WO2015032158A1 - 一种镁基储氢材料及其制备方法 - Google Patents

一种镁基储氢材料及其制备方法 Download PDF

Info

Publication number
WO2015032158A1
WO2015032158A1 PCT/CN2013/090060 CN2013090060W WO2015032158A1 WO 2015032158 A1 WO2015032158 A1 WO 2015032158A1 CN 2013090060 W CN2013090060 W CN 2013090060W WO 2015032158 A1 WO2015032158 A1 WO 2015032158A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
composite
magnesium
hydrogen
nih
Prior art date
Application number
PCT/CN2013/090060
Other languages
English (en)
French (fr)
Inventor
朱敏
林怀俊
欧阳柳章
王辉
刘江文
汪卫华
赵德乾
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US14/917,142 priority Critical patent/US9764951B2/en
Priority to JP2016539394A priority patent/JP6301475B2/ja
Publication of WO2015032158A1 publication Critical patent/WO2015032158A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0057Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • B22F9/008Rapid solidification processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/005Amorphous alloys with Mg as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/058Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/45Rare earth metals, i.e. Sc, Y, Lanthanides (57-71)
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to the field of hydrogen storage alloy materials and a preparation process thereof, in particular to a magnesium-rare earth-based hydrogen storage alloy material and a preparation thereof. Background technique
  • MgH 2 has good application prospects due to its high hydrogen storage capacity, abundant resources, low cost, environmental friendliness, etc.
  • the high thermodynamic stability of MgH 2 and the slow kinetics of hydrogen absorption and desorption make its practical application greatly limit.
  • researchers have used a variety of methods to compensate for these deficiencies, such as mechanical alloying, doping catalysts, hydrogen combustion, rapid cooling, etc., the hydrogen absorption properties of magnesium-based materials have been greatly improved, but its dehydrogenation performance The improvement is not large, the dehydrogenation temperature is above 250-300 °C, and the dehydrogenation kinetics are slow.
  • the hydrogen release temperature can be lowered.
  • the alloys prepared by the conventional smelting method have coarse crystal grains, and the transition metal therein is easily agglomerated, thereby causing low reversible hydrogen storage and hydrogen release of the alloy.
  • the temperature is too high and the hydrogen absorption and recovery cycle life is low.
  • the introduction of oxides such as V 2 O 5 , Nb 2 0 5 , Ti0 2 and CeO 2 can also significantly improve the hydrogen absorption and desorption properties of magnesium-based alloys, mainly due to the catalytic effect of oxides on magnesium-based materials.
  • Conventional oxide additions mostly use mechanical addition processes. These processes require complex equipment, consume a lot of energy and time, and because of mechanical addition, these additives are not uniformly distributed in the magnesium-based alloy, and the dimensions are also compared. Large, this limits its catalytic effect on magnesium-based materials. Summary of the invention
  • the object of the present invention is to provide a magnesium-based hydrogen storage material and a preparation method thereof.
  • the magnesium-based hydrogen storage alloy obtained by the method improves the dehydrogenation temperature of the conventional magnesium-based hydrogen storage alloy, and the dehydrogenation kinetics
  • the shortcomings of slowness have good application prospects in the field of hydrogen storage.
  • a method for preparing a magnesium-based hydrogen storage material comprising the following steps:
  • the passivated composite is subjected to oxidation treatment to obtain a MgH 2 -Mg 2 NiH 4 -CeH 2 . 73 -Ce0 2 -based nanocrystal composite.
  • the method for preparing the amorphous alloy in the step (1) is to mix the niobium and the nickel ingot according to a molar ratio of 1:1, and smelt at 2000-3000 °C by an arc melting method to obtain a rare earth-nickel intermediate alloy;
  • the ingot and the rare earth-nickel intermediate alloy are subjected to induction melting, wherein the molar percentage of magnesium is 60-90%, and the melting temperature is 1000-1500 °C; finally, the alloy obtained by the melting is rapidly cooled by a single-roller quenching method.
  • the speed of the copper roller is 30-40 m/s, and the vacuum in the vacuum chamber is 5 X 10- 5 Pa.
  • Step (2) The pulverization is carried out by ball milling, the ball milling time is 1-2 hours, the ball powder ratio is 40:1, and the rotation speed is 250 rpm.
  • the activation condition of the step (3) is: hydrogen absorption in a hydrogen atmosphere at 250 ° C and 10 MPa for 3 hours.
  • Step (4) The water and oxygen content of the passivated Ar atmosphere does not exceed 10 ppm.
  • the process used in the hydrogen absorption and desorption cycle in step (4) is hydrogen absorption at 300 ° C for 3 hours under hydrogen pressure of 3 MPa, then dehydrogenation for 0.5 hour under vacuum of 0.002 MPa, and 15 cycles in sequence.
  • Step (5) The oxidation treatment of the composite is to place the composite in a sealed container, and then The container is opened in the air, filled with air, and allowed to stand for 5-15 hours.
  • the Mg-Ce-Ni-based amorphous alloy strip obtained in the step (1) has a width of 2 mm and a thickness of 0.04 mm; and the size of the amorphous powder obtained by the step (2) is 200 mesh; and the step (3) is obtained.
