WO2015046254A1 - 熱伝導性接着シート、その製造方法及びそれを用いた電子デバイス - Google Patents

熱伝導性接着シート、その製造方法及びそれを用いた電子デバイス Download PDF

Info

Publication number
WO2015046254A1
WO2015046254A1 PCT/JP2014/075299 JP2014075299W WO2015046254A1 WO 2015046254 A1 WO2015046254 A1 WO 2015046254A1 JP 2014075299 W JP2014075299 W JP 2014075299W WO 2015046254 A1 WO2015046254 A1 WO 2015046254A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive sheet
heat conductive
conductive adhesive
heat
heat conduction
Prior art date
Application number
PCT/JP2014/075299
Other languages
English (en)
French (fr)
Inventor
亘 森田
邦久 加藤
豪志 武藤
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to EP14848514.7A priority Critical patent/EP3035396A4/en
Priority to JP2015539264A priority patent/JP6519086B2/ja
Priority to KR1020167006391A priority patent/KR102235118B1/ko
Priority to CN201480051534.5A priority patent/CN105580150B/zh
Priority to US15/021,094 priority patent/US9944831B2/en
Publication of WO2015046254A1 publication Critical patent/WO2015046254A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • C08G18/6225Polymers of esters of acrylic or methacrylic acid
    • C08G18/6229Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/625Polymers of alpha-beta ethylenically unsaturated carboxylic acids; hydrolyzed polymers of esters of these acids
    • C08G18/6254Polymers of alpha-beta ethylenically unsaturated carboxylic acids and of esters of these acids containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8108Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group
    • C08G18/8116Unsaturated isocyanates or isothiocyanates having only one isocyanate or isothiocyanate group esters of acrylic or alkylacrylic acid having only one isocyanate or isothiocyanate group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/21Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being formed by alternating adhesive areas of different nature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane

Definitions

  • the present invention relates to a heat conductive adhesive sheet, and more particularly to a heat conductive adhesive sheet used for an electronic device, a method for producing the same, and an electronic device using the same.
  • thermoelectric conversion device a thermoelectric conversion device
  • photoelectric conversion device a photoelectric conversion device
  • semiconductor device such as a large-scale integrated circuit
  • thermoelectric conversion device although it is related to the above-described heat dissipation control, the heat applied to one surface of the thermoelectric element is changed in the temperature direction in the thickness direction inside the thermoelectric element.
  • Patent Document 1 discloses a thermoelectric conversion element having a structure as shown in FIG. That is, a P-type thermoelectric element 41 and an N-type thermoelectric element 42 are connected in series, thermoelectric power take-out electrodes 43 are arranged at both ends thereof to constitute a thermoelectric conversion module 46, and both sides of the thermoelectric conversion module 46 are arranged.
  • the film-like substrates 44 and 45 having flexibility and made of two kinds of materials having different thermal conductivities are provided.
  • the film-like substrates 44 and 45 are provided with materials (polyimides) 47 and 48 having low thermal conductivity on the bonding surface side with the thermoelectric conversion module 46, and on the opposite side to the bonding surface of the thermoelectric conversion module 46, High thermal conductivity materials (copper) 49 and 50 are provided so as to be located on a part of the outer surfaces of the substrates 44 and 45.
  • Patent Document 2 discloses a thermoelectric conversion module having the structure shown in FIG. 8, and an electrode 54 that also serves as a high thermal conductivity member is embedded in low thermal conductivity members 51 and 52, and these are thermoelectric elements 53. In contrast, the conductive adhesive layer 55 and the insulating adhesive layer 56 are disposed. Further, in Patent Document 3, as shown in the cross-sectional configuration diagram of the thermoelectric conversion element (the arrangement in the depth direction of the thermoelectric element 61 and the internal electrode arrangement is omitted) in FIG. An insulating base layer 65 is disposed on the surface via an adhesive layer 67 and directly on the other surface, and a pattern layer composed of a metal layer 63 and a resin layer 64 is provided on the base layer 65. Flexible substrates 62 and 66 are disclosed.
  • thermoly conductive sheet having a function of selectively radiating heat and generating a temperature gradient inside the electronic device.
  • the present invention can be easily laminated on an electronic device without using an adhesive layer. Further, the present invention selectively dissipates heat in a specific direction, inside the electronic device. It is an object of the present invention to provide a thermally conductive adhesive sheet that can provide a sufficient temperature difference, a manufacturing method thereof, and an electronic device using the same.
  • the present inventors constituted a heat conductive adhesive sheet composed of a high heat conductive portion and a low heat conductive portion imparted with adhesiveness, and each of them independently conducts heat.
  • the present invention has found that the above-mentioned problems can be solved by configuring all the thicknesses of the conductive adhesive sheet, or at least one of them as a part of the thickness of the thermally conductive adhesive sheet.
  • the present invention provides the following (1) to (10).
  • the adhesive resin composition contains at least one of a thermosetting resin and an energy ray curable resin.
  • thermosetting resin is a silicone resin or a urethane resin.
  • the adhesive resin composition of the high heat conductive part contains a heat conductive filler and / or a conductive carbon compound.
  • the heat conductive filler includes at least one selected from the group consisting of metal oxides, metal nitrides, and metals.
  • the heat conductive filler includes a metal oxide and a metal nitride.
  • the thermal conductivity of the high thermal conductive portion of the thermal conductive adhesive sheet is 1.0 (W / m ⁇ K) or more and the thermal conductivity of the low thermal conductive portion is less than 0.5 (W / m ⁇ K).
  • the heat conductive adhesive sheet according to the above (1) (9) An electronic device using the heat conductive adhesive sheet according to (1). (10) The method for producing a heat conductive adhesive sheet according to (1) above, wherein the heat conductive adhesive sheet is formed on the release sheet from the high heat conductive portion formed from the adhesive resin composition and the adhesive resin composition.
  • the manufacturing method of the heat conductive adhesive sheet characterized by including the process of forming a low heat conductive part.
  • the heat conductive adhesive sheet of the present invention can be easily laminated on an electronic device without using an adhesive layer, and further, heat can be selectively dissipated in a specific direction, and the electronic device, etc. A sufficient temperature difference can be imparted to the inside of. Moreover, since no adhesive layer is required, the productivity of electronic devices is high, leading to low costs.
  • thermoelectric conversion device at the time of sticking the heat conductive adhesive sheet of this invention to the thermoelectric conversion module.
  • the heat conductive adhesive sheet and thermoelectric conversion module of this invention which show an example of the perspective view which decomposed
  • thermoelectric conversion module used for the Example of this invention. It is sectional drawing which shows an example of a structure of the conventional thermoelectric conversion device. It is sectional drawing which shows another example of a structure of the conventional thermoelectric conversion device. It is sectional drawing which shows another example of the structure of the conventional thermoelectric conversion device.
  • the heat conductive adhesive sheet of the present invention is a heat conductive adhesive sheet composed of a high heat conductive part and a low heat conductive part, the high heat conductive part and the low heat conductive part having adhesiveness, and the The high heat conductive portion and the low heat conductive portion independently constitute all the thicknesses of the heat conductive adhesive sheet, or at least one of them constitutes a part of the thickness of the heat conductive adhesive sheet. .
  • FIG. 1 An example of the perspective view of the heat conductive adhesive sheet of this invention is shown in FIG.
  • the heat conductive adhesive sheet 1 is composed of high heat conductive portions 4a and 4b and low heat conductive portions 5a and 5b, which are alternately arranged.
  • the arrangement of the high heat conductive portion and the low heat conductive portion constituting the heat conductive adhesive sheet (hereinafter, sometimes referred to as a thickness configuration) is not particularly limited as described below.
  • FIG. 2 shows various examples of cross-sectional views (including arrangement) of the heat conductive adhesive sheet of the present invention.
  • (A) of FIG. 2 is sectional drawing of FIG. 1, and the high heat conductive part 4 and the low heat conductive part 5 comprise all the thickness of the heat conductive adhesive sheet each independently. Further, in FIGS.
  • the low heat conductive portion 5 constitutes a part of the thickness of the heat conductive adhesive sheet.
  • the high heat conduction portion 4 constitutes a part of the thickness of the heat conductive adhesive sheet.
  • the configuration of the thickness of the heat conductive adhesive sheet can be appropriately selected in accordance with the specifications of the electronic device to be applied. For example, from the viewpoint of selectively dissipating heat in a specific direction, for example, it is preferable to select the thickness configuration shown in FIGS. 2A to 2E, and the thickness configuration shown in FIG. Is more preferable.
  • heat radiation can be efficiently controlled by increasing the volume of the high thermal conductivity portion and increasing the contact area with the device surface to be applied.
  • the high heat conduction part is formed from an adhesive resin composition.
  • the high thermal conductivity portion of the present invention refers to the one having higher thermal conductivity than the low thermal conductivity portion described later.
  • the adhesive resin used in the present invention is not particularly limited, but any resin can be appropriately selected from those used in the field of electronic components, for example, thermosetting resin, energy beam curable resin, etc. Is mentioned.
  • thermosetting resin examples include epoxy resin, melamine resin, urea resin, phenol resin, silicone resin, urethane resin, polyimidity resin, benzoxazine resin, thermosetting acrylic resin, and unsaturated polyester resin.
  • urethane resins and silicone resins are preferable from the viewpoint of excellent heat resistance and high adhesive strength.
  • thermosetting resin When the thermosetting resin is used, it is preferable to use a curing agent, a curing accelerator, a curing retarder, a curing catalyst, or the like as an auxiliary agent.
  • the curing agent include compounds having two or more functional groups capable of reacting with the functional groups of the thermosetting resin component in one molecule.
  • the curing agent for the epoxy resin include a phenol curing agent, an alcohol curing agent, an amine curing agent, and an aluminum chelate curing agent.
  • the curing agent for the silicone resin include a hydrosilyl curing agent.
  • Curing accelerators include, for example, tertiary amines such as triethylenediamine and benzyldimethylamine; imidazoles such as 2-methylimidazole and 2-phenylimidazole; organic phosphines such as tribrituphosphine and diphenylphosphine; tetraphenyl Examples thereof include tetraphenylboron salts such as phosphonium tetraphenylborate and triphenylphosphine tetraphenylborate.
  • the curing retarder include hydrosilylation reaction control agents.
  • the curing catalyst include a platinum catalyst, a palladium catalyst, and a rhodium catalyst.
  • the content of the auxiliary agent varies depending on the type of thermosetting resin, but is 10 to 90 parts by weight, preferably 20 to 80 parts by weight, more preferably 100 parts by weight of the thermosetting resin. 30 to 70 parts by weight.
  • the energy beam curable resin examples include a compound having one or more polymerizable unsaturated bonds such as a compound having an acrylate functional group.
  • the compound having one polymerizable unsaturated bond examples include ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone and the like.
  • Examples of the compound having two or more polymerizable unsaturated bonds include polymethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, and diethylene glycol di (meth) acrylate.
  • Polyfunctional compounds such as pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and modified products thereof, and , Reaction products of these polyfunctional compounds with (meth) acrylates and the like (for example, poly (meth) acrylate esters of polyhydric alcohols), and the like.
  • (meth) acrylate means methacrylate and acrylate.
  • polyester resins having a polymerizable unsaturated bond polyether resins, acrylic resins, epoxy resins, urethane resins, silicone resins, polybutadiene resins, etc. are also used as the energy ray curable resins. be able to.
  • the photoinitiator used for this invention is contained in the adhesive resin composition containing the said energy beam curable resin, and can cure the said energy beam curable resin under an ultraviolet-ray.
  • photopolymerization initiator examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 1-hydroxy-cyclohexyl-phenyl ketone, 2, 2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-aminoanthraquinone, 2-methylthioxanthone, 2-ethyl Thioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, benzyl dimethyl ketal, acetophenone dimethyl ketal, p-dimethyl Tylamine benzoate can be used.
  • a photoinitiator may be used individually by 1 type and may be used in combination of 2 or more type.
  • the blending amount is usually selected in the range of 0.2 to 10 parts by mass with respect to 100 parts by mass of the energy beam curable resin.
  • the mass average molecular weight of the adhesive resin used in the present invention is usually several hundred to several million.
  • the high heat conduction part is preferably formed from a resin composition containing the adhesive resin, a heat conductive filler, and / or a conductive carbon compound in order to adjust to a desired heat conductivity described later.
  • the thermally conductive filler and the conductive carbon compound may be referred to as “thermal conductivity adjusting substance”.
  • the heat conductive filler is not particularly limited, but may be selected from metal oxides such as silica, alumina and magnesium oxide, metal nitrides such as silicon nitride, aluminum nitride, magnesium nitride and boron nitride, and metals such as copper and aluminum.
  • metal oxides such as silica, alumina and magnesium oxide
  • metal nitrides such as silicon nitride, aluminum nitride, magnesium nitride and boron nitride
  • metals such as copper and aluminum.
  • At least one selected, and the conductive carbon compound is preferably at least one selected from carbon black, carbon nanotube (CNT), graphene, carbon nanofiber, and the like.
  • heat from metal oxides such as silica, alumina, magnesium oxide, metal nitrides such as silicon nitride, aluminum nitride, magnesium nitride, boron nitride, etc. from the point of being easily in the volume resistivity range described later.
  • Conductive fillers are preferred.
  • a metal oxide and a metal nitride are included.
  • the mass ratio of the metal oxide and the metal nitride is preferably 10:90 to 90:10, and 20:80 to 80:20. More preferred is 50:50 to 75:25.
  • the shape of the material for adjusting the thermal conductivity is not particularly limited, but electrical properties of the electronic device, element, etc. due to contact or mechanical damage when applied to the applied electronic device, element, etc.
  • any of a plate shape (including a scale shape), a spherical shape, a needle shape, a rod shape, and a fiber shape may be used.
  • the size of the thermal conductivity adjusting material is, for example, an average particle size of 0.1 to 200 ⁇ m. It is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, particularly preferably 10 to 30 ⁇ m.
  • the average particle diameter can be measured by, for example, a Coulter counter method. If the average particle diameter of the thermal conductivity adjusting substance is within this range, the thermal conductivity within each substance is not reduced, and as a result, the thermal conductivity of the high thermal conductivity portion is improved. In addition, the particles are less likely to aggregate and can be uniformly dispersed. Further, the packing density in the high heat conduction part is sufficient, and the high heat conduction part does not become brittle at the substance interface.
