WO2015045349A1 - 光導波路用ドライフィルムとそれを用いた光導波路の製法並びに光導波路 - Google Patents

光導波路用ドライフィルムとそれを用いた光導波路の製法並びに光導波路 Download PDF

Info

Publication number
WO2015045349A1
WO2015045349A1 PCT/JP2014/004840 JP2014004840W WO2015045349A1 WO 2015045349 A1 WO2015045349 A1 WO 2015045349A1 JP 2014004840 W JP2014004840 W JP 2014004840W WO 2015045349 A1 WO2015045349 A1 WO 2015045349A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
resin
film
resin layer
core
Prior art date
Application number
PCT/JP2014/004840
Other languages
English (en)
French (fr)
Inventor
真吾 前田
近藤 直幸
橋本 眞治
徹 中芝
潤子 栗副
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201480043936.0A priority Critical patent/CN105452919B/zh
Priority to JP2015538896A priority patent/JP6558736B2/ja
Priority to US14/651,826 priority patent/US9535216B2/en
Publication of WO2015045349A1 publication Critical patent/WO2015045349A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12069Organic material

Definitions

  • the present invention relates to an optical waveguide dry film, an optical waveguide manufacturing method using the same, and an optical waveguide.
  • the short-range ultra-high-speed transmission medium in the housing of electronic devices / devices is not copper wiring, which increases the cost for realizing accurate information transmission.
  • a so-called optical waveguide also referred to as an optical wiring or an optical transmission path
  • transmits a digital optical signal has attracted attention.
  • An optical waveguide is transparent at the wavelength of light used, and a relatively low refractive index cladding material surrounds or surrounds a linear transmission line formed of a relatively high refractive index core material.
  • An optical fiber is a type of optical waveguide, but it is difficult to increase the mounting density of the core. Therefore, for simultaneous realization of high density and ultrahigh-speed transmission, multiple linear cores or planar cores can be obtained by patterning by exposure to the plane.
  • resin optical waveguides formed inside the cladding layer have become the most prominent.
  • An optical waveguide having a linear core is sometimes called a ridge optical waveguide or a channel optical waveguide, and an optical waveguide having a planar core is sometimes called a slab optical waveguide or a planar optical waveguide.
  • the dry film type optical waveguide material is a material in which an uncured optical waveguide resin that is solid at room temperature is disposed on a carrier substrate (also called a carrier film, a base film, a support film, etc.).
  • a carrier substrate also called a carrier film, a base film, a support film, etc.
  • some processing such as curing or patterning is performed.
  • a protective film (also referred to as a cover film, a separator, or a masking film) is disposed on the surface of the optical waveguide resin that is not in contact with the carrier substrate.
  • a protective film also referred to as a cover film, a separator, or a masking film
  • a treatment that can be easily removed is applied. In this case, since it is necessary to peel off at the interface between the optical waveguide resin and the protective film at the time of peeling off the protective film, the adhesive force at the interface is more than the adhesive force between the carrier substrate and the optical waveguide resin interface. Must also be low.
  • Patent Documents 1 to 4 Several techniques for producing optical waveguides with resin materials have been reported so far (see Patent Documents 1 to 4). Also, regarding dry film technology, dry films for solder resists, coverlays, and etching resists have been reported. There is a report about (patent document 5).
  • a method for forming an optical waveguide includes a base film and a resin layer formed on the base film, and a cover film such as polyethylene or polypropylene is protected on the opposite side of the base film as necessary.
  • a method using a dry film having a structure in which a film is laminated and a resin layer is sandwiched between a base film and a cover film is disclosed.
  • the cover film only the material is disclosed, and there is no description about the roughness.
  • Patent Document 2 as a method of manufacturing an optical waveguide, a clad layer forming resin formed on a substrate is cured to form a lower clad, and a core layer forming resin film is laminated on the lower clad layer.
  • a method is disclosed in which a core layer is formed, the core layer is exposed and developed to form a core pattern, and a resin for forming a cladding layer formed so as to embed the core pattern is cured to form an upper cladding layer.
  • the core-forming resin is specified as a film, but the clad-forming resin may be in the form of a film. Both the core and clad resin films are finally used as the base material for the optical waveguide.
  • a corona for improving the adhesive force between the support film and the resin layer is used. It is disclosed that it is preferable not to perform mat
  • Patent Document 3 discloses a method of constructing an optical waveguide as a method of manufacturing an optoelectric composite substrate by obtaining an electric wiring substrate with a lower cladding layer and sequentially forming a core pattern and an upper cladding layer on the lower cladding layer.
  • a film-like resin for both the cladding layer forming resin and the core layer forming resin, both of which are formed by forming a resin layer on a base film that is a support for supporting the resin film.
  • the base film is preferably made of PET (polyethylene terephthalate), polypropylene, polyethylene, etc., and may be subjected to a release treatment, an antistatic treatment or the like in order to easily peel off the resin layer later.
  • a protective film may be bonded to the resin film for the core and the clad in consideration of film protection and rollability in the case of manufacturing in a roll shape. It is disclosed that a film similar to the example of the film can be used, and a release treatment, an antistatic treatment or the like may be performed as necessary.
  • Patent Document 4 as a method for producing a flexible optical waveguide, a first cladding layer is formed, and a core layer forming resin film is laminated on at least one end portion thereon to form a first core layer.
  • the second core layer is formed by laminating a resin film for forming a core layer on the entire surface of the first core layer and the first clad layer, and the first core layer and the second core are formed.
  • a method is disclosed in which a layer is patterned to form a core pattern of an optical waveguide, a second cladding layer is formed on the core pattern and the first cladding layer, and the core pattern is embedded.
  • the base material of the resin film for forming the clad layer is subjected to physical or chemical surface treatment such as an oxidation method or an unevenness method, for example, in order to improve adhesion with the resin for forming the clad layer.
  • the oxidation method include corona treatment, chromium oxidation treatment, flame treatment, hot air treatment, ozone / ultraviolet treatment method, etc.
  • the unevenness method include so-called adhesion treatment such as sand blast method and solvent treatment method.
  • the above surface treatment is performed in order to obtain adhesion with the clad resin. It is preferable.
  • examples of peeling and removing the base film from at least one side for thinning the flexible optical waveguide and peeling the base film from both sides for reducing warpage of the flexible optical waveguide are also disclosed. Because of the premise that the adhesiveness between the base film and the cladding resin is better, it is humidified under a high temperature and high humidity condition for the purpose of easily peeling the base film. A method is disclosed in which the adhesive strength between the layers is reduced and peeling is performed. Furthermore, in the resin film for forming a clad layer and the resin film for forming a core layer, a protective film is provided on the surface opposite to the base film of the resin film for the purpose of improving the protection of the resin film and the winding property when manufacturing.
  • a structure in which (separator or masking film) is laminated is disclosed, and the protective film is preferably not subjected to the adhesion treatment in order to facilitate separation from the clad forming resin and the core forming resin. It is disclosed.
  • a so-called vacuum laminating method in which heating and pressurization is performed under reduced pressure is preferable from the viewpoint of adhesion and followability. It is disclosed that it is preferable to laminate using a roll laminator from the viewpoint of preventing air bubbles from entering between them.
  • Patent Document 5 discloses a photosensitive film for lamination on a printed wiring board, in which the surface roughness of the protective film is measured with a cutoff value of 0.08 to 8 mm and an evaluation length of 0.4 mm to 40 mm.
  • An arithmetic average roughness (Ra) in the range is 0.5 ⁇ m or more, and the photosensitive composition layer has a static load of 0.25 kg / mm 2 on the photosensitive composition layer with a layer thickness of 2 mm at a temperature of 30 ° C.
  • the film has a fluidity with a change in film thickness of 50 to 800 ⁇ m over time from 10 seconds to 600 seconds after the load is applied, and the protective film is applied to the photosensitive composition layer.
  • a photosensitive film characterized in that a surface roughness is imparted, and the surface roughness is retained on a printed wiring board before lamination and disappears by pressurization during lamination.
  • This is described in paragraph 0002 of Patent Document 5, but relates to a so-called solder resist, a cover lay of a flexible printed wiring board, and an etching resist used in forming a copper circuit of a printed wiring board.
  • solder resist a so-called solder resist
  • a cover lay of a flexible printed wiring board a cover lay of a flexible printed wiring board
  • an etching resist used in forming a copper circuit of a printed wiring board.
  • One aspect of the present invention is an optical waveguide dry film having a carrier substrate (A), an active energy ray or heat curable resin layer for optical waveguide (B), and a protective film (C).
  • the surface of the protective film (C) that contacts the optical waveguide resin layer (B) is a roughened surface.
  • the present invention since it becomes possible to manufacture an optical waveguide in which the remaining microbubbles are minimized, it is considered that waveguide loss can be reduced and manufacturing yield and reliability can be improved in the optical waveguide. It is done. Further, the step of forming the clad layer and the core layer can be performed using the same apparatus, and the optical waveguide manufacturing cost can be reduced.
  • FIG. 1 is a schematic cross-sectional view showing a dry film configuration for a lower cladding, which is a dry film for an optical waveguide according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a state in which the protective film of the lower cladding dry film is peeled off in the method of manufacturing an optical waveguide using the optical waveguide dry film of one embodiment of the present invention.
  • FIG. 3 shows that in the manufacturing method of the present embodiment, the resin layer surface and the planar object are brought close to each other without reducing the roughness of the optical waveguide resin layer surface from which the protective film of the lower clad dry film of the optical waveguide is peeled off. It is a cross-sectional schematic diagram which shows the state.
  • FIG. 1 is a schematic cross-sectional view showing a dry film configuration for a lower cladding, which is a dry film for an optical waveguide according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing
  • FIG. 4 is a schematic cross-sectional view showing a state in which the optical waveguide resin layer and the planar object are bonded together by heating and pressurizing under reduced pressure in the manufacturing method of the present embodiment.
  • FIG. 5 is a schematic cross-sectional view illustrating a state in which the carrier base material is removed after the optical waveguide resin layer is cured in the manufacturing method of the present embodiment.
  • FIG. 6 is a schematic cross-sectional view showing the structure of a core dry film, which is a dry film for an optical waveguide according to another embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing a state in which the protective film of the core dry film is peeled off in the manufacturing method according to another embodiment of the present invention.
  • FIG. 8 is a plan view showing the surface of a resin layer without reducing the roughness of the surface of the resin layer for an optical waveguide from which the protective film of the core dry film for an optical waveguide is peeled, in the manufacturing method according to another embodiment of the present invention. It is a cross-sectional schematic diagram which shows the state which made the lower clad layer formed on the object adjoined.
  • FIG. 9 is a schematic cross-sectional view showing a state in which the core resin layer of the optical waveguide and the lower cladding layer are bonded together under heat and pressure under reduced pressure in the manufacturing method according to another embodiment of the present invention.
  • the manufacturing method including the process of partially hardening the resin layer for optical waveguides (for cores), the process of peeling a carrier base material, and the image development process which removes an unhardened part.
  • It is a cross-sectional schematic diagram which shows the state by which the lower clad layer and the core layer were formed on the planar object obtained through these.
  • FIG. 11 is a schematic cross-sectional view showing the structure of a dry film for an optical cladding, which is a dry film for an optical waveguide according to still another embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view showing a state in which the protective film of the upper cladding dry film is peeled off in the manufacturing method according to still another embodiment of the present invention.
  • FIG. 13 shows a surface of a resin layer and a flat surface without reducing the roughness of the surface of the optical waveguide resin layer from which the protective film of the upper cladding dry film of the optical waveguide is peeled, in the manufacturing method according to another embodiment of the present invention.
  • It is a cross-sectional schematic diagram which shows the state which made the core layer and lower clad layer which were formed on the object shaped close.
  • FIG. 14 is a schematic cross-sectional view showing a state in which the upper cladding resin layer, the core layer, and the lower cladding layer are in contact with each other in the manufacturing method according to another embodiment of the present invention.
  • FIG. 15 shows a state after bonding the upper cladding resin layer of the optical waveguide, the core layer, and the lower cladding layer by heating and pressing under reduced pressure in the manufacturing method of another embodiment of the present invention. It is a cross-sectional schematic diagram.
  • FIG. 16 is a schematic cross-sectional view showing a state in which a lower cladding layer, a core layer, and an upper cladding layer are formed on a planar object in the manufacturing method according to another embodiment of the present invention.
  • the optical waveguide resin surface opposite to the carrier base When using a so-called dry film clad and core optical waveguide resin film, the optical waveguide resin surface opposite to the carrier base must be placed on a planar object and laminated. In general, vacuum lamination is adopted, but even if vacuum lamination is adopted, fine bubbles after lamination (the diameter when seen from directly above the optical waveguide, which can be easily found visually or with an optical microscope) There was a problem that bubbles of 5 ⁇ m to 100 ⁇ m) remained.
  • the optical waveguide resin in the form of dry film slips easily when it is placed on a flat object so that the optical waveguide resin does not crack, detach, or generate powder during handling.
  • the optical waveguide resin itself has adequate flexibility at the temperature when the optical waveguide resin in the form of a dry film is disposed at least on a planar object so that the surface thereof has appropriate tackiness. What has is suitable.
  • a dry film-shaped resin surface for an optical waveguide is placed on a planar object, the planar object and the resin surface are partially bonded to each other, and an adhesive region surrounding the air layer is generated. In many cases, the residual bubbles are finally formed.
  • a single resin layer is sufficient to develop the function, so the resin of the dry film is placed on the surface of the printed wiring board.
  • the layer is only formed as a single layer.
  • a dry film material for an optical waveguide requires a lower clad formed on a planar object, a core formed thereon, and an upper clad formed thereon.
  • the resin layers are stacked in multiple layers (multistage or multilayer). Furthermore, when the core is formed in multiple layers, the resin layer of the dry film material becomes increasingly multilayered.
  • the level of bubbles mixed in each layer of the lower clad, core, and upper clad was the same as the level of bubbles allowed when solder resist, coverlay, and etching resist were formed on the printed wiring board. Even so, the occurrence probability of defects (defects) in the optical waveguides stacked in multiple layers (at least three layers) is an integration of the defect occurrence probabilities of the lower clad / core / upper clad layers. Therefore, in the dry film material for an optical waveguide, it is necessary to extremely reduce the amount of air bubbles in the lower clad, core, and upper clad layers as compared with general solder resists, coverlays, and etching resists.
  • the bubbles not only reduce the manufacturing yield of the optical waveguide manufactured by the laminate method, but also increase the manufacturing cost of the optical waveguide by requiring complicated manufacturing processes and know-how to prevent the bubbles from remaining. Therefore, for the industrialization of the optical waveguide, a measure for a dry film material for minimizing the remaining of fine bubbles in the optical waveguide has been desired.
  • an object of the present invention is to provide a dry film for an optical waveguide capable of minimizing the fine bubbles remaining in the optical waveguide, an optical waveguide manufacturing method using the same, and an optical waveguide.
  • the present inventors have used a protective film in the optical waveguide dry film, the surface of the protective film that contacts the optical waveguide resin is a roughened surface, and the dry film from which the protective film has been peeled off is used. It has been found that the above problem can be solved by making the resin surface for the optical waveguide of the film a roughened surface reflecting the peeled surface of the protective film. And the present inventors completed this invention by repeating examination further based on this knowledge.
  • the dry film for optical waveguides according to the first embodiment of the present invention includes a carrier substrate (A), a resin layer for optical waveguides (B) that can be cured by active energy rays or heat, and a protective film (C). It is a dry film for optical waveguides, and the surface in contact with the resin layer (B) for optical waveguides of the protective film (C) is a roughened surface.
  • the dry film (lower clad layer forming dry film 10) includes a carrier substrate 11, an optical waveguide (lower clad) resin layer 12, and a protective film 13.
  • the surface of the protective film 13 that contacts the optical waveguide (lower cladding) resin layer 12 is a roughened surface.
  • symbol in a figure is respectively: 10 Optical film (lower clad) dry film, 11, 31, 41 Carrier base material, 12 Optical waveguide (lower clad) resin layer, 13, 33, 43 Protective film, 14 Lower clad, 20 planar object, 21 planar object with lower clad formed, 22 planar object with lower clad and core formed, 30 optical waveguide (core) dry film, 32 optical waveguide (core) resin 4 shows a layer, 34 core, 40 optical waveguide (upper clad) dry film, 42 optical waveguide (upper clad) resin layer, and 44 upper clad.
  • the carrier substrate (A) is a carrier used when a resin layer for an optical waveguide is formed thereon and the optical waveguide resin layer is transferred to a planar object later, preferably in the form of a film or a sheet.
  • a certain carrier is used.
  • the material of the carrier substrate is not particularly limited, and examples thereof include a thermoplastic resin, a cured product (resin film) of a thermosetting resin, a metal, and an inorganic material (glass).
  • thermoplastic resins PET (polyethylene terephthalate), PP (polypropylene), PE (polyethylene), PEN (polyethylene naphthalate), PI (polyimide), COF (cycloolefin polymer), PA (polyamide), PAI (polyamideimide) ), LCP (liquid crystal polymer) and the like. These may have been stretched in the film manufacturing process.
  • thermosetting resin cured product is obtained by appropriately selecting a composite material obtained by combining a thermosetting resin and an inorganic filler (glass cloth, glass nonwoven fabric, glass powder), or the molecular structure of the thermosetting resin, or curing.
  • examples thereof include a thermosetting resin cured product having flexibility obtained by appropriately selecting an additive capable of improving the flexibility of the product.
  • the metal examples include a single-layer or multi-layer metal foil such as copper or aluminum, and a composite in which a thin layer of metal is formed on the thermoplastic resin or thermosetting resin.
  • the material of the carrier is a metal
  • a so-called peelable metal foil in which a metal foil having a thickness of 1 to 30 ⁇ m is laminated on a metal foil having a thickness of 20 to 100 ⁇ m (also referred to as a carrier foil) via a release layer is used as the carrier. It may be used as a substrate.
  • the carrier base material (A) is a resin film
  • the carrier substrate (A) is a metal foil
  • a clad both upper clad and second clad
  • the carrier substrate (A) is a metal foil
  • a clad both upper clad and second clad
  • the carrier substrate (A) is a metal foil
  • a clad both upper clad and second clad
  • the carrier substrate (A) is a metal foil
  • a clad both upper clad and second clad
  • the dry film of this embodiment When the dry film of this embodiment is laminated on a planar object to be described later, and then irradiates active energy rays through the carrier base material and adopts a method of curing the optical waveguide resin layer (B), It is preferable to use a highly transparent carrier substrate.
  • the transmittance of the carrier substrate at the wavelength of the active energy ray to be irradiated is preferably 85% or more, and more preferably 90% or more.
  • the active energy beam is partially irradiated through the carrier substrate to partially cure the optical waveguide resin layer (B) (so-called patterning is performed).
  • patterning is performed in the case of employing an exposure process
  • the carrier substrate has no surface scratches and extremely low surface roughness, and the size of particulate matter (bubbles, organic matter or inorganic fine particles) with different refractive index contained therein is as small as possible and contains it. A small amount is preferred.
  • the surface roughness (defined later) of the carrier substrate is preferably such that the arithmetic average roughness (SRa) is 0.1 ⁇ m or less and the ten-point average roughness (SRz) is 2 ⁇ m or less, more preferably arithmetic.
  • the average roughness (SRa) is 0.06 ⁇ m or less and the ten-point average roughness (SRz) is 1 ⁇ m or less.
  • the average particle size of the particulate material is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, and most preferably 0.1 ⁇ m or less.
  • the numerical value of the surface roughness (surface roughness) in this specification is not a probe type but a scanning confocal so that it can also express the surface roughness of the optical waveguide resin layer (B) described later. It is a value obtained by roughness analysis using a laser microscope.
  • the measurement is generally performed by applying a load of 0.75 mN (about 0.0765 gf) with a probe having a radius of 2 ⁇ m at the tip.
  • the contact area with the object to be measured is 2 ⁇ m in radius
  • a load equivalent to about 600 kgf per square centimeter is applied to the object to be measured
  • about 2400 kgf is applied to the object to be measured.
  • the surface roughness can be measured using a scanning confocal laser microscope under the following conditions.
  • SRa obtained by this result is arithmetic average roughness
  • SRz is ten-point average roughness.
  • SRa and SRz may be indicated.
  • an active energy ray shows the electromagnetic wave which has a wavelength below visible light region, specifically, visible light of 700 nm to 400 nm, ultraviolet light of 400 nm to about 2 nm, and shorter wavelength than that.
  • X-rays are shown.
  • an infrared laser such as a carbon dioxide laser that emits laser beams having wavelengths of 9.4 ⁇ m and 10.6 ⁇ m is sometimes referred to as an active energy ray.
  • an active energy ray is an electromagnetic wave having a wavelength of 700 nm or less. The infrared laser is not included. The reason for this definition is that when the wavelength of light is longer than that of visible light, the electromagnetic wave cannot substantially activate a photo-curing type curing initiator that cures the resin.
  • the thickness of the carrier base material is not particularly limited as long as it has a range of characteristics and flexibility required in each step in manufacturing from use of the dry film. Generally, it is preferably 9 ⁇ m to 200 ⁇ m. When the thickness is less than 9 ⁇ m, wrinkles are very likely to enter the carrier substrate, the strength is reduced and the fracture is easily broken, or the tension applied in the processing step when forming the optical waveguide resin layer thereon. This is not preferable because handling properties such as an increase in elongation deteriorate.
  • the thickness of the carrier substrate is more preferably 15 ⁇ m to 100 ⁇ m, particularly preferably 30 to 75 ⁇ m.
  • the surface condition of the carrier base material is when the carrier base material remains on the optical waveguide in the final product, and when the carrier base material is removed in the optical waveguide manufacturing process and does not remain on the optical waveguide in the final product. And may have different properties.
  • the adhesive strength between the resin layer and the carrier substrate constituting the optical waveguide to which the carrier substrate is bonded may be high. Since the carrier base material surface is required, the surface of the carrier base material such as plasma treatment or corona treatment that generates functional groups, or sand blast treatment or chemical etching treatment, or a mixture of olefin polymers with different crystal phases is stretched.
  • a process for forming surface irregularities by a method such as a process for coating or a process for coating the surface of a carrier substrate with a material having a high adhesive force on both the cured resin for optical waveguides and the carrier substrate (also referred to as an easy adhesion treatment or a primer treatment) ) Or the like.
  • the surface of the carrier substrate is smooth, has high transparency at the wavelength of light propagating through the optical waveguide core, and also, a material having a low refractive index is required.
  • the surface is subjected to plasma treatment, or a so-called primer treatment is applied in which a thin layer is coated with a resin or a coupling agent with high adhesive strength. Is preferred.
  • the carrier base material when the carrier base material is removed in the optical waveguide manufacturing process and does not remain on the optical waveguide in the final product, the carrier base material can be easily separated from the uncured or cured product of the optical waveguide resin.
  • the surface smoothness is preferably high, and SRa is preferably 0.1 ⁇ m or less and SRz is 2 ⁇ m or less, more preferably SRa is 0.06 ⁇ m or less and SRz is 1 ⁇ m. It is as follows.
  • the surface of the carrier base material may be subjected to a so-called mold release treatment such as coating or adsorption of a fluorine-based resin, a silicone-based resin, or various organic silane compounds as necessary.
  • Examples of such commercially available carrier base materials include Toyobo Co., Ltd. PET film product number A4100. This is a film in which one side is subjected to easy adhesion treatment and the other side is not subjected to surface treatment, and the measured values of the surface roughness are SRa of 0.03 ⁇ m and SRz of 0. 7 ⁇ m.
  • Other commercially available products include Toray's PET film product number T60 and the like. In the film, the measured values of the surface with a small surface roughness are SRa of 0.04 ⁇ m and SRz of 1.9 ⁇ m.
  • the protective film when the protective film is peeled off from the optical waveguide resin layer, it is necessary to peel off at the interface between the optical waveguide resin and the protective film.
  • the adhesion between the material and the optical waveguide resin interface must be higher than the adhesion between the protective film and the optical waveguide resin interface.
  • the resin layer (B) for the optical waveguide that can be cured by active energy rays or heat becomes a member constituting the optical waveguide (clad, core).
  • the cured product cured with active energy rays or heat has high transparency and is formed of a resin capable of realizing a dry film form. Even such materials can be used.
  • both the resin composition for the optical waveguide core and the resin composition for the optical waveguide cladding must have high transparency, and the resin composition has a thickness of 2 to When the transmission loss in the thickness direction of a portion of a 3 mm plate-cured object having a smooth surface and containing no defects such as bubbles is measured with a spectrophotometer, it is 0 at a waveguide light wavelength of 840 to 860 nm.
  • the optical waveguide light wavelength is 0.3 dB / cm or less at a wavelength of 990 to 1010 nm, or 0.5 dB / cm or less at a waveguide light wavelength of 1300 to 1330 nm.
  • it is a composition. Above these values, the loss of the optical waveguide increases and a large amount of power is consumed to increase the output of the laser light source for transmitting information through the optical waveguide, or information can be transmitted through the optical waveguide. This is not preferable because the distance is shortened.
  • the core resin composition must have a higher refractive index at the guided light wavelength than the cladding resin composition, and the square value of the core refractive index. It is preferable to set the numerical aperture (abbreviated as NA), which is obtained by subtracting the square value of the clad refractive index, from 0.1 to 0.5.
  • NA numerical aperture
  • the NA is smaller than 0.1, the NA is smaller than the NA of a single mode (SM) fiber that is an optical fiber generally used for long-distance optical transmission. Therefore, a coupling loss occurs during optical coupling with the optical fiber.
  • SM single mode
  • the problem is that the loss of the bending portion when the optical waveguide core is arranged in a curved surface becomes large, or the NA value varies and is not stable because the refractive index difference between the core and the clad is too small. Is not preferable.
  • NA is larger than 0.5
  • the spread angle of light increases at the part where light is emitted from the optical waveguide toward the light receiving element, resulting in an increase in signal light that protrudes from the light receiving part of the light receiving element.
  • the coupling loss increases, which is not preferable.
  • Examples of the resin material of the optical waveguide resin layer (B) include an epoxy curable resin, an acrylic curable resin, a cyanate ester curable resin, an oxetane resin, a vinyl ether resin, a urethane resin, or these A resin using a combination of these, or a silicone-cured resin can be exemplified. Since both are used as members constituting the optical waveguide, it is needless to say that the cured product needs to have high transparency.
  • An epoxy curing resin is a curing system in which an epoxy group, which means a functional group having a three-membered ring structure composed of two carbon atoms and one oxygen atom, is activated by active energy rays or heating in the presence of some curing initiator.
  • a resin in which the reaction proceeds) may be used.
  • Preferred examples of the epoxy curable resin include the contents and compositions described in JP 2007-119585 A, JP 2009-104083 A, JP 2009-104084 A, and JP 2010-230944 A. Can be illustrated.
  • Epoxy resin raw material used for the epoxy resin composition is a compound having an epoxy group and needs to be cured. Therefore, the composition contains a compound having two or more epoxy groups in one molecule. .