  • MgH 2 -Mg 2 NiH 4 -CeH grain size of 2.73 based complex is 10-15nm.
  • the energy required for the decomposition of H atoms in MgH 2 through the CeH/CeO interface is much lower than that required to desorb from the MgH 2 matrix alone, mainly because of the symbiotic CeH/CeO interface.
  • the H vacancy and the 0 vacancy are very easy to form. These vacancies provide a large amount of "excessive space" for the diffusion and dissociation of H. Therefore, the CeH/CeO structure of the symbiotic structure is very favorable for the decomposition of MgH 2 .
  • the hydrogen storage alloy prepared by the invention has the following advantages:
  • NiH 4 CeH 2 .73 and Ce0 2 are both in-situ generated nanocrystals and are uniformly distributed in MgH 2 and do not need to be added by other mechanical methods; CeH 2 . 73 and Ce0 2 are symbiotic relationships and may form shell-
  • Figure 1 is an XRD pattern of a rapidly cooled Mg-Ce-Ni amorphous alloy
  • Figure 2 is the first hydrogen-absorbing product of Mg-Ce-Ni amorphous alloy under different atmospheres. XRD pattern, it can be seen that the Mg-Ce-Ni amorphous alloy becomes hydrogen after hydrogenation
  • Figure 3 is a kinetic curve of hydrogen absorption and desorption of Mg-Ce-Ni amorphous alloy
  • Figure 4 is an XRD pattern of the materials before (a) and after (b) of the oxidation treatment
  • Figure 5 is a DSC curve of the materials before (a) and after (b) of the oxidation treatment, comparing commercial pure MgH 2 (c);
  • FIG 6 is a Ce0 2 / CeH TEM FIG situ growth of 273, showing that they (a) symbiotic together, sometimes forming (b) core - shell structure;
  • the bismuth ingot (99.9%) and the nickel ingot (99.99%) were mixed at a molar ratio of 1:1, smelted at 2,500 ° C by arc melting, and repeatedly smelted 8 times.
  • the niobium-nickel intermediate alloy and the magnesium ingot (99.99%) were mixed, and the magnesium content was 80% by mol.
  • the preparation was carried out by induction melting at a smelting temperature of 1300 ° C ; for the prepared MgsoCe N .
  • the alloy was rapidly cooled, the copper roller speed was 30 m/s, and the vacuum in the vacuum chamber was 5 X 10- 5 Pa, resulting in an amorphous strip having a width of 2 mm and a thickness of 0.04 mm.
  • the amorphous ribbon was subjected to ball milling and pulverization, the ball milling time was 1.5 h, the ball powder ratio was 40:1, the rotation speed was 250 rpm, and then passed through a 200 mesh sieve to obtain an amorphous powder.
  • the amorphous powder was activated, and the activation atmosphere was 10 MPa+250 ° C. After 3 hours of activation, the hydrogen absorption of the alloy was nearly saturated. After activation obtained 60MgH 2 -10Mg 2 NiH 4 -10CeH 2 . 73 complex, very fine grains, the grain size is calculated by 10-15nm. Then, the sample after activation is subjected to a hydrogen absorption and desorption cycle, and hydrogen absorption at a hydrogen pressure of 3 MPa at 300 ° C is 0.5.
  • the dehydrogenation initiation temperature of the sample was lowered by about 210 ° C compared to pure MgH 2 .
  • Ce0 2 /CeH 2 . 73 is a symbiotic relationship, and a shell-core structure may also be formed.
  • the dehydrogenation kinetics were greatly improved after the oxidation treatment, and as shown in Fig. 8, the dehydrogenation performance was well maintained after 20 cycles of hydrogen absorption and desorption.
  • the antimony ingot (99.9%) and the nickel ingot (99.99%) were mixed at a molar ratio of 1:1, smelted at 2,500 ° C by arc melting, and repeatedly smelted 8 times.
  • the niobium-nickel intermediate alloy and the magnesium ingot (99.99%) were mixed at a molar ratio of 60%, and prepared by induction melting at a smelting temperature of 1300 ° C ⁇ 'for the prepared Mg 6 . Ce 2 . Ni 2 .
  • the alloy was rapidly cooled, the copper roller speed was 30 m/s, and the vacuum in the vacuum chamber was 5 X 10_ 5 Pa, resulting in an amorphous strip having a width of 2 mm and a thickness of 0.04 mm.
  • the amorphous ribbon was subjected to ball milling and pulverization, the ball milling time was 2 h, the ball powder ratio was 40:1, the rotation speed was 250 rpm, and then passed through a 200 mesh sieve to obtain an amorphous powder.
  • the amorphous powder was activated, and the activation atmosphere was 10 MPa+250. C, after 3 hours of activation, the hydrogen absorption of the alloy is close to saturation. After activation obtained 20MgH 2 -20Mg 2 NiH 4 -20CeH 2 . 73 complex, very fine grains, the grain size is calculated by 10-15nm. Then, the activated sample is subjected to a hydrogen absorption and desorption cycle, hydrogen absorption at 300 ° C under a hydrogen pressure of 3 MPa for 0.5 hour, and then dehydrogenation under vacuum of 0.002 MPa for 0.5 hour, followed by 15 cycles, and then placed in a pure Ar atmosphere.
  • the amorphous ribbon was subjected to ball milling and pulverization, the ball milling time was 2 h, the ball powder ratio was 40:1, the rotation speed was 250 rpm, and then passed through a 200 mesh sieve to obtain an amorphous powder.
  • the amorphous powder was activated, and the activation atmosphere was 10 MPa+250 C. After 3 hours of activation, the hydrogen absorption of the alloy was nearly saturated. After activation, 80Mg of H 2 -5Mg 2 NiH 4 -5CeH 2 . 73 composite was obtained, the crystallites were very fine, and the grain size was calculated to be 10-15. Then the sample after activation was subjected to a hydrogen absorption and desorption cycle at 300 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Continuous Casting (AREA)