  • the content of the thermal conductivity adjusting substance is appropriately adjusted according to the desired thermal conductivity, and is preferably 40 to 99% by mass, more preferably 50 to 95% by mass in the adhesive resin composition, and 50 to 80%. Mass% is particularly preferred. If the content of the material for adjusting the thermal conductivity is within this range, the heat dissipation characteristics, folding resistance, and bending resistance are excellent, and the strength of the high thermal conductivity portion is maintained.
  • the adhesive resin composition can be used within an appropriate range as needed, for example, a crosslinking agent, a filler, a plasticizer, an anti-aging agent, an antioxidant, an ultraviolet absorber, a colorant such as a pigment or a dye, and an adhesive.
  • An additive such as an imparting agent, an antistatic agent or a coupling agent, or a non-adhesive resin may be contained.
  • non-adhesive resins examples include polyester resins, urethane resins, silicone resins, rubber polymers, polyolefin resins, styrene resins, amide resins, cyclic olefin resins, vinyl chloride resins, polyimide resins, polycarbonate resins, and polysulfone resins. It is done.
  • the shape of the low heat conduction part is not particularly limited, as is the case with the high heat conduction part, and can be changed as appropriate according to the specifications of an electronic device or the like to be described later.
  • the low thermal conductivity portion of the present invention refers to the one having lower thermal conductivity than the high thermal conductivity portion.
  • the low heat conduction part is formed from an adhesive resin composition (in the present invention, it is referred to as an adhesive resin composition even when it does not contain the above-described substance for adjusting thermal conductivity), and is lower than the high heat conduction part. There is no particular limitation as long as the material has low thermal conductivity.
  • the adhesive resin composition may contain a material for adjusting thermal conductivity, but the difference from the thermal conductivity of the high thermal conductivity portion is increased. Therefore, it is more preferable not to include a material for adjusting thermal conductivity.
  • the adhesive resin examples include the same resins such as the thermosetting resin and the energy curable resin used in the above-described high heat conduction portion. Usually, the same resin as that of the high thermal conductivity portion is used from the viewpoint of mechanical properties, adhesion, and the like.
  • the low heat conduction part may further contain the same type of additive within an appropriate range as necessary, as in the case of the high heat conduction part.
  • the thickness of each layer of the high heat conduction part and the low heat conduction part is preferably 1 to 200 ⁇ m, and more preferably 3 to 100 ⁇ m. Within this range, heat can be selectively radiated in a specific direction. Moreover, the thickness of each layer of a high heat conduction part and a low heat conduction part may be the same, or may differ.
  • the width of each layer of the high heat conduction part and the low heat conduction part is appropriately adjusted according to the specification of the applied electronic device, but is usually 0.01 to 3 mm, preferably 0.1 to 2 mm, and more preferably 0. 5 to 1.5 mm. Within this range, heat can be selectively radiated in a specific direction. Moreover, the width of each layer of the high heat conduction part and the low heat conduction part may be the same or different.
  • the heat conductivity of the high heat conduction part should be sufficiently higher than that of the low heat conduction part, and the heat conductivity is preferably 0.5 (W / m ⁇ K) or more, and 1.0 (W / m ⁇ K) or more. Is more preferable, and 1.3 (W / m ⁇ K) or more is more preferable.
  • the heat conductivity of a high heat conductive part Usually 2000 (W / m * K) or less is preferable and 500 (W / m * K) or less is more preferable.
  • the thermal conductivity of the low thermal conductivity part is preferably less than 0.5 (W / m ⁇ K), more preferably 0.3 (W / m ⁇ K) or less, and 0.25 (W / m ⁇ K) or less. Further preferred. If the conductivity of the high heat conduction part and the low heat conduction part is in the above range, heat can be selectively radiated in a specific direction.
  • the storage elastic modulus at 150 ° C. after curing of the high heat conduction part is preferably 0.1 MPa or more, more preferably 0.15 MPa or more, and further preferably 1 MPa or more. Further, the storage elastic modulus at 150 ° C. after curing of the low heat conducting part is preferably 0.1 MPa or more, more preferably 0.15 MPa or more, and further preferably 1 MPa or more.
  • the heat conductive adhesive sheet is suppressed from being excessively deformed, and can stably dissipate heat. it can.
  • the storage elastic modulus at 150 ° C. is up to 150 ° C. at an initial temperature of 15 ° C. and a temperature increase rate of 3 ° C./min using a dynamic elastic modulus measuring apparatus [TA Instruments, model name “DMA Q800”]. It is a value measured at a frequency of 11 Hz with the temperature raised.
  • the volume resistivity of the high heat conduction part and the low heat conduction part is preferably 1 ⁇ 10 10 ⁇ ⁇ cm or more, and more preferably 1.0 ⁇ 10 13 ⁇ ⁇ cm or more.
  • the volume resistivity is a value measured with a resistivity meter (manufactured by Mitsubishi Chemical Analytech Co., Ltd., MCP-HT450) after leaving the thermally conductive adhesive sheet in an environment of 23 ° C. and 50% RH for one day.
  • the level difference between the high thermal conductivity portion and the low thermal conductivity portion is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and still more preferably substantially absent.
  • At least one of the high heat conduction portion and the low heat conduction portion constitutes a part of the thickness of the base material.
  • the step between the high heat conduction portion and the low heat conduction portion is It is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and still more preferably substantially absent.
  • the thickness of the base material is defined as the thickness composed of the high heat conduction portion and the low heat conduction portion.
  • the step difference between the high heat conduction portion and the low heat conduction portion is preferably 10 to 90% with respect to the thickness.
  • the volume ratio of the high heat conductive portion to the low heat conductive portion is preferably 10:90 to 90:10, more preferably 20:80 to 80:20, and 30 : 70 to 70:30 is more preferable.
  • the heat conductive adhesive sheet may have a release sheet on one side or both sides.
  • the release sheet include papers such as glassine paper, coated paper, and laminated paper, and various plastic films coated with a release agent such as silicone resin and fluororesin.
  • the thickness of the release sheet is not particularly limited, but is usually 10 to 200 ⁇ m.
  • As the support substrate used for the release sheet used in the present invention it is preferable to use a plastic film.
  • the electronic device using the heat conductive adhesive sheet of the present invention is not particularly limited, and examples thereof include semiconductor devices such as thermoelectric conversion devices, photoelectric conversion devices, and large-scale integrated circuits from the viewpoint of heat control such as heat dissipation.
  • the heat conductive adhesive sheet can be selectively dissipated in a specific direction by sticking to the thermoelectric conversion module of the thermoelectric conversion device, leading to further improvement in thermoelectric performance.
  • the heat conductive adhesive sheet may be laminated
  • a thermoelectric conversion device is used as the electronic device will be described as an example.
  • thermoelectric conversion device is an electronic device in which electric power can be easily obtained by applying a temperature difference to the inside of a thermoelectric conversion element that performs mutual energy conversion between heat and electricity.
  • FIG. 3 is a cross-sectional view showing an example of a thermoelectric conversion device when the heat conductive adhesive sheet of the present invention having the configuration shown in FIG. 2A is attached to a thermoelectric conversion module.
  • the thermoelectric conversion device 10 shown in FIG. 3 includes a thin P-type thermoelectric element 11 made of P-type material and a thin-film N-type thermoelectric element 12 made of N-type material on a support (not shown).
  • thermoelectric conversion module 16 having a thermoelectric conversion element and further provided with an electrode 13, a heat conductive adhesive sheet 1A attached to the first surface 17 of the thermoelectric conversion module 16, and the first surface 17 It is comprised from the heat conductive adhesive sheet 1B affixed on the 2nd surface 18 of the other side.
  • the heat conductive adhesive sheet 1A has high heat conductive portions 14a and 14b and low heat conductive portions 15a, 15b and 15c, and the high heat conductive portions 14a and 14b and the low heat conductive portions 15a, 15b and 15c have adhesiveness. And they constitute the outer surface of the thermally conductive adhesive sheet.
  • the heat conductive adhesive sheet 1B has high heat conduction portions 14'a, 14'b, 14'c and low heat conduction portions 15'a, 15'b, and the high heat conduction portions 14'a, 14'c. b and 14'c and the low thermal conductive portions 15'a and 15'b have adhesiveness, and they constitute the outer surface of the thermal conductive adhesive sheet.
  • FIG. 4 shows an example of a perspective view in which the heat conductive adhesive sheet and the thermoelectric conversion module of the present invention are disassembled for each component.
  • 4A is a perspective view of the heat conductive adhesive sheet 1A directly provided on the thermoelectric elements 11 and 12 on the surface side of the support 19 of the thermoelectric conversion module 16
  • FIG. 4B is a perspective view of the thermoelectric conversion module 16.
  • (c) is a perspective view of the heat conductive adhesive sheet 1B provided in the back surface side of the support body 19 of the thermoelectric conversion module 16.
  • FIG. By taking the above configuration, heat can be efficiently diffused from the heat conductive adhesive sheet 1A and the heat conductive adhesive sheet 1B.
  • the high heat conductive portions 14a and 14b of the heat conductive adhesive sheet 1A and the high heat conductive portions 14'a, 14'b and 14'c of the heat conductive adhesive sheet 1B are stacked so as not to face each other. By doing so, heat can be selectively radiated in a specific direction. Thereby, a temperature difference can be efficiently given to a thermoelectric conversion module, and a thermoelectric conversion device with high power generation efficiency is obtained.
  • thermoelectric conversion module 16 used for this invention is comprised from the P-type thermoelectric element 11, the N-type thermoelectric element 12, and the electrode 13, as FIG.4 (b) shows, for example.
  • the P-type thermoelectric element 11 and the N-type thermoelectric element 12 are formed in a thin film shape so as to be connected in series, and are joined and electrically connected via electrodes 13 at their respective ends.
  • the P-type thermoelectric element 11 and the N-type thermoelectric element 12 in the thermoelectric conversion module 16 are “electrode 13, P-type thermoelectric element 11, electrode 13, N-type thermoelectric element 12, electrode 13,.
  • thermoelectric conversion module may be formed directly on the high heat conduction portion and the low heat conduction portion, or may be formed through other layers, but it can efficiently impart a temperature difference to the thermoelectric element. From the point, it is preferable that the thermoelectric conversion module is directly formed on the high heat conduction part and the low heat conduction part.
  • thermoelectric element is not particularly limited, but in the temperature range of the heat source converted into electric energy by the thermoelectric conversion module, the absolute value of the Seebeck coefficient is large, the thermal conductivity is low, and the so-called thermoelectric performance is high. It is preferable to use a material with a high index.
  • the material constituting the P-type thermoelectric element and the N-type thermoelectric element is not particularly limited as long as it has thermoelectric conversion characteristics, but bismuth-tellurium-based thermoelectric semiconductor materials such as bismuth telluride and Bi 2 Te 3 , GeTe , Telluride-based thermoelectric semiconductor materials such as PbTe, antimony-tellurium-based thermoelectric semiconductor materials, zinc-antimony-based thermoelectric semiconductor materials such as ZnSb, Zn 3 Sb 2 , Zn 4 Sb 3 , silicon-germanium-based thermoelectric semiconductor materials such as SiGe, Bismuth selenide-based thermoelectric semiconductor materials such as Bi 2 Se 3 , silicide-based thermoelectric semiconductor materials such as ⁇ -FeSi 2 , CrSi 2 , MnSi 1.73 , Mg 2 Si, oxide-based thermoelectric semiconductor materials, FeVAl, FeVASi, FeVTiAl, etc.
  • bismuth-tellurium-based thermoelectric semiconductor materials such as bismuth telluride
  • the thicknesses of the P-type thermoelectric element 11 and the N-type thermoelectric element 12 are preferably 0.1 to 100 ⁇ m, and more preferably 1 to 50 ⁇ m. Note that the thicknesses of the P-type thermoelectric element 11 and the N-type thermoelectric element 12 are not particularly limited, and may be the same or different.
  • the manufacturing method of the heat conductive adhesive sheet of the present invention comprises a high heat conductive portion and a low heat conductive portion, and the high heat conductive portion and the low heat conductive portion independently constitute all the thicknesses of the heat conductive adhesive sheet. Or a method for producing a heat conductive adhesive sheet in which one of them constitutes a part of the thickness of the heat conductive adhesive sheet, wherein the high heat conductive part is formed from the adhesive resin composition on the release sheet And a step of forming a low thermal conductive portion formed from the adhesive resin composition.
  • the high heat conduction part is formed on the release sheet, or on the release sheet and on the low heat conduction part using the adhesive resin composition containing an adhesive resin and a heat conductive filler and / or a conductive carbon compound.
  • the method for applying the adhesive resin composition is not particularly limited, and may be formed by a known method such as a stencil printing method, a dispenser, a screen printing method, a roll coating method, or a slot die.
  • the curing conditions when a thermosetting adhesive resin is used are appropriately adjusted depending on the composition used, but are preferably 80 ° C.
  • examples of the energy radiation include an electron beam, an X-ray, radiation, visible light and the like in addition to ultraviolet rays.
  • ultraviolet rays are preferably used, and as a light source, for example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • the amount of light is usually 100 to 1500 mJ / cm 2 .
  • an electron beam accelerator or the like When an electron beam is used, an electron beam accelerator or the like is used, and the irradiation amount is usually 150 to 350 kV. In addition, when using an ultraviolet-ray, it is necessary to add the photoinitiator mentioned above to the adhesive resin composition. Moreover, when using an electron beam, a cured film can be obtained, without adding a photoinitiator.