  • Epoxy resin raw materials have various molecular weights and epoxy equivalents. Epoxy resins with a molecular weight of 168 such as 1,2,8,9-diepoxy limonene (a bifunctional aliphatic epoxy sold as Celoxide 3000 from Daicel Corporation) Less than 93.5 equivalent, high molecular weight epoxy resin (synthesized from epichlorohydrin and bisphenol), sometimes called phenoxy resin or phenoxy polymer, with molecular weight of 40,000 or more and epoxy equivalent of about 7,000 or more There are a wide range of raw materials for epoxy resins.
  • the epoxy resin raw material used in the present embodiment is the tackiness, powder fallenness, brittleness, handleability such as melt viscosity or softening temperature, workability, curability, and optical waveguide of the optical waveguide resin layer (B).
  • the resin layer (B) cured product is appropriately selected so that the properties such as transparency, heat resistance, flexibility, toughness, refractive index, birefringence, linear expansion coefficient, and thermal conductivity can be brought to a desired level. I can do things.
  • a curing agent and / or a curing initiator (curing catalyst) is necessary, but any of them can be used as long as it can realize high transparency in a cured product essential for an optical waveguide. Can be used without
  • the acrylic curing resin is a polymer having a carboxyl group in the side chain, a monomer or oligomer of (meth) acrylic acid ester and some curing initiator as essential components, and polymerized by active energy rays or heating.
  • This refers to a composition containing a curable resin that reacts and eventually becomes insoluble in a solvent or an alkaline liquid.
  • Preferable specific examples include the contents and compositions described in JP-A 2009-169300, JP-A 2010-091733, and JP-A 2011-117988.
  • the cyanate ester-curing resin is a case where a —OCN group reacts with each other in the presence of a curing initiator (catalyst) to form a 6-membered triazine ring, or an epoxy resin is used in combination.
  • a curable resin that generates not only a triazine ring but also an oxazoline ring and three-dimensionally crosslinks.
  • Preferable examples include the contents and compositions described in JP2012-159590.
  • the silicone curing system refers to a curing system resin that undergoes an addition reaction (hydrosilylation) between silicon-hydrogen and carbon-carbon double bonds in the presence of a catalyst to cross-link three-dimensionally.
  • the method for forming the optical waveguide resin layer (B) is not particularly limited, but the resin composition constituting the optical waveguide resin layer (B) is coated on the carrier substrate (A) as described above.
  • a method of heating is preferred. More specifically, when the mixture of all the resin composition raw materials is liquid at room temperature, the resin composition is applied as it is, and then the curing reaction proceeds to some extent by heating to become a solid at room temperature. A method for setting the stage state can be exemplified. In addition, when the mixture of all the resin composition raw materials is solid at room temperature, the above-mentioned B stage is applied by a method of coating and drying a solution obtained by dissolving the resin composition raw materials in a solvent, or by heating during drying as necessary.
  • This coating uses a general method that can continuously form a dry coating or B-stage coating with a thickness of several to several hundred microns, such as a die coater, slit coater, lip coater, comma coater, and gravure coater. it can.
  • the resin layer in the portion that finally becomes the optical waveguide core has a thickness of about 5 to 100 ⁇ m.
  • the core of the ridge optical waveguide is generally square in cross section perpendicular to the direction in which the optical signal propagates, and the resin layer thickness of the portion that becomes the optical waveguide core corresponds to the height of the core,
  • the width is approximately equal to the width of the optical waveguide core formed by a method of obtaining a desired shape by partial exposure and subsequent development (photolithography, photolithography, or simply patterning).
  • the thickness of the optical waveguide resin layer (B) in the portion that becomes the optical waveguide core becomes smaller than 5 ⁇ m, the cross-sectional dimension of the core becomes too small, and the optical fiber that is the partner for coupling the waveguide and the light This is not preferable because the coupling loss with the light emitting element is increased, or when it is difficult to stably produce a desired dimension when forming the core pattern with photolithography.
  • the thickness is greater than 100 ⁇ m, the cross-sectional dimension of the core becomes too large, and the coupling loss between the optical fiber and the light receiving element that couples the waveguide to the light increases, or the thickness of the entire optical waveguide This is considered undesirable because it causes a problem of increase.
  • the optical waveguide resin layer (B) in the portion that finally becomes the optical waveguide cladding has a thickness of 5 ⁇ m to just above or just below the core when the optical waveguide is formed.
  • the thickness is preferably 100 ⁇ m. If the thickness is less than 5 ⁇ m, the effect of confining the guided light in the core is reduced and the optical waveguide loss is deteriorated, which is not preferable. On the contrary, if it is thicker than 100 ⁇ m, there is no problem in terms of the waveguide loss, but it is considered undesirable because the thickness of the optical waveguide itself increases.
  • the structure of the optical waveguide resin layer (B) of the present embodiment may be a single layer, that is, a single resin layer dedicated to each of the lower clad, the core, and the upper clad, or a multilayer, that is, a clad resin and a core resin.
  • a structure in which resins are laminated may be used.
  • the lower clad is a clad formed on a planar object (D) to be described later when an optical waveguide having a single core layer is finally formed, and the core is formed thereon. This is also referred to as a lower cladding, an under cladding, a first cladding, or a first cladding.
  • the upper clad is a clad that embeds the core of the ridge optical waveguide or covers the core of the slab optical waveguide, and is also called an upper clad, overclad, second clad, or 2nd clad. There is no strict distinction between lower clad and upper clad, and when forming the core in multiple layers (multistage), the core may be formed on the surface of the upper clad.
  • the upper cladding also serves as the lower cladding of the upper core.
  • the configuration of the protective film (C) is one of important features.
  • the protective film is focused only on the peelability from the resin layer for the optical waveguide, and no roughening of the surface of the protective film has been studied.
  • the surface is appropriately roughened, and the surface of the resin layer (B) from which the protective film (C) has been peeled is a rough surface reflecting the surface roughness of the protective film (C). It was found that by using the dry film, the waveguide loss of the finally obtained optical waveguide can be reduced when it is laminated on the planar object (D) described later.
  • the protective film (C) is generally used as described above for the purpose of preventing foreign matter from adhering to or scratching the surface of the optical waveguide resin layer (B), or the optical waveguide resin. It is also used for the purpose of improving the winding property after coating and drying the layer (B). In this embodiment, it is used not only for such a conventional purpose but also as a matrix for transferring the surface roughened state of the protective film (C) to the surface of the optical waveguide resin layer (B).
  • the contact area of the optical waveguide resin layer (B) when contacting the planar object (D) is reduced. Since it becomes small and many paths through which air is discharged when bonding are secured, it is considered that the void (fine bubbles) remaining in the optical waveguide resin layer (B) after bonding can be minimized.
  • Examples of the material of the protective film (C) include the same materials as those of the carrier substrate (A).
  • the surface of the protective film (C) in contact with the optical waveguide resin layer (B) is in a roughened state, and means for roughening is electrical discharge machining, also called sandblasting or physical etching.
  • Methods for post-processing to film such as chemical etching, methods for adding irregularities on the surface by adding filler in the raw material, methods for coating / curing a coating material with filler on the surface, or resin in the raw material
  • a known method such as a method of generating irregularities on the film itself, such as controlling the crystal structure ratio and generating irregularities on the surface during the stretching process, can be used.
  • the surface on the side not in contact with the optical waveguide resin layer (B) may be smooth or roughened.
  • the roughened surface means that the surface of the protective film (C) in contact with the optical waveguide resin layer (B) is generally recognized as being smooth (that is, SRa is 0.07 ⁇ m or less). Or, it means that SRz has a roughness exceeding 1 ⁇ m or less.
  • the roughness value of the surface of the protective film (C) in contact with the optical waveguide resin layer (B) is below a smooth level, the optical waveguide resin obtained by peeling the protective film on the planar object (D) described later
  • SRz is preferably equal to or less than the thickness of the optical waveguide resin layer (B).
  • SRa of the roughened surface is 0.1 to 1 ⁇ m and SRz is 1 to 10 ⁇ m.
  • SRa is 0.1 ⁇ m or less or SRz is 1 ⁇ m or less, there is less air escape when laminating the surface of the resin layer (B) that appears by peeling off the protective film (C) on the planar object (D).
  • voids are likely to remain in the resin layer (D) after being bonded.
  • the resin layer (B) partially remains on the protective film (C) side when the protective film (C) is peeled off, that is, the carrier base material There is a tendency that the problem of peeling off from (A) tends to occur.
  • SRz is preferably less than this thickness.
  • the peelability of the protective film (C) and the optical waveguide resin layer (B) is considered to be largely influenced by the anchor effect due to the roughened surface of the protective film (C).
  • the physical interaction between the resin layer (B) and the protective film (C) is also affected.
  • Specific examples of the physical interaction include wettability.
  • the SRa is less than 0.1 to 0.5 ⁇ m and the SRz is 1 to 5 ⁇ m. It is preferable that it is less than. Further, for SRa, a more preferable range is 0.1 to 0.3 ⁇ m.
  • a release treatment may be further applied to the roughened surface of the protective film (C) on the side in contact with the optical waveguide resin layer (B).
  • the means include those in which a thin film is formed by a general means such as coating / drying, vapor deposition, sputtering, or the like with a fluorine-based resin or a silicon compound having a small surface energy.
  • the same mold release treatment may be performed on the surface of the protective film (C) that is not in contact with the optical waveguide resin layer (B).
  • the protective film (C) when the protective film (C) is peeled from the optical waveguide resin layer (B), the protective film is peeled off at the interface between the optical waveguide resin layer (B) and the protective film (C).
  • the adhesive force at the interface between (C) and the optical waveguide resin layer (B) is lower than the adhesive force at the interface between the carrier substrate (A) and the optical waveguide resin layer (B).
  • the thickness of the protective film (C) is not particularly limited, and may be determined in terms of handleability and price. If it is too thin, it is not preferable because of insufficient strength, pinhole defects, or high price, and if it is too thick, the rigidity of the entire dry film is too high, causing problems in handling, increasing the thickness and weight, and transportation costs. In general, the thickness is preferably 10 to 100 ⁇ m.
  • the protective film (C) may be mixed or dispersed in the material with an antistatic agent or a substance having an active energy ray absorption capability as necessary, as long as the effects of the present invention are not impaired. Or you may apply
  • the optical waveguide resin layer (B) is a photosensitive resin
  • the protective film (C) has a capability of cutting a wavelength capable of curing the optical waveguide resin layer (B), such as an ultraviolet absorber or visible light.
  • a dry film is manufactured by making a substance that absorbs light of a wavelength shorter than or equal to (such as a specific dye or pigment, or an inorganic powder such as cerium oxide) inside or on the surface of the film.
  • a specific dye or pigment, or an inorganic powder such as cerium oxide
  • the optical waveguide resin layer (B) itself acts as an adhesive layer. This is because the surface of the optical waveguide resin layer (B) obtained by peeling the protective film (C) from the laminated dry film reflects the surface of the protective film (C).
  • the surface state of the optical waveguide resin layer (B) reflecting the surface of the protective film (C) referred to here is the roughness of the surface of the protective film (C) in contact with the optical waveguide resin layer (B) (SRa, SRz) is a state in which the roughness value of 40% to 100% of the value is maintained.
  • a general method can be adopted. For example, a method of pressing the roughened surface of the protective film (C) to the surface of the optical waveguide resin layer (B) formed on the carrier substrate (A) with a roll at an appropriate temperature, and pressing with a flat plate vacuum laminator Examples thereof include a method and a method of pressing with a tension at the time of winding in a roll shape.
  • the appropriate temperature mentioned here may be any temperature range that is low in the temperature range in which the resin layer for optical waveguide (B) can develop a softened state that can follow the roughened surface of the protective film (C). Although it varies depending on the resin composition of the waveguide resin layer (B), it is generally in the range of room temperature to 100 ° C., but is not limited to this range. In the temperature range in which a softened state capable of following the roughened surface can be developed, when the temperature is higher by about 70 ° C. than the minimum temperature, the resin of the optical waveguide resin layer (B) flows out from the film end. Since the thickness of the optical waveguide resin layer (B) is smaller (thinner) than the desired value, it is not preferable.
  • An optical waveguide manufacturing method includes the following steps in the optical waveguide manufacturing method using the optical waveguide dry film as described above: Preparing a planar object (D); A step of peeling the protective film (C) of the dry film for optical waveguide described above, The optical waveguide resin layer (B) and the planar object (D) are maintained while maintaining the roughness of the surface of the optical waveguide resin layer (B) from which the protective film (C) of the optical waveguide dry film has been peeled off. And a process of bonding by heating and pressing under reduced pressure, and The step of curing a part or the entire surface of the optical waveguide resin layer (B) with an active energy ray or heat is performed in the above order.
  • the planar object (D) is an object to which the optical waveguide resin layer (B) of the dry film according to the present invention is attached.
  • an electric wiring board flexible board or rigid board for electric circuits
  • a flexible film-like material a metal foil, or the like
  • an electric wiring board on which an optical waveguide component is formed And a flexible film-like material or a metal foil.
  • the planar object (D) is a temporary substrate that can be peeled off from the optical waveguide layer after forming all or a part of the optical waveguide layer, or the temporary substrate on which the optical waveguide constituent member is formed. There may be.
  • planar object (D) is a flexible film-like material
  • it may be a flexible film-like material that does not include electrical wiring or in which no electrical wiring is finally formed.
  • planar objects (D) can be considered for each of these planar objects (D).
  • the surface roughness of the planar object (D) is low, that is, an object to which the optical waveguide resin layer (B) is bonded.
  • the surface roughness of the planar object (D) is 0.1 ⁇ m or less in SRa, many bubbles are likely to remain in the optical waveguide resin layer (B) after bonding, so that the effect of the present invention is achieved. Is thought to be more effective.
  • planar object (D) as described above can be obtained by a known manufacturing method.
  • the optical waveguide disclosed in this embodiment It can be obtained by using a dry film and a manufacturing method thereof.
  • Step of peeling off protective film (C) of dry film for optical waveguide Since the protective film (C) is laminated on the optical waveguide resin layer (B), the optical waveguide dry film of this embodiment is bonded to the optical waveguide resin layer (B) and the planar object (D). In order to match, first, the protective film (C) is peeled off.
  • the method is not particularly limited, and the protective film (C) may be manually peeled from one side or corner of the optical waveguide dry film, or may be peeled by a mechanical device.
  • FIG. 2 shows a schematic view of the state in which the protective film (C) of the lower clad dry film for the optical waveguide dry film is peeled off.
  • the optical waveguide resin layer (B ) Maintain the surface roughness and prevent it from being flattened.
  • the surface of the optical waveguide resin layer (B) after peeling off the protective film (C) is sandwiched by a roll or the like when passing through some device, or the dry film from which the protective film (C) is peeled off It is necessary to avoid a situation in which pressure is applied to flatten the surface roughened state of the resin layer (B) by stacking some object on top. Alternatively, it is also necessary to avoid that the surface of the resin layer (B) after peeling off the protective film (C) is exposed to a high temperature to be softened or melted to flatten the roughened state.
  • FIG. 3 is a schematic diagram of a state in which the surface roughness of the resin layer (B) is kept in contact with the planar object (D), taking the case of the lower clad dry film as an example in this embodiment. Show.
  • the surface of the optical waveguide resin layer (B) that appears when the protective film (C) is peeled off is brought into contact with the planar object (D). Finally, the optical waveguide resin layer (B ) Are laminated together. There are roughly two methods for this bonding process. One is that the surface of the optical waveguide resin layer (B) that appears by cutting the dry film to a size approximate to the size of the planar object (D) and peeling off the protective film (C) is the planar object (D). It is a method of loading.
  • the other is a roll laminating method, which is also referred to as temporary attachment, in which a dry film for an optical waveguide wound in a roll shape is brought into contact with a planar object (D) using a roll while peeling off the protective film (C). Temporarily pasting with appropriate linear pressure.
  • the surface of the optical waveguide resin layer (B) has adhesiveness (tackiness) at the temperature at that time. Need to be.
  • the temperature is room temperature in the former case, and is generally 20 ° C. to 30 ° C. In this temperature range, if the surface of the resin layer (B) is not tacky at all, the dry film easily shifts in the process of handling after loading on the planar object (D), and the bonding performed thereafter This is because in the process, the dry film is fixed at a location different from the desired position of the planar object (D), which may result in a defective product.
  • this temperature is the roll temperature and is generally in the temperature range from room temperature to about 100 ° C. Even in this case, the resin layer (B) needs to have adhesiveness at the temperature to be brought into contact with, and cannot be temporarily attached without adhesiveness.
  • Vacuum lamination is a device that has a mechanism to place a work on a plate heated to the required temperature, reduce the atmosphere, and apply pressure to the work at the required temperature from above and below while continuing the pressure reduction. It is the bonding method used.
  • the conditions for V130 manufactured by Nichigo Morton Co., Ltd. are as follows.
  • the temperature of the upper and lower elastic bodies is set to 50 ° C. to 110 ° C.
  • 0.2 MPa to 1 MPa of compressed air is introduced into the upper elastic body, stress is applied in the vertical direction of the workpiece, the state is held for 30 seconds to 120 seconds, and then the pressure is released and the workpiece is released.
  • the conditions for taking out can be exemplified.
  • the temperature is 35 ° C.
  • the holding time after reaching 100 Pa is 2 seconds
  • the pressure of compressed air is 0.15 MPa
  • the pressure is applied If the holding time is 10 seconds, voids may easily remain in the bonded resin layer (B).
  • FIG. 4 shows a schematic view of the state in which this bonding step is completed, taking a dry film for a lower cladding as an example.
  • This flattening process is generally performed by placing a hard flat plate such as stainless steel on the bonded workpiece (on the dry film side) and vacuum laminating under heating to force the surface flat, or The surface is forcibly flattened by a flat plate press under heating.
  • a hard flat plate such as stainless steel
  • Step of curing part or the entire surface of resin layer (B) for optical waveguide with active energy ray or heat Whether the composition of the resin layer (B) for the optical waveguide is curable by active energy rays or heat, depending on whether it is an active energy ray curing formulation, a thermosetting formulation, or both. Determined.
  • the entire surface of the optical waveguide resin layer (B) should be irradiated at once to cure the entire surface when using a device that irradiates the active energy rays in a planar shape.
  • the active energy ray can be irradiated to only a necessary portion through a photomask (also simply referred to as a mask), and a portion can be cured. Further, when using an apparatus in which active energy rays are irradiated in the form of a beam, the entire surface of the optical waveguide resin layer (B) can be scanned (swept) to be cured, and the active energy rays can be cured.
  • the active energy rays can be swept and irradiated through a mask to cure a part.
  • heat treatment can be performed to further promote curing (also referred to as after-curing, after-baking, or simply baking or baking).
  • the entire surface can be cured by placing the workpiece including the optical waveguide resin layer (B) in a temperature environment necessary for curing.
  • a laser such as a carbon dioxide laser that emits heat rays or an electromagnetic wave having a wavelength equivalent to heat rays is irradiated by a mask, or a heat ray beam (including a laser corresponding to heat rays) is required depending on the thickness.
  • the resin layer for optical waveguide (B) can be partially cured by sweeping and irradiating the necessary part with the beam through the mask.
  • the carrier substrate (A) may be peeled before the resin layer for optical waveguide (B) is partially or entirely cured, or may be peeled after being cured.
  • FIG. 5 shows a schematic diagram of a state in which this curing process is completed, taking a dry film for lower cladding as an example.
  • the optical waveguide resin layer (B) is preferably heated under conditions where the optical waveguide resin layer (B) does not cure and softens or melts.
  • the purpose is to reduce the loss of the optical waveguide, and there are two manifestation mechanisms, which will be described below.
  • the first mechanism is flattening (smoothing) the surface of the optical waveguide resin layer (B).
  • the carrier substrate surface on the dry film side after the laminating step (lamination) has micro-dents due to the influence of fine particles or dust existing on the outer surface of the carrier substrate at the time of laminating.
  • the dent reaches the surface of the optical waveguide resin layer (B), and a minute dent is generated on the surface of the optical waveguide resin layer (B).
  • the resin layer for optical waveguide (B) can be easily deformed by heating, and when the carrier base material (A) is heated, the dents are repaired by the elasticity of the carrier base material (A) and can be flattened.
  • the carrier substrate (A) is peeled off and heated, the dents are repaired and flattened by the surface tension of the optical waveguide resin layer (B).
  • the optical waveguide resin layer (B) is for the lower clad on which the core is formed, or even when it is the upper clad, the core is further formed thereon, as in forming a multilayer optical waveguide.
  • the surface of the cladding has a dent, the outer surface of the optical waveguide core will be convex, and if it is for a core, if there is a dent on the surface, the core surface will be dented, resulting in a core surface. Since unevenness is generated and waveguide loss is deteriorated, it is extremely effective to flatten the surface in order to prevent this.
  • the second mechanism is to reduce the influence of the ridge optical waveguide on the core side surface.
  • the optical waveguide dry film is for the upper clad that embeds the core of the ridge optical waveguide
  • the upper clad is laminated to the core of the ridge optical waveguide and heated without curing the upper clad resin. Diffuses and penetrates into the side surface of the core, resulting in a layer having a refractive index between the refractive index of the core and the refractive index of the cladding on the side surface of the core.
  • the deterioration of the waveguide loss due to the roughness of the side surface can be suppressed, and a low-loss optical waveguide can be realized.
  • the temperature to be heated to realize the two manifestation mechanisms for the purpose of reducing the loss depends on the softening characteristic or melting characteristic of the resin layer to be used, but is generally preferably 80 ° C. to 160 ° C., more preferably 100 ° C to 140 ° C.
  • the heating time is longer than the time that can achieve this purpose, and is preferably 10 minutes to 60 minutes, and more preferably 10 to 30 minutes, from the viewpoint of increasing the throughput of the process.
  • a so-called development step is preferably performed.
  • the purpose of partial curing is generally for patterning.
  • any means can be adopted as long as it is capable of removing the uncured portion of the optical waveguide resin layer (B).
  • development with various organic solvents, alkaline aqueous solution, acidic aqueous solution, etc. development by means described in JP-A-2007-292964, and the like can be exemplified.
  • the purpose of patterning is to form the cladding partially on the planar object, to form the core of the ridge optical waveguide, or to have the alignment mark and optical via functions simultaneously with the core of the ridge optical waveguide For example, to form a structure for suppressing crosstalk between the body and the core, or to provide an opening such as a via hole for electrical connection as an alignment mark in the cladding.
  • the core after forming the lower cladding layer, the core can be formed, and then the upper cladding can be formed. Any of them can be formed by repeating the steps described above.
  • the core uses the core-forming dry film 30 illustrated in FIG. 6, peels off the protective film 33 as illustrated in FIG. 7, and contacts the lower clad 14 formed on the planar object as illustrated in FIG. 9 is obtained by heating and pressing under reduced pressure and bonding to obtain a bonded body illustrated in FIG. 9, and in the case of a ridge optical waveguide, the core 34 is partially cured and developed, as illustrated in FIG. Form.
  • the core is formed by completely curing the core resin layer of the bonded body of FIG. 9 or by partially patterning and curing in a planar shape as necessary (not shown).
  • the upper clad is formed on a planar object as illustrated in FIG. 13 by using the upper clad forming dry film 40 illustrated in FIG. 11 and peeling off the protective film 43 as illustrated in FIG.
  • the upper clad resin layer is cured.
  • the upper clad 44 is formed.
  • FIG. 16 shows a cross-sectional configuration example of the optical waveguide from which the carrier substrate 41 of the upper clad dry film is finally peeled and removed.
  • a lower clad, a core, and an upper clad may be further formed thereon by a similar method if necessary.
  • the present invention includes an optical waveguide obtained by the above-described manufacturing method, or a substrate or member having an information transmission function including the optical waveguide.
  • planar object (D) is an electric wiring substrate or an electric wiring substrate on which an optical waveguide component member is formed, as described above, the loss of the optical waveguide is small, and manufacturing variations and defects are poor.
  • An opto-electric composite wiring board with a minimized rate can be manufactured.
  • planar object (D) is a film-like material that has flexibility and does not include an electrical wiring or that does not eventually form an electrical wiring or a film material on which an optical waveguide component is formed.
  • a flexible optical waveguide sheet with a core pitch that cannot be achieved with an optical fiber array can be realized, and signal transmission between boards that require ultra-high-speed information transmission can be achieved with transmission materials (fiber and optical waveguide sheets). It can be realized without congestion, and finally energy saving can be achieved by improving the ventilation efficiency for cooling in the device.
  • the core pitch is 250 ⁇ m at a minimum, and even in a thinner optical fiber, the cladding outer diameter is 125 ⁇ m. In this case, the minimum core pitch is 125 ⁇ m.
  • an optical waveguide using a dry film for an optical waveguide a core pitch of 62.5 ⁇ m can be easily achieved, so that space saving of the transmission material can be easily realized.
  • a dry film with a core optical waveguide resin layer thickness of 30 ⁇ m patterning with a core cross section of 30 ⁇ m square and core spacing of 32.5 ⁇ m, or using a dry film with a core optical waveguide resin layer thickness of 35 ⁇ m This is because patterning with a 35 ⁇ m square and a core interval of 27.5 ⁇ m can be easily performed.
  • an optical transmission material having a higher density core can be obtained by forming the core in multiple layers (multistage).
  • the metal foil is formed after forming the optical waveguide or the first clad and the core on the metal foil.
  • Position and laminate the opposite surface to the electric circuit board bond the metal foil on the surface, form a metal circuit by a known method, and process via holes or through holes as necessary to form a photoelectric composite board Can do.
  • a clad resin composition varnish is applied and dried on a copper foil or the aforementioned peelable copper foil, or a dry film material for clad is vacuum laminated and cured to form a first clad layer.
  • the core dry film material is vacuum laminated and patterned to form an optical waveguide core, and the core pattern desired so that the guided light passing through the core is deflected to the copper foil side or the anti-copper foil side as necessary.
  • a portion having a deflecting function such as a mirror or a diffraction grating is processed at the position. Thereafter, it is integrated with a separately manufactured electric circuit board, and there are two methods for this means.
  • the first method is to form a first clad and core (core with a deflected portion formed as necessary) patterned copper foil through an thermosetting clad dry film material layer, and an electric circuit board. Is laminated by vacuum laminating, followed by heat curing and bonding.
  • a thermosetting dry film material for clad is vacuum laminated on the core pattern side of the first clad and the core pattern-formed copper foil, and the carrier substrate (A) is peeled off without being cured.
  • the optical waveguide (for cladding) resin layer (B) appearing after peeling off the carrier base material (A) is brought into contact with the electric circuit substrate and vacuum-laminated.
  • the protective film (C) of the present invention is vacuum-laminated on the surface of the optical waveguide (for cladding) resin layer (B) that appears after peeling off the carrier carrier substrate (A), and then the protection is performed. It is preferable to peel the film (C) and roughen the surface of the clad resin layer (B), and then contact the electric circuit board for vacuum lamination. This is because it is possible to minimize the bubbles remaining in the portion that becomes the second clad after vacuum lamination.
  • a dry film for the second cladding is vacuum laminated on the core side of the first clad and core (core with a deflected portion formed as needed) patterned copper foil,
  • the optical circuit board and the completed copper foil light with the optical waveguide layer are passed through a member such as a prepreg or a bonding sheet having a thermosetting adhesive function.
  • a member such as a prepreg or a bonding sheet having a thermosetting adhesive function.
  • This is a method of bonding the waveguide side.
  • the carrier copper foil is peeled and removed, and finally a copper foil that becomes an electric circuit is formed by a known method, and a via hole or a known method is used if necessary.
  • an optoelectric composite substrate can be obtained.
  • a metal foil that has been subjected to a roughening treatment or a chemical surface treatment for increasing the adhesion to the resin can be used, so that the metal foil derived from the clad resin layer and the outermost layer metal foil can be used. Adhesion with the conductor circuit can be improved, and the mounting reliability of the photoelectric composite substrate can be remarkably increased.
  • a temporary substrate that can be peeled between the optical waveguide layer and the planar object, or an optical waveguide component member is formed thereon.
  • the temporary substrate can be peeled off at a stage where peeling is necessary without being peeled off in the step of forming the optical waveguide thereon, and has been subjected to an easy adhesion treatment.
  • No thermoplastic resin plate is preferred. Examples of the plate include polycarbonate (PC), acrylic, and cycloolefin polymer.
  • a film-shaped optical waveguide with low loss and less loss variation can be easily manufactured.
  • an optical substrate in which all or part of the optical waveguide layer is formed.
  • an optical path deflecting unit such as a mirror or a diffraction grating provided in the optical waveguide core is used in this embodiment.
  • the optical path can be deflected in the surface direction on the optical waveguide layer side of the photoelectric composite substrate obtained by transfer, so that the optical element disposed on the optical waveguide side and It is suitable for optical coupling.
  • a conductor circuit is formed on the upper layer of the optical waveguide layer to form an electrode for an optical element, and the optical element can be mounted thereon, or a planar object forming the optical waveguide is an electric substrate, and the surface
  • the optical element can be mounted on the electrode on the surface of the electric substrate by patterning so that the optical waveguide layer does not exist on the electrode.
  • a lower clad and a core are formed on a temporary substrate of UV transmissive PC, and an optical deflecting portion (mirror) is formed on the core as necessary, and an upper clad layer is not formed by simply laminating a dry film for the upper clad.
  • the carrier base material is peeled and removed in a cured state, the surface of the upper clad resin is placed on a pre-fabricated electric substrate, vacuum laminated, and subjected to UV exposure and / or heat treatment from the PC side. Strip and remove the plate.
  • thermosetting copper foil with epoxy resin also called RCC
  • RCC thermosetting copper foil with epoxy resin
  • a copper layer is formed on the entire surface by a method such as bonding copper foil or applying a base treatment to increase the adhesion of chemical plating of copper, followed by chemical plating of copper.
  • a circuit is formed to obtain a photoelectric composite substrate.
  • a lower clad, a core, a light deflection part on the core, and an upper clad are formed on a temporary substrate of UV transmissive PC, and the upper clad surface and the electric substrate are formed using a bonding sheet, a prepreg, or an adhesive.
  • the temporary substrate is peeled and removed, and an electric circuit is formed on the surface of the lower clad appearing on the surface as described above to obtain a photoelectric composite substrate.
  • the optical waveguide confirmed to be a non-defective product can be integrated with the electric substrate. Further, the yield of the photoelectric composite substrate can be further improved.
  • An optical waveguide dry film includes a carrier substrate (A), an optical waveguide resin layer (B) curable by active energy rays or heat, and a protective film (C).
  • the surface of the protective film (C) that contacts the optical waveguide resin layer (B) is a roughened surface.
  • an optical waveguide dry film capable of manufacturing an optical waveguide in which the remaining microbubbles are minimized.
  • the waveguide loss can be reduced, and the manufacturing yield and reliability of the optical waveguide can be improved.
  • the process of forming the cladding layer and the core layer can be performed using the same apparatus, and the optical waveguide manufacturing cost can be reduced.
  • the carrier substrate (A) is a resin film or a metal foil
  • the protective film (C) is a thermoplastic resin film
  • the surface roughness is preferably 0.1 to 1 ⁇ m in arithmetic average roughness (SRa) and 1 to 10 ⁇ m in ten-point average roughness (SRz).
  • the optical waveguide resin layer (B) can be cured by reacting an epoxy group-containing compound with an epoxy group of the compound by irradiation with active energy rays. It is preferable to contain an agent. With such a configuration, it is considered that an optical waveguide having extremely low loss and excellent electrical characteristics can be realized because it is an epoxy resin having a long track record as a multilayer electric substrate material.
  • the resin layer for optical waveguide (B) is cured by reacting the compound having an ethylenic double bond with the ethylenic double bond of the compound by active energy ray irradiation. It is preferable that the photocuring initiator which can be made to be included. With such a configuration, it is possible to realize an optical waveguide that can be patterned by the same alkali development as a general resist material with low loss.
  • the following steps Preparing a planar object (D); A step of peeling off the protective film (C) of the above-mentioned optical waveguide dry film, The optical waveguide resin layer (B) and the planar object (D) are maintained while maintaining the roughness of the surface of the optical waveguide resin layer (B) from which the protective film (C) of the optical waveguide dry film has been peeled off.
  • Such a configuration makes it possible to manufacture an optical waveguide in which the remaining microbubbles are minimized. As a result, the waveguide loss can be reduced, and the manufacturing yield and reliability of the optical waveguide can be improved. In addition, the process of forming the cladding layer and the core layer can be performed using the same apparatus, and the optical waveguide manufacturing cost can be reduced.
  • the planar object (D) is an electric wiring substrate or an electric wiring substrate on which an optical waveguide constituent member is formed. According to such a configuration, it is possible to more reliably manufacture an optical / electrical composite wiring board in which the loss of the optical waveguide is small and the manufacturing variation and the defect rate are minimized.
  • the planar object (D) is flexible and does not include electrical wiring, or does not eventually form electrical wiring, or an optical waveguide constituent member Is the film material formed thereon.
  • the planar object (D) is preferably a metal foil or a metal foil on which an optical waveguide constituent member is formed.
  • the metal foil that has been subjected to roughening treatment or chemical surface treatment for enhancing adhesion to the resin layer is used, the conductor derived from the clad resin layer and the outermost metal foil is used. Adhesion with a circuit can be improved, and mounting reliability of an optoelectric composite substrate or the like can be remarkably increased.
  • the planar object (D) may be a temporary substrate that can be peeled off from the optical waveguide layer after forming all or part of the optical waveguide layer, or an optical waveguide constituent member. It is preferable that the temporary substrate is formed thereon. According to such a configuration, a film-shaped optical waveguide with low loss and less loss variation can be easily manufactured.
  • optical waveguide manufactured by the above-described method, or a substrate or member having an information transmission function including the optical waveguide.
  • EHPE3150 Epoxy resin which is an adduct of 1,2-epoxy-4- (2-oxiranyl) cyclohexane of 2,2-bis (hydroxymethyl) -1-butanol manufactured by Daicel Corporation Celoxide 2021P: manufactured by Daicel Corporation 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate epoxy resin / Epicoat 1006FS: Mitsubishi Chemical Corporation bisphenol A type epoxy resin / Epicron 850S: DIC Corporation bisphenol A Type epoxy resin VG3101L: Trifunctional epoxy resin having a bisphenol skeleton manufactured by Printec Co., Ltd.
  • phenol novolac type epoxy resin-YP50 Bisphenol A type phenoxy resin manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • YH300 Aliphatic polyglycidyl ether type epoxy resin manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., trimethylolpropane type epoxy resin
  • SP-170 4,4'-bis [di ( ⁇ -hydroxy) manufactured by Adeka Co., Ltd. Ethoxy) phenylsulfonio] so-called sulfonium salt photoacid generator based on phenyl sulfide bishexafluoroantimonate.
  • the main component um thermal acid generator of the so-called sulfonium salts. Although it can generate acid even with UV, it is referred to as a thermal acid generator because it is less sensitive to UV than SP-170 and is more activated by heat.
  • A-CL for clad and A-CO for core were prepared as an active energy ray (UV) curing type.
  • polymers having carboxyl groups for cladding and core were synthesized, and the varnish was prepared by blending the polymer, various (meth) acrylic acid esters and a curing initiator.
  • P-CO polymer having a carboxyl group for the core
  • P-CO polymer having a carboxyl group for the core
  • the raw materials used are as follows.
  • -PGMEA Propylene glycol monomethyl ether acetate as an industrial reagent-ADVN: 2,2'-azobis (2,4-dimethylvaleronitrile) as an industrial reagent
  • DLDBT Industrial reagent dibutyltin dilaurate
  • BHT Industrial reagent butylhydroxytoluene
  • Imirex-C Nippon Shokubai Co., Ltd.
  • N-cyclohexylmaleimide Light ester BZ Kyoeisha Chemical Co., Ltd.
  • benzyl methacrylate MMA Methyl methacrylate manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • MAA Methacrylic acid manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • Karenz MOI 2-isocyanatoethyl methacrylate manufactured by Showa Denko Co., Ltd.
  • a nitrogen-substituted flask equipped with a reflux tube was charged with 56 parts by mass of PGMEA under nitrogen flow and heated to 65 ° C., and premixed PGMEA: 56 parts by mass, Imirex-C: 13 parts by mass, light ester BZ: 41 parts by mass MMA: 10 parts by mass, MAA: 24 parts by mass, ADVN: 1.7 parts by mass were added dropwise over 2 hours, and further refluxed and stirred at 65 ° C. for 3 hours and then at 90 ° C. for 1 hour.
  • P-CL polymer having a carboxyl group for cladding
  • the raw material used was 2-HEMA: ethylene glycol monomethacrylate manufactured by Mitsubishi Gas Chemical Co., Ltd., other than those already described.
  • Optical waveguide resin varnishes (A-CL for clad and A-CO for core) were stirred and mixed at room temperature according to the formulation shown in Table 2 below, to form a PTFE membrane filter with a pore size of 1 ⁇ m. Then, each varnish was adjusted by pressure filtration. Of the raw materials used, those other than those already described are shown below.
  • A-9300 ethoxylated isocyanuric acid triacrylate manufactured by Shin-Nakamura Chemical Co., Ltd.
  • A-CHD-4E ethoxylated cyclohexanedimethanol diacrylate manufactured by Shin-Nakamura Chemical Co., Ltd.
  • A-BPE-4 Shin-Nakamura Chemical Industry Co., Ltd.
  • ethoxylated bisphenol A diacrylate / A-BPE-10 Shin-Nakamura Chemical Co., Ltd.
  • ethoxylated bisphenol A diacrylate / Irgacure 2959 ⁇ -hydroxyalkylphenone series produced by BASF Japan Ltd.
  • UV radical initiator Irgacure 819 Acylphosphine oxide UV radical initiator manufactured by BASF Japan Ltd.
  • the optical waveguide dry film is prepared by applying and drying each resin varnish obtained above on a carrier base material using a test coater of a comma coater head manufactured by Hirano Techseed Co., Ltd., and applying a protective film to the surface of the optical waveguide resin layer formed. It was manufactured by laminating and winding with a 40 ° C. laminate roll. Then, a set of three films, ie, a lower clad dry film, a core dry film, and an upper clad dry film, was used as one set, and optical waveguide dry film sets A to H were obtained.
  • 1CL indicates the lower cladding
  • CO indicates the core
  • 2CL indicates the upper cladding.
  • Table 3 shows a combination of a carrier base material, a resin varnish for a resin layer for an optical waveguide, and a protective film (PF), and the surface roughness of the PF measured by the above-described scanning confocal laser microscope.
  • the measurement results of the post resin thickness (unit: ⁇ m) and the surface roughness SRa, SRz (unit: ⁇ m) of the resin surface appearing after peeling off the protective film (PF) are shown.
  • the raw materials used here are shown below.
  • A4100 A PET film manufactured by Toyobo Co., Ltd., which has an easy adhesion treatment on one side and no surface treatment on the other side. Use a 50 ⁇ m thick.
  • SRa of the surface which is not surface-treated was 0.03 micrometer and SRz was 0.7 micrometer.
  • CUF Product number MT18SD-H3 manufactured by Mitsui Mining & Smelting Co., Ltd., a so-called peelable copper foil comprising a copper foil (carrier copper foil) having a thickness of 18 ⁇ m and a copper foil having a thickness of 3 ⁇ m.
  • YM17S Surface roughened OPP film (thickness 20 ⁇ m) manufactured by Toray Industries, Inc.
  • the protective film is peeled off by peeling off the protective film at the dry film corner with a finger and then peeling off the protective film over the entire surface. I took.
  • the dry film other than the set symbol D could be peeled off between the protective film and the optical waveguide resin.
  • this method uses the optical waveguide resin. Many portions of the film remained attached to the protective film, that is, peeled between the carrier substrate and the optical waveguide resin. In this peeling method, peeling proceeds while both the carrier base material and the protective film are bent.
  • the carrier base material of the dry film is adsorbed on the vacuum suction plate, and the carrier base material and the optical waveguide resin are in a flat state. Adhesive tape was applied, and the protective film was peeled off from the corners. By this method, the phenomenon of peeling between the carrier substrate and the optical waveguide resin could be avoided.
  • the reduced pressure adsorption plate is a plate in which a large number of through holes of 0.3 mm ⁇ are formed on a metal flat plate, a film is placed on the plate, and the film is sucked from the lower side under reduced pressure to fix the film by atmospheric pressure.
  • the peeling progresses in a state where only the protective film is bent at the time of peeling, even if the adhesion between the optical waveguide resin and the protective film is not small, the peeling can be performed between the optical waveguide resin and the protective film.
  • the resin for the optical waveguide remains at the bottom of the valley portion of the surface irregularity of the protective film, and as a result, the roughness of the resin surface that appears by peeling off the protective film is the roughness of the protective film itself. It was a small value of less than 40% compared to the degree.
  • Example 1 As a planar object 1 for producing an optical waveguide, a substrate obtained by etching off a copper foil of R1515W (copper foil 12 ⁇ m product), which is a double-sided copper-clad substrate manufactured by Panasonic Corporation, was cut into 130 mm ⁇ 100 mm. When the surface roughness of the substrate surface was measured by the method described above, SRa was 0.81 ⁇ m and SRz was 8.0 ⁇ m. Moreover, when the reflectance of 365 nm was measured with the UV spectrophotometer, it was 7%. Set A in Table 3 was used as the optical waveguide film.
  • the lower cladding layer was formed on this substrate (planar object 1) by the following procedure. That is, the surface of the resin layer for the optical waveguide that appears by peeling off the protective film of AE-1CL, which is a dry film for the lower clad cut to a size of 130 mm ⁇ 100 mm, is arranged on the substrate, and is used for vacuum lamination.
  • a 75 ⁇ m-thick PET film (product number T60 manufactured by Toray Industries, Inc., hereinafter abbreviated as T60) cut into 200 mm ⁇ 170 mm as a carrier film (or a hot plate protection film) is arranged vertically (between the 75 ⁇ m PET film and the substrate).
  • a vacuum laminator pressurized vacuum laminator manufactured by Nichigo Morton Co., Ltd., product number V130, hereinafter abbreviated as V130
  • the carrier film (T60) for vacuum lamination was removed, and the laminate of AE-1CL and the substrate was heat treated (flattened) at 120 ° C.
  • the core was formed by the following procedure on the planar object having the lower clad layer formed on one side of the R1515W double-sided etch-off product thus obtained. That is, on the surface of the lower cladding layer, the surface of the optical waveguide resin layer that appears by peeling off the protective film of AE-CO, which is a dry film for the core cut to a size of 130 mm ⁇ 100 mm, is disposed. Were laminated on the top and bottom and laminated at V130 under the same conditions as those for the lower clad. T60 was removed, and the PET film which is the carrier substrate of the obtained dry film laminate was peeled and removed, and heat treatment was performed at 120 ° C. for 20 minutes. After this treatment, the surface roughness of the surface of the core resin layer allowed to cool to room temperature was measured by the above-described method. The SRa was 0.05 ⁇ m and the SRz was 0.83 ⁇ m.
  • patterning of the core was performed as follows. That is, a so-called glass chrome mask made of glass having 12 optical waveguide cores having a width of 35 ⁇ m, a pitch of 125 ⁇ m, and a length of 110 mm and having a chromium thin film as a shielding layer (a negative mask in which the core portion is an opening) Then, the active energy ray (UV light) from the ultra-high pressure mercury lamp was irradiated to the core resin side so as to have a light quantity of 2000 mJ / square centimeter at 365 nm, and then heat treatment was performed at 140 ° C. for 15 minutes. Then, by developing with an aqueous flux cleaning agent adjusted to 55 ° C.
  • a so-called glass chrome mask made of glass having 12 optical waveguide cores having a width of 35 ⁇ m, a pitch of 125 ⁇ m, and a length of 110 mm and having a chromium thin film as a shielding layer (a negative mask in which the core
  • an upper clad was further formed on the planar object by the following procedure. That is, the surface of the optical waveguide resin layer that appears by peeling off the protective film of AE-2CL, which is a dry film for upper clad cut to a size of 130 mm ⁇ 100 mm, on the surface on which the core of the planar object is formed
  • the T60 was placed up and down and held at V130 for 30 seconds after reaching a vacuum of heating temperature 80 ° C. and 1 hPa or less, and then pressurized and laminated at 0.3 MPa for 120 seconds. After removing T60, the PET film, which is the carrier substrate of the obtained dry film laminate, is peeled and removed, heat treated at 140 ° C.
  • the clad resin side is irradiated with a line (UV light) at 365 nm so as to obtain a light quantity of 2000 mJ / square centimeter, followed by heat treatment at 140 ° C. for 30 minutes to complete the resin curing, and an optical waveguide is formed on the laminate for the electric substrate.
  • a sample in which was formed was produced.
  • void observation The voids (bubbles) in the core part and the clad part were observed from vertically above the optical waveguide surface with visual observation and an optical microscope.
  • the number of voids with a diameter of 5 ⁇ m or more is not observed per optical waveguide substrate, the number of voids is 1-5 per plane, the number of voids is 6-20, and the number of voids is 20 More than that was marked with x.
  • the optical waveguide forming substrate was cut with a dicing blade so that the core length was 100 mm perpendicular to the extending direction of the core, and a sample with a core length of 100 mm was obtained.
  • a laser diode having a wavelength of 850 nm is used as a light source, and the end of an optical fiber having a core diameter of 10 ⁇ m and NA of 0.21 is connected to one end of an optical waveguide core through silicone oil matching oil.
  • the end of an optical fiber having a core diameter of 200 ⁇ m and NA of 0.4 was connected to the other end via a matching oil, and the optical power (P1) was measured with a power meter.
  • the end faces of both optical fibers were abutted with each other through matching oil, and the light power (P0) in a state where no optical waveguide was interposed was measured with a power meter. Then, the loss of the optical waveguide is obtained from the calculation formula of ⁇ 10 log (P1 / P0), and this is divided by the optical waveguide length 10 (cm), whereby the waveguide loss of one optical waveguide (unit: dB / cm). ) was measured. This measurement was performed on three optical waveguide forming substrates each having 12 optical waveguide cores, and the average waveguide loss of a total of 36 optical waveguide cores was calculated.
  • Defect rate An optical waveguide core having a waveguide loss exceeding 0.1 dB / cm was determined to be defective, and the value expressed as a percentage of the number / 36 was determined as a defect rate.
  • Example 1 the average waveguide loss was 0.054 dB / cm, and the defect rate was 0% (no defect).
  • Example 2-6 Comparative Examples 1-2
  • Table 3 the same production procedure and evaluation as in Example 1 were performed.
  • the results are shown in Table 4 above.
  • Example 4 When peeling off the protective film of dry film set symbol D, ie DE-1CL, DE-CO, and DE-2CL, the dry film carrier substrate is adsorbed to the vacuum adsorption plate as described above. Then, with the carrier base material and the optical waveguide resin in a flat state, an adhesive tape was applied to the corner of the protective film, and the protective film was peeled off from the corner portion.
  • the protective film of the dry film other than the set symbol D is peeled off by peeling off the protective film at the corner of the cut dry film with a finger to provide a peeling starting point, and then the protective film and the carrier substrate with a resin for the optical waveguide are easily formed. It could be peeled off.
  • this method used a reduced-pressure adsorption plate because a part of the resin for the optical waveguide adhered to the protective film and could not be used.
  • Example 5 Since dry film EE-2CL is a thermosetting clad resin, the conditions for curing the upper clad are different. After laminating the upper clad, heat treatment is performed at 140 ° C. for 30 minutes, followed by heat treatment at 160 ° C. for 1 hour to cure, and an optical waveguide is formed on the laminate for electric substrate, and a copper foil is formed on the surface thereof. A sample in which was formed was produced. Subsequently, the carrier copper foil (thickness 18 ⁇ m) of the carrier base material CUF is peeled and removed, and an electric circuit is formed by masking, pattern exposure and development with an etching resist from the copper foil having a thickness of 3 ⁇ m bonded to the upper clad resin.
  • Copper plating was performed so that the layer thickness was 12 ⁇ m. Loss evaluation was performed on this sample in the same manner as in Example 1. However, void observation of the optical waveguide was performed on the surface of the resin that was roughened in a copper foil anchor replica shape by etching away the copper circuit. AE-1CL was laminated and cured under the same conditions as those for forming the lower clad with AE-1CL in Example 5, and the surface was flattened and observed. A sample obtained by plating a sample different from the observation of the void and the loss evaluation and adjusting the thickness of the copper layer to 12 ⁇ m. When the peel strength of the copper foil was measured by a conventional method, it was 0.69 N / mm.
  • Example 6 and Comparative Example 2 Set symbol F of dry film, namely FA-1CL, FA-CO, FA-2CL, and set symbol H, ie HA-1CL, HA-CO, HA-2CL Lamination conditions differ from dry films other than these. Furthermore, since the optical waveguide resin is a radical curing type, the curing conditions are different because it is inhibited by oxygen, and the development conditions are different because it is an acrylic resin system having a carboxyl group.
  • the laminate conditions of FA-1CL and HA-1CL are: V130, holding at a heating temperature of 65 ° C. and a vacuum of 1 hPa or less, holding for 15 seconds, and then pressurizing at 0.3 MPa for 60 seconds.
  • the conditions until the subsequent curing were carried out by heating at 140 ° C. for 15 minutes while leaving the PET film, which is the carrier substrate of the obtained dry film laminate product, without being peeled, and then cooled to room temperature.
  • An active energy ray (UV light) from a high-pressure mercury lamp is irradiated to the carrier substrate side so as to obtain a light amount of 2000 mJ / square centimeter at 365 nm, and the PET film on the carrier substrate is peeled and removed, followed by 160 ° C. for 30 minutes. Heat treatment was performed to complete the resin curing.
  • the lamination conditions of FA-CO and HA-CO are the same as those of FA-1CL and HA-1CL of the lower cladding. Subsequent core formation conditions are as follows.
  • the negative mask After performing the heat treatment (planarization) at 120 ° C. for 20 minutes while leaving the PET film that is the carrier substrate of the obtained dry film laminate product, the negative mask is used. Then, the active energy ray (UV light) from the ultra-high pressure mercury lamp is irradiated to the core resin side so as to obtain a light quantity of 1500 mJ / square centimeter at 365 nm, and the carrier base material is peeled and removed to remove 1% by mass of sodium carbonate aqueous solution. The unexposed portion of the core resin is dissolved and removed by developing the substrate with water, washed with water, washed with a 0.5% by mass sulfuric acid aqueous solution, further washed with water, and then air blown on the surface.
  • UV light active energy ray
  • the aforementioned UV light is irradiated at 365 nm with a light quantity of 1000 mJ / square centimeter, and further heated at 150 °C for 30 minutes. Accordingly, to form a core pattern on the lower cladding.
  • the formation conditions of FA-2CL and HA-2CL are as follows: V130 is maintained at a heating temperature of 90 ° C. and a vacuum of 1 hPa or less, held for 15 seconds, and then pressurized at 0.3 MPa for 90 seconds. Then, while leaving the PET film, which is the carrier substrate of the obtained dry film laminate product, without leaving the film, it is heated at 140 ° C. for 15 minutes and allowed to cool to room temperature.
  • Irradiation was performed from the carrier substrate side so as to obtain a light amount of 2000 mJ / square centimeter, and the PET film on the carrier substrate was peeled and removed, followed by heat treatment at 160 ° C. for 30 minutes to complete the resin curing.
  • an etch-off product of a double-sided copper-clad substrate was used as a planar object, but a pattern (alignment mark) having a function for specifying a position where an optical circuit core is formed and an electrical circuit has been formed.
  • a multilayer wiring board having both a photoelectric composite wiring board can be obtained.
  • Example 7 As an example of manufacturing a flexible optical waveguide having a structure in which flexible films are arranged on both sides of the optical waveguide, a lower clad layer is formed on a PET film, a core is formed on the clad surface, and an upper clad is formed thereon. At the same time, an example of completing the adhesive curing with the PET film is shown.
  • the carrier substrate in contact with the cladding material is used as a film that is finally firmly attached to the cladding layer as a film to protect and reinforce the flexible optical waveguide.
  • the material for the lower clad of this embodiment is in the form of a dry film
  • the carrier base material is used as it is without being peeled and removed, so that the lower clad material is not laminated on a planar object. Therefore, in order to clarify the difference from the dry film of the present invention used by laminating on a planar object, the lower cladding material of this example is not expressed as a dry film but is expressed as a lower cladding with a film. .
  • Double sided adhesive tape (Teraoka Seisakusho product number: 7692. Adhesive layer thickness: 47 ⁇ m. Adhesive strength of strong adhesive surface is 8.8 N / 25 mm, weakly adhesive surface.
  • the adhesive surface of the double-sided adhesive tape is laminated on the second surface of the double-sided adhesive tape after laminating under the same conditions as those for laminating the AE-1CL of Example 1 with the vacuum laminator V130.
  • the PET surface of the lower clad with the film cut to a size of 130 mm ⁇ 100 mm was placed on the weakly adhesive surface that appears when the release paper was peeled off, and vacuum-laminated under the same conditions as the laminate of glass and 7692.
  • the protective film E-201F is peeled and removed from the lower clad with the film bonded to the glass plate, heated at 140 ° C. for 15 minutes (flattened), allowed to cool to room temperature, and then activated from an ultra-high pressure mercury lamp.
  • Energy rays (UV light) were irradiated at 365 nm with a light amount of 2000 mJ / square centimeter, followed by heat treatment at 140 ° C. for 30 minutes to complete the resin curing.
  • SRa was 0.05 ⁇ m and SRz was 0.78 ⁇ m.
  • the object having the lower cladding layer on the surface thus obtained is a planar object for laminating the core dry film (AE-CO).
  • the core was formed on the planar object under the same conditions as when the core was formed in Example 1.
  • An upper clad was formed on the core-formed planar object.
  • the above-mentioned dry film for clad IE-2CL was used, and the upper clad was processed in the same conditions as those from lamination to UV exposure when the upper clad was formed in Example 1. Resin curing was completed by performing heat treatment at 150 ° C. for 30 minutes without peeling off A4100.
  • Example 2 Evaluation was performed on three workpieces produced in the same manner as in Example 1. When the voids of this flexible optical waveguide were observed by the method described above, no voids were observed and the evaluation was ⁇ .
  • the waveguide loss was evaluated in the same manner as in Example 1 by fixing a flexible optical waveguide having a width (optical waveguide length) of 100 mm on a substrate having a width of 98 mm with a weak adhesive tape. As a result, the average waveguide loss was 0.068 dB / cm, and the defect rate was 0%.
  • Example 8 the optical waveguide formed on the peelable temporary substrate was peeled to obtain only the optical waveguide.
  • a polycarbonate (PC) plate not containing an ultraviolet absorber having a thickness of 1 mm was cut into 130 mm ⁇ 100 mm.
  • SRa was 0.06 ⁇ m and SRz was 0.92 ⁇ m.
  • AE-1CL which is a dry film for lower clad
  • SRa was 0.05 ⁇ m and SRz was 0.75 ⁇ m.
  • the planar object in which the lower clad layer was formed on the PC plate thus obtained was used for the next core formation.
  • AE-CO which is a dry film for the core
  • SRa 0.06 ⁇ m
  • SRz 0.87 ⁇ m
  • Example 2 patterning of the core is performed in the same manner as in Example 1, and the same condition as that of the upper clad of Example 1 is used by using dry film AE-2CL as an upper clad on the planar object on which the core is formed. Formed with.
  • the optical waveguide formed on the PC plate thus obtained was cut at a position where the core length was 10 cm with a dicing blade in the same manner as in Example 7 and at a position where the cutting edge of the 5 ⁇ m blade entered the PC plate. A cut was made in the optical waveguide layer.
  • An adhesive tape was adhered to the optical waveguide surface, and the PC board and the optical waveguide were peeled off by lifting the adhesive tape to obtain a film having only the optical waveguide.
  • the film was evaluated in the same manner as in Example 7. As a result, no void was observed, the evaluation was ⁇ , the average value of waveguide loss was 0.064 dB / cm, and the defect rate was 0%.
  • the present invention has wide industrial applicability in technical fields such as an optical waveguide, a manufacturing method thereof, and a dry film for an optical waveguide.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本発明は、キャリア基材(A)と、活性エネルギー線又は熱で硬化可能な光導波路用樹脂層(B)と、保護フィルム(C)とを有する光導波路用ドライフィルムにおいて、保護フィルム(C)の光導波路用樹脂層(B)と接する面が粗化面であることを特徴とする光導波路用ドライフィルムに関する。

Description

光導波路用ドライフィルムとそれを用いた光導波路の製法並びに光導波路
 本発明は、光導波路用ドライフィルムとそれを用いた光導波路の製法並びに光導波路に関する。
 情報伝送量の爆発的増大に対応するために、電子機器・装置の筐体内の短距離超高速伝送の媒体には、正確な情報伝送を実現する為のコスト増が顕著になる銅配線ではなく、デジタルの光信号を伝送するいわゆる光導波路(光配線や光伝送路などとも言う)が注目されている。
 光導波路は、使用する光の波長において透明であって、相対的に低屈折率のクラッド材料が、相対的に高屈折率のコア材料で形成された線状伝送路の周囲を囲む、あるいは平面状伝送路の上下を囲む構造のものを言う。光ファイバーは光導波路の一種であるが、コアの実装密度を高密度化しにくい事から、高密度化と超高速伝送の同時実現には、平面に対する露光によるパターニングで複数の線状コアあるいは平面状コアがクラッド層内部に形成された樹脂製光導波路が最有力となってきている。線状コアを有する光導波路をリッジ光導波路あるいはチャネル光導波路と呼び、平面状コアを有する光導波路をスラブ光導波路あるいはプレーナ光導波路と呼ぶ事もある。
 樹脂製光導波路を露光によって実現する手段としては、室温で液状の樹脂を基材上にスピンコートやダイコートなどで塗布し硬化させる方法があり、実験室レベルでは最も簡易的に実行できるので多く考案されてきたが、工業的に実用化する場合には、ワークの大きさの制限や厚みバラツキの低減に大きな課題がある。そこで、いわゆるドライフィルムタイプの光配線材料が工業的な製造に最適であり、各種の開発が進められている。
 ドライフィルムタイプの光導波路用材料とは、キャリア基材(キャリアフィルムやベースフィルム、支持体フィルム等とも言う)の上に少なくとも、室温では固形である未硬化の光導波路用樹脂が配置された物を言い、何らかの平面状物体上にドライフィルムの光導波路用樹脂面をラミネートしてから、硬化やパターニングなどの何らかの加工を施すものである。
 一般的には、光導波路用樹脂を保護する目的で、キャリア基材に接していない側の光導波路用樹脂の面に、保護フィルム(カバーフィルムやセパレータ、マスキングフィルム等とも言う)を配置する場合が多く、何らかの平面状物体に光導波路用樹脂面をラミネートする際には保護フィルムを剥離除去する必要があるので、保護フィルムと光導波路用樹脂との間で接着力を高める処置を講じるのではなく、容易に剥離できるような処置が施されているのが一般的である。またこの場合には、保護フィルム剥離の際に必ず光導波路用樹脂と保護フィルムの界面で剥離する必要があるので、該界面の密着力は、キャリア基材と光導波路用樹脂界面の密着力よりも低くなければならない。
 これまでにも樹脂材料で光導波路を製造する技術はいくつか報告されており(特許文献1~4参照)、また、ドライフィルムの技術に関しても、ソルダーレジストやカバーレイやエッチングレジスト用のドライフィルムに関する報告はある(特許文献5)。
 しかし、特許文献1においては、光導波路の形成方法としてベースフィルムと、ベースフィルム上に形成された樹脂層とからなり、必要に応じてベースフィルムの反対側にポリエチレンやポリプロピレン等のカバーフィルムを保護フィルムとしてラミネートし、樹脂層がベースフィルムとカバーフィルムとの間に挟まれる構造のドライフィルムを用いた方法が開示されている。カバーフィルムに関しては、材質のみが開示されているだけで、その粗度などについては何ら記載はない。
 特許文献2においては、光導波路の製造方法として基材上に形成されたクラッド層形成用樹脂を硬化して下部クラッドを形成し、該下部クラッド層上にコア層形成用樹脂フィルムを積層してコア層を形成し、コア層を露光現像してコアパターンを形成し、該コアパターンを埋め込むように形成されたクラッド層形成用樹脂を硬化して上部クラッド層を形成する方法が開示されている。また、コア形成用樹脂はフィルム状と規定されているが、クラッド形成用樹脂もフィルム状であっても良く、コア用とクラッド用の樹脂フィルムは、ともに最終的に光導波路の基材に使用しない支持体フィルム上に樹脂層が形成されている場合、つまり、支持体フィルムを樹脂層から剥離除去する必要がある場合には、支持体フィルムと樹脂層との接着力を向上させるためのコロナ処理、サンドブラスト処理などのマット加工や易接着樹脂コートなどの接着処理を支持体フィルムに対して行わないことが好ましい、と開示されている。
 特許文献3には、光電気複合基板の製造法として、下部クラッド層付き電気配線基板を得て、下部クラッド層上にコアパターン及び上部クラッド層を順次形成して光導波路を構築する方法が開示されている。また、クラッド層形成用樹脂及びコア層形成用樹脂はともに、フィルム状のものを使用するのが好ましく、いずれも樹脂フィルムを支持する支持体である基材フィルム上に樹脂層を形成したものであり、この基材フィルムはPET(ポリエチレン・テレフタレート)やポリプロピレン、ポリエチレンなどが好適に用いられ、かつ後で樹脂層を容易に剥離するために離型処理、帯電防止処理などが施されていても良いと記載されている。更に、コア用とクラッド用の樹脂フィルムには、ともにフィルムの保護やロール状に製造する場合の巻き取り性などを考慮して、保護フィルムを貼り合わせても良く、保護フィルムとしては上記基材フィルムの例と同様なものを使用でき、必要に応じて離型処理、帯電防止処理などが施されていても良いと開示されている。
 特許文献4には、フレキシブル光導波路の製造方法として、第1のクラッド層を形成し、その上の少なくとも一方の端部にコア層形成用樹脂フィルムを積層して第1のコア層を形成し、該第1のコア層上及び該第1のクラッド層上の全面にコア層形成用樹脂フィルムを積層して第2のコア層を形成し、該第1のコア層及び該第2のコア層をパターニングして、光導波路のコアパターンを形成し、該コアパターン及び該第1のクラッド層上に第2のクラッド層を形成してコアパターンを埋め込むという方法が開示されている。また、クラッド層形成用樹脂フィルムの基材は、クラッド層形成用樹脂との接着性などを向上させるために、例えば、酸化法や凹凸化法などの物理的又は化学的表面処理をなされていても良く、酸化法としては、例えばコロナ処理、クロム酸化処理、火炎処理、熱風処理、オゾン・紫外線処理法などが、凹凸化法としては、例えばサンドブラスト法、溶剤処理法などのいわゆる接着処理が例示されている。このクラッド層形成用樹脂フィルムの基材フィルムは、最終的にはフレキシブル光導波路の最表面に位置して使用されるので、クラッド樹脂との密着性を得るために上記の表面処理を施しておくのが好ましいのである。一方、フレキシブル光導波路の薄型化のために少なくとも片面から基材フィルムを剥離除去したり、フレキシブル光導波路の反り低減のために両面から基材フィルムを剥離する例も開示されているが、前記のように基材フィルムとクラッド用樹脂の密着性が高い方が良いという前提のため、基材フィルムを容易に剥離する目的で高温高湿条件下で加湿処理し、基材フィルムとクラッド用樹脂の間の密着力を低下させて剥離する方法が開示されている。更に、クラッド層形成用樹脂フィルム及び、コア層形成用樹脂フィルムでは、樹脂フィルムの基材フィルムと反対側の面に、樹脂フィルムの保護や製造する際の巻き取り性を向上させる目的で保護フィルム(セパレータあるいはマスキングフィルム)が積層された構造が開示されており、保護フィルムは、クラッド形成用樹脂及びコア形成用樹脂との剥離を容易にするために、前記接着処理は行っていない事が好ましいと開示されている。また、コア用形成用樹脂フィルムを積層する際には、密着性及び追従性の観点から減圧下で加熱加圧するいわゆる真空ラミネート法が好ましいと開示されており、第1のクラッド層とコア層の間への気泡の混入を防ぐとの観点からロールラミネータを用いて積層することが好ましいと開示されている。
 特許文献5には、プリント配線板に積層するための感光性フィルムであって、保護フィルムの表面粗さが、カットオフ値が0.08~8mm、評価長さが0.4mm~40mmの測定範囲における算術平均粗さ(Ra)で0.5μm以上であり、感光性組成物層が、温度30℃において層厚を2mmとした感光性組成物層に0.25kg/mm の静荷重を加えたとき、荷重を加えてから10秒後から600秒後までの時間経過での膜厚変化量が50~800μmの範囲の流動性を有しており、保護フィルムが感光性組成物層に表面粗さを与え、表面粗さはプリント配線板に積層前には保持され、積層時の加圧によって消失する、ことを特徴とする感光性フィルムが開示されている。これは、特許文献5の段落0002に記載されているが、いわゆるソルダーレジストやフレキシブルプリント配線板のカバーレイや、プリント配線板の銅回路形成において用いられるエッチングレジストに関するものであって、導体パターンを気泡無く樹脂で埋め込むために樹脂を高流動化する必要があるが、それにより樹脂のタック性が強くなるので、凸部導体等の被覆が十分にできずに保護膜としての役目を果たせなくなる、あるいは銅張積層板の表面のキズ内部に気泡が残留するという問題を解決しようとする技術である。
特開2003-195081公報 国際公開2009/116421公報 特開2009-258612公報 特開2010-175741公報 特開2000-147755公報
 本発明の一つの局面は、キャリア基材(A)と、活性エネルギー線又は熱で硬化可能な光導波路用樹脂層(B)と、保護フィルム(C)とを有する光導波路用ドライフィルムにおいて、保護フィルム(C)の光導波路用樹脂層(B)と接する面が粗化面であることを特徴とする光導波路用ドライフィルムである。
 本発明によれば、残存する微小気泡を極小化した光導波路を製造することが可能となるため、光導波路における、導波損失低減、製造歩留まりや信頼性の向上を実現することができると考えられる。また、クラッド層とコア層を形成する工程を同じ装置を用いて実施する事が可能になり、光導波路製造コスト低減を図ることができる。
図1は、本発明の一つの実施形態に係る光導波路用ドライフィルムであって、下クラッド用のドライフルム構成を示す断面模式図である。 図2は、本発明の一実施形態の光導波路用ドライフィルムを用いた光導波路の製造方法における、下クラッド用ドライフィルムの保護フィルムを剥離した状態を示す断面模式図である。 図3は、本実施形態の製造方法において、光導波路の下クラッドドライフィルムの保護フィルムを剥離した光導波路用樹脂層表面の粗度を低下させることなく、樹脂層表面と平面状物体を近接させた状態を示す断面模式図である。 図4は、本実施形態の製造方法において、減圧下で加熱加圧下して光導波路用樹脂層と平面状物体を貼り合わせた状態を示す断面模式図である。 図5は、本実施形態の製造方法において、光導波路用樹脂層を硬化させた後、キャリア基材を取り除いた状態を示す断面模式図である。 図6は、本発明の他の実施形態における光導波路用ドライフィルムであって、コア用のドライフィルムの構成を示す断面模式図である。 図7は、本発明の他の実施形態の製造方法において、コア用ドライフィルムの保護フィルムを剥離した状態を示す断面模式図である。 図8は、本発明の他の実施形態の製造方法において、光導波路用のコア用ドライフィルムの保護フィルムを剥離した光導波路用樹脂層表面の粗度を低下させることなく樹脂表面と、平面状物体上に形成された下クラッド層を近接させた状態を示す断面模式図である。 図9は、本発明の他の実施形態の製造方法において、減圧下で加熱加圧下して光導波路のコア用樹脂層と、下クラッド層とを貼り合わせた状態を示す断面模式図である。 本発明の他の実施形態の製造方法において、光導波路用樹脂層(コア用)を部分的に硬化させる工程と、キャリア基材を剥離する工程と、未硬化部分を除去する現像工程を含む製法を経て得られた、平面状物体上に下クラッド層とコア層が形成された状態を示す断面模式図である。 図11は、本発明のさらに別の実施形態に係る光導波路用ドライフィルムであって、上クラッド用のドライフィルムの構成を示す断面模式図である。 図12は、本発明のさらに別の実施形態の製造方法において、上クラッド用ドライフィルムの保護フィルムを剥離した状態を示す断面模式図である。 図13は、本発明の他の実施形態の製造方法において、光導波路の上クラッド用ドライフィルムの保護フィルムを剥離した光導波路用樹脂層表面の粗度を低下させることなく樹脂層表面と、平面状物体上に形成されたコア層及び下クラッド層を近接させた状態を示す断面模式図である。 図14は、本発明の他の実施形態の製造方法において、光導波路の上クラッド用樹脂層とコア層及び下クラッド層とを接触させた状態を示す断面模式図である。 図15は、本発明の他の実施形態の製造方法において、減圧下で加熱加圧下して光導波路の上クラッド用樹脂層と、コア層及び下クラッド層とを貼り合わせた後の状態を示す断面模式図である。 図16は、本発明の他の実施形態の製造方法において、平面状物体上に下クラッド層とコア層と上クラッド層が形成された状態を示す断面模式図である。
 いわゆるドライフィルム状のクラッド用及びコア用の光導波路用樹脂フィルムを使用する場合には、キャリア基材と反対側の光導波路用樹脂表面を、平面状物体上に配置してラミネートする必要があり一般的には真空ラミネートを採用されるが、真空ラミネートを採用してもラミネート後に微細な気泡(目視あるいは光学顕微鏡で容易に発見可能な、光導波路を俯瞰する真上から見た場合の直径が5μmから100μm程度の気泡)が残存するという問題点があった。ドライフィルム状の光導波路用樹脂は、取り扱い時に光導波路用樹脂にクラックや樹脂脱離・粉発生などが無いように、あるいは、平面状物体に配置する際に容易にスリップして配置位置が変わってしまうことのないよう、ドライフィルム状の光導波路用樹脂を平面状物体に少なくとも配置する時の温度において、光導波路用樹脂そのものに適度な柔軟性を有し、その表面に適度なタック性を有するものが好適である。そして、平面状物体にドライフィルム状の光導波路用樹脂表面を配置すると、部分的に平面状物体と樹脂表面が接着状態になり、空気層を取り囲むような接着領域が生じ、これが真空ラミネート後にも最終的に残存気泡となる事が多い。
 微細な気泡が残存すると、それが光導波路コア内部に存在する場合には、コアを通過する光が気体である気泡とコア樹脂の界面で反射や散乱され、光導波路の損失が著しく悪化するという問題があった。またコア近傍、概ねコアから5μm以内のクラッドに気泡が存在する場合には、コアからしみ出して伝搬する光の一部が、クラッドよりも低い屈折率を有する気泡(クラッドの屈折率は一般的に1.46~1.6程度、空気の屈折率は1.0)の部分で散乱され、結果的に光導波路の損失が著しく悪化するという問題があった。また、コアから離れた位置にあるクラッド内に気泡が存在する場合には、その部分が光導波路あるいは光導波路を含む電気基板、いわゆる光・電気複合基板の信頼性を低下させるという問題があった。なぜなら、吸湿させる信頼性試験では気泡部分に水分がたまってその後のリフロー試験などの加熱条件下で破壊を生じさせる原因となったり、温度サイクル試験に於ける熱応力が掛かると気泡部分に応力集中が生じてやはり破壊の起点となったり、あるいは光・電気複合基板において気泡とビアホール(Via Hole)やスルーホール(Trough Hole)が重なっている、言い換えれば気泡の一部をビアホール等が貫通している場合、あるいは100μm以下に近接している場合には、そのビアホール等の接続信頼性が低下する、という原因になるからである。
 また、ドライフィルムとして一般的に用いられるソルダーレジストやカバーレイやエッチングレジストの場合には、その機能を発現するための樹脂層は一つの層で事足りるので、プリント配線板の表面にドライフィルムの樹脂層は単層で形成されるだけである。一方、光導波路用のドライフィルム材料は、平面状物体の上に下クラッドを形成し、その上にコアを形成し、更にその上に上クラッドを形成する必要があるので、必ずドライフィルム材料の樹脂層が複層(多段または多層)で積み重ねられる。さらに、コアを多層に形成する場合には、ドライフィルム材料の樹脂層がますます多層になる。また、既述の通り下クラッド、コア、上クラッドに気泡が混入していると光導波路としての性能低下あるいは、光電気複合基板の信頼性低下を引き起こす。下クラッド・コア・上クラッドの各々の層に混入する気泡の程度が、ソルダーレジストやカバーレイやエッチングレジストがプリント配線板に形成された状態において許容されるレベルの気泡混入程度と同じであったとしても、多層(少なくとも3層)に積み重なった光導波路の不良(不具合)の発生確率は、下クラッド・コア・上クラッド各層の不良発生確率の積算となってしまう。このために、光導波路用ドライフィルム材料では、下クラッド、コア、上クラッドの各層において、一般的なソルダーレジストやカバーレイやエッチングレジストよりも気泡の混入を極めて少なくする必要がある。
 結果的に、該気泡はラミネート法で製造される光導波路の製造歩留まりを低下させるだけでなく、気泡が残存しないようにするために複雑な製造工程やノウハウを必要として該光導波路製造コストを上げる事になるので、該光導波路の工業化には該光導波路への微細気泡残存を極小化するためのドライフィルム材料における対策が望まれていた。
 本発明は、上記問題点に鑑み、光導波路に残存する微細気泡極小化できる光導波路用ドライフィルムとそれを用いた光導波路の製法及び光導波路を提供することを目的とする。
 本発明者らは、鋭意検討を重ねた結果、光導波路用ドライフィルムにおいて、保護フィルムを使用し、その保護フィルムの光導波路用樹脂に接する面が粗化面であり、保護フィルムを剥離したドライフィルムの光導波路用樹脂表面が該保護フィルムの剥離面を反映した粗化面とすることによって、上記課題を解決し得ることを見いだした。そして、本発明者等は、かかる知見に基づいて更に検討を重ねることによって本発明を完成した。
 以下、本発明に係る実施形態について具体的に説明するが、本発明は、これらに限定されるものではない。
 [第1実施形態]
 本発明の第1実施形態の光導波路用ドライフィルムは、キャリア基材(A)と、活性エネルギー線又は熱で硬化可能な光導波路用樹脂層(B)と、保護フィルム(C)とを有する光導波路用ドライフィルムであり、保護フィルム(C)の光導波路用樹脂層(B)と接する面が粗化面であることを特徴とする。
 このような構成により、本実施形態のドライフィルムを用いて製造される光導波路において、その内部に残存する微細な気泡(目視あるいは光学顕微鏡で容易に発見可能な、光導波路を俯瞰する真上から見た場合の直径が5μmから100μm程度の気泡)を極小化することができ、光導波路の導波損失及びそのバラツキを低減できると共に、光導波路の信頼性及び光・電気複合基板の電気配線の信頼性をも向上させることができる。本実施形態のドライフィルムの構成例(下クラッド層形成用ドライフィルム10)を図1の断面模式図に示す。図1に示すように、本実施形態に係るドライフィルム(下クラッド層形成用ドライフィルム10)は、キャリア基材11と、光導波路(下クラッド)用樹脂層12と保護フィルム13とを有し、前記保護フィルム13の光導波路(下クラッド)用樹脂層12と接する面が粗化面である。以下、本実施形態のドライフィルムの各構成要素について詳述する。
 なお、図中の各符号はそれぞれ:10 光導波路(下クラッド)用ドライフィルム、11、31、41 キャリア基材、12 光導波路(下クラッド)用樹脂層、13、33、43 保護フィルム、14 下クラッド、20 平面状物体、21 下クラッドが形成された平面状物体、22 下クラッドとコアが形成された平面状物体、30 光導波路(コア)用ドライフィルム、32 光導波路(コア)用樹脂層、34 コア、40 光導波路(上クラッド)用ドライフィルム、42 光導波路(上クラッド)用樹脂層、44 上クラッド、を示す。
 〔キャリア基材(A)〕
 キャリア基材(A)はその上に光導波路用の樹脂層を形成し、後に平面状物体に光導波路用樹脂層を転写する際のキャリアであり、好ましくは、フィルム状あるいはシート状で柔軟性のあるキャリアが使用される。キャリア基材の材質は、特に限定はないが、熱可塑性樹脂、熱硬化性樹脂の硬化物(樹脂フィルム)、金属、無機物(ガラス)などを例示できる。
 熱可塑性樹脂としては、PET(ポリエチレンテレフタレート)、PP(ポリプロピレン)、PE(ポリエチレン)、PEN(ポリエチレンナフタレート)、PI(ポリイミド)、COF(シクロオレフィンポリマー)、PA(ポリアミド)、PAI(ポリアミドイミド)、LCP(液晶ポリマー)などを例示できる。これらはフィルム製造工程で延伸加工を施されたものであっても良い。
 熱硬化性樹脂硬化物としては、熱硬化性樹脂と無機フィラー(ガラスクロス、ガラス不織布、ガラス粉)を複合化した複合材料、熱硬化性樹脂の分子構造を適宜選択して得られる、あるいは硬化物の柔軟性を向上しうる添加物を適宜選択して得られる、柔軟性を有する熱硬化性樹脂硬化物などを例示できる。
 金属としては、銅やアルミなどの単層あるいは複層構造の金属箔、及び前記熱可塑性樹脂又は熱硬化性樹脂に金属の薄層が形成された複合体などを例示できる。
 これらは、光導波路の製造工程や最終製品の用途に応じて適宜選択できる。キャリアの材質が金属である場合、20~100μm厚の金属箔(キャリア箔とも言う)上に、1~30μmの厚みの金属箔が、剥離層を介して積層された、いわゆるピーラブル金属箔をキャリア基材として使用しても良い。
 好ましくは、キャリア基材(A)が樹脂フィルムであると、キャリア基材(A)自体の持つ柔軟性、表面状態を幅広くコントロールできる特性、およびコスト上の利点がある。またキャリア基材(A)が金属箔であると、特に光導波路用樹脂層(B)として、熱で硬化可能なものであってかつ光導波路のコアを埋め込むクラッド(上クラッドまたは第二クラッドとも言う)が形成されているドライフィルムを使用することで、光導波路形成後に残るキャリア基材(A)すなわち金属箔を必要に応じてエッチングなどの方法で金属の配線回路を形成する事ができるので、光電気複合配線板を製造するのに非常に好適である。
 本実施形態のドライフィルムが、後述する平面状物体にラミネートされた後、キャリア基材を通して活性エネルギー線を照射して、光導波路用樹脂層(B)を硬化させる工法を採用する場合には、キャリア基材は透明性の高いものを使用するのが好ましい。その場合、照射する活性エネルギー線の波長におけるキャリア基材の透過率は85%以上が良く、さらに好ましくは90%以上である。
 また、さらにマスク露光あるいはレーザ掃引などの方法により、キャリア基材を通して活性エネルギー線を部分的に照射して、光導波路用樹脂層(B)を部分的に硬化させる工法(いわゆるパターニングを行う場合の露光工程)を採用する場合には、硬化物パターン、つまり、その後の未露光部分を除去する現像工程により現れるパターンのエッジの粗れ(パターン側面が平滑ではなく凹凸を有する状態)を抑制するために、キャリア基材は、表面のキズが無くかつ表面粗度が極めて小さいもの、内部に含まれる屈折率の異なる粒子状物質(気泡や有機物または無機物の微粒子)の寸法ができるだけ小さく、かつその含有量の少ないものが好ましい。その場合、キャリア基材の表面粗度(定義は後述)は算術平均粗さ(SRa)が0.1μm以下かつ十点平均粗さ(SRz)が2μm以下であることが好ましく、更に好ましくは算術平均粗さ(SRa)が0.06μm以下かつ十点平均粗さ(SRz)が1μm以下である。前記粒子状物質の平均粒径は1μm以下であることが好ましく、更に好ましくは0.5μm以下、最も好ましくは0.1μm以下である。
 なお、本明細書おける表面粗さ(表面粗度)の数値は、後述する光導波路用樹脂層(B)の表面粗さをも表すことができるよう、探針式ではなく、走査型共焦点レーザ顕微鏡を用いた粗さ解析によって得られる値である。探針式の表面粗さ測定において微細な粗さを計測する際には、一般的には、先端が半径2μmの探針で0.75mN(約0.0765gf)の荷重を加えて測定する。被測定物との接触面積が半径2μmの場合には1平方cmあたり約600kgf相当、接触面積が半径1μmの場合には1平方cmあたり約2400kgf相当の荷重が被測定物に加わることになり、柔らかい樹脂においてはその力で変形が生じてしまい表面粗さを正しく測定できない。そのため非接触で表面粗さを測定する必要があり、本実施形態では走査型共焦点レーザ顕微鏡を用い、次の条件で測定することができる。
 使用装置:オリンパス社製 走査型共焦点レーザ顕微鏡 LEXT OLS3000
 対物レンズ倍率:100倍
 粗さ解析モード:面粗さ
 パラメータセット:JIS 1994
 カットオフλc:無指定
 最小高さ識別: 断面曲線:Pzの10%、粗さ曲線:Rzの10%、うねり曲線:Wzの10%
 最小長さの識別: 基準長さ(画像視野)の1%
 この結果で得られたSRaが算術平均粗さ、SRzが十点平均粗さであり、以下、本明細書では、SRa、SRzと表記することもある。
 また、本明細書では、活性エネルギー線とは可視光領域以下の波長を有する電磁波のことを示し、具体的には、700nmから400nmの可視光、400nmから約2nmの紫外線、それよりも短波長のX線を示す。一般的には、波長9.4μmと10.6μmのレーザ光を発する炭酸ガスレーザなどの赤外線レーザを活性エネルギー線ということもあるが、本明細書ではあくまでも、活性エネルギー線は波長が700nm以下の電磁波を示し、赤外レーザは含まない。このように定義付けた理由は、光の波長が可視光よりも長い場合、その電磁波では、樹脂を硬化させる光硬化タイプの硬化開始剤を実質的に活性化させることができないからである。
 本実施形態において、キャリア基材の厚みは、ドライフィルムの製造から使用における各工程で必要とされる諸特性や柔軟性を有する範囲であれば特に制限はない。一般的には9μm~200μmが好ましい。9μmよりも薄くなると、キャリア基材にシワが極めて入りやすいという欠点や、強度が低下して破断しやすいという欠点あるいは、その上に光導波路用樹脂層を形成する際の加工工程で加えられる張力で伸びが大きくなる等の取り扱い性が悪化するので好ましくない。逆に、200μmよりも厚くなると、コストや製品重量が増えるという欠点以外にも、キャリア基材を通して活性エネルギー線で光導波路用樹脂を硬化させる際に、キャリア基材で活性エネルギー線が吸収される、あるいは散乱されるなどの欠点、キャリア基材の剛性が高くなりすぎて光導波路用ドライフィルムの製造工程あるいは使用工程で取り扱い性が悪化する欠点などが生じるので好ましくないと考えられる。キャリア基材が単層の材料からなる場合、更に好ましいキャリア基材の厚みは、15μm~100μmであり、30~75μmが特に好ましい。