Abstract

一种镁基储氢材料的制备方法,包括:1.通过快速冷却的方法制备Mg-Ce-Ni系非晶合金;2.将得到的非晶合金粉碎,得到非晶粉末;3.对非晶合金活化而得到MgH2-Mg2NiH4-CeH2.73系纳米晶复合物;4.将得到的上述复合物进行吸放氢循环,然后将复合物置于纯Ar气氛中进行钝化处理;5.最后对钝化处理后的复合物进行氧化处理,得到MgH2-Mg2NiH4-CeH2.73-CeO2系纳米晶复合物。

Description

一种镁基储氢材料及其制备方法
技术领域
本发明涉及储氢合金材料及其制备工艺领域,特别涉及镁-稀土基 储氢合金材料及其制备。 背景技术
氢能的存储是氢能大规模商业化应用的一大关键科学问题,
MgH2由于具有较高的储氢容量、 资源丰富、 廉价、 环境友好等而有 着良好的应用前景, 但 MgH2的高热力学稳定性和迟缓的吸放氢动力 学性能使得其实际应用受到很大限制。近年来研究人员采用了多种办 法来弥补这些不足, 如机械合金化、 掺杂催化剂、 氢燃烧法、 快速冷 却等, 镁基材料的吸氢性能有了大幅度的改善, 但是其脱氢性能改善 不大, 脱氢温度在 250-300°C以上, 且脱氢动力学性能较缓慢。
通过在镁基材料中添加稀土和过渡金属可以降低其放氢温度,传 统的熔炼方法制备的合金晶粒粗大, 且其中的过渡族金属容易团聚, 因而导致合金的可逆储氢量低、放氢温度过高、吸放氢循环寿命较低。 同时, 通过引进氧化物如 V205, Nb205, Ti02和 Ce02等也可以显著 提高镁基合金的吸放氢性能,这主要归因于氧化物对镁基材料的催化 效应。传统的氧化物添加大多采用机械添加工艺, 这些工艺需要的装 置比较复杂, 需要消耗大量的能量和时间, 并且由于是机械添加,因 此这些添加物在镁基合金中分布不是非常均匀, 尺寸也比较大, 这就 制约了其对镁基材料的催化效应。 发明内容
本发明的目的在于提供是为了一种镁基储氢材料及其制备方法, 通过该方法制得的镁基储氢合金改善了传统镁基储氢合金脱氢温度 过高, 脱氢动力学过慢的缺点, 在储氢领域具有良好的应用前景。
本发明目的通过下述技术方案实现: 一种镁基储氢材料的制备方法, 包括以下歩骤:
( 1 ) 通过快速冷却法制备 Mg-Ce-Ni系非晶合金;
(2) 将得到的非晶合金进行粉碎, 得到非晶粉末;
(3 )对非晶合金活化而得到 MgH2-Mg2NiH4-CeH2.73系纳米晶复合 物;
(4) 将得到的上述复合物进行吸放氢循环, 然后将复合物置于纯 Ar气氛中进行钝化处理;
( 5 ) 最后对钝化处理后的复合物进行氧化处理, 得到 MgH2-Mg2NiH4-CeH2.73-Ce02系纳米晶复合物。
歩骤( 1 )制得的非晶合金为 (X+2y)Mg-2ZCe-yNi非晶合金,其中, x+3y+2z=100,
Figure imgf000004_0001
10; 歩骤(3 )制得的复 合物为 xMgH2-yMg2NiH4-2zCeH2.73纳米晶复合物; 歩骤 (5 ) 制得的 复合物为 xMgH2-yMg2NiH4-zCeH2.73-zCe02纳米晶复合物。
歩骤(1 ) 中非晶合金的制备方法为, 将铈和镍锭按照摩尔比 1:1 混合,采用电弧熔炼的方法在 2000-3000 °C进行熔炼得到稀土-镍中间 合金; 再将镁锭和稀土-镍中间合金进行感应熔炼, 其中镁的摩尔百 分比为 60-90%, 熔炼温度 1000- 1500 °C ; 最后将熔炼所得的合金采用 单辊旋淬的方法进行快速冷却。
所采用的单辊旋淬的方法中铜辊轮的转速为 30-40 m/s, 真空室 里的真空度为 5 X 10-5 Pa。
歩骤(2)粉碎采用球磨粉碎,球磨时间为 1-2小时,球粉比 40:1, 转速为 250rpm。
歩骤(3 )活化条件为: 在 250°C和 lOMPa的氢气氛中吸氢 3小 时。
歩骤 (4) 钝化处理的 Ar气氛的水、 氧含量均不超过 10ppm。 歩骤(4)中吸放氢循环所采用的工艺为 300°C下, 3MPa的氢压 下吸氢 0.5小时, 然后 0.002MPa真空下脱氢 0.5小时, 依次循环 15 次。
歩骤 (5 ) 复合物的氧化处理为将复合物放在密封容器里, 然后 将容器在空气中打开, 使其充满空气, 放置 5-15小时。
