WO2015040960A1 - パワーステアリング装置および車両搭載機器の制御装置 - Google Patents

パワーステアリング装置および車両搭載機器の制御装置 Download PDF

Info

Publication number
WO2015040960A1
WO2015040960A1 PCT/JP2014/070022 JP2014070022W WO2015040960A1 WO 2015040960 A1 WO2015040960 A1 WO 2015040960A1 JP 2014070022 W JP2014070022 W JP 2014070022W WO 2015040960 A1 WO2015040960 A1 WO 2015040960A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
circuit
signal
abnormality
detection
Prior art date
Application number
PCT/JP2014/070022
Other languages
English (en)
French (fr)
Inventor
佐々木 光雄
巧 久積
Original Assignee
日立オートモティブシステムズステアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズステアリング株式会社 filed Critical 日立オートモティブシステムズステアリング株式会社
Priority to KR1020167007063A priority Critical patent/KR101728992B1/ko
Priority to DE112014004333.8T priority patent/DE112014004333B4/de
Priority to US14/912,172 priority patent/US9796409B2/en
Priority to CN201480050213.3A priority patent/CN105555642B/zh
Publication of WO2015040960A1 publication Critical patent/WO2015040960A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/049Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting sensor failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present invention relates to a power steering device and a control device for on-vehicle equipment.
  • EPS assist function In recent years, with the spread of EPS, further improvement in product power has been desired. Under such circumstances, there is a demand to leave the assist function in case of a failure because it may be limited in time.
  • a plurality of state quantity detection means (steering torque sensor, rudder angle sensor, motor rotation angle sensor, etc.) are provided, and an abnormal state is detected by comparing detection signals of the state quantity detection means.
  • a method for identifying the quantity detection means is known.
  • the present invention it is possible to improve the abnormality detection accuracy of the state quantity detection means in the power steering device and the control device for on-vehicle equipment.
  • FIG. 10 is a flowchart showing an abnormal signal detection process in the third embodiment.
  • FIG. 10 is a block diagram showing an abnormal signal detection process in the third embodiment. Explanatory drawing which shows the calculation method of a motor rotation angle calculation signal.
  • 10 is a time chart showing an abnormal signal detection process in the third embodiment.
  • 10 is a flowchart showing an abnormal signal detection process in the fourth embodiment.
  • FIG. 10 is a block diagram showing an abnormal signal detection process in a fourth embodiment.
  • 10 is a flowchart showing an abnormal signal detection process in the fifth embodiment.
  • 10 is a time chart showing an abnormal signal detection process in the fifth embodiment.
  • Embodiments 1 to 5 of the power steering device and the control device for on-vehicle equipment according to the present invention will be described in detail below with reference to FIGS.
  • the electric motor M is provided with a speed reducer 5 on its output shaft, and the rotation of the electric motor M is converted into a linear motion of the rack shaft 3 while being decelerated.
  • the steering shaft 1 is divided in the axial direction into an input shaft on the steering wheel side and an output shaft on the rack shaft 3 side.
  • the input shaft and the output shaft are coaxially connected to each other via a torsion bar (not shown).
  • the steering torque sensor TS includes a first angle sensor that detects a rotation angle on the input shaft side and a second angle sensor that detects a rotation angle on the output shaft side, and outputs from the first angle sensor and the second angle sensor. Based on the signal, the steering torque is calculated by calculating the torsion amount of the torsion bar.
  • FIG. 2 is a block diagram showing the configuration of the electric system
  • FIG. 3 is a diagram showing input / output of the steering torque sensor TS, the steering angle sensor AS, and the motor rotation angle sensor 6.
  • two steering torque sensors TS1 and TS2 of Main and Sub which are the first and second angle sensors, respectively, two steering angle sensors AS1 and AS2, and Main and Sub of Main and Sub, respectively.
  • the steering torque, the steering angle, and the motor rotation angle are detected by the two motor rotation angle sensors 61 and 62, respectively, and the steering torque detection signals Tt (Main) and Tt (Sub) and the steering angle detection signals ⁇ s (Main) and ⁇ s, respectively.
  • motor rotation angle detection signals ⁇ m (Main), ⁇ m (Sub) are transmitted to a torque signal receiving unit (not shown), a steering angle signal receiving unit (not shown), and a motor rotation angle signal receiving unit (not shown) in the ECU 4. ).
  • the power circuit 7 creates and supplies power for sensors, MPU 9 and IC.
  • the CAN communication circuit 8 exchanges data and other information with the vehicle.
  • the MPU 9 performs EPS assist control calculation, motor current control, functional component abnormality detection, transition processing to a safe state, and the like.
  • the fail-safe circuit 13 has a function of shutting off the power supply of the motor current based on a command from the MPU 9 when an abnormality is detected in the MPU 9 and it is determined that the system should be shut off.
  • the drive circuit 10 drives the drive element of the inverter circuit 12 based on a command from the MPU 9.
  • the inverter circuit 12 is composed of a drive element and operates based on a command from the drive circuit 10.
  • the electric motor M is driven according to the current from the inverter circuit 12 and outputs a motor torque for assisting steering.
  • the current on the downstream side of the inverter circuit 12 is detected by a current sensor 11 as a current detection element.
  • main and sub current detection circuits 14a and 14b subjected to high-response filter processing are provided. Further, in order to monitor the overcurrent of the inverter circuit 12, there are provided main and sub current detection circuits 15a and 15b which detect an average current and perform low-response filter processing.
  • steering torque detection signals Tt (Main) and Tt (Sub) are read from the steering torque sensor Ts1 of Main and the steering torque sensor Ts2 of Sub.
  • the first abnormality detection circuit 16 compares the steering torque detection signals Tt (Main) and Tt (Sub) to determine whether or not the deviation is equal to or greater than the abnormality detection threshold. If the deviation is greater than or equal to the threshold, the process proceeds to S3, and if the deviation is less than the abnormality detection threshold, the process proceeds to S22.
  • S4 a state in which the deviation of the steering torque detection signals Tt (Main) and Tt (Sub) is equal to or greater than the abnormality detection threshold is continued for a preset time by an abnormality determination circuit (not shown) in the first abnormality detection circuit 16. Then, it is determined whether or not the abnormality detection counter exceeds a threshold value. If the abnormality detection counter has not reached the threshold value, the process proceeds to S5. If the abnormality detection counter has reached the threshold value, it is determined that one of the steering torque detection signals Tt (Main) and Tt (Sub) is abnormal. Then, the process proceeds to S12.
  • the first comparison signal generation circuit 17a causes the steering angle detection signal ⁇ s (Main), the motor rotation angle detection signal ⁇ m (Main), the torsional bar torsional rigidity value Ktb, and the pinion shaft 2 to the motor shaft. Based on the reduction ratio Ng, a steering torque calculation signal (Main) is calculated.
  • Tts Ktb ⁇ ( ⁇ s ⁇ p) (1)
  • the steering angle detection signal ⁇ s (Sub) the motor rotation angle detection signal ⁇ m (Sub)
  • the torsional bar torsional rigidity value Ktb Ktb ⁇ ( ⁇ s ⁇ p)
  • a steering torque calculation signal Tts (Sub) is calculated.
  • the calculation method of the steering torque calculation signal Tts (Sub) is the same as that of the steering torque calculation signal Tts (Main).
  • the second abnormality detection circuit 18 compares the steering torque detection signal Tt (Main), the steering torque detection signal Tt (Sub), the steering torque calculation signal Tts (Main), and the steering torque calculation signal Tts (Sub).
  • the signal value having the largest number of signals indicating the same or close values is determined as a normal value, and the values of other signals are detected as abnormal values.
  • the process proceeds to S12, and before the abnormality is determined in S11, which of the steering torque detection signals Tt (Main) and Tt (Sub) is an abnormal value.
  • the control continuation determination circuit 19 determines whether the normal value has been determined. If it can be determined, the process proceeds to S13, and if it cannot be determined, the process proceeds to S21. In S21, the drive control of the motor control circuit is stopped.
  • the abnormality detection completion flag is turned ON in S13, and it is determined in S14 whether the abnormality signal is a steering torque detection signal Tt (Main).
  • the process proceeds to S15, and among the steering torque detection signal Tt (Sub), the steering torque calculation signal Tts (Main), and the steering torque calculation signal Tts (Sub), the process proceeds to S11.
  • the signal determined to be a normal value is switched as a backup signal, and the drive control of the motor control circuit is continued by the backup signal determined to be a normal value.
  • the process proceeds to S16 and the steering torque is detected as it is.
  • the drive control of the motor control circuit is continued by the signal Tt (Main).
  • the backup timer is incremented, and it is determined whether or not a predetermined time (0 to several seconds) has elapsed since the abnormal signal detection completion flag was turned on in S18, and the warning lamp is turned on (S20).
  • the steering assist control is continued until a predetermined time has elapsed, and after the predetermined time has elapsed, the control amount of the steering assist is reduced (S19), and finally manual steering is performed.
  • the steering assist control is completely stopped after a predetermined time has elapsed after the abnormality of the steering torque detection signal Tt (Main) or Tt (Sub) is detected and the warning lamp is turned on. Before doing so, it becomes possible to move the vehicle to a safe position. Further, by gradually decreasing the steering assist amount as time elapses, it is possible to suppress continuous driving by the driver and to improve safety.
  • the steering load of the driver can be reduced by continuing the steering assist using the normal value.
  • the safety can be improved by stopping or limiting the steering assist.
  • the steering torque calculation signals Tts (Main) and Tts (Sub) can be calculated based on the steering angle detection signals ⁇ s (Main) and ⁇ s (Sub) and the motor rotation angle detection signals ⁇ m (Main) and ⁇ m (Sub). Therefore, comparison with the steering torque detection signals Tt (Main) and Tt (Sub) becomes possible.
  • the normal value is calculated by majority of three or more (four in the first embodiment) signals, a normal value with high accuracy can be obtained.
  • the determination accuracy is improved.
  • the power steering apparatus will be described with reference to the flowchart of FIG. 8, the abnormality detection block diagram of the steering angle detection signal of FIG. 9, the calculation example of the steering angle calculation signal of FIG. 10, and the time chart of FIG. To do.
  • S3, S4, S6 to S8, S13, S16, and S20 to S22 are the same as in the first embodiment.
  • description of the same processing as that of the first embodiment will be omitted, and only processing different from that of the first embodiment will be described.
  • steering angle detection signals ⁇ s (Main) and ⁇ s (Sub) are read from the steering angle sensor AS1 of Main and the steering angle sensor AS2 of Sub.
  • the first abnormality detection circuit 26 compares the steering angle detection signals ⁇ s (Main) and ⁇ s (Sub) to determine whether or not the deviation is equal to or greater than the abnormality detection threshold. When the deviation is equal to or greater than the abnormality detection threshold, the process proceeds to S3, and when the deviation is smaller than the abnormality detection threshold, the process proceeds to S22.
  • the steering angle calculation signals ⁇ ss (Main) and ⁇ ss (Sub) is calculated.
  • the steering torque detection signals Tt (Main) and Tt (Sub) of the steering torque sensor TS1 of Main and the steering torque sensor TS2 of Sub are read.
  • the motor rotation angle sensor 61 of Main and the motor rotation angle sensor of Sub are read.
  • the motor rotation angle detection signals ⁇ m (Main) and ⁇ m (Sub) of 62 are read, the torsional stiffness value Ktb of the torsion bar is read in S7, and the reduction ratio Ng from the pinion shaft 2 to the motor shaft is read in S8.
  • the motor rotation angle detection signal ⁇ m is multiplied by the reduction ratio Ng between the pinion shaft 2 and the motor shaft to convert it to a rotation angle ⁇ p at the pinion shaft 2.
  • the torsion bar twist angle T / Ktb is calculated by dividing the steering torque detection signal Tt by the torsion bar twist stiffness value Ktb.
  • the steering angle calculation signal ⁇ ss (Main) can be calculated as in the following equation (2).
  • the second comparison signal generation circuit 27b causes the steering torque detection signal Tt (Sub), the motor rotation angle detection signal ⁇ m (Sub), the torsion bar torsional rigidity value Ktb, and the pinion shaft 2 to the motor shaft.
  • a steering angle calculation signal ⁇ ss (Sub) is calculated based on the reduction ratio Ng.
  • the calculation method of the steering angle calculation signal ⁇ ss (Sub) is the same as that of the steering angle calculation signal ⁇ ss (Main).
  • the steering torque detection signal Tt (Main) is used as the steering angle detection signal ⁇ s (Main)
  • the steering torque detection signal Tt (Sub) is used as the steering angle detection signal ⁇ s (Sub)
  • the steering torque calculation signal Tts (Main) is used.
  • the processing is the same as S11, S12, S14, and S15 only by replacing the steering angle calculation signal ⁇ ss (Main) and the steering torque calculation signal Tts (Sub) with the steering angle calculation signal ⁇ ss (Sub).
  • the steering assist control amount is drastically reduced after the elapse of a predetermined time, and finally the manual steering is performed.
  • the following processes of S40 to S42 are performed.
  • the second abnormality detection circuit 28 can obtain a more accurate normal value by correcting the difference.
  • the steering angle and the motor rotation angle are both angle information
  • the steering angle calculation signals ⁇ ss (Main) and ⁇ ss (Sub) can be calculated from the motor rotation angle detection signals ⁇ m (Mian) and ⁇ m (Sub).
  • the normal value is calculated in the second abnormality detection circuit, so that a normal value with high accuracy can be obtained.
  • the vehicle speed is equal to or lower than the predetermined vehicle speed (the vehicle speed is 0 in the second embodiment)
  • the safety of the vehicle is ensured.
  • Steering assist control is continued until this state is reached, and thereafter the steering assist control is stopped, so that resumption of traveling in a state including an abnormality can be suppressed.
  • S3, S4, S5, S7, S8, S13, S16, and S21 to S22 are the same as in the first embodiment.
  • description of the same processing as that of the first embodiment will be omitted, and only processing different from that of the first embodiment will be described.
  • S51 it is determined whether there is a backup assist execution history. If there is no backup execution history, the process proceeds to S52, and if there is a history, the process proceeds to S21.
  • motor rotation angle detection signals ⁇ m (Main) and ⁇ m (Sub) are read from the motor rotation angle sensor 61 of Main and the motor rotation angle sensor 62 of Sub.
