフされている状態では“0”の値に設定され、負荷に対する電力の供給がオンされている状態では“1”の値に設定される信号である。ただし、特許文献2では、電源電圧によって、負荷に対する電力の供給がオンされている時の値を“1”にして、電源電圧変動の影響を受けないように補正している。
 また、以下の特許文献3~5には、複数の負荷に供給する電力を同時に時分割出力制御する際、各単位時間において、同時に電力の供給を受ける負荷の個数を抑制することにより、各単位時間における各負荷に供給する電力の総和が、予め設定された電力上限値(例えば、電源設備や装置の諸条件などに基づいて設定されている電力の上限値)を超えないようにしている。以下、このような制御を「ピーク電力抑制制御」と称する。
 因みに、各単位時間における全負荷に対する総供給電力量は、電力の供給がオフされている負荷に対する電力供給量が“0”、電力の供給がオンされている負荷に対する電力供給量が“1”として計算される。また、特許文献5の方法では、予め設定されている各負荷のヒータなどの定格電力に基づいて算出した負荷に対する電力供給量の合計値が上限電力を超えないようにしている。
特許第3022051号公報 特許第3674951号公報 特許第3794574号公報 特許第4529153号公報 特開2011-205731号公報
 従来の電力制御装置は以上のように構成されているので、特許文献3~5に開示されているピーク電力抑制制御を実施すれば、各負荷に供給する目標電力値の総和が予め設定された電力上限値を超えないように抑えることはできる。しかし、従来の電力制御装置では、温度制御も含めた最適な電力供給という視点がなかったため、各負荷に供給する電力値は、各負荷の昇温開始から目標温度に到達するまでに要する時間を同じにすることを考慮せずに算出していた。このため、各負荷が目標温度に到達するまでに要する時間が異なることがある。この場合、先に目標温度に到達した負荷については、全ての負荷が目標温度に到達するまでの間、目標温度で待機させる必要があり、無駄なエネルギーを消費してしまう課題があった。
 この発明は上記のような課題を解決するためになされたもので、各負荷の制御温度が目標温度に到達するまでに要する時間を揃えて、無駄なエネルギーの消費を抑えることができる電力制御装置及び電力制御方法を得ることを目的とする。
 この発明に係る電力制御装置は、調節計から複数の負荷に供給する電力の出力目標値をそれぞれ入力する出力目標値入力部と、予め設定された基準電力値を記憶する基準電力値記憶部と、複数の負荷が昇温開始から目標温度に到達するまでに要する時間を揃えるために、複数の負荷における昇温開始から目標温度に到達するまでに要する時間を基準にして設定された複数の補正係数を記憶する補正係数記憶部と、出力目標値入力部により入力された出力目標値、基準電力値記憶部により記憶されている基準電力値及び補正係数記憶部により記憶されている補正係数を用いて、複数の負荷に供給する電力の値である目標電力値を算出する目標電力値算出手段とを設け、電力制御手段が、目標電力値算出手段により算出された目標電力値にしたがって複数の負荷に供給する電力を時分割で制御するようにしたものである。
 この発明に係る電力制御装置は、電力制御手段が、複数の負荷に供給する電力を時分割で制御する際、各々の単位時間中に、複数の負荷に対する電力の供給量の総和が予め設定された電力上限値を超える場合、同時に電力を供給する負荷の個数を抑えるピーク電力抑制制御を実施するようにしたものである。
 この発明に係る電力制御装置は、補正係数記憶部が、複数の負荷に供給する電力に係る補正係数として、昇温開始から目標温度に到達するまでの時間が短い負荷に供給する電力に係る補正係数ほど小さな値を記憶するようにしたものである。
 この発明に係る電力制御装置は、目標電力値算出手段が、負荷毎に、出力目標値入力部により入力された出力目標値と基準電力値記憶部により記憶されている基準電力値から、当該負荷に供給する電力の値である目標電力値を算出する目標電力値算出部と、負荷毎に、目標電力値算出部により算出された目標電力値に対して、補正係数記憶部により記憶されている補正係数を乗算することで、その目標電力値を補正する目標電力値補正部とから構成されているものである。
 この発明に係る電力制御装置は、目標電力値算出手段が、負荷毎に、出力目標値入力部により入力された出力目標値に対して、補正係数記憶部により記憶されている補正係数を乗算することで、その出力目標値を補正する出力目標値補正部と、負荷毎に、出力目標値補正部により補正された目標値と基準電力値記憶部により記憶されている基準電力値から、当該負荷に供給する電力の値である目標電力値を算出する目標電力値算出部とから構成されているものである。
 この発明に係る電力制御装置は、目標電力値算出手段が、負荷毎に、基準電力値記憶部により記憶されている基準電力値に対して、補正係数記憶部により記憶されている補正係数を乗算することで、その基準電力値を補正する基準電力値補正部と、負荷毎に、出力目標値入力部により入力された出力目標値と基準電力値補正部により補正された基準電力値から、当該負荷に供給する電力の値である目標電力値を算出する目標電力値算出部とから構成されているものである。
 この発明に係る電力制御方法は、出力目標値入力部が、調節計から複数の負荷に供給する電力の出力目標値をそれぞれ入力する出力目標値入力処理ステップと、目標電力値算出手段が、出力目標値入力処理ステップで入力された出力目標値と、予め設定された基準電力値と、複数の負荷が昇温開始から目標温度に到達するまでに要する時間を揃えるために、複数の負荷における昇温開始から目標温度に到達するまでに要する時間を基準にして設定された複数の補正係数とを用いて、複数の負荷に供給する電力の値である目標電力値を算出する目標電力値算出処理ステップと、ピーク電力抑制部が、目標電力値算出処理ステップで算出された複数の目標電力値の総和が予め設定された電力上限値以下であれば、その複数の目標電力値を出力し、その総和が電力上限値より高ければ、その総和が電力上限値以下になるように複数の目標電力値を下げてから、複数の目標電力値を出力するピーク電力抑制処理ステップと、電力制御手段が、目標電力値算出処理ステップで算出された目標電力値にしたがって複数の負荷に供給する電力を時分割で制御する電力制御処理ステップとを備えるようにしたものである。
 この発明によれば、各負荷の制御温度が目標温度に到達するまでに要する時間を揃えて、無駄なエネルギーの消費を抑えることができる効果がある。
この発明の実施の形態1による電力制御装置を示す構成図である。 この発明の実施の形態1による電力制御装置の処理内容(電力制御方法)を示すフローチャートである。 この発明の実施の形態1による電力制御装置のピーク電力抑制部8を示す構成図である。 電力制御装置の処理タイミングを示す説明図である。 負荷1-mの目標電力値Xmnに対して補正係数hを乗算せずに、負荷1-mを昇温した場合の温度の記録例を示す説明図である。 負荷1-mが一括昇温された場合における1電源サイクル毎の最大電力の記録例を示す説明図である。 負荷1-mの目標電力値Xmnに対して補正係数hを乗算せずに、負荷1-mを一括昇温するとともに、ピーク電力抑制制御を実施した場合の温度の記録例を示す説明図である。 一括昇温とピーク電力抑制制御が実施された場合における1電源サイクル毎の最大電力の記録例を示す説明図である。 負荷1-mの一括昇温と、補正係数hの乗算と、ピーク電力抑制制御とを実施した場合の負荷1-mの温度の記録例を示す説明図である。 負荷1-mの一括昇温と補正係数hの乗算とピーク電力抑制制御が実施された場合における1電源サイクル毎の最大電力の記録例を示す説明図である。 ピーク電力抑制部8が電力値調整係数を算出するまでの処理内容を示すフローチャートである。 ピーク電力抑制部8が負荷に供給する電力を制御する処理内容を示すフローチャートである。 この発明の実施の形態2による電力制御装置を示す構成図である。 この発明の実施の形態3による電力制御装置を示す構成図である。 この発明の実施の形態4による電力制御装置を示す構成図である。 補正係数hの逆数が乗算されている場合の負荷1-mの温度の記録例を示す説明図である。 補正係数hの逆数が乗算されている場合における1電源サイクル毎の最大電力の記録例を示す説明図である。
実施の形態1.