一 种 镁 基 储 氢 材 料 , 该 材 料 表 达 式 为 : xMgH2-yMg2NiH4-zCeH2.73-zCe02(x+3y+2z= 100,20 x 80,5 y 20,
10) ο 其中, Mg2Ni CeH2.73和 Ce02都是原位生成的纳米 晶, 不是通过机械方法添加, 它们皆均匀地分布在 MgH2中。
歩骤 (1 ) 得到的 Mg-Ce-Ni系非晶合金条带, 其宽度 2mm, 厚 度 0.04mm; 歩骤 (2) 得到的非晶粉末的尺寸为 200目; 歩骤 (3 ) 得到的 MgH2-Mg2NiH4-CeH2.73系复合物的晶粒尺寸为 10-15nm。
通过第一性原理计算可知, MgH2中的 H原子通过 CeH/CeO界 面分解需要的能量远远低于单独从 MgH2基体脱附需要的能量, 这个 主要是因为在共生的 CeH/CeO界面, H空位和 0空位非常容易形成, 这些空位为 H的扩散和解离提供了大量的 "过度空间", 因此共生结 构的 CeH/CeO结构对 MgH2的分解非常有利。
本发明与传统的镁基储氢合金熔炼方法相比, 其制备的储氢合金 具有以下优点:
( 1 ) 对非晶合金特定的活化工艺之后, 合金的晶粒显著地得到了 细化, 尺寸为 10-15
( 2 )本发明制得的 xMgH2-yMg2NiH4-zCeH2.73-zCeO2(x+3y+2z=100, 20^x^ 80, 5 y 20, 2.5 z 10)复合物中的 Mg2NiH4 CeH2.73和 Ce02都是原位生成的纳米晶,并且均匀地分布在 MgH2中,不需要通 过其他机械方法添加; CeH2.73和 Ce02是共生关系, 还可能形成壳-
(3 ) 本发明制得材料的脱氢动力学有大幅度的提高, 脱氢温度比 纯 MgH2大幅降低, 储氢量为 3.0-4.0wt%。
(4) 本发明制备工艺简单、 廉价, 适合大规模工业化生产。 附图说明
图 1是快冷制备的 Mg-Ce-Ni非晶合金的 XRD图;
图 2是 Mg-Ce-Ni非晶合金在不同气氛下的首次吸氢后产物的 XRD 图 , 可 见 Mg-Ce-Ni 非 晶 合金 吸氢 之后 都 变成
MgH2-Mg2NiH4-CeH2.73系纳米复合物;
图 3是 Mg-Ce-Ni非晶合金吸放氢循环动力学曲线;
图 4是氧化处理前 (a) 和后 (b) 材料的 XRD图;
图 5是氧化处理前 (a) 和后 (b) 材料的 DSC曲线, 将商业用 纯 MgH2 (c) 做为对比;
图 6是原位生长的 Ce02/CeH2.73的 TEM图, 可见它们 (a)共生 在一起, 有时候还会形成 (b) 壳-核结构;
图 7是 xMgH2-yMg2NiH4-zCeH2.73-zCeO2(x+3y+2z=100, 20^x^
80, 5 y 20, 2.5 z 10)复合物在氧化前、后和 5、 20个循环之后的 脱氢动力学曲线图。 具体实施方式
下面结合具体实施例对本发明作进一歩具体详细描述, 但本发明 的实施方式不限于此, 对于未特别注明的工艺参数, 可参照常规技术 进行。
实施例 1
把铈锭 (99.9%) 和镍锭 (99.99%) 按照摩尔比 1: 1混合, 采用 电弧熔炼在 2500°C进行熔炼, 反复熔炼 8次。 将铈-镍中间合金和镁 锭(99.99%)进行混合, 镁的含量为摩尔比 80%, 采用感应熔炼进行 制备,熔炼温度为 1300°C ;对制备后的 MgsoCe N 。合金进行快速冷 却, 铜辊转速为 30 m/s, 真空室里的真空度为 5 X 10-5 Pa, 得到非晶 条带, 其宽度 2mm, 厚度 0.04mm。 将非晶条带进行球磨粉碎, 球磨 时间 1.5h, 球粉比 40:1, 转速为 250rpm, 然后过 200目筛子得到非 晶粉末。
