WO2015046496A1 - 金属酸化物粒子の製造方法、金属酸化物粉末および磁気記録媒体 - Google Patents

金属酸化物粒子の製造方法、金属酸化物粉末および磁気記録媒体 Download PDF

Info

Publication number
WO2015046496A1
WO2015046496A1 PCT/JP2014/075843 JP2014075843W WO2015046496A1 WO 2015046496 A1 WO2015046496 A1 WO 2015046496A1 JP 2014075843 W JP2014075843 W JP 2014075843W WO 2015046496 A1 WO2015046496 A1 WO 2015046496A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
particles
precursor
powder
oxide particles
Prior art date
Application number
PCT/JP2014/075843
Other languages
English (en)
French (fr)
Inventor
白田 雅史
細谷 陽一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2015539416A priority Critical patent/JP6280922B2/ja
Priority to KR1020167007479A priority patent/KR101770177B1/ko
Priority to CN201480053928.4A priority patent/CN105593169A/zh
Publication of WO2015046496A1 publication Critical patent/WO2015046496A1/ja
Priority to US15/073,730 priority patent/US20160203894A1/en
Priority to US15/627,636 priority patent/US10734144B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/36Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
    • C01B13/366Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions by hydrothermal processing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0036Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70678Ferrites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/22Particle morphology extending in two dimensions, e.g. plate-like with a polygonal circumferential shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Definitions

