WO2015051482A1 - Procédé de fabrication de nano-hydroxyde de magnésium mono-dispersé en feuille à l'aide de magnésite - Google Patents

Procédé de fabrication de nano-hydroxyde de magnésium mono-dispersé en feuille à l'aide de magnésite Download PDF

Info

Publication number
WO2015051482A1
WO2015051482A1 PCT/CN2013/001222 CN2013001222W WO2015051482A1 WO 2015051482 A1 WO2015051482 A1 WO 2015051482A1 CN 2013001222 W CN2013001222 W CN 2013001222W WO 2015051482 A1 WO2015051482 A1 WO 2015051482A1
Authority
WO
WIPO (PCT)
Prior art keywords
acidification
magnesium oxide
oxide powder
magnesite
magnesium hydroxide
Prior art date
Application number
PCT/CN2013/001222
Other languages
English (en)
Chinese (zh)
Inventor
白丽梅
姜玉芝
李萌
朱一民
郭爱红
聂一苗
张勇
邢智博
Original Assignee
河北联合大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北联合大学 filed Critical 河北联合大学
Priority to PCT/CN2013/001222 priority Critical patent/WO2015051482A1/fr
Priority to CN201380059405.6A priority patent/CN104968605B/zh
Publication of WO2015051482A1 publication Critical patent/WO2015051482A1/fr
Priority to ZA2016/02515A priority patent/ZA201602515B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/16Magnesium hydroxide by treating magnesia, e.g. calcined dolomite, with water or solutions of salts not containing magnesium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the invention relates to a method for deep processing of magnesite and preparing sheet-like monodisperse nanometer magnesium hydroxide, belonging to the technical field of mineral processing.
  • a magnesium hydroxide material used as a flame retardant has a dual function of flame retardancy and smoke suppression.
  • the addition amount generally needs to reach 40% or more in order to obtain the desired flame retardant effect. Therefore, the amount of magnesium hydroxide is increased without affecting the mechanical properties of the material, and the magnesium hydroxide is required to have a fine particle size, high purity, and surface polarity. The small shape is uniform and easy to add to the material.
  • most of the previous studies used normal temperature synthesis, hydrothermal treatment and surface modification to produce flame retardant magnesium hydroxide in a three-step process. This makes the production process of magnesium hydroxide more complicated and the production cost is high, so that it is difficult to industrialize. Many researchers focus on soluble magnesium salts and sodium hydroxide or books
  • a base such as liquid ammonia is reacted, and nano magnesium hydroxide is prepared by controlling the reaction conditions.
  • the acid-base neutralization reaction is used in the preparation process, which consumes a large amount of acid and alkali and is seriously polluted by the environment. If the reaction process has additives, the additive cannot be reused.
  • the magnesia ore is calcined to prepare active magnesium oxide, and the active magnesium oxide is hydrated to prepare flame retardant hydrogenated magnesium.
  • the process is simple and the investment is low. However, the purity of magnesite is relatively high, and the purity of magnesite is generally above 96%. If the magnesite contains iron, it will seriously affect the color of magnesium hydroxide and reduce the quality of the product.
  • the prepared Magnesium hydroxide has a coarse particle size and no fixed morphology, and can only reach the micron level. Therefore, this process can only use high-quality magnesite as raw material to prepare lower quality flame retardant magnesium hydroxide.
  • the present invention has been directed to the provision of a sheet-like monodisperse nanometer magnesium hydroxide using low-quality magnesite using a low-cost, non-polluting, environmentally friendly method.
  • the method for preparing sheet-like monodisperse nanometer magnesium hydroxide using magnesite according to the invention comprises the following steps:
  • Magnesite calcination water-soluble Magnesite ore is calcined to obtain magnesia powder, the calcined magnesia powder is added to a stirred tank, a certain amount of water is added to the stirred tank, and the magnesia powder is formulated into a mass percentage. The slurry with a concentration of 60% is stirred for about 0.3 min;
  • Magnesium oxide powder liquid grinding and acidification Transfer the stirred magnesium oxide powder slurry to an acidified stirring mill for grinding. After grinding for 2 minutes, hydrochloric acid is added to the acidified stirring mill to acidify the magnesium oxide powder, and the acidification time is Lmin, the magnesium oxide powder slurry is added to the acidified stirring mill from the bottom end, hydrochloric acid is added to the acidified stirring mill from the middle, and the acidified slurry is discharged from the upper end of the acidizing stirring mill, and the unsatisfactory magnesium oxide powder particles which are ground and acidified fall into the gravity.
  • the grinding zone of the acidified stirring mill is further subjected to grinding and acidizing treatment to realize acidification of the side edge;