 図1はこの発明の実施の形態1による電力制御装置を示す構成図である。
 図1の電力制御装置では、M(Mは2以上の整数)個の負荷に対する電力の供給を時分割で制御する例を説明する。
 即ち、図1の電力制御装置は、電源波形の半サイクルの整数倍に相当する時間(以下、「単位時間」と称する)毎に、負荷に供給する電力を入切(オン/オフ)する制御を行う(以後、単に「電力制御」という)ものであり、電力を供給する時間であるオン時間と、電力を供給しない時間であるオフ時間との時間的割合を制御することで、PID調節計から出力される操作信号(電力の目標値)に比例する電力量を負荷に供給するものである。
 以下、単位時間毎に負荷に供給する電力を入切(オン/オフ)する制御を繰り返すサイクルを「制御サイクル」と称する。
 なお、PID調節計がPID制御する温度制御サイクルと、電力制御装置が電力を制御する電力制御サイクルとは同じでない場合が多いが、ここでは、説明を簡単にするために、両者が同じ制御サイクルの場合について説明する。一般的には、PID制御サイクルの方が周期が長いので、1PID制御サイクルの中で、複数回の電力制御サイクルが処理されることになる。
 図1において、負荷1-1~1-Mは電力制御装置の負荷であり、例えば、電力を熱に変換するヒータなどと温度制御対象を組み合わせたものが該当する。また、負荷は電力制御対象であり、且つ温度制御対象である。
 PID調節計2-1~2-Mは電力制御装置の外部機器であり、制御サイクルn毎に、負荷1-mに供給する電力の出力目標値Amnを電力制御装置に出力する機器である。
 負荷1-mに供給する電力の出力目標値Amnとしては、例えば、負荷1-mの定格電力に対する目標電力のパーセントで表される割合などが想定される。
 なお、mは負荷の負荷1-1~1-Mを特定する番号であり、m=1,2,・・・,Mである。
 また、nは負荷1-1~1-Mに供給する制御サイクルを特定する番号であり、1つの制御サイクルの時間は、上記の単位時間と一致する。ただし、n=1,2,・・・である。
 ここでは、PID調節計2-mが実装されている例を示しているが、負荷1-mの温度を調節する調節計であればよく、PID調節計に限るものではない。
 出力目標値入力部3はPID調節計2-1~2-Mに対するインタフェース機器であり、PID調節計2-mから出力された出力目標値Amnを入力する処理を実施する。
 基準電力値記憶部4は例えばRAMなどのメモリから構成されており、予め設定された負荷1-mの基準電力値q(例えば、負荷1-mの定格電力)を記憶している。
 補正係数記憶部5-1~5-Mは負荷1-1~1-Mが目標温度に到達するまでに要する時間を揃えるために、負荷1-1~1-Mにおける昇温開始から目標温度に到達するまでに要する時間を基準にして設定された補正係数hを記憶している。
 目標電力値算出部6-1~6-Mは例えば乗算器などから構成されており、制御サイクルn毎に制御サイクルnの冒頭で、出力目標値入力部3により入力された出力目標値Amnを基準電力値記憶部4により記憶されている基準電力値qに乗算することで、負荷1-mの目標電力値Xmnを算出する処理を実施する。
 目標電力値補正部7-1~7-Mは例えば乗算器などから構成されており、制御サイクルn毎に制御サイクルnの冒頭で、目標電力値算出部6-mにより算出された負荷1-mの目標電力値Xmnに対して、補正係数記憶部5-mにより記憶されている補正係数hを乗算することで、負荷1-mの目標電力値Xmnを補正し、補正後の目標電力値Xmn’をピーク電力抑制部8に出力する処理を実施する。
 なお、目標電力値算出部6-1~6-M及び目標電力値補正部7-1~7-Mから目標電力値算出手段が構成されている。
 ピーク電力抑制部8は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されており、目標電力値補正部7-1~7-Mから出力された補正後の目標電力値Xmn’にしたがって負荷1-mに供給する電力を時分割で制御する処理部であり、制御サイクルnの単位時間中に、負荷1-1~1-Mに対する電力の供給量の総和が予め設定された電力上限値sを超える場合、同時に電力を供給する負荷の個数を抑えるピーク電力抑制制御を実施する。
 電力供給オンオフ機器9-1~9-Mは例えばサイリスタなどから構成されており、ピーク電力抑制部8の指示の下、負荷1-mに供給する電力の入切(オン/オフ)を制御サイクル毎(単位時間毎)に行う処理を実施する。
 なお、ピーク電力抑制部8及び電力供給オンオフ機器9-1~9-Mから電力制御手段が構成されている。
 図1の例では、電力制御装置の構成要素である出力目標値入力部3、基準電力値記憶部4、補正係数記憶部5-1~5-M、目標電力値算出部6-1~6-M、目標電力値補正部7-1~7-M、ピーク電力抑制部8及び電力供給オンオフ機器9-1~9-Mのそれぞれが専用のハードウェアで構成されているものを想定しているが、電力制御装置の全部又は一部がコンピュータで構成されていてもよい。
 例えば、電力制御装置の全部をコンピュータで構成する場合、基準電力値記憶部4及び補正係数記憶部5-1~5-Mをコンピュータのメモリ上に構成するとともに、出力目標値入力部3、目標電力値算出部6-1~6-M、目標電力値補正部7-1~7-M、ピーク電力抑制部8及び電力供給オンオフ機器9-1~9-Mの処理内容を記述しているプログラムをコンピュータのメモリに格納し、当該コンピュータのCPUが当該メモリに格納されているプログラムを実行するようにすればよい。
 図2はこの発明の実施の形態1による電力制御装置の処理内容(電力制御方法)を示すフローチャートである。
 図3はこの発明の実施の形態1による電力制御装置のピーク電力抑制部8を示す構成図である。
 図3において、出力電力測定部21は例えば負荷1-1~1-Mに印加されている電圧Vmnを計測する電圧測定手段と、負荷1-1~1-Mに流れている電流Imnを計測する電流測定手段とから構成されており、その電圧Vmnと電流Imnから制御サイクルnで負荷1-mに供給された電力の値である電力測定値qmnチルダを算出する処理を実施する。
 図3では、電力測定値として、“~”の記号が上部に付されているqmnを表記しているが、電子出願の関係上、明細書の文章中では、“~”の記号をqmnの上部に付することができないため、「qmnチルダ」のように表記している。
 制御サイクルn毎に、制御サイクルnの冒頭で出力電力測定部21から出力される値は、前回の制御サイクル(n-1)で測定された電力測定値qm(n-1)チルダとなる。