  • the present invention relates to a method for producing metal oxide particles. Furthermore, the present invention also relates to a metal oxide powder comprising metal oxide particles obtained by the above production method, and a magnetic recording medium containing this powder in a magnetic layer.
  • Fine metal oxide particles are useful materials in various fields including the magnetic recording field.
  • a hydrothermal synthesis process has recently been proposed and attracted attention (see, for example, Patent Documents 1 to 3).
  • the field of magnetic recording it is required to use a finely divided magnetic material as the ferromagnetic powder contained in the magnetic layer in order to improve the filling degree of the magnetic layer and reduce the noise.
  • the fine metal oxide particles are useful not only in the magnetic recording field but also in various fields.
  • the hydrothermal synthesis process described above is a method capable of producing metal oxide particles with high productivity, further improvement is required for the fine particle formation of the obtained metal oxide particles.
  • the metal oxide particles used in the field of magnetic recording are required to have a small particle size, a uniform particle size, and a sharp particle size distribution.
  • Metal oxide particles having fine particles and excellent particle size uniformity are useful not only in the field of magnetic recording but also in various fields.
  • an object of the present invention is to produce metal oxide particles having fine particles and excellent particle size uniformity by a hydrothermal synthesis process.
  • the metal oxide precursor particles are heated and pressurized in the presence of highly reactive water to convert the precursor particles into metal oxide particles and perform metal conversion.
  • This is a production method for obtaining oxide particles.
  • the present inventors conducted a synthesis reaction of the precursor particles subjected to the hydrothermal synthesis process in the presence of an organic compound, thereby forming fine metal oxide particles. I found out that it can be obtained.
  • the precursor particles are subjected to a conversion reaction to metal oxide particles in a state where an organic compound is deposited, the precursor particles are temporarily dissolved in a high temperature and high pressure system and then crystallized. It is thought that it precipitates (converts into metal oxide particles).
  • Patent Documents 1 to 3 describe that a conversion reaction in which precursor particles are converted into metal oxide particles is performed in the presence of an organic modifier in a hydrothermal synthesis process. Newly discovered, there is no suggestion that the synthesis reaction of the precursor particles, which is the previous stage of the hydrothermal synthesis process, is performed in the presence of an organic compound. The present invention has been completed based on the above findings.
  • One embodiment of the present invention provides: Carrying out a metal oxide precursor particle synthesis reaction in the presence of an organic compound to obtain precursor particles; and The precursor solution is converted into metal oxide particles by heating the aqueous solution containing the obtained precursor particles to 300 ° C. or higher and applying a pressure of 20 PMa or higher to pressurize the aqueous solution.
  • a method for producing metal oxide particles About.
  • the heating and pressurization are performed while continuously feeding the aqueous solution described above.
  • the synthesis reaction is performed in an aqueous reaction solution having a pH in the range of 5-14.
  • the average particle size of the precursor particles obtained by the above synthesis reaction is 25 nm or less.
  • the coefficient of variation of the particle size of the precursor particles obtained by the synthesis reaction is 5% or more and 40% or less.
  • the synthesis reaction is performed by mixing an iron salt, an alkaline earth metal salt, and the organic compound described above in an aqueous solution to precipitate hexagonal ferrite precursor particles.
  • the conversion of the precursor particles into metal oxide particles is performed by heating a precursor particle solution containing the precursor particles obtained by the above synthesis reaction to 300 ° C. or more and applying a pressure of 20 MPa or more. And the mixture of the water and the precursor particle solution is heated to 300 ° C. or higher in the liquid supply path, and 20 PMa. It is carried out by converting precursor particles into metal oxide particles by continuously feeding liquid while applying the above pressure.
  • the metal oxide particles are hexagonal ferrite particles selected from the group consisting of barium ferrite, strontium ferrite, and mixed crystals thereof.
  • the organic compound is an organic compound selected from the group consisting of carboxylic acids and salts thereof, anionic surfactants, and water-soluble polymers.
  • a further aspect of the present invention relates to a metal oxide powder obtained by the above production method.
  • the metal oxide powder is a ferromagnetic hexagonal ferrite powder.
  • the metal oxide powder is a magnetic powder for magnetic recording.
  • the metal oxide powder has an average sphere equivalent diameter of 5 nm to 30 nm.
  • the metal oxide powder has a sphere equivalent diameter variation coefficient of 5% or more and 20% or less.
  • a further aspect of the invention provides: A magnetic recording medium having a magnetic layer containing a ferromagnetic powder and a binder on a nonmagnetic support, A magnetic recording medium in which the ferromagnetic powder is the metal oxide powder described above; About.
  • the present invention it is also possible to provide metal oxide particles having fine particles and excellent particle size uniformity by a hydrothermal synthesis process.
  • the metal oxide powder comprising the metal oxide particles thus obtained as the ferromagnetic powder of the magnetic layer, a magnetic recording medium having excellent electromagnetic conversion characteristics can be provided.
  • FIG. 1 is a schematic explanatory diagram of one embodiment of a production apparatus suitable for a continuous hydrothermal synthesis process.
  • FIG. 2 is a schematic explanatory diagram of another embodiment of a production apparatus suitable for a continuous hydrothermal synthesis process.
  • the method for producing metal oxide particles includes: Carrying out a metal oxide precursor particle synthesis reaction in the presence of an organic compound to obtain precursor particles; and The precursor solution is converted into metal oxide particles by heating the aqueous solution containing the obtained precursor particles to 300 ° C. or higher and applying a pressure of 20 PMa or higher to pressurize the aqueous solution. including.
  • the reaction system in which water is present is heated to 300 ° C. or higher and pressurized by applying a pressure of 20 MPa or higher, so that water becomes a subcritical to supercritical state and a reaction field having extremely high reactivity is provided.
  • the reaction for converting the precursor particles into the metal oxide particles is rapidly started.
  • the synthesis reaction of the precursor particles subjected to this reaction is performed in the presence of an organic compound.
  • the precursor particles are particles of a substance that can be converted into a desired metal oxide by being placed in the presence of water in a subcritical to supercritical state.
  • the metal include Fe, Co, Ni, Cu, Ag, Au, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Ti, Zr, Mn, Eu, Y, Nb, Ce, Ba and the like can be mentioned, but not limited to these. It can be selected from metals known to those skilled in the art as the metal constituting the microparticles, preferably particles having a nano-order particle size (nanoparticles).
  • the metal oxide precursor examples include, but are not limited to, metal hydroxides. By being placed in the presence of water in a subcritical to supercritical state, the metal oxide is used. Various salts that can be converted to can be used.
  • the precursor particles may have high solubility in water and may be dissolved in an aqueous solvent, which will be described later.
  • the precursor particles have poor solubility in water and are dispersed (sol-like) as colloidal particles in the aqueous solvent. Also good.
  • the metal oxide particles obtained by the production method described above are hexagonal ferrite particles.
  • Hexagonal ferrite particles are magnetic particles that are useful in various applications, and are particularly useful as magnetic powder for magnetic recording.
  • Hexagonal ferrite containing no substitution element is a metal oxide represented by AFe 12 O 19 .
  • A is an alkaline earth metal such as barium, strontium, calcium, or lead.
  • substitution elements described later The precursor particles of the hexagonal ferrite particles described above can be obtained by mixing an iron salt and an alkaline earth metal salt in an aqueous solution.
  • a salt containing iron and an alkaline earth metal is usually precipitated in the form of particles, preferably colloidal particles.
  • the deposited particles are then ferritized by being placed in the presence of water in a subcritical to supercritical state to form hexagonal ferrite particles.
  • an organic compound is present in the aqueous solution. Details of the organic compound will be described later.
  • alkaline earth metal salts such as barium, strontium, calcium and lead can be used.
  • the type of alkaline earth metal may be determined according to the desired hexagonal ferrite. For example, when it is desired to obtain barium ferrite, barium salt is used as the alkaline earth metal salt, and when strontium ferrite is desired, strontium salt is used. In addition, when a mixed crystal of barium ferrite and strontium ferrite is desired, a barium salt and a strontium salt may be used in combination as the alkaline earth metal salt.
  • a water-soluble salt is preferable, and for example, hydroxides, chlorides, bromides, iodides and other halides, nitrates and the like can be used.
  • the iron salt a water-soluble salt of iron, for example, halides such as chloride, bromide, iodide, nitrate, sulfate, carbonate, organic acid salt and complex salt can be used.
  • the mixing ratio of the iron salt and the alkaline earth metal salt may be determined according to the desired ferrite composition.
  • a salt of an arbitrary element capable of forming the hexagonal ferrite may be added together with the iron and the alkaline earth metal. Examples of such optional elements include Nb, Co, Ti, Zn, and the like. What is necessary is just to determine the addition amount of the salt of the said arbitrary elements according to a desired ferrite composition.
  • particles containing the elements contained in the salt are precipitated.
  • the particles that precipitate here are then ferrite and converted to hexagonal ferrite.
  • Organic Compound In the method for producing metal oxide particles according to one embodiment of the present invention, the synthesis reaction of the precursor particles described above is performed in the presence of an organic compound. As a result, as described above, fine metal oxide particles can be obtained.
  • the organic compound include organic carboxylic acids, organic nitrogen compounds, organic sulfur compounds, organic phosphorus compounds and salts thereof, surfactants, various polymers, and the like.
  • the polymer a polymer having a mass average molecular weight of about 1,000 to 100,000 is preferable, and a polymer exhibiting water solubility is preferable.
  • a nonionic polymer and a hydroxyl-containing polymer can be mentioned.
  • an alkali metal salt is suitable.
  • organic carboxylic acids include aliphatic carboxylic acids, alicyclic carboxylic acids, aromatic carboxylic acids, and the like, and aliphatic carboxylic acids are preferred.
  • the aliphatic carboxylic acid may be a saturated aliphatic carboxylic acid or an unsaturated aliphatic carboxylic acid, and is preferably an unsaturated carboxylic acid.
  • Carbon number of carboxylic acids is not particularly limited, and is, for example, 2 or more and 24 or less, preferably 5 or more and 20 or less, more preferably 8 or more and 16 or less.
  • aliphatic carboxylic acid examples include oleic acid, linoleic acid, linolenic acid, caprylic acid, capric acid, lauric acid, behenic acid, stearic acid, myristic acid, palmitic acid, myristoleic acid, palmitoleic acid, vaccenic acid, Examples include eicosenoic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanoic acid, and icosanoic acid.
  • the present invention is not limited to this.
  • Organic nitrogen compounds include organic amines, organic amide compounds, nitrogen-containing heterocyclic compounds, and the like.
  • Organic amines may be any of primary amines, secondary amines, and tertiary amines.
  • primary amines and secondary amines are used.
  • aliphatic amines etc. are mentioned, and primary aliphatic amines and secondary aliphatic amines can be mentioned.
  • Carbon number of amines is not specifically limited, For example, 5 or more and 24 or less, Preferably they are 8 or more and 20 or less, More preferably, they are 12 or more and 18 or less.
  • organic amines include, for example, alkyls such as oleylamine, laurylamine, myristylamine, palmitylamine, stearylamine, octylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, dioctylamine and the like.
  • alkyls such as oleylamine, laurylamine, myristylamine, palmitylamine, stearylamine, octylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, dioctylamine and the like.
  • alkyls such as oleylamine, laurylamine, myristylamine, palmitylamine, stearylamine, octylamine, decyl
  • nitrogen-containing heterocyclic compounds include heterocyclic compounds having a saturated or unsaturated 3- to 7-membered ring containing 1 to 4 nitrogen atoms.
  • a sulfur atom, an oxygen atom, or the like may be contained as a hetero atom.
  • Specific examples include pyridine, lutidine, collidine, quinolines and the like.
  • Organic sulfur compounds include organic sulfides, organic sulfoxides, sulfur-containing heterocyclic compounds and the like. Specific examples include dialkyl sulfides such as dibutyl sulfide, dialkyl sulfoxides such as dimethyl sulfoxide and dibutyl sulfoxide, and sulfur-containing heterocyclic compounds such as thiophene, thiolane, and thiomorpholine.
  • organic phosphorus compounds include phosphate esters, phosphine, phosphine oxides, trialkylphosphine, phosphite esters, phosphonate esters, phosphinate esters, phosphinate esters, Examples thereof include phosphinic acid esters.
  • trialkylphosphine such as tributylphosphine, trihexylphosphine, trioctylphosphine, tributylphosphine oxide, trihexylphosphine oxide, trioctylphosphine oxide (TOPO), tridecylphosphine oxide, etc.
  • trialkylphosphine oxides such as tributylphosphine, trihexylphosphine, trioctylphosphine, tributylphosphine oxide, trihexylphosphine oxide, trioctylphosphine oxide (TOPO), tridecylphos