  • Magnesium oxide powder slurry acidification and impurity removal In the acidification process, hydrochloric acid is added to the acidification stirring mill. The mass percentage of the specification is 20% ⁇ 23%. The volume ratio of the mass of the magnesia powder to the hydrochloric acid during acidification is lg: 5.0 m lg: 5.8 ml, and the acidified slurry is filtered to obtain a filtrate and a residue, during the acidification process. Excessive magnesium oxide powder, impurities such as iron, manganese, calcium and excess magnesium oxide powder enter the solid residue;
  • the filter residue is returned to the agitation tank for re-grinding and acidification.
  • the cycle load reaches 100% to 120%
  • the cycle is terminated, and the discharged residue is discharged.
  • Acidification was carried out by adding hydrochloric acid, and the pH of the acidification was controlled to 5 to 6, after acidification, filtration was carried out, the residue was discarded, and the filtrate was vacuum-crystallized together with the filtrate in the step (4).
  • the magnesite in the step (1) is broken to 9 mm or less, and the magnesite is calcined after the crushing, the calcination temperature is 630 ° C, and the calcination time is 3 hours.
  • the vacuum crystallization in step (4) has a vacuum of 0.05 Mpa to 0.1 Mpa, a crystallization temperature of 75 ° C to 90 ° C, and a crystallization time of 5 h to 6 h.
  • the hydrogen chloride gas and the water vapor in the step (4) are passed through a condenser, and a certain amount of cooling water is added to obtain hydrochloric acid having a mass percentage of 20% to 23%, and the obtained hydrochloric acid is returned to the step of claim 1 ( 2) Reuse in an acidified stirred mill.
  • the filtrate in the step (6) is returned to the hydration reaction emulsification tank in this step.
  • the invention firstly determines the suitable calcination conditions of the magnesite according to the difference of the decomposition temperature and the decomposition speed of each mineral, effectively increases the difference of activity between the components, and increases the reaction speed and acidification rate of the magnesium salt and hydrochloric acid; According to the difference between the reactivity of each component in the magnesium oxide powder after calcination and the acid, the iron, manganese, calcium and other insoluble impurities in the magnesium oxide powder are removed by controlling the amount of the magnesium oxide powder and hydrochloric acid and the acidification reaction conditions.
  • the coarse particles are not effectively acidified during the reaction, they will fall into the grinding zone by gravity and then grind, realizing the dynamic acidification process of acidification while grinding, thus effectively reducing the grinding energy consumption, reducing the acidification time and strengthening.
  • the acidification efficiency can also increase the difference in activity of each component after calcination.
  • the activity and appearance of the active magnesium oxide precursor magnesium oxide are controlled by controlling the crystallization condition of the magnesium chloride hexahydrate solution and the calcination temperature of the magnesium chloride hexahydrate crystal, thereby shortening the hydration time of the active magnesium oxide and enhancing the conversion rate of the active magnesium oxide.
  • the particle size and morphology of the nanometer magnesium hydroxide were controlled by controlling the hydration conditions and the type and amount of the adjusting agent, and finally, a nano-sheet-shaped barium hydroxide product having a uniform particle size and morphology was prepared.
  • BRIEF DESCRIPTION OF THE DRAWINGS BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a technical roadmap of the present invention.
  • FIG. 1 SEM photograph of a magnesium hydroxide product prepared using the method of the present invention.
  • Figure 3 Example 1 XRD pattern of a magnesium hydroxide product prepared using the process of the present invention.
  • Figure 4 Example 2 SEM photograph of a magnesium hydroxide product prepared using the method of the present invention.
  • Figure 5 Example 2 XRD pattern of a magnesium hydroxide product prepared using the process of the present invention.
  • Figure 6 Example 3 SEM photograph of a magnesium hydroxide product prepared using the method of the present invention.
  • Figure 7 Example 3 XRD pattern of a magnesium hydroxide product prepared using the process of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to FIG. 1 and an embodiment:
  • the magnesite is crushed to below 9 mm, crushed and calcined, calcination temperature is 630 ° C, calcination time is 3 hours, magnesium oxide powder is obtained, 28 g of magnesium oxide powder is weighed, added to a stirred tank, and 18 ml is added to the stirring tank. The water was stirred for 0.3 min.
  • Step 2 Magnesium oxide powder slurry grinding and acidification
  • the stirred magnesium oxide powder slurry is transferred to an acidified stirring mill for grinding. After grinding for 2 minutes, hydrochloric acid is added to the acidified stirring mill to acidify the magnesium oxide powder, the acidification time is lmin, and the magnesium oxide powder slurry is acidified from the bottom end. In the stirring mill, hydrochloric acid was added from the middle to the acidified stirring mill, and the acidified slurry was discharged from the upper end of the acidizing stirring mill.