 オン電力推定部22は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されており、以前、負荷1-mに対して電力が供給されているときに、出力電力測定部21により測定されたオン時の電力測定値を記憶しておき、その電力測定値に基づいて、制御サイクルnの単位時間中に、負荷1-mに対して電力が供給された場合の電力値を推定し、その電力推定値qmonチルダを出力する処理を実施する。
 調整係数算出用積算値算出部23は加算器23a-1~23a-Mから構成されており、中間積算電力値算出部29により前回の制御サイクル(n-1)で算出された電力差積算値sm(n-1)と、制御サイクルnの冒頭で目標電力値補正部7-mから出力された補正後の目標電力値Xmn’を加算することで、負荷1-mの調整係数算出用積算値smn’ハットを算出する処理を実施する。
 図3では、調整係数算出用積算値として、“^”の記号が上部に付されているsmn’を表記しているが、電子出願の関係上、明細書の文章中では、“^”の記号をsmn’の上部に付することができないため、「smn’ハット」のように表記している。
 総調整係数算出用積算値算出部24は調整係数算出用積算値算出部23により算出された負荷1-1~1-Mの調整係数算出用積算値smn’ハットの総和である総調整係数算出用積算値Σs’ハットを算出する処理を実施する。
 電力上限値記憶部25は例えばRAMなどのメモリから構成されており、予め設定された電力上限値sを記憶している。
 電力値調整係数算出部26は例えばCPUを実装している半導体集積回路、あるいは、ワンチップマイコンなどから構成されており、総調整係数算出用積算値算出部24により算出された総調整係数算出用積算値Σs’ハットと電力上限値記憶部25により記憶されている電力上限値sを比較し、その総調整係数算出用積算値Σs’ハットが電力上限値sより大きければ(Σs’ハット>s)、その総調整係数算出用積算値Σs’ハットと電力上限値sの比K(=Σs’ハット/s)を電力値調整係数Kとして算出し、その総調整係数算出用積算値Σs’ハットが電力上限値sより小さければ(Σs’ハット≦s)、その電力値調整係数Kを“1”に設定する処理を実施する。
 バッファ(Z-1)27は前回への時間シフトを意味する演算子として作用し、前回の制御サイクル(n-1)において、電力値調整係数算出部26の電力値調整係数算出処理n-1で算出された電力値調整係数K(n-1)を制御サイクルnの測定電力調整部28で使用することを示している。
 測定電力調整部28は例えば乗算器から構成されており、出力電力測定部21から出力された前回の制御サイクル(n-1)で測定された電力測定値qm(n-1)チルダに対して、その電力値調整係数K(n-1)を乗算することで、その電力測定値qm(n-1)チルダを調整する処理を実施する。
 中間積算電力値算出部29は減算器29a-1~29a-M、加算器29b-1~29b-Mやバッファ(Z-1)29c-1~29c-Mから構成されており、前回の制御サイクル(n-1)で算出している中間積算電力値Sm(n-1)ハットから測定電力調整部28により調整された電力測定値qm(n-1)’チルダを減算することで、前回の制御サイクル(n-1)での電力差積算値sm(n-1)(=sm(n-1)ハット-qm(n-1)’チルダ)を算出するとともに、その電力差積算値Sm(n-1)と目標電力値補正部7-mから出力された補正後の目標電力値Xmn’を加算することで、最新の中間積算電力値smnハットを算出する処理を実施する。
 オンオフ機器制御部30は負荷1-1~1-Mの中で、中間積算電力値算出部29により算出された中間積算電力値smnハットが大きい負荷1-mから順番に、中間積算電力値算出部29により算出された負荷1-1~1-Mにおける最新の中間積算電力値smnハットの中で、中間積算電力値smnハットが大きい負荷1-mから順番に、当該負荷1-mの中間積算電力値smnハットが所定の閾値sthより大きく、かつ、オン電力推定部22により推定された負荷1-mの電力推定値qmonチルダと、オン電力推定部22により推定された負荷1-1~1-Mの電力推定値q1onチルダ~qMonチルダであって、次の制御サイクルでオンすると決定している負荷の電力推定値qmonチルダとの総和が電力上限値sより高くならない電力供給条件を満足すれば、当該負荷1-mの電力供給オンオフ機器9-mを入り状態(オン)に制御し、その電力供給条件を満足しなければ、当該負荷1-mの電力供給オンオフ機器9-mを切り状態(オフ)に制御する処理を繰り返し行い、総ての負荷について次の制御サイクルにおける電力供給オンオフ機器9の入切を制御する。
 次に動作について説明する。
 ここでは、n回目の制御サイクルでの電力制御について説明する。図4は電力制御装置の処理タイミングを示す説明図である。n回目の制御サイクルの処理は(n-1)回目の制御サイクルとn回目の制御サイクルの境目付近で実行されることを示している。以後、n回目の制御サイクルの冒頭で、n回目の制御サイクルの処理を実施する場合で動作の説明をする。
 なお、電力供給オンオフ機器9-m(m=1,2,・・・,M)は、ピーク電力抑制部8におけるオンオフ機器制御部30の指示の下で、負荷1-mに供給する電力の入切(オン/オフ)を制御するが、n回目の制御サイクルの処理で、負荷1-mの電力供給オンオフ機器9-mに対するオンオフ機器制御部30の指示がオンであれば、n回目の制御サイクル中、負荷1-mに電力が供給される。
 一方、n回目の制御サイクルの処理で、負荷1-mの電力供給オンオフ機器9-mに対するオンオフ機器制御部30の指示がオフであれば、n回目の制御サイクル中、負荷1-mには電力が供給されない。
 PID調節計2-1~2-Mは、制御サイクルn毎に、負荷1-mに供給する電力の出力目標値Amnを電力制御装置に出力する。
 ここで、負荷1-mに供給する電力の出力目標値Amnとして、負荷1-mの定格電力に対する目標電力のパーセントで表される割合などが想定されるが、この実施の形態1では、説明の便宜上、例えば、負荷1-mに対して、定格電力の50%を供給する場合には、出力目標値Amnとして0.5が出力され、負荷1-mに対して、定格電力の80%を供給する場合には、出力目標値Amnとして0.8が出力されるものとする。