  • the low thermal conductive part is formed on the release sheet, or on the release sheet and on the high thermal conductive part using the adhesive resin composition containing an adhesive resin.
  • the application method of the adhesive resin composition is not particularly limited, and it is formed by a known method such as a stencil printing method, a dispenser, a screen printing method, a roll coating method, a slot die, etc., as in the case of the high heat conduction part. do it.
  • the curing method is the same as the curing method for the high thermal conductivity portion.
  • the order in which the high heat conduction part and the low heat conduction part are formed is not particularly limited. What is necessary is just to select suitably according to the specification of an electronic device.
  • heat can be released or the flow of heat can be controlled in a specific direction in an electronic device or the like by a simple method, and a low-cost thermally conductive adhesive sheet can be manufactured. .
  • thermal conductivity measurement of the heat conductive sheet produced by the Example and the comparative example, evaluation of a temperature difference, and evaluation of an electronic device were performed with the following method.
  • (A) Measurement of thermal conductivity of thermally conductive adhesive sheet Thermal conductivity was measured using a thermal conductivity measuring device (HC-110, manufactured by EKO).
  • thermocouple chromel alumel
  • thermoelectric conversion module As shown in part of FIG. 6, on a support 26, a P-type thermoelectric element 21 (P-type bismuth-tellurium-based thermoelectric semiconductor material) and an N-type thermoelectric element 22 (N-type bismuth-tellurium-based thermoelectric semiconductor material). Are arranged so as to have the same size (width 1.7 mm ⁇ length 100 mm, thickness 0.5 mm), and both the thermoelectric elements and the copper electrodes (copper electrode 23a: width 0 .0) between the thermoelectric elements.
  • P-type thermoelectric element 21 P-type bismuth-tellurium-based thermoelectric semiconductor material
  • N-type thermoelectric element 22 N-type bismuth-tellurium-based thermoelectric semiconductor material
  • thermoelectric conversion module 27 15 mm ⁇ length 100 mm, thickness 0.5 mm; copper electrode 23b: width 0.3 mm ⁇ length 100 mm, thickness 0.5 mm; copper electrode 23c: width 0.15 mm ⁇ length 100 mm, thickness 0.5 mm) A thermoelectric conversion module 27 was produced.
  • Example 1 Preparation of heat conductive adhesive sheet 31 parts by mass of polyol resin-containing solution (Asia Kogyo Co., Ltd., “PX41-1”), polyisocyanate resin-containing solution (Asia Kogyo Co., Ltd., “Excel Hardener G”) 9 parts by mass 40 parts by mass of boron nitride (manufactured by Showa Denko KK, “Aruna Beads CB-A20S”, average particle diameter 20 ⁇ m), and alumina (Showa Denko KK, “Shobi N UHP-2”, average particles as heat conductive fillers 20 parts by mass (diameter: 12 ⁇ m) was added, and the mixture was dispersed using an autorotation / revolution mixer (manufactured by THINKY, “ARE-250”) to prepare an adhesive resin composition for forming a high thermal conductive part.
  • polyol resin-containing solution Asia Kogyo Co., Ltd., “PX41
  • a high thermal conductive portion consisting of a stripe pattern (width 1 mm ⁇ length 100 mm, thickness 50 ⁇ m, pattern center distance 2 mm).
  • an adhesive resin composition for forming a low heat conduction part is applied and dried at 90 ° C. for 1 minute. Between the stripe patterns of the high heat conduction part, the same as the high heat conduction part.
  • a heat conductive adhesive sheet was obtained by forming a low thermal conductive part with a thickness. In addition, it confirmed that the low heat conductive part was not formed on the high heat conductive part.
  • thermoelectric conversion device Prepare two sheets of the obtained heat conductive adhesive sheet, and, as shown in FIG. 6, the heat conductive adhesive sheet and the surface on the side where the thermoelectric element of the thermoelectric conversion module 27 is formed A thermoelectric conversion device having a laminate on each side of the support, then peeling off and removing the release sheet, heating at 120 ° C. for 20 minutes, curing the thermally conductive adhesive sheet, and laminating the thermally conductive adhesive sheet on both sides was made.
  • the storage elastic modulus at 150 ° C. after curing of the high thermal conductivity portion was 4.2 MPa
  • the storage elastic modulus at 150 ° C. after curing of the low thermal conductivity portion was 0.2 MPa.
  • the volume resistivity of the high heat conduction part was 7.0 ⁇ 10 14 ⁇ ⁇ cm
  • the volume resistivity of the low heat conduction part was 2.0 ⁇ 10 15 ⁇ ⁇ cm.
  • Example 2 Preparation of heat conductive adhesive sheet
  • 100 equivalents of 2-hydroxyethyl acrylate to 80.5 equivalents of methacryloyloxyethyl isocyanate add dibutyltin dilaurate as a catalyst, and polymerize in an organic solvent at room temperature in a nitrogen atmosphere for 24 hours.
  • an acrylic acid ester copolymer solution solid content 40% by mass having an energy ray-curable group in the side chain was obtained.
  • a composition was prepared. On the other hand, 100 parts by mass of the resulting acrylic ester copolymer solution (solid content: 40% by mass) and 1-hydroxy-cyclohexyl-phenyl ketone (product of Ciba Specialty Chemicals, Inc., which is a photopolymerization initiator) Irgacure 184) 3.7 parts by mass were mixed and dispersed to prepare an adhesive resin composition for forming a low thermal conductive part. Subsequently, the heat conductive adhesive sheet was produced like Example 1 using the obtained adhesive resin composition for high heat conductive part formation, and the adhesive resin composition for low heat conductive part formation.
  • thermoelectric conversion device Two sheets of the obtained heat conductive adhesive sheet are prepared, and the heat conductive adhesive sheet is laminated on the surface of the thermoelectric conversion module 27 on which the thermoelectric element is formed and the surface on the support side, respectively. Then, the release sheet was peeled and removed, and ultraviolet radiation was applied to both sides to cure the thermally conductive adhesive sheet, and a thermoelectric conversion device in which the thermally conductive adhesive sheet was laminated on both sides was produced.
  • the storage elastic modulus at 150 ° C. after curing of the high thermal conductivity portion was 0.1 MPa
  • the storage elastic modulus at 150 ° C. after curing of the low thermal conductivity portion was 0.02 MPa.
  • the volume resistivity of the high heat conduction part was 8.0 ⁇ 10 14 ⁇ ⁇ cm, and the volume resistivity of the low heat conduction part was 1.5 ⁇ 10 15 ⁇ ⁇ cm.
  • Example 3 (1) Production of Thermally Conductive Adhesive Sheet Silicone Resin A (Asahi Kasei Wacker, “SilGel612-A”) 19.8 parts by mass, Silicone Resin B (Asahi Kasei Wacker, “SilGel612-B”) 19.8 parts by mass Part, 0.4 parts by mass of a retarder (Asahi Kasei Wacker, “PT88”), 40 parts by mass of boron nitride (“Alunas CB-A20S”, average particle size 20 ⁇ m, manufactured by Showa Denko KK) as a thermally conductive filler , And 20 parts by weight of alumina (Showa Denko, “ShowNu UHP-2”, average particle size: 12 ⁇ m) are added and mixed and dispersed using a rotating / revolving mixer (THINKY, “ARE-250”).
  • a retarder Asahi Kasei Wacker, “PT88”
  • an adhesive resin composition for forming a high heat conduction part was prepared.
  • silicone resin C manufactured by Shin-Etsu Chemical Co., Ltd., “KE-106”
  • 9 parts by mass of a platinum-based catalyst manufactured by Shin-Etsu Chemical Co., Ltd., “CAT-RG”
  • a curing retarder 1 part by mass of “No. 6-10” manufactured by Shin-Etsu Chemical Co., Ltd. was mixed and dispersed to prepare an adhesive resin composition for forming a low thermal conduction part.
  • the release sheet was changed to “PET50FD” manufactured by Lintec Co., Ltd., and the obtained adhesive resin composition for forming a high heat conductive part and a low heat conductive part, except that it was dried at 150 ° C. for 5 minutes instead of drying at 90 ° C. for 1 minute.
  • a heat conductive adhesive sheet was produced in the same manner as in Example 1 using the forming adhesive resin composition.
  • thermoelectric conversion device A heat conductive adhesive sheet on both sides in the same manner as in Example 1 except that the heat conductive adhesive sheet was cured by heating at 150 ° C. for 30 minutes instead of heating at 120 ° C. for 20 minutes.
  • a thermoelectric conversion device in which was stacked was manufactured.
  • the storage elastic modulus at 150 ° C. after curing of the high thermal conductivity portion was 2.3 MPa
  • the storage elastic modulus at 150 ° C. after curing of the low thermal conductivity portion was 3.4 MPa.
  • the volume resistivity of the high heat conduction part was 6.0 ⁇ 10 14 ⁇ ⁇ cm
  • the volume resistivity of the low heat conduction part was 2.2 ⁇ 10 15 ⁇ ⁇ cm.
  • Example 4 (1) Production of Thermally Conductive Adhesive Sheet Silicone Resin D (Toray Dow Corning “SD4584”) 19.9 parts by mass, platinum catalyst as a curing catalyst (Toray Dow Corning “SRX212”) 0 .2 parts by weight, 19.8 parts by weight of epoxy-modified epoxy oil of epoxy resin (“X-22-163C” manufactured by Shin-Etsu Chemical Co., Ltd.), 10% of aluminum trisacetylacetonate which is an aluminum chelate compound as a curing agent 0.2 parts by mass of a toluene solution, 40 parts by mass of boron nitride (manufactured by Showa Denko KK, “Arnabeads CB-A20S”, average particle diameter 20 ⁇ m) as a heat conductive filler, and alumina (manufactured by Showa Denko KK, “SHO BN” 20 parts by mass of “UHP-2” and an average particle size of 12 ⁇ m were added, and a rotating
  • silicone resin D Toray Dow Corning Co., Ltd. “SD4584”
  • platinum-based catalyst Toray Dow Corning Co., Ltd. “SRX212”
  • epoxy modification of epoxy resin 19.8 parts by mass of oil Shin-Etsu Chemical Co., Ltd. “X-22-163C”
  • a 10% toluene solution of aluminum trisacetylacetonate which is an aluminum-based chelate compound
  • thermoelectric conversion device Heat conductive adhesive on both sides in the same manner as in Example 1 except that the heat conductive adhesive sheet was cured by heating at 150 ° C. for 30 minutes instead of heating at 120 ° C. for 20 minutes.
  • a thermoelectric conversion device in which sheets were laminated was produced.
  • the storage elastic modulus at 150 ° C. after curing of the high heat conduction part was 21 MPa
  • the storage elastic modulus at 150 ° C. after curing of the low heat conduction part was 1.7 MPa.
  • the volume resistivity of the high heat conduction part was 6.4 ⁇ 10 14 ⁇ ⁇ cm
  • the volume resistivity of the low heat conduction part was 8.9 ⁇ 10 14 ⁇ ⁇ cm.
  • Example 5 Using the adhesive resin composition for forming a high thermal conductive part used in Example 1, a striped pattern (width 1 mm ⁇ length 100 mm, thickness) was applied to the release sheet of the release sheet in the same manner as in Example 1. A high heat conductive portion having a distance of 50 ⁇ m and a distance between pattern centers of 2 mm was formed. Subsequently, the adhesive resin composition for forming a low thermal conductive part used in Example 1 was applied thereon, dried at 90 ° C. for 1 minute to form a low thermal conductive part having a thickness of 75 ⁇ m, and a thermal conductive adhesive sheet Was made.
  • a low heat conduction part is formed between the stripe-like patterns of the high heat conduction part and on the high heat conduction part, and a low heat conduction part having a thickness of 25 ⁇ m is formed on the high heat conduction layer part.
  • Two sheets of the obtained heat conductive adhesive sheet were prepared, and in the same manner as in Example 1, the surface of the thermoelectric conversion module 27 on the side where the thermoelectric elements were formed and the surface on the support side, the lower surface of FIG. Laminate by sticking to each side the side composed of only the low thermal conductivity part, and then peel off and remove the release sheet and heat at 120 ° C. for 20 minutes, A thermoelectric conversion device having a heat conductive adhesive sheet laminated on both sides was prepared.
  • the storage elastic modulus at 150 ° C. after curing of the high thermal conductivity portion was 4.2 MPa
  • the storage elastic modulus at 150 ° C. after curing of the low thermal conductivity portion was 0.2 MPa.
  • Example 6 Two heat conductive adhesive sheets obtained in Example 5 were prepared, and the heat conductive adhesive sheet was placed on the surface on the side where the thermoelectric elements of the thermoelectric conversion module 27 were formed and the surface on the support side as shown in FIG. As shown in the upper surface side of the above, the surfaces of the side composed of the high heat conduction part and the low heat conduction part are laminated to each other, then the release sheet is peeled off and heated at 120 ° C. for 20 minutes, The heat conductive adhesive sheet was cured, and a thermoelectric conversion device in which the heat conductive adhesive sheets were laminated on both sides was produced.
  • the storage elastic modulus at 150 ° C. after curing of the high thermal conductivity portion was 4.2 MPa
  • the storage elastic modulus at 150 ° C. after curing of the low thermal conductivity portion was 0.2 MPa.
  • thermoelectric conversion module 27 The temperature difference was measured without attaching the heat conductive adhesive sheet to the adherend. Moreover, the electronic device evaluation was performed without laminating the heat conductive adhesive sheet on the thermoelectric conversion module 27.
  • Table 1 shows the evaluation results of the thermoelectric conversion devices obtained in Examples 1 to 6 and Comparative Examples 1 and 2.
  • the heat conductive adhesive sheet of the present invention can efficiently provide a temperature difference in the thickness direction of the thermoelectric element, particularly when applied to a thermoelectric conversion module of a thermoelectric conversion device that is one of electronic devices. Power generation is possible, and the number of thermoelectric conversion modules installed can be reduced compared to the conventional type, leading to downsizing and cost reduction. At the same time, by using the heat conductive adhesive sheet of the present invention, it can be used as a flexible thermoelectric conversion device without being restricted in installation place, such as being installed on a waste heat source or a heat radiation source having a non-planar surface. .
  • thermoelectric conversion device 11 P-type thermoelectric Element 12: N-type thermoelectric element 13: Electrode (copper) 14a, 14b: High heat conduction parts 14'a, 14'b, 14'c: High heat conduction parts 15a, 15b, 15c: Low heat conduction parts 15'a, 15'b: Low heat conduction parts 16: Thermoelectric conversion module 17: 16 first surface 18: 16 second surface 19: support 20: thermoelectric conversion device 21: P-type thermoelectric element 22: N-type thermoelectric elements 23a, 23b, 23c: electrodes (copper) 24: High heat conduction part 25: Low heat conduction part 26: Support 27: Thermoelectric conversion module 28: Lower surface 29: 27 Upper surface 41: P-type thermoelectric element 42: N-type thermoelectric element 43: Electrode (co