  • the first abnormality detection circuit 36 compares the motor rotation angle detection signals ⁇ m (Main) and ⁇ m (Sub) to determine whether or not the deviation is equal to or greater than an abnormality detection threshold. If the deviation is equal to or greater than the abnormality detection threshold, the process proceeds to S3, and if the deviation is smaller than the abnormality detection threshold, the process proceeds to S22.
  • the motor rotation angle calculation signals ⁇ ms (Main) and ⁇ ms (Sub) are calculated in the comparison signal generation circuits 27a and 27b.
  • the steering torque detection signals Tt (Main) and Tt (Sub) of the steering torque sensor TS1 of Main and the steering torque sensor TS2 of Sub are read.
  • the steering angle sensors AS1 and Sub of the steering angle sensor AS2 of Main are read.
  • the steering angle detection signals ⁇ s (Main), ⁇ s (Sub) are read, the torsional stiffness value Ktb of the torsion bar is read in S7, and the reduction ratio Ng from the pinion shaft 2 to the motor shaft is read in S8.
  • the first comparison signal generation circuit 37a causes the steering torque detection signal Tt (Main), the steering angle detection signal ⁇ s (Main), the torsion bar torsional rigidity value Ktb, and the reduction ratio from the pinion shaft to the motor shaft. Based on Ng, a motor rotation angle calculation signal ⁇ ms (Main) is calculated.
  • the second comparison signal generation circuit 37b causes the steering torque detection signal Tt (Sub), the steering angle detection signal ⁇ s (Sub), the torsion bar torsional stiffness value Ktb, and the deceleration from the pinion shaft 2 to the motor shaft. Based on the ratio Ng, the motor rotation angle calculation signal ⁇ ms (Sub) is calculated.
  • the calculation method of the motor rotation angle calculation signal ⁇ ms (Sub) is the same as that of the motor rotation angle calculation signal ⁇ ms (Main).
  • the steering torque detection signal Tt (Main) is the motor rotation angle detection signal ⁇ m (Main)
  • the steering torque detection signal Tt (Sub) is the motor rotation angle detection signal ⁇ m (Sub)
  • the steering assist control amount is drastically reduced after a predetermined time has elapsed and finally the manual steering is performed.
  • the following processes of S60 to S66 are performed.
  • S60 it is determined in S60 whether or not the ignition is turned off. If the ignition is not turned off, the process proceeds to S65 and the warning lamp is turned on. When the ignition is turned off, the process proceeds to S61.
  • the self-holding function is turned on.
  • This self-holding function starts the steering assist control by turning on the ignition again before the electric motor M or the driving element becomes low temperature even when the electric motor M or the driving element becomes high temperature, even if the ignition is turned off.
  • the backup assist execution history is stored in the memory in S62.
  • an abnormality is detected in the current detection signal for power steering device control (hereinafter referred to as EPS control) and the current detection signal for overcurrent detection of the inverter circuit 12.
  • EPS control power steering device control
  • control device for on-vehicle equipment in the fourth embodiment will be described based on the flowchart of FIG. 16 and the abnormality detection block diagram of the current detection signal of FIG.
  • S3, S4, S13, and S16 to S22 are the same as those in the first embodiment.
  • description of the same processing as that of the first embodiment will be omitted, and only processing different from that of the first embodiment will be described.
  • the current detection signals Is (Main) and Is (Sub) for EPS control apply values detected by the current sensor 11a to the amplifiers 41a and 41c and the first and second filter circuits 42a and 42c. Signal.
  • the first and second filter circuits 42a and 42c have substantially the same responsiveness, and output to the ECU 4 after extracting the band limit or specific frequency component.
  • the first abnormality detection circuit 43 compares the current detection signal Is (Main) and Is (Sub) for EPS control to determine whether or not the deviation is equal to or greater than the abnormality detection threshold.
  • the second abnormality determination circuit 44 compares the current detection signals Io (Main) and Io (Sub) for detecting overcurrent, and determines whether or not the deviation is equal to or greater than the abnormality detection threshold.
  • responsiveness adjustment is performed to detect abnormalities in the current detection signals Is (Main) and Is (Sub) for EPS control, and the current detection signals Io (Main) and Io (Sub) for overcurrent detection.
  • the responsiveness is adjusted and brought closer.
  • the first and second filter circuits 42a and 42c used for the current detection signals Is (Main) and Is (Sub) for EPS control have a higher response and a higher cut-off frequency. By further filtering the current detection signals Is (Main) and Is (Sub), the responsiveness can be easily made uniform.
  • EPS current control signals Is (Main), Is (Sub) and overcurrent detection current detection signals Io (Main) and Io (Sub) are adjusted to provide uniform response. It may be. In this way, by adjusting both responsiveness, the respective adjustment ranges can be reduced.
  • the third abnormality detection circuit 46 compares the current detection signals Is (Main) and Is (Sub) for EPS control and the current detection signals Io (Main) and Io (Sub) for overcurrent detection.
  • the value of the signal having the largest number of signals showing the same or close values is determined as a normal value, and the values of other signals are detected as abnormal values.
  • the abnormality detection counter threshold value for determining abnormality is made variable according to the deviation amount between the steering torque detection signals Tt (Main) and Tt (Sub). It is.
  • S1, S5 to S22 are the same as in the first embodiment.
  • description of the same processing as that of the first embodiment will be omitted, and only processing different from that of the first embodiment will be described.
  • the abnormality detection threshold and the abnormality confirmation time are set as follows (FIG. 19).
  • Abnormality detection threshold 1 ⁇ deviation amount Abnormality confirmation time C (ms)
  • S81 it is determined whether or not the deviation amount is equal to or greater than the abnormality detection threshold value 1. If the deviation amount is equal to or greater than the abnormality detection threshold 1, the process proceeds to S82, and if it is less than the abnormality detection threshold 1, the process proceeds to S22, and the abnormality detection counter is cleared to zero.
  • S82 it is determined whether or not the deviation amount is equal to or greater than the abnormality detection threshold value 2. If the deviation is greater than or equal to the abnormality detection threshold 2, the process proceeds to S83, and if it is less than the abnormality detection threshold 2, the process proceeds to S3c.
  • S83 it is determined whether or not the deviation amount is equal to or greater than the abnormality detection threshold value 3. If the deviation is equal to or greater than the abnormality detection threshold 3, the process proceeds to S3a. If the deviation is less than the abnormality detection threshold 3, the process proceeds to S3b.
  • the abnormality detection threshold value is incremented.
  • an abnormality confirmation time A for example, 70 ms
  • an abnormality confirmation time B for example, 30 ms
  • an abnormality confirmation time C for example, 10 ms.
  • the steering assist control is stopped in S21.
  • the steering assist control may be limited.
  • the control current detection signals Is (Main) and Is (Sub), and the overcurrent detection current detection signals Io (Main) and Io (Sub) are common to detection signals output from independent detection elements. It may be a signal output via electronic circuits different from each other after being detected by the detection element.
  • the steering assist control is reduced and finally stopped, but when the vehicle speed is equal to or lower than the predetermined value, the drive control of the electric motor M by the motor control circuit may be continued.
  • the vehicle speed is equal to or lower than a predetermined value, the safety of the vehicle is relatively high and the steering load is large. Therefore, by continuing the steering assist, the driver's steering load can be reduced while ensuring safety.
  • the steering torque sensor TS by comparing the same units among the steering angle detection signal ⁇ s (Sub), the motor rotation angle detection signal ⁇ m (Main), and the motor rotation angle detection signal ⁇ m (Sub).
  • An abnormality of the rudder angle sensor AS or the motor rotation angle sensor 6 may be detected.
  • the first abnormality detection circuit includes a steering torque detection signal Tt (Sub) of the steering torque sensor TS2 provided on the output shaft side of the torsion bar and the motor rotation angle detection signals ⁇ m (Main) and ⁇ m (Sub). They may be compared to detect an abnormality in the steering torque sensor TS2 or the motor rotation angle sensor 61 or 62. As a result, a difference due to torsion of the torsion bar is not included between the steering torque detection signal Tt (Sub) and the motor rotation angle detection signals ⁇ m (Main) and ⁇ m (Sub), so that a highly accurate comparison can be performed. it can.
  • the steering angle detection signal ⁇ s (Main) or the steering angle detection signal ⁇ s (Sub) and the steering torque detection signal Tt (Sub) or the motor rotation angle detection signals ⁇ m (Main), ⁇ m The normal value may be calculated by comparing (Sub). Thereby, since a steering angle detection signal is also the same angle signal, a highly accurate comparison can be performed.
  • a current detection sensor is described as an example of the detection element of the vehicle-mounted device, but the detection element may be other than the current sensor.
  • the steering mechanism includes a steering shaft connected to the steering wheel, the steering wheel side of the steering shaft provided in the middle of the steering shaft, and the steered wheel. It has a torsion bar that connects to the side so that relative rotation is possible.
  • the rudder angle sensor detects a rotation angle of the steering shaft on the steering wheel side of the steering shaft with respect to the torsion bar,
  • the electric motor is connected to the steered wheel side from the torsion bar in the steering mechanism,
  • the comparison signal generation circuit calculates the first steering angle calculation signal based on the first motor rotation angle detection signal and the torsion bar twist amount, and the second motor rotation angle detection signal and the torsion bar twist amount.
  • the second steering angle calculation signal is calculated based on the power steering device.
  • the abnormality determination circuit is configured such that the set time is shortened as a difference between the pair of signals used for the comparison of the first abnormality detection circuit is large.
  • control continuation determination circuit is configured to detect the ignition of the vehicle when the normal value is calculated in the second abnormality detection circuit before the abnormality is determined in the abnormality determination circuit.
  • the drive control of the electric motor by the motor control circuit is continued until the switch is turned off, and the electric motor is driven by the motor control circuit when the ignition switch is turned on again after the ignition switch is turned off.
  • control continuation determination circuit is configured to control the motor control when the normal value is calculated in the second abnormality detection circuit before the abnormality is determined in the abnormality determination circuit.
  • a power steering device characterized by gradually reducing the amount of current supplied to the electric motor in the drive control of the electric motor by a circuit as time elapses.
  • control continuation determination circuit is configured such that the vehicle speed is predetermined when the normal value is calculated in the second abnormality detection circuit before the abnormality is determined in the abnormality determination circuit.
  • control continuation determination circuit is when the normal value is calculated in the second abnormality detection circuit before the abnormality is determined in the abnormality determination circuit, When the vehicle speed is equal to or less than a predetermined value, drive control of the electric motor by the motor control circuit is continued.
  • the safety of the vehicle is relatively high and the steering load is large. Therefore, driving is continued while ensuring safety by continuing the steering assist. A person's steering load can be reduced.
  • the steering mechanism includes a steering shaft connected to the steering wheel, and the steering wheel side and the steered wheel side of the steering shaft provided in the middle of the steering shaft.
  • a torsion bar that connects the
  • the steering torque sensor includes a first angle sensor that detects a rotation angle on the steering wheel side of the steering shaft, and a second angle sensor that detects a rotation angle on the steered wheel side of the steering shaft, Detecting the steering torque by calculating a torsion amount of the torsion bar based on output signals of the first angle sensor and the second angle sensor;
  • the first steering torque detection signal is an output signal of the first angle sensor, and the second steering torque detection signal is an output signal of the second angle sensor,
  • the rudder angle sensor detects a rotation angle of the steering shaft on the steering wheel side of the steering shaft with respect to the torsion bar,
  • the electric motor is connected to the steered wheel side from the torsion bar in the steering mechanism,
  • the first abnormality detection circuit compares the second steering torque detection signal
  • the second steering torque detection signal, the first motor rotation angle detection signal, and the second motor rotation angle detection signal do not include a difference due to torsion of the torsion bar. A comparison can be made.
  • the second abnormality detection circuit calculates a normal value by comparing the first steering angle detection signal or the second steering angle detection signal with the already-compared signal.
  • the steering angle detection signal is also the same angle signal, so that a highly accurate comparison can be performed.
  • the abnormality determination circuit is configured such that the set time is shortened as a difference between the pair of signals used in the comparison of the first abnormality detection circuit is large.
  • the safety can be further improved by shortening the abnormality determination time as the difference between signals indicating abnormality is larger.
  • the on-vehicle equipment includes an electric motor
  • the control circuit includes an inverter circuit, and is an electronic circuit for driving and controlling the electric motor
  • the detection element is provided on the downstream side of the inverter circuit, and is a current sensor for detecting a current value on the downstream side of the inverter circuit.
  • the control circuit for vehicle-mounted equipment controls driving of the electric motor based on a current value downstream of the inverter circuit detected by the current sensor.
  • the responsiveness adjustment circuit includes the third filter circuit and the fourth filter in addition to the output signals of the first filter circuit and the second filter circuit.
  • the output signal of the circuit is input,
  • the control apparatus for a vehicle-mounted device wherein the first responsiveness and the second responsiveness are adjusted so that the first responsiveness and the second responsiveness are close to each other.
  • the respective responsiveness adjustment widths can be reduced, so that the influence on the output signal is suppressed. Can do.