 出力目標値入力部3は、n回目の制御サイクルの冒頭において、調節計2-mから出力された負荷1-mに供給する電力の出力目標値Amnを入力し、その出力目標値Amnを目標電力値算出部6-mに出力する(図2のステップST1)。
 目標電力値算出部6-mは、n回目の制御サイクルにおいて、出力目標値入力部3から出力目標値Amnを受けると、その出力目標値Amnを対して、基準電力値記憶部4により記憶されている基準電力値qを乗算することで、負荷1-mの目標電力値Xmnを算出し、その目標電力値Xmnを目標電力値補正部7-mに出力する(ステップST2)。
 ここでは、基準電力値qが、負荷1-mの定格電力であるものを想定しているが、負荷1-mの定格電力に限るものではない。
   Xmn=Amn×q                    (1)
 目標電力値補正部7-mは、n回目の制御サイクルにおいて、目標電力値算出部6-mから負荷1-mの目標電力値Xmnを受けると、負荷1-mの目標電力値Xmnに対して、補正係数記憶部5-mにより記憶されている補正係数hを乗算することで、負荷1-mの目標電力値Xmnを補正し、補正後の目標電力値Xmn’をピーク電力抑制部8に出力する(ステップST3)。
   Xmn’=Xmn×h                   (2)
 ここで、補正係数h~hは、負荷1-1~1-Mが目標温度に到達するまでに要する時間(昇温完了時間)を揃えるために、負荷1-1~1-Mにおける昇温開始から目標温度に到達するまでに要する時間を基準にして設定された係数である。
 例えば、オフラインでの実験で、負荷1-1~1-Mの昇温完了時間が同じなる補正係数h~hが求められ、オフラインで求められた補正係数h~hが補正係数記憶部5-1~5-Mに記憶される。
 なお、負荷1-1~1-Mの昇温完了時間は、負荷1-1~1-Mの昇温開始から目標温度に到達するまでの時間によって決まり、負荷1-1~1-Mの昇温開始から目標温度に到達するまでの時間は、負荷の消費電力、熱容量及び放熱の特性などによって決まる値である。
 このため、負荷1-1~1-Mの昇温完了時間は、遅くすることはできても、電力制御装置の設計を変更しない限り、早めることはできない。
 したがって、この実施の形態1では、昇温開始から目標温度に到達するまでの時間が一番長い負荷の昇温完了時間を基準にして、その他の負荷に供給する電力を小さくすることで、その他の負荷の昇温完了時間を遅らせ、全ての負荷1-1~1-Mの昇温完了時間がほぼ等しい時間になるように制御する。
 そこで、昇温開始から目標温度に到達するまでの時間が一番長い負荷に係る補正係数hを1に設定し、昇温開始から目標温度に到達するまでの時間が短い負荷に係る補正係数hほど、小さな値(1以下の値)に設定している。
 ここでは、昇温開始から目標温度に到達するまでの時間が一番長い負荷に係る補正係数hを1に設定しているが、全ての負荷1-1~1-Mに係る補正係数hの間の比率に本質的な意味があるため、昇温開始から目標温度に到達するまでの時間が一番長い負荷に係る補正係数hを1以外の値に設定してもよい。
 昇温開始から目標温度に到達するまでの時間が一番長い負荷に係る補正係数hを1以外の値に設定した場合、各負荷に係る補正係数hとしては、昇温開始から目標温度に到達するまでの時間が一番長い負荷に係る補正係数hで正規化した値を設定する。
 ピーク電力抑制部8は、n回目の制御サイクルにおいて、目標電力値補正部7-mから補正後の目標電力値Xmn’を受けると、補正後の目標電力値Xmn’にしたがって負荷1-mに供給する電力を時分割で制御する制御信号を電力供給オンオフ機器9-mに出力する(ステップST4)。
 ただし、ピーク電力抑制部8は、n回目の制御サイクルにおいて、負荷1-1~1-Mに対する電力の供給量の総和が予め設定された電力上限値sを超える場合、同時に電力を供給する負荷の個数を抑えるピーク電力抑制制御を実施する。
 各々の制御サイクルにおいて、同時に電力を供給する負荷の個数を抑えても、十分に長い時間中では、負荷1-mに供給される電力の平均値が、補正後の目標電力値Xmn’と一致するように、負荷1-mに供給する電力の入切(オン/オフ)を制御する制御信号を電力供給オンオフ機器9-mに出力する。
 電力供給オンオフ機器9-1~9-Mは、n回目の制御サイクルにおいて、ピーク電力抑制部8から制御信号を受けると、その制御信号にしたがって負荷1-mに供給する電力の入切(オン/オフ)を行う(ステップST5)。
 以上の電力時分割制御によって、全ての負荷1-1~1-Mの昇温完了時間がほぼ等しい時間になる。
 以下、その具体例を明示する。
 図5は負荷1-mの目標電力値Xmnに対して補正係数hを乗算せずに、負荷1-mを昇温(以後、「一括昇温」と称する)した場合の温度の記録例を示す説明図である。図5では、各負荷1-mの目標温度が異なる例を示している。
 図6は負荷1-mが一括昇温された場合における1電源サイクル毎の最大電力の記録例を示す説明図である。
 図6の例では、負荷1-mの目標電力値Xmnに対して補正係数hを乗算していないため、昇温時の各相の電力の最大値が、相毎に各負荷の定格電力を合計した電力となっている。
 図7は負荷1-mの目標電力値Xmnに対して補正係数hを乗算せずに、負荷1-mを一括昇温するとともに、ピーク電力抑制制御を実施した場合の温度の記録例を示す説明図である。図7では、各負荷1-mの目標温度が異なる例を示している。
 図8は一括昇温とピーク電力抑制制御が実施された場合における1電源サイクル毎の最大電力の記録例を示す説明図である。
 ピーク電力抑制制御が実施された場合、1電源サイクル毎の最大電力が電力上限値以下に抑えられるが、全ての負荷1-1~1-Mの目標電力値X1n~XMnが一律に下げられるため、昇温開始から目標温度に到達するまでの時間が一番長い負荷に供給される電力も抑えられる。このため、昇温開始から目標温度に到達するまでの時間が一番長い負荷の昇温完了時間も遅くなるため、全ての負荷1-1~1-Mの昇温完了時間が大きく遅れることになる。
 図9は負荷1-mの一括昇温と、補正係数hの乗算と、ピーク電力抑制制御とを実施した場合の負荷1-mの温度の記録例を示す説明図である。図9では、各負荷1-mの目標温度が異なる例を示している。
 図10は負荷1-mの一括昇温と補正係数hの乗算とピーク電力抑制制御が実施された場合における1電源サイクル毎の最大電力の記録例を示す説明図である。
 負荷1-mの目標電力値Xmnに対して補正係数hが乗算されているため全ての負荷1-1~1-Mの昇温完了時間がほぼ等しい時間になっている。
 図9の例では、全ての負荷1-1~1-Mの昇温完了時間がほぼ等しい時間になることで、昇温完了までに要する積算電力が、一括昇温だけの場合と比較して、約4%削減できている。
 また、一括昇温とピーク電力抑制制御を組み合わせた昇温と比較すると、昇温完了までの消費電力は約10%削減できている。
 この発明の特徴点は、負荷1-mの目標電力値Xmnに対して補正係数hを乗算することで、負荷1-mの目標電力値Xmnを補正し、補正後の目標電力値Xmn’をピーク電力抑制部8に出力することであるが、以下、ピーク電力抑制部8の処理内容についても、具体的に説明する。
 図11はピーク電力抑制部8が電力値調整係数を算出するまでの処理内容を示すフローチャートである。
 また、図12はピーク電力抑制部8が負荷に供給する電力を制御する処理内容を示すフローチャートである。
 ピーク電力抑制部8の出力電力測定部21は、負荷1-mに印加された電圧Vm(n-1)を計測する電圧測定手段と、負荷1-mに流れている電流Im(n-1)を計測する電流測定手段とから構成されており、n-1回目の制御サイクルにおいて、前記電圧測定手段により計測された電圧Vm(n-1)と、前記電流測定手段により計測された電流Im(n-1)とから、負荷1-mに供給された電力の値である電力測定値qm(n-1)チルダをn回目の制御サイクルの冒頭で算出する(図11のステップST11)。
Figure JPOXMLDOC01-appb-M000001
 オン電力推定部22は、負荷1-1~1-Mに電力が供給されたときに、出力電力測定部21により測定された電力測定値を記憶しており(負荷毎の電力測定値を記憶している)、n回目の制御サイクルでは、n回目の制御サイクルの冒頭で算出された電力測定値qm(n-1)チルダがゼロでなければ(負荷1-mには電力が供給されている場合)、その記憶している電力測定値を更新する(ステップST12)。(n-1)回目の制御サイクルで測定された電力測定値qm(n-1)チルダがゼロであれば、その記憶している電力測定値を更新しない。
 また、オン電力推定部22は、n回目の制御サイクルにおいて、その記憶しているオン電力測定値に基づいて、n回目の制御サイクルの単位時間中に、負荷1-mに電力が供給された場合の電力値をn回目の制御サイクルの冒頭で推定し、その電力推定値qmonチルダをオンオフ機器制御部30に出力する(ステップST12)。
 例えば、(n-1)回目の制御サイクルで負荷1-mに電力が供給されている場合、n回目の制御サイクルの冒頭で算出された電力測定値qm(n-1)チルダを負荷1-mの電力推定値qmonチルダとしてオンオフ機器制御部30に出力する。
 また、例えば、(n-1)回目の制御サイクルで負荷1-mに電力が供給されていないが、(n-2)回目の制御サイクルで負荷1-mに電力が供給されている場合、(n-1)回目の制御サイクルの冒頭で算出された電力測定値qm(n-2)チルダを負荷1-mの電力推定値qmonチルダとしてオンオフ機器制御部30に出力する。
 測定電力調整部28は、n回目の制御サイクルの冒頭で算出された電力測定値qm(n-1)チルダを受けると、(n-1)回目の制御サイクルでの電力値調整係数K(n-1)(電力値調整係数Kについては後述する)を電力測定値qm(n-1)チルダに乗算することで、その電力測定値qm(n-1)チルダを調整し、調整後の電力測定値qm(n-1)’チルダを中間積算電力値算出部29に出力する(ステップST13)。
Figure JPOXMLDOC01-appb-M000002
 中間積算電力値算出部29の減算器29a-mは、n回目の制御サイクルにおいて、測定電力調整部28から調整後の電力測定値qm(n-1)’チルダを受けると、前回への時間シフトを意味するバッファ(Z-1)29c-mを通した値、即ち、(n-1)回目の制御サイクルで算出された中間積算電力値sm(n-1)ハットから調整後の電力測定値qm(n-1)’チルダを減算することで、(n-1)回目の制御サイクルまでの電力差積算値sm(n-1)を算出し、その電力差積算値sm(n-1)を調整係数算出用積算値算出部23及び加算器29b-mに出力する。(ステップST14)
Figure JPOXMLDOC01-appb-M000003
 中間積算電力値算出部29の加算器29b-mは、n回目の制御サイクルにおいて、減算器29a-mが(n-1)回目の制御サイクルまでの電力差積算値sm(n-1)を算出すると、その電力差積算値sm(n-1)と、目標電力値補正部7-mから出力された補正後の目標電力値Xmn’を加算することで、n回目の制御サイクルでの中間積算電力値smnハットを算出し、その中間積算電力値smnハットをオンオフ機器制御部30及びバッファ(Z-1)29c-mに出力する(ステップST16)。なお、バッファ(Z-1)29c-mのZ-1は、前回へ時間シフトを意味する演算子であり、その出力はn-1回目の制御サイクルで算出した中間積算電力値sm(n-1)ハットとなる。
Figure JPOXMLDOC01-appb-M000004
 オンオフ機器制御部30は、n回目の制御サイクルにおける電力供給オンオフ機器9-mの入切(オン/オフ)を決定する(ステップST17)。
 オンオフ機器制御部30の処理内容の詳細は後述する。
 調整係数算出用積算値算出部23の加算器23a-mは、n回目の制御サイクルにおいて、中間積算電力値算出部29の減算器29a-mから(n-1)回目の制御サイクルまでの電力差積算値sm(n-1)を受け、目標電力値補正部7-mから補正後の目標電力値Xmn’を受けると、その電力差積算値sm(n-1)と補正後の目標電力値Xmn’を加算することで、負荷1-mの調整係数算出用積算値smn’ハットを算出し、その調整係数算出用積算値smn’ハットを総調整係数算出用積算値算出部24に出力する(ステップST28)。
Figure JPOXMLDOC01-appb-M000005
 総調整係数算出用積算値算出部24は、n回目の制御サイクルにおいて、調整係数算出用積算値算出部23から負荷1-1~1-Mの調整係数算出用積算値s1n’ハット~sMn’ハットを受けると、その調整係数算出用積算値s1n’ハット~sMn’ハットの総和である総調整係数算出用積算値Σs’ハットを算出し、その総調整係数算出用積算値Σs’ハットを電力値調整係数算出部26に出力する(ステップST29)。