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Adhesive Tapes (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 電子デバイスに、接着剤層を介することなく、かつ容易に積層することができ、さらに、熱を特定の方向に選択的に放熱し、該電子デバイスの内部に十分な温度差を付与することができる熱伝導性接着シート、その製造方法及びそれを用いた電子デバイスを提供するものであり、高熱伝導部と低熱伝導部とを有する熱伝導性接着シートであって、該高熱伝導部と該低熱伝導部とが接着性を有し、かつ該高熱伝導部、該低熱伝導部がそれぞれ独立に熱伝導性接着シートのすべての厚みを構成、もしくはそれらの少なくともどちらかが熱伝導性接着シートの厚みの一部分を構成している熱伝導性接着シート、及び該熱伝導性接着シートの製造方法、並びに該熱伝導性接着シートを用いた電子デバイス、である。

Description

熱伝導性接着シート、その製造方法及びそれを用いた電子デバイス
 本発明は、熱伝導性接着シートに関し、特に電子デバイスに用いられる熱伝導性接着シート、その製造方法及びそれを用いた電子デバイスに関する。
 従来から、電子デバイス等の内部において、熱を逃がす又は熱の流れを特定の方向に制御するために、高熱伝導性を含むシート状の放熱部材が用いられている。電子デバイスとしては、例えば、熱電変換デバイス、光電変換デバイス、大規模集積回路等の半導体デバイス等が挙げられる。
 近年、半導体デバイスにおいては、該半導体デバイスの小型化かつ高密度化等にともない、動作時に内部から発生する熱がより高温となり、放熱が十分ではない場合には、該半導体デバイス自体の特性が低下し、時には誤動作を引き起こし、最終的には半導体デバイスの破壊又は寿命低下に繋がることがある。このような場合、半導体デバイスから発生する熱を効率良く外部に放熱するための方法として、半導体デバイスとヒートシンク(金属部材)の間に、熱伝導性に優れる放熱シートを設けることが行われている。
 また、このような電子デバイスの中で、熱電変換デバイスにおいては、上述した放熱の制御にかかるものではあるが、熱電素子の片面に付与された熱を、熱電素子の内部の厚み方向に温度差が大きくなるように制御すると、得られる電力が大きくなることから、シート状の放熱部材を用いて特定の方向に選択的に放熱を制御する(熱電素子の内部に温度差を効率良く付与する)検討がなされている。特許文献1では、図7に示すような構造を有する熱電変換素子が開示されている。すなわち、P型熱電素子41とN型熱電素子42とを直列に接続し、その両端部に熱起電力取り出し電極43を配置し、熱電変換モジュール46を構成し、該熱電変換モジュール46の両面に2種類の熱伝導率の異なる材料で構成された柔軟性を有するフィルム状基板44、45を設けたものである。該フィルム状基板44、45には、前記熱電変換モジュール46との接合面側に熱伝導率の低い材料(ポリイミド)47、48が設けられ、前記熱電変換モジュール46の接合面と反対側に、熱伝導率の高い材料(銅)49、50が基板44、45の外面の一部分に位置するように設けられている。
 また、特許文献2では、図8に示す構造を有する熱電変換モジュールが開示されており、低熱伝導率の部材51、52に高熱伝導率部材を兼ねる電極54が埋め込まれ、それらが、熱電素子53に対し、導電性接着剤層55及び絶縁性接着剤層56を介し配置されている。
 さらに、特許文献3には、図9に熱電変換素子の断面構成図(熱電素子61の奥行方向の配置、かつ内部電極配置は略してある。)に示したように、熱電素子61の一方の面には、接着剤層67を介し、また他方の面には直接、絶縁性基層層65が配置され、該基層層65上には、金属層63と樹脂層64とからなるパターン層とを有するフレキシブル基板62、66が開示されている。
特許第3981738号公報 特開2011-35203号公報 特開2008-182160号公報
 上記のように、特に、半導体デバイスを主とする電子デバイスにおいて、熱を外部へより効率良く放熱させることのできる放熱シートや熱伝導性に優れていることに加えて、熱を特定の方向に選択的に放熱し、該電子デバイスの内部に温度勾配を生じさせる機能を有する熱伝導性シートが要求されている。
 本発明は、上記問題を鑑み、電子デバイスに、接着剤層を介することなく、かつ容易に積層することができ、さらに、熱を特定の方向に選択的に放熱し、該電子デバイスの内部に十分な温度差を付与することができる熱伝導性接着シート、その製造方法及びそれを用いた電子デバイスを提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、熱伝導性接着シートを、接着性を付与した高熱伝導部と低熱伝導部から構成し、かつそれらがそれぞれ独立に熱伝導性接着シートのすべての厚みを構成、もしくはそれらの少なくともどちらかが熱伝導性接着シートの厚みの一部分を構成する熱伝導性接着シートとすることにより、上記課題を解決することを見出し、本発明を完成した。
 すなわち、本発明は、以下の(1)~(10)を提供するものである。
(1)高熱伝導部と低熱伝導部とを有する熱伝導性接着シートであって、該高熱伝導部と該低熱伝導部とが接着性を有し、かつ該高熱伝導部、該低熱伝導部がそれぞれ独立に熱伝導性接着シートのすべての厚みを構成、もしくはそれらの少なくともどちらかが熱伝導性接着シートの厚みの一部分を構成していることを特徴とする熱伝導性接着シート。
(2)前記高熱伝導部及び前記低熱伝導部が接着性樹脂組成物から形成される上記(1)に記載の熱伝導性接着シート。
(3)前記接着性樹脂組成物が、熱硬化性樹脂及びエネルギー線硬化性樹脂の少なくともいずれか1種を含む上記(2)に記載の熱伝導性接着シート。
(4)前記熱硬化性樹脂が、シリコーン樹脂又はウレタン樹脂である上記(3)に記載の熱伝導性接着シート。
(5)前記高熱伝導部の接着性樹脂組成物に熱伝導性フィラー及び/又は導電性炭素化合物を含む上記(2)に記載の熱伝導性接着シート。
(6)前記熱伝導性フィラーが、金属酸化物、金属窒化物、及び金属からなる群より選択される少なくとも1種を含む上記(5)に記載の熱伝導性接着シート。
(7)前記熱伝導性フィラーが、金属酸化物と金属窒化物とを含む上記(5)に記載の熱伝導性接着シート。
(8)前記熱伝導性接着シートの高熱伝導部の熱伝導率が1.0(W/m・K)以上、かつ低熱伝導部の熱伝導率が0.5(W/m・K)未満である上記(1)に記載の熱伝導性接着シート。
(9)上記(1)に記載の熱伝導性接着シートを用いた電子デバイス。
(10)上記(1)に記載の熱伝導性接着シートの製造方法であって、剥離シート上に、接着性樹脂組成物から形成される高熱伝導部と、接着性樹脂組成物から形成される低熱伝導部とを形成する工程を含むことを特徴とする熱伝導性接着シートの製造方法。
 本発明の熱伝導性接着シートによれば、電子デバイスに、接着剤層を介することなく、かつ容易に積層することができ、さらに、熱を特定の方向に選択的に放熱し、電子デバイス等の内部に十分な温度差を付与することができる。また、接着剤層を必要としないため、電子デバイスの生産性が高く低コストに繋がる。
本発明の熱伝導性接着シートの一例を示す斜視図である。 本発明の熱伝導性接着シートの種々の例を示す断面図である。 本発明の熱伝導性接着シートを熱電変換モジュールに貼付した際の熱電変換デバイスの一例を示す断面図である。 本発明の熱伝導性接着シートと熱電変換モジュールを構成要素ごとに分解した斜視図の一例を示し、(a)が熱電変換モジュールの支持体表面側の熱電素子に直接設けられる熱伝導性接着シートの斜視図であり、(b)が熱電変換モジュールの斜視図であり、(c)が熱電変換モジュールの支持体裏面側に設けられる熱伝導性接着シートの斜視図である。 本発明の熱伝導性接着シートの高熱伝導部と低熱伝導部の温度差を測定するための構成の説明図であり、(a)が熱伝導性接着シートであり、(b)が被着体として使用したガラス基板の斜視図である。 本発明の実施例に用いた熱電変換モジュールの斜視図である。 従来の熱電変換デバイスの構成の一例を示す断面図である。 従来の熱電変換デバイスの構成の他の一例を示す断面図である。 従来の熱電変換デバイスの構成のさらに他の一例を示す断面図である。
[熱伝導性接着シート]
 本発明の熱伝導性接着シートは、高熱伝導部と低熱伝導部とから構成された熱伝導性接着シートであって、該高熱伝導部と該低熱伝導部とが接着性を有し、かつ該高熱伝導部、該低熱伝導部がそれぞれ独立に熱伝導性接着シートのすべての厚みを構成、もしくはそれらの少なくともどちらかが熱伝導性接着シートの厚みの一部分を構成していることを特徴としている。
 本発明の熱伝導性接着シートの構成等を、図面を使用して説明する。
 図1に本発明の熱伝導性接着シートの斜視図の一例を示す。熱伝導性接着シート1は、高熱伝導部4a、4bと低熱伝導部5a、5bとから構成され、それらが交互に配置されている。熱伝導性接着シートを構成する高熱伝導部と低熱伝導部の配置(以下、厚みの構成ということがある。)は、以下に述べるように、特に制限されない。
 図2に本発明の熱伝導性接着シートの断面図(配置を含む)の種々の例を示す。図2の(a)は、図1の断面図であり、高熱伝導部4と低熱伝導部5とがそれぞれ独立に熱伝導性接着シートのすべての厚みを構成している。また、図2の(b)、(d)は、低熱伝導部5が熱伝導性接着シートの厚みの一部分を構成している。さらに、図2の(c)、(e)は、高熱伝導部4が熱伝導性接着シートの厚みの一部分を構成している。熱伝導性接着シートの厚みの構成は、適用する電子デバイスの仕様に合わせ、適宜選択することができる。例えば、熱を特定の方向に選択的に放熱するという観点から、例えば、図2の(a)~(e)の厚みの構成を選択することが好ましく、図2の(a)の厚みの構成がさらに好ましい。また、電子デバイスの内部から発生する熱を外部に効率的に放熱する観点から、例えば、図2の(a)~(e)の厚みの構成を電子デバイスの仕様に合わせ選択することが好ましい。この際、高熱伝導部の体積を大きく、かつ適用するデバイス面に対する接触面積を大きくする構成にすれば、放熱を効率的に制御できる。
<高熱伝導部>
 高熱伝導部は、接着性樹脂組成物から形成される。前記高熱伝導部の形状は、特に制限はなく、後述する電子デバイス等の仕様に応じて、適宜変更することができる。ここで、本発明の高熱伝導部は、後述する低熱伝導部よりも熱伝導率が高いほうをいう。
(接着性樹脂)
 本発明に用いる接着性樹脂は、特に限定されないが、電子部品分野等で使用されているものの中から任意の樹脂を適宜選択することができ、例えば、熱硬化性樹脂、エネルギー線硬化性樹脂等が挙げられる。
 熱硬化性樹脂としては、例えば、エポキシ樹脂、メラミン樹脂、尿素樹脂、フェノール樹脂、シリコーン樹脂、ウレタン樹脂、ポリイミ度樹脂、ベンゾオキサジン樹脂、熱硬化性アクリル樹脂、不飽和ポリエステル樹脂等が挙げられる。これらの中で、耐熱性に優れ、高い接着力を有するという観点からウレタン樹脂、シリコーン樹脂が好ましい。
 前記熱硬化性樹脂を用いる場合には、助剤として、硬化剤、硬化促進剤、硬化遅延剤、硬化触媒等を併用することが好ましい。
 硬化剤として、1分子中に熱硬化型樹脂成分の官能基と反応し得る官能基を2個以上有する化合物が挙げられる。エポキシ系樹脂に対する硬化剤としては、フェノール系硬化剤、アルコール系硬化剤、アミン系硬化剤、アルミニウムキレート系硬化剤等が挙げられる。またシリコーン系樹脂に対する硬化剤としては、ヒドロシリル系硬化剤等が挙げられる。
 硬化促進剤として、例えば、トリエチレンジアミン、ベンジルジメチルアミン等の3級アミン類;2-メチルイミダゾール、2-フェニルイミダゾール等のイミダゾール類;トリブリツフォスフィン、ジフェニルフォスフィン等の有機フォスフィン類;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルフォスフィンテトラフェニルボレート等のテトラフェニルボロン塩等が挙げられる。
 硬化遅延剤としては、ヒドロシリル化反応制御剤等が挙げられる。硬化触媒等としては、白金系触媒、パラジウム系触媒、ロジウム系触媒等が挙げられる。
 上記の助剤の含有量は、熱硬化性樹脂の種類に応じて異なるが、該熱硬化性樹脂100質量部に対して、10~90重量部、好ましくは20~80重量部、より好ましくは30~70重量部である。
 エネルギー線硬化性樹脂としては、例えば、アクリレート系の官能基を有する化合物等の1つ又は2つ以上の重合性不飽和結合を有する化合物を挙げることができる。1つの重合性不飽和結合を有する化合物としては、例えば、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等が挙げられる。また、2つ以上の重合性不飽和結合を有する化合物としては、例えば、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の多官能化合物や、その変成物、及び、これらの多官能化合物と(メタ)アクリレート等との反応生成物(例えば、多価アルコールのポリ(メタ)アクリレートエステル)、等を挙げることができる。なお、本明細書において、(メタ)アクリレートは、メタクリレート及びアクリレートを意味するものである。
 前記化合物のほかに、重合性不飽和結合を有する比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂、ポリブタジエン樹脂等も前記エネルギー線硬化性樹脂として使用することができる。
 前記エネルギー線硬化性樹脂には、光重合開始剤を併用することが好ましい。本発明に用いる光重合開始剤は、前記エネルギー線硬化性樹脂を含む接着性樹脂組成物に含まれるものであり、紫外線下で前記エネルギー線硬化性樹脂を硬化させることができる。光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル、アセトフェノン、ジメチルアミノアセトフェノン、1-ヒドロキシ-シクロヘキシル-フェニルケトン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-アミノアントラキノン、2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、ベンジルジメチルケタール、アセトフェノンジメチルケタール、p-ジメチルアミン安息香酸エステルなどを用いることができる。
 光重合開始剤は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、その配合量は、前記エネルギー線硬化性樹脂100質量部に対して、通常0.2~10質量部の範囲で選ばれる。
 なお、本発明に用いる接着性樹脂の質量平均分子量は、通常、数百から数百万である。
 高熱伝導部は、後述する所望の熱伝導率に調整するために、上記接着性樹脂と熱伝導性フィラー及び/又は導電性炭素化合物とを含む樹脂組成物から形成されることが好ましい。
 以下、熱伝導性フィラー及び導電性炭素化合物を「熱伝導率調整用物質」ということがある
(熱伝導性フィラー及び導電性炭素化合物)
 前記熱伝導性フィラーとしては、特に制限はないが、シリカ、アルミナ、酸化マグネシウム等の金属酸化物、窒化ケイ素、窒化アルミニウム、窒化マグネシウム、窒化ホウ素等の金属窒化物、銅、アルミニウム等の金属から選ばれる少なくとも1種類、また、導電性炭素化合物としては、カーボンブラック、カーボンナノチューブ(CNT)、グラフェン、カーボンナノファイバー等から選ばれる少なくとも1種類が好ましい。これらの熱伝導性フィラー及び導電性炭素化合物は、1種単独で、又は2種以上を組み合わせて用いることができる。これらのなかでも、後述の体積抵抗率の範囲になり易いという点から、シリカ、アルミナ、酸化マグネシウム等の金属酸化物、窒化ケイ素、窒化アルミニウム、窒化マグネシウム、窒化ホウ素等の金属窒化物等の熱伝導性フィラーが好ましい。また、熱伝導性フィラーとしては、金属酸化物と金属窒化物とを含むことがより好ましい。さらに、熱伝導性フィラーとして金属酸化物と金属窒化物とを含む場合、金属酸化物と金属窒化物との質量比率は、10:90~90:10が好ましく、20:80~80:20がより好ましく、50:50~75:25がさらに好ましい。