Abstract

 パワーステアリング装置および車両搭載機器の制御装置において、状態量検出手段の異常検出精度を向上させる。 複数の状態量検出手段を持つ電動パワーステアリング装置および車両搭載機器の制御装置において、冗長系に設けられた状態量検出手段の検出信号同士を比較することにより状態量検出手段の異常検知を行い、当該状態量検出手段の検出信号と、他の状態量検出手段から演算等により同一単位系信号に合わせた信号とを比較することにより、近い信号を示す信号の数が最も多い信号の値を正常値とする。

Description

パワーステアリング装置および車両搭載機器の制御装置
 本発明は、パワーステアリング装置および車両搭載機器の制御装置に関する。
 近年、EPSの普及に伴い、更なる商品力の向上が望まれるようになってきている。その様な中で、万が一の故障時に、時間限定でも良いのでアシスト機能を残存させたいとの要望がある。EPSのアシスト機能を残存させる為に、複数の状態量検出手段(操舵トルクセンサ,舵角センサ,モータ回転角センサ等)を設け、この状態量検出手段の検出信号を比較することによって異常な状態量検出手段を見分ける方法が知られている。
特開2006-143151
 しかしながら、状態量検出手段の検出信号を比較する際に、検出信号を換算または推定する必要があるため、異常検出の精度が低下する。その結果、検出しなくてはならない異常が検出できない、又は、逆に正常な検出信号を異常と誤判断する場合がある。例えば、摩擦係数μが極端に低い路面を走行した場合、操舵トルクは僅かだが、舵角は変化するため、誤判断してしまう可能性がある。
 以上示したようなことから、パワーステアリング装置および車両搭載機器の制御装置において、状態量検出手段の異常検出精度を向上させることが課題となる。
 本願発明は、一対の操舵トルク検出信号,一対の舵角検出信号,または一対のモータ回転角検出信号同士を比較し、操舵トルクセンサ,舵角センサ,モータ回転角センサの異常を検出する第1異常検出回路と、既比較信号以外の信号を用いて比較信号と単位が同じ信号を生成または選択する比較信号生成回路と、比較信号生成回路によって生成または選択された信号と既比較信号を比較し、同じまたは近い値を示す信号の数が最も多い信号の値を正常値とし、その他の信号を異常値として検出する第2異常検出回路と、異常が確定する前に正常値が演算されたとき、正常値を用いて操舵アシスト制御を継続し、正常値が演算される前に異常が確定したとき、操舵アシスト制御を中止または制限する制御継続判断回路と、有することを特徴とする。
 本発明によれば、パワーステアリング装置および車両搭載機器の制御装置において、状態量検出手段の異常検出精度を向上させることが可能となる。
実施形態におけるパワーステアリング装置の概略図。 実施形態におけるパワーステアリング装置の電気システムブロック図。 操舵トルクセンサ,舵角センサの入出力を示す図。 実施形態1における異常信号検出処理を示すフローチャート。 実施形態1における異常信号検出処理を示すブロック図。 操舵トルク演算信号の演算方法を示す説明図。 実施形態1における異常信号検出処理を示すタイムチャート。 実施形態2における異常信号検出処理を示すフローチャート。 実施形態2における異常信号検出処理を示すブロック図。 舵角演算信号の演算方法を示す説明図。 実施形態2における異常信号検出処理を示すタイムチャート。 実施形態3における異常信号検出処理を示すフローチャート。 実施形態3における異常信号検出処理を示すブロック図。 モータ回転角演算信号の演算方法を示す説明図。 実施形態3における異常信号検出処理を示すタイムチャート。 実施形態4における異常信号検出処理を示すフローチャート。 実施形態4における異常信号検出処理を示すブロック図。 実施形態5における異常信号検出処理を示すフローチャート。 実施形態5における異常信号検出処理を示すタイムチャート。
 以下、本発明に係るパワーステアリング装置および車両搭載機器の制御装置の実施形態1~5を図1~図19に基づいて詳述する。
 [実施形態1]
 図1は、本実施形態1におけるパワーステアリング装置を示す概略図である。図1に示すパワーステアリング装置は、ステアリングホイール(図示省略),ステアリングシャフト(操舵軸)1,ピニオン軸2,ラック軸3により基本的な操舵機構が構成されている。この操舵機構は、運転者によってステアリングホイールが回転操作されると、そのステアリングホイールの操舵トルクがステアリングシャフト1を介してピニオン軸2に伝達されると共に、ピニオン軸2の回転運動がラック軸3の直線運動に変換され、ラック軸3の両端に連結された左右の転舵輪(図示省略)が転舵するようになっている。つまり、ラック軸3には、ピニオン軸2が噛み合いするラック歯が形成されており、そのラック歯とピニオン軸との噛合をもってステアリングシャフト1の回転を転舵動作に変換する変換機構が構成される。
 また、ピニオン軸2のハウジングにはステアリングホイールの操舵角を検出する操舵トルクセンサTS(例えば、レゾルバ等)が設けられており、操舵トルクセンサTSの出力信号および電動モータMのロータの回転角を検出するモータ回転角センサ6(例えばレゾルバやIC等)の出力信号,車速情報に基づいて制御装置(以下、ECUと称する)のモータ制御回路(図示省略)により電動モータMの駆動制御し、電動モータMから減速器5を介してラック軸3に対して操舵補助力を付与するように構成されている。
 電動モータMには、その出力軸に減速器5が設けられ、電動モータMの回転が減速されながらラック軸3の直線運動に変換されるようになっている。
 また、ステアリングシャフト1は、ステアリングホイール側の入力軸とラック軸3側の出力軸とに軸方向で分割されている。入力軸と出力軸はトーションバー(図示省略)を介して互いに同軸連結されている。これにより、入力軸と出力軸とがトーションバーの捻れ変形を持って相対回転可能になっている。操舵トルクセンサTSは、入力軸側の回転角を検出する第1角度センサと、出力軸側の回転角を検出する第2角度センサと、を備え、第1角度センサと第2角度センサの出力信号に基づき、前記トーションバーの捻れ量を演算することにより操舵トルクを演算する。
 また、このトーションバーには、舵角センサAS(例えば、MR素子やIC等)が設けられている。
 図2は電気システムの構成ブロック図を示しており、図3は操舵トルクセンサTS、舵角センサAS、モータ回転角センサ6の入出力を表した図である。図2,図3に示すように、それぞれ前記第1,第2角度センサであるMainとSubの2つの操舵トルクセンサTS1,TS2、MainとSubの2つの舵角センサAS1,AS2、MainとSubの2つのモータ回転角センサ61,62により、操舵トルク,舵角,モータ回転角を検出し、それぞれ操舵トルク検出信号Tt(Main),Tt(Sub),舵角検出信号θs(Main),θs(Sub),モータ回転角検出信号θm(Main),θm(Sub)をECU4内のトルク信号受信部(図示省略),舵角信号受信部(図示省略),モータ回転角信号受信部(図示省略)に出力する。
 電源回路7は、センサ類、MPU9,IC関係の電源を作成し、供給を行う。CAN通信回路8は車両とのデータ、その他情報を交換する。MPU9は、EPSのアシスト制御の演算、モータ電流のコントロール、機能構成要素の異常検出、安全状態への移行処理等を行う。フェイルセーフ回路13は、MPU9で異常が検出され、システムを遮断しなくてはならないと判断された時、MPU9からの指令に基づき、モータ電流の電源を遮断する機能を持つ。
 ドライブ回路10は、MPU9からの指令に基づいて、インバータ回路12の駆動素子を駆動する。インバータ回路12は駆動素子から構成され、ドライブ回路10からの指令に基づいて作動する。電動モータMは、インバータ回路12からの電流に応じて駆動し、操舵補助のためのモータトルクを出力する。インバータ回路12の下流側の電流は、電流検出素子としての電流センサ11によって検出される。
 モータ制御を行う為に、高応答フィルタ処理を行ったMainとSubの電流検出回路14a,14bが設けられている。また、インバータ回路12の過電流を監視するために、平均的な電流を検出し、低応答のフィルタ処理を行ったMainとSubの電流検出回路15a,15bが設けられている。
 次に、図4に示すフローチャート,図5に示すブロック図,図6の操舵トルク演算信号の演算例を示す図,図7のタイムチャートに基づいて、本実施形態1における異常信号検出処理について説明する。
 まず、S1において、Mainの操舵トルクセンサTs1,Subの操舵トルクセンサTs2から操舵トルク検出信号Tt(Main),Tt(Sub)を読み込む。次に、S2において、第1異常検出回路16により、操舵トルク検出信号Tt(Main),Tt(Sub)を比較し、偏差が異常検知閾値以上か否かを判定する。偏差が閾値以上の場合はS3へ移行し、偏差が異常検知閾値未満の場合はS22へ移行する。
 S3において、図7に示すように、異常検知カウンタをインクリメントし、これに伴い、異常信号検出開始フラグがセットされる。この異常検知カウンタは、操舵トルク検出信号Tt(Main),Tt(Sub)の偏差が異常検知閾値以上である状態が継続している場合、制御周期ごとにインクリメントする。一方、S2で操舵トルク検出信号Tt(Main),Tt(Sub)の偏差が異常検知閾値未満の場合は、S22において異常検知カウンタが0にクリアされる。
 S4において、第1異常検出回路16内の異常確定回路(図示省略)により、操舵トルク検出信号Tt(Main),Tt(Sub)の偏差が異常検知閾値以上である状態が予め設定された時間継続し、異常検知カウンタが閾値を超えたか否かを判定する。異常検知カウンタが閾値に達していない場合はS5へ移行し、異常検知カウンタが閾値に達した場合は、操舵トルク検出信号Tt(Main)とTt(Sub)のうち何れかが異常であると確定し、S12へ移行する。
 S5でMainの舵角センサAS1,Subの舵角センサAS2の舵角検出信号θs(Main),θs(Sub)を読み込み、S6でMainのモータ回転角センサ61,Subのモータ回転角センサ62のモータ回転角検出信号θm(Main),θm(Sub)を読み込み、S7でトーションバーの捻れ剛性値Ktbを読み込み、S8でピニオン軸2からモータシャフトまでの減速比Ngを読み込む。
 次に、S9において、第1比較信号生成回路17aにより、舵角検出信号θs(Main),モータ回転角検出信号θm(Main),トーションバーの捻れ剛性値Ktb,ピニオン軸2からモータシャフトまでの減速比Ngに基づいて、操舵トルク演算信号(Main)を演算する。
 ここで、図6に基づいて、操舵トルク演算信号Tts(Main)の演算方法について説明する。トーションバーの上下流の相対角度にトーションバーの捻れ剛性値Ktbを乗算することにより操舵トルク演算信号Ttsを算出する。トーションバーの上流の角度は舵角検出信号θs(Main)を用いる。他方、トーションバーの下流の角度(ピニオン軸2の回転角)は、モータ回転角検出信号θm(Main)にピニオン軸2からモータシャフト間の減速比Ngを乗算することにより算出する。すなわち、操舵トルク演算信号Tts(Main)は以下の(1)式となる。
 Tts=Ktb×(θs-θp)…(1)
 次に、S10において、第2比較信号生成回路17bで、舵角検出信号θs(Sub),モータ回転角検出信号θm(Sub),トーションバーの捻れ剛性値Ktb,ピニオン軸2からモータシャフトまでの減速比Ngに基づいて、操舵トルク演算信号Tts(Sub)を演算する。操舵トルク演算信号Tts(Sub)の演算方法は、操舵トルク演算信号Tts(Main)と同様である。
 S11において、第2異常検出回路18で、操舵トルク検出信号Tt(Main),操舵トルク検出信号Tt(Sub),操舵トルク演算信号Tts(Main),操舵トルク演算信号Tts(Sub)の比較を行い、同じ又は近い値を示す信号の数が最も多い信号の値を正常値と判断し、その他の信号の値を異常値として検出する。
 S4で、異常検知カウンタが閾値に達したと判定された場合は、S12へ移行し、S11において異常が確定する前に、操舵トルク検出信号Tt(Main)とTt(Sub)のうちどちらが異常値でどちらが正常値か判別できたか否かを制御継続判断回路19により判定する。判別できた場合はS13へ移行し、判別できなかった場合はS21へ移行する。S21では、モータ制御回路の駆動制御を中止する。
 図7に示すように、S13で異常検知完了フラグをONにし、S14において異常信号は操舵トルク検出信号Tt(Main)か否かを判定する。異常信号が操舵トルク検出信号Tt(Main)の場合はS15へ移行し、操舵トルク検出信号Tt(Sub),操舵トルク演算信号Tts(Main),操舵トルク演算信号Tts(Sub)のうち、S11で正常値と判定された信号をバックアップ信号として切り換え、正常値と判断されたバックアップ信号によりモータ制御回路の駆動制御を継続させる。
 また、異常信号が操舵トルク検出信号Tt(Main)でないと判断された場合(すなわち、異常信号が操舵トルク検出信号Tt(Sub)と判断された場合)は、S16へ移行し、そのまま操舵トルク検出信号Tt(Main)でモータ制御回路の駆動制御を継続させる。
 次に、S17において、バックアップタイマーをインクリメントし、S18により異常信号検知完了フラグがONとなってから所定時間(0~数秒)経過したか否かを判定し、ワーニングランプを点灯させる(S20)。所定時間経過まで、操舵アシスト制御を継続し、所定時間経過後に、操舵アシストの制御量を斬減し(S19)、最終的にはマニュアルステアリングとする。
 このように、操舵トルク検出信号Tt(Main)またはTt(Sub)の異常が検出されワーニングランプが点灯してから所定時間経過後に操舵アシスト制御を斬減することにより、操舵アシスト制御が完全に中止する前に、車両を安全な位置まで移動することが可能となる。また、時間の経過に応じて操舵アシスト量を漸減することにより、運転者による継続運転を抑止し、安全性を高めることができる。
 本実施形態1によれば、信号同士の多数決により正常値が演算された場合には、その正常値を用いて操舵アシストを継続することにより、運転者の操舵負荷を軽減することができる。一方、異常が確定しても正常値が演算できない場合、操舵アシストを中止または制限することにより、安全性を高めることができる。
 また、操舵トルク検出信号Tt(Main),Tt(Sub)は、共に操舵軸の角度信号を出力するため、比較が容易であり高い検出精度で早期異常の検出が可能となる。