  • the third step the magnesium oxide powder slurry acidification and impurity removal
  • the fourth step preparation of active magnesium oxide
  • the filtrate is placed in a vacuum drying oven for crystallization, the degree of vacuum is 0.05 Mpa, the evaporation crystallization temperature is 90 ° C, and the crystals are evaporated and evaporated for 5 hours to obtain crystals of magnesium chloride hexahydrate, and then the obtained crystals of magnesium chloride hexahydrate are placed in a calcining furnace for calcination and calcination.
  • the temperature was 470 ° C and the calcination time was 1.5 h.
  • active magnesium oxide was obtained, and hydrogen chloride gas and water vapor generated were passed through an acid-resistant condensation dust collector, and 100 ml of water was added to obtain hydrochloric acid having a mass percentage of 20% by weight.
  • Step 5 Cycle acidification of filter residue
  • Step 6 Hydration of magnesium hydroxide
  • the active magnesium oxide and the adjusting agent dextrin are slowly added to the emulsification tank for hydration reaction, the volume concentration of the dextrin in the hydration reaction solution is 1 mg/L, and the liquid-solid ratio of the active magnesium oxide to water in the hydration reaction is 30:1.
  • the hydration reaction temperature is 75 ° C
  • the hydration reaction stirring speed is 4000 r / min
  • the solution is filtered to obtain magnesium hydroxide filter cake and filtrate, and the filtrate is returned to the hydration reaction emulsification tank, and the filter cake is dried at a low temperature to obtain a tablet.
  • Monodisperse nanometer magnesium hydroxide Monodisperse nanometer magnesium hydroxide.
  • the monodisperse nanometer magnesium hydroxide was prepared to have a purity of 99.34%.
  • Step 2 Magnesium oxide powder slurry grinding and acidification
  • the third step the magnesium oxide powder slurry acidification and impurity removal
  • the fourth step preparation of active magnesium oxide
  • the filtrate is placed in a vacuum drying oven for crystallization, the degree of vacuum is 0.1 Mpa, the evaporation crystallization temperature is 75 ° C, and the evaporation crystallization is 5.5 h to obtain crystals of magnesium chloride hexahydrate, and then the obtained crystals of magnesium chloride hexahydrate are placed in a calciner for calcination.
  • the calcination temperature is 480 ° C
  • the calcination time is 1.5 h
  • the activated magnesium oxide is obtained after calcination
  • the hydrogen chloride gas and water vapor produced are passed through an acid-resistant condensation dust collector, and 77 ml of water is added to obtain a hydrochloric acid having a mass concentration of 23%. .
  • Step 5 Cycle acidification of filter residue
  • the active magnesium oxide and the adjusting agent dextrin are slowly added to the emulsification tank for hydration reaction, the volume concentration of the dextrin in the hydration reaction solution is 1.5 mg L, and the liquid-solid ratio of the active magnesium oxide to water in the hydration reaction is 35:1, hydration
  • the reaction temperature is 80° (the hydration reaction stirring speed is 3800r/min, and after hydration reaction for 2h, the solution is filtered to obtain magnesium hydroxide filter cake and filtrate, and the filtrate is returned to the hydration reaction emulsification tank, and the filter cake is dried at a low temperature to obtain a sheet shape.
  • Monodisperse nanometer magnesium hydroxide Monodisperse nanometer magnesium hydroxide.
  • the monodisperse nanometer magnesium hydroxide was prepared to have a purity of 99.12%.
  • Example 3 First step: Magnesite calcination
  • Step 2 Magnesium oxide powder slurry grinding and acidification
  • the third step the magnesium oxide powder slurry acidification and impurity removal
  • the fourth step preparation of active magnesium oxide
  • the filtrate was placed in a vacuum drying oven for crystallization, the degree of vacuum was 0.08 MPa, and the evaporation crystallization temperature was 80 ° C.
  • Step 5 Cycle acidification of filter residue
  • the active magnesium oxide and the adjusting agent dextrin are slowly added to the emulsification tank for hydration reaction, the volume concentration of the dextrin in the hydration reaction solution is 1.3 mg/L, and the liquid-solid ratio of the active magnesium oxide to water in the hydration reaction is 35:1.
  • the hydration reaction temperature is 85 ° C
  • the hydration reaction stirring speed is 3900 r / min
  • the solution is filtered to obtain magnesium hydroxide filter cake and filtrate, and the filtrate is returned to the hydration reaction emulsification tank, and the filter cake is dried at a low temperature to obtain a tablet.
  • Monodisperse nanometer magnesium hydroxide Monodisperse nanometer magnesium hydroxide.
  • the purity of the sheet-like monodisperse nano magnesium hydroxide was 99.28%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