 熱伝導率調整用物質の形状は、特に制限されるものではないが、適用する電子デバイス、素子等に貼付した際に、それらの接触又は機械的損傷により、電子デバイス、素子等の電気特性等が損なわれない形状であればよく、例えば、板状(鱗片状を含む)、球状、針状、棒状、繊維状のいずれでもよい。
 熱伝導率調整用物質のサイズは、高熱伝導部の厚み方向に熱伝導率調整用物質を均一に分散させて熱伝導性を向上させる観点から、例えば、平均粒子径が0.1~200μmが好ましく、1~100μmがより好ましく、5~50μmがさらに好ましく、10~30μmが特に好ましい。なお、平均粒子径は、例えば、コールターカウンター法により測定することができる。熱伝導率調整用物質の平均粒子径がこの範囲にあれば、個々の物質内部での熱伝導が小さくなることもなく、結果として高熱伝導部の熱伝導率が向上する。また、粒子同士の凝集が起こりにくく、均一に分散させることができ、さらに、高熱伝導部への充填密度が十分となり、物質界面において高熱伝導部が脆くなることもない。
 熱伝導率調整用物質の含有量は、所望の熱伝導率に応じて適宜調整され、接着性樹脂組成物中、40~99質量%が好ましく、50~95質量%がより好ましく、50~80質量%が特に好ましい。熱伝導率調整用物質の含有量がこの範囲にあれば、放熱特性、耐折性、耐屈曲性が優れ、高熱伝導部の強度が維持される。
(その他の成分)
 接着性樹脂組成物には、必要に応じて適宜な範囲内で、例えば、架橋剤、充填剤、可塑剤、老化防止剤、酸化防止剤、紫外線吸収剤、顔料や染料等の着色剤、粘着付与剤、帯電防止剤、カップリング剤等の添加剤や、非接着性樹脂が含まれていてもよい。
 非接着性樹脂としては、例えば、ポリエステル樹脂、ウレタン樹脂、シリコーン樹脂、ゴム系ポリマー、ポリオレフィン樹脂、スチレン樹脂、アミド樹脂、環状オレフィン樹脂、塩化ビニル樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリサルフォン樹脂等が挙げられる。
<低熱伝導部>
 前記低熱伝導部の形状は、前記高熱伝導部の形状と同様、特に制限はなく、後述する電子デバイス等の仕様に応じて、適宜変更することができる。ここで、本発明の低熱伝導部は、前記高熱伝導部よりも熱伝導率が低いほうをいう。
 低熱伝導部は、接着性樹脂組成物(本発明においては、前述した熱伝導率調整用物質等を含まない場合でも、接着性樹脂組成物と称する。)から形成され、前記高熱伝導部よりも熱伝導率が低い材料であれば特に限定されない。なお、前記高熱伝導部の熱伝導率より十分低ければ、該接着性樹脂組成物に熱伝導率調整用物質を含んでいてもよいが、前記高熱伝導部の熱伝導率との差を大きくするため、熱伝導率調整用物質を含まないことがより好ましい。
 接着性樹脂としては、前述した高熱伝導部に用いた熱硬化性樹脂及びエネルギー硬化性樹脂等、同様の樹脂が挙げられる。通常、機械的特性、密着性等の観点から高熱伝導部と同一樹脂を用いる。
(その他の成分)
 低熱伝導部には、さらに前記高熱伝導部と同様、必要に応じて適宜な範囲内で、同種類の添加剤が含まれていてもよい。
 高熱伝導部及び低熱伝導部のそれぞれの層の厚みは、1~200μmが好ましく、3~100μmがさらに好ましい。この範囲であれば、熱を特定の方向に選択的に放熱することができる。また、高熱伝導部及び低熱伝導部のそれぞれの層の厚みは、同じであっても異なっていてもよい。
 高熱伝導部及び低熱伝導部のそれぞれの層の幅は、適用する電子デバイスの仕様により適宜調整して用いるが、通常、0.01~3mm、好ましくは0.1~2mm、さらに好ましくは0.5~1.5mmである。この範囲であれば、熱を特定の方向に選択的に放熱することができる。また、高熱伝導部及び低熱伝導部のそれぞれの層の幅は、同じであっても異なっていてもよい。
 高熱伝導部の熱伝導率は、低熱伝導部に比べて十分に高ければよく、熱伝導率が0.5(W/m・K)以上が好ましく、1.0(W/m・K)以上がより好ましく、1.3(W/m・K)以上がさらに好ましい。高熱伝導部の熱伝導率の上限は、特に制限はないが、通常2000(W/m・K)以下が好ましく、500(W/m・K)以下がより好ましい。
 低熱伝導部の熱伝導率は、0.5(W/m・K)未満が好ましく、0.3(W/m・K)以下がより好ましく、0.25(W/m・K)以下がさらに好ましい。高熱伝導部及び低熱伝導部の伝導率が上記のような範囲にあれば、熱を特定の方向に選択的に放熱することができる。
 高熱伝導部の硬化後の150℃における貯蔵弾性率は、0.1MPa以上が好ましく、0.15MPa以上がより好ましく、1MPa以上がさらに好ましい。また、低熱伝導部の硬化後の150℃における貯蔵弾性率は、0.1MPa以上が好ましく、0.15MPa以上がより好ましく、1MPa以上がさらに好ましい。高熱伝導部及び低熱伝導部の硬化後の150℃における貯蔵弾性率が0.1MPa以上である場合には、熱伝導性接着シートが過度に変形することが抑制され、安定的に放熱することができる。150℃における貯蔵弾性率の上限は特に限定されないが、500MPa以下であることが好ましく、100MPa以下であることがより好ましく、50MPa以下であることがさらに好ましい。前述した樹脂組成物中の接着性樹脂の選択並びに組み合わせや、熱伝導性フィラー及び導電性炭素化合物の種類及び量を調整することで、高熱伝導部、低熱伝導部の硬化後の150℃における貯蔵弾性率を調節することができる。
 なお、150℃における貯蔵弾性率は、動的弾性率測定装置[TAインスツルメント社製、機種名「DMA Q800」]により、初期温度を15℃、昇温速度3℃/minで150℃まで昇温させ、周波数11Hzにて測定された値である。
 また、熱伝導性接着シートは、接着剤層を介することなく、電子デバイスに貼付されるため、電気的接続を防止する機能を有することが好ましい。したがって、高熱伝導部及び低熱伝導部の体積抵抗率は、1×1010Ω・cm以上が好ましく、1.0×1013Ω・cm以上がより好ましい。
 なお、体積抵抗率は、抵抗率計(三菱化学アナリテック社製、MCP-HT450)により、熱伝導性接着シートを23℃50%RHの環境に一日放置後に測定した値である。
 熱伝導性接着シートにおいて、例えば、図1、図2(a)のように、高熱伝導部、低熱伝導部がそれぞれ独立に熱伝導性接着シートのすべての厚みを構成している場合、該熱伝導性接着シートの外面において、高熱伝導部と低熱伝導部との段差は、10μm以下であることが好ましく、5μm以下であることがより好ましく、実質的に存在しないことがさらに好ましい。
 高熱伝導部と低熱伝導部の少なくともどちらかが該基材の厚みの一部分を構成している、例えば、図2(b)、(c)の場合、高熱伝導部と低熱伝導部との段差は、10μm以下であることが好ましく、5μm以下であることがより好ましく、実質的に存在しないことがさらに好ましい。さらに、高熱伝導部と低熱伝導部とで所定の段差が設けられている、図2(d)、(e)の場合、基材の厚みを、高熱伝導部と低熱伝導部とでなる厚みとした時の、高熱伝導部と低熱伝導部との段差は、該厚みに対し、10~90%が好ましい。また、熱伝導性接着シートにおいて、高熱伝導部と低熱伝導部との体積比率は、10:90~90:10であることが好ましく、20:80~80:20であることがより好ましく、30:70~70:30であることがさらに好ましい。
〈剥離シート〉
 熱伝導性接着シートは片側、もしくは両側に剥離シートを有していてもよい。剥離シートとしては、例えば、グラシン紙、コート紙、ラミネート紙などの紙及び各種プラスチックフィルムに、シリコーン樹脂、フッ素樹脂などの剥離剤を塗付したもの等が挙げられる。該剥離シートの厚みについては特に制限はないが、通常10~200μmである。本発明に用いる剥離シートに用いる支持基材としては、プラスチックフィルムを用いることが好ましい。
〈電子デバイス〉
 本発明の熱伝導性接着シートを用いる電子デバイスは、特に制限されないが、放熱等の熱制御の観点から、熱電変換デバイス、光電変換デバイス、大規模集積回路等の半導体デバイス等が挙げられる。特に、熱伝導性接着シートは、熱電変換デバイスの熱電変換モジュールに貼付することで、熱を特定の方向へ選択的に放熱することができ、さらなる熱電性能の向上に繋がるため、熱電変換デバイスに好ましく用いられる。
 なお、熱伝導性接着シートは、電子デバイスの片面に積層してもよく、両面に積層してあってもよい。電子デバイスの仕様にあわせて、適宜選択する。
 以下、電子デバイスとして、熱電変換デバイスの場合を例にとって、説明する。
(熱電変換デバイス)
 熱電変換デバイスとは、熱と電気との相互エネルギー変換を行う熱電変換素子の内部に温度差を付与することにより容易に電力が得られる電子デバイスである。
 図3は、図2(a)の構成の本発明の熱伝導性接着シートを熱電変換モジュールに貼付した際の熱電変換デバイスの一例を示す断面図である。図3に示した熱電変換デバイス10は、支持体上(図示せず)上に、P型材料からなる薄膜のP型熱電素子11、N型材料からなる薄膜のN型熱電素子12から構成される熱電変換素子を有し、さらに電極13を設けてなる熱電変換モジュール16と、該熱電変換モジュール16の第1面17に貼付された熱伝導性接着シート1A、さらに前記第1面17とは反対側の第2面18に貼付された熱伝導性接着シート1Bから構成される。
 熱伝導性接着シート1Aは、高熱伝導部14a、14b、低熱伝導部15a、15b、15cとを有し、該高熱伝導部14a、14bと該低熱伝導部15a、15b、15cとが接着性を有し、かつそれらが該熱伝導性接着シートの外面を構成している。また、熱伝導性接着シート1Bは、高熱伝導部14’a、14’b、14’cと低熱伝導部15’a、15’bとを有し、該高熱伝導部14’a、14’b、14’cと該低熱伝導部15’a、15’bとが接着性を有し、かつそれらが該熱伝導性接着シートの外面を構成している。
 図4に本発明の熱伝導性接着シートと熱電変換モジュールを構成要素ごとに分解した斜視図の一例を示す。図4において、(a)が熱電変換モジュール16の支持体19の表面側の熱電素子11、12に直接設けられる熱伝導性接着シート1Aの斜視図であり、(b)が熱電変換モジュール16の斜視図であり、(c)が熱電変換モジュール16の支持体19の裏面側に設けられる熱伝導性接着シート1Bの斜視図である。
 上記のような構成をとることにより、熱伝導性接着シート1A及び熱伝導性接着シート1Bから、効率良く熱を拡散することができる。また、熱伝導性接着シート1Aの高熱伝導部14a、14bと、熱伝導性接着シート1Bの高熱伝導部14’a、14’b、14’cとが対向しないように、位置をずらして積層することで、熱を特定の方向に選択的に放熱させることができる。これにより、熱電変換モジュールに効率良く温度差を付与でき、発電効率の高い熱電変換デバイスが得られる。
 本発明に使用される熱電変換モジュール16は、例えば、図4(b)に示されるように、P型熱電素子11とN型熱電素子12と電極13とから構成される。P型熱電素子11とN型熱電素子12は直列接続となるように薄膜状に形成され、それぞれの端部で、電極13を介して接合して電気的に接続されている。なお、熱電変換モジュール16におけるP型熱電素子11とN型熱電素子12は、図3に示すように、「電極13、P型熱電素子11、電極13、N型熱電素子12、電極13、・・・・・」のように配置してもよく、「電極13、P型熱電素子11、N型熱電素子12、電極13、P型熱電素子11、N型熱電素子12、電極13、・・・・・」のように配置してもよく、さらに「電極13、P型熱電素子11、N型熱電素子12、P型熱電素子11、N型熱電素子12、・・・電極13」のように配置してもよい。
 また、熱電変換モジュールは、高熱伝導部及び低熱伝導部上に直接形成されていてもよく、その他の層を介して形成されていてもよいが、熱電素子に温度差を効率的に付与できるという点から、熱電変換モジュールは、高熱伝導部及び低熱伝導部上に直接形成されていることが好ましい。
 前記熱電素子には、特に制限されないが、熱電変換モジュールにより電気エネルギーに変換される熱源の温度域において、ゼーベック係数の絶対値が大きく、熱伝導率が低く、電気伝導率が高い、いわゆる熱電性能指数の高い材料を使用することが好ましい。
 P型熱電素子及びN型熱電素子を構成する材料としては、熱電変換特性を有すものであれば特に制限はないが、ビスマステルライド、Bi2Te3等のビスマス-テルル系熱電半導体材料、GeTe、PbTe等のテルライド系熱電半導体材料、アンチモン-テルル系熱電半導体材料、ZnSb、Zn3Sb2、Zn4Sb3等の亜鉛-アンチモン系熱電半導体材料、SiGe等のシリコン-ゲルマニウム系熱電半導体材料、Bi2Se3等のビスマスセレナイド系熱電半導体材料、β―FeSi2、CrSi2、MnSi1.73、Mg2Si等のシリサイド系熱電半導体材料、酸化物系熱電半導体材料、FeVAl、FeVAlSi、FeVTiAl等のホイスラー材料などが用いられる。
 P型熱電素子11及びN型熱電素子12の厚みは、0.1~100μmが好ましく、1~50μmがさらに好ましい。
 なお、P型熱電素子11とN型熱電素子12の厚みは、特に限定されるものではなく、同じ厚みでも、異なる厚みでもよい。
[熱伝導性接着シートの製造方法]
 本発明の熱伝導性接着シートの製造方法は、高熱伝導部と低熱伝導部とから構成され、かつ該高熱伝導部、該低熱伝導部がそれぞれ独立に熱伝導性接着シートのすべての厚みを構成、もしくはそれらのどちらかが熱伝導性接着シートの厚みの一部分を構成している熱伝導性接着シートの製造方法であって、剥離シート上に、接着性樹脂組成物から形成される高熱伝導部と、接着性樹脂組成物から形成される低熱伝導部とを形成する工程を含むことを特徴としている。
〈高熱伝導部形成工程〉
 高熱伝導部を形成する工程である。高熱伝導部は、接着性樹脂と熱伝導性フィラー及び/又は導電性炭素化合物とを含む前記接着性樹脂組成物を用いて剥離シート上、又は剥離シート上及び低熱伝導部上に形成される。接着性樹脂組成物の塗布方法としては、特に限定されるものではなく、例えば、ステンシル印刷法、ディスペンサー、スクリーン印刷法、ロールコート法、スロットダイ等の公知の方法により形成すればよい。
 本発明に用いる接着性樹脂組成物において、熱硬化型の接着性樹脂を使用した場合の硬化条件としては、使用する組成物により適宜調整されるが、80℃~150℃が好ましく、より好ましくは90℃~120℃である。また、必要に応じて、硬化は加圧しながら行うこともできる。
 また、エネルギー線硬化型の接着性樹脂を使用した場合は、エネルギー放射線としては、紫外線の他、例えば、電子線、X線、放射線、可視光線等が挙げられる。この中で、紫外線が好ましく用いられ、光源として、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。光量として、通常100~1500mJ/cm2である。また、電子線を用いる場合は、電子線加速器等を用い、照射量は、通常150~350kVである。なお、紫外線を使用する場合は、前述した光重合開始剤を接着性樹脂組成物に添加しておく必要がある。また、電子線を使用する場合は、光重合開始剤を添加することなく、硬化膜を得ることができる。
〈低熱伝導部形成工程〉
 低熱伝導部を形成する工程である。低熱伝導部は、接着性樹脂を含む前記接着性樹脂組成物を用いて、剥離シート上、又は剥離シート上及び高熱伝導部上に形成される。接着性樹脂組成物の塗布方法としては、特に限定されるものではなく、高熱伝導部と同様、例えば、ステンシル印刷法、ディスペンサー、スクリーン印刷法、ロールコート法、スロットダイ等の公知の方法により形成すればよい。また、硬化方法に関しても、高熱伝導部の硬化方法と同様である。