 さらに、舵角検出信号θs(Main),θs(Sub)とモータ回転角検出信号θm(Main),θm(Sub)に基づき操舵トルク演算信号Tts(Main),Tts(Sub)を演算することができるため、操舵トルク検出信号Tt(Main),Tt(Sub)との比較が可能となる。また、3つ以上(本実施形態1では4つ)の信号同士の多数決により正常値を演算するため、精度の高い正常値を得ることができる。また、どの検出信号が異常かの判断が異常発生から早い時期に可能な為、判断精度が上げられる。
 また、前記第1異常検出回路16において行われる比較に用いられる操舵トルク検出信号Tt(Main),Tt(Sub)は、異なる検出素子、より好ましくは異なる検出形式のセンサからの出力信号同士を用いることにより、環境変化等に対して検出信号に異常が発生する際、検出信号同士で同じ傾向を示す可能性が低くなるため、異常の検出精度を高めることができる。
 [実施形態2]
 実施形態1では操舵トルクセンサTS1,TS2の操舵トルク検出信号Tt(Main),Tt(Sub)の異常を検出したが、本実施形態2では、操舵角センサAS1,AS2の舵角検出信号θs(Main),θs(Sub)の異常を検出するものである。
 本実施形態2におけるパワーステアリング装置を図8のフローチャート,図9の舵角検出信号の異常検出ブロック図,図10の舵角演算信号の演算例を示す図,図11のタイムチャートに基づいて説明する。
 本実施形態2は、図8に示すように、S3,S4,S6~S8,S13,S16,S20~S22については、実施形態1と同様である。以下、実施形態1と同様の処理は説明を省略し、実施形態1と異なる処理についてのみ説明する。
 まず、S31において、Mainの舵角センサAS1,Subの舵角センサAS2から舵角検出信号θs(Main),θs(Sub)を読み込む。次に、S32において、第1異常検出回路26により、舵角検出信号θs(Main),θs(Sub)を比較し、偏差が異常検知閾値以上か否かを判定する。偏差が異常検知閾値以上の場合は、S3へ移行し、偏差が異常検知閾値よりも小さい場合はS22へ移行する。
 本実施形態2では、舵角検出信号θs(Main),θs(Sub)の異常を検出するため、第1,第2比較信号生成回路27a,27bにおいて舵角演算信号θss(Main),θss(Sub)を演算する。
 まず、S33でMainの操舵トルクセンサTS1,Subの操舵トルクセンサTS2の操舵トルク検出信号Tt(Main),Tt(Sub)を読み込み、S6でMainのモータ回転角センサ61,Subのモータ回転角センサ62のモータ回転角検出信号θm(Main),θm(Sub)を読み込み、S7でトーションバーの捻れ剛性値Ktbを読み込み、S8でピニオン軸2からモータシャフトまでの減速比Ngを読み込む。
 次に、S34において、第1比較信号生成回路27aで、操舵トルク検出信号Tt(Main),モータ回転角検出信号θm(Main),トーションバーの捻れ剛性値Ktb,ピニオン軸2からモータシャフトまでの減速比Ngに基づいて、舵角演算信号θss(Main)を演算する。
 ここで、図10に基づいて舵角演算信号θss(Main)の演算方法について説明する。モータ回転角検出信号θmに、ピニオン軸2からモータシャフト間の減速比Ngを乗算してピニオン軸2での回転角θpに変換する。また、操舵トルク検出信号Ttをトーションバーの捻れ剛性値Ktbで除算してトーションバーの捻れ角T/Ktbを算出する。トーションバーの捻れが発生している時、舵角とピニオン軸2における回転角θpとの間にはトーションバーの捻れ分だけ差が生じているため、このピニオン軸における回転角θpとトーションバーのねじれ角T/Ktbとを加算することにより、以下の(2)式のように、舵角演算信号θss(Main)を算出できる。
 θss=θp+T/Ktb…(2)
 舵角センサASがトーションバーよりも転舵輪側に設けられている場合は、ピニオン軸2における回転角θpが舵角演算信号θssとなり、トーションバーの捻れ角T/Ktbは不要となる。
 次に、S36において、第2比較信号生成回路27bにより、操舵トルク検出信号Tt(Sub),モータ回転角検出信号θm(Sub),トーションバーの捻れ剛性値Ktb,ピニオン軸2からモータシャフトまでの減速比Ngに基づいて、舵角演算信号θss(Sub)を演算する。舵角演算信号θss(Sub)の演算方法は、舵角演算信号θss(Main)と同様である。
 S36~S39は、操舵トルク検出信号Tt(Main)を舵角検出信号θs(Main),操舵トルク検出信号Tt(Sub)を舵角検出信号θs(Sub),操舵トルク演算信号Tts(Main)を舵角演算信号θss(Main),操舵トルク演算信号Tts(Sub)を舵角演算信号θss(Sub)に置き換えたのみで、処理としてはS11,S12,S14,S15と同じである。
 実施形態1では、S17~S20において、所定時間経過後に操舵アシスト制御量を斬減し、最終的にマニュアルステアリングとしていたが、本実施形態2では、以下のS40~S42の処理を行う。
 まず、S40において車速信号を読み込み、S41で車速が0(停車した)か否かを判定する。図11に示すように、車速が0の場合、S42において操舵アシスト制御量を斬減する。すなわち、車速が走行状態の時は停車まで操舵アシスト制御を継続し、その後、車速が0になった(停止した)時点で操舵アシスト制御量を斬減して最終的にマニュアルステアリングとする。
 以上示したように、本実施形態2によれば実施形態1と同様の作用効果を奏する。
 また、舵角検出信号θs(Main),θs(Sub)は、共に操舵軸の角度信号を出力するため、第1異常検出回路26において比較が容易であり、高い検出精度で早期異常の検出が可能となる。
 舵角センサAS1,AS2がトーションバーよりもステアリングホイール側に設けられている場合は、トーションバーに捻れが発生している時、舵角とモータ回転角との間にはトーションバーの捻れ分だけ差が生じるため、この差を補正することにより、第2異常検出回路28において、より精度の高い正常値を得ることができる。
 また、舵角とモータ回転角は共に角度情報であるため、舵角センサAS1,AS2がトーションバーよりも転舵輪側に設けられている場合は、減速器5等の減速比分を補正することによりモータ回転角検出信号θm(Mian),θm(Sub)から舵角演算信号θss(Main),θss(Sub)を演算することが可能となる。その結果により第2異常検出回路において正常値を演算するため、精度の高い正常値を得ることができる。
 車速が所定車速以下(本実施形態2では、車速0)となった状態は車両の安全性が確保されている。その状態となるまで操舵アシスト制御を継続し、それ以降は操舵アシスト制御を中止することにより、異常を含む状態での走行再開を抑制することができる。
 [実施形態3]
 本実施形態3は、モータ回転角センサ61,62のモータ回転角検出信号θm(Main),θm(Sub)の異常を検出するものである。
 本実施形態3におけるパワーステアリング装置を図12のフローチャート,図13のモータ回転角検出信号の異常検出ブロック図,図14のモータ回転角演算信号の演算例を示す図,図15のタイムチャートに基づいて説明する。
 本実施形態3は、図12に示すように、S3,S4,S5,S7,S8,S13,S16,S21~S22については、実施形態1と同様である。以下、実施形態1と同様の処理は説明を省略し、実施形態1と異なる処理についてのみ説明する。
 まず、S51において、バックアップアシストの実施履歴の有無を判定し、バックアップ実施の履歴が無ければS52へ移行し、履歴があればS21へ移行する。
 次に、S52において、Mainのモータ回転角センサ61,Subのモータ回転角センサ62からモータ回転角検出信号θm(Main),θm(Sub)を読み込む。S53において、第1異常検出回路36により、モータ回転角検出信号θm(Main),θm(Sub)を比較し、偏差が異常検知閾値以上か否かを判定する。偏差が異常検知閾値以上の場合はS3へ移行し、偏差が異常検知閾値よりも小さい場合はS22へ移行する。
 本実施形態3では、モータ回転角センサ61,62の異常を検出するため、比較信号生成回路27a,27bにおいてモータ回転角演算信号θms(Main),θms(Sub)を演算する。
 まず、S33でMainの操舵トルクセンサTS1,Subの操舵トルクセンサTS2の操舵トルク検出信号Tt(Main),Tt(Sub)を読み込み、S5でMainの舵角センサAS1,Subの舵角センサAS2の舵角検出信号θs(Main),θs(Sub)を読み込み、S7ではトーションバーの捻れ剛性値Ktbを読み込み,S8でピニオン軸2からモータシャフトまでの減速比Ngを読み込む。
 次に、S54において、第1比較信号生成回路37aにより、操舵トルク検出信号Tt(Main),舵角検出信号θs(Main),トーションバーの捻れ剛性値Ktb,ピニオン軸からモータシャフトまでの減速比Ngに基づいて、モータ回転角演算信号θms(Main)を演算する。
 ここで、図14に基づいてモータ回転角演算信号θms(Main)の演算方法について説明する。舵角検出信号θs(Main)から、操舵トルク検出信号Tt(Main)をトーションバーの捻れ剛性値Ktbで除算した値Tt/Ktbを減算し、ピニオン軸2からモータシャフト間の減速比Ngを乗算する。そして、この値Ng*(θs-Tt/Ktb)で1を除算することにより、モータ回転角演算信号θms(Main)が算出できる。
すなわち、モータ回転角演算信号θmsは以下の(3)式となる。
 θms=1/Ng*(θs-Tt/Ktb)…(3)
 舵角センサASがトーションバーよりも転舵輪側に設けられている場合は、舵角検出信号θsがピニオン軸2における回転角θpとなり、Tt/Ktbは不要となる。
 次に、S55において、第2比較信号生成回路37bにより、操舵トルク検出信号Tt(Sub),舵角検出信号θs(Sub),トーションバーの捻れ剛性値Ktb,ピニオン軸2からモータシャフトまでの減速比Ngに基づいて、モータ回転角演算信号θms(Sub)を演算する。モータ回転角演算信号θms(Sub)の演算方法は、モータ回転角演算信号θms(Main)と同様である。
 S56~S59は、操舵トルク検出信号Tt(Main)をモータ回転角検出信号θm(Main),操舵トルク検出信号Tt(Sub)をモータ回転角検出信号θm(Sub),操舵トルク演算信号Tts(Main)をモータ回転角演算信号θms(Main),操舵トルク演算信号Tts(Sub)をモータ回転角演算信号θms(Sub)に置き換えたのみで、処理としてはS11,S12,S14,S15と同じである。
 実施形態1では、S17~S20において、所定時間経過後に操舵アシスト制御量を斬減し、最終的にマニュアルステアリングとしていたが、本実施形態3では、以下のS60~S66の処理を行う。
 以下、詳細に説明する。まず、S60でイグニッションオフされたか否かを判定し、イグニッションオフされていない場合はS65へ移行しワーニングランプを点灯させる。イグニッションオフされた場合は、S61へ移行する。
 図15に示すように、S61では、自己保持機能をONにする。この自己保持機能は、電動モータMや駆動素子等が高温になった場合、イグニッションオフされても、電動モータMや駆動素子が低温になる前に、再度イグニッションオンして操舵アシスト制御を開始することを防止するため、電動モータMや駆動素子等が低温になるまでの所定時間、マイコン等の電源を切らずに残しておく機能である。この自己保持機能を利用し、S62において、バックアップアシストの実施履歴をメモリに格納する。S63においてメモリに書き込みが完了しているか否かを判定し、書き込みが完了するまでワーニングランプを点灯させ(S66)、書き込み完了後マイコン等の電源をOFFする(S64)。
 このバックアップアシストの実施履歴がメモリに書き込まれると、再度イグニッションオンした場合、S51において、バックアップアシストの実施の有無の判定によりS21へ移行し、操舵アシスト制御が停止される。
 以上示したように、本実施形態3によれば実施形態1と同様の作用効果を奏する。
 また、イグニッションスイッチが切られた後、再度イグニッションスイッチがオン状態となったときは、車両は停止状態であるため、車両の安全が確保されている。この状態で操舵アシストを禁止することにより、異常を含む状態での走行再開を抑止することができる。
 [実施形態4]
 本実施形態4は、インバータ回路12のパワーステアリング装置制御(以下、EPS制御用と称する)用の電流検出信号,過電流検出用の電流検出信号の異常を検出するものである。
 本実施形態4における車両搭載機器の制御装置を図16のフローチャート,図17の電流検出信号の異常検出ブロック図に基づいて説明する。
 本実施形態4は、図16に示すように、S3,S4,S13,S16~S22については、実施形態1と同様である。以下、実施形態1と同様の処理は説明を省略し、実施形態1と異なる処理についてのみ説明する。
 まず、S71においてインバータ回路12の出力電流であるEPS制御用の電流検出信号Is(Main),Is(Sub)を読み込み、S72において過電流検出用の電流検出信号Io(Main),Io(Sub)を読み込む。
 EPS制御用の電流検出信号Is(Main),Is(Sub)は、図17に示すように、電流センサ11aによって検出された値を増幅器41a,41c,第1,第2フィルタ回路42a,42cにかけた信号である。第1,第2フィルタ回路42a,42cは、ほぼ同じ応答性を有し、帯域制限または特定の周波数成分を取り出した後、ECU4に出力する。
 過電流検出用の電流検出信号Io(Main),Io(Sub)は、図17に示すように、電流センサ11aによって検出された値を増幅器41b,41d,第3,第4フィルタ回路42b,42dにかけた信号である。第3,第4フィルタ回路42b,42dは、第1,第2フィルタ回路42a,42cとは異なる応答性を有し、帯域制限または特定の周波数成分を取り出した後、ECU4に出力する。
 次に、S73において、第1異常検出回路43により、EPS制御用の電流検出信号Is(Main)とIs(Sub)を比較し、偏差が異常検知閾値以上か否かを判定する。また、第2異常判定回路44により、過電流検出用の電流検出信号Io(Main)とIo(Sub)を比較し、偏差が異常検知閾値以上か否かを判定する。
 本実施形態4では、EPS制御用の電流検出信号Is(Main)とIs(Sub),過電流検出用の電流検出信号Io(Main)とIo(Sub)の異常を検出するため、応答性調整回路45において応答性を調整して近づける。通常、EPS制御用の電流検出信号Is(Main),Is(Sub)に用いた第1,第2フィルタ回路42a,42cの方が高応答であり、カットオフ周波数が高いため、EPS制御用の電流検出信号Is(Main),Is(Sub)を更にフィルタにかけることにより、容易に応答性を均一にすることができる。