L'invention concerne un procédé de fabrication de nano-hydroxyde de magnésium mono-dispersé en feuille à l'aide de magnésite comme matériau. En particulier, la magnésite est calcinée pour générer une poudre magnésienne ayant des constituants d'activités différentes; la poudre magnésienne est préparée en une solution à une concentration et la solution est agitée, puis la solution est ajoutée dans un broyeur par attrition et acidification afin de réaliser une attrition et une acidification; la poudre magnésienne est purifiée par le contrôle de la quantité de poudre magnésienne, de la quantité d'acide chlorhydrique et des conditions de la réaction d'acidification; et un nano-hydroxyde de magnésium en feuille est préparé par le contrôle de l'activité, de la taille de particule et des conditions d'hydratation de la magnésie, un précurseur d'hydroxyde de magnésium hydraté. L'acide chlorhydrique, l'eau et un additif peuvent être recyclés, ce qui est respectueux de l'environnement et représente un faible coût. La technologie peut activer une ressource existante de magnésite, de sorte à obtenir une transformation à forte valeur ajoutée et une utilisation de la ressource.
PCT/CN2013/001222 2013-10-11 2013-10-11 Procédé de fabrication de nano-hydroxyde de magnésium mono-dispersé en feuille à l'aide de magnésite WO2015051482A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2013/001222 WO2015051482A1 (fr) 2013-10-11 2013-10-11 Procédé de fabrication de nano-hydroxyde de magnésium mono-dispersé en feuille à l'aide de magnésite
CN201380059405.6A CN104968605B (zh) 2013-10-11 2013-10-11 菱镁矿制备片状单分散纳米氢氧化镁的方法
ZA2016/02515A ZA201602515B (en) 2013-10-11 2016-04-13 Method for manufacturing sheet monodisperse nano-magnesium hydroxide by using magnesite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/001222 WO2015051482A1 (fr) 2013-10-11 2013-10-11 Procédé de fabrication de nano-hydroxyde de magnésium mono-dispersé en feuille à l'aide de magnésite