 なお、高熱伝導部及び低熱伝導部の形成順序は、特に制限されない。電子デバイスの仕様により、適宜選択すればよい。
 本発明の製造方法によれば、簡便な方法で電子デバイス等の内部において、熱を逃がす又は熱の流れを特定の方向に制御でき、かつ低コストの熱伝導性接着シートを製造することができる。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
 実施例、比較例で作製した熱伝導性シートの熱伝導率測定、温度差の評価及び電子デバイスの評価は、以下の方法で行った。
(a)熱伝導性接着シートの熱伝導率測定
 熱伝導率測定装置(EKO社製、HC-110)を用いて、熱伝導率を測定した。
(b)高熱伝導部及び低熱伝導部の温度測定
 得られた熱伝導性接着シートを、図5に示したように、ソーダガラス(大きさ50mm×50mm、厚み0.5mm)からなる被着体2の上面に貼付した後、剥離シートを剥離した。次いで、被着体2の下面を75℃で1時間加熱し温度を安定させた後、被着体2の上面に付けたK熱電対(クロメルアルメル)により被着体の温度を測定した。なお、熱電対は、高熱伝導部及び低熱伝導部に対応する部分の被着体上(測定箇所:図5において、A、B、C、D)に設けられており、1秒毎に5分間熱電対の温度を測定し、得られた各点での平均値を算出した。
(熱電変換モジュールの作製)
 図6の一部に示すように、支持体26上に、P型熱電素子21(P型のビスマス-テルル系熱電半導体材料)とN型熱電素子22(N型のビスマス-テルル系熱電半導体材料)とを、それぞれ同一サイズ(幅1.7mm×長さ100mm、厚み0.5mm)となるように配置するとともに、両方の熱電素子、及び熱電素子間に銅電極(銅電極23a:幅0.15mm×長さ100mm、厚み0.5mm;銅電極23b:幅0.3mm×長さ100mm、厚み0.5mm;銅電極23c:幅0.15mm×長さ100mm、厚み0.5mm)を設け、熱電変換モジュール27を作製した。
(電子デバイス評価)
 実施例、比較例で得られた熱電変換デバイスの下面28(図6参照)をホットプレートで75℃に加熱し、反対側の上面29(図6参照)を25℃に冷却した状態で、そのまま1時間保持し、温度を安定させた後、熱起電力V(V)、電気抵抗R(Ω)を測定した。出力P(W)は、測定した熱起電力Vと電気抵抗Rを用い、P=V2/Rにより算出した。
(実施例1)
(1)熱伝導性接着シートの作製
 ポリオール樹脂含有溶液(亜細亜工業社製、「PX41-1」)31質量部、ポリイソシアネート樹脂含有溶液(亜細亜工業社製、「エクセルハードナーG」)9質量部、熱伝導性フィラーとして、窒化ホウ素(昭和電工社製、「アルナビーズCB-A20S」、平均粒子径20μm)40質量部、とアルミナ(昭和電工社製、「ショウビーエヌ UHP-2」、平均粒子径12μm)20質量部を添加し、自転・公転ミキサー(THINKY社製、「ARE-250」)を用いて混合分散し、高熱伝導部形成用の接着性樹脂組成物を調製した。
 一方、ポリオール樹脂含有溶液(亜細亜工業社製、「PX41-1」)78質量%とポリイソシアネート樹脂含有溶液(亜細亜工業社製、「エクセルハードナーG」)22質量%とを混合分散して、低熱伝導部形成用の接着性樹脂組成物を調製した。
 次に、剥離シート(リンテック社製、「SP-PET382150」)の剥離処理された面に、前記高熱伝導部形成用の接着性樹脂組成物を、ディスペンサー(武蔵エンジニアリング社製、「ML-808FXcom-CE」)を用いて塗布し、90℃で1分間乾燥させ溶媒を除去することで、ストライプ状パターン(幅1mm×長さ100mm、厚み50μm、パターン中心間距離2mm)からなる高熱伝導部を形成した。さらに、その上からアプリケータを用いて、低熱伝導部形成用の接着性樹脂組成物を塗布し、90℃で1分間乾燥させ、該高熱伝導部のストライプ状パターン間に、高熱伝導部と同じ厚みの低熱伝導部を形成することで、熱伝導性接着シートを得た。なお、高熱伝導部上には、低熱伝導部が形成されていないことを確認した。
(2)熱電変換デバイスの作製
 得られた熱伝導性接着シートを2枚用意し、図6に示すように、熱伝導性接着シートを熱電変換モジュール27の熱電素子が形成された側の面と支持体側の面にそれぞれ積層し、次いで、剥離シートを剥離除去して、120℃で20分間加熱し、熱伝導性接着シートを硬化させ、両面に熱伝導性接着シートが積層された熱電変換デバイスを作製した。
 なお、高熱伝導部の硬化後の150℃における貯蔵弾性率は4.2MPa、低熱伝導部の硬化後の150℃における貯蔵弾性率は0.2MPaであった。また、高熱伝導部の体積抵抗率は、7.0×1014Ω・cm、低熱伝導部の体積抵抗率は、2.0×1015Ω・cmであった。
(実施例2)
(1)熱伝導性接着シートの作製
 アクリル酸エステル共重合体(ブチルアクリレート/メチルメタクリレート/2-ヒドロキシエチルアクリレート=62/10/28)とメタクリロイルオキシエチルイソシアナートを、アクリル酸エステル共重合体の2-ヒドロキシエチルアクリレート100当量に対し、メタクリロイルオキシエチルイソシアナート80.5当量となるように混合し、触媒としてジブチル錫ジラウレートとを添加し、有機溶媒中で窒素雰囲気下、室温で24時間重合させて、側鎖にエネルギー線硬化性基を有するアクリル酸エステル共重合体の溶液(固形分40質量%)を得た。
 得られた側鎖にエネルギー線硬化性基を有するアクリル酸エステル共重合体の溶液100質量部、光重合開始剤である1-ヒドロキシ-シクロヘキシル-フェニルケトン(チバ・スペシャリティ・ケミカルズ社製、商品名:イルガキュア184)3.7質量部、熱伝導性フィラーとして、窒化ホウ素(昭和電工社製、「アルナビーズCB-A20S」、平均粒子径20μm)40重量部、とアルミナ(昭和電工社製、「ショウビーエヌ UHP-2」、平均粒子径12μm)20重量部を添加し、自転・公転ミキサー(THINKY社製、「ARE-250」)を用いて混合分散し、高熱伝導部形成用の接着性樹脂組成物を調製した。
 一方、得られたアクリル酸エステル共重合体の溶液(固形分40質量%)100質量部と光重合開始剤である1-ヒドロキシ-シクロヘキシル-フェニルケトン(チバ・スペシャリティ・ケミカルズ社製、商品名:イルガキュア184)3.7質量部とを混合分散し、低熱伝導部形成用の接着性樹脂組成物を調製した。
 次いで、得られた高熱伝導部形成用の接着性樹脂組成物及び低熱伝導部形成用の接着性樹脂組成物を用いて、実施例1と同様にして熱伝導性接着シートを作製した。
(2)熱電変換デバイスの作製
 得られた熱伝導性接着シートを2枚用意し、熱伝導性接着シートを熱電変換モジュール27の熱電素子が形成された側の面と支持体側の面にそれぞれ積層し、次いで、剥離シートを剥離除去して、両面に紫外線照射を行い、熱伝導性接着シートを硬化させ、両面に熱伝導性接着シートが積層された熱電変換デバイスを作製した。
 なお、高熱伝導部の硬化後の150℃における貯蔵弾性率は0.1MPa、低熱伝導部の硬化後の150℃における貯蔵弾性率は0.02MPaであった。高熱伝導部の体積抵抗率は、8.0×1014Ω・cm、低熱伝導部の体積抵抗率は、1.5×1015Ω・cmであった。
(実施例3)
(1)熱伝導性接着シートの作製
 シリコーン樹脂A(旭化成ワッカー社製、「SilGel612-A」)19.8質量部、シリコーン樹脂B(旭化成ワッカー社製、「SilGel612-B」)19.8質量部、硬化遅延剤(旭化成ワッカー社製、「PT88」)0.4質量部、熱伝導性フィラーとして、窒化ホウ素(昭和電工社製、「アルナビーズCB-A20S」、平均粒子径20μm)40質量部、とアルミナ(昭和電工社製、「ショウビーエヌ UHP-2」、平均粒子径12μm)20質量部を添加し、自転・公転ミキサー(THINKY社製、「ARE-250」)を用いて混合分散し、高熱伝導部形成用の接着性樹脂組成物を調製した。
 一方、シリコーン樹脂C(信越化学工業社製、「KE-106」)90質量部、硬化触媒である白金系触媒(信越化学工業社製、「CAT-RG」)9質量部、硬化遅延剤(信越化学工業社製、「No.6-10」)1質量部を混合分散し、低熱伝導部形成用の接着性樹脂組成物を調製した。
 次いで、剥離シートをリンテック社製「PET50FD」に変更し、90℃1分間乾燥ではなく150℃5分間乾燥にした以外は、得られた高熱伝導部形成用の接着性樹脂組成物及び低熱伝導部形成用の接着性樹脂組成物を用いて、実施例1と同様にして熱伝導性接着シートを作製した。
(2)熱電変換デバイスの作製
 120℃20分間加熱ではなく150℃30分間加熱により、熱伝導性接着シートを硬化させたこと以外は、実施例1と同様にして、両面に熱伝導性接着シートが積層された熱電変換デバイスを作製した。
 なお、高熱伝導部の硬化後の150℃における貯蔵弾性率は2.3MPa、低熱伝導部の硬化後の150℃における貯蔵弾性率は3.4MPaであった。高熱伝導部の体積抵抗率は、6.0×1014Ω・cm、低熱伝導部の体積抵抗率は、2.2×1015Ω・cmであった。
(実施例4)
(1)熱伝導性接着シートの作製
 シリコーン樹脂D(東レ・ダウコーニング社製、「SD4584」)19.9質量部、硬化触媒として白金系触媒(東レ・ダウコーニング社製、「SRX212」)0.2質量部、エポキシ樹脂のエポキシ変性シリコーンオイル(信越化学工業社製、「X-22-163C」)19.8質量部、硬化剤としてアルミ系キレート化合物であるアルミニウムトリスアセチルアセトネートの10%トルエン溶液0.2質量部、熱伝導性フィラーとして、窒化ホウ素(昭和電工社製、「アルナビーズCB-A20S」、平均粒子径20μm)40質量部、とアルミナ(昭和電工社製、「ショウビーエヌ UHP-2」、平均粒子径12μm)20質量部を添加し、自転・公転ミキサー(THINKY社製、「ARE-250」)を用いて混合分散し、高熱伝導部形成用の接着性樹脂組成物を調製した。
 一方、シリコーン樹脂D(東レ・ダウコーニング株式会社「SD4584」)19.8質量部、硬化触媒として白金系触媒(東レ・ダウコーニング株式会社「SRX212」)0.2質量部、エポキシ樹脂のエポキシ変性シリコーンにオイル(信越化学工業株式会社「X-22-163C」)19.8質量部、硬化剤としてアルミ系キレート化合物であるアルミニウムトリスアセチルアセトネートの10%トルエン溶液0.2質量部とを混合分散し、低熱伝導部形成用の接着性樹脂組成物を調製した。
 次いで、剥離シートをリンテック社製「PET50FD」に変更し、130℃2分間乾燥にした以外は、得られた高熱伝導部形成用のフィラー含有接着性樹脂組成物及び低熱伝導部形成用の接着性樹脂組成物を用いて、実施例1と同様にして熱伝導性接着シートを作製した。
(2)熱電変換デバイスの作製
 120℃20分間加熱ではなく150℃で30分間加熱により、熱伝導性接着シートを硬化させたこと以外は、実施例1と同様にして、両面に熱伝導性接着シートが積層された熱電変換デバイスを作製した。
 なお、高熱伝導部の硬化後の150℃における貯蔵弾性率は21MPa、低熱伝導部の硬化後の150℃における貯蔵弾性率は1.7MPaであった。高熱伝導部の体積抵抗率は、6.4×1014Ω・cm、低熱伝導部の体積抵抗率は、8.9×1014Ω・cmであった。
(実施例5)
 実施例1で用いた高熱伝導部形成用の接着性樹脂組成物を用いて、実施例1と同様に、剥離シートの剥離処理された面に、ストライプ状パターン(幅1mm×長さ100mm、厚み50μm、パターン中心間距離2mm)からなる高熱伝導部を形成した。
 次いで、その上に実施例1で用いた低熱伝導部形成用の接着性樹脂組成物を塗布し、90℃で1分乾燥させ、75μmの厚みの低熱伝導部を形成し、熱伝導性接着シートを作製した。該高熱伝導部のストライプ状パターン間及び該高熱伝導部上に低熱伝導部が形成され、該高熱伝導層部上には厚み25μmの低熱伝導部が形成される構成であった。得られた熱伝導性接着シートを2枚用意し、実施例1と同様にして、熱電変換モジュール27の熱電素子が形成された側の面と支持体側の面に、図2(c)の下面側のように、低熱伝導部のみで構成される側の面をそれぞれに貼付することにより積層し、次いで、剥離シートを剥離除去して、120℃で20分間加熱し、熱伝導性接着シートを硬化させ、両面に熱伝導性接着シートが積層された熱電変換デバイスを作製した。
 なお、高熱伝導部の硬化後の150℃における貯蔵弾性率は4.2MPa、低熱伝導部の硬化後の150℃における貯蔵弾性率は0.2MPaであった。
(実施例6)
 実施例5で得られた熱伝導性接着シートを2枚用意し、熱伝導性接着シートを熱電変換モジュール27の熱電素子が形成された側の面と支持体側の面に、図2(c)の上面側のように、高熱伝導部と低熱伝導部とで構成される側の面をそれぞれに貼付することにより積層し、次いで、剥離シートを剥離除去して、120℃で20分間加熱し、熱伝導性接着シートを硬化させ、両面に熱伝導性接着シートが積層された熱電変換デバイスを作製した。
 なお、高熱伝導部の硬化後の150℃における貯蔵弾性率は4.2MPa、低熱伝導部の硬化後の150℃における貯蔵弾性率は0.2MPaであった。
(比較例1)
 PGSグラファイトシート(パナソニックデバイス社製、熱伝導率:1950(W/m・K)、厚み:100μm)上に、シリコーン系接着剤を塗布し、90℃で1分乾燥させ、厚み10μmの接着剤層を形成し、熱伝導性接着シートを作製した。
 得られた熱伝導性接着シートを2枚用意し、熱伝導性接着シートを熱電変換モジュール27の熱電素子が形成された側の面と支持体側の面にそれぞれ積層し、両面に熱伝導性接着シートが積層された熱電変換デバイスを作製した。
(比較例2)
 被着体に熱伝導性接着シートを貼付せず、温度差の測定を行った。また、熱電変換モジュール27に熱伝導性接着シートを積層せず、電子デバイス評価を行った。
 実施例1~6及び比較例1、2で得られた熱電変換デバイスの評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~6で用いた本発明の熱伝導性接着シートにおいては、比較例に比べ、高熱伝導部と隣接する低熱伝導部間の温度差が大きくとれることが分かった。また、本発明の熱伝導性接着シートを熱電変換デバイスに適用した場合、大きな出力が得られることが分かった。
 本発明の熱伝導性接着シートは、特に電子デバイスの一つである熱電変換デバイスの熱電変換モジュールに貼付した場合、熱電素子の厚み方向に効率よく温度差を付与することができるため、発電効率の高い発電が可能となり、従来型に比べ、熱電変換モジュールの設置数を減じることができ、ダウンサイジング及びコストダウンに繋がる。また同時に、本発明の熱伝導性接着シートを用いることにより、フレキシブル型の熱電変換デバイスとして、平坦でない面を有する廃熱源や放熱源へ設置する等、設置場所を制限されることもなく使用できる。
1,1A,1B:熱伝導性接着シート
2:被着体
4,4a,4b:高熱伝導部
5,5a,5b:低熱伝導部
6:温度差測定部
10:熱電変換デバイス
11:P型熱電素子
12:N型熱電素子
13:電極(銅)
14a,14b,:高熱伝導部
14’a,14’b,14’c:高熱伝導部
15a,15b,15c:低熱伝導部
15’a,15’b:低熱伝導部
16:熱電変換モジュール
17:16の第1面
18:16の第2面
19:支持体
20:熱電変換デバイス
21:P型熱電素子
22:N型熱電素子
23a,23b,23c:電極(銅)
24:高熱伝導部
25:低熱伝導部
26:支持体
27:熱電変換モジュール
28:27の下面
29:27の上面
41:P型熱電素子
42:N型熱電素子
43:電極(銅)
44:フィルム状基板
45:フィルム状基板
46:熱電変換モジュール
47,48:熱伝導率の低い材料(ポリイミド)
49,50:熱伝導率の高い材料(銅)
51,52:低熱伝導率の部材
53:熱電素子
54:電極(銅)
55:導電性接着剤層
56:絶縁性接着剤層
61:熱電素子
62:フレキシブル基板
63:金属層(銅)
64:樹脂層
65:絶縁性基層層
66:フレキシブル基板
67:接着剤層