 なお、この実施の形態1では、調整係数算出用積算値smn’ハットは中間積算電力値smnハットと同じ値であるので、調整係数算出用積算値smn’ハットではなく、中間積算電力値算出部29から中間積算電力値smnハットを受けて、総調整係数算出用積算値Σs’ハットを算出するようにしてもよい。
 電力値調整係数算出部26は、n回目の制御サイクルにおいて、総調整係数算出用積算値算出部24から総調整係数算出用積算値Σs’ハットを受けると、その総調整係数算出用積算値Σs’ハットと電力上限値記憶部25により記憶されている電力上限値sを比較する(ステップST20)。
 電力値調整係数算出部26は、その総調整係数算出用積算値Σs’ハットが電力上限値sより大きければ(Σs’ハット>s)、その総調整係数算出用積算値Σs’ハットと電力上限値sの比K(=Σs’ハット/s)を電力値調整係数Kとして算出し、その電力値調整係数Kをバッファ(Z-1)27に出力する(ステップST21)。
Figure JPOXMLDOC01-appb-M000006
 一方、その総調整係数算出用積算値Σs’ハットが電力上限値sより小さければ(Σs’ハット≦s)、その電力値調整係数Kを“1”に設定し、その電力値調整係数Kをバッファ(Z-1)27に出力する(ステップST22)。
 n-1回目の制御サイクルの冒頭で算出した電力値調整係数Kn―1は、バッファ(Z-1)27で示されるように次の制御サイクルの処理で使用される。n回目の制御サイクルの冒頭では、上述したように、(n-1)回目の制御サイクルでの電力値調整係数K(n-1)が測定電力調整部28に出力される。
 電力値調整係数算出部26により算出又は“1”に設定された電力値調整係数Kは、次の制御サイクルで使用するために保存される(ステップST23)。
 以下、図12のフローチャートを参照しながら、ピーク電力抑制部8のオンオフ機器制御部30の処理内容を具体的に説明する。
 オンオフ機器制御部30は、制御サイクル毎に初期化処理として、後述する総電力推定値Σqonをクリアする(ステップST31)。
 オンオフ機器制御部30は、n回目の制御サイクルにおいて、中間積算電力値算出部29から負荷1-1~1-Mにおける中間積算電力値s1nハット~sMnハットを受けると、M個の中間積算電力値s1nハット~sMnハットを比較して、値が大きい順にM個の中間積算電力値s1nハット~sMnハットをソートして、値が大きい中間積算電力値に係る負荷1-mから順番に電力の供給のオン・オフを判断する対象(以後、単に「電力オン・オフ制御対象」と言う)に設定する。
 即ち、未だ電力オン・オフ制御対象に設定されていない負荷1-mの中で、最も中間積算電力値smnハットが大きい負荷1-mを電力の供給のオン・オフを判断する負荷に設定する(ステップST32)。
 例えば、負荷の数が3個であるとき、中間積算電力値s1nハット>中間積算電力値s2nハット>中間積算電力値s3nハットであれば、電力オン・オフ制御対象を「負荷1-1」→「負荷1-2」→「負荷1-3」の順番に設定する。
 また、例えば、中間積算電力値s3nハット>中間積算電力値s1nハット>中間積算電力値s2nハットであれば、電力オン・オフ制御対象を「負荷1-3」→「負荷1-1」→「負荷1-2」の順番に設定する。
 オンオフ機器制御部30は、電力オン・オフ制御対象を負荷1-mに設定すると、その負荷1-mの中間積算電力値smnハットと所定の閾値sthの大小を比較して(ステップST33)、その負荷1-mの中間積算電力値smnハットが所定の閾値sthより大きい場合には、後述する総電力推定値Σqonに当該負荷1-mの電力推定値qmonチルダを加算したオンオフ判断用総電力推定値Σqon’を算出する(ステップST34)。
 オンオフ機器制御部30は、負荷1-mを電力の供給をオンする負荷の候補に設定すると、その負荷1-mの中間積算電力値smnハットが所定の閾値sthより大きく(ステップST33)、かつ、オンオフ判断用総電力推定値Σqon’が電力上限値sより高くならない電力供給条件を満足しているか否かを判定する(ステップST35)。即ち、下記の式(9)(10)が成立しているか否かを判定する。
Figure JPOXMLDOC01-appb-M000007
 オンオフ機器制御部30は、式(9)(10)が成立している場合、上記の電力供給条件を満足しているので、その負荷1-mの電力供給オンオフ機器9-mを入り状態(オン)に制御する(ステップST36)。これにより、負荷1-mに電力が供給される。
 オンオフ機器制御部30は、式(9)または式(10)の少なくとも一方が成立しない場合、上記の電力供給条件を満足していないので、その負荷1-mの電力供給オンオフ機器9-mを切り状態(オフ)に制御する(ステップST37)。これにより、負荷1-mには電力が供給されない。
 オンオフ機器制御部30は、n回目の制御サイクルにおいて、オン電力推定部22により推定された負荷1-1~1-Mの電力推定値qmonチルダの総和(以下、「総電力推定値Σqon」と称する)を算出する(ステップST38)。
 オンオフ機器制御部30は、値が大きい中間積算電力値に係る負荷1-mから順番に電力オン・オフ制御対象に設定して、全ての負荷1-mに対する制御が完了するまで上記の制御処理(ステップST32~ST38の処理)を繰り返し実施する(ステップST39)。
 以上で明らかなように、この実施の形態1によれば、制御サイクルn毎に、出力目標値入力部3により入力された出力目標値Amnを基準電力値記憶部4により記憶されている基準電力値qに乗算することで、負荷1-mの目標電力値Xmnを算出する目標電力値算出部6-mと、制御サイクルn毎に、目標電力値算出部6-mにより算出された負荷1-mの目標電力値Xmnに対して、補正係数記憶部5-mにより記憶されている補正係数hを乗算することで、負荷1-mの目標電力値Xmnを補正する目標電力値補正部7-mとを設け、目標電力値補正部7-mから出力された補正後の目標電力値Xmn’にしたがって負荷1-mに供給する電力を時分割で制御するように構成したので、全ての負荷1-1~1-Mが目標温度に到達するまでに要する時間を揃えて、無駄なエネルギーの消費を抑えることができる効果を奏する。
 また、ピーク電力抑制部8が、制御サイクルnの単位時間中に、負荷1-1~1-Mに対する電力の供給量の総和が予め設定された電力上限値sを超える場合、同時に電力を供給する負荷の個数を抑えるピーク電力抑制制御を実施するように構成したので、単位時間毎の負荷1-1~1-Mに対する電力の供給量の総和を電力上限値s以下に抑えることができる効果を奏する。
実施の形態2.