 キャリア基材の表面状態は、キャリア基材が最終的な製品において光導波路上に残存する場合と、キャリア基材が光導波路製造過程で除去されて最終的な製品において光導波路上に残存しない場合とで、異なる性状となっていてもよい。
 すななち、キャリア基材が最終的な製品において光導波路上に残存する場合には、キャリア基材が接合されている光導波路を構成する樹脂層とキャリア基材の接着力が高い事が必要となるので、該キャリア基材表面は、プラズマ処理やコロナ処理などの表面に官能基を生成させる処理、あるいはサンドブラスト処理や化学的エッチング処理、オレフィン系ポリマで異なる結晶相が混在するものを延伸する処理などの方法で表面凹凸を形成する処理あるいは、光導波路用樹脂硬化物とキャリア基材両方に接着力の高い物質をキャリア基材表面にコーティングする処理(易接着処理やプライマー処理とも言われる)などで、接着化処理を施すのが好ましい。ただし、例えば、キャリア基材を光導波路の片方のクラッドとして使用する場合には、キャリア基材の表面が平滑で、光導波路コアを伝搬する光の波長において高い透明性を有し、かつコアよりも屈折率の低いものが必要である。この場合、コア用樹脂や上クラッド用樹脂との密着性を高くするために、その表面をプラズマ処理する、あるいは接着力の高い樹脂やカップリング剤などを薄層でコーティングするいわゆるプライマー処理をするのが好ましい。
 一方、キャリア基材が光導波路製造過程で除去されて最終的な製品において光導波路上に残存しない場合には、キャリア基材が光導波路用樹脂の未硬化物あるいは硬化物との剥離を容易にするために、いわゆるアンカー効果を極小化できるよう表面平滑性の高いものが良く、SRaが0.1μm以下かつSRzが2μm以下というものが好ましく、更に好ましくはSRaが0.06μm以下かつSRzが1μm以下である。また、キャリア基材表面には、必要に応じてフッ素系樹脂やシリコーン系樹脂、各種有機シラン化合物などのコーティングや吸着などのいわゆる離型処理を施しても良い。
 このようなキャリア基材の市販品としては、東洋紡株式会社製のPETフィルムの品番A4100等を例示できる。これは、片面に易接着処理がなされ、他面は表面処理がなされていないフィルムであり、表面粗さの実測値は、表面処理がなされていない面のSRaが0.03μm、SRzが0.7μmである。またその他の市販品として、東レ株式会社製のPETフィルムの品番T60等も例示できる。当該フィルムにおいて、表面粗さが小さい面の実測値は、SRaが0.04μm、SRzが1.9μmである。
 なお、キャリア基材の表面状態にかかわらず、既述の通り、保護フィルムを光導波路用樹脂層から剥離する際に必ず光導波路用樹脂と保護フィルムの界面で剥離する必要があるので、キャリア基材と光導波路用樹脂界面の密着力は、保護フィルムと光導波路用樹脂界面の密着力よりも高くなければならない。
 〔活性エネルギー線又は熱で硬化可能な光導波路用樹脂層(B)〕
 活性エネルギー線又は熱で硬化可能な光導波路用樹脂層(B)は、光導波路(クラッド、コア)を構成する部材となるものなので、光導波路内を通って信号を搬送する光の波長(以下、導波光波長と略すこともある)において、活性エネルギー線又は熱で硬化した硬化物が高い透明性を有しており、かつドライフィルムの形態を実現できる樹脂で形成されていれば良く、どのような材料であっても使用できる。
 最終的に光導波路を形成するための樹脂層なので、光導波路コア用の樹脂組成物と光導波路クラッド用の樹脂組成物はともに高い透明性を有する必要があり、その樹脂組成物を厚み2~3mmの板状に硬化させた物体の、表面が平滑で気泡等の欠陥を含まない部分の厚み方向の透過損失を分光光度計にて測定した場合に、導波光波長が840~860nmにおいては0.1dB/cm以下、または光導波路光波長が990~1010nmにおいては0.3dB/cm以下、または導波光波長が1300~1330nmにおいては0.5dB/cm以下がとなるような透明性を有する樹脂組成物であること好ましい。これらの値以上になると、光導波路の損失が大きくなり、光導波路で情報伝送するためのレーザ光源の出力を高めるために多くの電力を消費することになる、あるいは、光導波路で情報伝送可能な距離が短くなるという理由から好ましくない。
 また、樹脂組成物の硬化物の屈折率に関しては、前記コア用樹脂組成物は、前記クラッド用樹脂組成物よりも導波光波長における屈折率が高い事が必須であり、コア屈折率の二乗値からクラッド屈折率の二乗値を差し引いた演算結果の平方根で示される開口数(Numerical Aperture;NAと略される)が0.1~0.5となるように設定する事が好ましい。NAが0.1よりも小さくなると、長距離の光伝送で一般的に使用される光ファイバーであるシングルモード(SM)ファイバーのNAよりも小さくなるので、同光ファイバーとの光結合の際に結合ロスが発生する、あるいは光導波路コアを面内でカーブさせて配置する際の曲がり部のロスが大きくなる、あるいはコアとクラッドの屈折率差が小さすぎるためにNAの値がばらついて安定しないという問題が生じるので好ましくない。逆にNAが0.5よりも大きくなると、光導波路から受光素子へ向けて光が出ていく部分で光の広がり角度が大きくなることにより、受光素子の受光部分からはみ出す信号光が増えて結果的に結合損失が大きくなるので好ましくない。
 このような光導波路用樹脂層(B)の樹脂材質としては、エポキシ硬化系の樹脂、アクリル硬化系の樹脂、シアネートエステル硬化系の樹脂、オキセタン樹脂系、ビニルエーテル樹脂系、ウレタン樹脂系、又はこれらを併用した樹脂、あるいは、シリコーン硬化系の樹脂等を例示できる。いずれも光導波路を構成する部材として使用されるので、硬化物の透明性が高いことが必要であるのは言うまでもない。
 エポキシ硬化系の樹脂とは、硬化系として、炭素原子2個と酸素原子1個からなる3員環構造の官能基を意味するエポキシ基が、何らかの硬化開始剤存在下で活性エネルギー線や加熱によって開環反応を生じ最終的に樹脂が三次元架橋しうる硬化系の樹脂を含む組成物を意味し、他の硬化系、例えばオキセタンと呼ばれる炭素原子3個と酸素原子1個からなる4員環の官能基の開環反応によって三次元架橋する硬化系や、重合性の炭素-炭素二重結合を有する化合物が三次元架橋する硬化系(いずれも硬化開始剤存在下で活性エネルギー線や加熱によって反応が進行する)などを併用した樹脂であってもよい。
 エポキシ硬化系樹脂の好適な例としては、特開2007-119585号公報、特開2009-104083号公報や、特開2009-104084号公報、特開2010-230944号公報に記載の内容や組成物を例示できる。
 エポキシ樹脂組成物に用いるエポキシ樹脂原料とは、エポキシ基を有する化合物であって、硬化させる必要があるので、組成物中には1分子中に2個以上のエポキシ基を有する化合物を含んでいる。エポキシ樹脂原料の分子量やエポキシ当量は様々であり、1,2,8,9-ジエポキシリモネン(株式会社ダイセルからセロキサイド3000として発売されている2官能の脂肪族エポキシ)のように分子量168でエポキシ当量93.5未満、から、フェノキシ樹脂やフェノキシポリマーとも呼ばれることがある高分子量エポキシ樹脂(エピクロルヒドリンとビスフェノールから合成される)のように分子量が4万以上、エポキシ当量が約7000以上のようなものまで幅広いエポキシ樹脂原料が存在する。本実施形態にて使用するエポキシ樹脂原料は、光導波路用樹脂層(B)のタック性や粉落ち性や脆さ、溶融粘度あるいは軟化温度などの取り扱い性や加工性、硬化性、及び光導波路用樹脂層(B)の硬化物の透明性や耐熱性、柔軟性、強靱性、屈折率、複屈折率、線膨張率、熱伝導率などの特性を所望の水準にできるよう、適宜選択する事ができる。このエポキシ樹脂原料を硬化させるには、硬化剤及び又は硬化開始剤(硬化触媒)が必要であるが、いずれも、光導波路に必須である硬化物における高い透明性を実現できるものであれば限定なく使用できる。
 本実施形態において、アクリル硬化系の樹脂とは、カルボキシル基を側鎖に有するポリマーと、(メタ)アクリル酸エステルのモノマーあるいはオリゴマーと何らかの硬化開始剤を必須成分とし、活性エネルギー線や加熱によって重合反応を生じ最終的に樹脂が溶剤あるいはアルカリ性液体に不溶化する硬化系の樹脂を含む組成物のことをさす。好適な具体例としては、特開2009-169300号公報、特開2010-091733号公報、特開2011-117988号公報に記載の内容や組成物が挙げられる。
 また、本実施形態において、シアネートエステル硬化系の樹脂とは、硬化開始剤(触媒)存在下で-OCN基同士が反応して6員環のトリアジン環を生成、あるいはエポキシ樹脂を併用する場合にはトリアジン環だけでなくオキサゾリン環も生成し、三次元架橋する硬化系の樹脂をさす。好適な例としては、特開2012-159590に記載の内容や組成物が挙げられる。
 本実施形態において、シリコーン硬化系とは、触媒存在下でケイ素-水素と炭素-炭素二重結合の間で付加反応(ハイドロシリレーション)を生じさせ、三次元架橋する硬化系の樹脂をさす。
 光導波路用樹脂層(B)の形成方法に関しては、特に限定はされないが、上述したようなキャリア基材(A)上に光導波路用樹脂層(B)を構成する樹脂組成物を塗工し加熱する方法が好ましい。より具体的には、樹脂組成物原料を全て混合したものが室温で液体の場合はそのまま樹脂組成物を塗工し、その後、加熱により硬化反応をある程度進行させ室温では固形状となる、いわゆるBステージ状態にする方法を例示できる。また、樹脂組成物原料を全て混合したものが室温で固形の場合は、樹脂組成物原料を溶剤に溶解した溶液を塗工・乾燥する方法、あるいは必要に応じて乾燥中の加熱により上記Bステージ化を行う方法を例示できる。この塗工とは、ダイコータ、スリットコータ、リップコータ、コンマコータ、グラビアコータなど、数μm~数百μm厚の乾燥塗膜あるいはBステージ化塗膜を工業的に連続形成しうる一般的な方法を採用できる。
 また、本実施形態の光導波路用樹脂層(B)の厚みに関しては、最終的に光導波路コアとなる部分の樹脂層は5~100μm程度の厚みであることが好ましい。リッジ光導波路のコアは、光信号が伝搬する方向に対して直角の断面形状がほぼ正方形なのが一般的であり、光導波路コアとなる部分の樹脂層厚みがほぼコアの高さに相当し、部分的な露光とその後の現像で所望の形状を得る方法(フォトリソグラフィーあるいは、フォトリソ、あるいは単にパターニングとも言う)によって形成される光導波路コアの幅とほぼ等しいのが一般的である。このことから、光導波路コアとなる部分の光導波路用樹脂層(B)の厚みが5μmよりも小さくなると、コアの断面寸法が小さくなりすぎて、導波路と光を結合する相手である光ファイバーや発光素子との結合損失が増大する、あるいは、フォトリソでコアパターンを形成する際に所望の寸法を安定して製造しにくくなる、などの不都合が生じるので好ましくない。逆に、厚みが100μmよりも大きくなると、コアの断面寸法が大きくなりすぎて、導波路と光を結合する相手である光ファイバーや受光素子との結合損失が増大する、あるいは、光導波路全体の厚みが増大する、という問題が生じるので好ましくないと考えられる。
 一方、光導波路用樹脂層(B)の厚みに関して、最終的に光導波路クラッドとなる部分の光導波路用樹脂層(B)は、光導波路を形成した際のコア直上又は真下の厚みが5μm~100μmとなるような厚みであることが好ましい。5μmよりも薄くなると、コアに導波光を閉じ込める効果が低下して光導波路損失が悪化するので好ましくない。逆に100μmよりも厚いと導波損失面では問題無いが、光導波路そのものの厚みが増大して好ましくないと考えられる。
 本実施形態の光導波路用樹脂層(B)の構造については、単層すなわち、下クラッド・コア・上クラッドの各層専用の単層の樹脂層でも良いし、多層すなわち、クラッド用樹脂とコア用樹脂が積層された構造であっても良い。
 なお、下クラッドとは、最終的にコアが1層の光導波路が形成される場合には、後述する平面状物体(D)の上に形成されるクラッドであって、その上にコアが形成されるクラッドをさし、下部クラッド、アンダークラッド、第1クラッドあるいは1stクラッドなどとも呼ばれる。また、上クラッドとは、リッジ光導波路のコアを埋め込む、あるいはスラブ光導波路のコアの上を覆うクラッドのことであり、上部クラッド、オーバークラッド、第2クラッドあるいは2ndクラッドとも呼ばれる。下クラッド・上クラッドには厳密な区別はなく、コアを多層(多段)に形成する際には、上記の上クラッドの表面にコアを形成する場合があり、このような場合は、下層コア用の上クラッドが、上層コアの下クラッドを兼ねることになる。
 〔保護フィルム(C)〕
 本実施形態の光導波路用ドライフィルムにおいて、保護フィルム(C)の構成は重要な特徴の一つである。従来、光導波路用のフィルム材料においては、保護フィルムは光導波路用樹脂層との剥離性にのみ着目されており、保護フィルム表面の粗化については全く検討されていなかった。本発明において初めて、その表面が適度に粗化されており、かつ、保護フィルム(C)を剥離した樹脂層(B)の表面が保護フィルム(C)の表面粗度を反映した粗面になっているドライフィルムを用いることによって、後述する平面状物体(D)にラミネートした際、最終的に得られる光導波路の導波損失を低減できることが分かった。
 本実施形態において、保護フィルム(C)は一般的には既述の通り、光導波路用樹脂層(B)表面に異物が付着したり、傷が付くのを防ぐ目的、あるいは、光導波路用樹脂層(B)を塗工・乾燥した後の巻き取り性を向上させるという目的でも使用される。本実施形態ではそういった従来の目的だけでなく、光導波路用樹脂層(B)表面に保護フィルム(C)の表面粗化状態を転写する母型として用いられる。保護フィルム(C)を剥離した面の光導波路用樹脂層(B)表面が粗化状態にあると、平面状物体(D)に接触した際の光導波路用樹脂層(B)の接触面積が小さくなり、貼り合わせる際に空気が排出される経路が多く確保されることから、貼り合わせ後の光導波路用樹脂層(B)にボイド(微細気泡)が残ることを極小化できると考えられる。
 保護フィルム(C)の材質としては、例えば、キャリア基材(A)と同様のものを例示できる。
 本実施形態において、保護フィルム(C)の光導波路用樹脂層(B)と接する表面は粗化状態であり、粗化するための手段は、サンドブラストや物理的エッチング加工とも称される放電加工、化学的エッチング加工などのフィルムに後加工する方法や、原料中にフィラーを添加し表面に凹凸を生成す方法、フィラー入りのコーティング材を表面に塗工・硬化する方法、あるいは原料中の樹脂の結晶構造比を制御し延伸過程で表面に凹凸を生成するなどのフィルム自体に凹凸を生成させる方法など、公知の方法を使用することができる。保護フィルム(C)において、光導波路用樹脂層(B)と接しない側の表面は平滑であっても粗化されていても良い。
 本実施形態において、粗化面であるということは、保護フィルム(C)の光導波路用樹脂層(B)と接する面が一般的に平滑であると認められる水準(つまりSRaが0.07μm以下またはSRzが1μm以下)を超えた粗度を有しているということを意味する。保護フィルム(C)の光導波路用樹脂層(B)と接する面の粗度の値が平滑な水準以下であると、後述の平面状物体(D)に、保護フィルムを剥離した光導波路用樹脂層(B)の表面をラミネートする際に、空気の逃げ道が無くなる部分が増え、貼り合わせ後の光導波路用樹脂層(B)と平面状物体(D)との間にボイドが多く残るので好ましくない。ちなみに、SRzは光導波路用樹脂層(B)の厚み以下が好ましいのは言うまでもない。
 特に、前記粗化面のSRaが0.1~1μm、かつSRzが1~10μmであることが好ましい。SRaが0.1μm以下またはSRzが1μm以下であると、平面状物体(D)に、保護フィルム(C)を剥離して現れる樹脂層(B)の表面をラミネートする際に空気の逃げ道が少なくなって、貼り合わせ後の樹脂層(D)にボイドが残りやすくなるおそれがある。また、SRaが1μmよりも大きい、あるいはSRzが10μmより大きいと、保護フィルム(C)を剥離する際に部分的に樹脂層(B)が、保護フィルム(C)側に残る、つまりキャリア基材(A)から剥がれるという不具合が生じやすくなる傾向がある。なお、光導波路用樹脂層(B)の厚みが既述のように10μm以下の場合には、SRzはこの厚み以下であることが好ましい。
 更に、本実施形態においては、保護フィルム(C)と光導波路用樹脂層(B)の剥離性は、保護フィルム(C)の粗化面によるアンカー効果の影響が大きいと考えられるが、これ以外にも、樹脂層(B)と保護フィルム(C)との物理的な相互作用なども影響していると考えられる。物理的な相互作用とは具体的には濡れ性などが挙げられる。これにより、保護フィルムの種類によっては、上記SRaが1μmであっても、樹脂からの剥離性が悪化することがあるため、特に、上記SRa0.1~0.5μm未満かつ上記SRzが1~5μm未満であることが好ましい。更に、上記SRaについては、より好ましい範囲は0.1~0.3μmである。
 上記SRa及び上記SRzがこのような範囲であれは、貼り合わせ後の樹脂層(B)のボイド残りの極小化が実現できるとともに、樹脂層(B)の厚みに関わらず問題無く使用出来るという利点がある。
 保護フィルム(C)の光導波路用樹脂層(B)と接する側の粗化表面には、更に離型処理が施されていてもよい。その手段としては、表面エネルギーの小さいフッ素系樹脂やケイ素化合物などを塗工・乾燥あるいは蒸着やスパッタなどの一般的な手段で薄膜形成するものを例示できる。保護フィルム(C)の光導波路用樹脂層(B)と接しない側の表面に、同じ離型処理が施されていても良い。
 また、既述の通り、保護フィルム(C)を光導波路用樹脂層(B)から剥離する際に、光導波路用樹脂層(B)と保護フィルム(C)の界面で剥離させるため、保護フィルム(C)と光導波路用樹脂層(B)との界面の密着力は、キャリア基材(A)と光導波路用樹脂層(B)との界面の密着力よりも低くなっている。
 保護フィルム(C)の厚みには特に制限はなく、取り扱い性や価格の面で決定すればよい。薄すぎると、強度不足やピンホールの不具合あるいは高価格になることから好ましくなく、厚すぎると、ドライフィルム全体の剛性が高すぎて取り扱いに不具合が生じたり、厚みや重量が増加して運搬コストが上がるなどの不具合が生じるので、一般的には10~100μmが好ましい。
 上記以外に、保護フィルム(C)には本発明の効果を阻害しない範囲内で、必要に応じて帯電防止剤や活性エネルギー線吸収能力を持つ物質を材料中に混合あるいは分散しても良く、あるいは塗布しても良い。光導波路用樹脂層(B)が感光性樹脂の場合、保護フィルム(C)に光導波路用樹脂層(B)を硬化しうる波長をカットする能力を有する物質、例えば、紫外線吸収剤や可視光の短波長以下の波長の光を吸収する物質(特定の染料や顔料、酸化セリウムなどの無機粉末など)がフィルム内部または表面に存在している状態にすることで、ドライフィルムが製造された直後から光導波路用樹脂層(B)を露光処理するまでの間に、保護フィルム(C)側からの不必要な活性エネルギー線の暴露を防止する事ができるので特に好ましい。
 本実施形態において、保護フィルム(C)は光導波路用樹脂層(B)に直接張り合わされているため、光導波路用樹脂層(B)自身が接着層として作用する。ラミネート済みのドライフィルムから保護フィルム(C)を剥離した光導波路用樹脂層(B)表面が、保護フィルム(C)の表面を反映した状態であるためである。ここで言う保護フィルム(C)の表面を反映した光導波路用樹脂層(B)の表面状態とは、光導波路用樹脂層(B)に接する保護フィルム(C)の表面の粗度(SRa、SRz)の値の40%~100%の粗度の値を維持している状態を言う。このようなレベルで光導波路用樹脂層(B)の表面が粗化されていると、前述の通り、貼り合わせ後の光導波路用樹脂層(B)のボイド残りの極小化が実現できる。
 保護フィルム(C)と光導波路用樹脂層(B)をラミネートする手段としては一般的な方法を採用できる。例えば、キャリア基材(A)に形成された光導波路用樹脂層(B)の表面に保護フィルム(C)の粗化面を適切な温度で、ロールにて押しつける方法、平板の真空ラミネータにより押しつける方法、ロール状に巻き取る際の張力で押しつける方法などを例示できる。
 ここに言う適切な温度とは、光導波路用樹脂層(B)が保護フィルム(C)の粗化表面に追従しうる軟化状態を発現できる温度範囲の中で低い温度領域であれば良く、光導波路用樹脂層(B)の樹脂組成によって異なるが、一般的には室温~100℃の範囲であるが、この範囲に限定するものではない。粗化表面に追従しうる軟化状態を発現できる温度範囲の中で、その最低温度よりも概ね70℃以上高い温度になると、光導波路用樹脂層(B)の樹脂がフィルム端部から流れ出してしまい、光導波路用樹脂層(B)の厚みが所望値よりも小さくなる(薄くなる)ので好ましくない。
 [第2実施形態]
 本発明のさらなる実施形態である光導波路の製造方法は、上述したような光導波路用ドライフィルムを用いる光導波路の製造方法において、以下の工程:
 平面状物体(D)を準備する工程、
 上述した光導波路用ドライフィルムの保護フィルム(C)を剥離する工程、
 前記光導波路用ドライフィルムの前記保護フィルム(C)を剥離した光導波路用樹脂層(B)表面の粗度を維持したまま、前記光導波路用樹脂層(B)と前記平面状物体(D)とを当接し、減圧下で加熱加圧して貼り合わせる工程、並びに、
 光導波路用樹脂層(B)の一部分もしくは全面を活性エネルギー線又は熱で硬化させる工程を、上記順序で行うことを特徴とする。
 〔平面状物体(D)を準備する工程〕
 本実施形態において、平面状物体(D)とは、本発明に係るドライフィルムの光導波路用樹脂層(B)を貼り付ける対象物である。
 具体的には、例えば、電気配線用基板(電気回路用のフレキシブル基板やリジッド基板)、屈曲性フィルム状材料、金属箔など、あるいは、光導波路構成部材がその上に形成された電気配線用基板、屈曲性フィルム状材料又は金属箔等が挙げられる。また、平面状物体(D)は、光導波路層の全て又は一部を形成した後に、前記光導波路層と剥離可能な仮基板、又は光導波路構成部材がその上に形成された前記仮基板であってもよい。
 前記平面状物体(D)が、屈曲性フィルム状材料である場合は、電気配線を含まない、又は最終的に電気配線が形成されない屈曲性フィルム状材料であってもよい。
 これらの各平面状物体(D)については様々な態様が考えられるが、特に、平面状物体(D)の表面粗度が低い場合、つまり、光導波路用樹脂層(B)を貼り合わせる対象物である平面状物体(D)の表面粗度がSRaで0.1μm以下の場合には、貼り合わせ後の光導波路用樹脂層(B)に気泡が多く残存しやすくなるので、本発明の効果がより発揮されると考えられる。
 なお、上述したような平面状物体(D)は既知の製造方法によって得ることができる。特にそれらの上に、下クラッドが形成された物体または下クラッドとコアが形成された物体、下クラッドとコアと上クラッドが形成された物体の場合は、本実施明帯で開示される光導波路用ドライフィルムとその製造方法を用いて得ることができる。
 〔光導波路用ドライフィルムの保護フィルム(C)を剥離する工程〕
 本実施形態の光導波路用ドライフィルムは、保護フィルム(C)が光導波路用樹脂層(B)にラミネートされているので、光導波路用樹脂層(B)と平面状物体(D)とを貼り合わせるために、まず、保護フィルム(C)を剥離する。その方法は、特に限定されず、光導波路用ドライフィルムの一辺あるいは角から保護フィルム(C)を手作業で剥離しても良いし、機械装置によって剥離しても良い。図2に光導波路用ドライフィルムの下クラッド用ドライフィルムの保護フィルム(C)を剥離した状態の模式図を示す。
 〔前記光導波路用ドライフィルムの前記保護フィルム(C)を剥離した光導波路用樹脂層(B)表面の粗度を維持したまま、前記光導波路用樹脂層(B)と前記平面状物体(D)とを当接し、減圧下で加熱加圧して貼り合わせる工程〕
 本実施形態では、粗化されている光導波路用樹脂層(B)の表面を平面状物体(D)に接触させるため、保護フィルム(C)を剥離して現れた光導波路用樹脂層(B)表面の粗度を維持し、平坦化されないようにする。例えば、保護フィルム(C)を剥離した後の光導波路用樹脂層(B)の表面が、何らかの装置を通過する際にロール等で挟まれる、あるいは、保護フィルム(C)を剥離したドライフィルムの上に何らかの物体を積み重ねる事によって、圧力を加えられて樹脂層(B)の表面粗化状態が平坦化される事態は避けねばならない。あるいは、保護フィルム(C)を剥離した後の樹脂層(B)の表面が、高温にさらされて軟化あるいは溶融して粗化状態が平坦化されることも避けねばならない。このような、粗度を低下させる要因を排除することで、表面粗度を有する保護フィルム(C)を剥離して現れる光導波路用樹脂層(B)の表面状態として、既述の通り、光導波路用樹脂層(B)に接する保護フィルム(C)の表面の粗度(SRa、SRz)の値の概ね40%~100%の粗度の値を維持できる。図3は、本実施形態において、下クラッド用ドライフィルムの場合を例にした、樹脂層(B)の表面粗度を維持したまま平面状物体(D)に接触させている状態の模式図を示す。
 保護フィルム(C)を剥離して現れる光導波路用樹脂層(B)の表面を平面状物体(D)に接触させるのは、最終的に平面状物体(D)に光導波路用樹脂層(B)を貼り合わせてラミネートするためである。この貼り合わせる工程には大別して2通りの方法がある。1つは、平面状物体(D)の寸法に近似した寸法にドライフィルムをカットし、保護フィルム(C)を剥離して現れる光導波路用樹脂層(B)の面を平面状物体(D)に積載する方法である。もう一つは仮貼りとも言われるロールラミネート法であり、ロール状に巻かれた光導波路用ドライフィルムを、保護フィルム(C)を剥離しながら平面状物体(D)にロールを用いて接触させ適切な線圧で仮貼りするものである。
 光導波路用樹脂層(B)を平面状物体(D)に当接(接触)させる際には、その際の温度において光導波路用樹脂層(B)の表面は粘着性(タック性)を有している必要がある。該温度は、前者の場合には室温であって、一般的には20℃~30℃である。この温度域で、該樹脂層(B)の表面に全く粘着性が無いと、平面状物体(D)に積載後の取り扱いの過程で容易にドライフィルムがずれてしまい、その後に行われる貼合わせ工程にてドライフィルムが平面状物体(D)の所望位置とは違う場所に固定されてしまい、不良品になるおそれがあるからである。後者の場合には、この温度はロール温度であって、一般的には室温から100℃程度の温度域となる。この場合においても、接触させる温度において、樹脂層(B)は粘着性を有している必要があり、粘着性がないと仮貼りする事ができない。