Claims (10)

  1.  高熱伝導部と低熱伝導部とを有する熱伝導性接着シートであって、該高熱伝導部と該低熱伝導部とが接着性を有し、かつ該高熱伝導部、該低熱伝導部がそれぞれ独立に熱伝導性接着シートのすべての厚みを構成、もしくはそれらの少なくともどちらかが熱伝導性接着シートの厚みの一部分を構成していることを特徴とする熱伝導性接着シート
  2.  前記高熱伝導部及び前記低熱伝導部が接着性樹脂組成物から形成される請求項1に記載の熱伝導性接着シート。
  3.  前記接着性樹脂組成物が、熱硬化性樹脂及びエネルギー線硬化性樹脂の少なくともいずれか1種を含む請求項2に記載の熱伝導性接着シート。
  4.  前記熱硬化性樹脂が、シリコーン樹脂又はウレタン樹脂である請求項3に記載の熱伝導性接着シート。
  5.  前記高熱伝導部の接着性樹脂組成物に熱伝導性フィラー及び/又は導電性炭素化合物を含む請求項2に記載の熱伝導性接着シート。
  6.  前記熱伝導性フィラーが、金属酸化物、金属窒化物、及び金属からなる群より選択される少なくとも1種を含む請求項5に記載の熱伝導性接着シート。
  7.  前記熱伝導性フィラーが、金属酸化物と金属窒化物とを含む請求項5に記載の熱伝導性接着シート。
  8.  前記熱伝導性接着シートの高熱伝導部の熱伝導率が1.0(W/m・K)以上、かつ低熱伝導部の熱伝導率が0.5(W/m・K)未満である請求項1に記載の熱伝導性接着シート。
  9.  請求項1に記載の熱伝導性接着シートを用いた電子デバイス。
  10.  請求項1に記載の熱伝導性接着シートの製造方法であって、剥離シート上に、接着性樹脂組成物から形成される高熱伝導部と、接着性樹脂組成物から形成される低熱伝導部とを形成する工程を含むことを特徴とする熱伝導性接着シートの製造方法。
PCT/JP2014/075299 2013-09-25 2014-09-24 熱伝導性接着シート、その製造方法及びそれを用いた電子デバイス WO2015046254A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14848514.7A EP3035396A4 (en) 2013-09-25 2014-09-24 Heat-conductive adhesive sheet, manufacturing method for same, and electronic device using same
JP2015539264A JP6519086B2 (ja) 2013-09-25 2014-09-24 熱伝導性接着シート、その製造方法及びそれを用いた電子デバイス
KR1020167006391A KR102235118B1 (ko) 2013-09-25 2014-09-24 열 전도성 접착 시트, 그의 제조 방법 및 그것을 사용한 전자 디바이스
CN201480051534.5A CN105580150B (zh) 2013-09-25 2014-09-24 导热性粘接片、其制造方法以及使用该导热性粘接片的电子器件
US15/021,094 US9944831B2 (en) 2013-09-25 2014-09-24 Heat-conductive adhesive sheet, manufacturing method for same, and electronic device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013198788 2013-09-25
JP2013-198788 2013-09-25

Publications (1)

Publication Number Publication Date
WO2015046254A1 true WO2015046254A1 (ja) 2015-04-02

Family

ID=52743389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075299 WO2015046254A1 (ja) 2013-09-25 2014-09-24 熱伝導性接着シート、その製造方法及びそれを用いた電子デバイス

Country Status (7)

Country Link
US (1) US9944831B2 (ja)
EP (1) EP3035396A4 (ja)
JP (1) JP6519086B2 (ja)
KR (1) KR102235118B1 (ja)
CN (1) CN105580150B (ja)
TW (1) TWI676304B (ja)
WO (1) WO2015046254A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107949614A (zh) * 2015-09-10 2018-04-20 三井化学东赛璐株式会社 粘着剂组合物及其制造方法、以及粘着膜
JP2019525456A (ja) * 2016-06-23 2019-09-05 スリーエム イノベイティブ プロパティズ カンパニー フレキシブル熱電モジュール
JP2019179911A (ja) * 2018-03-30 2019-10-17 リンテック株式会社 熱電変換モジュール
JP2020534685A (ja) * 2017-09-15 2020-11-26 テックネティックス グループ, エルエルシーTechnetics Group, Llc プラズマ耐性が強化されたボンディング材及び関連付けられた方法
JP2021507067A (ja) * 2017-12-20 2021-02-22 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA 機械的特性の優れた組み合わせを備える熱伝導性ポリウレタン接着剤

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105190921B (zh) 2013-03-21 2018-04-17 国立大学法人长冈技术科学大学 热电转换元件
US20190181322A1 (en) * 2016-06-23 2019-06-13 3M Innovative Properties Company Thermoelectric tape
DE102016220237A1 (de) 2016-10-17 2018-04-19 Tesa Se Verfahren zur Herstellung einer versiegelten Falzverbindung
US10256188B2 (en) 2016-11-26 2019-04-09 Texas Instruments Incorporated Interconnect via with grown graphitic material
US10861763B2 (en) 2016-11-26 2020-12-08 Texas Instruments Incorporated Thermal routing trench by additive processing
US10529641B2 (en) 2016-11-26 2020-01-07 Texas Instruments Incorporated Integrated circuit nanoparticle thermal routing structure over interconnect region
US11004680B2 (en) 2016-11-26 2021-05-11 Texas Instruments Incorporated Semiconductor device package thermal conduit
US11676880B2 (en) 2016-11-26 2023-06-13 Texas Instruments Incorporated High thermal conductivity vias by additive processing
US10811334B2 (en) 2016-11-26 2020-10-20 Texas Instruments Incorporated Integrated circuit nanoparticle thermal routing structure in interconnect region
CN108134000B (zh) * 2016-12-01 2020-12-08 深圳光峰科技股份有限公司 一种发光装置及封装方法和投影系统
WO2018139475A1 (ja) * 2017-01-27 2018-08-02 リンテック株式会社 フレキシブル熱電変換素子及びその製造方法
CN108624280A (zh) * 2018-05-08 2018-10-09 中国工程物理研究院化工材料研究所 一种高功率光纤激光器用导热胶的制备方法
EP3953420B1 (en) * 2019-04-10 2024-01-03 Henkel AG & Co. KGaA Thermally conductive silicone potting composition
TWI727310B (zh) * 2019-04-19 2021-05-11 明創能源股份有限公司 溫差組裝構件、組裝方法及具該構件的輕量剛體組件
CN113904582B (zh) * 2020-07-06 2023-10-20 西安交通大学 一种基于导电凝胶附着力增强型摩擦纳米发电机制备方法
KR102374200B1 (ko) * 2020-09-23 2022-03-15 주식회사 대신테크젠 자동차 디스플레이용 방열조성물 및 그의 제조방법 그리고 이를 포함하는 자동차 디스플레이용 방열패드
US11940233B2 (en) * 2021-01-21 2024-03-26 Cisco Technology, Inc. Graphene and carbon nanotube based thermal management device
FR3119445A1 (fr) 2021-02-03 2022-08-05 Adam Pyrométrie four céramique électrique « RAKU » sur alimentation domestique
CN114213793A (zh) * 2021-12-27 2022-03-22 东莞市博恩复合材料有限公司 导热组合物、无硅导热胶片及无硅导热胶片制备方法
WO2023180858A1 (en) * 2022-03-22 2023-09-28 Ricoh Company, Ltd. Adhesive structure and manufacturing method thereof, electronic component and manufacturing method thereof, and adhesive layer for transfer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870142A (ja) * 1994-08-30 1996-03-12 Seiko Epson Corp 熱電素子
JP3981738B2 (ja) 2004-12-28 2007-09-26 国立大学法人長岡技術科学大学 熱電変換素子
JP2008182160A (ja) 2007-01-26 2008-08-07 Nippon Steel Chem Co Ltd フレキシブル熱電変換素子及びその製造方法
JP2009302168A (ja) * 2008-06-11 2009-12-24 Fine Rubber Kenkyusho:Kk 熱電変換装置
JP2011035203A (ja) 2009-08-03 2011-02-17 Fujitsu Ltd 熱電変換モジュール

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864876A (ja) * 1994-08-25 1996-03-08 Mitsui Mining & Smelting Co Ltd サーモモジュール
JPH11257789A (ja) * 1998-03-10 1999-09-24 Hitachi Ltd 熱電冷却装置及びそれを用いた構造物
US6841615B2 (en) 2000-10-18 2005-01-11 M Cubed Technologies, Inc. Composite Adhesive
JP2002257961A (ja) * 2001-03-01 2002-09-11 Citizen Watch Co Ltd 熱電発電時計
CN1205454C (zh) * 2001-07-16 2005-06-08 中国科学院理化技术研究所 一种导热性能各向异性的复合型材
JP2003046147A (ja) * 2001-08-02 2003-02-14 Matsushita Refrig Co Ltd 熱電素子モジュール及びその製造方法
DE10241798A1 (de) 2002-09-06 2004-03-18 Focke Gmbh & Co. Kg Verfahren zum Herstellen von Klappschachteln
KR20070025778A (ko) 2005-09-05 2007-03-08 삼성전자주식회사 이방성 도전 필름과 그를 이용한 평판 표시 장치 및 그제조 방법
EP2058903A1 (en) 2006-08-29 2009-05-13 Hitachi Chemical Company, Ltd. Anisotropic conductive tape and method of manufacturing it, connected structure and method of connecting circuit member by use of the tape
EP2014734A1 (de) * 2007-07-12 2009-01-14 Peter Georg Berger Klebeband
CN101360386B (zh) 2007-08-03 2010-10-06 富葵精密组件(深圳)有限公司 电路板粘合胶层及包括该粘合胶层的电路板
JP4404127B2 (ja) * 2007-09-28 2010-01-27 ヤマハ株式会社 熱電モジュール用基板およびこの基板を用いた熱電モジュール
JP2009188088A (ja) * 2008-02-05 2009-08-20 Yamaha Corp 熱電装置
US20090236087A1 (en) * 2008-03-19 2009-09-24 Yamaha Corporation Heat exchange device
JP2010109132A (ja) * 2008-10-30 2010-05-13 Yamaha Corp 熱電モジュールを備えたパッケージおよびその製造方法
JP2012174911A (ja) * 2011-02-22 2012-09-10 Stanley Electric Co Ltd 熱電変換モジュール
WO2013114854A1 (ja) * 2012-02-03 2013-08-08 日本電気株式会社 有機熱電発電素子およびその製造方法
WO2013121486A1 (ja) * 2012-02-16 2013-08-22 日本電気株式会社 熱電変換モジュール装置、及び電子機器
CN105190921B (zh) * 2013-03-21 2018-04-17 国立大学法人长冈技术科学大学 热电转换元件
KR102233540B1 (ko) 2013-09-25 2021-03-29 린텍 가부시키가이샤 열 전도성 접착 시트, 그의 제조 방법 및 그것을 사용한 전자 디바이스

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870142A (ja) * 1994-08-30 1996-03-12 Seiko Epson Corp 熱電素子
JP3981738B2 (ja) 2004-12-28 2007-09-26 国立大学法人長岡技術科学大学 熱電変換素子
JP2008182160A (ja) 2007-01-26 2008-08-07 Nippon Steel Chem Co Ltd フレキシブル熱電変換素子及びその製造方法
JP2009302168A (ja) * 2008-06-11 2009-12-24 Fine Rubber Kenkyusho:Kk 熱電変換装置
JP2011035203A (ja) 2009-08-03 2011-02-17 Fujitsu Ltd 熱電変換モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3035396A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107949614A (zh) * 2015-09-10 2018-04-20 三井化学东赛璐株式会社 粘着剂组合物及其制造方法、以及粘着膜
JP2019525456A (ja) * 2016-06-23 2019-09-05 スリーエム イノベイティブ プロパティズ カンパニー フレキシブル熱電モジュール
JP2020534685A (ja) * 2017-09-15 2020-11-26 テックネティックス グループ, エルエルシーTechnetics Group, Llc プラズマ耐性が強化されたボンディング材及び関連付けられた方法
JP7232824B2 (ja) 2017-09-15 2023-03-03 テックネティックス グループ,エルエルシー プラズマ耐性が強化されたボンディング材及び関連付けられた方法
JP2021507067A (ja) * 2017-12-20 2021-02-22 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA 機械的特性の優れた組み合わせを備える熱伝導性ポリウレタン接着剤
JP7278288B2 (ja) 2017-12-20 2023-05-19 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 機械的特性の優れた組み合わせを備える熱伝導性ポリウレタン接着剤
JP2019179911A (ja) * 2018-03-30 2019-10-17 リンテック株式会社 熱電変換モジュール
JP7149476B2 (ja) 2018-03-30 2022-10-07 リンテック株式会社 熱電変換モジュール

Also Published As

Publication number Publication date
JPWO2015046254A1 (ja) 2017-03-09
TWI676304B (zh) 2019-11-01
JP6519086B2 (ja) 2019-05-29
US9944831B2 (en) 2018-04-17
EP3035396A1 (en) 2016-06-22
KR102235118B1 (ko) 2021-04-01
US20160215172A1 (en) 2016-07-28
TW201535807A (zh) 2015-09-16
KR20160061993A (ko) 2016-06-01
CN105580150A (zh) 2016-05-11
CN105580150B (zh) 2018-12-25
EP3035396A4 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
WO2015046254A1 (ja) 熱伝導性接着シート、その製造方法及びそれを用いた電子デバイス
KR102233540B1 (ko) 열 전도성 접착 시트, 그의 제조 방법 및 그것을 사용한 전자 디바이스
KR102389426B1 (ko) 열 전도성 접착 시트, 그의 제조 방법, 및 그것을 사용한 전자 디바이스
JP6806330B2 (ja) 熱伝導性接着シート、その製造方法及びそれを用いた電子デバイス
JP2010149509A (ja) 熱拡散シート及びその実装方法
JP6451451B2 (ja) 伝導性シートの製造方法
JP7288101B2 (ja) 熱伝導構造及び電子装置
JP7007161B2 (ja) 樹脂組成物及び積層体
JP7031203B2 (ja) 放熱用接着シート、放熱接着部材用積層体、及び複合部材
JP2018111817A (ja) 樹脂組成物及び積層体
WO2020130127A1 (ja) 端子保護用両面テープ及び電磁波シールド膜付き半導体装置の製造方法
JP2022115094A (ja) 熱伝導構造及び電子装置
JP2019089958A (ja) 樹脂組成物及び積層体
JP2019089956A (ja) 樹脂組成物及び積層体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051534.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848514

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015539264

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167006391

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15021094

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014848514

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE