WO2015029177A1 - 空気調和システム - Google Patents

空気調和システム Download PDF

Info

Publication number
WO2015029177A1
WO2015029177A1 PCT/JP2013/073082 JP2013073082W WO2015029177A1 WO 2015029177 A1 WO2015029177 A1 WO 2015029177A1 JP 2013073082 W JP2013073082 W JP 2013073082W WO 2015029177 A1 WO2015029177 A1 WO 2015029177A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
conditioning system
control
air conditioning
temperature
Prior art date
Application number
PCT/JP2013/073082
Other languages
English (en)
French (fr)
Inventor
恵美 竹田
伊藤 慎一
畝崎 史武
裕信 矢野
松本 崇
吉川 利彰
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015533859A priority Critical patent/JP6091624B2/ja
Priority to PCT/JP2013/073082 priority patent/WO2015029177A1/ja
Priority to EP13892371.9A priority patent/EP3040633A4/en
Publication of WO2015029177A1 publication Critical patent/WO2015029177A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/193Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces
    • G05D23/1931Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperaure in different places in thermal relationship with one or more spaces to control the temperature of one space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • F24F11/47Responding to energy costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioning system.
  • forward operation control is performed as an operation for causing the room temperature to reach the target temperature at a specified time.
  • Advance operation control is to start the air conditioner before a specified time.
  • the rotation speed of the compressor is controlled in two stages of constant speed operation and full speed operation.
  • there is an air conditioning system that minimizes power consumption by controlling the switching point from constant speed operation to full speed operation (for example, see Patent Document 1).
  • the conventional air conditioning system as disclosed in Patent Document 1 performs control to switch the compressor in two stages of constant speed operation or full speed operation. Therefore, the conventional air conditioning system as disclosed in Patent Document 1 cannot continuously variably control the rotational speed of the compressor during operation.
  • Patent Document 1 has a problem that extra power consumption is used from the start of the operation of the air conditioner until the room temperature reaches the target temperature. there were.
  • the present invention has been made to solve the above-described problems, and reduces the amount of extra power consumption used until the room temperature reaches the target temperature after the operation of the air conditioner is started. It aims at providing the air conditioning system which can do.
  • An air conditioning system is an air conditioning system that controls an air conditioner including a compressor, and includes a control unit that controls the air conditioner, and the control unit compares the normal control with the normal control.
  • the air conditioner is controlled by switching between energy saving control for reducing power consumption, and in the case of the normal control, the rotation speed of the compressor is set according to the difference between the room temperature and the set temperature.
  • the set temperature is changed step by step in a state where the set temperature and the rotation speed of the compressor having the minimum power consumption corresponding to the set temperature are linked. Is.
  • the set temperature in the case of energy saving control, can be changed step by step in a state where the set temperature is linked to the rotational speed of the compressor that has the minimum power consumption. Therefore, the present invention can reduce the amount of extra power consumption used until the room temperature reaches the target temperature after the operation of the air conditioner is started. Therefore, this invention has the effect that energy saving operation with little power consumption can be performed by improving the operation efficiency of an air conditioner.
  • FIG. 1 It is a figure which shows an example of schematic structure of the air conditioner 1 which is a control object of the air conditioning system in Embodiment 1 of this invention. It is a figure which shows an example of each time-dependent change of the indoor temperature at the time of carrying out cooling operation with the rotation speed of the compressor 21 in Embodiment 1 of this invention fixed, and the refrigerant
  • FIG. It is a figure which shows an example of each time-dependent change of the indoor temperature at the time of heating operation by making constant the rotation speed of the compressor 21 in Embodiment 1 of this invention, and the refrigerant
  • FIG. 1 It is a figure which shows an example of the functional block of the air conditioner control module 90 which restrict
  • FIG. It is a figure which shows an example of the functional block of the air conditioner control module 90 which restrict
  • FIG. It is a figure which shows an example of the functional block of the air conditioner control module 90 which performs the permission determination of the energy saving timer control in Embodiment 1 of this invention, and controls the air conditioner 1.
  • FIG. 1 It is a figure which shows an example of the functional block of the air conditioner control module 90 which controls the air conditioner 1 based on the presence determination result of the person in the indoor space 71 in Embodiment 1 of this invention. It is a figure which shows an example of schematic structure of HEMS which is a control object of the air conditioning system in Embodiment 2 of this invention. It is a figure which shows an example of each functional block of the air-conditioner control module 90, the HEMS controller 223, and the communication apparatus 228 which control the air conditioner 1 of the system in Embodiment 2 of this invention. It is a flowchart explaining an example of the HEMS control process performed based on distance or estimated arrival time among the control examples of the air conditioning system in Embodiment 2 of this invention.
  • step of describing the program for performing the operation of the present embodiment is a process performed in time series in the order described, but it is not necessarily performed in time series, but is executed in parallel or individually. Processing may also be included.
  • each block diagram described in this embodiment may be considered as a hardware block diagram or a software functional block diagram.
  • each block diagram may be realized by hardware such as a circuit device, or may be realized by software executed on an arithmetic device such as a processor (not shown).
  • each block in the block diagram described in the present embodiment only needs to perform its function, and the configuration may not be separated by each block.
  • items not particularly described are the same as those in the first to third embodiments, and the same functions and configurations are described using the same reference numerals.
  • Embodiments 1 to 3 may be implemented independently or in combination. In either case, the advantageous effects described below can be obtained. Further, various specific setting examples and flag examples described in the present embodiment are merely examples, and are not particularly limited thereto.
  • the system represents the entire apparatus configured by a plurality of apparatuses or the entire function configured by a plurality of functions.
  • Embodiment 1 FIG. ⁇ Overview>
  • the air conditioning system changes the set temperature step by step in a state in which the set temperature and the rotation speed of the compressor 21 (described later) having the minimum power consumption are linked. Therefore, the air conditioning system reduces the amount of power consumption that is used extra. Therefore, the air conditioning system reduces the amount of extra power consumption used until the room temperature reaches the target temperature after the operation of the air conditioner 1 (described later) is started. As a result, the air conditioning system increases the operating efficiency of the air conditioner 1 (described later) and performs energy saving operation with low power consumption.
  • the present invention is suitable for an air conditioning system that performs start-up control while suppressing power consumption for cooling or heating.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of an air conditioner 1 that is a control target of the air-conditioning system according to Embodiment 1 of the present invention.
  • the air conditioner 1 includes an outdoor unit 11 and an indoor unit 13.
  • the outdoor unit 11 is provided, for example, outside the house 3.
  • the indoor unit 13 is provided, for example, inside the house 3.
  • the air conditioner 1 targets the indoor space 71 for air conditioning. That is, in the air conditioner 1, the indoor space 71 is an air control target space.
  • the indoor unit 13 is installed in a place where conditioned air can be supplied to the indoor space 71, for example, on a wall constituting the indoor space 71.
  • the air conditioner 1 performs cooling by blowing conditioned air, for example, cold air, from the indoor unit 13, and performs heating by blowing hot air.
  • the air conditioner 1 is equipped with a vapor compression refrigeration cycle.
  • the refrigerant flows through the refrigerant pipe 61 that connects the outdoor unit 11 and the indoor unit 13, and various signals are transferred to the communication line 63 that connects the outdoor unit 11 and the indoor unit 13.
  • the outdoor unit 11 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, and an expansion valve 24.
  • the outdoor unit 11 includes an outdoor fan 31 near the outdoor heat exchanger 23.
  • the outdoor unit 11 includes a measurement control device 51.
  • the indoor unit 13 includes an indoor heat exchanger 25.
  • the indoor unit 13 includes an indoor blower 33 near the indoor heat exchanger 25.
  • the indoor unit 13 includes a measurement control device 53.
  • the indoor unit 13 includes an indoor temperature sensor 41.
  • a remote controller 55 is provided in the indoor space 71. The remote controller 55 transmits and receives various signals to and from the measurement control device 53 provided in the indoor unit 13.
  • the compressor 21, the four-way valve 22, the outdoor heat exchanger 23, the expansion valve 24, and the indoor heat exchanger 25 are annularly connected by a refrigerant pipe 61 to constitute a refrigeration cycle. Since the outdoor blower 31 generates a negative pressure in the outdoor unit 11 by being driven, the outdoor air in the outdoor space 72 is sucked into the outdoor unit 11 and the sucked outdoor air is supplied to the outdoor heat exchanger 23 for outdoor heat exchange. The air in the outdoor unit 11 is blown out from the outdoor unit 11 to the outdoor space 72 through the vessel 23.