 次に、保護フィルム(C)を剥離して現れた光導波路用樹脂層(B)表面の粗度を低下させることなく光導波路用樹脂層(B)の表面と平面状物体(D)を、最終的に接触させた、あるいは当接させたものを、いわゆる真空ラミネート法で貼り合わせる。真空ラミネートとは、必要な温度に加温された板の上にワークを置き、雰囲気を減圧にし、減圧を継続したままワークに上下方向から必要な温度で圧力を加える、という機構を有する装置を用いた貼り合わせ方法である。
 ビルドアップ法で積層板を製造するための、いわゆるビルドアップフィルムをはじめとして、ドライフィルムタイプの材料をラミネートするのに適した装置が多く市販されており、株式会社名機製作所やニチゴー・モートン株式会社、サンエー技研株式会社、北川精機株式会社などから販売されているものを例示できる。また、プリプレグを用いて積層板を製造する際に広く用いられている真空平板プレス、真空多段プレスを使用することができる。
 このような装置を用いて、ラミネート条件を適切に設定する事により、ラミネート完了後の光導波路用樹脂層(B)にボイドの存在が極小化された状態を実現できる。ニチゴー・モートン株式会社製のV130での条件としては、上下の弾性体の温度を50℃~110℃に設定、ワークを置いた空間を減圧して気圧が100Pa(パスカル)に到達後10~90秒間保持した後、上側弾性体の内部に0.2MPa~1MPaの圧縮空気を導入してワークの上下方向に応力を加え、その状態を30秒間から120秒間保持し、その後圧力を解放してワークを取り出す条件など、を例示できる。
 貼り合わせ条件が不適切な場合、例えば、温度が35℃であったり、100Pa到達後の保持時間が2秒であったり、圧縮空気の圧力が0.15MPaであったり、圧力を加えた状態での保持時間が10秒であったりすると、貼り合わせ後の樹脂層(B)にボイドが残存しやすくなるおそれがある。
 図4に下クラッド用ドライフィルムを例にした、この貼り合わせ工程が完了した状態の模式図を示す。
 また、真空ラミネータのワークを加圧する部分にゴム状弾性体が用いられている場合において、平面状物体(D)表面に形成された回路パターン等によって表面に概ね10μm以上の段差がある際には、貼り合わせた後の光導波路用樹脂層(B)の表面が、該段差よりは小さいものの、該段差を反映した段差を生じる場合がある。この段差が以降の工程や最終的な製品において問題となる場合には、貼り合わせ工程の後に、いわゆる平坦化工程を採用してもよい。この平坦化工程とは、一般的にはステンレス等の硬い平板を貼り合わせ済みのワークの上(ドライフィルム側)に置いて加熱下で真空ラミネートしてその表面を強制的に平坦にする、あるいは加熱下の平板プレスでその表面を強制的に平坦にするものである。
 〔光導波路用樹脂層(B)の一部分あるいは全面を活性エネルギー線又は熱で硬化させる工程〕
 光導波路用樹脂層(B)の組成物が、活性エネルギー線硬化処方か、熱硬化処方か、あるいはこの両方が可能な処方かによって、活性エネルギー線と熱のどちらの手段で硬化可能なのかが決まる。
 少なくとも活性エネルギー線で硬化可能な処方であれば、活性エネルギー線が面状に照射される装置を使用する場合には光導波路用樹脂層(B)の全面を一括照射して全面を硬化させることができ、フォトマスク(単にマスクとも言う)を通して必要な部分にのみ活性エネルギー線を照射して、一部分を硬化させる事が出来る。また、活性エネルギー線がビーム状に照射される装置を使用する場合には、光導波路用樹脂層(B)の全面をスキャン(掃引)することで全面を硬化させることができ、活性エネルギー線のビームの太さに応じて必要であればマスクを通して、必要な部分に活性エネルギー線を掃引照射して、一部分を硬化させる事が出来る。この場合、活性エネルギー線で硬化させた後に、加熱処理を行って硬化を更に進める(アフターキュア、アフターベークまたは単にベークやベーキングとも言う)ことができる。
 一方、少なくとも熱で硬化可能な処方であれば、光導波路用樹脂層(B)を含むワークを硬化に必要な温度環境に置く事で、全面を硬化させることができる。また、熱線あるいは熱線相当の波長の電磁波を発する炭酸ガスレーザ等のレーザをマスクによって部分的に照射すること、あるいは熱線のビーム(熱線相当のレーザを含む)をその太さに応じて必要であればマスクを通して、必要な部分に該ビームを掃引照射することで、光導波路用樹脂層(B)を部分的に硬化させる事ができる。
 ちなみに、キャリア基材(A)は、光導波路用樹脂層(B)を部分的に又は全面にわたって硬化させる前に剥離しても良いし、硬化させた後に剥離してもよい。
 図5に下クラッド用ドライフィルムを例にした、この硬化工程が完了した状態の模式図を示す。
 また上述した硬化工程を行う前に、光導波路用樹脂層(B)を、光導波路用樹脂層(B)が硬化に至らずかつ軟化あるいは溶融する条件下で加熱するのが好ましい。その目的は光導波路の低損失化であって、その発現機構は2点あり、以下に説明する。
 一つ目の機構は、光導波路用樹脂層(B)の表面の平坦化(平滑化)である。前記貼り合わせ(ラミネート)工程を終了したドライフィルム側のキャリア基材表面には、貼り合わせ時にキャリア基材の外表面に存在する微粒子やホコリなどの影響で、微小な凹みが生じており、この凹みは光導波路用樹脂層(B)表面にも到達し、光導波路用樹脂層(B)の表面に微小な凹みが生じている。加熱することで光導波路用樹脂層(B)を変形しやすくし、キャリア基材(A)が付いたまま加熱する場合はキャリア基材(A)の弾性により凹みが修復されて平坦化できる、あるいは、キャリア基材(A)を剥離除去して加熱する場合は、光導波路用樹脂層(B)の表面張力により、凹みが修復されて平坦化できるのである。光導波路用樹脂層(B)が、その上にコアが形成される下クラッド用の場合、または上クラッドであっても多層光導波路を形成する際などのように更にその上にコアを形成する場合、クラッドの表面に凹みがあると、光導波路コアの外表面に凸が生じ、またコア用の場合はその表面に凹みがあると、コアの表面に凹みが生じ、結果的にコア表面に凹凸が生じることになり、導波損失が悪化するので、これを防止するために表面を平坦化することが極めて有効である。
 二つ目の機構は、リッジ光導波路におけるコア側面の導波への影響低減である。光導波路用ドライフィルムがリッジ光導波路のコアを埋め込む上クラッド用である場合に、リッジ光導波路のコアに対して上クラッドをラミネートして上クラッド樹脂を硬化させずに加熱する事により、クラッド材料がコア側面に拡散浸透して、コア側面にコアの屈折率とクラッドの屈折率の間の屈折率を有する層が生じるので、この部分を通過する導波光の量が低下し、結果的にコア側面の粗れによる導波損失悪化を抑制することができ、低損失の光導波路を実現できるのである。
 このような低損失化目的の2つの発現機構を実現させるために加熱する温度は、使用する樹脂層の軟化特性あるいは溶融特性によるが、一般的には80℃~160℃が好ましく、更に好ましくは100℃~140℃である。また、加熱時間は本目的を実現できる時間以上であって、工程のスループットを高める観点も勘案すると、10分~60分間が好ましく、更に好ましくは10~30分間である。
 さらに、光導波路用樹脂層(B)を部分的に硬化させる工程の後には、いわゆる現像工程を行うことが好ましい。部分的に硬化させる目的は、一般的にはパターニングするためである。この現像工程では、光導波路用樹脂層(B)の未硬化部分を除去する能力のある手段であれば、どのような手段でも採用できる。光導波路用樹脂層(B)の性質に応じて、各種の有機溶剤や、アルカリ性水溶液、酸性水溶液などでの現像や、特開2007-292964号公報に記載の手段による現像などを例示できる。
 ちなみに、パターニングの目的は、クラッドを平面状物体の上に部分的に形成するため、あるいはリッジ光導波路のコアを形成するため、あるいはリッジ光導波路のコアと同時にアライメントマークや光ビア機能を持つ構造体やコア間のクロストーク抑制用構造体を形成するため、あるいはクラッドにアライメントマークとしてあるいは電気接続のためのビアホールなどの開孔部を設けるため、などを例示できる。
 本実施形態の光導波路の製造方法においては、下クラッド層を形成した後に、コアを形成し、その後、上クラッドを形成することができる。いずれも既述の工程を繰り返すことにより形成できる。
 コアは、図6で例示するコア形成用ドライフィルム30を用い、図7で例示するよう保護フィルム33を剥離し、図8に例示するように、平面状物体上に形成した下クラッド14に接触させ、減圧下で加熱加圧して貼り合わせで図9に例示する貼合体を得た後、リッジ光導波路の場合には部分的に硬化・現像する事で、図10に例示するようにコア34を形成する。スラブ光導波路の場合は図9の貼合体のコア用樹脂層を全面硬化あるいは、必要に応じて部分的に面状にパターニング・硬化することでコアを形成する(図示せず)。
 また、上クラッドは、図11で例示する上クラッド形成用ドライフィルム40を用い、図12で例示するように保護フィルム43を剥離し、図13に例示するように、平面状物体の上に形成された下クラッド14とコア34に近接させ、さらに図14に示すよう接触させ、減圧下で加熱加圧して貼り合わせで図15に例示する貼合体を得た後、上クラッド用樹脂層を硬化させて上クラッド44を形成する。最終的に上クラッド用ドライフィルムのキャリア基材41が剥離除去された光導波路の断面構成例を図16に示す。
 光導波路コアを多層(複層または多段)に積層する場合には、更にこの上に、必要ならば下クラッド、続いてコア、上クラッドを同様の方法で形成すればよい。
 〔第3実施形態〕
 本発明は、上述したような製造方法で得られる、光導波路、または、当該光導波路を含む情報伝送機能を有する基板あるいは部材を包含する。
 平面状物体(D)が、電気配線用基板又は光導波路構成部材がその上に形成された電気配線用基板である場合には、既述の通り、光導波路の損失が小さく、製造バラツキと不良率を極小化した光電気複合配線基板を製造することができる。
 また、平面状物体(D)が、屈曲性を有しかつ、電気配線を含まない又は最終的に電気配線が形成されないフィルム状材料又は光導波路構成部材がその上に形成された該フィルム材料である場合には、既述の通り、光導波路の損失が小さく、製造バラツキと不良率を極小化したフレキシブル光導波路を製造することができる。
 これによって、光ファイバーアレイでは実現することが出来ないレベルのコアピッチを有するフレキシブルな光導波路シートを実現でき、超高速の情報伝送が必要なボード間の信号伝送を、伝送素材(ファイバーや光導波路シート)の輻輳なく実現でき、最終的に装置内の冷却用換気効率向上による省エネを達成できる。ちなみに現在一般的な光ファイバーはクラッド外径が250μmなのでコアピッチも最小で250μmであり、より細い光ファイバーにおいてもクラッド外径は125μmでありこの場合最小のコアピッチは125μmである。一方、光導波路用ドライフィルムを用いた光導波路では、容易にコアピッチ62.5μmが可能なので、伝送素材の省スペース化を容易に実現できる。コア用光導波路樹脂層厚みが30μmのドライフィルムを使用してコア断面が30μm角、コア間隔が32.5μmのパターニング、あるいはコア用光導波路樹脂層厚みが35μmのドライフィルムを使用してコア断面が35μm角、コア間隔が27.5μmのパターニングを容易に行えるからである。また、コアを多層(多段)に形成することで更に高密度なコアを有する光伝送素材を得ることができる。
 また、平面状物体(D)が、金属箔又は光導波路構成部材がその上に形成された金属箔である場合は、金属箔上に光導波路あるいは第一クラッドとコアを形成した後に、金属箔の反対面を電気回路基板に位置決め積層して接着し、表面の金属箔を既知の方法によって金属回路形成し、必要に応じてビアホールあるいはスルーホール加工を行って、光電気複合基板を形成することができる。
 具体例としては、銅箔あるいは既述のピーラブル銅箔上に、クラッド用樹脂組成物ワニスを塗工・乾燥、あるいは、クラッド用ドライフィルム材料を真空ラミネートして、硬化させて第一クラッド層を形成する。その後、コア用ドライフィルム材料を真空ラミネートして、パターニングし、光導波路コアを形成し、コアを通る導波光が必要に応じて銅箔側あるいは反銅箔側へ偏向するようにコアパターンの所望の位置にミラーあるいは回折格子などの偏向機能を有する部位の加工を施す。その後、別途作製した電気回路基板と一体化するのであるが、この手段には二つの方法がある。
 一つ目の方法は、熱硬化性のクラッド用ドライフィルム材料の層を介して、第1クラッドとコア(必要に応じて偏向部位を形成したコア)パターン形成済みの銅箔と、電気回路基板を真空ラミネートし、その後加熱硬化して接着する方法である。この場合には、第1クラッドとコアパターン形成済みの銅箔のコアパターン側に、熱硬化性のクラッド用ドライフィルム材料を真空ラミネートし、硬化させることなく、キャリア基材(A)を剥離して、キャリア基材(A)を剥離して現れる光導波路(クラッド用)樹脂層(B)を電気回路基板に接触させて真空ラミネートするのが好ましい。さらに必要に応じて、キャリアキャリア基材(A)を剥離して現れる光導波路(クラッド用)樹脂層(B)の表面に、本発明の保護フィルム(C)を真空ラミネートし、その後に該保護フィルム(C)を剥離し、該クラッド用樹脂層(B)の表面を粗化させてから、電気回路基板に接触させて真空ラミネートするのが好ましい。このようにすることで、真空ラミネート後の第二クラッドとなる部分に気泡が残存することを極小化できるからである。
 二つ目の方法は、第1クラッドとコア(必要に応じて偏向部位を形成したコア)パターン形成済みの銅箔のコア側の上に、第二クラッド用のドライフィルムを真空ラミネートし、既述の方法で硬化させて光導波路層を完成させた後、熱硬化性の接着機能を有するプリプレグやボンディングシートなどの部材を介して電気回路基板と、完成した光導波路層付きの銅箔の光導波路側とを接着する方法である。その後、最表層の銅箔がピーラブル銅箔の場合はキャリア銅箔を剥離除去し、最終的に電気回路となる銅箔を公知の方法で回路形成し、必要に応じて公知の方法でビアホールあるいはスルーホールを形成することで、光電気複合基板を得ることができる。
 本実施形態によれば、樹脂との密着力を高めるための粗化処理や化学的表面処理が施されている金属箔を使用することが出来るので、クラッド樹脂層と最表層の金属箔由来の導体回路との密着性を高めることができ、光電気複合基板の実装信頼性を著しく高めることができる。
 平面状物体(D)が、光導波路層の全て又は一部を形成した後に、該光導波路層と平面状物体の間で剥離可能な仮基板、又は光導波路構成部材がその上に形成された該仮基板である場合、この仮基板としては、光導波路をその上に形成する工程では剥離することなく、剥離が必要になった段階で剥離できるのもであって、易接着処理がなされていない熱可塑性樹脂板が好適である。ポリカーボネート(PC)やアクリル、シクロオレフィンポリマーなどの板を例示できる。このような仮基板の上に光導波路層を形成すると、化学的な接着が生じないので光導波路層と仮基板の界面に引き剥がしの応力を加える事で、光導波路層がダメージを受けることなく剥離できる。
 本実施形態によれば、低損失で損失バラツキが少ないフィルム状光導波路を容易に製造することができる。
 また、電気基板に対して光導波路層の全て又は一部を形成したものを転写することができ、特に光導波路コアに設けたミラーや回折格子などの光路偏向部が、光路を本実施形態で言う仮基板側に偏向するように形成されている場合において、転写によって得られる光電気複合基板の光導波路層側の表面方向に光路を偏向できるので、光導波路の側に配置される光素子との光結合に好適である。この場合、光導波路層の上層に導体回路を形成して光素子用の電極とし、その上に光素子を実装することができ、あるいは光導波路を形成する平面状物体を電気基板とし、その表面の電極上に光導波路層が存在しないようにパターニングする事で、光素子を電気基板表面の電極に実装することもできる。
 一例としては、UV透過性PCの仮基板上に下クラッドとコア及び必要に応じてコアに光偏向部(ミラー)を形成し、上クラッド用のドライフィルムをラミネートしただけで上クラッド層が未硬化の状態でキャリア基材を剥離除去し、上クラッド用樹脂の面を、あらかじめ作製した電気基板に対して配置して真空ラミネートし、PC側からUV露光及び/又は熱処理を施した後、PC板を剥離除去する。その後、光導波路層の表面に現れた下クラッド層に対して熱硬化性の、エポキシ樹脂付き銅箔(RCCとも呼ばれる)を接着、あるいは、ボンディングシートを呼ばれるエポキシ樹脂を含む接着シートあるいはプリプレグを介して銅箔を接着、あるいは、銅の化学メッキの密着力を高める下地処理を行った後に銅を化学メッキする、などの方法で、全面に銅層を形成し、その後、常法によって銅の電気回路を形成して光電気複合基板を得る。
 別の例としては、UV透過性PCの仮基板上に下クラッド、コア、コア上の光偏向部、上クラッドを形成し、ボンディングシートやプリプレグあるいは接着剤を使用して上クラッド表面と電気基板を接着し、仮基板を剥離除去し、表面に現れた下クラッド表面に前述のように電気回路を形成して光電気複合基板を得る。この例によれば、光導波路と光偏向部からなる光回路の光の導通確認を仮基板側から行う事ができるので、良品であることが確認された光導波路を電気基板と一体化できるので、光電気複合基板の歩留まりを更に向上することができる。
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 本発明の一局面に係る光導波路用ドライフィルムは、キャリア基材(A)と、活性エネルギー線又は熱で硬化可能な光導波路用樹脂層(B)と、保護フィルム(C)とを有する光導波路用ドライフィルムにおいて、保護フィルム(C)の光導波路用樹脂層(B)と接する面が粗化面であることを特徴とする。
 このような構成により、残存する微小気泡を極小化した光導波路を製造することが可能な光導波路用ドライフィルムを提供することができる。ひいては、光導波路の、導波損失低減、製造歩留まりや信頼性の向上を実現することができる。また、クラッド層とコア層を形成する工程を同じ装置を用いて実施する事が可能になり、光導波路製造コスト低減を実現することが出来る。
 上記光導波路用ドライフィルムにおいて、前記キャリア基材(A)が樹脂フィルム又は金属箔であり、前記保護フィルム(C)が熱可塑性樹脂フィルムであり、さらに、前記保護フィルム(C)の前記粗化面の粗度が、算術平均粗さ(SRa)で0.1~1μmかつ、十点平均粗さ(SRz)で1~10μmであることが好ましい。それにより、残存する微小気泡を極小化した光導波路をより確実に製造することができると考えられる。
 また、上記光導波路用ドライフィルムにおいて、前記光導波路用樹脂層(B)が、エポキシ基を有する化合物と、活性エネルギー線照射により前記化合物のエポキシ基を反応させて硬化させることができる光硬化開始剤とを含むことが好ましい。このような構成により、極めて低損失であって、多層電気基板材料として永年の実績があるエポキシ樹脂なので電気特性にも優れた光導波路を実現できると考えられる。
 さらには、上記光導波路用ドライフィルムにおいて、前記光導波路用樹脂層(B)が、エチレン性二重結合を有する化合物と、活性エネルギー線照射により該化合物のエチレン性二重結合を反応させて硬化させることができる光硬化開始剤を含むことが好ましい。このような構成により、低損失で、一般のレジスト材料と同じアルカリ現像でパターニング可能な光導波路を実現できる。
 本発明の他の局面は、上述の光導波路用ドライフィルムを用いる光導波路の製造方法において、以下の工程:
 平面状物体(D)を準備する工程、
 上述の光導波路用ドライフィルムの保護フィルム(C)を剥離する工程、
 前記光導波路用ドライフィルムの前記保護フィルム(C)を剥離した光導波路用樹脂層(B)表面の粗度を維持したまま、前記光導波路用樹脂層(B)と前記平面状物体(D)とを当接し、減圧下で加熱加圧して貼り合わせる工程、並びに、
 光導波路用樹脂層(B)の一部分もしくは全面を活性エネルギー線又は熱で硬化させる工程を、上記順序で行うことを特徴とする、光導波路の製造方法である。
 このような構成により、残存する微小気泡を極小化した光導波路を製造することが可能となる。ひいては、光導波路の、導波損失低減、製造歩留まりや信頼性の向上を実現することができる。また、クラッド層とコア層を形成する工程を同じ装置を用いて実施する事が可能になり、光導波路製造コスト低減を実現することが出来る。
 上記光導波路の製造方法において、前記平面状物体(D)が、電気配線用基板、又は光導波路構成部材がその上に形成された電気配線用基板であることが好ましい。このような構成によれば、光導波路の損失が小さく、製造バラツキと不良率を極小化した光電気複合配線基板をより確実に製造することができる。
 あるいは、上記光導波路の製造方法において、前記平面状物体(D)が、屈曲性を有しかつ、電気配線を含まない、もしくは最終的に電気配線が形成されないフィルム状材料、又は光導波路構成部材がその上に形成された該フィルム材料であることが好ましい。このような構成により、光導波路の損失が小さく、製造バラツキと不良率を極小化したフレキシブル光導波路をより確実に製造することができる。
 あるいは、上記光導波路の製造方法において、前記平面状物体(D)が、金属箔、又は光導波路構成部材がその上に形成された金属箔であることが好ましい。このような構成によれば、樹脂層との密着力を高めるための粗化処理や化学的表面処理が施されている金属箔を使用するため、クラッド樹脂層と最表層の金属箔由来の導体回路との密着性を高めることができ、光電気複合基板等の実装信頼性を著しく高めることができる。
 また、あるいは、上記光導波路の製造方法において、前記平面状物体(D)が、光導波路層の全て又は一部を形成した後に前記光導波路層と剥離可能な仮基板、又は光導波路構成部材がその上に形成された前記仮基板であることが好ましい。このような構成によれば、低損失で損失バラツキが少ないフィルム状光導波路を容易に製造することができる。
 本発明のさらなる局面は、上述の方法により製造された光導波路、または、当該光導波路を含む情報伝送機能を有する基板あるいは部材を包含する。
 以下に、実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらに限定されるものではない。
 〔光導波路用樹脂ワニスの製造〕
 光導波路用樹脂として、エポキシ系樹脂とアクリル系樹脂のワニスを作製した。エポキシ系樹脂のワニスは活性エネルギー線(UV)硬化タイプとしてクラッド用のE-CLとコア用のE-CO、熱硬化タイプとしてクラッド用のE-CL2を作製した。表1に記載の配合にて、全成分を60℃にて混合溶解し、孔径1μmのPTFEメンブランフィルタにて加圧濾過して各々のワニスを調整した。なお、使用した原材料は次の通りである。
・EHPE3150:株式会社ダイセル製の2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物であるエポキシ樹脂
・セロキサイド2021P:株式会社ダイセル製の3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレートであるエポキシ樹脂
・エピコート1006FS:三菱化学株式会社製のビスフェノールA型エポキシ樹脂
・エピクロン850S:DIC株式会社製のビスフェノールA型エポキシ樹脂
・VG3101L:株式会社プリンテック製のビスフェノール骨格を有する3官能エポキシ樹脂(CAS番号:110726-28-8)
・EPPN201:日本化薬株式会社製のフェノールノボラック型エポキシ樹脂
・YP50:新日鉄住金化学株式会社製のビスフェノールA型フェノキシ樹脂であって数平均分子量が6万~8万のビスフェノールA型エポキシ樹脂
・エポトートYH300:新日鉄住金化学株式会社製の脂肪族ポリグリシジルエーテル型のエポキシ樹脂であって、トリメチロールプロパン型エポキシ樹脂
・SP-170:株式会社アデカ製の4,4‘-ビス[ジ(β-ヒドロキシエトキシ)フェニルスルフォニオ]フェニルスルフィドビスヘキサフルオロアンチモネートを主成分とする、いわゆるスルホニウム塩系の光酸発生剤
・SI-150L:三新化学工業株式会社の4-アセトキシフェニルジメチルスルホニウム=ヘキサフルオロアンチモネートスルフォニウムを主成分とする、いわゆるスルフォニウム塩系の熱酸発生剤。UVでも酸を発生しうるが、前記のSP-170と比べてUVに対する感度が低く、熱による活性化の方が顕著なので、ここでは熱酸発生剤と言う。
・F470:DIC株式会社製の界面活性剤(レベリング剤)
・トルエン、MEKは工業用試薬。
Figure JPOXMLDOC01-appb-T000001
 アクリル系樹脂のワニスは、活性エネルギー線(UV)硬化タイプとして、クラッド用のA-CL、コア用のA-COを作製した。まず、クラッド用及びコア用のカルボキシル基を有するポリマを合成し、そのポリマと各種の(メタ)アクリル酸エステルと硬化開始剤を配合してワニスを調整した。
 具体的には、コア用のカルボキシル基を有するポリマ(以下P-COと言う)を後述の通りに合成した。使用した原材料は以下の通りである。
・PGMEA:工業用試薬のプロピレングリコールモノメチルエーテルアセテート
・ADVN:工業用試薬の2,2’-アゾビス(2,4-ジメチルバレロニトリル)
・DLDBT:工業用試薬のジラウリン酸ジブチル錫
・BHT:工業用試薬のブチルヒドロキシトルエン
・イミレックス-C:株式会社日本触媒製のN-シクロヘキシルマレイミド
・ライトエステルBZ:共栄社化学株式会社製のベンジルメタクリレート
・MMA:三菱ガス化学株式会社製のメタクリル酸メチル
・MAA:三菱ガス化学株式会社製のメタクリル酸
・カレンズMOI:昭和電工株式会社製の2-イソシアナトエチルメタクリレート。
 窒素置換した還流管付きフラスコに窒素フロー下で、PGMEAを56質量部入れ65℃に加温し、あらかじめ混合したPGMEA:56質量部、イミレックス-C:13質量部、ライトエステルBZ:41質量部、MMA:10質量部、MAA:24質量部、ADVN:1.7質量部からなる溶液を2時間かけて滴下し、さらに65℃で3時間、その後90℃で1時間還流撹拌を行った。室温に放冷後、あらかじめ混合したPGMEA:14質量部、DLDBT:0.09質量部、BHT:0.1質量部からなる溶液を加えて、空気を導入しながら撹拌を行った。70℃に加温し、あらかじめ混合したPGMEA:12.0質量部、カレンズMOI:21質量部の混合物を30分かけて滴下し、70℃で3時間還流撹拌を行い、P-COの溶液(固形分45質量%)を得た。