将非晶粉末进行活化, 活化气氛为 10MPa+250°C, 活化 3小时 后合金吸氢都接近饱和。 活化后得到 60MgH2-10Mg2NiH4-10CeH2.73 复合物, 晶粒非常细小, 通过计算其晶粒尺寸为 10-15nm。 接着将活 化之后的样品进行吸放氢循环,在 300°C下, 3MPa的氢压下吸氢 0.5 小时, 然后 0.002MPa真空下脱氢 0.5小时, 依次循环 15次, 再置于 纯 Ar的气氛的手套箱中, 放置一周时间使其表面钝化; 最后将循环 后的样品放在密封管里, 然后将管子在空气中打开, 使其充满空气, 放置 8小时进行氧化处理, 由于 CeH2.73被氧化成 Ce02而得到 60MgH2-10Mg2NiH4-5CeH2.73-5CeO2复合物。 图 5是氧化后的样品 XRD图。 氧化处理之后 (此情况下 Ce02和 CeH2.73的摩尔比约 1 : 1 ), 样品的脱氢起始温度比起纯 MgH2降低了约 210°C。 如图 7所示, Ce02/CeH2.73为共生关系, 还可能形成壳-核结构。氧化处理之后脱氢 动力学有了很大改善, 并且如图 8所示, 经过 20个吸放氢循环之后 脱氢性能还能很好地保持。
实施例 2
把铈锭(99.9%)和镍锭(99.99%)按照摩尔比 1 : 1混合, 采用电 弧熔炼在 2500°C进行熔炼, 反复熔炼 8次。 将铈 -镍中间合金和镁锭 (99.99%)进行混合, 镁的含量为摩尔比 60%, 采用感应熔炼进行制 备,熔炼温度为 1300 °C ·'对制备后的 Mg6。Ce2。Ni2。合金进行快速冷却, 铜辊转速为 30 m/s, 真空室里的真空度为 5 X 10_5 Pa, 得到非晶条带, 其宽度 2mm,厚度 0.04mm。将非晶条带进行球磨粉碎,球磨时间 2h, 球粉比 40: 1, 转速为 250rpm, 然后过 200目筛子得到非晶粉末。
将非晶粉末进行活化, 活化气氛为 10MPa+250。C, 活化 3小时 后合金吸氢都接近饱和。 活化后得到 20MgH2-20Mg2NiH4-20CeH2.73 复合物, 晶粒非常细小, 通过计算其晶粒尺寸为 10-15nm。 接着将活 化之后的样品进行吸放氢循环,在 300°C下, 3MPa的氢压下吸氢 0.5 小时, 然后 0.002MPa真空下脱氢 0.5小时, 依次循环 15次, 再置于 纯 Ar的气氛的手套箱中, 放置一周时间使其表面钝化; 最后将循环 后的样品放在密封管里, 然后将管子在空气中打开, 使其充满空气, 放置 5小时进行氧化处理, 由于 CeH2.73被氧化成 Ce02而得到 20MgH2-20Mg2NiH4- 10CeH2 73- 10CeO2复合物。
实施例 3
把铈锭 (99.9%) 和镍锭 (99.99%) 按照摩尔比 1 : 1混合, 采用 说 明 书 电弧熔炼在 2500°C进行熔炼, 反复熔炼 8次。 将铈-镍中间合金和镁 锭(99.99%)进行混合, 镁的含量为摩尔比 90%, 采用感应熔炼进行 制备, 熔炼温度为 1300°C ; 对制备后的 Mg9。Ce5Ni5合金进行快速冷 却, 铜辊转速为 30 m/s, 真空室里的真空度为 5 X 10_5 Pa, 得到非晶 条带, 其宽度 2mm, 厚度 0.04mm。 将非晶条带进行球磨粉碎, 球磨 时间 2h, 球粉比 40:1, 转速为 250rpm, 然后过 200目筛子得到非晶 粉末。
将非晶粉末进行活化, 活化气氛为 10MPa+250 C, 活化 3小时 后合金吸氢都接近饱和。 活化后得到 80MgH2-5Mg2NiH4-5CeH2.73复 合物, 晶粒非常细小, 通过计算其晶粒尺寸为 10-15 接着将活化 之后的样品进行吸放氢循环, 在 300°C下, 3MPa的氢压下吸氢 0.5 小时, 然后 0.002MPa真空下脱氢 0.5小时, 依次循环 15次, 再置于 纯 Ar的气氛的手套箱中, 放置一周时间使其表面钝化; 最后将循环 后的样品放在密封管里, 然后将管子在空气中打开, 使其充满空气, 放置 15小时进行氧化处理, 由于 CeH2.73被氧化成 Ce02而得到 80MgH2-5Mg2NiH4-2.5CeH2.73-2.5CeO2复合物。
上述具体实施方式为本发明的优选实施例,并不能对本发明的权 利要求进行限定,其他的任何未背离本发明的技术方案而所做的改变 或其它等效的置换方式, 都包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种镁基储氢材料的制备方法, 其特征在于, 包括以下歩骤:
( 1 ) 通过快速冷却法制备 Mg-Ce-Ni系非晶合金;