Publications (1)

Publication Number Publication Date
WO2015051482A1 true WO2015051482A1 (fr) 2015-04-16

Family

ID=52812413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001222 WO2015051482A1 (fr) 2013-10-11 2013-10-11 Procédé de fabrication de nano-hydroxyde de magnésium mono-dispersé en feuille à l'aide de magnésite

Country Status (3)

Country Link
CN (1) CN104968605B (fr)
WO (1) WO2015051482A1 (fr)
ZA (1) ZA201602515B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105776258A (zh) * 2016-04-25 2016-07-20 辽宁洁镁科技有限公司 一种使用氧化镁制备氢氧化镁的方法
CN106044806A (zh) * 2016-06-06 2016-10-26 辽宁洁镁科技有限公司 使用菱镁矿制备氢氧化镁的方法以及由此制得氢氧化镁
CN106082715A (zh) * 2016-06-06 2016-11-09 辽宁洁镁科技有限公司 使用菱镁矿制备轻烧氧化镁的方法及所得氧化镁的应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107804863B (zh) * 2017-08-04 2019-06-11 华北理工大学 一种水合法制备均匀六方片状纳米氢氧化镁的方法
CN107673378B (zh) * 2017-08-04 2019-04-23 华北理工大学 一种氧化镁水合制备氢氧化镁纳米薄膜的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1699920A1 (ru) * 1989-07-18 1991-12-23 Красноярский институт цветных металлов им.М.И.Калинина Способ получени гидроксида магни
CN1074195A (zh) * 1993-01-14 1993-07-14 刘堂锋 以轻烧氧化镁和盐酸为原料生产白色氯化镁的方法
JP2002167219A (ja) * 2000-11-30 2002-06-11 Ajinomoto Co Inc 水酸化マグネシウム微粉末、その製造方法及び難燃性樹脂組成物
CN102126733A (zh) * 2010-01-14 2011-07-20 中国科学院过程工程研究所 一种由菱镁矿制备亚微米片状氢氧化镁的方法
CN102491380A (zh) * 2011-12-06 2012-06-13 中国科学院过程工程研究所 一种片状氢氧化镁的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT392774B (de) * 1989-05-05 1991-06-10 Veitscher Magnesitwerke Ag Feinpulveriges magnesiumhydroxid und verfahren zu dessen herstellung
CN102774862B (zh) * 2012-08-14 2014-04-16 河北联合大学 一种水合法制备阻燃型氢氧化镁的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1699920A1 (ru) * 1989-07-18 1991-12-23 Красноярский институт цветных металлов им.М.И.Калинина Способ получени гидроксида магни
CN1074195A (zh) * 1993-01-14 1993-07-14 刘堂锋 以轻烧氧化镁和盐酸为原料生产白色氯化镁的方法
JP2002167219A (ja) * 2000-11-30 2002-06-11 Ajinomoto Co Inc 水酸化マグネシウム微粉末、その製造方法及び難燃性樹脂組成物
CN102126733A (zh) * 2010-01-14 2011-07-20 中国科学院过程工程研究所 一种由菱镁矿制备亚微米片状氢氧化镁的方法
CN102491380A (zh) * 2011-12-06 2012-06-13 中国科学院过程工程研究所 一种片状氢氧化镁的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105776258A (zh) * 2016-04-25 2016-07-20 辽宁洁镁科技有限公司 一种使用氧化镁制备氢氧化镁的方法
CN106044806A (zh) * 2016-06-06 2016-10-26 辽宁洁镁科技有限公司 使用菱镁矿制备氢氧化镁的方法以及由此制得氢氧化镁
CN106082715A (zh) * 2016-06-06 2016-11-09 辽宁洁镁科技有限公司 使用菱镁矿制备轻烧氧化镁的方法及所得氧化镁的应用
CN106044806B (zh) * 2016-06-06 2017-03-22 辽宁洁镁科技有限公司 使用菱镁矿制备氢氧化镁的方法

Also Published As

Publication number Publication date
CN104968605A (zh) 2015-10-07
ZA201602515B (en) 2017-06-28
CN104968605B (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
CN104710169B (zh) 一种镁铝尖晶石超细粉体及其制备方法
WO2022267420A1 (fr) Précurseur de phosphate de fer, son procédé de préparation et son utilisation
WO2015051482A1 (fr) Procédé de fabrication de nano-hydroxyde de magnésium mono-dispersé en feuille à l'aide de magnésite
CN102320638A (zh) 一种低钠细晶氧化铝的制备方法
CN100417596C (zh) 一种密闭热解水合氯化镁制备高纯氧化镁的方法
WO2020113958A1 (fr) Procédé de préparation par mécanochimie d'un pigment hybride d'oxyde de fer rouge/minéral argileux de haute performance
CN104928758A (zh) 一种用于生产无水死烧型硫酸钙晶须的混合添加剂及方法
CN1252295C (zh) 一种以盐湖水氯镁石为原料制取高纯镁砂的方法
CN102502722A (zh) 一种高纯氧化镁的生产方法
CN103496727B (zh) 一种微晶α-Al2O3 聚集体的制备方法
CN113387394A (zh) 基于生物基碳酸钙的层状双金属氢氧化物材料制备方法
CN107902925A (zh) 利用菱镁矿冶炼轻质氧化镁的方法
CN106865565A (zh) 一种粉煤灰合成x型沸石的方法
CN114195408A (zh) 一种电石渣深度处理制备活性石灰的方法
CN101374767B (zh) 一种制备氧化镁的改进方法
CN109052446A (zh) 一种利用工业废渣为原料制备钙铝类水滑石的方法
CN113860341A (zh) 一种高纯片状勃姆石及其制备方法
CN102838145B (zh) 一种合成高比表面镁铝尖晶石的方法
CN113104871A (zh) 一种利用菱镁矿制备镁铝水滑石的方法
CN102838141A (zh) 一种菱镁矿除硅铝生产氢氧化镁的工艺
CN113860340B (zh) 一种干法制备高纯粒状勃姆石的方法及勃姆石
CN109847768A (zh) 一种钛渣的综合利用方法
CN108516565A (zh) 一种利用铝钙粉反应渣制备p型沸石分子筛的方法
CN104860338B (zh) 一种硫基铵盐混合介质体系提取粉煤灰中氧化铝的方法
CN102001696A (zh) 一种镁铝尖晶石纳米颗粒粉体的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895263

Country of ref document: EP

Kind code of ref document: A1