 また、EPS制御用の電流検出信号Is(Main),Is(Sub)および過電流検出用の電流検出信号Io(Main)とIo(Sub)の両方の応答性を調整して、応答性を均一にしてもよい。このように、両方の応答性を調整することにより、それぞれの調整幅を小さくすることができる。
 そして、S74において、第3異常検出回路46により、EPS制御用の電流検出信号Is(Main),Is(Sub),過電流検出用の電流検出信号Io(Main),Io(Sub)の比較を行い、同じ又は近い値を示す信号の数が最も多い信号の値を正常値と判断し、その他の信号の値を異常値として検出する。
 S4で、異常検知カウンタが異常検知閾値に達したと判断された場合は、S75において、異常信号が一つであり、その異常信号が判別できたか否かを判定し、Yesの場合はS13へ移行し、Noの場合はS21へ移行する。その後の処理は実施形態1と同様である。
 以上示したように、本実施形態4によれば、実施形態1と同様の作用効果を奏する。
 また、電流センサ11aおよび電流センサ11aの検出信号をフィルタリングするフィルタ回路42a~42dの異常検出精度を向上させることができる。
 [実施形態5]
 本実施形態5は、実施形態1の異常確定回路において、異常を確定させる異常検知カウンタの閾値を操舵トルク検出信号Tt(Main)とTt(Sub)の信号の偏差量に応じて可変にしたものである。
 以下、本実施形態5におけるパワーステアリング装置を,図18のフローチャート,図19のタイムチャートに基づいて説明する。
 本実施形態5は、図18に示すように、S1,S5~S22については、実施形態1と同様である。以下、実施形態1と同様の処理は説明を省略し、実施形態1と異なる処理についてのみ説明する。
 まず、本実施形態5では、異常検知閾値と異常確定時間を以下のように設定する(図19)
異常検知閾値1<偏差量≦異常検知閾値2 異常確定時間A(ms)
異常検知閾値2<偏差量≦異常検知閾値3 異常確定時間B(ms)
異常検知閾値1<偏差量         異常確定時間C(ms)
 まず、S81において、偏差量が異常検知閾値1以上か否か判定する。偏差量が異常検知閾値1以上であればS82へ移行し、異常検知閾値1未満であればS22へ移行し、異常検知カウンタを0にクリアする。
 S82において、偏差量が異常検知閾値2以上か否か判定する。偏差量が異常検知閾値2以上であればS83へ移行し、異常検知閾値2未満であればS3cへ移行する。
 S83において、偏差量が異常検知閾値3以上か否か判定する。偏差量が異常検知閾値3以上であればS3aへ移行し、異常検知閾値3未満であればS3bへ移行する。
 S3a,S3b,S3cで異常検知閾値をインクリメントし、それぞれ、S84,S85,S86において、異常確定時間A(例えば、70ms),異常確定時間B(例えば、30ms),異常確定時間C(例えば、10ms)経過し、異常検知カウンタが閾値に達したか否かを判定し、閾値に達した場合は異常確定したと判断してS12へ移行し、閾値に達していない場合はS5へ移行する。
 本実施形態5に示すように、異常を示す信号同士の差が大きいほど異常検知カウンタの閾値を小さくして異常確定時間を短くすることにより、より安全性を高めることができる。
    以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。
 例えば、実施形態1~5では、S21で操舵アシスト制御を中止したが、操舵アシスト制御を制限する処理をしてもよい。
 また、実施形態では、操舵トルク検出信号Tt(Main),Tt(Sub),舵角検出信号θs(Main),θs(Sub),モータ回転角検出信号θm(Main),θs(Sub),EPS制御用の電流検出信号Is(Main),Is(Sub),過電流検出用の電流検出信号Io(Main),Io(Sub)は、互いに独立した検出素子から出力される検出信号でも、共通の検出素子によって検出された後、互いに異なる電子回路を介して出力された信号でもよい。
 また、実施形態2では、第1異常検出回路において異常が確定した後に、車速が所定速度以下の時に、操舵アシスト制御を斬減して最終的に中止したが、車速が所定値以下のとき、前記モータ制御回路による前記電動モータMの駆動制御を継続させてもよい。車速が所定値以下のとき、車両の安全性は比較的高く、また操舵負荷が大きいため、操舵アシストを継続することにより、安全性を確保しながら運転者の操舵負荷を軽減することができる。
 また、第1異常確定回路において、同種類のセンサの検出信号同士を比較するのみでなく、操舵トルク検出信号Tt(Main)、操舵トルク検出信号Tt(Sub)、舵角検出信号θs(Main)、舵角検出信号θs(Sub)、モータ回転角検出信号θm(Main)、およびモータ回転角検出信号θm(Sub)のうち、単位が同じもの同士を比較することにより、前記操舵トルクセンサTS、前記舵角センサAS、または前記モータ回転角センサ6の異常を検出してもよい。単位が同じもの同士を比較することにより、信号の換算,推定が容易となり、異常検出精度の向上および早期の異常検出が可能となる。
 また、前記第1異常検出回路は、前記トーションバーの出力軸側に設けられた操舵トルクセンサTS2の操舵トルク検出信号Tt(Sub)と前記モータ回転角検出信号θm(Main),θm(Sub)同士を比較し、前記操舵トルクセンサTS2または前記モータ回転角センサ61または62の異常を検出してもよい。これにより、操舵トルク検出信号Tt(Sub)とモータ回転角検出信号θm(Main),θm(Sub)の間にはトーションバーの捩れによる差が含まれないため、精度の高い比較を行うことができる。
 また、前記第2異常検出回路において、前記舵角検出信号θs(Main)または前記舵角検出信号θs(Sub)と操舵トルク検出信号Tt(Sub)またはモータ回転角検出信号θm(Main),θm(Sub)とを比較して正常値を演算してもよい。これにより、舵角検出信号も同じ角度信号であるため、精度の高い比較を行うことができる。
 実施形態4では、前記車両搭載機器の検出素子として電流検出センサを例にとり説明したが、検出素子は電流センサ以外であってもよい。
 ここで、上述した各実施形態から把握される技術的思想であって、特許請求の範囲に記載したもの以外のものについて、その効果ともに以下に記載する。
 (a)請求項5記載のパワーステアリング装置において、前記操舵機構は、前記ステアリングホイールに接続された操舵軸と、前記操舵軸の途中に設けられた前記操舵軸の前記ステアリングホイール側と前記転舵輪側とを相対回転可能に接続するトーションバーを備え、
 前記舵角センサは、前記操舵軸のうち前記トーションバーよりも前記ステアリングホイール側の前記操舵軸の回転角を検出し、
 前記電動モータは、前記操舵機構のうち前記トーションバーよりも前記転舵輪側に接続され、
 前記比較信号生成回路は、前記第1モータ回転角検出信号および前記トーションバーの捩れ量に基づき前記第1舵角演算信号を演算し、前記第2モータ回転角検出信号および前記トーションバーの捩れ量に基づき前記第2舵角演算信号を演算することを特徴とするパワーステアリング装置。
 (a)の技術的思想によれば、トーションバーに捩れが発生しているとき、舵角とモータ回転角の間にはトーションバーの捩れ量分だけ差が生じるため、この差を補正することにより、より精度の高い比較を行うことができる。
 (b)請求項1記載のパワーステアリング装置において、前記第1異常検出回路において行われる比較に用いられる信号は、互いに異なる検出素子から検出される検出信号であることを特徴とするパワーステアリング装置。
 (b)の技術的思想によれば、異なる検出素子、より好ましくは異なる検出形式のセンサからの出力信号同士を用いることにより、環境変化等に対して検出信号に異常が発生する際、検出信号同士で同じ傾向を示す可能性が低くなるため、異常の検出精度を高めることができる。
 (c)請求項1記載のパワーステアリング装置において、前記異常確定回路は、前記第1異常検出回路の前記比較に用いられた1対の信号同士の差が大きいほど前記設定時間が短くなるように補正することを特徴とするパワーステアリング装置。
 (c)の技術的思想によれば、異常を示す信号同士の差が大きいほど異常確定時間を短くすることにより、より安全性を高めることができる。
 (d)請求項1記載のパワーステアリング装置において、前記制御継続判断回路は、前記異常確定回路において異常が確定する前に前記第2異常検出回路において前記正常値が演算されたとき、車両のイグニッションスイッチが切られるまで前記モータ制御回路による前記電動モータの駆動制御を継続させると共に、前記イグニッションスイッチが切られた後、再度前記イグニッションスイッチが入れられたとき、前記モータ制御回路による前記電動モータの駆動制御を中止することを特徴とするパワーステアリング装置。
 (d)の技術的思想によれば、イグニッションスイッチが切られた後、再度イグニッションスイッチがオン状態となったときは、車両は停止状態であるため、車両の安全が確保されている。この状態で操舵アシストを禁止することにより、異常を含む状態での走行再開を抑止することができる。
 (e)請求項1記載のパワーステアリング装置において、前記制御継続判断回路は、前記異常確定回路において異常が確定する前に前記第2異常検出回路において前記正常値が演算されたとき、前記モータ制御回路による前記電動モータの駆動制御における前記電動モータへの通電量を時間の経過に応じて漸減させることを特徴とするパワーステアリング装置。
 (e)の技術的思想によれば、時間の経過に応じてアシスト量を漸減することにより、運転者による継続運転を抑止し、安全性を高めることができる。
 (f)請求項1記載のパワーステアリング装置において、前記制御継続判断回路は、前記異常確定回路において異常が確定する前に前記第2異常検出回路において前記正常値が演算されたとき、車速が所定車速以下となるまで前記モータ制御回路による前記電動モータの駆動制御を継続させることを特徴とするパワーステアリング装置。
 (f)の技術的思想によれば、車速が所定車速以下となった状態では車両の安全性が確保されている。その状態となるまで操舵アシストを継続し、それ以降は操舵アシストを禁止することにより、異常を含む状態での走行再開を抑止することができる。
 (g)請求項1記載のパワーステアリング装置において、前記制御継続判断回路は、前記異常確定回路において異常が確定する前に前記第2異常検出回路において前記正常値が演算されたときであって、車速が所定値以下のとき、前記モータ制御回路による前記電動モータの駆動制御を継続させることを特徴とするパワーステアリング装置。
 (g)のパワーステアリング装置によれば、車速が所定値以下のとき、車両の安全性は比較的高く、また操舵負荷が大きいため、操舵アシストを継続することにより、安全性を確保しながら運転者の操舵負荷を軽減することができる。
 (h)請求項6記載のパワーステアリング装置において、前記操舵機構は、前記ステアリングホイールに接続された操舵軸と、前記操舵軸の途中に設けられ前記操舵軸の前記ステアリングホイール側と前記転舵輪側とを相対回転可能に接続するトーションバーを備え、
 前記操舵トルクセンサは、前記操舵軸のうち前記ステアリングホイール側の回転角を検出する第1角度センサと、前記操舵軸のうち前記転舵輪側の回転角を検出する第2角度センサとを備え、前記第1角度センサと前記第2角度センサの出力信号に基づき前記トーションバーの捩れ量を演算することにより前記操舵トルクを検出するものであって、
 前記第1操舵トルク検出信号は前記第1角度センサの出力信号であって、前記第2操舵トルク検出信号は前記第2角度センサの出力信号であって、
 前記舵角センサは、前記操舵軸のうち前記トーションバーよりも前記ステアリングホイール側の前記操舵軸の回転角を検出し、
 前記電動モータは、前記操舵機構のうち前記トーションバーよりも前記転舵輪側に接続され、
 前記第1異常検出回路は、前記第2操舵トルク検出信号と前記第1モータ回転角検出信号または第2モータ回転角検出信号同士を比較することにより前記操舵トルクセンサまたは前記モータ回転角センサの異常を検出することを特徴とするパワーステアリング装置。
 (h)の技術的思想によれば、第2操舵トルク検出信号と第1モータ回転角検出信号,第2モータ回転角検出信号にはトーションバーの捩れによる差が含まれないため、精度の高い比較を行うことができる。
 (i)(h)のパワーステアリング装置において、前記第2異常検出回路は、前記第1舵角検出信号または前記第2舵角検出信号と前記既比較信号とを比較することにより正常値を演算することを特徴とするパワーステアリング装置。
 (i)の技術的思想によれば、舵角検出信号も同じ角度信号であるため、精度の高い比較を行うことができる。
 (j)請求項6記載のパワーステアリング装置において、前記異常確定回路は、前記第1異常検出回路の前記比較に用いられた1対の信号同士の差が大きいほど前記設定時間が短くなるように補正することを特徴とするパワーステアリング装置。
 (j)の技術的思想によれば、異常を示す信号同士の差が大きいほど異常確定時間を短くすることにより、より安全性を高めることができる。
 (k)請求項7記載の車両搭載機器の制御装置において、前記車両搭載機器は電動モータを含み、前記制御回路は、インバータ回路を備え、前記電動モータを駆動制御する電子回路であって、前記インバータ回路に電力を供給する電源を上流側としたとき、前記検出素子は、前記インバータ回路よりも下流側に設けられ、前記インバータ回路の下流側における電流値を検出するための電流センサであって、前記制御回路は、前記電流センサによって検出された前記インバータ回路の下流側の電流値に基づき、前記電動モータを駆動制御することを特徴とする車両搭載機器の制御装置。
 (k)の技術的思想によれば、電流センサおよび電流センサの検出信号をフィルタリングするフィルタ回路の異常検出精度を向上させることができる。
 (l)(k)記載の車両搭載機器の制御装置において、前記応答性調整回路は、前記第1フィルタ回路および前記第2フィルタ回路の出力信号に加え、前記第3フィルタ回路および前記第4フィルタ回路の出力信号が入力され、
 前記第1の応答性と前記第2の応答性とが近づくように、前記第1の応答性および前記第2の応答性を調整することを特徴とする車両搭載機器の制御装置。
 (l)の技術的思想によれば、第1と第2の応答性の両方を調整することにより、夫々の応答性調整幅を小さくすることができるため、出力信号への影響を抑制することができる。
 (m)請求項7記載の車両搭載機器の制御装置において、前記第1異常確定回路は、前記第1異常検出回路の比較に用いたられた1対の信号同士の差が大きいほど前記設定時間が短くなるように補正することを特徴とする車両搭載機器の制御装置。
 (m)の技術的思想によれば、異常を示す信号同士の差が大きいほど異常確定時間を短くすることにより、より安全性を高めることができる。

Claims (20)

  1.  ステアリングホイールの操舵操作に応じて転舵輪を転舵させる操舵機構と、
     前記操舵機構に操舵力を付与する電動モータと、
     前記電動モータを駆動制御するECUと、
     前記ECUに設けられ、車両の運転状態に応じて前記電動モータを駆動制御するモータ指令信号を出力するモータ制御回路と、
     前記操舵機構に設けられ、前記操舵機構に発生する操舵トルクを検出する操舵トルクセンサと、
     前記操舵機構に設けられ、前記ステアリングホイールの操舵量である舵角を検出する舵角センサと、
     前記電動モータに設けられ、前記電動モータのロータの回転角を検出するモータ回転角センサと、
     前記ECUに設けられ、前記操舵トルクセンサから出力される2つの操舵トルク検出信号であって、互いに異なる検出素子から検出される操舵トルク検出信号、または共通の検出素子によって検出された後、互いに異なる電子回路を介して出力される第1および第2操舵トルク検出信号を受信するトルク信号受信部と、
     前記ECUに設けられ、前記舵角センサから出力される2つの舵角検出信号であって、互いに異なる検出素子から検出される舵角検出信号、または共通の検出素子によって検出された後、互いに異なる電子回路を介して出力される第1および第2舵角検出信号を受信する舵角信号受信部と、
     前記ECUに設けられ、前記モータ回転角センサから出力される2つのモータ回転角検出信号であって、互いに異なる検出素子から検出されるモータ回転角検出信号、または共通の検出素子によって検出された後、互いに異なる電子回路を介して出力される第1および第2モータ回転角検出信号を受信するモータ回転角信号受信部と、
     前記ECUに設けられ、前記第1操舵トルク検出信号と前記第2操舵トルク検出信号との比較である第1の比較、前記第1舵角検出信号と前記第2舵角検出信号との比較である第2の比較、および前記第1モータ回転角検出信号と前記第2モータ回転角検出信号との比較である第3の比較のうち、いずれか1つを行うことにより、前記操舵トルクセンサ、前記舵角センサ、または前記モータ回転角センサの異常を検出する第1異常検出回路と、
     前記第1異常検出回路に設けられ、前記第1異常検出回路において行われた前記比較によって異常が検出され、前記異常の状態が予め設定された時間継続したとき、異常を確定する異常確定回路と、
     前記ECUに設けられ、前記第1、第2、および第3の比較のうち、前記第1異常検出回路で比較が行われた信号である既比較信号以外の信号を用いて、前記既比較信号と単位が同じ信号を生成または選択する比較信号生成回路と、
     前記ECUに設けられ、前記比較信号生成回路によって生成または選択された信号と前記既比較信号である2つの信号を比較し、同じまたは近い値を示す信号の数が最も多い信号の値を正常値とし、その他の信号の値を異常値として検出する第2異常検出回路と、
     前記ECUに設けられ、前記異常確定回路において異常が確定する前に前記第2異常検出回路において前記正常値が演算されたとき、前記正常値を用いて前記モータ制御回路による前記電動モータの駆動制御を継続し、前記第2異常検出回路において前記正常値が演算される前に前記異常確定回路において異常が確定したとき、前記モータ制御回路による前記電動モータの駆動制御を中止または制限する制御継続判断回路と、
    を有することを特徴とするパワーステアリング装置。
  2.  前記操舵機構は、前記ステアリングホイールに接続された操舵軸と、前記操舵軸の途中に設けられ前記操舵軸の前記ステアリングホイール側と前記転舵輪側とを相対回転可能に接続するトーションバーを備え、
     前記操舵トルクセンサは、前記操舵軸のうち前記ステアリングホイール側の回転角を検出する第1角度センサと、前記操舵軸のうち前記転舵輪側の回転角を検出する第2角度センサとを備え、前記第1角度センサと前記第2角度センサの出力信号に基づき前記トーションバーの捩れ量を演算することにより前記操舵トルクを検出するものであって、
     前記第1操舵トルク検出信号は前記第1角度センサの出力信号であって、前記第2操舵トルク検出信号は前記第2角度センサの出力信号であって、
     前記第1異常検出回路は、前記第1の比較を行うことにより前記トルクセンサの異常を検出することを特徴とする請求項1記載のパワーステアリング装置。
  3.  前記舵角センサは、前記操舵軸のうち前記トーションバーよりも前記ステアリングホイール側の前記操舵軸の回転角を検出し、
     前記電動モータは、前記操舵機構のうち前記トーションバーよりも前記転舵輪側に接続され、
     前記比較信号生成回路は、前記第1舵角検出信号と前記第1モータ回転角検出信号に基づき前記操舵トルクに相当する第1操舵トルク演算信号を演算すると共に、前記第2舵角検出信号と前記第2モータ回転角検出信号に基づき前記操舵トルクに相当する第2操舵トルク演算信号を演算し、
     前記第2異常検出回路は、前記第1操舵トルク検出信号、前記第2操舵トルク検出信号、前記第1操舵トルク演算信号、および前記第2操舵トルク演算信号を用いて前記正常値を演算することを特徴とする請求項2記載のパワーステアリング装置。
  4.  前記第1異常検出回路は、前記第2の比較を行うことにより前記舵角センサの異常を検出することを特徴とする請求項1記載のパワーステアリング装置。
  5.  前記比較信号生成回路は、前記第1モータ回転角検出信号に基づき前記舵角に相当する第1舵角演算信号を演算し、前記第2モータ回転角検出信号に基づき前記舵角に相当する第2舵角演算信号を演算し、
     前記第2異常検出回路は、前記第1舵角検出信号、前記第2舵角検出信号、前記第1舵角演算信号、および前記第2舵角演算信号を用いて前記正常値を演算することを特徴とする請求項4記載のパワーステアリング装置。
  6.  前記操舵機構は、前記ステアリングホイールに接続された操舵軸と、前記操舵軸の途中に設けられた前記操舵軸の前記ステアリングホイール側と前記転舵輪側とを相対回転可能に接続するトーションバーを備え、
     前記舵角センサは、前記操舵軸のうち前記トーションバーよりも前記ステアリングホイール側の前記操舵軸の回転角を検出し、
     前記電動モータは、前記操舵機構のうち前記トーションバーよりも前記転舵輪側に接続され、
     前記比較信号生成回路は、前記第1モータ回転角検出信号および前記トーションバーの捩れ量に基づき前記第1舵角演算信号を演算し、前記第2モータ回転角検出信号および前記トーションバーの捩れ量に基づき前記第2舵角演算信号を演算することを特徴とする請求項5記載のパワーステアリング装置。
  7.  前記第1異常検出回路において行われる比較に用いられる信号は、互いに異なる検出素子から検出される検出信号であることを特徴とする請求項1記載のパワーステアリング装置。
  8.  前記異常確定回路は、前記第1異常検出回路の前記比較に用いられた1対の信号同士の差が大きいほど前記設定時間が短くなるように補正することを特徴とする請求項1記載のパワーステアリング装置。
  9.  前記制御継続判断回路は、前記異常確定回路において異常が確定する前に前記第2異常検出回路において前記正常値が演算されたとき、車両のイグニッションスイッチが切られるまで前記モータ制御回路による前記電動モータの駆動制御を継続させると共に、前記イグニッションスイッチが切られた後、再度前記イグニッションスイッチが入れられたとき、前記モータ制御回路による前記電動モータの駆動制御を中止することを特徴とする請求項1記載のパワーステアリング装置。
  10.  前記制御継続判断回路は、前記異常確定回路において異常が確定する前に前記第2異常検出回路において前記正常値が演算されたとき、前記モータ制御回路による前記電動モータの駆動制御における前記電動モータへの通電量を時間の経過に応じて漸減させることを特徴とする請求項1記載のパワーステアリング装置。
  11.  前記制御継続判断回路は、前記異常確定回路において異常が確定する前に前記第2異常検出回路において前記正常値が演算されたとき、車速が所定車速以下となるまで前記モータ制御回路による前記電動モータの駆動制御を継続させることを特徴とする請求項1記載のパワーステアリング装置。
  12.  前記制御継続判断回路は、前記異常確定回路において異常が確定する前に前記第2異常検出回路において前記正常値が演算されたときであって、車速が所定値以下のとき、前記モータ制御回路による前記電動モータの駆動制御を継続させることを特徴とする請求項1記載のパワーステアリング装置。
  13.  ステアリングホイールの操舵操作に応じて転舵輪を転舵させる操舵機構と、
     前記操舵機構に操舵力を付与する電動モータと、
     前記電動モータを駆動制御するECUと、
     前記ECUに設けられ、車両の運転状態に応じて前記電動モータを駆動制御するモータ指令信号を出力するモータ制御回路と、
     前記操舵機構に設けられ、前記操舵機構に発生する操舵トルクを検出するトルクセンサと、
     前記操舵機構に設けられ、前記ステアリングホイールの操舵量である舵角を検出する舵角センサと、
     前記電動モータに設けられ、前記電動モータのロータの回転角を検出するモータ回転角センサと、
     前記ECUに設けられ、前記操舵トルクセンサから出力される2つの操舵トルク検出信号であって、互いに異なる検出素子から検出される操舵トルク検出信号、または共通の検出素子によって検出された後、互いに異なる電子回路を介して出力される第1および第2操舵トルク検出信号を受信するトルク信号受信部と、
     前記ECUに設けられ、前記舵角センサから出力される2つの舵角検出信号であって、互いに異なる検出素子から検出される舵角検出信号、または共通の検出素子によって検出された後、互いに異なる電子回路を介して出力される第1および第2舵角検出信号を受信する舵角信号受信部と、
     前記ECUに設けられ、前記モータ回転角センサから出力される2つのモータ回転角検出信号であって、互いに異なる検出素子から検出されるモータ回転角検出信号、または共通の検出素子によって検出された後、互いに異なる電子回路を介して出力される第1および第2モータ回転角検出信号を受信するモータ回転角信号受信部と、
     前記ECUに設けられ、前記第1操舵トルク検出信号、前記第2操舵トルク検出信号、前記第1舵角検出信号、前記第2舵角検出信号、前記第1モータ回転角検出信号、および前記第2モータ回転角検出信号のうち、単位が同じもの同士を比較することにより、前記操舵トルクセンサ、前記舵角センサ、または前記モータ回転角センサの異常を検出する第1異常検出回路と、
     前記第1異常検出回路に設けられ、前記第1異常検出回路において行われた前記比較によって異常が検出され、前記異常の状態が予め設定された時間継続したとき、異常を確定する異常確定回路と、
     前記ECUに設けられ、前記第1異常検出回路で比較が行われた信号である既比較信号以外の信号を用いて、前記既比較信号と単位が同じ信号を生成または選択する比較信号生成回路と、
     前記ECUに設けられ、前記比較信号生成回路によって生成または選択された比較用信号と前記既比較信号である2つの信号を比較し、同じまたは近い値を示す信号の数が最も多い信号の値を正常値とし、その他の信号の値を異常値として検出する第2異常検出回路と、
     前記ECUに設けられ、前記異常確定回路において異常が確定する前に前記第2異常検出回路において前記正常値が演算されたとき、前記正常値を用いて前記モータ制御回路による前記電動モータの駆動制御を継続し、前記第2異常検出回路において前記正常値が演算される前に前記異常確定回路において異常が確定したとき、前記モータ制御回路による前記電動モータの駆動制御を中止または制限する制御継続判断回路と、
    を有することを特徴とするパワーステアリング装置。
  14.  前記操舵機構は、前記ステアリングホイールに接続された操舵軸と、前記操舵軸の途中に設けられ前記操舵軸の前記ステアリングホイール側と前記転舵輪側とを相対回転可能に接続するトーションバーを備え、
     前記操舵トルクセンサは、前記操舵軸のうち前記ステアリングホイール側の回転角を検出する第1角度センサと、前記操舵軸のうち前記転舵輪側の回転角を検出する第2角度センサとを備え、前記第1角度センサと前記第2角度センサの出力信号に基づき前記トーションバーの捩れ量を演算することにより前記操舵トルクを検出するものであって、
     前記第1操舵トルク検出信号は前記第1角度センサの出力信号であって、前記第2操舵トルク検出信号は前記第2角度センサの出力信号であって、
     前記舵角センサは、前記操舵軸のうち前記トーションバーよりも前記ステアリングホイール側の前記操舵軸の回転角を検出し、
     前記電動モータは、前記操舵機構のうち前記トーションバーよりも前記転舵輪側に接続され、
     前記第1異常検出回路は、前記第2操舵トルク検出信号と前記第1モータ回転角検出信号または第2モータ回転角検出信号同士を比較することにより前記操舵トルクセンサまたは前記モータ回転角センサの異常を検出することを特徴とする請求項13記載のパワーステアリング装置。
  15.  前記第2異常検出回路は、前記第1舵角検出信号または前記第2舵角検出信号と前記既比較信号とを比較することにより正常値を演算することを特徴とする請求項14記載のパワーステアリング装置。
  16.  前記異常確定回路は、前記第1異常検出回路の前記比較に用いられた1対の信号同士の差が大きいほど前記設定時間が短くなるように補正することを特徴とする請求項13記載のパワーステアリング装置。
  17.  車両搭載機器の制御装置であって、
     前記車両搭載機器の動作状況を検出し、電気信号として検出信号を出力する検出素子と、
     前記検出素子から出力された前記検出信号に基づき、前記車両搭載機器を制御する制御回路と、
     前記検出素子と前記制御回路の間に設けられ、前記検出素子から出力された前記検出信号に帯域制限をかけ、または特定の周波数成分を取り出した後、前記制御回路に出力する第1フィルタ回路と、
     前記検出素子と前記制御回路の間に設けられ、前記第1フィルタ回路とほぼ同じ応答性を有し、前記検出素子から出力された前記検出信号に帯域制限をかけ、または特定の周波数成分を取り出した後、前記制御回路に出力する第2フィルタ回路と、
     前記検出素子と前記制御回路の間に設けられ、前記第1フィルタ回路とは異なる応答性を有し、前記検出素子から出力された前記検出信号に帯域制限をかけ、または特定の周波数成分を取り出した後、前記制御回路に出力する第3フィルタ回路と、
     前記検出素子と前記制御回路の間に設けられ、前記第3フィルタ回路とほぼ同じ応答性を有し、前記検出素子から出力された前記検出信号に帯域制限をかけ、または特定の周波数成分を取り出した後、前記制御回路に出力する第4フィルタ回路と、
     前記第1フィルタ回路からの出力信号と前記第2フィルタ回路からの出力信号とを比較することにより、前記検出素子、前記第1フィルタ回路、または前記第2フィルタ回路の異常を検出する第1異常検出回路と、
     前記第1異常検出回路に設けられ、前記第1異常検出回路において行われた前記比較によって異常が検出され、この異常の状態が予め設定された時間継続したとき、異常を確定する第1異常確定回路と、
     前記第3フィルタ回路からの出力信号と前記第4フィルタ回路からの出力信号とを比較することにより、前記検出素子、前記第3フィルタ回路、または前記第4フィルタ回路の異常を検出する第2異常検出回路と、
     前記第2異常検出回路に設けられ、前記第2異常検出回路において行われた前記比較によって異常が検出され、この異常の状態が予め設定された時間継続したとき、異常を確定する第2異常確定回路と、
     前記第1フィルタ回路および前記第2フィルタ回路の出力信号が入力され、前記第1のフィルタ回路と前記第2のフィルタ回路からの出力信号の応答性である第1の応答性と、前記第3のフィルタ回路と前記第4のフィルタ回路からの出力信号の応答性である第2の応答性とが近づくように前記第1の応答性を調整する応答性調整回路と、
     前記応答性調整回路において応答性が調整された前記第1のフィルタ回路からの出力信号および前記第2のフィルタ回路からの出力信号、ならびに前記第3のフィルタ回路からの出力信号および前記第4のフィルタ回路からの出力信号同士を比較し、同じまたは近い値を示す信号の数が最も多い信号の値を正常値とし、その他の信号の値を異常値として検出する第3異常検出回路と、
     前記第1異常確定回路または前記第2異常確定回路において異常が確定する前に前記第3異常検出回路において前記正常値が演算されたとき、前記正常値を用いて前記制御回路による前記車両搭載機器の制御を継続し、前記第3異常検出回路において前記正常値が演算される前に前記第1異常確定回路または前記第2異常確定回路において異常が確定したとき、前記制御回路による前記車両搭載機器の制御を中止または制限する制御継続判断回路と、
    を有することを特徴とする車両搭載機器の制御装置。
  18.  前記車両搭載機器は電動モータを含み、前記制御回路は、インバータ回路を備え、前記電動モータを駆動制御する電子回路であって、前記インバータ回路に電力を供給する電源を上流側としたとき、前記検出素子は、前記インバータ回路よりも下流側に設けられ、前記インバータ回路の下流側における電流値を検出するための電流センサであって、前記制御回路は、前記電流センサによって検出された前記インバータ回路の下流側の電流値に基づき、前記電動モータを駆動制御することを特徴とする請求項17記載の車両搭載機器の制御装置。
  19.  前記応答性調整回路は、前記第1フィルタ回路および前記第2フィルタ回路の出力信号に加え、前記第3フィルタ回路および前記第4フィルタ回路の出力信号が入力され、
     前記第1の応答性と前記第2の応答性とが近づくように、前記第1の応答性および前記第2の応答性を調整することを特徴とする請求項18記載の車両搭載機器の制御装置。
  20.  前記第1異常確定回路は、前記第1異常検出回路の比較に用いたられた1対の信号同士の差が大きいほど前記設定時間が短くなるように補正することを特徴とする請求項17記載の車両搭載機器の制御装置。
PCT/JP2014/070022 2013-09-20 2014-07-30 パワーステアリング装置および車両搭載機器の制御装置 WO2015040960A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167007063A KR101728992B1 (ko) 2013-09-20 2014-07-30 파워 스티어링 장치 및 차량 탑재 기기의 제어 장치
DE112014004333.8T DE112014004333B4 (de) 2013-09-20 2014-07-30 Servolenkungsvorrichtung und Steuervorrichtung für ein im Fahrzeug montiertes Gerät
US14/912,172 US9796409B2 (en) 2013-09-20 2014-07-30 Power steering device and control device for vehicle-mounted instrument
CN201480050213.3A CN105555642B (zh) 2013-09-20 2014-07-30 动力转向装置及车辆搭载设备的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-195888 2013-09-20
JP2013195888A JP6053651B2 (ja) 2013-09-20 2013-09-20 パワーステアリング装置および車両搭載機器の制御装置

Publications (1)

Publication Number Publication Date
WO2015040960A1 true WO2015040960A1 (ja) 2015-03-26

Family

ID=52688618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070022 WO2015040960A1 (ja) 2013-09-20 2014-07-30 パワーステアリング装置および車両搭載機器の制御装置

Country Status (6)

Country Link
US (1) US9796409B2 (ja)
JP (1) JP6053651B2 (ja)
KR (1) KR101728992B1 (ja)
CN (1) CN105555642B (ja)
DE (1) DE112014004333B4 (ja)
WO (1) WO2015040960A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163249A1 (ja) * 2015-04-08 2016-10-13 日立オートモティブシステムズ株式会社 パワーステアリング装置および車両搭載機器の制御装置
CN108430856A (zh) * 2015-11-04 2018-08-21 日立汽车系统株式会社 动力转向装置以及动力转向装置的控制装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6078444B2 (ja) * 2013-09-20 2017-02-08 日立オートモティブシステムズ株式会社 パワーステアリング装置および車両搭載機器の制御装置
JP6375545B2 (ja) * 2014-09-24 2018-08-22 日立オートモティブシステムズ株式会社 パワーステアリング装置およびパワーステアリング装置の制御回路
EP3334637B1 (en) 2015-08-14 2020-03-18 Crown Equipment Corporation Model based diagnostics based on steering model
JP6679861B2 (ja) * 2015-09-15 2020-04-15 株式会社デンソー センサ装置、および、これを用いた電動パワーステアリング装置
JP2017081387A (ja) * 2015-10-27 2017-05-18 Kyb株式会社 センサ装置及び電動パワーステアリング装置
US10970147B2 (en) 2016-05-24 2021-04-06 Mitsubishi Electric Corporation Electronic control device and operation control method therefor
JP6720745B2 (ja) * 2016-07-15 2020-07-08 株式会社ジェイテクト 車両制御装置
JP6868632B2 (ja) * 2016-09-20 2021-05-12 日立Astemo株式会社 センサ装置
DE102017122166B4 (de) 2016-09-28 2021-08-12 Steering Solutions Ip Holding Corporation Lenkungssystem mit fehlersicherer drehmomentsensorkommunikation
CN108068880B (zh) * 2016-11-14 2021-01-19 比亚迪股份有限公司 车辆转向控制方法、装置和车辆
GB201619479D0 (en) 2016-11-17 2017-01-04 Trw Ltd Electric power assisted steering system
WO2018132170A1 (en) * 2017-01-13 2018-07-19 Crown Equipment Corporation High speed straight ahead tiller desensitization
US10564662B2 (en) * 2017-06-12 2020-02-18 GM Global Technology Operations LLC Systems and methods for determining pedal actuator states
KR20190028842A (ko) * 2017-09-11 2019-03-20 주식회사 만도 페일-세이프 전동식 파워 스티어링 장치 및 방법
KR102004717B1 (ko) * 2017-09-29 2019-07-29 주식회사 만도 입력 조향각 센서의 이상 여부에 따른 차량의 앵글 오버레이 동작을 제어하는 장치 및 방법
KR101901127B1 (ko) * 2017-09-29 2018-09-27 주식회사 만도 모터 고장 판단 장치 및 방법
KR20190045468A (ko) 2017-10-24 2019-05-03 주식회사 만도 세이프티 향상을 위해 센서의 신호 개수를 증가한 전동식 조향 장치
CN111629954B (zh) * 2018-03-13 2022-10-18 日立安斯泰莫株式会社 车辆搭载设备的控制装置
DE102019201106A1 (de) * 2018-03-27 2019-10-02 Robert Bosch Engineering and Business Solutions Ltd. Verfahren und System zum Regeln von mindestens einer Charakteristik eines Elektromotors
US10848093B2 (en) * 2018-08-30 2020-11-24 Steering Solutions Ip Holding Corporation Electrical power steering with two controllers using uniform steering angle control
KR102487001B1 (ko) * 2019-07-22 2023-01-10 에이치엘만도 주식회사 조향 동력 보조 시스템 및 전자 제어 장치
US20220050463A1 (en) * 2020-08-14 2022-02-17 Waymo Llc Steering system fault response for autonomous vehicles

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000137917A (ja) * 1999-10-25 2000-05-16 Mitsubishi Electric Corp 光ディスク装置
JP2000305603A (ja) * 1999-04-19 2000-11-02 Mitsubishi Electric Corp 自己監視機能付き車載用電子制御装置
JP2006143151A (ja) * 2004-11-24 2006-06-08 Honda Motor Co Ltd 電動パワーステアリング装置
JP2006188157A (ja) * 2005-01-06 2006-07-20 Favess Co Ltd 電動パワーステアリング装置
JP2009012511A (ja) * 2007-07-02 2009-01-22 Nsk Ltd 電動パワーステアリング装置
JP2009073446A (ja) * 2007-09-25 2009-04-09 Nsk Ltd 電動パワーステアリング装置
JP2010149678A (ja) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd 車両用操舵制御装置及び車両用操舵制御方法
JP2012159956A (ja) * 2011-01-31 2012-08-23 Mitsubishi Heavy Ind Ltd 安全装置、安全装置の演算方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382875A (ja) * 1986-09-29 1988-04-13 Hitachi Ltd 電動式パワ−ステアリング装置
JP3639942B2 (ja) * 1997-09-02 2005-04-20 光洋精工株式会社 電動パワーステアリング装置
DE10015225A1 (de) * 1999-08-25 2001-04-05 Continental Teves Ag & Co Ohg Verfahren und Vorrichtung zur Ermittlung einer konsolidierten Eingangsgröße
JP4639483B2 (ja) * 2001-02-02 2011-02-23 日本精工株式会社 電動パワーステアリング装置の制御装置
DE10157666A1 (de) * 2001-11-24 2003-06-05 Zf Lenksysteme Gmbh Lenksystem für ein Fahrzeug
EP1710652A1 (en) * 2004-01-20 2006-10-11 Hitachi, Ltd. Bilatral servo controller
JP4984598B2 (ja) * 2006-03-30 2012-07-25 日本精工株式会社 電動パワーステアリング装置
JP5056310B2 (ja) * 2007-09-26 2012-10-24 株式会社ジェイテクト トルク検出装置
JP5174596B2 (ja) * 2008-09-18 2013-04-03 三菱電機株式会社 電動パワーステアリング装置
JP5223718B2 (ja) * 2009-02-17 2013-06-26 株式会社デンソー 操舵負荷推定装置及び電動パワーステアリング装置
JP5022421B2 (ja) 2009-10-01 2012-09-12 本田技研工業株式会社 磁歪式トルクセンサの製造方法、及び、電動パワーステアリングシステム
JP5526721B2 (ja) * 2009-11-13 2014-06-18 株式会社ジェイテクト 電動パワーステアリング装置
JP5585423B2 (ja) 2010-11-30 2014-09-10 日本精工株式会社 電動パワーステアリング装置及び車両
JP5893498B2 (ja) * 2012-04-26 2016-03-23 日立オートモティブシステムズステアリング株式会社 パワーステアリング装置およびパワーステアリング装置の制御装置
JP5793106B2 (ja) * 2012-04-26 2015-10-14 日立オートモティブシステムズステアリング株式会社 パワーステアリング装置およびパワーステアリング装置の制御装置
JP2014240234A (ja) * 2013-06-11 2014-12-25 株式会社日本自動車部品総合研究所 操舵制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000305603A (ja) * 1999-04-19 2000-11-02 Mitsubishi Electric Corp 自己監視機能付き車載用電子制御装置
JP2000137917A (ja) * 1999-10-25 2000-05-16 Mitsubishi Electric Corp 光ディスク装置
JP2006143151A (ja) * 2004-11-24 2006-06-08 Honda Motor Co Ltd 電動パワーステアリング装置
JP2006188157A (ja) * 2005-01-06 2006-07-20 Favess Co Ltd 電動パワーステアリング装置
JP2009012511A (ja) * 2007-07-02 2009-01-22 Nsk Ltd 電動パワーステアリング装置
JP2009073446A (ja) * 2007-09-25 2009-04-09 Nsk Ltd 電動パワーステアリング装置
JP2010149678A (ja) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd 車両用操舵制御装置及び車両用操舵制御方法
JP2012159956A (ja) * 2011-01-31 2012-08-23 Mitsubishi Heavy Ind Ltd 安全装置、安全装置の演算方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163249A1 (ja) * 2015-04-08 2016-10-13 日立オートモティブシステムズ株式会社 パワーステアリング装置および車両搭載機器の制御装置
JPWO2016163249A1 (ja) * 2015-04-08 2017-10-05 日立オートモティブシステムズ株式会社 パワーステアリング装置および車両搭載機器の制御装置
CN107406096A (zh) * 2015-04-08 2017-11-28 日立汽车系统株式会社 动力转向装置及车辆搭载设备的控制装置
US10392049B2 (en) 2015-04-08 2019-08-27 Hitachi Automotive Systems, Ltd. Power steering device and control device for on-board device
CN107406096B (zh) * 2015-04-08 2020-01-24 日立汽车系统株式会社 动力转向装置及车辆搭载设备的控制装置
CN108430856A (zh) * 2015-11-04 2018-08-21 日立汽车系统株式会社 动力转向装置以及动力转向装置的控制装置

Also Published As

Publication number Publication date
DE112014004333T5 (de) 2016-06-02
US9796409B2 (en) 2017-10-24
US20160200353A1 (en) 2016-07-14
KR20160044546A (ko) 2016-04-25
KR101728992B1 (ko) 2017-04-20
JP6053651B2 (ja) 2016-12-27
CN105555642B (zh) 2017-09-08
JP2015058910A (ja) 2015-03-30
DE112014004333B4 (de) 2021-01-28
CN105555642A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
JP6053651B2 (ja) パワーステアリング装置および車両搭載機器の制御装置
JP6224816B2 (ja) 車両搭載機器の制御装置およびパワーステアリング装置
JP6078444B2 (ja) パワーステアリング装置および車両搭載機器の制御装置
JP6283737B2 (ja) パワーステアリング装置およびパワーステアリング装置の制御装置
US7406375B2 (en) Electric power steering apparatus and method for controlling the electric power steering apparatus
EP2168843B1 (en) Electric power steering apparatus
JP2009012511A (ja) 電動パワーステアリング装置
US7002313B2 (en) Electric power steering device control apparatus
JP5999289B2 (ja) 電動パワーステアリング装置の電源電圧診断装置
JP2010158951A (ja) 電動パワーステアリング制御装置
JP2012218646A (ja) 電動パワーステアリング装置
JP5181540B2 (ja) 電動パワーステアリング装置
JP4333399B2 (ja) 車両操舵装置
JP5175115B2 (ja) 倍力操舵装置
JP2008253045A (ja) 電動パワーステアリング装置のモータ制御装置
KR100738429B1 (ko) 전동식 파워스티어링 장치의 페일-세이프티 제어방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050213.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846421

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14912172

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167007063

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120140043338

Country of ref document: DE

Ref document number: 112014004333

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846421

Country of ref document: EP

Kind code of ref document: A1