(2) 将得到的非晶合金进行粉碎, 得到非晶粉末;
(3 )对非晶合金活化而得到 MgH2-Mg2NiH4-CeH2.73系纳米晶复合 物;
(4) 将得到的上述复合物进行吸放氢循环, 然后将复合物置于纯 Ar气氛中进行钝化处理;
( 5 ) 最后对钝化处理后的复合物进行氧化处理, 得到 MgH2-Mg2NiH4-CeH2.73-Ce02系纳米晶复合物。
2、 根据权利要求 1所述的制备方法, 其特征在于, 歩骤 (1 )制 得的非晶合金为 (x+2y)Mg-2zCe-yNi非晶合金,其中, x+3y+2z=100, 20
Figure imgf000009_0001
歩骤 (3 ) 制得的复合物为 xMgH2-yMg2NiH4-2zCeH2.73纳米晶复合物; 歩骤 (5 ) 制得的复合物 为 xMgH2-yMg2NiH4-zCeH2.73-zCe02纳米晶复合物。
3、 根据权利要求 2所述的制备方法, 其特征在于, 歩骤 (1 )中 非晶合金的制备方法为, 将铈和镍锭按照摩尔比 1:1混合, 采用电弧 熔炼的方法在 2000-3000°C进行熔炼得到稀土-镍中间合金;再将镁锭 和稀土-镍中间合金进行感应熔炼, 其中镁的摩尔百分比为 60-90%, 熔炼温度 1000-1500°C ; 最后将熔炼所得的合金采用单辊旋淬的方法 进行快速冷却。
4、 根据权利要求 3所述的制备方法, 其特征在于, 所采用的单 辊旋淬的方法中铜辊轮的转速为 30-40 m/s, 真空室里的真空度为 5
Figure imgf000009_0002
5、根据权利要求 1或 2或 3或 4所述的制备方法, 其特征在于, 歩骤 (2) 粉碎采用球磨粉碎, 球磨时间为 1-2小时, 球粉比 40:1, 转速为 250rpm。
6、根据权利要求 1或 2或 3或 4所述的制备方法, 其特征在于, 歩骤 (3 ) 活化条件为: 在 250°C和 lOMPa的氢气氛中吸氢 3小时。 权 利 要 求 书
7、根据权利要求 1或 2或 3或 4所述的制备方法, 其特征在于, 歩骤 (4) 钝化处理的 Ar气氛的水、 氧含量均不超过 10ppm
8、根据权利要求 1或 2或 3或 4所述的制备方法, 其特征在于, 歩骤(4)中吸放氢循环所采用的工艺为 300°C下, 3MPa的氢压下吸 氢 0.5小时, 然后 0.002MPa真空下脱氢 0.5小时, 依次循环 15次。
9、根据权利要求 1或 2或 3或 4所述的制备方法, 其特征在于, 歩骤 (5 ) 复合物的氧化处理为将复合物放在密封容器里, 然后将容 器在空气中打开, 使其充满空气, 放置 5-15小时。
10、权利要求 1〜9任意一项方法制备的镁基储氢材料, 其特征在 于, 该材料表达式为: xMgH2-yMg2NiH4-zCeH2.73-zCe02 , 其中,
Figure imgf000010_0001
10, 该材料的晶粒尺寸为
PCT/CN2013/090060 2013-09-05 2013-12-20 一种镁基储氢材料及其制备方法 WO2015032158A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/917,142 US9764951B2 (en) 2013-09-05 2013-12-20 Magnesium-based hydrogen storage material and method for preparing the same
JP2016539394A JP6301475B2 (ja) 2013-09-05 2013-12-20 Mg基水素貯蔵材料およびその調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310400671.2 2013-09-05
CN201310400671.2A CN103526141B (zh) 2013-09-05 2013-09-05 一种镁基储氢材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2015032158A1 true WO2015032158A1 (zh) 2015-03-12