  • the indoor blower 33 Since the indoor blower 33 generates a negative pressure in the indoor unit 13 by being driven, the indoor air in the indoor space 71 is sucked into the indoor unit 13, the sucked indoor air is supplied to the indoor heat exchanger 25, and indoor heat exchange is performed. The air in the indoor unit 13 is blown out from the indoor unit 13 to the indoor space 71 through the container 25.
  • the compressor 21 compresses a low-temperature and low-pressure refrigerant into a high-temperature and high-pressure refrigerant, is driven by an inverter, and the operation capacity is controlled according to the air-conditioning state.
  • the four-way valve 22 is connected to the discharge side of the compressor 21 and switches the flow of the refrigerant according to the operation of the air conditioner 1, for example, the cooling operation or the heating operation.
  • the outdoor heat exchanger 23 performs heat exchange between the cold / hot heat supplied from the refrigerant flowing through the refrigeration cycle and the outdoor air in the outdoor space 72.
  • the expansion valve 24 is connected between the outdoor heat exchanger 23 and the indoor heat exchanger 25 and is configured by a valve whose opening degree can be variably controlled, for example, an electronic expansion valve, and the opening degree is controlled.
  • a valve whose opening degree can be variably controlled for example, an electronic expansion valve, and the opening degree is controlled.
  • the indoor heat exchanger 25 performs heat exchange between the cold / hot heat supplied from the refrigerant flowing through the refrigeration cycle and the indoor air in the indoor space 71.
  • the air conditioner 1 supplies the indoor air heat-exchanged by the indoor heat exchanger 25 to the indoor space 71 as conditioned air, and cools and heats the indoor space 71.
  • measurement information that is a detection result of the indoor temperature sensor 41 is supplied to the measurement control device 53.
  • the measurement control device 53 supplies measurement information that is a detection result of the indoor temperature sensor 41 to the measurement control device 51 through the communication line 63.
  • the communication line 63 may be either wired or wireless, and is not particularly limited as a communication medium.
  • the measurement control device 51 and the measurement control device 53 include detection information and operation information supplied from various sensors mounted on the air conditioner 1 such as the indoor temperature sensor 41, and setting information set by the user of the air conditioner 1. Based on the above, the operation of the air conditioner 1 is commanded by a control program installed in advance. That is, the measurement control device 51 and the measurement control device 53 collectively control the entire air conditioner 1.
  • the measurement control device 51 and the measurement control device 53 are configured by a microcomputer or the like.
  • the measurement control device 51 controls the drive frequency of the compressor 21, performs switching control of the four-way valve 22, controls the rotational speed of the outdoor blower 31, and controls the opening degree of the expansion valve 24.
  • the measurement control device 53 controls the rotation speed of the indoor blower 33. By performing such an operation, the measurement control device 51 and the measurement control device 53 command the operation of the air conditioner 1.
  • the measurement control device 51 may control the rotational speed of the indoor blower 33
  • the measurement control device 53 controls the drive frequency of the compressor 21, performs the switching control of the four-way valve 22, and the outdoor blower.
  • the number of revolutions 31 may be controlled to control the opening degree of the expansion valve 24.
  • the indoor temperature sensor 41 is mounted on the indoor unit 13.
  • the indoor temperature sensor 41 measures the temperature of indoor air in the indoor space 71 sucked into the indoor unit 13 and supplies the measurement result to the measurement control device 53 and the like.
  • the air conditioner 1 is also equipped with other various sensors.
  • a discharge side pressure sensor is mounted on the discharge side of the compressor 21, and the discharge side pressure sensor measures the pressure of the refrigerant discharged from the compressor 21.
  • a suction side pressure sensor is mounted on the suction side of the compressor 21, and the suction side pressure sensor measures the pressure of the refrigerant sucked into the compressor 21.
  • a discharge side temperature sensor is mounted on the discharge side of the compressor 21, and the discharge side temperature sensor measures the temperature of the refrigerant discharged from the compressor 21.
  • a suction side temperature sensor is mounted on the suction side of the compressor 21, and the suction side temperature sensor measures the temperature of the refrigerant sucked into the compressor 21.
  • an outdoor temperature sensor is mounted on the outdoor unit 11, and the outdoor temperature sensor measures the temperature of outdoor air in the outdoor space 72.
  • the air conditioner 1 sets the operation mode simultaneously with the operation start command.
  • the operation of the refrigeration cycle is as follows.
  • the refrigerant discharged from the compressor 21 passes through the four-way valve 22 and flows to the outdoor heat exchanger 23.
  • the refrigerant that has flowed to the outdoor heat exchanger 23 exchanges heat with outdoor air sucked from the outdoor space 72, condenses and liquefies, and flows to the expansion valve 24.
  • the refrigerant that has flowed to the expansion valve 24 is decompressed by the expansion valve 24 and flows to the indoor heat exchanger 25.
  • the refrigerant that has flowed into the indoor heat exchanger 25 exchanges heat with the indoor air sucked from the indoor space 71 to evaporate, passes through the four-way valve 22, and is sucked into the compressor 21 again. As the refrigerant flows in this manner, the indoor air sucked from the indoor space 71 is cooled by the indoor heat exchanger 25.
  • the amount of heat exchange between the refrigerant and the room air in the indoor heat exchanger 25 is called a cooling capacity Q.
  • the cooling capacity Q is adjusted by changing the rotation speed of the compressor 21.
  • the operation of the refrigeration cycle is as follows.
  • the refrigerant discharged from the compressor 21 passes through the four-way valve 22 and flows to the indoor heat exchanger 25.
  • the refrigerant that has flowed to the indoor heat exchanger 25 exchanges heat with the indoor air sucked from the indoor space 71 to be condensed and liquefied, and then flows to the expansion valve 24.
  • the refrigerant that has flowed to the expansion valve 24 is decompressed by the expansion valve 24 and flows to the outdoor heat exchanger 23.
  • the refrigerant that has flowed into the outdoor heat exchanger 23 exchanges heat with the outdoor air sucked from the outdoor space 72 to evaporate, passes through the four-way valve 22, and is sucked into the compressor 21 again.
  • the indoor air sucked from the indoor space 71 is heated by the indoor heat exchanger 25.
  • the amount of heat exchange between the refrigerant and the indoor air in the indoor heat exchanger 25 is referred to as a heating capacity Q.
  • the heating capacity Q is adjusted by changing the rotation speed of the compressor 21.
  • one air conditioner 1 is a control target of the air conditioning system, but the number of control targets is not particularly limited.
  • a plurality of air conditioners 1 may be controlled by the air conditioning system.
  • the air conditioner 1 comprised by the one outdoor unit 11 and the one indoor unit 13 was demonstrated above, the structure of the air conditioner 1 is not specifically limited.
  • the air conditioner 1 configured by one outdoor unit 11 and a plurality of indoor units 13 may be a control target of the air conditioning system.
  • the air conditioner 1 that includes one outdoor unit 11, a repeater (not shown), a check valve (not shown), and a plurality of indoor units 13 that perform simultaneous cooling and heating operations is air. It may be a controlled object of the harmony system.
  • the outdoor unit 11 and the indoor unit 13 are disposed at a short distance, but the arrangement location of the outdoor unit 11 and the indoor unit 13 is not particularly limited.
  • the outdoor unit 11 may be disposed on the roof of a building (not shown), and the indoor unit 13 may be disposed on the ceiling.
  • the air conditioner 1 constituting the refrigeration cycle only needs to be controlled by the air conditioning system, and the detailed configuration of the controlled object is not particularly limited.
  • the functional configuration of the air conditioning system described later may be mounted on the measurement control device 51, for example, but the mounting location is not particularly limited.
  • the functional configuration of the air conditioning system may be implemented in the measurement control device 53.
  • the functional configuration of the air conditioning system may be mounted on the HEMS controller 223 described later with reference to FIG.
  • the functional configuration of the air conditioning system may be implemented in a server device 411 described later with reference to FIG.
  • the functional configuration of the air conditioning system is not particularly limited at the mounting location.
  • the functional configuration of the air conditioning system is physically distributed to the terminals 229. It may be distributed and implemented.
  • an energy saving control function to be described later and a normal control function to be described later are mounted in physically separated locations and function organically as one system via a communication medium such as a public line 227. It may be. That is, it is only necessary that the air conditioning system can control the air conditioner 1.
  • FIG. 2 is a diagram illustrating an example of changes over time in the indoor temperature and the refrigerant temperature of the indoor heat exchanger 25 when the cooling operation is performed with the rotation speed of the compressor 21 being constant in the first embodiment of the present invention.
  • the indoor heat exchanger 25 functions as an evaporator. Therefore, the saturation temperature of the refrigerant is called the evaporation temperature.