 また、クラッド用のカルボキシル基を有するポリマ(以下P-CLと言う)を以下のように合成した。
 使用した原材料は、既述以外には、2-HEMA:三菱ガス化学株式会社製のエチレングリコールモノメタクリレートである。
 窒素置換した還流管付きフラスコに窒素フロー下で、PGMEAを56質量部入れ65℃に加温し、あらかじめ混合したPGMEA:56質量部、イミレックス-C:13質量部、MMA:31質量部、2-HEMA:31質量部、MAA:14質量部、ADVN:2質量部からなる溶液を2時間かけて滴下し、さらに65℃で3時間、その後90℃で1時間還流撹拌を行った。室温に放冷却後、あらかじめ混合したPGMEA:14質量部、DLDBT:0.09質量部、BHT:0.1質量部からなる溶液を加えて、空気を導入しながら撹拌を行った。70℃に加温し、あらかじめ混合したPGMEA:12.0質量部、カレンズMOI:21質量部の混合物を30分かけて滴下し、70℃で3時間還流撹拌を行い、P-CLの溶液(固形分45質量%)を得た。
 光導波路用樹脂のワニス(クラッド用のA-CLと、コア用のA-CO)は、下記表2に記載の配合にて全成分を室温にて撹拌混合し、孔径1μmのPTFEメンブランフィルタにて加圧濾過して各々のワニスを調整した。なお、使用した原材料のうち、既述以外のものを以下に示す。
・A-9300:新中村化学工業株式会社製のエトキシ化イソシアヌル酸トリアクリレート
・A-CHD-4E:新中村化学工業株式会社製のエトキシ化シクロヘキサンジメタノールジアクリレート
・A-BPE-4:新中村化学工業株式会社製のエトキシ化ビスフェノールAジアクリレート
・A-BPE-10:新中村化学工業株式会社製のエトキシ化ビスフェノールAジアクリレート
・イルガキュア2959:BASFジャパン株式会社製のα-ヒドロキシアルキルフェノン系のUVラジカル開始剤
・イルガキュア819:BASFジャパン株式会社製のアシルフォスフィンオキサイド系のUVラジカル開始剤
Figure JPOXMLDOC01-appb-T000002
 〔光導波路用ドライフィルムの製造〕
 光導波路用ドライフィルムは、キャリア基材上に上記で得た各樹脂ワニスをヒラノテクシード社製のコンマコーターヘッドのテストコーターを用いて塗布・乾燥し、形成された光導波路用樹脂層面に保護フィルムを40℃のラミネートロールで貼合し、巻き取る事によって製造した。そして、下クラッド用ドライフィルム、コア用ドライフィルム、上クラッド用ドライフィルムの3つのフィルムを1セットとして、光導波路用ドライフィルムのセットA~Hを得た。表3のドライフィルム記号において、1CLは下クラッド、COはコア、2CLは上クラッドをそれぞれ指す。
 下記表3に、キャリア基材、光導波路用樹脂層用樹脂ワニス、保護フィルム(PF)の組合せと、PFの表面粗さを前述の走査型共焦点レーザ顕微鏡により面粗さ測定した結果、乾燥後樹脂厚み(単位はμm)、及び保護フィルム(PF)を剥離して現れる樹脂面の表面粗さSRa、SRz(単位はμm)の測定結果を示す。ここで使用した原材料を以下に示す。
・A4100:東洋紡株式会社製のPETフィルムであって、片面に易接着処理がなされ、他面は表面処理がなされていないもの。厚み50μmのものを使用。なお、当該フィルムの表面粗さの実測値は、表面処理がなされていない面のSRaが0.03μm、SRzが0.7μmであった。
・CUF:三井金属鉱業株式会社製の品番MT18SD-H3、厚さ18μmの銅箔(キャリア銅箔)と厚さ3μmの銅箔からなる、いわゆるピーラブル銅箔。
・E-201F:王子エフテックス株式会社製OPPフィルム(厚み50μm)。走査型共焦点レーザ顕微鏡による面粗さは、SRa=0.05μm、SRz=0.97μmであった。これはいわゆる光学フィルムに相当するフィルムであり、粗化面とは言えないレベルの低い粗度を有する。
・SB-OPP:E-201Fの表面をサンドブラスト処理したもの。前述の面粗さは、SRa=0.15μm、SRz=1.7μmであった。
・E-PI:パナソニック株式会社製ポリイミド両面銅貼りフレキシブル板、品番R-F775(厚み20μm)の両面の銅箔をエッチオフしたもの。前述の面粗さは、SRa=0.26μm、SRz=2.6μmであった。
・YM17S:東レ株式会社製の表面粗化OPPフィルム(厚み20μm)。前述の面粗さは、SRa=0.7μm、SRz=7.7μmであった。
・E130:三菱樹脂株式会社製の表面粗化PETフィルム(厚み26μm)。前述の面粗さは、SRa=0.8μm、SRz=12μmであった。
Figure JPOXMLDOC01-appb-T000003
 なお、表3に示すA4100をキャリア基材として使用するドライフィルムは全て、A4100の未処理面(易接着処理がなされていない面)に対して、また、CUFをキャリア基材として使用するE-E-2CLは厚さ3μmの銅箔面に対して、光導波路用樹脂を塗工した。
 また、セット記号Dの3つのドライフィルムの保護フィルム(PF)剥離面の表面SRa、SRzの値を括弧付きで表示している理由を以下に説明する。
 保護フィルムを剥離して現れる光導波路用樹脂表面の面粗度を測定するために、保護フィルムを剥離するには、ドライフィルム角の保護フィルムを指で剥離し、その後全面にわたり保護フィルムを剥がす方法をとった。セット記号D以外のドライフィルムでは保護フィルムと光導波路用樹脂との間で剥離できたが、セット記号D(保護フィルムとしてE130を使用したドライフィルム)の場合にはこの方法では、光導波路用樹脂の多くの部分が、保護フィルムに付着したまま、つまり、キャリア基材と光導波路用樹脂の間で剥離してしまった。この剥離方法では、キャリア基材と保護フィルムの両方が曲がった状態で剥離が進むので、保護フィルムと光導波路用樹脂層の間の密着力が高い場合、キャリア基材と光導波路用樹脂層の間の間で剥離する部分が発生し、結果的にキャリア基材側に光導波路用樹脂がなくなってしまう部分が生じる。セット記号Dのドライフィルムでは、この現象が発生した。
 これを回避するために、セット記号Dにおいては、ドライフィルムのキャリア基材を減圧吸着板に吸着させ、キャリア基材と光導波路用樹脂が平面状態になるようにした状態で、保護フィルム角に粘着テープを貼り付け、角部分から保護フィルムを剥離した。この方法によって、キャリア基材と光導波路用樹脂の間で剥離してしまう現象を回避できた。ちなみに、減圧吸着板とは、金属平板に例えば0.3mmφの貫通穴を多数開けて、その上にフィルムを置いて下側から減圧で吸引しフィルムを大気圧によって固定するものである。この方法では、剥離時には保護フィルムだけが曲がった状態で剥離進行するので、光導波路用樹脂と保護フィルムの間の密着力が小さくなくても、光導波路用樹脂と保護フィルムの間で剥離できる場合が多い。しかし、セット記号Dのドライフィルムでは、保護フィルムの表面凹凸の谷部分の底に光導波路用樹脂が残り、結果的に保護フィルムを剥離して現れる樹脂面の粗度は、保護フィルム自身の粗度に比べて40%未満の小さな値となった。
 〔光導波路の製造〕
 (実施例1)
 光導波路を作製するための平面状物体1として、パナソニック株式会社製の両面銅貼り基板であるR1515W(銅箔12μm品)の銅箔をエッチオフした基板を130mm×100mmにカットした。この基板表面の面粗度を既述の方法で測定したところ、SRaが0.81μm、SRzが8.0μmであった。また、UV分光光度計で365nmの反射率を測定したところ7%であった。光導波路用フィルムとしては、表3のセットAを用いた。
 この基板(平面状物体1)に、下クラッド層を次の手順で形成した。つまり、基板上に、130mm×100mmの寸法にカットした下クラッド用のドライフィルムであるA-E-1CLの保護フィルムを剥離して現れる光導波路用樹脂層の面を配置し、真空ラミネート用のキャリアフィルム(あるいは熱板保護用フィルム)として200mm×170mmにカットした75μm厚のPETフィルム(東レ株式会社製、品番T60。以後T60と略す)を上下に配して(75μmPETフィルムの間に基板とドライフィルムが挟まれる構成で)、真空ラミネータ(ニチゴー・モートン株式会社製の加圧式真空ラミネータ、品番V130。以後V130と略す)にて、加熱温度50℃、1hPa(1ヘクトパスカル;約千分の1気圧)以下の真空に到達後15秒間保持した後、0.3MPaで90秒間加圧してラミネートした。真空ラミネート用のキャリアフィルム(T60)を除去し、A-E-1CLと基板がラミネートされたものを120℃20分の熱処理(平坦化)し、室温に放冷した後、ドライフィルムラミネート品のキャリア基材であるPETフィルム側から、超高圧水銀ランプからの活性エネルギー線(UV光)を365nmにおいて2000mJ/平方センチメートルの光量になるように照射し、PETフィルムを剥離除去して、140℃30分間の熱処理を行って樹脂を硬化させた。この下クラッド表面の面粗度を既述の方法で測定したところ、SRaが0.06μm、SRzが0.91μmであった。
 こうして得られたR1515W両面エッチオフ品の片面に下クラッド層が形成された平面状物体の上に、次の手順でコアを形成した。つまり、上記下クラッド層の面に、130mm×100mmの寸法にカットしたコア用のドライフィルムであるA-E-COの保護フィルムを剥離して現れる光導波路用樹脂層の面を配置し、T60を上下に配して、V130にて、上記下クラッドのラミネート条件と同じ条件でラミネートした。T60を除去し、得られたドライフィルムラミネート品のキャリア基材であるPETフィルムを剥離除去し、120℃20分間加熱処理を行った。この処理後、室温に放冷したコア用の樹脂層表面の面粗度を既述の方法で測定したところ、SRaが0.05μm、SRzが0.83μmであった。
 次に、コアのパターニングを以下のように行った。つまり、光導波路コアの幅35μm・ピッチ125μm、長さ110mmを12本有するガラス製であってクロム薄膜を遮蔽層に有するいわゆるガラスのクロムマスク(コアとなる部分が開口部であるネガ型マスク)を介して、超高圧水銀ランプからの活性エネルギー線(UV光)を365nmにおいて2000mJ/平方センチメートルの光量になるようにコア用樹脂側に照射し、その後140℃15分間の熱処理を行った。その後、55℃に調整した水系フラックス洗浄剤(荒川化学工業株式会社製「パインアルファST-100SX」)を用いて現像処理することにより、コア用樹脂の未露光部分を溶解除去し、水洗し、表面の水分をエアブローした後、100℃で10分間乾燥することにより、下クラッド上にコアパターンが形成された平面状物体を得た。
 次に、該平面状物体の上に、さらに上クラッドを以下の手順で形成した。つまり、平面状物体のコアを形成した面上に、130mm×100mmの寸法にカットした上クラッド用のドライフィルムであるA-E-2CLの保護フィルムを剥離して現れる光導波路用樹脂層の面を配置し、T60を上下に配して、V130にて、加熱温度80℃、1hPa以下の真空に到達後30秒間保持した後、0.3MPaで120秒間加圧してラミネートした。T60を除去し、得られたドライフィルムラミネート品のキャリア基材であるPETフィルムを剥離除去し、140℃30分間加熱処理を行って室温に放冷し、その後、超高圧水銀ランプからの活性エネルギー線(UV光)を365nmにおいて2000mJ/平方センチメートルの光量になるようにクラッド樹脂側に照射し、続いて140℃30分間の熱処理を行って樹脂硬化を完了させ、電気基板用積層板上に光導波路が形成されたサンプルを作製した。なお、UV露光の前に上クラッド用の樹脂層表面の面粗度を既述の方法で測定したところ、SRaが0.06μm、SRzが1.0μmであった。
 得られた光導波路の評価は、光導波路形成基板を3枚作製した上で、それらを用いて次のように行った。結果を表4に示す。
 (ボイド観察):
 目視及び光学顕微鏡にて、コア部およびクラッド部のボイド(気泡)を、光導波路面の鉛直上方から観察した。光導波路形成基板1枚あたり、直径5μm以上のボイドが観察されないものを◎、該ボイドが面内あたり1~5個であったものを○、6~20個であったものを△、20個よりも多いものを×とした。
 (平均導波損失):
 光導波路形成基板をコアの延伸方向と垂直に、コア長が100mmとなるようにダイシングブレードで切断し、コア長が100mmのサンプルを得た。このサンプルの導波損失を、波長850nmのレーザダイオードを光源とし、コア径10μm、NA0.21の光ファイバーの端部をシリコーンオイルのマッチングオイルを介して光導波路コアの片端に接続すると共に、コアの他端にコア径200μm、NA0.4の光ファイバーの端部をマッチングオイルを介して接続し、光のパワー(P1)をパワーメータで測定した。一方、この両者の光ファイバーの端面同士をマッチングオイルを介して突き当て、光導波路が介在しない状態での光のパワー(P0)をパワーメータで測定した。そして、-10log(P1/P0)の計算式から、光導波路の損失を求め、これを光導波路長10(cm)で除算することで、光導波路1本の導波損失(単位:dB/cm)を測定した。この測定を、1枚あたり12本の光導波路コアを有する光導波路形成基板3枚に対して行い、合計36本の光導波路コアの平均導波損失を計算した。
 (不良率):
 上記導波損失が0.1dB/cmを越える光導波路コアを不良とし、その本数/36をパーセント表記した値を不良率として求めた。
 実施例1の平均導波損失は0.054dB/cm、不良率は0%(不良無し)であった。
Figure JPOXMLDOC01-appb-T000004
 (実施例2~6、比較例1~2)
 表3の光導波路用ドライフィルムセットB~Hを用いて、実施例1と同様の作製手順と評価を行った。結果を上記表4に示す。
 なお、実施例1の光導波路形成条件と異なる条件で行った内容を以下に示す。
 (実施例4)
 ドライフィルムのセット記号D、すなわちD-E-1CL、D-E-CO、D-E-2CLの保護フィルムを剥離する際、既述のようにドライフィルムのキャリア基材を減圧吸着板に吸着させ、キャリア基材と光導波路用樹脂が平面状態になるようにした状態で、保護フィルム角に粘着テープを貼り付け、角部分から保護フィルムを剥離した。セット記号D以外のドライフィルムの保護フィルムの剥離は、カットしたドライフィルムのコーナー部分の保護フィルムを指で剥がして剥離起点を設け、その後、保護フィルムと光導波路用樹脂付きキャリア基材を容易に剥離させることができた。しかし、セット記号Dのドライフィルムにおいてはこの方法では、保護フィルムに光導波路用樹脂の一部が付着してしまい、使用できなかったので、減圧吸着板を使用した。
 (実施例5)
 ドライフィルムE-E-2CLは、熱硬化タイプのクラッド用樹脂なので、上クラッドを硬化する条件が異なる。上クラッドをラミネートした後、140℃30分間加熱処理を行ったのち、160℃1時間の加熱処理を行って硬化させ、電気基板用積層板上に光導波路が形成され、さらにその表面に銅箔が形成されたサンプルを作製した。引き続き、キャリア基材CUFのキャリア銅箔(厚み18μm)を剥離除去し、上クラッド樹脂に接着された厚み3μmの銅箔を、エッチングレジストによるマスキング・パターン露光・現像によって電気回路を形成し、銅層厚みが12μmになるよう銅メッキを施した。損失評価はこのサンプルに対して実施例1と同様に行ったが、光導波路のボイド観察は、銅回路をエッチング除去し、銅箔アンカーのレプリカ形状となって粗化している樹脂表面に、実施例5のA-E-1CLで下クラッドを形成するのと同条件でA-E-1CLをラミネート・硬化させて表面を平坦化して観察した。ボイト観察及び損失評価とは別のサンプルにメッキ処理を施し銅層厚みを12μmに調整したサンプルで、銅箔のピール強度を常法にて実施したところ、0.69N/mmであった。
 (実施例6及び比較例2)
 ドライフィルムのセット記号F、すなわちF-A-1CL、F-A-CO、F-A-2CLと、セット記号H、すなわちH-A-1CL、H-A-CO、H-A-2CLは、これら以外のドライフィルムとは、ラミネート条件が異なる。更に光導波路用樹脂が、ラジカル硬化タイプなので酸素による硬化阻害を受けるため硬化条件が異なる、またカルボキシル基を有するアクリル樹脂系なので現像条件が異なる。F-A-1CL及びH-A-1CLのラミネート条件は、V130にて、加熱温度65℃、1hPa以下の真空に到達後15秒間保持した後、0.3MPaで60秒間加圧である。その後の硬化までの条件は、得られたドライフィルムラミネート品のキャリア基材であるPETフィルムを剥離せずに残したまま、140℃15分間加熱処理を行って室温に放冷し、その後、超高圧水銀ランプからの活性エネルギー線(UV光)を365nmにおいて2000mJ/平方センチメートルの光量になるようにキャリア基材側に照射し、キャリア基材のPETフィルムを剥離除去し、続いて160℃30分間の熱処理を行って樹脂硬化を完了させた。F-A-CO及びH-A-COのラミネート条件は、下クラッドのF-A-1CL、H-A-1CLと同じである。引き続くコア形成条件は、得られたドライフィルムラミネート品のキャリア基材であるPETフィルムを残したまま、120℃20分間加熱処理(平坦化)を行った後、既述のネガ型マスクを介して、超高圧水銀ランプからの活性エネルギー線(UV光)を365nmにおいて1500mJ/平方センチメートルの光量になるようにコア用樹脂側に照射し、キャリア基材を剥離除去して、1質量%の炭酸ナトリウム水溶液にて現像処理することにより、コア用樹脂の未露光部分を溶解除去し、水洗し、0.5質量%の硫酸水溶液にて洗浄し、更に水洗した後、表面の水分をエアブローして、100℃で10分間乾燥後、既述UV光を365nmにおいて1000mJ/平方センチメートルの光量で照射し、更に150℃で30分間加熱することにより、下クラッド上にコアパターンを形成した。F-A-2CL及びH-A-2CLの形成条件は、V130にて、加熱温度90℃、1hPa以下の真空に到達後15秒間保持した後、0.3MPaで90秒間加圧である。その後、得られたドライフィルムラミネート品のキャリア基材であるPETフィルムを剥離せずに残したまま、140℃15分間加熱処理を行って室温に放冷し、その後、既述UV光を365nmにおいて2000mJ/平方センチメートルの光量になるようにキャリア基材側から照射し、キャリア基材のPETフィルムを剥離除去し、続いて160℃30分間の熱処理を行って樹脂硬化を完了させた。
 実施例1~6、比較例1~2の結果から、保護フィルムの光導波路用樹脂に接する面の面粗度が粗化面であれば、得られる光導波路の平均損失及び光導波路の不良率を低減することが可能となることがわかった。更に、該面粗度が、SRa:0.1~1μmかつSRz:1~10μmであれば、保護フィルムの剥離が容易でかつ、平均損失及び光導波路の不良率を更に低減することが可能となることが示された。また、上クラッドのキャリア基材として金属箔(銅箔)を使用することで、上クラッド上に銅回路を直接形成することが可能となった。
 本実施例では平面状物体として、両面銅貼り基板のエッチオフ品を使用したが、電気回路を形成済みであって光導波路コアを形成する位置を特定するための機能を有するパターン(アライメントマーク)を併せ持つ多層配線板を使用することで、光電複合配線板を得ることが出来る。
 (実施例7)
 光導波路の両面にフレキシブルなフィルムが配置された構造のフレキシブル光導波路の製造例として、PETフィルム上に下クラッド層を形成し、そのクラッド面にコアを形成し、その上に上クラッドを形成すると同時にPETフィルムとの接着硬化を完了させる、という例を示す。
 この例では、クラッド用材料に接するキャリア基材が、最終的にフレキシブル光導波路を保護・補強するためフィルムとしてクラッド層に強固に接着されたまま使用されるという点が、既述実施例とは異なっている。そのため本実施例の下クラッド用の材料は、ドライフィルム形状ではあるものの、キャリア基材は剥離除去せずにそのまま使用されるので、下クラッド用材料を平面状物体にラミネートすることは行わない。よって、平面状物体にラミネートして使用される本発明のドライフィルムとの違いを明らかにするために、本実施例の下クラッド用材料はドライフィルムとは表記せず、フィルム付き下クラッドと表す。
 実施例1で使用したA-E-1CLの製造において、ワニスE-CLをA4100に塗工する際に、A4100の易接着面に対してワニスを塗工・乾燥し、保護フィルムE-201Fをラミネートしてフィルム付き下クラッド(光導波路用樹脂厚10μm)を得た。また、実施例1で使用したA-E-2CLの製造において、ワニスE-CLをA4100に塗工する際に、A4100の易接着面に対してワニスを塗工・乾燥する以外はA-E-2CLの場合と同様に製造して、ドライフィルムI-E-2CL(光導波路用樹脂厚み45μm)を作製した。
 厚み1mm、縦横130mm×100mmのガラス板に、同寸法にカットした両面接着テープ(寺岡製作所製の品番:7692。接着層厚み47μm。強接着面の粘着力が8.8N/25mm、弱接着面の粘着力が0.5N/25mm)の強接着面を配置し、真空ラミネータV130により実施例1のA-E-1CLをラミネートする条件と同条件でラミネートした後、両面接着テープの第2面の剥離紙を剥がして現れる弱接着面に、130mm×100mmの寸法にカットした前記フィルム付き下クラッドのPET面を配置し、ガラスと7692のラミネートと同条件で真空ラミネートした。ガラス板に貼合したフィルム付き下クラッドから保護フィルムE-201Fを剥離除去し、140℃15分間の加熱処理(平坦化)を行って室温に放冷し、その後、超高圧水銀ランプからの活性エネルギー線(UV光)を365nmにおいて2000mJ/平方センチメートルの光量で照射し、続いて140℃30分間の熱処理を行って樹脂硬化を完了させた。この樹脂表面の面粗度を測定した結果、SRaは0.05μm、SRzは0.78μmであった。こうして得られた表面に下クラッド層を有する物体が、次にコア用ドライフィルム(A-E-CO)をラミネートするための平面状物体である。
 この平面状物体の上に、実施例1にてコアを形成した場合と同じ条件でコアを形成した。このコア形成済みの平面状物体の上に上クラッドを形成した。上クラッドは、前述のクラッド用ドライフィルムI-E-2CLを使用し、実施例1にて上クラッドを形成した際の、ラミネートからUV露光までの条件と同じ条件で処理し、キャリア基材であるA4100を剥離せずに150℃30分間の熱処理を行って樹脂硬化を完了させた。
 その後ダイシングブレードにて、光導波路側からコアの延伸方向と垂直に、コア長が100mmとなるように両面接着テープとPETの界面の5μm下(両面接着テープに5μm刃先が浸入する位置)で、PETフィルム-光導波路層-PETフィルムからなる複合体であるフレキシブル光導波路に切れ目を入れた。その後、両面接着テープの弱接着面とPETフィルムの間で剥離して、光導波路層の両面にPETフィルムが補強層として配置・接着された光導波路コア長さ10cmのフレキシブル光導波路を得た。
 実施例1と同様に作製した3枚のワークについて評価を行った。このフレキシブル光導波路のボイドを前述の方法で観察したところ、ボイドは観察されず、評価は◎であった。また、導波損失評価は、幅(光導波路長)100mmのフレキシブル光導波路を幅98mmの基板上に弱粘着テープで固定し、実施例1と同様に行った。この結果は、平均導波損失が0.068dB/cm、不良率は0%であった。
 本実施例によって、極めて低損失でフレキシブルな光導波路を高い歩留まりで製造でき、両端に光ファイバー用のコネクタを配置する事で、サーバやルータ、スーパーコンピュータ等のラックに納めたボードの間で光情報を伝送するフレキシブルでコア密度の高い伝送路を、低価格で実現することができる。
 (実施例8)
 実施例8では、剥離可能な仮基板上に形成した光導波路を剥離して、光導波路のみを得た。
 光導波路を作製するための平面状物体として、厚み1mmの紫外線吸収剤を含まないポリカーボネート(PC)板を130mm×100mmにカットした。このPC板表面の面粗度を既述の方法で測定したところ、SRaが0.06μm、SRzが0.92μmであった。この基板(平面状物体4)に、下クラッド用のドライフィルムであるA-E-1CLを実施例1と同条件で加工して下クラッドを形成した。この下クラッド表面の面粗度を既述の方法で測定したところ、SRaが0.05μm、SRzが0.75μmであった。こうして得られたPC板に下クラッド層が形成された平面状物体を、次のコア形成用に用いた。
 次に、下クラッド層が形成された平面状物体の上に、コア用のドライフィルムであるA-E-COを実施例1と同条件でラミネート及び熱処理した。コア用の樹脂層表面の面粗度を既述の方法で測定したところ、SRaが0.06μm、SRzが0.87μmであった。
 次に、コアのパターニングを実施例1と同様に行い、コアが形成された平面状物体の上に、上クラッドとして、ドライフィルムA-E-2CLを用いて実施例1の上クラッドと同条件で形成した。
 このようにして得られたPC板上に形成された光導波路を、実施例7と同様にダイシングブレードにてコア長10cmの位置で、PC板に5μmブレードの刃先が浸入する位置でカットし、光導波路層に切れ目を入れた。粘着テープを光導波路面に接着し、それを持ち上げることでPC板と光導波路を剥離し、光導波路のみのフィルムを得た。このフィルムを実施例7と同様に評価した結果、ボイドは観察されず評価は◎、導波損失の平均値は0.064dB/cm、不良率は0%であった。
 本実施例によれば、上下のクラッドとコアのみからなり厚みが極めて薄い、低損失の光導波路フィルムを高い歩留まりで製造することが出来る。そしてコアの両端部に光コネクタを実装することでボード間の光情報伝送を高密度で行える光伝送素材を得ることができる。
 この出願は、2013年9月27日に出願された日本国特許出願特願2013-202046を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、前述において図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
  本発明は、光導波路とその製造方法、及び光導波路用ドライフィルム等の技術分野において、広範な産業上の利用可能性を有する。

Claims (10)

  1.  キャリア基材(A)と、活性エネルギー線又は熱で硬化可能な光導波路用樹脂層(B)と、保護フィルム(C)とを有する光導波路用ドライフィルムにおいて、保護フィルム(C)の光導波路用樹脂層(B)と接する面が粗化面であることを特徴とする光導波路用ドライフィルム。
  2.  前記キャリア基材(A)が樹脂フィルム又は金属箔であり、前記保護フィルム(C)が熱可塑性樹脂フィルムであり、さらに、前記保護フィルム(C)の前記粗化面の粗度が、算術平均粗さ(SRa)で0.1~1μmかつ、十点平均粗さ(SRz)で1~10μmであることを特徴とする、請求項1記載の光導波路用ドライフィルム。
  3.  前記光導波路用樹脂層(B)が、エポキシ基を有する化合物と、活性エネルギー線照射により前記化合物のエポキシ基を反応させて硬化させることができる光硬化開始剤とを含むことを特徴とする、請求項1または2に記載の光導波路用ドライフィルム。
  4.  前記光導波路用樹脂層(B)が、エチレン性二重結合を有する化合物と、活性エネルギー線照射により該化合物のエチレン性二重結合を反応させて硬化させることができる光硬化開始剤を含むことを特徴とする、請求項1または2に記載の光導波路用ドライフィルム。
  5.  請求項1~4のいずれかに記載の光導波路用ドライフィルムを用いる光導波路の製造方法において、以下の工程:
     平面状物体(D)を準備する工程、
     請求項1~4のいずれかに記載の光導波路用ドライフィルムの保護フィルム(C)を剥離する工程、
     前記光導波路用ドライフィルムの前記保護フィルム(C)を剥離した光導波路用樹脂層(B)表面の粗度を維持したまま、前記光導波路用樹脂層(B)と前記平面状物体(D)とを当接し、減圧下で加熱加圧して貼り合わせる工程、並びに、
     光導波路用樹脂層(B)の一部分もしくは全面を活性エネルギー線又は熱で硬化させる工程を、上記順序で行うことを特徴とする、光導波路の製造方法。
  6.  前記平面状物体(D)が、電気配線用基板、又は光導波路構成部材がその上に形成された電気配線用基板である、請求項5記載の光導波路の製造方法。
  7.  前記平面状物体(D)が、屈曲性を有しかつ、電気配線を含まない、もしくは最終的に電気配線が形成されないフィルム状材料、又は光導波路構成部材がその上に形成された該フィルム材料である、請求項5記載の光導波路の製造方法。
  8.  前記平面状物体(D)が、金属箔、又は光導波路構成部材がその上に形成された金属箔である、請求項5記載の光導波路の製造方法。
  9.  前記平面状物体(D)が、光導波路層の全て又は一部を形成した後に前記光導波路層と剥離可能な仮基板、又は光導波路構成部材がその上に形成された前記仮基板である、請求項5記載の光導波路の製造方法。
  10.  請求項5~9のいずれかに記載の方法により製造された光導波路、または、当該光導波路を含む情報伝送機能を有する基板あるいは部材。
PCT/JP2014/004840 2013-09-27 2014-09-22 光導波路用ドライフィルムとそれを用いた光導波路の製法並びに光導波路 WO2015045349A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480043936.0A CN105452919B (zh) 2013-09-27 2014-09-22 光波导用干膜和使用该光波导用干膜的光波导的制造方法以及光波导
JP2015538896A JP6558736B2 (ja) 2013-09-27 2014-09-22 光導波路用ドライフィルムとそれを用いた光導波路の製法並びに光導波路
US14/651,826 US9535216B2 (en) 2013-09-27 2014-09-22 Optical waveguide dry film, and optical waveguide manufacturing method and optical waveguide using optical waveguide dry film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-202046 2013-09-27
JP2013202046 2013-09-27

Publications (1)

Publication Number Publication Date
WO2015045349A1 true WO2015045349A1 (ja) 2015-04-02

Family

ID=52742521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004840 WO2015045349A1 (ja) 2013-09-27 2014-09-22 光導波路用ドライフィルムとそれを用いた光導波路の製法並びに光導波路

Country Status (5)

Country Link
US (1) US9535216B2 (ja)
JP (1) JP6558736B2 (ja)
CN (1) CN105452919B (ja)
TW (1) TWI648565B (ja)
WO (1) WO2015045349A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038040A1 (ja) * 2015-09-01 2017-03-09 パナソニックIpマネジメント株式会社 光導波路用組成物、光導波路用ドライフィルム、及び光導波路
JPWO2017209137A1 (ja) * 2016-06-02 2019-03-28 Agc株式会社 樹脂光導波路
JP2020020927A (ja) * 2018-07-31 2020-02-06 日東電工株式会社 光導波路形成用感光性エポキシ樹脂組成物、光導波路形成用感光性フィルムおよびそれを用いた光導波路、光・電気伝送用混載フレキシブルプリント配線板

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160002887A (ko) * 2013-04-24 2016-01-08 히타치가세이가부시끼가이샤 감광성 엘리먼트, 감광성 엘리먼트 롤, 레지스트 패턴의 제조방법 및 전자부품
JP6558736B2 (ja) * 2013-09-27 2019-08-14 パナソニックIpマネジメント株式会社 光導波路用ドライフィルムとそれを用いた光導波路の製法並びに光導波路
CN106457786B (zh) * 2014-05-30 2018-10-09 日本瑞翁株式会社 复层膜和卷绕体
JP2016090439A (ja) * 2014-11-06 2016-05-23 株式会社日本自動車部品総合研究所 粒子状物質検出素子及び粒子状物質検出センサ
CA2994533C (en) * 2015-07-13 2023-05-23 Albemarle Corporation Processes for low pressure, cold bonding of solid lithium to metal substrates
US11009662B2 (en) * 2017-09-05 2021-05-18 Facebook Technologies, Llc Manufacturing a graded index profile for waveguide display applications
CN109567782B (zh) * 2017-09-28 2022-03-11 陈右颖 结合有光波导的神经探针及其制造方法
US10929667B2 (en) * 2017-10-13 2021-02-23 Corning Incorporated Waveguide-based optical systems and methods for augmented reality systems
TWI780648B (zh) * 2020-04-03 2022-10-11 日商旭化成股份有限公司 感光性元件、及抗蝕圖案之形成方法
JP2023531329A (ja) * 2021-05-28 2023-07-24 深南電路股▲ふん▼有限公司 フレキシブル光導波板及びその製作方法
CN113414193A (zh) * 2021-07-09 2021-09-21 百腾科技(苏州)有限公司 一种pc膜的剥离方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102431A1 (ja) * 2006-03-06 2007-09-13 Hitachi Chemical Company, Ltd. フレキシブル光導波路およびその製造方法ならびに光モジュール
JP2012168207A (ja) * 2011-02-09 2012-09-06 Hitachi Chem Co Ltd 光ファイバコネクタ、光ファイバ配線板及びそれらの製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258537A (ja) * 1993-03-08 1994-09-16 Mitsubishi Rayon Co Ltd ドライフィルムレジストおよびそれを用いたプリント配線板
JP3522127B2 (ja) 1998-11-17 2004-04-26 日立化成工業株式会社 感光性フィルム及びその積層方法
JP4186462B2 (ja) 2001-12-26 2008-11-26 Jsr株式会社 光導波路の形成方法
US7561774B2 (en) * 2003-03-12 2009-07-14 Sanyo Electric Co., Ltd. Optical waveguide
WO2004101857A2 (en) * 2003-05-07 2004-11-25 Microfabrica Inc. Methods and apparatus for forming multi-layer structures using adhered masks
JP2005161529A (ja) * 2003-11-28 2005-06-23 Fuji Photo Film Co Ltd 凹凸状シートの製造方法
CN101080467B (zh) * 2004-12-15 2011-11-16 可乐丽股份有限公司 活性能量射线固化性树脂组合物及其用途
JP5028004B2 (ja) 2005-10-27 2012-09-19 パナソニック株式会社 硬化性エポキシ樹脂フィルム
CN101165592A (zh) * 2006-10-18 2008-04-23 Jsr株式会社 干膜、微透镜以及它们的制造方法
KR101463282B1 (ko) * 2007-05-29 2014-11-18 린텍 가부시키가이샤 방현성 광투과성 하드코트필름
JP4894720B2 (ja) 2007-10-25 2012-03-14 パナソニック電工株式会社 光導波路及び光電複合基板
JP4894719B2 (ja) 2007-10-25 2012-03-14 パナソニック電工株式会社 光導波路
JP5003506B2 (ja) 2008-01-18 2012-08-15 日立化成工業株式会社 光学材料用樹脂組成物、光学材料用樹脂フィルム、及びこれらを用いた光導波路
US20090186293A1 (en) * 2008-01-23 2009-07-23 Bryan Thomas Fannin Dry film protoresist for a micro-fluid ejection head and method therefor
WO2009116421A1 (ja) 2008-03-18 2009-09-24 日立化成工業株式会社 光導波路の製造方法
JP2009258612A (ja) 2008-03-28 2009-11-05 Hitachi Chem Co Ltd 光電気複合基板の製造方法、これによって製造される光電気複合基板、及びこれを用いた光電気複合モジュール
JP2009265519A (ja) * 2008-04-28 2009-11-12 Hitachi Cable Ltd フレキシブル光導波路およびその製造方法
JP2010091733A (ja) 2008-10-07 2010-04-22 Hitachi Chem Co Ltd コア部形成用樹脂組成物及びこれを用いたコア部形成用樹脂フィルム、ならびにこれらを用いた光導波路
JP5212141B2 (ja) 2009-01-28 2013-06-19 日立化成株式会社 フレキシブル光導波路の製造方法
JP5521354B2 (ja) * 2009-02-27 2014-06-11 三菱レイヨン株式会社 微細凹凸構造を表面に有する透明フィルムおよびその製造方法
JP5465453B2 (ja) 2009-03-26 2014-04-09 パナソニック株式会社 光導波路形成用エポキシ樹脂組成物、光導波路形成用硬化性フィルム、光伝送用フレキシブルプリント配線板、及び電子情報機器
CN102598225B (zh) * 2009-10-16 2014-12-03 英派尔科技开发有限公司 向半导体晶片应用膜的设备和方法、处理半导体晶片的方法
JP5387370B2 (ja) 2009-11-30 2014-01-15 日立化成株式会社 光導波路形成用樹脂組成物及びこれを用いた光導波路形成用樹脂フィルム、並びにこれらを用いた光導波路
JP5728655B2 (ja) * 2010-11-05 2015-06-03 パナソニックIpマネジメント株式会社 光導波路の製造方法
JP2012159590A (ja) 2011-01-31 2012-08-23 Toyobo Co Ltd ネガ型感光性組成物
JP6558736B2 (ja) * 2013-09-27 2019-08-14 パナソニックIpマネジメント株式会社 光導波路用ドライフィルムとそれを用いた光導波路の製法並びに光導波路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102431A1 (ja) * 2006-03-06 2007-09-13 Hitachi Chemical Company, Ltd. フレキシブル光導波路およびその製造方法ならびに光モジュール
JP2012168207A (ja) * 2011-02-09 2012-09-06 Hitachi Chem Co Ltd 光ファイバコネクタ、光ファイバ配線板及びそれらの製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038040A1 (ja) * 2015-09-01 2017-03-09 パナソニックIpマネジメント株式会社 光導波路用組成物、光導波路用ドライフィルム、及び光導波路
CN107924025A (zh) * 2015-09-01 2018-04-17 松下知识产权经营株式会社 光波导用组合物、光波导用干膜和光波导
JPWO2017038040A1 (ja) * 2015-09-01 2018-07-05 パナソニックIpマネジメント株式会社 光導波路用組成物、光導波路用ドライフィルム、及び光導波路
CN107924025B (zh) * 2015-09-01 2020-01-17 松下知识产权经营株式会社 光波导用组合物、光波导用干膜和光波导
CN110938190A (zh) * 2015-09-01 2020-03-31 松下知识产权经营株式会社 光波导用组合物、光波导用干膜和光波导
CN110938190B (zh) * 2015-09-01 2022-06-17 松下知识产权经营株式会社 光波导用组合物、光波导用干膜和光波导
JPWO2017209137A1 (ja) * 2016-06-02 2019-03-28 Agc株式会社 樹脂光導波路
JP2020020927A (ja) * 2018-07-31 2020-02-06 日東電工株式会社 光導波路形成用感光性エポキシ樹脂組成物、光導波路形成用感光性フィルムおよびそれを用いた光導波路、光・電気伝送用混載フレキシブルプリント配線板
WO2020026970A1 (ja) * 2018-07-31 2020-02-06 日東電工株式会社 光導波路形成用感光性エポキシ樹脂組成物、光導波路形成用感光性フィルムおよびそれを用いた光導波路、光・電気伝送用混載フレキシブルプリント配線板
JP7224802B2 (ja) 2018-07-31 2023-02-20 日東電工株式会社 光導波路形成用感光性エポキシ樹脂組成物、光導波路形成用感光性フィルムおよびそれを用いた光導波路、光・電気伝送用混載フレキシブルプリント配線板
KR102715949B1 (ko) * 2018-07-31 2024-10-11 닛토덴코 가부시키가이샤 광도파로 형성용 감광성 에폭시 수지 조성물, 광도파로 형성용 감광성 필름 및 그것을 이용한 광도파로, 광·전기 전송용 혼재 플렉시블 프린트 배선판

Also Published As

Publication number Publication date
US9535216B2 (en) 2017-01-03
CN105452919A (zh) 2016-03-30
JPWO2015045349A1 (ja) 2017-03-09
TW201527816A (zh) 2015-07-16
CN105452919B (zh) 2020-09-18
US20150331188A1 (en) 2015-11-19
TWI648565B (zh) 2019-01-21
JP6558736B2 (ja) 2019-08-14

Similar Documents

Publication Publication Date Title
JP6558736B2 (ja) 光導波路用ドライフィルムとそれを用いた光導波路の製法並びに光導波路
JP4265695B2 (ja) フレキシブル光導波路およびその製造方法ならびに光モジュール
US20100040986A1 (en) Process for manufacturing light guide
WO2011046115A1 (ja) 光導波路基板及びその製造方法
KR20100110350A (ko) 광전기 혼재기판 및 전자기기
KR20110089408A (ko) 광전기 혼재기판 및 전자기기
US9122026B2 (en) Optical waveguide, opto-electric hybrid board, and optical module
JP5212141B2 (ja) フレキシブル光導波路の製造方法
US8055113B2 (en) Optical substrate having a supporting substrate and an optical waveguide film adhesively bonded to the supporting substrate
JP2011048150A (ja) 光電気フレキシブル配線板の製造方法
JP5728655B2 (ja) 光導波路の製造方法
JP2006039231A (ja) 光電気配線混載基板の製造方法
WO2010087378A1 (ja) 光導波路の製造方法、光導波路及び光電気複合配線板
CN118633047A (zh) 光波导的制造方法
JP2008124418A (ja) 電気回路基板及びこれを用いた光電気複合回路基板
TWI457625B (zh) 光波導的製造方法
JP2003344684A (ja) 光電気混載基板用材料
JP2011221288A (ja) 光導波路及び光電気複合基板の製造方法、並びにそれにより得られる光導波路及び光電気複合基板
JP5685924B2 (ja) 光電気複合基板の製造方法及び光電気複合モジュールの製造方法
JP2010271371A (ja) フレキシブル光導波路
JP2015004855A (ja) ミラー付き光導波路及びその製造方法
JP2016180015A (ja) 樹脂組成物、樹脂フィルム、それらを用いた光導波路及び光電気複合配線板
JP5458682B2 (ja) 光導波路形成用樹脂フィルム及びこれを用いた光導波路、その製造方法並びに光電気複合配線板
JP2007094436A (ja) 光電気混載基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043936.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848595

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14651826

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015538896

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848595

Country of ref document: EP

Kind code of ref document: A1