Family

ID=49928484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090060 WO2015032158A1 (zh) 2013-09-05 2013-12-20 一种镁基储氢材料及其制备方法

Country Status (4)

Country Link
US (1) US9764951B2 (zh)
JP (1) JP6301475B2 (zh)
CN (1) CN103526141B (zh)
WO (1) WO2015032158A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114955989A (zh) * 2022-06-08 2022-08-30 江苏科技大学 一种复合储氢材料及其制备方法
CN115367700A (zh) * 2022-08-31 2022-11-22 理工清科(重庆)先进材料研究院有限公司 锌铜双金属MOF催化的MgH2储氢材料、其制备方法和应用

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104357723B (zh) * 2014-11-21 2016-10-26 东南大学 一种可低温脱氢的镁基复合材料及其制备方法
CN105060248A (zh) * 2015-07-17 2015-11-18 北京浩运金能科技有限公司 一种氢气净化装置
CN105316501B (zh) * 2015-11-12 2018-05-29 国网智能电网研究院 一种稀土—镁基储氢合金及其制备方法
CN107190193A (zh) * 2017-06-11 2017-09-22 烟台大学 一种纳米晶非晶Mg‑M‑Y储氢合金及其制备方法和用途
CN108996472A (zh) * 2018-08-13 2018-12-14 江苏科技大学 过渡金属纳米片/MgH2复合材料及其制备方法和应用
CN109467048A (zh) * 2018-12-27 2019-03-15 江苏科技大学 复合储氢材料及其制备方法和应用
CN112225174B (zh) * 2020-10-16 2022-06-14 南京工程学院 一种抗氧化的镁基复合储氢材料及其制备方法
CN112609102B (zh) * 2020-12-09 2021-09-10 浙江大学 由稀土氧化物和纳米硼镍包裹的镁基储氢材料的制备方法
DE102021005181B3 (de) 2021-10-16 2022-10-06 Dan Dragulin Verfahren zur Speicherung von Wasserstoff in einem metallischen Basismaterial durch direkte Wasserstoffanreicherung, sowie dadurch erhältliches wasserstoffhaltiges Material und dessen Verwendung
CN116062683A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种镁基储氢材料及其制备方法
CN113896167B (zh) * 2021-11-12 2023-10-20 江苏科技大学 一种复合储氢材料、其制备方法及其应用
CN114160784B (zh) * 2021-11-22 2024-08-20 上海大学 一种含有Nd4Mg80Ni8合金与纯Mg的水解制氢复合材料、其制备方法及其应用
CN115140706B (zh) * 2022-05-16 2024-01-09 广东省国研科技研究中心有限公司 一种Mg-Ni-Si系储氢材料及其制备方法
CN116103552A (zh) * 2022-09-07 2023-05-12 中南大学 一种挤压型Mg-Ni-Gd系镁基储氢功能材料及其制备方法
CN116100033A (zh) * 2022-12-15 2023-05-12 暨南大学 一种非晶态镁基纳米颗粒的制备方法及其应用
CN116288081B (zh) * 2022-12-30 2024-08-16 浙江大学 一种增强ZrCo合金抗二氧化碳毒化性能的方法
CN116239077B (zh) * 2023-03-09 2024-07-02 中国电力科学研究院有限公司 一种负载杂多酸催化剂的镁基储氢材料及其制备方法
CN118073551B (zh) * 2024-04-17 2024-06-21 内蒙古科技大学 一种电池用抗腐蚀纳米级Ce-Mg-Ni负极复合材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269572A (ja) * 1998-03-24 1999-10-05 Japan Metals & Chem Co Ltd 非晶質マグネシウムニッケル系水素吸蔵合金の製造方法
CN1397658A (zh) * 2002-04-10 2003-02-19 浙江大学 非晶态稀土-镁基储氢合金及其制造方法
CN102286684A (zh) * 2011-08-09 2011-12-21 安泰科技股份有限公司 镁基储氢合金

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2407170A1 (fr) * 1977-10-27 1979-05-25 Raffinage Cie Francaise Procede combine de stockage et de production d'hydrogene et applications de ce procede
JPS58181701A (ja) * 1982-04-15 1983-10-24 Matsushita Electric Ind Co Ltd 水素貯蔵用金属材料の取り扱い方法
JPS63223106A (ja) * 1987-03-11 1988-09-16 Nippon Steel Corp 非晶質合金粉末の製造方法
JP2511526B2 (ja) * 1989-07-13 1996-06-26 ワイケイケイ株式会社 高力マグネシウム基合金
CA2206252A1 (en) * 1994-12-22 1996-06-27 Lu Ming Magnesium mechanical alloys for thermal hydrogen storage
US6103024A (en) * 1994-12-22 2000-08-15 Energy Conversion Devices, Inc. Magnesium mechanical alloys for thermal hydrogen storage
ATE250284T1 (de) * 1995-05-08 2003-10-15 Ovonic Battery Co Elektrochemische wasserstoffeinlagerungslegierungen und batterien, die mit mg-basislegierungen hergestellt sind
JP3520461B2 (ja) * 1997-08-25 2004-04-19 財団法人 ひろしま産業振興機構 マグネシウム系水素吸蔵複合材料
JP2003147472A (ja) * 2001-11-02 2003-05-21 Toyota Central Res & Dev Lab Inc マグネシウム系水素吸蔵合金
JP4147462B2 (ja) * 2002-08-07 2008-09-10 トヨタ自動車株式会社 多層構造水素吸蔵体
US20050126663A1 (en) * 2003-12-11 2005-06-16 Fetcenko Michael A. Catalyzed hydrogen desorption in Mg-based hydrogen storage material and methods for production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269572A (ja) * 1998-03-24 1999-10-05 Japan Metals & Chem Co Ltd 非晶質マグネシウムニッケル系水素吸蔵合金の製造方法
CN1397658A (zh) * 2002-04-10 2003-02-19 浙江大学 非晶态稀土-镁基储氢合金及其制造方法
CN102286684A (zh) * 2011-08-09 2011-12-21 安泰科技股份有限公司 镁基储氢合金