  • the cooling operation when the cooling operation is started at the start of the operation and the room temperature is lowered, the temperature of the air passing around the indoor heat exchanger 25 is lowered. Therefore, the low-temperature refrigerant in the indoor heat exchanger 25 is less likely to be evaporated and the amount of refrigerant gas is reduced, so that the pressure and the evaporation temperature are reduced.
  • FIG. 3 is a diagram illustrating an example of changes over time in the indoor temperature and the refrigerant temperature in the indoor heat exchanger 25 when the heating operation is performed with the rotation speed of the compressor 21 being constant in the first embodiment of the present invention.
  • the indoor heat exchanger 25 functions as a condenser. Therefore, the saturation temperature of the refrigerant is called the condensation temperature.
  • the heating operation when the heating operation is started at the start of operation and the room temperature rises, the temperature of the air passing around the indoor heat exchanger 25 increases. Therefore, the high-temperature refrigerant in the indoor heat exchanger 25 becomes difficult to condense and liquefy, and the amount of refrigerant gas increases, so the pressure and the condensation temperature rise.
  • FIG. 4 shows changes in the capacity (cooling capacity and heating capacity) Q, input W, and operating efficiency COP associated with fluctuations in the compressor rotation speed according to Embodiment 1 of the present invention at the start of operation and after changes in room temperature. It is a figure which shows an example compared by these.
  • the refrigerant pressure inside the indoor heat exchanger 25 decreases from the start of operation to after the indoor temperature change, so the density of the refrigerant sucked by the compressor 21 decreases.
  • the flow rate of the refrigerant circulating in the refrigeration cycle decreases. Therefore, the cooling capacity Q decreases from the start of operation to after the indoor temperature change.
  • the suction pressure of the compressor 21, that is, the pressure on the low pressure side decreases, the pressure difference from the discharge pressure of the compressor 21, that is, the pressure on the high pressure side widens, so that the input W of the compressor 21 increases.
  • the pressure of the refrigerant inside the indoor heat exchanger 25 increases from the start of operation to after the change in the indoor temperature. Decreases after temperature change. Further, since the discharge pressure of the compressor 21, that is, the pressure on the high pressure side, increases, the pressure difference from the suction pressure of the compressor 21, that is, the pressure on the low pressure side increases, so that the input W of the compressor 21 increases.
  • the cooling capacity Q decreases from the start of operation to after the change in room temperature, and the input W tends to increase from the start of operation to after the change in room temperature.
  • (Coefficient of Performance) decreases from the start of operation to after the room temperature has changed.
  • the heating capacity Q decreases from the start of operation to after the indoor temperature change, and the input W tends to increase from the start of operation to after the indoor temperature change. It decreases after the room temperature changes. That is, in any case of the cooling operation and the heating operation, the operation efficiency COP of the air conditioner 1 decreases from the start of operation to after the indoor temperature change.
  • the operating efficiency COP is a value obtained by dividing the cooling capacity Q or the heating capacity Q by the input W. That is, the operating efficiency COP is a value obtained by dividing the capability Q by the input W.
  • the relationship between the capacity Q, the input W, and the operating efficiency COP is examined from the viewpoint of the displacement of the rotation speed of the compressor 21.
  • the suction pressure relatively decreases and the discharge pressure increases, so the pressure ratio increases.
  • the operating efficiency COP decreases.
  • the operation efficiency COP is approximated to a linear expression of the capacity Q, it is expressed as the following expression (1).
  • a and B are parameters indicating the operation efficiency COP characteristics, and are determined based on the configuration of the air conditioner 1 and the environmental conditions of the air conditioner 1. As shown in the equation (1), the operating efficiency COP is expressed as A obtained by multiplying A by the capability Q and adding B. Further, as described above, since the operation efficiency COP is a value obtained by dividing the capability Q by the input W, the following expression (2) is derived from the relational expression.
  • the input W is represented by dividing the ability Q by Expression (1).
  • the operation mode executed by the air conditioner 1 will be described.
  • the air conditioning system includes, for example, normal control and energy saving control as operation modes.
  • the normal control the rotational speed of the compressor 21 is controlled according to the difference between the room temperature and the set temperature.
  • Energy saving control reduces power consumption compared to normal control.
  • the air conditioning system switches between normal control and energy saving control by turning on and off the energy saving mode selected by the user, for example.
  • the air conditioning system switches to energy saving control when the energy saving mode is selected, and switches to normal control when the energy saving mode is selected to be off. For example, when the user transmits an operation start command for the air conditioner 1 to the indoor unit 13 with the energy saving mode selected via the remote controller 55, the air conditioner 1 operates with the energy saving control.
  • the air conditioning system designates the room temperature to reach the target temperature at the designated time.
  • the air conditioner 1 can be started from before the time, and the precooling / preheating operation which is the forward operation control by the energy saving control can be performed.
  • the remote controller 55 is used to select the energy saving mode, send the operation start command, and set the timer reservation has been described.
  • the present invention is not particularly limited thereto.
  • FIG. 5 is a diagram illustrating an example of functional blocks of the air conditioner control module 90 that controls the air conditioner 1 according to Embodiment 1 of the present invention.
  • the air conditioner control module 90 includes a normal control unit 91, an energy saving control unit 92, and an energy saving timer control unit 93.
  • the normal control unit 91 performs normal control and includes, for example, a proportional control unit 101, an integral control unit 102, and a differential control unit 103.
  • the normal control unit 91 starts the normal control when notified that the energy-saving control is completed or when a command is directly supplied from the user.
  • the air conditioner 1 performs the operation so that the measured value of the indoor temperature sensor 41 that detects the representative temperature of the indoor space 71 as the indoor temperature becomes the set temperature set by the user. .
  • the proportional control unit 101 performs proportional control. Specifically, the proportional control unit 101 increases the number of rotations of the compressor 21 to increase the cooling of the air conditioner 1 when the temperature difference between the room temperature and the set temperature is greater than a predetermined set value. An operation command is issued so as to increase the capacity Q or the heating capacity Q of the air conditioner 1 so as to accelerate the arrival of the room temperature at the set temperature.
  • the integration control unit 102 performs integration control. Specifically, since the time change of the room temperature is smaller than the predetermined set value, the integral control unit 102 rotates the compressor 21 when it takes time until the room temperature reaches the set temperature. By increasing the number, the cooling capacity Q of the air conditioner 1 or the heating capacity Q of the air conditioner 1 is increased, and an operation command is issued so that the room temperature reaches the set temperature. In addition, for example, when the indoor temperature rapidly changes due to opening / closing of a window (not shown) or the like, the differential control unit 103 changes the operating capacity of the compressor 21 according to the temporal variation of the indoor temperature.
  • the air conditioner 1 stops the operation of the compressor 21 when the room temperature reaches the set temperature, and starts the compressor 21 again when the temperature difference between the room temperature and the set temperature becomes a preset value or more. .
  • the rotational speed of the compressor 21 increases, the operation efficiency COP decreases, and the power consumption increases.
  • the energy saving control unit 92 executes energy saving control, and includes a first calculation unit 111, a second calculation unit 113, a third calculation unit 115, and a fourth calculation unit 119, as will be described later with reference to FIG. .
  • a first calculation unit 111, a second calculation unit 113, a third calculation unit 115, and a set temperature control unit 121 may be provided.
  • the energy saving control unit 92 notifies the normal control unit 91 to that effect.
  • Formula (3) is the indoor space 71, that is, the heat capacity C of the room, the capacity Q of the air conditioner 1, the heat flowing through the outer wall of the house 3, the heat caused by ventilation, the solar heat, and the lighting 235 (described later).
  • the time interval ⁇ t required for cooling or heating the room temperature by 1 ° C. is represented based on the heat load D meaning internal heat generation such as a person.
  • Equation (4) represents the amount of power consumed when the room temperature is cooled or heated by 1 ° C. based on the time interval ⁇ t and the input W.
  • Expression (5) is an expression for obtaining a power consumption minimum point, that is, a minimum power consumption.
  • the third calculation unit 115 derives Expression (6) for obtaining the time interval ⁇ t 0 corresponding to the power consumption minimum point from Expression (3) and Expression (5).
  • the energy saving control unit 92 may have two patterns as shown in FIGS.
  • FIG. 6 is a diagram illustrating an example of functional blocks of the energy saving control unit 92 when the control method of the compressor rotation speed in the first embodiment is different from the normal control.
  • the first calculation unit 111 obtains A and B of the operation efficiency COP characteristics from sensor values such as room temperature, outdoor temperature, and room humidity.
  • the 2nd calculating part 113 calculates
  • the third calculation unit 115 obtains the capacity Q 0 from the operation efficiency COP characteristics A and B and the heat load D.
  • the fourth calculation unit 119 obtains the compressor speed from the capacity Q 0 , the sensor value, the indoor air volume setting, and the like.
  • FIG. 7 is a diagram illustrating an example of functional blocks of the energy saving control unit 92 when the control method of the set temperature in the first embodiment is different from the normal control.
  • the energy saving control unit 92 is incorporated outside the indoor unit 13 and the outdoor unit 11. That is, this is an example in which the output of the energy saving control unit 92 becomes the set temperature.
  • the user manually operates the set temperature from the remote controller 55. In this case, the set temperature is automatically changed.
  • the first calculation unit 111 obtains A and B of the operation efficiency COP characteristics from sensor values such as room temperature, outdoor temperature, and room humidity.
  • the 2nd calculating part 113 calculates
  • the third calculation unit 115 obtains the time interval ⁇ t 0 from the operating efficiency COP characteristics A and B, the heat capacity C, and the heat load D.
  • the set temperature control unit 121 changes the set temperature according to the time interval ⁇ t 0 .
  • the energy saving control unit 92 may obtain the compressor rotation speed by the normal control unit 91 by supplying the set temperature to the normal control unit 91, and may supply the set temperature to the outdoor unit 11 to thereby provide the outdoor unit 11. You may obtain
  • the compressor control unit 122 is the same as the normal control unit 91, and controls the compressor rotation speed based on the difference between the set temperature and the room temperature.
  • the pattern shown in FIG. 6 and the pattern shown in FIG. 7 are separate, and if one of the functions is installed, the other function is not installed.
  • the compressor rotation speed is output from the energy saving control unit 92
  • the set temperature is not output from the energy saving control unit 92.
  • the compressor rotation speed is not output from the energy saving control unit 92.
  • the configuration of the energy saving control unit 92 is not limited to the above description.
  • the functions described above may be integrated into a single module.
  • the energy saving control unit 92 may be configured to call the external function configured as such.
  • the energy saving control unit 92 can directly or indirectly set the power consumption minimum point by using the algorithm defined by the equations (1) to (6). It is only necessary that the corresponding compressor rotation speed or set temperature can be obtained.
  • the third calculation unit 115 associates each of the minimum power consumption, the time interval ⁇ t 0 , the compressor rotation speed, the thermal load D, and the set temperature, and the minimum power consumption, the time interval ⁇ t 0.
  • the compressor rotation speed, the thermal load D, and the set temperature are supplied to the storage unit, for example, as the minimum power consumption related data.
  • the data relating to the compressor rotational speed is stored in the compressor's number of revolution data group, the data on the minimum amount of power consumption stored in the minimum power consumption data groups, the time interval Delta] t 0 data data relating to the time interval Delta] t 0
  • the data relating to the heat load D is accumulated in the heat load D data group
  • the data relating to the set temperature is accumulated in the set temperature data group.
  • the various data groups described above are examples, and are not particularly limited to these. In short, it is only necessary that the minimum power consumption, the time interval ⁇ t 0 , the compressor rotation speed, the heat load D, and the set temperature are associated with each other.
  • the fourth calculation unit 119 obtains the compressor speed based on the set temperature, the room temperature, the step size, the target temperature, and the minimum power consumption related data.
  • the step size is a change amount when the set temperature is changed stepwise.
  • the step size is set as an integer value, for example, but is not particularly limited thereto.
  • a table corresponding to each of the equations (1) to (6) may be defined in the table.
  • Q 0 is obtained based on A, B, and D. Therefore, by using a table in which the mapping relationship between A, B, and D and Q 0 is defined, Q 0 may be obtained. At this time, even if there is no directly applicable numerical value, interpolation processing or the like may be performed.
  • various parameters may be calculated by an algorithm corresponding to equations (1) to (6).
  • the energy saving timer control unit 93 executes energy saving timer control, and includes, for example, a fifth calculation unit 141, a sixth calculation unit 142, a seventh calculation unit 143, and an eighth calculation unit 144, as shown in FIG. Yes.
  • the fifth computing unit 141 obtains occupancy information based on a set value set by the user or an estimated value from past information.
  • the occupancy information includes, for example, the time when the user starts occupying the room, the duration during which the user stays in the occupancy, and the time when the user is absent.
  • the remote controller 55 is used.
  • the device for which the user sets the occupancy information is not limited to the remote controller 55.
  • the occupancy information is set as an estimated value from past information
  • the occupancy information is estimated by using past information of various devices existing in the indoor space 71, for example, the remote controller 55, etc.
  • Estimated occupancy information may be set. Specifically, the time when the user first operated the remote controller 55 is stored in the remote controller 55 or the air conditioner 1 for each specific time zone such as morning, noon, evening, and night.
  • the air conditioning system collects the time when the remote controller 55 stored in this way is used, and based on the collected result, the time when the user starts to stay in the room, that is, the time when the room starts is located.
  • Estimate and set the estimated occupancy start time When a plurality of occupancy start times are obtained, the air conditioning system may obtain, for example, an average value and determine the average value as the occupancy start time.
  • the estimated value from the past information is not limited to the operation history such as the time when the remote controller 55 described above is used.
  • the operation history may be collected by the HEMS controller 223, and the occupancy information may be obtained based on the collection result.
  • the estimated value from the past information may be obtained from the occupancy information by analyzing the power consumption measured by the power meter 221 described later in FIG.
  • the estimated value from the past information may be obtained by using the detection result of the infrared sensor 43 or the human sensor 44 described later with reference to FIG.
  • the estimated value from the past information may be obtained as occupancy information by using opening / closing information of an indoor door (not shown) attached to the indoor space 71 shown in FIG.
  • the user's location information is obtained using the user's location information. You may ask for it.
  • the user's return home may be detected by using the imaging result of the camera.
  • the user position information for example, Wi-Fi (registered trademark) (Wireless Fidelity) connection presence / absence information or GPS (Global Positioning System) position information may be used.
  • the air conditioner control module 90 corresponds to a control unit in the present invention.
  • the air conditioner control module 90 may supply a control command to the measurement control device 51.
  • the air conditioner control module 90 may supply a control command to the measurement control device 53.
  • the air conditioner control module 90 passes through the measurement control device 51 and the measurement control device 53, and drives the air conditioner 1, for example, the compressor 21, the four-way valve 22, the expansion valve 24, the outdoor blower 31, and the indoor blower.
  • a control command may be supplied to 33.
  • the air conditioner control module 90 does not pass through the measurement control device 51 and the measurement control device 53, but drives the air conditioner 1, such as the compressor 21, the four-way valve 22, the expansion valve 24, the outdoor blower 31, and the indoor unit.
  • a control command may be supplied to the blower 33.
  • the sixth calculation unit 142 calculates the occupancy start time from the occupancy information, and supplies the calculated occupancy start time to the seventh calculation unit 143.
  • the seventh computing unit 143 obtains the precooling prewarming start time based on the occupancy start time and the air conditioning information, and supplies the obtained precooling prewarming start time to the eighth computing unit 144.
  • the air conditioning information is information related to the model characteristics of the air conditioner 1, for example.
  • the 7th calculating part 143 calculates
  • the time interval ⁇ t will be described in detail with reference to FIGS. 8 to 10 described later.
  • precooling / preheating start time may be downloaded to the HEMS controller 223 or the like via the public line 227 and the communication device 225 described later with reference to FIG.
  • the user may directly specify the precooling preheating start time.
  • the eighth calculation unit 144 supplies an energy saving control command to the energy saving control unit 92 when the precooling pre-warming start time has arrived.
  • the operation capacity of the air conditioner 1 is controlled so as to minimize the amount of power consumed from the start of operation until the room temperature reaches the target temperature. That is, the air conditioning system executes energy saving control that significantly reduces the total power consumption from the start of the operation of the air conditioner 1 until the room temperature reaches the target temperature.
  • the point to note when performing energy-saving control is that if the rotational speed of the compressor 21 is simply reduced compared with the normal control, the operating efficiency COP is improved, but the capacity Q is lowered, so that the room temperature reaches the set temperature. It may be lost or it may take some time for the room temperature to reach the set temperature. Therefore, the air conditioning system needs to appropriately control the rotation speed of the compressor 21 when executing the energy saving control. Therefore, the operation principle of appropriate control will be described below.
  • FIG. 8 shows changes in the time interval ⁇ t and the power consumption per time interval ⁇ t corresponding to a change in the room temperature of 1 ° C. accompanying the change in the compressor rotation speed in the first embodiment of the present invention. It is a figure which shows an example compared with after temperature change. In FIG. 8, description will be made assuming that a hollow circle means an operating point of energy saving control.
  • the capacity Q of the air conditioner 1 decreases as the rotational speed of the compressor 21 decreases. Therefore, from the equation (3) described above, the time interval ⁇ t increases as the rotational speed of the compressor 21 decreases. Further, from the equation (3) described above, since the room temperature does not change at the rotation speed of the compressor 21 at which the capacity Q of the air conditioner 1 and the thermal load D are equal, the time interval ⁇ t is infinite. Become.
  • the thermal load D increases as the temperature difference between the outside air temperature and the room temperature increases. For example, if the outside air temperature is 30 ° C. and the room temperature is 30 ° C. at the start of operation of the air conditioner 1, the temperature difference between the outside air temperature and the room temperature is 0 ° C. Further, if the outside air temperature is 30 ° C. and the room temperature is 25 ° C. after the start of the operation of the air conditioner 1, the temperature difference between the outside air temperature and the room temperature is 5 ° C. Therefore, the heat load D becomes larger after the indoor temperature change than when the operation is started. Accordingly, the time interval ⁇ t takes longer for ⁇ t 2 after the indoor temperature change than for the time ⁇ t 1 at the start of operation.
  • the power consumption per time interval ⁇ t has a minimum point.
  • the compressor rotational speed is increased from the minimum point, the input W increases and the operating efficiency COP decreases, so that the power consumption increases.
  • the time interval ⁇ t is extended, so that the power consumption increases.
  • the operation efficiency COP has a smaller slope ( ⁇ A) and becomes gentler after the change in the room temperature than at the start of operation.
  • ⁇ A the refrigerant saturation temperature of the indoor heat exchanger 25
  • the optimum compressor rotation speed N may be commanded and the set temperature may be commanded at every time interval ⁇ t.
  • the cooling capacity Q or the heating capacity Q includes sensible heat and latent heat. However, since the sensible heat capacity affects the change in the room temperature, the cooling capacity Q or the heating capacity Q is the sensible heat component. It is good also as ability Q only.
  • the rotational speed of the compressor 21 that is the minimum amount of power consumption and the time interval ⁇ t corresponding to a change in the room temperature of 1 ° C. are linked via the thermal load D, and the set temperature If the set temperature is set with a step size of 1 ° C., and the set temperature is linked step by step with the rotation speed of the compressor 21 having the minimum power consumption, the time interval can be changed. The amount of power consumed by the compressor 21 during ⁇ t is minimized. Therefore, the total power consumption from when the operation of the air conditioner 1 is started until the room temperature reaches the target temperature can be greatly reduced. Therefore, the air conditioning system can perform an energy saving operation with less power consumption by increasing the operation efficiency of the air conditioner 1.
  • FIG. 9 is a diagram illustrating an example of a change over time in the room temperature when the air-conditioning apparatus 1 according to Embodiment 1 of the present invention performs energy-saving control using a command for the compressor rotational speed.
  • FIG. 9 shows an example of the heating operation.
  • the air conditioning system controls the compressor rotation speed from N 1 to N 2 from the start of operation to after the indoor temperature change
  • the indoor temperature is set to the time interval ⁇ t 1 and the time interval ⁇ t 2 .
  • the energy saving control is executed by commanding the optimum compressor rotation speed N.
  • FIG. 10 is a diagram illustrating an example of a change with time in the compressor rotational speed when the air-conditioning apparatus 1 according to Embodiment 1 of the present invention performs energy-saving control with a set temperature command.
  • FIG. 10 shows an example in the case of heating operation.
  • the air conditioning system sets the set temperature to the room temperature + 1 ° C. at the start of operation, and increases the set temperature by 1 ° C. after the time interval ⁇ t 1 has elapsed. After the change in room temperature, the set temperature is increased by 1 ° C. after the time interval ⁇ t 2 has elapsed.
  • the compressor speed is controlled according to the temperature difference between the set temperature and the room temperature in the same manner as in the normal control, the air conditioning system is controlled at a speed close to N 1 to N 2 as a result.
  • the present invention is not particularly limited thereto.
  • the time interval ⁇ t corresponding to a change in the room temperature of 0.1 ° C. may be associated with the compressor speed at which the power consumption of the compressor 21 is minimized.
  • the time interval ⁇ t corresponding to the change in the indoor temperature of 1.75 ° C. may be associated with the compressor rotation speed at which the power consumption of the compressor 21 is minimized. In short, it is only necessary that the time interval ⁇ t corresponding to the change in the room temperature and the compressor rotation speed at which the power consumption amount of the compressor 21 is minimized are associated with each other.
  • FIG. 11 is a flowchart illustrating an example of the energy saving control process among the control examples of the air-conditioning system according to Embodiment 1 of the present invention.
  • steps S11 to S20 corresponds to the energy saving control processing described above
  • the processing in step S21 corresponds to the normal control processing described above.
  • Step S11 The air conditioning system determines whether or not energy saving control is selected. When the energy-saving control is selected, the air conditioning system proceeds to step S12. On the other hand, when the energy-saving control is not selected, the air conditioning system proceeds to step S21.
  • the air conditioning system acquires data related to temperature.
  • the air conditioning system acquires air conditioning information such as room temperature, outside air temperature, target temperature, and occupancy start temperature.
  • the air conditioning system acquires a step size of the set temperature as the air conditioning information.
  • Step S13 The air conditioning system sets n to 1.
  • n is a subscript used to refer to the corresponding time interval ⁇ t among the plurality of time intervals ⁇ t. Therefore, a value other than 1 may be set for n. In short, it is only necessary to refer to the corresponding time interval ⁇ t among the plurality of time intervals ⁇ t.
  • Step S14 The air conditioning system determines which operation mode is selected. When the operation mode is heating, the air conditioning system proceeds to step S15. When the operation mode is cooling, the air conditioning system proceeds to step S16. When the operation mode is other than that, the air conditioning system proceeds to step S21.
  • Step S17 The air conditioning system starts the operation of the air conditioner 1.
  • Step S18 The air conditioning system determines whether the time interval ⁇ t n has elapsed. When the time interval ⁇ t n has elapsed, the air conditioning system proceeds to step S19. On the other hand, the air conditioning system returns to step S18 when the time interval ⁇ t n has not elapsed.
  • Step S19 The air conditioning system adds 1 to n.
  • Step S20 The air conditioning system determines whether or not the set temperature has reached the target temperature. When the preset temperature reaches the target temperature, the air conditioning system proceeds to step S21. On the other hand, the air conditioning system returns to step S14 when the set temperature does not reach the target temperature.
  • Step S21 The air conditioning system executes normal control and ends the process.
  • the normal control is any one or a combination of proportional control, integral control, and differential control, as described above.
  • the air conditioning system performs a process of increasing the set temperature by 1 ° C. for heating and decreasing the set temperature by 1 ° C. for cooling. That is, the air conditioning system changes the set temperature every time interval ⁇ t until the set temperature reaches the target temperature.
  • the increment of the set temperature is not limited to 1 ° C., and may be a smaller value or a larger value.
  • the determination may not be made based on whether the set temperature has reached the target temperature, but may be made based on whether the current time has reached a designated time such as the occupancy start time.
  • FIG. 12 is a flowchart illustrating an example of the energy saving timer control process in the control example of the air-conditioning system according to Embodiment 1 of the present invention.
  • steps S41 to S47 correspond to the energy saving timer control process
  • the process in step S48 corresponds to the energy saving control process described above
  • the process in step S49 corresponds to the normal control process described above. Correspond.
  • Step S41 The air conditioning system acquires occupancy information.
  • Step S42 The air conditioning system obtains the occupancy start time based on the occupancy information.
  • Step S43 The air conditioning system acquires air conditioning information.
  • Step S44 The air conditioning system obtains a time interval ⁇ t for each set temperature based on the air conditioning information.
  • Step S45 The air conditioning system determines the total time of the time interval ⁇ t.
  • Step S46 The air conditioning system determines the precooling prewarming start time by subtracting the total time of the time interval ⁇ t from the occupancy start time.
  • Step S47 The air conditioning system determines whether it is a precooling preheating start time. If it is the precooling preheating start time, the air conditioning system proceeds to step S48. On the other hand, the air conditioning system returns to step S47 when it is not the precooling preheating start time.
  • Step S48 The air conditioning system executes an energy saving control process. Specifically, the processes in steps S11 to S20 described above are executed.
  • Step S49 The air conditioning system performs normal control processing. Specifically, the process of step S21 described above is executed, and the process ends.
  • FIG. 13 is a diagram showing another example of a schematic configuration of the air conditioner 1 according to Embodiment 1 of the present invention.
  • the infrared sensor 43 is provided in the indoor unit 13, and the human sensor 44 is provided in the indoor space 71.
  • the infrared sensor 43 detects the radiant energy of the object such as the radiation temperature. Therefore, the infrared sensor 43 can detect the temperature of the housing existing in the indoor space 71. Therefore, the detection result of the infrared sensor 43 can be used for the room temperature which is one of various parameters used for controlling the air conditioner 1.
  • the infrared sensor 43 corresponds to the first sensor in the present invention.
  • the human sensor 44 detects the presence or absence of a person in the indoor space 71 which is a control target space by detecting the radiant energy of an object such as a radiation temperature, as in the infrared sensor 43.
  • the human sensor 44 may detect infrared rays, detect ultrasonic waves, or detect visible light according to tuning or the configuration thereof. Therefore, the detection result of the human sensor 44 can be used as one of various parameters used for controlling the air conditioner 1.
  • the human sensor 44 corresponds to the second sensor in the present invention.
  • FIG. 14 is a diagram illustrating an example of functional blocks of the air conditioner control module 90 that controls the air conditioner 1 by limiting the set temperature in the first embodiment of the present invention.
  • FIG. 15 is a diagram illustrating an example of functional blocks of the air conditioner control module 90 that controls the air conditioner 1 by limiting the current in the first embodiment of the present invention.
  • ⁇ Set temperature limit> 14 is different from the air conditioner control module 90 shown in FIG. 5 in that, for example, a temperature range correction table is added and a set temperature restriction command is supplied to the energy saving control unit 92.
  • the temperature range correction table is a table in which a set temperature range is associated with a target temperature that is restricted.
  • the energy saving control unit 92 refers to the temperature range correction table and limits the target temperature corresponding to the set temperature.
  • the set temperature limit command is supplied to the energy saving control unit 92.
  • the upper limit or lower limit of the target temperature can be limited to be narrower than the operable range of the remote controller 55.
  • the target temperature for energy-saving control is limited to 25 ° C to 28 ° C.
  • the target temperature for energy-saving control is limited to 19 ° C to 22 ° C even if the remote controller 55 can select a set temperature range of 16 ° C to 30 ° C. Is done.
  • ⁇ Current limit> 15 is different from the air conditioner control module 90 shown in FIG. 5 in that, for example, a working current range correction table is added and a current limit command is supplied to the energy saving control unit 92.
  • the use current range correction table is a table in which a use current range is associated with a limited use current range.
  • the energy saving control unit 92 refers to the use current range correction table and limits the use current.
  • a current limit command is supplied to the energy saving control unit 92.
  • the current limit value may be set in several stages. Further, for example, when a power saving mode is set in the air conditioner 1 or the HEMS controller 223 (described later) and a current limit command is supplied to the fourth calculation unit 119, a current limit value may be set.
  • the breakdown of the power consumption of the air conditioner 1 is about 80% to 90% for the compressor 21, about 5% to 10% for the indoor blower 33, and about 5% to 10% for the outdoor blower 31. Therefore, when restricting the current of the air conditioner 1, the air conditioning system reduces the operating capacity by reducing the rotational speed of the compressor 21 or reduces the air volume by reducing the rotational speed of the indoor blower 33 or the outdoor blower 31. It is necessary to reduce it.
  • the current limit value may be set as a relative value (%) including a current limit value of 70%, for example, when no current limit is 100%.
  • An absolute value such as a limit value 3A (ampere) may be set.
  • the power saving mode is set in the air conditioner 1 or the HEMS controller 223 (described later).
  • the air conditioning system limits the upper limit rotational speed of the compressor 21 to 70% of the maximum rotational speed, or the rotational speed of the indoor blower 33 or the outdoor blower 31. It may be limited to 70% of the maximum rotational speed.
  • the air conditioning system limits the upper limit rotational speed of the compressor 21 to 3/5 of the maximum rotational speed. Or the rotational speed of the indoor blower 33 or the outdoor blower 31 may be limited to 3/5 of the maximum rotational speed.
  • the operating current when there is no current limitation is specified for each model.
  • the restriction may be set based on the compressor rotation speed or the blower rotation speed during normal operation in normal control. For example, in normal control when there is no current limit, if the compressor speed is scheduled to be 50 rps (rotation per second), the current limit value may be set to 35 rps when the current limit value is 70%. Further, in the normal control without current limitation, if the indoor blower 33 is set to a strong wind and is scheduled to have a rotation speed of 1000 rpm (rotation per minute), the current limitation value of 70% may be set to 700 rpm.
  • FIG. 16 is a diagram illustrating an example of functional blocks of the air conditioner control module 90 that controls the air conditioner 1 by executing the permission determination of the energy saving timer control in the first embodiment of the present invention. 16 is different from the air conditioner control module 90 shown in FIG. 5 in that a permission determination request or an operation start notification is supplied to the outside from the eighth calculation unit 144 of the energy saving timer control unit 93.
  • a permission determination request for energy saving timer control is transmitted to the user, or that an operation start notification for energy saving timer control is transmitted to the user.
  • the air conditioning system sends a permission determination request to a communication device 228 (described later) such as a mobile phone, a smartphone, a personal computer, or a car navigation system owned by the user via a public line 227 described later, and permits the start of operation. Requests to push the button or sends an e-mail to notify the start of operation.
  • FIG. 17 is a diagram illustrating an example of functional blocks of the air conditioner control module 90 that controls the air conditioner 1 based on the result of the presence / absence determination of the person in the indoor space 71 according to Embodiment 1 of the present invention.
  • FIG. 17 as compared with the air conditioner control module 90 shown in FIG.
  • presence / absence determination data which is data relating to the presence / absence of a person, is supplied to the eighth calculation unit 144 of the energy saving timer control unit 93, or the energy saving timer control unit
  • the air conditioning stop command is supplied to the air conditioner 1 from the eighth arithmetic unit 144 of 93, or the set temperature change command is supplied to the energy saving control unit 92 from the eighth arithmetic unit 144 of the energy saving timer control unit 93.
  • the air conditioning system may change the set temperature.
  • the air conditioner 1 is stopped.
  • the detection result of the infrared sensor 43 or the human sensor 44 described above may be used to detect the presence of the user in the room. Further, an input operation of the remote controller 55 may be used to detect the presence of the user. Further, as described above, for detecting the user's occupancy, the operation history of various electric devices may be collected by the HEMS controller 223, and the occupancy information may be obtained based on the collection result. For detecting the user's occupancy, power consumption, opening / closing information of an indoor door (not shown), position information of the user, an imaging result of a camera provided in an interphone (not shown), or the like is used. May be.
  • the set temperature when the set temperature is changed, it may be fixed at a specific temperature. Further, when the set temperature is changed, a relative value with respect to the original target temperature, for example, a value 2 ° C. higher than the target temperature is set for cooling, and 2 ° C. lower than the target temperature for heating. It may be set to a value.
  • the air conditioning system can change the set temperature step by step in a state in which the set temperature and the rotation speed of the compressor 21 with the minimum power consumption are linked. it can. Therefore, the air conditioning system reduces the amount of power consumption that is used extra. Therefore, the air conditioning system can reduce the amount of extra power consumption used until the room temperature reaches the target temperature after the operation of the air conditioner 1 is started. As a result, the air conditioning system can perform an energy saving operation with less power consumption by increasing the operation efficiency of the air conditioner 1.
  • the air conditioning system depends on the capacity Q of the air conditioner 1 and the operation efficiency COP characteristic of the air conditioner 1 until the room temperature reaches the target temperature after the operation of the air conditioner 1 is started.
  • the operating capacity of the air conditioner 1 is determined. By determining the operating capacity of the air conditioner 1 in this manner, the air conditioning system can minimize the total power consumption until the room temperature reaches the target temperature, that is, the power consumption.
  • the air conditioning system performs a highly efficient operation by operating the operation capacity of the compressor 21, that is, the rotation speed of the compressor 21 with an appropriately low capacity.
  • the air conditioning system in the normal control, when the temperature difference between the room temperature and the set temperature is large, the air conditioning system is operated so as to quickly eliminate this temperature difference. Therefore, in the air conditioning system, the operation capacity of the compressor 21 is increased in the normal control. Therefore, in the air conditioning system, in normal control, although the change in the room temperature is accelerated and the deterioration of the comfort of the user can be suppressed to the minimum, the operation capacity COP is increased by the corresponding increase in the operation capacity. Decreases and the power consumption of the air conditioner 1 increases. Therefore, as described above, the air conditioning system avoids such operation and suppresses the operation capacity of the compressor 21 of the air conditioner 1, thereby increasing the operation efficiency COP of the air conditioner 1 and further consumption. Energy-saving operation with less power can be performed.
  • the air conditioning system in order to operate the air conditioning system at the minimum point of power consumption, when the set temperature is changed at every time interval ⁇ t, the set temperature is changed from the start of the operation of the air conditioner 1 to after the indoor temperature change.
  • the control is performed to increase the time interval ⁇ t.
  • the air conditioning system can be operated in the vicinity of the minimum point of power consumption while suppressing the operation capacity of the compressor 21, so that energy saving operation can be performed.
  • the temperature difference between the room temperature and the outside air temperature widens.
  • the thermal load D increases, if the time interval ⁇ t of the set temperature is constant, a temperature difference between the room temperature and the set temperature tends to occur as time passes.
  • the operating capacity of the compressor 21 is determined according to the temperature difference between the indoor temperature and the set temperature, the operating capacity of the compressor 21 increases as the temperature difference between the indoor temperature and the set temperature increases. Therefore, if the time interval ⁇ t of the set temperature is constant, the compressor speed deviates from the operating point of the power consumption minimum point. Therefore, the air conditioning system can maintain the operating point at the minimum point of power consumption by increasing the time interval ⁇ t as the temperature difference between the room temperature and the outside air temperature increases as time passes. You can drive.
  • the air conditioning system switches to the normal control. Therefore, before and after the room temperature reaches the target temperature, the compressor rotation speed can be operated at an optimum operating point. Therefore, the power consumption of the air conditioner 1 can be reduced.
  • the capacity Q is larger than the heat load D.
  • the indoor temperature is to be kept constant, Since it is only necessary to operate the thermal load D with the same capability Q, excessive capability is prevented by switching to normal control.
  • the switching timing between the energy-saving control and the normal control can be clarified.
  • the air-conditioning system performs the timer reservation operation for executing the energy saving control before the time determined by the user, the cooling operation or the heating operation is performed when the house 3 enters the room. Can improve comfort when entering the room.
  • the heat required to cool the enclosure of the indoor space 71 to the set temperature is larger than the heat load caused by heat penetration from the outside. Therefore, it is important to determine whether or not the heat amount of the housing can be processed in order to appropriately perform energy saving control. For example, when the room temperature is used as a criterion, the response result of the air conditioner 1 appears earlier because the heat capacity is smaller than that of the housing. Therefore, even if the housing is still hot, it may be determined that the indoor space 71 has been sufficiently cooled. Therefore, the air conditioning system can realize a more comfortable operation by detecting the housing temperature using the infrared sensor 43 and performing energy saving control so that the housing temperature becomes the set temperature.
  • the air-conditioning system can avoid such a situation by limiting the range of the target temperature, and at the same time, it can prevent over-cooling in cooling or over-heating in heating to improve energy saving performance. Can be made.
  • the air conditioning system sets a current limit value, the intention of the user can be further reflected in the control, and power consumption can be suppressed as intended, thereby improving energy saving.
  • the air conditioning system can improve the safety by performing an operation to confirm with the user before the timer reservation starts. it can.
  • the air conditioning system can avoid driving if it confirms with the user before the timer reservation starts. Can be prevented, and energy saving can be improved.
  • the air conditioning system can change the set temperature if the user's occupancy, that is, the user's return home is not detected even after a predetermined time has elapsed after starting the energy saving timer control. If the air conditioner 1 is stopped, even if the user's return home is delayed compared to the schedule due to sudden business, wasteful operation can be avoided when the user is absent, and the air conditioner 1 is consumed. The amount of power can be reduced.
  • the control part which controls the air conditioner 1 is provided, and a control part is compared with normal control and normal control.
  • the air conditioner 1 is controlled by switching between energy saving control for reducing the power consumption, and in the case of normal control, the rotation speed of the compressor 21 is controlled according to the difference between the room temperature and the set temperature.
  • energy saving control there is an air conditioning system that changes the set temperature step by step in a state where the set temperature and the rotation speed of the compressor 21 that has the minimum power consumption corresponding to the set temperature are linked. Composed.
  • the set temperature can be changed step by step in a state where the set temperature and the rotation speed of the compressor 21 with the minimum power consumption are linked. Therefore, the air conditioning system reduces the amount of power consumption that is used extra. Therefore, the air conditioning system can significantly reduce the total power consumption from the start of the operation of the air conditioner 1 until the room temperature reaches the target temperature. As a result, the air conditioning system can perform an energy saving operation with less power consumption by increasing the operation efficiency of the air conditioner 1.
  • the control unit sets a temperature increase / decrease width that is an increase / decrease width of the set temperature, changes the set temperature for each increase / decrease width, and corresponds to the increase / decrease width.
  • the interval ⁇ t is set for each thermal load corresponding to the increase / decrease width, and the time interval ⁇ t is set to a large value stepwise in a state where the set temperature and the time interval ⁇ t are linked.
  • the thermal load increases as the temperature difference between the outside air temperature and the room temperature increases, and the control unit sets the time interval ⁇ t as the thermal load increases. Set larger values step by step.
  • control unit sets a target temperature corresponding to the energy saving control, and switches to the normal control when the set temperature reaches the target temperature while operating the air conditioner 1 by the energy saving control.
  • control unit switches to normal control when the designated time for starting normal control is set in advance and the current time reaches the designated time while the air conditioner 1 is being operated by energy saving control.
  • the controller when the occupancy start time for starting occupancy in the control target space of the air conditioner 1 is set in advance, the controller starts the occupancy start time and the total time of the time interval ⁇ t, Based on the above, a precooling preheating start time for starting precooling or preheating is determined, and execution of energy saving control is started at the precooling preheating start time.
  • the control unit obtains the room temperature based on the detection result of the infrared sensor 43.
  • control unit sets the set temperature to an integer value.
  • the control unit sets the upper limit value of the set temperature to the target upper limit value that is lower than the upper limit value of the set temperature, and sets the lower limit value of the set temperature. Set the target lower limit value that is higher than the lower limit value of the temperature.
  • the control unit sets the upper limit value of the current supplied to the air conditioner 1 to a limit upper limit value that is lower than the upper limit value of the current.
  • the control unit when the energy saving control is started, transmits an operation start notification for notifying operation start or a permission determination request for requesting permission for operation start to the user of the air conditioner 1.
  • the control unit is provided with a human sensor 44 in which a waiting time from the start of energy saving control to a preset time is set in advance and detects the presence or absence of a person in the control target space.
  • the set temperature is changed or the air conditioner 1 is stopped based on the detection result of the human sensor 44 and the waiting time.
  • a control part judges presence / absence of a person based on occupancy information including the determination information of the presence / absence of a person in a control target space, and the occupancy information is an air conditioner.
  • occupancy information is an air conditioner.
  • 1 includes a set value set by a user or an estimated value from past information, and the past information includes an operation history of the remote controller 55 that transmits various commands to the air conditioner 1, a use history of electric equipment, and power consumption. It includes power information regarding the amount, detection results of the human sensor 44, door opening / closing information, or position information of the user of the air conditioner 1.
  • the air conditioning system can particularly significantly reduce the total power consumption from the start of the operation of the air conditioner 1 until the room temperature reaches the target temperature. Therefore, the air conditioning system can perform the energy saving operation with low power consumption particularly remarkably by significantly increasing the operation efficiency of the air conditioner 1.
  • FIG. 18 is a diagram illustrating an example of a schematic configuration of a HEMS that is a control target of the air-conditioning system according to Embodiment 2 of the present invention.
  • the HEMS includes an electrical device that is a home appliance such as the indoor unit 13 of the air conditioner 1, the terminal 229, the IH cooking heater 231, the range grill 233, and the lighting 235 in the house 3 shown in FIG. 1. Is provided.
  • the HEMS is provided outside the house 3 shown in FIG. 1 with electric devices such as an electric vehicle 211 equipped with a storage battery 241, a power conditioner 213, a solar cell array 215, a distribution board 219, and a power meter 221. It has been. Each electric device is connected by a power line 251.
  • the household electric appliance is driven by electric power supplied from the electric power company 217, electric power supplied from the solar cell array 215, or electric power supplied from the storage battery 241 mounted on the electric vehicle 211.
  • the power consumption is measured by the measuring instrument 221.
  • the home appliances are connected to the HEMS controller 223 via the communication line 253, so that the HEMS controller 223 can acquire operation information of the home appliances and transmit a control command to the home appliances.
  • the HEMS controller 223 includes an operation instruction for the air conditioner 1, an instruction for stopping the air conditioner 1, an instruction for changing the operation mode such as cooling, heating, air blowing, and dehumidification of the air conditioner 1, or a set temperature and air volume of the air conditioner 1.