  • polymers and surfactants include polyethylene glycol, polyoxyethylene (1) lauryl ether phosphate, lauryl ether phosphate, sodium polyphosphate, sodium bis (2-ethylhexyl) sulfosuccinate, sodium dodecylbenzenesulfonate, poly Examples include acrylic acid and salts thereof, polymethacrylic acid and salts thereof, hydroxyl group-containing polymers such as polyvinyl alcohol, nonionic polymers such as polyvinyl pyrrolidone, and hydroxyethyl cellulose.
  • the surfactant any of cationic, anionic, nonionic surfactants and amphoteric surfactants can be used, and anionic surfactants are preferred.
  • the organic compound may be present in the reaction solution together with the precursor compound of the precursor particles, and the mixing order of the precursor particles with the precursor compound is not particularly limited. From the viewpoint of more effectively suppressing aggregation of the precursor particles during the synthesis reaction, it is preferable to add the raw material compound after the organic compound is added to the reaction solvent and dissolved or suspended. Moreover, the said organic compound may be added to a reaction solvent as it is, and may be added in the state of a solution or a suspension.
  • the amount of the organic compound used is preferably in the range of 0.01 to 1000 parts by weight, more preferably in the range of 0.05 to 500 parts by weight, with respect to 100 parts by weight of the precursor particles. More preferably, it is in the range of ⁇ 300 parts by mass.
  • the amount of precursor particles used as a reference here is a theoretically generated amount from an actual measurement value or a raw material charge amount. The same applies to values described below based on the amount of precursor particles.
  • the above synthesis reaction is usually performed in an aqueous solvent.
  • the aqueous solvent may be water alone or a mixed solvent of water and an organic solvent.
  • water it is preferable that water accounts for 50 mass% or more, and it is more preferable that it is only water.
  • organic solvent that can be used in combination with water in an aqueous solvent
  • water-miscible or hydrophilic solvents are preferable.
  • the polar solvent means a solvent satisfying at least one of a dielectric constant of 15 or more and a solubility parameter of 8 or more.
  • Preferred organic solvents include, for example, alcohols, ketones, aldehydes, nitriles, lactams, oximes, amides, ureas, amines, sulfides, sulfoxides, phosphate esters, carboxylic acids or carboxylic acids. Examples thereof include esters which are acid derivatives, carbonic acid or carbonic acid esters, ethers and the like.
  • the pH of the reaction solution for performing the precursor particle synthesis reaction is, for example, 4 or more and 14 or less, preferably 5 or more and 14 or less, and more preferably 6 or more and 13 or less as a value at a liquid temperature of 25 ° C. Preferably, it is 6 or more and 8 or less.
  • an acid or a base can optionally be added to the reaction solution for pH adjustment.
  • the base used here include sodium hydroxide, potassium hydroxide, sodium carbonate, aqueous ammonia, etc., but the acid and base are not limited to those usually used for pH adjustment. Can be used.
  • the amount of acid and base used is preferably such that a pH in the above range can be obtained.
  • the reaction may be performed at room temperature without temperature control, or may be performed with heating or cooling.
  • the average particle size of the precursor particles is 25 nm or less, more preferably 20 nm or less, and even more preferably less than 20 nm.
  • the average particle size of the precursor particles is preferably 1 nm or more in order to obtain metal oxide particles having a particle size in a preferable range described later.
  • the variation coefficient of the particle size of the precursor particles is preferably 5% or more and 40% or less, and more preferably 5% or more and 30% or less.
  • the coefficient of variation can be 10% or more and 30% or less, or 15% or more and 30% or less.
  • the average particle size of the precursor particles and the variation coefficient of the particle size are values measured by a method described later as a measurement method of the average sphere equivalent diameter and the variation coefficient of the sphere equivalent diameter of the metal oxide powder.
  • the precursor particles synthesized by the steps described above may be recovered from the reaction solution after the synthesis reaction by a known method, and the reaction solution after the synthesis reaction is used as it is for the reaction for conversion to metal oxide particles. You may attach.
  • the latter method is preferable because the process is simple.
  • the aqueous solution containing the precursor particles is heated at the above temperature and pressure so that the water contained in the aqueous solution is in a subcritical to supercritical state. And pressurizing to convert the precursor particles into metal oxide particles. More preferably, the heating temperature is in the range of 300 ° C.
  • the pressurizing pressure is in the range of 20 MPa to 50 MPa, and the more preferable heating temperature is in the range of 350 ° C. to 500 ° C.
  • This heating and pressurization may be performed on the reaction solution in the reaction tank without feeding the solution (batch type hydrothermal synthesis process), but from the viewpoint of improving productivity, the solution is fed continuously. It is preferred to heat and pressurize the solution being applied (continuous hydrothermal synthesis process).
  • the above-described reaction flow is obtained by continuously feeding an aqueous solution containing precursor particles to a reaction flow path in which a fluid flowing inside is heated to 300 ° C. or higher and pressurized by applying a pressure of 20 MPa or higher.
  • the precursor particles are converted into metal oxides in the channel.
  • An aqueous solution containing the precursor particles is added to a liquid supply path in which water heated to 300 ° C. or higher and pressure of 20 MPa or higher is continuously supplied, and this water and hexagon
  • the mixed solution with the aqueous solution containing the crystal ferrite precursor particles is heated to 300 ° C.
  • Aspect (2) heats and pressurizes the aqueous solution containing the precursor particles to bring them into the subcritical to supercritical state at the point where the water in the subcritical to supercritical state is brought into contact with the aqueous solution containing the precursor particles. It is different from the aspect (1).
  • Aspect (2) is advantageous in that the conversion proceeds at an early stage because the precursor particles are instantaneously placed in a highly reactive state by contacting with water in a subcritical to supercritical state.
  • the amount of the precursor particles in the aqueous solution added to the liquid feeding path is preferably about 0.01 to 10 parts by mass per 100 parts by mass of the solvent.
  • the liquid feeding path highly reactive water and an aqueous solution containing precursor particles are mixed, and this mixed liquid is fed. Further, in the liquid feeding path, the liquid mixture is heated to 300 ° C. or higher and continuously fed while applying a pressure of 20 MPa or higher.
  • the reaction system in which water is present is heated to 300 ° C. or higher and pressurized by applying a pressure of 20 MPa or higher, so that the water becomes a subcritical to supercritical state.
  • the reaction to convert to metal oxide particles further proceeds. More preferably, the heating temperature is in the range of 300 ° C. to 500 ° C., the pressure applied to the reaction system is in the range of 20 MPa to 50 MPa, and the more preferable heating temperature is in the range of 350 ° C. to 500 ° C.
  • metal oxide particles in which the precursor particles are converted can be obtained.
  • FIG. 1 is a schematic explanatory diagram of one embodiment of a production apparatus suitable for a continuous hydrothermal synthesis process capable of performing such steps.
  • the production apparatus shown in FIG. 1 includes liquid tanks 1 and 2, heating means 4 (4a to 4c), pressurized liquid feeding means 5a and 5b, reactor 6, cooling unit 7, filtration means 8, pressure regulating valve 9, and recovery.
  • the fluid is fed from each liquid tank to the pipes 100 and 101 including the section 10.
  • purified water, distilled water, and the like are introduced into the liquid tank 1 and the precursor particle solution is introduced into the liquid tank 2, respectively.
  • the water introduced into the liquid tank 1 is fed into the pipe 100 while being pressurized by the pressurized liquid feeding means 5a, and heated in the heating means 4 to become subcritical to supercritical water and mixed. Part M1 is reached.
  • the precursor particle solution fed from the liquid tank 2 to the pipe 101 by the pressurized liquid feeding means 5b is fed and reaches the mixing section M1.
  • the mixing unit M1 the precursor particle solution comes into contact with water in a subcritical to supercritical state, whereby a reaction for converting the precursor particles into metal oxide particles is started.
  • heating is continued in the reactor and pressure is further applied by the pressurizing means 5a, so that water existing in the reaction system in the reactor 6 becomes a subcritical to supercritical state, and the precursor particles become metal oxide particles.
  • the conversion reaction proceeds further.
  • the solution containing the metal oxide particles in which the precursor particles are converted is discharged from the discharge port M2.
  • the discharged solution is cooled by mixing with cold water in the cooling unit 7, and then metal oxide particles are collected by a filtering means (filter or the like) 8.
  • the metal oxide particles collected by the filtering unit 8 are discharged from the filtering unit 8 and are collected by the collecting unit 10 through the pressure regulating valve 9.
  • a high-pressure metal pipe as the pipe in order to apply pressure to the fluid sent to the inside.
  • stainless steel such as SUS316 and SUS304, or nickel-based alloy such as Inconel (registered trademark) and Hastelloy (registered trademark) is preferable because of its low corrosiveness.
  • the material is not limited to these, and equivalent or similar materials can be used.
  • a pipe having a laminated structure described in Japanese Patent Application Laid-Open No. 2010-104928 may be used.
  • the subcritical to supercritical water and the precursor particle solution are mixed in the mixing section M1 in which the pipes are joined with a tee-type joint.
  • the reactors described in Japanese Patent Laid-Open Nos. 2008-12453 and 2010-75914 may be used.
  • materials described in JP 2007-268503 A, JP 2008-12453 A, and JP 2010-75914 A are preferable.
  • the material is not limited to these, and equivalent or similar materials can be used.
  • FIG. 2 is a schematic explanatory diagram of another embodiment of a production apparatus suitable for a continuous hydrothermal synthesis process.
  • the manufacturing apparatus shown in FIG. 2 includes a liquid tank 3 in addition to the liquid tanks 1 and 2, and is provided with a pressurized liquid feeding means 5 c and a pipe 102 for the fluid in the liquid tank 3. 1 is different from the manufacturing apparatus shown in FIG. After introducing the additive solution into the liquid tank 3 and feeding it to the pipe 102 and mixing it with the precursor particle solution, the mixed solution may be brought into contact with water in a subcritical to supercritical state in the mixing section M1.
  • the additive is added to the precursor particle solution, it is contacted with water in a subcritical to supercritical state to perform conversion reaction to metal oxide particles. It can also be done.
  • the above-mentioned organic compounds can be exemplified.
  • the addition of an organic compound is effective in obtaining metal oxide particles with even finer particles and a uniform particle size.
  • the organic compound can be mixed with the precursor particle solution in an amount of, for example, about 1 to 1000 parts by mass with respect to 100 parts by mass of the precursor particles.
  • the metal oxide particles thus obtained can be optionally subjected to subsequent processes such as washing and drying.
  • Metal oxide powder The further aspect of this invention is related with the metal oxide powder which consists of a metal oxide particle obtained by the above-mentioned manufacturing method.
  • metal oxide particles having fine particles and excellent particle size uniformity can be obtained by a hydrothermal synthesis process.
  • the metal oxide powder may have an average particle size of an average sphere equivalent diameter of 5 nm to 30 nm, and further 5 nm to 20 nm.
  • a sharp particle size distribution having a coefficient of variation of the equivalent sphere diameter of 5% to 40% can be shown.
  • the variation coefficient may be 10% or more and 35% or less, and further 15% or more and 30% or less.
  • Such metal oxide powder having fine particles and excellent particle size uniformity is useful in various fields such as the magnetic recording field, the semiconductor field, and the catalyst field.
  • the average equivalent sphere diameter is a value determined by a transmission electron microscope observation method. Specifically, the equivalent sphere diameter is obtained from the projected area of 500 particles in a particle photograph taken by a direct method using an electron microscope with an acceleration voltage of 100 kV (for example, Hitachi transmission electron microscope H-9000). An average value of 500 particles is defined as an average sphere equivalent diameter. More specifically, a particle photograph is taken at a photographing magnification of 100,000 and printed on photographic paper so that the total magnification is 500,000 times. A target particle is selected from the particle photograph, the outline of the powder is traced with a digitizer, and the particle size is measured with the image analysis software KS-400 manufactured by Carl Zeiss.
  • the variation coefficient of the equivalent sphere diameter is a value obtained by dividing the average equivalent sphere diameter by obtaining a standard deviation for the equivalent sphere diameter of 500 particles.
  • the isotropic particle refers to a particle having a ratio of a major axis length to a minor axis length (major axis length / minor axis length) of 1 or more and 2 or less, preferably 1 or more and 1.5 or less.
  • the magnetic material is preferably isotropic particles in order to achieve higher density recording by increasing the filling rate of the magnetic material in the magnetic layer.
  • a high recording density can be realized by a fine particle magnetic material having a particle size of 30 nm or less, preferably 20 nm or less.
  • a magnetic material having a particle size of 5 nm or more is preferred from the viewpoint of magnetization stability. Therefore, the metal oxide powder is suitable as a ferromagnetic powder in the magnetic layer of the magnetic recording medium. That is, as a preferred embodiment of the metal oxide powder, magnetic powder for magnetic recording can be exemplified.
  • ferromagnetic hexagonal ferrite powder can be mentioned.