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. J. LIN ET AL.: "Hydrogen storage properties of Mg-Ce-Ni nanocomposite induced from amorphous precursor with the highest Mg content.", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY., vol. 37, no. 19, 31 August 2012 (2012-08-31), pages 14329 - 14335 *
H. J. LIN ET AL.: "Room temperature gaseous hydrogen storage properties of Mg-based metallic glasses with ultrahigh Mg contents.", JOURNAL OF NON-CRYSTALLINE SOLIDS., vol. 360, 31 August 2012 (2012-08-31), pages 1387 - 1390 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114955989A (zh) * 2022-06-08 2022-08-30 江苏科技大学 一种复合储氢材料及其制备方法
CN115367700A (zh) * 2022-08-31 2022-11-22 理工清科(重庆)先进材料研究院有限公司 锌铜双金属MOF催化的MgH2储氢材料、其制备方法和应用
CN115367700B (zh) * 2022-08-31 2024-04-05 理工清科(重庆)先进材料研究院有限公司 锌铜双金属MOF催化的MgH2储氢材料、其制备方法和应用

Also Published As

Publication number Publication date
JP6301475B2 (ja) 2018-03-28
JP2016537511A (ja) 2016-12-01
CN103526141A (zh) 2014-01-22
CN103526141B (zh) 2015-03-11
US20160194201A1 (en) 2016-07-07
US9764951B2 (en) 2017-09-19

Similar Documents

Publication Publication Date Title
WO2015032158A1 (zh) 一种镁基储氢材料及其制备方法
Xie et al. Recent advances in magnesium-based hydrogen storage materials with multiple catalysts
Yong et al. Improved hydrogen storage kinetics and thermodynamics of RE-Mg-based alloy by co-doping Ce–Y
CN107338385B (zh) 一种体心立方结构为主的储氢高熵合金及其制备方法
Ali et al. Effects of Cu and Y substitution on hydrogen storage performance of TiFe0. 86Mn0. 1Y0. 1− xCux
CN109972010B (zh) 一种纳米镁基复合储氢材料及制备方法
CN104593651B (zh) 一种Mg-Ti-RE-Ni基贮氢合金及其制备方法
CN113106296B (zh) 一种适用于固态储氢的稀土系金属氢化物储氢合金及其制备方法
CN109175349B (zh) 一种高性能双稀土固溶体基贮氢材料及其制备方法
WO1998014627A1 (fr) Alliage absorbant l'hydrogene et procede de preparation de ce dernier
CN111647773A (zh) 一种稀土储氢材料及其制备方法
CN105695775A (zh) 一种钇-铁基合金材料、制备方法及应用
CN110656272B (zh) 一种基于高熵效应的镁基贮氢材料及其制备方法
CN108220728B (zh) 一种高容量轻质石墨烯催化稀土镁铝基贮氢材料及制备方法
CN111101041A (zh) 一种镁-钇-锌储氢镁合金及其制备方法
Song et al. Microstructure and hydrogenation kinetics of Mg2Ni-based alloys with addition of Nd, Zn and Ti
Hu et al. Hydrogen storage in Mo substituted low-V alloys treated by melt-spin process
Jin et al. Microstructures and hydrogen storage properties of Mg-Y-Zn rare earth magnesium alloys with different Zn content: experimental and first-principles studies
WO2016110208A1 (zh) 一种 CaMg 2 基合金氢化物水解制氢材料及其制备方法和应用
CN113201679A (zh) 具有稳定的同晶型吸/放氢反应的ZrCo基高熵金属间化合物及其制备和应用
CN115074578B (zh) 一种Y-Mg-Ni基储氢合金及其制备方法
CN108097947A (zh) 一种高容量Mg-Zn-Ni三元贮氢合金及其制备方法
CN102286684B (zh) 镁基储氢合金
CN113912006B (zh) 一种碳负载的高熵合金复合镁基储氢材料及其制备方法
Révész et al. The effect of severe plastic deformation on the hydrogen storage properties of metal hydrides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016539394

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14917142

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13893137

Country of ref document: EP

Kind code of ref document: A1