 図13はこの発明の実施の形態2による電力制御装置を示す構成図であり、図において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 出力目標値補正部41-1~41-Mは例えば乗算器などから構成されており、制御サイクルn毎に制御サイクルnの冒頭で、出力目標値入力部3により入力された出力目標値Amnに対して、補正係数記憶部5-mにより記憶されている補正係数hを乗算することで、その出力目標値Amnを補正する処理を実施する。
 目標電力値算出部42-1~42-Mは例えば乗算器などから構成されており、制御サイクルn毎に制御サイクルnの冒頭で、出力目標値補正部41-mにより補正された出力目標値Amnを基準電力値記憶部4により記憶されている基準電力値qに乗算することで、負荷1-mの目標電力値Xmn’を算出する処理を実施する。
 なお、出力目標値補正部41-1~41-M及び目標電力値算出部42-1~42-Mから目標電力値算出手段が構成されている。
 上記実施の形態1と比較して、目標電力値算出部6-m及び目標電力値補正部7-mの代わりに、出力目標値補正部41-m及び目標電力値算出部42-mを実装している点でのみ相違しているが、この場合も同様の効果を得ることができる。
 以下、出力目標値補正部41-m及び目標電力値算出部42-mの処理内容を説明する。
 出力目標値補正部41-mは、n回目の制御サイクルにおいて、出力目標値入力部3から出力目標値Amnを受けると、その出力目標値Amnを対して、補正係数記憶部5-mにより記憶されている補正係数hを乗算することで、その出力目標値Amnを補正し、補正後の出力目標値Amnを目標電力値算出部42-mに出力する。
   Amn’=Amn×h                  (11)
 目標電力値算出部42-mは、n回目の制御サイクルにおいて、出力目標値補正部41-mから補正後の出力目標値Amn’を受けると、補正後の出力目標値Amn’を基準電力値記憶部4により記憶されている基準電力値qに乗算することで、負荷1-mの目標電力値Xmn’を算出し、その目標電力値Xmn’をピーク電力抑制部8に出力する。
   Xmn’=Amn’×q                 (12)
 その他の処理部の内容は、上記実施の形態1と同様であるため説明を省略する。
実施の形態3.
 図14はこの発明の実施の形態3による電力制御装置を示す構成図であり、図において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 基準電力値補正部51-1~51-Mは例えば乗算器などから構成されており、制御サイクルn毎に制御サイクルnの冒頭で、基準電力値記憶部4により記憶されている基準電力値qに対して、補正係数記憶部5-mにより記憶されている補正係数hを乗算することで、基準電力値qを補正し、補正後の基準電力値q’を目標電力値算出部52-mに出力する処理を実施する。
 目標電力値算出部52-1~52-Mは例えば乗算器などから構成されており、制御サイクルn毎に制御サイクルnの冒頭で、出力目標値入力部3により入力された出力目標値Amnを基準電力値補正部51-mから出力された補正後の基準電力値q’に乗算することで、負荷1-mの目標電力値Xmn’を算出する処理を実施する。
 なお、基準電力値補正部51-1~51-M及び目標電力値算出部52-1~52-Mから目標電力値算出手段が構成されている。
 上記実施の形態1と比較して、目標電力値算出部6-m及び目標電力値補正部7-mの代わりに、基準電力値補正部51-m及び目標電力値算出部52-mを実装している点でのみ相違しているが、この場合も同様の効果を得ることができる。
 以下、基準電力値補正部51-m及び目標電力値算出部52-mの処理内容を説明する。
 基準電力値補正部51-mは、n回目の制御サイクルにおいて、基準電力値記憶部4により記憶されている基準電力値qに対して、補正係数記憶部5-mにより記憶されている補正係数hを乗算することで、その基準電力値qを補正し、補正後の基準電力値q’を目標電力値算出部52-mに出力する。
   h’=q×h                    (13)
 目標電力値算出部52-mは、n回目の制御サイクルにおいて、出力目標値入力部3から出力目標値Amnを受けると、その出力目標値Amnを基準電力値補正部51-mから出力された補正後の基準電力値q’に乗算することで、負荷1-mの目標電力値Xmn’を算出し、その目標電力値Xmn’をピーク電力抑制部8に出力する。
   Xmn’=Amn×q’                 (14)
 その他の処理部の内容は、上記実施の形態1と同様であるため説明を省略する。
 この実施の形態3では、基準電力値補正部51-mが、基準電力値qに対して補正係数hを乗算することで基準電力値qを補正し、補正後の基準電力値q’を目標電力値算出部52-mに出力するものを示したが、基準電力値補正部51-mが、予め、基準電力値補正部51-mによる補正後の基準電力値q’を記憶し、補正後の基準電力値q’を目標電力値算出部52-mに出力するようにしてもよい。
 この場合、補正係数記憶部5-m及び基準電力値補正部51-mを省略することができる。
実施の形態4.
 上記実施の形態1~3では、PID調節計2-mが、制御サイクルn毎に、負荷1-mに供給する電力の出力目標値Amnを電力制御装置に出力するものを示したが、その出力目標値Amnに対して補正係数hを乗算すると、PID調節計2-mのPID制御演算における比例ゲインが変化する場合がある。
 そこで、図15に示すように、PID調節計2-mのPID制御演算における比例ゲインに対して、補正係数記憶部5-mにより記憶されている補正係数hの逆数を乗算し、その乗算結果を出力目標値Amnとして電力制御装置に出力するようにしてもよい。
 これにより、PID制御演算における比例ゲインの変化を防止することができるため、良好な制御が可能になる。
 ここで、図16は補正係数hの逆数が乗算されている場合の負荷1-mの温度の記録例を示す説明図である。
 また、図17は補正係数hの逆数が乗算されている場合における1電源サイクル毎の最大電力の記録例を示す説明図である。
 図16及び図17と、図9及び図10とを比較すると明らかなように、オーバーシュートが抑制されて、PID制御演算における比例ゲインの変化が防止されている。
 1-1~1-M 負荷、2-1~2-M PID調節計、3 出力目標値入力部、4 基準電力値記憶部、5-1~5-M 補正係数記憶部、6-1~6-M 目標電力値算出部(目標電力値算出手段)、7-1~7-M 目標電力値補正部(目標電力値算出手段)、8 ピーク電力抑制部(電力制御手段)、9-1~9-M 電力供給オンオフ機器(電力制御手段)、21 出力電力測定部、22 オン電力推定部、23 調整係数算出用積算値算出部、23a-1~23a-M 加算器、24 総調整係数算出用積算値算出部、25 電力上限値記憶部、26 電力値調整係数算出部、27 バッファ(Z-1)、28 測定電力調整部、29 中間積算電力値算出部、29a-1~29a-M 減算器、29b-1~29b-M 加算器、29c-1~29c-M バッファ(Z-1)、30 オンオフ機器制御部、41-1~41-M 出力目標値補正部(目標電力値算出手段)、42-1~42-M 目標電力値算出部(目標電力値算出手段)、51-1~51-M 基準電力値補正部(目標電力値算出手段)、52-1~52-M 目標電力値算出部(目標電力値算出手段)。

Claims (7)

  1.  調節計から複数の負荷に供給する電力の出力目標値をそれぞれ入力する出力目標値入力部と、
     予め設定された基準電力値を記憶する基準電力値記憶部と、
     前記複数の負荷が昇温開始から目標温度に到達するまでに要する時間を揃えるために、前記複数の負荷における昇温開始から目標温度に到達するまでに要する時間を基準にして設定された複数の補正係数を記憶する補正係数記憶部と、