  • Ferromagnetic hexagonal ferrite powder composed of hexagonal ferrite particles can be obtained by subjecting the precursor particles formed from iron salt and alkaline earth metal salt to the above-described process. The particle sizes described above can be determined for metal oxide powders present as powder by observing the powder with a transmission electron microscope.
  • a sample for measurement can be obtained by extracting the powder from the coating film.
  • the magnetic layer is peeled off from the magnetic recording medium, 0.1 to 100 ml of n-butylamine is added to 100 to 500 mg of this magnetic layer, sealed in a glass tube, set in a thermal decomposition apparatus, and heated at 100 ° C. for about 3 days. To do. After cooling, the contents are taken out from the glass tube and centrifuged to separate the liquid and solids. The separated solid is washed with acetone to obtain a powder sample. Since the oxide is hardly damaged by heating at about 100 ° C. or immersion in an organic solvent, the particle size of the powder contained in the magnetic layer can be measured by the above method.
  • Magnetic recording medium One aspect of the present invention relates to a magnetic recording medium having a magnetic layer containing a ferromagnetic powder and a binder on a nonmagnetic support, the magnetic recording medium containing the above-described metal oxide powder as the ferromagnetic powder.
  • the above metal oxide powder can be fine particles and excellent in particle size uniformity, excellent electromagnetic conversion characteristics can be obtained by using this metal oxide powder as the ferromagnetic powder of the magnetic layer. Can be provided.
  • the magnetic recording medium according to one embodiment of the present invention will be described in more detail.
  • metal oxide powder and a manufacturing method thereof is a ferromagnetic powder used in the magnetic layer a magnetic layer, as described above.
  • the magnetic layer contains a binder together with ferromagnetic powder.
  • the binder contained in the magnetic layer includes polyurethane resin, polyester resin, polyamide resin, vinyl chloride resin, acrylic resin copolymerized with styrene, acrylonitrile, methyl methacrylate, cellulose resin such as nitrocellulose, epoxy
  • a single resin or a mixture of a plurality of resins can be used from a polyvinyl alkyl resin such as a resin, a phenoxy resin, polyvinyl acetal, and polyvinyl butyral.
  • polyurethane resins, acrylic resins, cellulose resins, and vinyl chloride resins are preferred. These resins can also be used as a binder in the nonmagnetic layer described later.
  • paragraphs 0029 to 0031 of JP2010-24113A can be referred to. It is also possible to use a polyisocyanate curing agent together with the resin.
  • An additive can be added to the magnetic layer as necessary.
  • the additive include an abrasive, a lubricant, a dispersant / dispersion aid, an antifungal agent, an antistatic agent, an antioxidant, a solvent, and carbon black.
  • the additives described above can be used by appropriately selecting commercially available products according to desired properties.
  • the magnetic recording medium can have a nonmagnetic layer containing a nonmagnetic powder and a binder between the nonmagnetic support and the magnetic layer.
  • the nonmagnetic powder used for the nonmagnetic layer may be an inorganic substance or an organic substance. Carbon black or the like can also be used. Examples of the inorganic substance include metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, and metal sulfides. These nonmagnetic powders are available as commercial products, and can also be produced by a known method. For details, refer to paragraphs 0036 to 0039 of JP2010-24113A.
  • the binder, lubricant, dispersant, additive, solvent, dispersion method, etc. of the nonmagnetic layer can be applied to those of the magnetic layer.
  • known techniques relating to the magnetic layer can be applied to the amount of binder, type, additive, and amount of dispersant added, and type.
  • carbon black or organic powder can be added to the nonmagnetic layer. Regarding these, reference can be made, for example, to paragraphs 0040 to 0042 of JP-A-2010-24113.
  • Non-magnetic support examples include known ones such as biaxially stretched polyethylene terephthalate, polyethylene naphthalate, polyamide, polyamideimide, and aromatic polyamide. Among these, polyethylene terephthalate, polyethylene naphthalate, and polyamide are preferable. These supports may be subjected in advance to corona discharge, plasma treatment, easy adhesion treatment, heat treatment and the like.
  • the surface roughness of the nonmagnetic support that can be used in the present invention is preferably a center average roughness Ra of 3 to 10 nm at a cutoff value of 0.25 mm.
  • the thickness of the nonmagnetic support is preferably 3 to 80 ⁇ m.
  • the thickness of the magnetic layer is optimized depending on the saturation magnetization amount, head gap length, and recording signal band of the magnetic head to be used, but is generally 0.01 to 0.15 ⁇ m, preferably 0.02 to The thickness is 0.12 ⁇ m, more preferably 0.03 to 0.10 ⁇ m.
  • the thickness of the nonmagnetic layer is, for example, 0.1 to 3.0 ⁇ m, preferably 0.3 to 2.0 ⁇ m, and more preferably 0.5 to 1.5 ⁇ m.
  • the nonmagnetic layer of the magnetic recording medium according to one embodiment of the present invention exhibits its effect as long as it is substantially nonmagnetic.
  • the nonmagnetic layer includes impurities or intentionally contains a small amount of magnetic material.
  • this shows the effect of the present invention and can be regarded as substantially the same configuration as the magnetic recording medium according to one embodiment of the present invention.
  • the residual magnetic flux density of the nonmagnetic layer is 10 mT or less or the coercive force is 7.96 kA / m (100 Oe) or less, and preferably has no residual magnetic flux density and coercive force. Means.
  • a backcoat layer may be provided on the surface of the nonmagnetic support opposite to the surface having the magnetic layer.
  • the back coat layer preferably contains carbon black and inorganic powder.
  • the formulation of the magnetic layer and the nonmagnetic layer can be applied.
  • the thickness of the back coat layer is preferably 0.9 ⁇ m or less, more preferably 0.1 to 0.7 ⁇ m.
  • the process for producing the coating liquid for forming the magnetic layer, nonmagnetic layer or backcoat layer usually comprises at least a kneading process, a dispersing process, and a mixing process provided before and after these processes as necessary. Become. Each process may be divided into two or more stages. All raw materials such as ferromagnetic powder, non-magnetic powder, binder, carbon black, abrasive, antistatic agent, lubricant, and solvent used in the present invention may be added at the beginning or middle of any step. In addition, individual raw materials may be added in two or more steps.
  • polyurethane may be divided and added in a kneading step, a dispersing step, and a mixing step for adjusting the viscosity after dispersion.
  • a conventional known manufacturing technique can be used as a partial process.
  • a kneading force such as an open kneader, a continuous kneader, a pressure kneader, or an extruder. Details of these kneading processes are described in JP-A-1-106338 and JP-A-1-79274.
  • Glass beads can be used to disperse the magnetic layer coating solution, nonmagnetic layer coating solution or backcoat layer coating solution.
  • Such glass beads are preferably zirconia beads, titania beads, and steel beads, which are high specific gravity dispersion media. The particle diameter and filling rate of these dispersion media are optimized.
  • a well-known thing can be used for a disperser.
  • For details of the method of manufacturing the magnetic recording medium reference can be made, for example, to paragraphs 0051 to 0057 of JP2010-24113A.
  • the magnetic recording medium according to one embodiment of the present invention described above can exhibit high electromagnetic conversion characteristics in a high-density recording region by including the above-described metal oxide powder in the magnetic layer. It is suitable as a capacity magnetic recording medium.
  • X-ray diffraction analysis was performed by scanning a CuK ⁇ ray under conditions of 45 kV and 40 mA and measuring an XRD pattern.
  • the average particle size of the hydroxide particles contained in the following precursor particles (hydroxide sol) and the coefficient of variation of the particle size, the average sphere equivalent diameter of hexagonal ferrite and the coefficient of variation are the transmission electron made by Hitachi as an electron microscope. It was determined by the method described above using a microscope H-9000 type.
  • the pH of the reaction solution during the synthesis reaction of the precursor particles is a value obtained by partially removing the solution and measuring at a liquid temperature of 25 ° C.
  • Example 1-1 (1) Preparation of precursor particle solution Sodium oleate (C 17 H 33 COONa) is dissolved in purified water, and barium hydroxide (Ba (OH) 2 .8H 2 O), iron (III) nitrate (Fe (NO 3) 3 ⁇ 9H 2 O) , and to dissolve the KOH, to prepare a hydroxide sol used as the precursor particle solution.
  • the concentration of the prepared aqueous solution (sol) (the total concentration of Ba and Fe) was 0.01 M, and the Ba / Fe molar ratio was 0.5.
  • the concentration of sodium oleate was 0.1M.
  • the aqueous solution (sol) is sent to the pipe 101 at 25 ° C. using the high-pressure pump 5b and mixed with the high-temperature high-pressure water in the mixing unit M1, and subsequently heated and pressurized at 400 ° C. and 30 MPa in the reactor 6.
  • barium ferrite nanoparticles were synthesized.
  • the liquid containing the barium ferrite nanoparticles was cooled and collected in the cooling unit 7 with cold water. The collected particles were washed with ethanol and subsequently centrifuged to separate the barium ferrite nanoparticles.
  • Example 1-1 The same procedure as in Example 1-1 was performed except that sodium oleate was not used in the above (1).
  • Examples 1-2 to 1-11 The same as in Example 1-1, except that the sodium oleate concentration in (1) was set to the concentration shown in Table 1 and the precursor particles were synthesized so that the pH of the reaction solution became the value shown in Table 1. Went to.
  • Example 1-12 Strontium ferrite nanoparticles as in Example 1-1 except that strontium hydroxide (Sr (OH) 2 .8H 2 O) was used instead of barium hydroxide (Ba (OH) 28 H 2 O) Got.
  • strontium hydroxide Sr (OH) 2 .8H 2 O
  • barium hydroxide Ba (OH) 28 H 2 O
  • Examples 1-13 to 1-15 The same procedure as in Example 1-1 was performed except that organic compounds having the types and concentrations shown in Table 1 were used instead of sodium oleate.
  • Table 1 shows the average particle size of the precursor particles, the variation coefficient of the particle size, and the average equivalent sphere diameter and variation coefficient of the obtained hexagonal ferrite nanoparticles.
  • metal oxide particles having fine particles and a uniform particle size can be obtained.
  • Magnetic layer coating liquid formulation Ferromagnetic hexagonal ferrite powder (described in Table 2): 100 parts SO 3 Na group-containing polyurethane resin: 14 parts (mass average molecular weight: 70,000, SO 3 Na group: 0.4 meq / g) Cyclohexanone: 150 parts Methyl ethyl ketone: 150 parts (Abrasive liquid) Abrasive liquid A Alumina abrasive (average particle size: 100 nm): 3 parts Polyurethane resin containing sulfonic acid group: 0.3 part (mass average molecular weight: 70,000, SO 3 Na group: 0.3 meq / g) Cyclohexanone: 26.7 parts abrasive liquid B Diamond abrasive (average particle diameter: 100 nm): 1 part sulfonic acid group-containing polyurethane resin: 0.1 part (mass average molecular weight:
  • Nonmagnetic layer coating liquid formulation Nonmagnetic inorganic powder ⁇ -iron oxide: 100 parts Average major axis length: 10 nm Average needle ratio: 1.9 BET specific surface area: 75 m 2 / g Carbon black: 25 parts Average particle size 20 nm SO 3 Na group-containing polyurethane resin: 18 parts (mass average molecular weight: 70,000, SO 3 Na group: 0.2 meq / g) Stearic acid: 1 part Cyclohexanone: 300 parts Methyl ethyl ketone: 300 parts
  • Nonmagnetic inorganic powder ⁇ -iron oxide 80 parts Average major axis length: 0.15 ⁇ m Average needle ratio: 7 BET specific surface area: 52 m 2 / g Carbon black: 20 parts Average particle size 20 nm
  • Vinyl chloride copolymer 13 parts sulfonic acid group-containing polyurethane resin: 6 parts phenylphosphonic acid: 3 parts cyclohexanone: 155 parts methyl ethyl ketone: 155 parts stearic acid: 3 parts butyl stearate: 3 parts polyisocyanate: 5 parts cyclohexanone: 200 Part
  • the magnetic liquid was dispersed for 24 hours using a batch type vertical sand mill.
  • a dispersion medium 0.5 mm ⁇ zirconia beads were used.
  • the abrasive liquid was dispersed for 24 hours with a batch type ultrasonic apparatus (20 kHz, 300 W). These dispersions were mixed with other components (silica sol, other components and finishing additive solvent), and then treated with a batch type ultrasonic device (20 kHz, 300 W) for 30 minutes. Then, it filtered using the filter which has an average hole diameter of 0.5 micrometer, and produced the magnetic layer coating liquid.
  • each component was dispersed for 24 hours using a batch type vertical sand mill.
  • a dispersion medium 0.1 mm ⁇ zirconia beads were used.
  • the obtained dispersion was filtered using a filter having an average pore size of 0.5 ⁇ m to prepare a coating solution for a nonmagnetic layer.
  • the backcoat layer coating solution was prepared by kneading and diluting each component except lubricant (stearic acid and butyl stearate), polyisocyanate and 200 parts of cyclohexanone with an open kneader, and then using a horizontal bead mill disperser to give 1 mm ⁇ zirconia beads.
  • the magnetic layer is coated with a non-magnetic layer coating solution so that the thickness after drying is 100 nm and dried, and then the thickness after drying is 70 nm.
  • a coating solution was applied. While the magnetic layer coating solution was in an undried state, a magnetic field having a magnetic field strength of 0.6 T was applied in a direction perpendicular to the coated surface to perform a vertical alignment treatment and then dried.
  • the backcoat layer coating solution was applied to the opposite surface of the support so that the thickness after drying was 0.4 ⁇ m and dried.
  • a surface smoothing treatment was performed with a calendar composed only of a metal roll at a speed of 100 m / min, a linear pressure of 300 kg / cm, and a temperature of 100 ° C., and then a heat treatment was performed for 36 hours in a Dry environment at 70 ° C. After the heat treatment, it was slit to 1/2 inch width to obtain a magnetic tape.
  • the present invention is useful in the field of manufacturing large-capacity magnetic recording media such as backup tapes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Magnetic Record Carriers (AREA)
  • Compounds Of Iron (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本発明の一態様は、金属酸化物の前駆体粒子合成反応を有機化合物の存在下で行い前駆体粒子を得ること、および、得られた前駆体粒子を含む水系溶液を、300℃以上に加熱し、かつ20PMa以上の圧力を加えて加圧することにより前駆体粒子を金属酸化物粒子に転換すること、を含む金属酸化物粒子の製造方法に関する。

Description

金属酸化物粒子の製造方法、金属酸化物粉末および磁気記録媒体
 本発明は、金属酸化物粒子の製造方法に関する。
 更に本発明は、上記製造方法により得られた金属酸化物粒子からなる金属酸化物粉末、およびこの粉末を磁性層に含む磁気記録媒体にも関する。
 微粒子の金属酸化物粒子は、磁気記録分野をはじめとする様々な分野において有用な材料である。そのような金属酸化物粒子の合成方法として、近年、水熱合成プロセスが提案され、注目を集めている(例えば特許文献1~3参照)。
特開2013-60358号公報 特開2009-208969号公報 特開2013-34952号公報
 例えば磁気記録分野では、磁性層の充填度向上およびノイズ低減のために、磁性層に含まれる強磁性粉末として微粒子化磁性体を用いることが求められる。また、微粒子金属酸化物粒子は、磁気記録分野に限らず、様々な分野において有用である。一方、上述の水熱合成プロセスは高い生産性をもって金属酸化物粒子を製造可能な方法ではあるが、得られる金属酸化物粒子の微粒子化については、更なる改善が求められている。
 また、磁気記録分野では、磁性体の平均粒子サイズを小さくしたとしても、粒度分布が広いと、例えば粒度分布の微粒子側成分が熱揺らぎの影響を受け、記録された磁気エネルギーが熱エネルギーに負けて記録が消失する可能性がある。粒度分布の粗大粒子側の成分によりノイズが増大する場合もある。このため粒子サイズが小さいこととともに、粒子サイズが均一であり粒度分布がシャープであることも、磁気記録分野において使用される金属酸化物粒子に求められる。微粒子かつ粒子サイズの均一性に優れる金属酸化物粒子は、磁気記録分野に限らず、様々な分野において有用である。
 そこで本発明の目的は、水熱合成プロセスにより微粒子かつ粒子サイズの均一性に優れる金属酸化物粒子を製造することにある。
 上述の水熱合成プロセスは、金属酸化物の前駆体粒子を加熱・加圧され高い反応性を有する水の存在下に置くことで、前駆体粒子の金属酸化物粒子への転換反応を行い金属酸化物粒子を得る製造方法である。この水熱合成プロセスについて本発明者らは鋭意検討を重ねた結果、水熱合成プロセスに付される前駆体粒子の合成反応を有機化合物の存在下で行うことにより、微粒子の金属酸化物粒子を得ることができることを、新たに見出した。前駆体粒子は、有機化合物が被着した状態で金属酸化物粒子への転換反応に付される際、高温高圧の系内で一旦瞬間的に溶解した後に結晶化し、これにより金属酸化物粒子が析出する(金属酸化物粒子へ転換する)と考えられる。この溶解~結晶化までの間に粒子近傍に有機化合物が存在することが結晶化する金属酸化物粒子の微粒子化および粒子サイズの均一化に寄与すると、本発明者は推察している。また、有機化合物存在下で合成することにより前駆体粒子の凝集が抑制され微粒子かつ粒子サイズの均一性に優れる前駆体粒子が得られることも、この前駆体粒子の転換により得られる金属酸化物粒子の微粒子化および粒子サイズの均一化に寄与していると考えられる。これに対し特許文献1~3には、水熱合成プロセスにおいて、前駆体粒子が金属酸化物粒子へ転換する転換反応を有機修飾剤の存在下で行うことの記載はあるが、本発明者らが新たに見出したように、水熱合成プロセスの前段階である前駆体粒子の合成反応を、有機化合物の存在下で行うことに対する示唆は皆無である。
 本発明は、以上の知見に基づき完成された。
 本発明の一態様は、
 金属酸化物の前駆体粒子合成反応を有機化合物の存在下で行い前駆体粒子を得ること、および、
 得られた前駆体粒子を含む水系溶液を、300℃以上に加熱し、かつ20PMa以上の圧力を加えて加圧することにより前駆体粒子を金属酸化物粒子に転換すること、
 を含む、金属酸化物粒子の製造方法、
 に関する。
 一態様では、上記加熱および加圧は、上述の水系溶液を連続的に送液しつつ行われる。
 一態様では、上記合成反応は、pHが5~14の範囲である水系反応溶液中で行われる。
 一態様では、上記合成反応により得られる前駆体粒子の平均粒子サイズは25nm以下である。
 一態様では、上記合成反応により得られる前駆体粒子の粒子サイズの変動係数は5%以上40%以下である。
 一態様では、上記合成反応を、鉄塩、アルカリ土類金属塩、および上述の有機化合物を水溶液中で混合することにより行い六方晶フェライトの前駆体粒子を析出させる。
 一態様では、前駆体粒子の金属酸化物粒子への転換は、上記合成反応により得られた前駆体粒子を含む前駆体粒子溶液を、300℃以上に加熱され、かつ20MPa以上の圧力が加えられた水が連続的に送液されている送液路に添加すること、および、この送液路内で、上述の水と前駆体粒子溶液との混合液を300℃以上に加熱し、かつ20PMa以上の圧力を加えながら連続的に送液することにより前駆体粒子を金属酸化物粒子に転換すること、により行われる。
 一態様では、上記金属酸化物粒子は、バリウムフェライト、ストロンチウムフェライト、およびそれらの混晶からなる群から選択される六方晶フェライト粒子である。
 一態様では、上記有機化合物は、カルボン酸およびその塩、アニオン性界面活性剤、ならびに水溶性ポリマーからなる群から選択される有機化合物である。
 本発明の更なる態様は、上述の製造方法により得られた金属酸化物粉末に関する。
 一態様では、上記金属酸化物粉末は、強磁性六方晶フェライト粉末である。
 一態様では、上記金属酸化物粉末は、磁気記録用磁性粉である。
 一態様では、上記金属酸化物粉末は、平均球相当径が5nm以上30nm以下である。
 一態様では、上記金属酸化物粉末は、球相当径の変動係数が5%以上20%以下である。
 本発明の更なる態様は、
 非磁性支持体上に強磁性粉末と結合剤とを含む磁性層を有する磁気記録媒体であって、
 上記強磁性粉末が、上述の金属酸化物粉末である磁気記録媒体、
 に関する。
 本発明によれば、水熱合成プロセスにより、微粒子かつ粒子サイズの均一性に優れる金属酸化物粒子を提供することもできる。こうして得られた金属酸化物粒子からなる金属酸化物粉末を磁性層の強磁性粉末として使用することにより、優れた電磁変換特性を有する磁気記録媒体の提供が可能となる。
図1は、連続的水熱合成プロセスに好適な製造装置の一態様の概略説明図である。 図2は、連続的水熱合成プロセスに好適な製造装置の他の一態様の概略説明図である。
[金属酸化物粒子の製造方法]
 本発明の一態様にかかる金属酸化物粒子の製造方法は、
 金属酸化物の前駆体粒子合成反応を有機化合物の存在下で行い前駆体粒子を得ること、および、
 得られた前駆体粒子を含む水系溶液を、300℃以上に加熱し、かつ20PMa以上の圧力を加えて加圧することにより前駆体粒子を金属酸化物粒子に転換すること、
 を含む。
 水が存在する反応系を、300℃以上に加熱し、かつ20MPa以上の圧力を加えて加圧することで、水が亜臨界~超臨界状態となり、きわめて高い反応性を有する反応場がもたらされる。金属酸化物粒子の前駆体粒子を、このような高反応性を有する状態の水と接触させることにより、前駆体粒子が金属酸化物粒子へ転換する反応が迅速に開始される。本発明の一態様にかかる金属酸化物粒子の製造方法では、この反応に付される前駆体粒子の合成反応を、有機化合物の存在下で行う。先に記載したように、こうして得られた前駆体粒子を水熱合成プロセスに付すことにより微粒子かつ粒子サイズの均一性に優れる金属酸化物粒子を得ることが可能になる。
 以下、上記製造方法について、更に詳細に説明する。
<前駆体粒子の合成反応>
前駆体粒子
 上記前駆体粒子は、亜臨界~超臨界状態の水の存在下に置かれることにより所望の金属酸化物に転換可能な物質の粒子である。金属としては、例えば、Fe、Co、Ni、Cu、Ag、Au、Zn、Cd、Hg、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Ti、Zr、Mn、Eu、Y、Nb、Ce、Baなど挙げられるがこれらに限定されない。微粒子、好ましくはナノオーダーの粒子サイズを有する粒子(ナノ粒子)、を構成する金属として当業者に知られた金属から選択することができる。
 金属酸化物の前駆体としては、一例として、金属水酸化物を挙げることができるがこれに限定されるものではなく、亜臨界~超臨界状態の水の存在下に置かれることにより金属酸化物に転換可能な各種の塩を用いることができる。前駆体粒子は、水に対して高い溶解性を示し後述する水系溶媒に溶解するものであってもよく、水に対する溶解性に乏しく、水系溶媒中でコロイド粒子として分散(ゾル状)していてもよい。
 一態様では、上述の製造方法により得られる金属酸化物粒子は、六方晶フェライト粒子である。六方晶フェライト粒子は、磁性粒子であって、各種用途において有用であり、特に、磁気記録用磁性粉として有用なものである。
 置換元素を含まない六方晶フェライトは、AFe1219で表される金属酸化物である。ここでAは、バリウム、ストロンチウム、カルシウム、鉛等のアルカリ土類金属である。なお六方晶フェライトには、上記の金属元素の一部が、後述する置換元素により置換されているものもある。
 以上説明した六方晶フェライト粒子の前駆体粒子は、鉄塩とアルカリ土類金属塩とを水溶液中で混合することにより得ることができる。上記水溶液中では、通常、鉄とアルカリ土類金属とを含む塩が粒子状、好ましくはコロイド粒子として析出する。ここで析出する粒子は、その後に亜臨界~超臨界状態の水の存在下に置かれることによりフェライト化し六方晶フェライト粒子となる。そして本発明の一態様では、上記水溶液中に有機化合物を存在させる。有機化合物の詳細については後述する。
 アルカリ土類金属塩としては、バリウム、ストロンチウム、カルシウム、鉛等のアルカリ土類金属塩を用いることができる。アルカリ土類金属の種類は、所望の六方晶フェライトに応じて決定すればよい。例えばバリウムフェライトを得たい場合には、アルカリ土類金属塩としてバリウム塩を使用し、ストロンチウムフェライトを得たい場合には、ストロンチウム塩を使用する。また、バリウムフェライトとストロンチウムフェライトとの混晶を得たい場合には、アルカリ土類金属塩としてバリウム塩とストロンチウム塩を併用すればよい。塩としては、水溶性塩が好ましく、例えば、水酸化物、塩化物、臭化物、沃化物等のハロゲン化物、硝酸塩等を用いることができる。
 鉄塩としては、鉄の水溶性塩、例えば、塩化物、臭化物、沃化物等のハロゲン化物、硝酸塩、硫酸塩、炭酸塩、有機酸塩および錯塩等を用いることができる。鉄塩とアルカリ土類金属塩の混合比は、所望のフェライト組成に応じて決定すればよい。また、鉄塩、アルカリ土類金属塩に加えて、鉄およびアルカリ土類金属とともに六方晶フェライトを構成可能な任意元素の塩を添加してもよい。そのような任意元素としては、Nb、Co、Ti、Zn等が挙げられる。上記任意元素の塩の添加量も、所望のフェライト組成に応じて決定すればよい。
 以上説明した塩を、後述する有機化合物を含む水溶液中で混合することにより、上記塩に含まれていた元素を含む粒子(六方晶フェライト前駆体粒子)が析出する。ここで析出する粒子は、その後フェライト化し、六方晶フェライトに転換される。
有機化合物
 本発明の一態様にかかる金属酸化物粒子の製造方法では、上述の前駆体粒子の合成反応を、有機化合物の存在下で行う。これにより結果的に先に記載したように、微粒子の金属酸化物粒子を得ることができる。有機化合物としては、例えば、有機カルボン酸類、有機窒素化合物類、有機硫黄化合物類、有機リン化合物類およびそれらの塩、界面活性剤、各種ポリマーなどが挙げられる。ポリマーとしては、質量平均分子量が1000~10万程度のポリマーが好適であり、水溶性を示すものが好ましい。また、好ましいポリマーとしては、非イオン性ポリマー、水酸基含有ポリマーを挙げることができる。また、上記の塩としては、アルカリ金属塩が好適である。
 有機カルボン酸類としては、脂肪族カルボン酸類、脂環式カルボン酸類、芳香族カルボン酸類などが挙げられ、脂肪族カルボン酸類が好ましい。脂肪族カルボン酸は飽和脂肪族カルボン酸でも不飽和脂肪族カルボン酸でもよく、不飽和カルボン酸が好ましい。カルボン酸類の炭素数は、特に限定されるものではなく、例えば2以上24以下、好ましくは5以上20以下、より好ましくは8以上16以下である。脂肪族カルボン酸の具体例としては、オレイン酸、リノール酸、リノレン酸、カプリル酸、カプリン酸、ラウリン酸、ベヘン酸、ステアリン酸、ミリスチン酸、パルミチン酸、ミリストレイン酸、パルミトレイン酸、バクセン酸、エイコセン酸、プロパン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ドデカン酸、テトラデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸などが挙げられるが、これに限定されるものではない。
 有機窒素化合物類としては、有機アミン類、有機アミド化合物類、窒素含有複素環式化合物類などが挙げられる。
 有機アミン類としては、1級アミン類、2級アミン類および3級アミン類のいずれであってもよい。好ましくは1級アミン類、2級アミン類が挙げられる。例えば、脂肪族アミン類などが挙げられ、1級脂肪族アミン類、2級脂肪族アミン類を挙げることができる。アミン類の炭素数は、特に限定されるものではなく、例えば5以上24以下、好ましくは8以上20以下、より好ましくは12以上18以下である。有機アミン類の具体例としては、例えば、オレイルアミン、ラウリルアミン、ミリスチルアミン、パルミチルアミン、ステアリルアミン、オクチルアミン、デシルアミン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン、ジオクチルアミン等のアルキルアミン類、アニリン等の芳香族アミン、メチルエタノールアミン、ジエタノールアミン等の水酸基含有アミン類、さらにそれらの誘導体などが挙げられる。
 窒素含有複素環式化合物類としては、例えば、窒素原子を1~4個含有している飽和または不飽和の3~7員環を有する複素環式化合物類が挙げられる。ヘテロ原子として硫黄原子、酸素原子などを含有していてもよい。具体例としては、例えば、ピリジン、ルチジン、コリジン、キノリン類などが挙げられる。
 有機硫黄化合物類としては、有機スルフィド類、有機スルホキシド類、硫黄含有複素環式化合物類などが挙げられる。具体例としては、例えば、ジブチルスルフィド等のジアルキルスルフィド類、ジメチルスルホキシドやジブチルスルホキシド等のジアルキルスルホキシド類、チオフェン、チオラン、チオモルホリン等の硫黄含有複素環式化合物類などが挙げられる。
 有機リン化合物類としては、リン酸エステル類、フォスフィン類、フォスフィンオキシド類、トリアルキルフォスフィン類、亜リン酸エステル類、フォスフォン酸エステル類、亜フォスフォン酸エステル類、フォスフィン酸エステル類、亜フォスフィン酸エステルなどが挙げられる。例えば、トリブチルフォスフィン、トリヘキシルフォスフィン、トリオクチルフォスフィン等のトリアルキルフォスフィン類、トリブチルフォスフィンオキシド、トリヘキシルフォスフィンオキシド、トリオクチルフォスフィンオキシド(TOPO)、トリデシルフォスフィンオキシド等のトリアルキルフォスフィンオキシド類などが挙げられる。
 更に、ポリマーおよび界面活性剤としては、ポリエチレングリコール、ポリオキシエチレン(1)ラウリルエーテルリン酸、ラウリルエーテルリン酸、ポリリン酸ナトリウム、ビス(2-エチルヘキシル)スルホコハク酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、ポリアクリル酸およびその塩、ポリメタクリル酸およびその塩、ポリビニルアルコール等の水酸基含有ポリマー、ポリビニルピロリドン等の非イオン性ポリマー、ヒドロキシエチルセルロースなどが挙げられる。界面活性剤は、カチオン性、アニオン性、ノニオン性界面活性剤、両性界面活性剤のいずれも用いることができ、アニオン性界面活性剤が好ましい。
 上記有機化合物は、前駆体粒子の原料化合物とともに反応溶液中に存在させればよく、前駆体粒子の原料化合物との混合順序は特に限定されるものではない。合成反応中の前駆体粒子の凝集をより効果的に抑制する観点からは、反応溶媒に有機化合物を添加し溶解または懸濁させた後、原料化合物を添加することが好ましい。また、上記有機化合物は、そのまま反応溶媒中に添加してもよく、溶液または懸濁液の状態で添加してもよい。
 有機化合物の使用量は、前駆体粒子100質量部に対して0.01~1000質量部の範囲とすることが好ましく、0.05~500質量部の範囲とすることがより好ましく、0.1~300質量部の範囲とすることがより好ましい。ここで基準とする前駆体粒子量は、実測値または原料仕込み量からの理論生成量である。この点は、以下に前駆体粒子量を基準として記載する値についても、同様とする。
 上記合成反応は、通常、水系溶媒中で行われる。水系溶媒は、水のみであってもよく、水と有機溶媒との混合溶媒であってもよい。上記水系溶媒は、水が50質量%以上を占めることが好ましく、水のみであることがより好ましい。
 水系溶媒において水と併用され得る有機溶媒としては、水と混和性のもの、または、親水性のものが好ましい。この点からは極性溶媒の使用が好適である。ここで極性溶媒とは、誘電率が15以上、溶解パラメータが8以上の少なくとも一方を満たす溶媒をいう。好ましい有機溶媒としては、例えば、アルコール類、ケトン類、アルデヒド類、ニトリル類、ラクタム類、オキシム類、アミド類、尿素類、アミン類、スルフィド類、スルホキシド類、リン酸エステル類、カルボン酸類またはカルボン酸誘導体であるエステル類、炭酸または炭酸エステル類、エーテル類などが挙げられる。
 前駆体粒子の合成反応を行う反応溶液のpHは、液温25℃での値として、例えば4以上14以下であり、5以上14以下であることが好ましく、6以上13以下であることがより好ましく、6以上8以下であることがさらに好ましい。pHが上記範囲内の水系溶液中で合成反応を行うことにより、より微粒子の前駆体粒子を析出させることができる。このためには、任意に、pH調整のために酸または塩基を反応溶液に添加することができる。ここで使用される塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア水等を挙げることができるが、酸、塩基としては、pH調整のために通常使用されるものを、何ら制限なく用いることができる。酸、塩基の使用量は、上記範囲のpHが得られる量とすることが好ましい。反応は、温度制御なしの室温で行ってもよく、加熱または冷却しながら行ってもよい。
 以上説明した工程により、微粒子で粒子サイズが均一な前駆体粒子を得ることができる。このことが、後述する工程により前駆体粒子を転換させて得られる金属酸化物粒子の微粒子化に寄与していると、本発明者らは推察している。好ましくは、前駆体粒子の平均粒子サイズは25nm以下であり、より好ましくは20nm以下であり、更に好ましくは20nm未満である。また、前駆体粒子の平均粒子サイズは1nm以上であることが、後述の好ましい範囲の粒子サイズを有する金属酸化物粒子を得るうえで好ましい。また、粒度分布については、前駆体粒子の粒子サイズの変動係数は5%以上40%以下であることが好ましく、5%以上30%以下であることがより好ましい。なお上記変動係数は、10%以上30%以下であることもでき、15%以上30%以下であることもできる。
 ここで、前駆体粒子の平均粒子サイズおよび粒子サイズの変動係数は、金属酸化物粉末の平均球相当径および球相当径の変動係数の測定方法として後述する方法により測定される値とする。
<金属酸化物粒子への転換>
 以上説明した工程により合成された前駆体粒子は、合成反応後の反応溶液から公知の方法で回収してもよく、合成反応後の反応溶液をそのまま金属酸化物粒子への転換のための反応に付してもよい。後者の方法が、工程が簡便であり好ましい。本発明の一態様にかかる金属酸化物粒子の製造方法では、前駆体粒子を含む水系溶液を、上述の温度および圧力で上記水系溶液に含まれる水が亜臨界~超臨界状態となるように加熱および加圧することにより、前駆体粒子を金属酸化物粒子に転換する。より好ましくは、加熱温度は300℃~500℃の範囲、加圧の圧力は、20MPa~50MPaの範囲であり、更に好ましい加熱温度は350℃~500℃の範囲である。この加熱および加圧は、溶液を送液することなく反応槽中の反応溶液に対して行ってもよいが(バッチ式水熱合成プロセス)、生産性向上の観点からは、連続的に送液されている溶液を加熱および加圧することが(連続式水熱合成プロセス)、好ましい。
 連続式水熱合成プロセスの具体的態様としては、
 (1)前駆体粒子を含む水系溶液を、内部を流れる流体を300℃以上に加熱し、かつ20MPa以上の圧力を加えて加圧する反応流路に連続的に送液することにより、上記反応流路内で前駆体粒子を金属酸化物に転換する。
 (2)前駆体粒子を含む水系溶液を、300℃以上に加熱され、かつ20MPa以上の圧力が加えられた水が連続的に送液されている送液路に添加し、かつこの水と六方晶フェライト前駆体粒子を含む水溶液との混合液を、300℃以上に加熱し、かつ20MPa以上の圧力を加えながら連続的に送液することにより、前駆体粒子を金属酸化物に転換する。
 態様(2)は、亜臨界~超臨界状態にある水と、前駆体粒子を含む水溶液とを接触させる点において、前駆体粒子を含む水溶液を亜臨界~超臨界状態にすべく加熱・加圧する態様(1)と相違する。態様(2)は、亜臨界~超臨界状態にある水と接触することで、前駆体粒子が瞬時に高反応状態に置かれるため転換が早期に進行する点で、有利である。なお反応を良好に進行させるためには、送液路に添加される水系溶液中の前駆体粒子の量は、溶媒100質量部あたり0.01~10質量部程度とすることが好ましい。
 上記送液路内では、高反応性状態の水と前駆体粒子を含む水系溶液とが混合され、この混合液が送液される。そして更に送液路内で、混合液を300℃以上に加熱し、かつ20MPa以上の圧力を加えながら連続的に送液する。水が存在する反応系を、300℃以上に加熱し、かつ20MPa以上の圧力を加えて加圧することで水が亜臨界~超臨界状態となり、この状態の水の存在下で、前駆体粒子が金属酸化物粒子へ転換する反応が更に進行する。より好ましくは、加熱温度は300℃~500℃の範囲、反応系に加える圧力は、20MPa~50MPaの範囲であり、さらに好ましい加熱温度は350℃~500℃の範囲である。こうして前駆体粒子が転換された、金属酸化物粒子を得ることができる。
 以上の一連の工程は、連続的に溶液を送液し水と混合しつつ行うことが、作業性および生産性の観点から、有利である。図1は、そのような工程の実施が可能な、連続的水熱合成プロセスに好適な製造装置の一態様の概略説明図である。
 図1に示す製造装置は、液槽1、2、加熱手段4(4a~4c)、加圧送液手段5a、5b、反応器6、冷却部7、濾過手段8、圧力調整弁9、および回収部10を含み、配管100、101に、各液槽から流体が送液される。
 一態様では、液槽1に精製水、蒸留水等の水を、液槽2に前駆体粒子溶液を、それぞれ導入する。液槽1に導入された水は、加圧送液手段5aにより圧力を加えられながら配管100内に送液され、加熱手段4において加熱されることで、亜臨界~超臨界状態の水となり、混合部M1に達する。
 一方、液槽2から加圧送液手段5bにより配管101に送液された前駆体粒子溶液は送液され、混合部M1に達する。次いで、混合部M1において、前駆体粒子溶液が、亜臨界~超臨界状態の水と接触することで、前駆体粒子が金属酸化物粒子に転換する反応が開始される。その後、引き続き、反応器において加熱し、更に加圧手段5aにより圧力を加えることにより、反応器6内の反応系に存在する水が亜臨界~超臨界状態となり前駆体粒子が金属酸化物粒子へ転換する反応が更に進行する。その後、排出口M2から、前駆体粒子が転換した、金属酸化物粒子を含む溶液が排出される。排出された溶液は、冷却部7において冷水と混合することで冷却された後、濾過手段(フィルター等)8で金属酸化物粒子が捕集される。濾過手段8で捕集された金属酸化物粒子は濾過手段8から放出され圧力調整弁9を経て回収部10に回収される。
 上述の方法では、内部に送液される流体に圧力をかけるため、配管として、高圧用の金属配管を用いることが好ましい。配管を構成する金属としては、低腐食性であることから、SUS316、SUS304などのステンレス鋼、またはインコネル(登録商標)、ハステロイ(登録商標)などのニッケル基合金が好ましい。ただし、これらに限定されるものではなく、同等もしくは類似の材料も用いることができる。また、特開2010-104928号公報に記載された積層構成の配管を用いてもよい。
 なお図1に示す製造装置では、亜臨界~超臨界状態の水と前駆体粒子溶液とは、配管同士をティー型の継ぎ手で接合した混合部M1において混合されるが、特開2007-268503号公報、特開2008-12453号公報、特開2010-75914号公報に記載のリアクター等を用いてもよい。リアクターの素材としては、特開2007-268503号公報、特開2008-12453号公報、特開2010-75914号公報に記載された素材が好ましい。具体的には、配管を構成する金属として好適なものとして上述したものが好ましい。ただし、これらに限定されるものではなく、同等もしくは類似の材料も用いることができる。また、低腐食性のチタン合金、タンタル合金、およびセラミックスなどと組み合わせてもよい。
 図2は、連続的水熱合成プロセスに好適な製造装置の他の一態様の概略説明図である。図2に示す製造装置は、液槽1、2に加えて液槽3が設けられ、この液槽3中の流体のための加圧送液手段5cおよび配管102が設けられている点で、図1に示す製造装置と相違する。この液槽3へ添加剤溶液を導入し配管102へ送液し前駆体粒子溶液と混合した後、混合溶液を混合部M1において亜臨界~超臨界の状態の水と接触させてもよい。即ち、本発明の一態様にかかる金属酸化物粒子の製造方法では、前駆体粒子溶液に添加剤を添加した後に、亜臨界~超臨界状態の水と接触させ金属酸化物粒子への転換反応を行うこともできる。ここで添加される添加剤の好ましい態様としては、前述の有機化合物を挙げることができる。有機化合物を添加することは、より一層微粒子かつ粒子サイズが均一な金属酸化物粒子を得るうえで有効である。有機化合物は、例えば前駆体粒子100質量部に対して1~1000質量部程度の量で、前駆体粒子溶液と混合することができる。
 こうして得られた金属酸化物粒子は、任意に、洗浄、乾燥等の等の後工程に付すことができる。
[金属酸化物粉末]
 本発明の更なる態様は、上述の製造方法により得られた金属酸化物粒子からなる金属酸化物粉末に関する。
 上述の製造方法によれば、水熱合成プロセスにより、微粒子かつ粒子サイズの均一性に優れる金属酸化物粒子を得ることができる。例えば、上記金属酸化物粉末は、平均球相当径として5nm以上30nm以下、更には5nm以上20nm以下の平均粒子サイズを有することができる。また、粒子サイズの均一性に関しては、球相当径の変動係数が5%以上40%以下のシャープな粒度分布を示すことができる。なお上記変動係数は、10%以上35%以下、更には15%以上30%以下であることもできる。このような微粒子かつ粒子サイズの均一性に優れる金属酸化物粉末は、磁気記録分野、半導体分野、触媒分野、等の各種分野において有用である。
 上記の平均球相当径とは、透過電子顕微鏡観察法により求められる値とする。具体的には、加速電圧100kVの電子顕微鏡(例えば日立製透過型電子顕微鏡H-9000型)を用いて直接法で撮影した粒子写真における、500個の粒子の投影面積から球相当径を求め、500個の粒子の平均値を平均球相当径とする。より詳しくは、粒子写真を、撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントする。粒子写真から目的の粒子を選びデジタイザーで粉体の輪郭をトレースしカールツァイス製画像解析ソフトKS-400で粒子のサイズを測定する。また、球相当径の変動係数とは、500個の粒子の球相当径について標準偏差を求めて平均球相当径で除した値である。なお板状粒子など、等方粒子ではない粒子については、側面からの透過電子顕微鏡観察により直径と厚みを求めて、球相当径を求める。ここで等方粒子とは、長軸長と短軸長との比(長軸長/短軸長)が1以上2以下である粒子をいい、好ましくは1以上1.5以下である粒子をいう。例えば磁気記録媒体では、磁性層において磁性体の充填率を高めることにより更なる高密度記録を達成するためには、磁性体は等方粒子であることが好ましい。
 例えば、後述する磁気記録媒体においては、30nm以下、好ましくは20nm以下の粒子サイズを有する微粒子磁性体により、高記録密度を実現することができる。また、5nm以上の粒子サイズを有する磁性体は、磁化の安定性の観点から好ましい。したがって、上記金属酸化物粉末は、磁気記録媒体の磁性層における強磁性粉末として好適なものである。すなわち、上記金属酸化物粉末の好ましい一態様としては、磁気記録用磁性粉を挙げることができる。そのような磁性粉の好ましい具体的態様としては、強磁性六方晶フェライト粉末を挙げることができる。鉄塩とアルカリ土類金属塩から形成される前駆体粒子を前述の工程に付すことにより、六方晶フェライト粒子からなる強磁性六方晶フェライト粉末を得ることができる。
 以上記載した粒子サイズは、粉体として存在する金属酸化物粉末については、当該粉末を透過型電子顕微鏡により観察することで求めることができる。一方、磁気記録媒体の磁性層等の塗膜に含まれている金属酸化物粉末については、塗膜から粉末を抽出し測定用試料を得ることができる。例えば、磁気記録媒体から磁性層を剥ぎ取り、この磁性層100~500mgにn-ブチルアミンを0.1~100ml加え、ガラス管中に封かんし熱分解装置にセットして100℃で約3日加熱する。冷却後にガラス管から内容物を取り出し、遠心分離し、液と固形分を分離する。分離した固形分をアセトンで洗浄し、粉末試料を得る。100℃程度の加熱や有機溶剤への浸漬では酸化物へのダメージはほとんどないため、上記方法により、磁性層に含まれていた状態の粉末の粒子サイズの測定が可能である。
[磁気記録媒体]
 本発明の一態様は、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気記録媒体であって、強磁性粉末として、上述の金属酸化物粉末を含む磁気記録媒体に関する。
 先に記載した通り、上述の金属酸化物粉末は微粒子かつ粒子サイズの均一性に優れるものであり得るため、この金属酸化物粉末を磁性層の強磁性粉末として用いることにより、優れた電磁変換特性を有する磁気記録媒体を提供することができる。
 以下、本発明の一態様にかかる磁気記録媒体について、更に詳細に説明する。
磁性層
 磁性層に使用される強磁性粉末である金属酸化物粉末およびその製造方法の詳細は、前述の通りである。
 磁性層は、強磁性粉末とともに結合剤を含む。磁性層に含まれる結合剤としては、ポリウレタン樹脂、ポリエステル系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、スチレン、アクリロニトリル、メチルメタクリレートなどを共重合したアクリル系樹脂、ニトロセルロースなどのセルロース系樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラールなどのポリビニルアルキラール樹脂などから単独または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル系樹脂、セルロース系樹脂、塩化ビニル系樹脂である。これらの樹脂は、後述する非磁性層においても結合剤として使用することができる。以上の結合剤については、特開2010-24113号公報段落0029~0031を参照できる。また、上記樹脂とともにポリイソシアネート系硬化剤を使用することも可能である。
 磁性層には、必要に応じて添加剤を加えることができる。添加剤としては、研磨剤、潤滑剤、分散剤・分散助剤、防黴剤、帯電防止剤、酸化防止剤、溶剤、カーボンブラックなどを挙げることができる。以上説明した添加剤は、所望の性質に応じて市販品を適宜選択して使用することができる。
非磁性層
 次に非磁性層に関する詳細な内容について説明する。本発明の一態様にかかる磁気記録媒体は、非磁性支持体と磁性層との間に非磁性粉末と結合剤を含む非磁性層を有することができる。非磁性層に使用される非磁性粉末は、無機物質でも有機物質でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物などが挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2010-24113号公報段落0036~0039を参照できる。
 非磁性層の結合剤、潤滑剤、分散剤、添加剤、溶剤、分散方法その他は、磁性層のそれが適用できる。特に、結合剤量、種類、添加剤、分散剤の添加量、種類に関しては磁性層に関する公知技術が適用できる。また、非磁性層にはカーボンブラックや有機質粉末を添加することも可能である。それらについては、例えば特開2010-24113号公報段落0040~0042を参照できる。
非磁性支持体
 非磁性支持体としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドが好ましい。
 これらの支持体はあらかじめコロナ放電、プラズマ処理、易接着処理、熱処理などを行ってもよい。また、本発明に用いることのできる非磁性支持体の表面粗さはカットオフ値0.25mmにおいて中心平均粗さRa3~10nmが好ましい。
層構成
 本発明の一態様にかかる磁気記録媒体の厚み構成は、非磁性支持体の厚みが、好ましくは3~80μmである。磁性層の厚みは、用いる磁気ヘッドの飽和磁化量やヘッドギャップ長、記録信号の帯域により最適化されるものであるが、一般には0.01~0.15μmであり、好ましくは0.02~0.12μmであり、さらに好ましくは0.03~0.10μmである。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。
 非磁性層の厚みは、例えば0.1~3.0μmであり、0.3~2.0μmであることが好ましく、0.5~1.5μmであることが更に好ましい。なお、本発明の一態様にかかる磁気記録媒体の非磁性層は、実質的に非磁性であればその効果を発揮するものであり、例えば不純物として、あるいは意図的に少量の磁性体を含んでいても、本発明の効果を示すものであり、本発明の一態様にかかる磁気記録媒体と実質的に同一の構成とみなすことができる。なお、実質的に同一とは、非磁性層の残留磁束密度が10mT以下または抗磁力が7.96kA/m(100Oe)以下であることを示し、好ましくは残留磁束密度と抗磁力を持たないことを意味する。
バックコート層
 磁気記録媒体には、非磁性支持体の磁性層を有する面とは反対の面にバックコート層を設けることもできる。バックコート層には、カーボンブラックと無機粉末が含有されていることが好ましい。バックコート層形成のための結合剤、各種添加剤は、磁性層や非磁性層の処方を適用することができる。バックコート層の厚みは、0.9μm以下が好ましく、0.1~0.7μmが更に好ましい。
製造方法
 磁性層、非磁性層またはバックコート層を形成するための塗布液を製造する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程からなる。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。本発明で用いられる強磁性粉末、非磁性粉末、結合剤、カーボンブラック、研磨剤、帯電防止剤、潤滑剤、溶剤などすべての原料はどの工程の最初または途中で添加してもかまわない。また、個々の原料を2つ以上の工程で分割して添加してもかまわない。例えば、ポリウレタンを混練工程、分散工程、分散後の粘度調整のための混合工程で分割して投入してもよい。本発明の目的を達成するためには、従来の公知の製造技術を一部の工程として用いることができる。混練工程ではオープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダなど強い混練力をもつものを使用することが好ましい。これらの混練処理の詳細については特開平1-106338号公報、特開平1-79274号公報に記載されている。また、磁性層塗布液、非磁性層塗布液またはバックコート層塗布液を分散させるには、ガラスビーズを用いることができる。このようなガラスビーズは、高比重の分散メディアであるジルコニアビーズ、チタニアビーズ、スチールビーズが好適である。これら分散メディアの粒径と充填率は最適化して用いられる。分散機は公知のものを使用することができる。磁気記録媒体の製造方法の詳細については、例えば特開2010-24113号公報段落0051~0057を参照できる。
 以上説明した本発明の一態様にかかる磁気記録媒体は、上述の金属酸化物粉末を磁性層に含むことにより高密度記録領域において高い電磁変換特性を発揮することができるため、バックアップテープ等の大容量磁気記録媒体として好適である。
 以下に本発明を実施例によりさらに具体的に説明する。ただし本発明は、実施例に示す態様に限定されるものではない。以下に記載の「部」は、「質量部」を示す。また、下記工程および評価は、特記しない限り、23℃±1℃の大気中で行った。
 下記のX線回折分析(XRD測定)は、CuKα線を45kV、40mAの条件で走査し、XRDパターンを測定することにより行った。
 下記の前駆体粒子(水酸化物ゾル)に含まれる水酸化物粒子の平均粒子サイズおよび粒子サイズの変動係数、六方晶フェライトの平均球相当径および変動係数は、電子顕微鏡として日立製透過型電子顕微鏡H-9000型を用いて、先に記載した方法により求めた。
 また、前駆体粒子の合成反応時の反応溶液のpHは、溶液を一部取り出し液温25℃で測定した値である。
1.金属酸化物粒子(六方晶フェライト粒子)に関する実施例・比較例
[実施例1-1]
(1)前駆体粒子溶液の調製
 精製水にオレイン酸ナトリウム(C1733COONa)を溶解し、水酸化バリウム(Ba(OH)2・8H2O)、硝酸鉄(III)(Fe(NO33・9H2O)、およびKOHを溶解することで、前駆体粒子溶液として用いる水酸化物ゾルを調製した。調製した水溶液(ゾル)の濃度(BaとFeの合計濃度)は0.01M、Ba/Feモル比は0.5であった。オレイン酸ナトリウムの濃度は、0.1Mであった。KOHは、反応溶液中のpHが8となる量、添加した。
(2)連続的水熱合成プロセスによる六方晶フェライト粒子の合成
 図1に示す製造装置の液槽2に、上記(1)で調製した水溶液(ゾル)を導入した。なお製造装置の配管としては、SUS316BAチューブを用いた。
 液槽1に導入した精製水を高圧ポンプ5aで送液しつつヒーター4で加熱することで配管100中に高温高圧水を流通させた。この際、加熱手段4cを通過後の高温高圧水の温度が450℃、圧力が30MPaとなるように温度および圧力を制御した。
 一方、水溶液(ゾル)を25℃で配管101に高圧ポンプ5bを用いて送液し混合部M1において上記高温高圧水と混合させ、引き続き、反応器6において400℃、30MPaで加熱・加圧することにより、バリウムフェライトナノ粒子を合成した。
 バリウムフェライトナノ粒子合成後、冷却部7において冷水によりバリウムフェライトナノ粒子を含んだ液を冷却し、収集した。
 収集した粒子をエタノールで洗浄し、続いて遠心分離することにより、バリウムフェライトナノ粒子を分離した。
[比較例1-1]
 上記(1)においてオレイン酸ナトリウムを用いなかった点以外、実施例1-1と同様に行った。
[実施例1-2~1-11]
 上記(1)におけるオレイン酸ナトリウム濃度を表1に示す濃度とし、反応液のpHが表1に示す値となるように前駆体粒子の合成反応を行った点以外、実施例1-1と同様に行った。
[実施例1-12]
 水酸化バリウム(Ba(OH)282O)に代えて水酸化ストロンチウムウム(Sr(OH)2・8H2O)を用いた点以外、実施例1-1と同様に行いストロンチウムフェライトナノ粒子を得た。
[実施例1-13~1-15]
 オレイン酸ナトリウムに代えて表1に示す種類、濃度の有機化合物を用いた点以外、実施例1-1と同様に行った。
[比較例1-2]
 上記(1)においてオレイン酸ナトリウムを使用せず、図2に示す製造装置の配管102からオレイン酸ナトリウム含有水溶液(オレイン酸濃度0.1M)を導入し体積比で前駆体溶液:オレイン酸ナトリウム含有水溶液1:1となるように前駆体溶液と混合した点以外、実施例1-1と同様に行った。
 以上の実施例、比較例で得られた粒子をX線回折分析したところ、六方晶フェライトであることが確認された。前駆体粒子の平均粒子サイズ、粒子サイズの変動係数、および得られた六方晶フェライトナノ粒子の平均球相当径、変動係数を、下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上の実施例と比較例との対比により、本発明の一態様にかかる製造方法によれば、微粒子かつ粒子サイズが均一な金属酸化物粒子が得られることが確認できる。
2.磁気記録媒体(磁気テープ)に関する実施例・比較例
[実施例2-1~2-15、比較例2-1、2-2]
(1)磁性層塗布液処方
(磁性液)
強磁性六方晶フェライト粉末(表2記載):100部
SO3Na基含有ポリウレタン樹脂:14部
 (質量平均分子量:70,000、SO3Na基:0.4meq/g)
シクロヘキサノン:150部
メチルエチルケトン:150部
(研磨剤液)
研磨剤液A アルミナ研磨剤(平均粒子径:100nm):3部
スルホン酸基含有ポリウレタン樹脂:0.3部
 (質量平均分子量:70,000、SO3Na基:0.3meq/g)
シクロヘキサノン:26.7部
研磨剤液B ダイヤモンド研磨剤(平均粒子径:100nm):1部
スルホン酸基含有ポリウレタン樹脂:0.1部
 (質量平均分子量:70,000、SO3Na基:0.3meq/g)
シクロヘキサノン:26.7部
(シリカゾル)
コロイダルシリカ(平均粒径100nm):0.2部
メチルエチルケトン:1.4部
(その他成分)
ステアリン酸:2部
ブチルステアレート:6部
ポリイソシアネート(日本ポリウレタン社製コロネート):  2.5部
(仕上げ添加溶剤)
シクロヘキサノン:200部
メチルエチルケトン:200部
(2)非磁性層塗布液処方
非磁性無機粉末 α-酸化鉄:100部
    平均長軸長:10nm
    平均針状比:1.9
    BET比表面積:75m2/g
カーボンブラック:25部
    平均粒径 20nm
SO3Na基含有ポリウレタン樹脂:18部
 (質量平均分子量:70,000、SO3Na基:0.2meq/g)
ステアリン酸:1部
シクロヘキサノン:300部
メチルエチルケトン:300部
(3)バックコート層塗布液処方
非磁性無機粉末 α-酸化鉄:80部
    平均長軸長:0.15μm
    平均針状比:7
    BET比表面積:52m2/g
カーボンブラック:20部
    平均粒径20nm
塩化ビニル共重合体:13部
スルホン酸基含有ポリウレタン樹脂:6部
フェニルホスホン酸:3部
シクロヘキサノン:155部
メチルエチルケトン:155部
ステアリン酸:3部
ブチルステアレート:3部
ポリイソシアネート:5部
シクロヘキサノン:200部
(3)磁気テープの作製
 上記磁性液を、バッチ式縦型サンドミルを用いて24時間分散した。分散メディアとしては、0.5mmΦのジルコニアビーズを使用した。研磨剤液はバッチ型超音波装置(20kHz,300W)で24時間分散した。これらの分散液を他の成分(シリカゾル、その他成分および仕上げ添加溶剤)と混合後、バッチ型超音波装置(20kHz、300W)で30分処理を行った。その後、0.5μmの平均孔径を有するフィルターを用いてろ過を行い磁性層塗布液を作製した。
 非磁性層塗布液については、各成分をバッチ式縦型サンドミルを用いて、24時間分散した。分散メディアとしては、0.1mmΦのジルコニアビーズを使用した。得られた分散液を0.5μmの平均孔径を有するフィルターを用いてろ過を行い非磁性層用塗布液を作製した。
 バックコート層塗布液は、潤滑剤(ステアリン酸およびブチルステアレート)とポリイソシアネート、シクロヘキサノン200部を除いた各成分をオープン型ニーダにより混練・希釈した後、横型ビーズミル分散機により、1mmΦのジルコニアビーズを用い、ビーズ充填率80%、ローター先端周速10m/秒で、1パス滞留時間を2分とし、12パスの分散処理を行った。その後残りの成分を分散液に添加し、ディゾルバーで攪拌した。得られた分散液を1μmの平均孔径を有するフィルターを用いてろ過しバックコート層塗布液を作製した。
 その後、厚み5μmのポリエチレンナフタレート製支持体(光学式3次元粗さ計で、20倍対物レンズを使用して測定した際の中心線表面粗さ(Ra値):1.5nm、幅方向ヤング率:8GPa、縦方向ヤング率:6GPa)に、乾燥後の厚みが100nmになるように非磁性層塗布液を塗布、乾燥した後、その上に乾燥後の厚みが70nmになるように磁性層塗布液を塗布した。この磁性層塗布液が未乾状態にあるうちに磁場強度0.6Tの磁場を、塗布面に対し垂直方向に印加し垂直配向処理を行った後乾燥させた。その後支持体の反対面に乾燥後の厚みが0.4μmになるようにバックコート層塗布液を塗布、乾燥させた。
 その後金属ロールのみから構成されるカレンダで、速度100m/分、線圧300kg/cm、温度100℃で表面平滑化処理を行った後、70℃のDry環境で36時間熱処理を行った。熱処理後1/2インチ幅にスリットし、磁気テープを得た。
(4)電磁変換特性(SNR)の評価
 各磁気テープに対し、記録ヘッド(MIG、ギャップ0.15μm、1.8T)と再生用GMRヘッドをドラムテスターに取り付けて、トラック密度16KTPI、線記録密度400Kbpi(面記録密度6.4Gbpsi)の信号を記録および再生し、再生信号とノイズとの比(SNR)を求めた。結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
評価結果
 表2に示す結果から、本発明の一態様にかかる製造方法により得られた微粒子強磁性六方晶フェライト粉末を磁性層の強磁性粉末として用いることにより、優れた電磁変換特性(高SNR)を示す磁気記録媒体が得られることが確認できる。
 本発明は、バックアップテープ等の大容量磁気記録媒体の製造分野において有用である。

Claims (15)

  1. 金属酸化物の前駆体粒子合成反応を有機化合物の存在下で行い前駆体粒子を得ること、および、
    得られた前駆体粒子を含む水系溶液を、300℃以上に加熱し、かつ20PMa以上の圧力を加えて加圧することにより前記前駆体粒子を金属酸化物粒子に転換すること、
    を含む、金属酸化物粒子の製造方法。
  2. 前記水系溶液を連続的に送液しつつ、前記加熱および加圧を行う請求項1に記載の金属酸化物粒子の製造方法。
  3. 前記合成反応を、pHが5~14の範囲である水系反応溶液中で行う請求項1または2に記載の金属酸化物粒子の製造方法。
  4. 前記前駆体粒子の平均粒子サイズは25nm以下である請求項1~3のいずれか1項に記載の金属酸化物粒子の製造方法。
  5. 前記前駆体粒子の粒子サイズの変動係数は5%以上40%以下である請求項1~4のいずれか1項に記載の金属酸化物粒子の製造方法。
  6. 前記合成反応を、鉄塩、アルカリ土類金属塩、および前記有機化合物を水溶液中で混合することにより行い六方晶フェライトの前駆体粒子を析出させる請求項1~5のいずれか1項に記載の金属酸化物粒子の製造方法。
  7. 前記前駆体粒子の金属酸化物粒子への転換を、
    前記合成反応により得られた前駆体粒子を含む前駆体粒子溶液を、300℃以上に加熱され、かつ20MPa以上の圧力が加えられた水が連続的に送液されている送液路に添加すること、および、
    前記送液路内で、前記水と前駆体粒子溶液との混合液を300℃以上に加熱し、かつ20PMa以上の圧力を加えながら連続的に送液することにより、前記前駆体粒子を金属酸化物粒子に転換すること、
    により行う請求項1~6のいずれか1項に記載の金属酸化物粒子の製造方法。
  8. 前記金属酸化物粒子は、バリウムフェライト、ストロンチウムフェライト、およびそれらの混晶からなる群から選択される六方晶フェライト粒子である請求項1~7のいずれか1項に記載の金属酸化物粒子の製造方法。
  9. 前記有機化合物は、カルボン酸およびその塩、アニオン性界面活性剤、ならびに水溶性ポリマーからなる群から選択される有機化合物である請求項1~8のいずれか1項に記載の金属酸化物粒子の製造方法。
  10. 請求項1~9のいずれか1項に記載の製造方法により得られた金属酸化物粉末。
  11. 強磁性六方晶フェライト粉末である請求項10に記載の金属酸化物粉末。
  12. 磁気記録用磁性粉である請求項10または11に記載の金属酸化物粉末。
  13. 平均球相当径が5nm以上30nm以下である請求項10~12のいずれか1項に記載の金属酸化物粉末。
  14. 球相当径の変動係数が5%以上40%以下である請求項10~13のいずれか1項に記載の金属酸化物粉末。
  15. 非磁性支持体上に強磁性粉末と結合剤とを含む磁性層を有する磁気記録媒体であって、
    前記強磁性粉末は、請求項10~14のいずれか1項に記載の金属酸化物粉末である磁気記録媒体。
PCT/JP2014/075843 2013-09-30 2014-09-29 金属酸化物粒子の製造方法、金属酸化物粉末および磁気記録媒体 WO2015046496A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015539416A JP6280922B2 (ja) 2013-09-30 2014-09-29 六方晶フェライト粒子の製造方法および磁気記録媒体の製造方法
KR1020167007479A KR101770177B1 (ko) 2013-09-30 2014-09-29 금속 산화물 입자의 제조 방법, 금속 산화물 분말 및 자기 기록 매체
CN201480053928.4A CN105593169A (zh) 2013-09-30 2014-09-29 金属氧化物粒子的制造方法、金属氧化物粉末及磁记录介质
US15/073,730 US20160203894A1 (en) 2013-09-30 2016-03-18 Production method for metal oxide particles, metal oxide powder, and magnetic recording medium
US15/627,636 US10734144B2 (en) 2013-09-30 2017-06-20 Production method for metal oxide particles, metal oxide powder, and magnetic recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013204839 2013-09-30
JP2013-204839 2013-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/073,730 Continuation US20160203894A1 (en) 2013-09-30 2016-03-18 Production method for metal oxide particles, metal oxide powder, and magnetic recording medium

Publications (1)

Publication Number Publication Date
WO2015046496A1 true WO2015046496A1 (ja) 2015-04-02

Family

ID=52743620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075843 WO2015046496A1 (ja) 2013-09-30 2014-09-29 金属酸化物粒子の製造方法、金属酸化物粉末および磁気記録媒体

Country Status (5)

Country Link
US (2) US20160203894A1 (ja)
JP (1) JP6280922B2 (ja)
KR (1) KR101770177B1 (ja)
CN (1) CN105593169A (ja)
WO (1) WO2015046496A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014046A (ja) * 2015-06-30 2017-01-19 富士フイルム株式会社 六方晶フェライト粉末の製造方法、六方晶フェライト粉末、磁気記録媒体および磁気記録媒体の製造方法
WO2023162832A1 (ja) * 2022-02-24 2023-08-31 株式会社スーパーナノデザイン 金属酸化物ナノ粒子の製造方法及び金属酸化物ナノ粒子

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6787840B2 (ja) * 2017-06-14 2020-11-18 富士フイルム株式会社 磁気記録用六方晶ストロンチウムフェライト粉末および磁気記録媒体
JP6754744B2 (ja) * 2017-09-28 2020-09-16 富士フイルム株式会社 マイクロ波アシスト記録用磁気記録媒体、磁気記録装置および磁気記録媒体の製造方法
JP7077241B2 (ja) * 2019-01-11 2022-05-30 富士フイルム株式会社 六方晶ストロンチウムフェライト粉末、磁気記録媒体および磁気記録再生装置
JP7105202B2 (ja) * 2019-01-16 2022-07-22 富士フイルム株式会社 マイクロ波アシスト記録用磁気記録媒体、磁気記録装置、および磁気記録媒体の製造方法
JP7196728B2 (ja) * 2019-03-28 2022-12-27 昭栄化学工業株式会社 粒子の製造方法及び粒子製造装置
JP7303768B2 (ja) * 2020-03-13 2023-07-05 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気記録再生装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140823A (ja) * 1984-07-31 1986-02-27 Dowa Mining Co Ltd マグネトプランバイト型フエライトの水熱合成法
JPS61219721A (ja) * 1985-03-25 1986-09-30 Central Glass Co Ltd Ba−フエライト微粉末の連続製造方法
JPS6259531A (ja) * 1985-09-06 1987-03-16 Ube Ind Ltd バリウムフエライト粉末の製造法
JPS62128102A (ja) * 1985-11-28 1987-06-10 Toda Kogyo Corp 板状Baフエライト粒子粉末の製造方法
JP2007269601A (ja) * 2006-03-31 2007-10-18 Mitsubishi Chemicals Corp 金属酸化物ナノ結晶の製造方法
JP2009208969A (ja) * 2008-02-29 2009-09-17 Tohoku Univ バリウムヘキサフェライトの超臨界微粒子合成法および生成微粒子

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2620261A (en) * 1947-04-30 1952-12-02 C K Williams & Co Method of making iron oxide pigment
JP3047110B2 (ja) * 1990-06-15 2000-05-29 株式会社東北テクノアーチ 金属酸化物微粒子の製造方法
JP2777044B2 (ja) * 1993-04-19 1998-07-16 日産化学工業株式会社 バリウムフェライト微粒子の製造方法
EP1112228B1 (en) 1998-07-30 2004-10-20 Minnesota Mining And Manufacturing Company Nanosize metal oxide particles for producing transparent metal oxide colloids and ceramers
US6416682B1 (en) * 1999-11-04 2002-07-09 Ceramic Oxides International B.V. Method of producing minerals under near-critical, critical and supercritical conditions
KR20040100136A (ko) * 2003-05-21 2004-12-02 한화석유화학 주식회사 금속 산화물의 도핑 방법
US7803347B2 (en) * 2005-07-01 2010-09-28 Tohoku Techno Arch Co., Ltd. Organically modified fine particles
JP5428016B2 (ja) * 2006-12-28 2014-02-26 国立大学法人東北大学 微粒子製造方法およびその方法により製造された微粒子
KR20100036999A (ko) * 2008-09-30 2010-04-08 티디케이가부시기가이샤 분체의 합성방법 및 전자부품의 제조방법
JP2011045859A (ja) * 2009-08-28 2011-03-10 Tdk Corp 粉体の合成方法及び電子部品の製造方法
CN101543781B (zh) * 2009-05-04 2013-06-05 厦门大学 丙烷氧化脱氢制丙烯催化剂及其制备方法
JP5204249B2 (ja) * 2011-01-27 2013-06-05 富士フイルム株式会社 磁気テープ
JP5787393B2 (ja) * 2011-01-28 2015-09-30 出光興産株式会社 高結晶性金属酸化物微粒子の製造方法、及びその方法により得られる高結晶性金属酸化物微粒子
JP2013034952A (ja) 2011-08-09 2013-02-21 Toyota Industries Corp 有機修飾無機粒子およびその製造方法、製造装置
JP2013060358A (ja) 2011-08-22 2013-04-04 Tohoku Univ 流通式合成による有機修飾金属酸化物ナノ粒子の連続合成方法
CN103272634B (zh) * 2013-05-28 2015-07-22 常州大学 纳米金属负载型分子筛催化剂的制备方法
JP5998185B2 (ja) * 2013-09-30 2016-09-28 富士フイルム株式会社 強磁性六方晶フェライト粉末および磁気記録媒体
JP5972255B2 (ja) * 2013-12-27 2016-08-17 富士フイルム株式会社 六方晶フェライト粉末の製造方法および磁気記録媒体の製造方法
JP5998170B2 (ja) * 2014-03-28 2016-09-28 富士フイルム株式会社 六方晶フェライト粉末の製造方法および磁気記録媒体の製造方法
JP6434866B2 (ja) * 2015-06-30 2018-12-05 富士フイルム株式会社 六方晶フェライト粉末の製造方法および磁気記録媒体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140823A (ja) * 1984-07-31 1986-02-27 Dowa Mining Co Ltd マグネトプランバイト型フエライトの水熱合成法
JPS61219721A (ja) * 1985-03-25 1986-09-30 Central Glass Co Ltd Ba−フエライト微粉末の連続製造方法
JPS6259531A (ja) * 1985-09-06 1987-03-16 Ube Ind Ltd バリウムフエライト粉末の製造法
JPS62128102A (ja) * 1985-11-28 1987-06-10 Toda Kogyo Corp 板状Baフエライト粒子粉末の製造方法
JP2007269601A (ja) * 2006-03-31 2007-10-18 Mitsubishi Chemicals Corp 金属酸化物ナノ結晶の製造方法
JP2009208969A (ja) * 2008-02-29 2009-09-17 Tohoku Univ バリウムヘキサフェライトの超臨界微粒子合成法および生成微粒子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014046A (ja) * 2015-06-30 2017-01-19 富士フイルム株式会社 六方晶フェライト粉末の製造方法、六方晶フェライト粉末、磁気記録媒体および磁気記録媒体の製造方法
US9957167B2 (en) 2015-06-30 2018-05-01 Fujifilm Corporation Method of manufacturing hexagonal ferrite powder, hexagonal ferrite powder, magnetic recording medium and method of manufacturing magnetic recording medium
WO2023162832A1 (ja) * 2022-02-24 2023-08-31 株式会社スーパーナノデザイン 金属酸化物ナノ粒子の製造方法及び金属酸化物ナノ粒子

Also Published As

Publication number Publication date
US10734144B2 (en) 2020-08-04
US20160203894A1 (en) 2016-07-14
US20170287603A1 (en) 2017-10-05
KR20160047510A (ko) 2016-05-02
JP6280922B2 (ja) 2018-02-14
JPWO2015046496A1 (ja) 2017-03-09
KR101770177B1 (ko) 2017-08-22
CN105593169A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
JP6280922B2 (ja) 六方晶フェライト粒子の製造方法および磁気記録媒体の製造方法
JP5916952B2 (ja) 磁気記録用六方晶フェライト磁性粉、六方晶フェライト磁性粒子の製造方法、および磁気記録媒体
JP6517166B2 (ja) 六方晶フェライト粉末および磁気記録媒体
JP5978201B2 (ja) 磁気記録用磁性粉、磁気記録媒体、および磁気記録用磁性粉の製造方法
JP5998185B2 (ja) 強磁性六方晶フェライト粉末および磁気記録媒体
JP5972255B2 (ja) 六方晶フェライト粉末の製造方法および磁気記録媒体の製造方法
JP2017054564A (ja) 磁気記録媒体
JP6046189B2 (ja) 六方晶フェライト粉末および磁気記録媒体
US9589585B2 (en) Magnetic powder for magnetic recording, magnetic recording medium, and method of manufacturing magnetic powder for magnetic recording
JP6556087B2 (ja) 六方晶フェライト粉末、磁気記録媒体および六方晶フェライト粉末の製造方法
JP5998170B2 (ja) 六方晶フェライト粉末の製造方法および磁気記録媒体の製造方法
JP2015010018A (ja) 金属酸化物粒子の製造方法、金属酸化物粉末および磁気記録媒体
JP5972421B2 (ja) 六方晶フェライト粉末の製造方法および磁気記録媒体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848533

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167007479

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015539416

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848533

Country of ref document: EP

Kind code of ref document: A1