     前記出力目標値入力部により入力された出力目標値、前記基準電力値記憶部により記憶されている基準電力値及び前記補正係数記憶部により記憶されている補正係数を用いて、前記複数の負荷に供給する電力の値である目標電力値を算出する目標電力値算出手段と、
     前記目標電力値算出手段により算出された目標電力値にしたがって前記複数の負荷に供給する電力を時分割で制御する電力制御手段と
     を備えた電力制御装置。
  2.  前記電力制御手段は、前記複数の負荷に供給する電力を時分割で制御する際、各々の単位時間中に、前記複数の負荷に対する電力の供給量の総和が予め設定された電力上限値を超える場合、同時に電力を供給する負荷の個数を抑えるピーク電力抑制制御を実施することを特徴とする請求項1記載の電力制御装置。
  3.  前記補正係数記憶部は、前記複数の負荷に供給する電力に係る補正係数として、昇温開始から目標温度に到達するまでの時間が短い負荷に供給する電力に係る補正係数ほど小さな値を記憶していることを特徴とする請求項1記載の電力制御装置。
  4.  前記目標電力値算出手段は、
     前記負荷毎に、前記出力目標値入力部により入力された出力目標値と前記基準電力値記憶部により記憶されている基準電力値から、当該負荷に供給する電力の値である目標電力値を算出する目標電力値算出部と、
     前記負荷毎に、前記目標電力値算出部により算出された目標電力値に対して、前記補正係数記憶部により記憶されている補正係数を乗算することで、前記目標電力値を補正する目標電力値補正部と
     から構成されていることを特徴とする請求項3記載の電力制御装置。
  5.  前記目標電力値算出手段は、
     前記負荷毎に、前記出力目標値入力部により入力された出力目標値に対して、前記補正係数記憶部により記憶されている補正係数を乗算することで、前記出力目標値を補正する出力目標値補正部と、
     前記負荷毎に、前記出力目標値補正部により補正された出力目標値と前記基準電力値記憶部により記憶されている基準電力値から、当該負荷に供給する電力の値である目標電力値を算出する目標電力値算出部と
     から構成されていることを特徴とする請求項3記載の電力制御装置。
  6.  前記目標電力値算出手段は、
     前記負荷毎に、前記基準電力値記憶部により記憶されている基準電力値に対して、前記補正係数記憶部により記憶されている補正係数を乗算することで、前記基準電力値を補正する基準電力値補正部と、
     前記負荷毎に、前記出力目標値入力部により入力された出力目標値と前記基準電力値補正部により補正された基準電力値から、当該負荷に供給する電力の値である目標電力値を算出する目標電力値算出部と
     から構成されていることを特徴とする請求項3記載の電力制御装置。
  7.  出力目標値入力部が、調節計から複数の負荷に供給する電力の出力目標値をそれぞれ入力する出力目標値入力処理ステップと、
     目標電力値算出手段が、前記出力目標値入力処理ステップで入力された出力目標値と、予め設定された基準電力値と、前記複数の負荷が昇温開始から目標温度に到達するまでに要する時間を揃えるために、前記複数の負荷における昇温開始から目標温度に到達するまでに要する時間を基準にして設定された複数の補正係数とを用いて、前記複数の負荷に供給する電力の値である目標電力値を算出する目標電力値算出処理ステップと、
     電力制御手段が、前記目標電力値算出処理ステップで算出された目標電力値にしたがって前記複数の負荷に供給する電力を時分割で制御する電力制御処理ステップと
     を備えた電力制御方法。
PCT/JP2013/077926 2013-10-15 2013-10-15 電力制御装置及び電力制御方法 WO2015056293A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/077926 WO2015056293A1 (ja) 2013-10-15 2013-10-15 電力制御装置及び電力制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/077926 WO2015056293A1 (ja) 2013-10-15 2013-10-15 電力制御装置及び電力制御方法

Publications (1)

Publication Number Publication Date
WO2015056293A1 true WO2015056293A1 (ja) 2015-04-23

Family

ID=52827767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077926 WO2015056293A1 (ja) 2013-10-15 2013-10-15 電力制御装置及び電力制御方法

Country Status (1)

Country Link
WO (1) WO2015056293A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262174A (ja) * 1998-03-10 1999-09-24 Tokyo Electron Ltd 電力制御方法及びその装置
JP2011205731A (ja) * 2010-03-24 2011-10-13 Rkc Instrument Inc マルチチャンネル電力制御器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262174A (ja) * 1998-03-10 1999-09-24 Tokyo Electron Ltd 電力制御方法及びその装置
JP2011205731A (ja) * 2010-03-24 2011-10-13 Rkc Instrument Inc マルチチャンネル電力制御器

Similar Documents

Publication Publication Date Title
JP5975107B2 (ja) 電力制御装置及び電力制御方法
CN103329418B (zh) 用于控制开关模式电源的具有瞬态检测器的数字控制单元
CN104106203B (zh) 开关模式电源的电压前馈补偿和电压反馈补偿
CN109139524B (zh) 一种风机调速的方法、装置及存储介质
WO2016056142A1 (ja) 電動機制御装置
JP4407616B2 (ja) 電力制御方法、電力制御装置および温度調節器
TWI501523B (zh) 控制功率級方法
WO2015056293A1 (ja) 電力制御装置及び電力制御方法
JP6585950B2 (ja) 制御装置および制御方法
JP2011090609A (ja) 温度制御装置および温度制御方法
JP2015132988A (ja) パワーコンディショナシステム
JP2015095915A (ja) 電力変換装置の制御方法
JP4468868B2 (ja) 電力使用量予測装置および電力使用量予測方法
JP5930039B2 (ja) 電力制御装置及び電力制御方法
JP5829073B2 (ja) 制御装置および方法
JP5891060B2 (ja) 電力推定装置、制御装置および方法
WO2019097597A1 (ja) 温度制御装置及び昇温完了時間の推定方法
JP6914132B2 (ja) Pwmコンバータ制御装置
JP2020021297A (ja) 制御装置および制御方法
JP2008061296A (ja) 並列運転インバータの電圧補正方法とその回路
JP2023181975A (ja) 制御装置、プログラム、及び制御方法
JP5298045B2 (ja) 電源制御装置
JP5945190B2 (ja) 制御装置および制御方法
JP6088447B2 (ja) 制御装置、加速器システム及び制御方法
JP6485059B2 (ja) 電力系統の安定化装置と制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 13895524

Country of ref document: EP

Kind code of ref document: A1