  • an instruction obtained by operating the remote controller 55 such as an instruction to change the wind direction can be sent to the air conditioner 1.
  • the HEMS controller 223 transmits and receives various signals to and from the air conditioner control module 90 that controls the air conditioner 1. Therefore, the HEMS controller 223 can reduce excessive power consumption by executing various processes in cooperation with the air conditioner control module 90.
  • the HEMS controller 223 is connected to the power conditioner 213 and the power measuring instrument 221 via the communication line 253, the power information of the power conditioner 213 and the power measuring instrument 221 can be acquired. Further, since the HEMS controller 223 is connected to the communication device 225 and the communication device 225 is connected to the public line 227, various data can be transmitted / received to / from the outside. For example, the communication device 228 can communicate with the HEMS controller 223 via the public line 227.
  • the communication device 228 is a device operated by a user, and is, for example, a mobile phone, a smartphone, a tablet, a personal computer, or a car navigation system.
  • the various communications in the system in which the HEMS is configured may be wired or wireless, and the communication form is not particularly limited.
  • the structure of HEMS demonstrated above shows an example, and is not specifically limited to this.
  • ⁇ Remote operation> An example of executing energy saving control of the air conditioner 1 by using the communication device 228 from a remote location will be described. It is assumed that the user has a communication device 228 such as a mobile phone, a smartphone, a tablet, a personal computer, or a car navigation system. Further, it is assumed that the communication device 228 existing either inside the house 3 or outside the house 3 transmits various data to the HEMS controller 223 via the public line 227.
  • a communication device 228 such as a mobile phone, a smartphone, a tablet, a personal computer, or a car navigation system. Further, it is assumed that the communication device 228 existing either inside the house 3 or outside the house 3 transmits various data to the HEMS controller 223 via the public line 227.
  • the communication device 225 receives various data transmitted from the communication device 228, and supplies the received various data to the HEMS controller 223.
  • the HEMS controller 223 sends a reply to the communication device 228 via the communication device 225 when replying to various data as necessary.
  • an operation command is transmitted from the communication device 228 to the home appliance, the operation information of the home appliance is received by the communication device 228, or the power information of the power conditioner 213 or the power meter 221 is received by the communication device 228. be able to.
  • the operation instruction of the air conditioner 1 and the stop instruction of the air conditioner 1 can be performed from the screen of the communication device 228. Further, it is possible to select an operation mode such as a cooling operation, a heating operation, an air blowing operation, or a dehumidifying operation of the air conditioner 1 from the screen of the communication device 228. Further, a command such as an operation of the remote controller 55 such as a change in the set temperature, air volume, or wind direction of the air conditioner 1 can be sent from the screen of the communication device 228.
  • the operation mode such as operation or stop, cooling, heating, air blowing, and dehumidification
  • the air conditioning information of the air conditioner 1 such as the set temperature, the air volume, or the wind direction
  • it is possible to display and confirm air conditioning information such as the intake air temperature (room temperature), room humidity, or outside air temperature measured by the air conditioner 1.
  • the air conditioner 1 has already been moved as a result of checking the state of the air conditioner 1, it is assumed that other family members are using it, and it is determined that the remote operation should be stopped or the air conditioner information is confirmed. Then, if the room temperature exceeds 30 ° C., it can be determined that the cooling is remotely performed.
  • the energy saving mode is selected from the communication device 228 and the air conditioner 1 is immediately activated, or the occupancy start time (home time) of the energy saving timer is set from the communication device 228. It is possible to change from the communication device 228 or to command the precooling / preheating start time from the communication device 228.
  • the communication device 228 compares the current value information with the position information of the house, and performs precooling preheating.
  • the start time may be automatically determined.
  • the HEMS controller 223 has an estimated arrival time of 1 when the current location is 30 km away from the house when a driving command is issued from the communication device 228. If it is determined that the time has passed, energy-saving control is not performed immediately.
  • the HEMS controller 223 does not immediately perform the cooling in the energy saving control to the air conditioner 1 but the distance between the current location and the house falls within a predetermined distance or the expected arrival time is a predetermined time.
  • the air-conditioning apparatus 1 is made to perform energy saving control. Further, for example, when the optimum precooling preheating time automatically obtained from the target temperature, the room temperature, or the outside air temperature of the air conditioner 1 is 20 minutes, the HEMS controller 223 is when the expected arrival time is 20 minutes. Then, the energy-saving control is started by the air conditioner 1.
  • ⁇ Method for selecting air conditioner 1> Assuming that there are a plurality of air conditioners 1 in the HEMS, which of the plurality of air conditioners 1 is to be operated when an operation command for the air conditioner 1 is issued from the communication device 228. It is necessary to select. For example, a button or a selection screen for selecting the air conditioner 1 may be displayed on the operation command application of the communication device 228. In this case, the air conditioner 1 selected once may be stored, and the air conditioner 1 automatically stored at the time of the next operation may be an operation target. Further, the air conditioner 1 to be operated may be fixedly registered in advance for each communication device 228. Further, the combination information of the communication device 228 and the air conditioner 1 may be stored in the HEMS controller 223 or may be stored in the communication device 228.
  • the HEMS controller 223 memorize
  • the HEMS controller 223 will select the air-conditioner 1 automatically according to a life pattern. Also good.
  • living patterns include cooking, eating, watching TV, taking a bath, sleeping, PC or reading, etc., depending on these living patterns, kitchen, dining, living, bathroom
  • the air conditioner 1 corresponding to each air conditioning in the bedroom and the study may be selected.
  • the HEMS controller 223 identifies the user from the identification information of the communication device 228, and determines the identified user.
  • the corresponding air conditioner 1 can be controlled based on the corresponding life pattern.
  • the HEMS controller 223 uses various information from the mobile phone, for example, Wi-Fi (registered trademark) connection.
  • Wi-Fi registered trademark
  • the user may be returned based on the presence / absence or GPS position information, and the user may be identified by identifying the mobile phone.
  • the HEMS controller 223 may identify the user by performing face recognition with a camera of an intercom (not shown). In addition, the HEMS controller 223 analyzes various patterns of information on a daily basis by detecting a life pattern from the power consumption of the home appliance after analyzing the user's return home or analyzing a life pattern from the detection result of the human sensor 44. Can be accumulated.
  • the human sensor 44 may analyze the life pattern according to the detection degree of infrared rays, ultrasonic waves, visible light, and the like in order to detect the radiant energy of the object.
  • the senor used for detection of infrared rays, ultrasonic waves, visible light, and the like does not need to be the human sensor 44, and may be any sensor that can perform such sensing, and the installation location is not particularly specified. It may be installed on the wall of the house 3, the ceiling of the house 3, the floor of the house 3, or the like.
  • FIG. 19 is a diagram illustrating an example of functional blocks of the air conditioner control module 90, the HEMS controller 223, and the communication device 228 that control the air conditioner 1 of the system according to the second embodiment of the present invention.
  • the storage unit 302 is provided with a HEMS control module 310.
  • the HEMS control module 310 is provided with a life pattern data group 311, a driving information data group 312, a power information data group 313, and a management unit 314.
  • the life pattern data group 311 is associated with a plurality of user life pattern data and a plurality of target air conditioner data.
  • a transmission / reception unit 331, a storage unit 332, an output unit 333, an input unit 334, and a control unit 335 are provided.
  • the storage unit 332 is provided with a virtual HEMS module 351 and a virtual remote controller module 352.
  • the virtual HEMS module 351 includes a setting confirmation unit 361, an air conditioning information confirmation unit 362, a current location estimation unit 363, a position information data group 364, and a setting input unit 365.
  • the setting input unit 365 is provided with an air conditioner selection unit 371 and a virtual remote controller calling unit 372.
  • the virtual remote controller module 352 is provided with an operation mode setting unit 367.
  • the operation mode setting unit 367 is provided with a normal control mode setting unit 375, an energy saving control mode setting unit 376, and an energy saving timer control mode setting unit 377.
  • any one of the air conditioner control module 90, the HEMS control module 310, the virtual HEMS module 351, and the virtual remote controller module 352 corresponds to the control unit in the present invention. All of the air conditioner control module 90, the HEMS control module 310, the virtual HEMS module 351, and the virtual remote controller module 352 may correspond to the control unit in the present invention. In this case, the air conditioner control module 90, the HEMS control module 310, the virtual HEMS module, and the virtual remote controller module 352 work together to function organically as one system.
  • the remote controller 55 selects an operation mode such as the energy saving mode, transmits an operation start command, and reserves a timer.
  • the remote controller 55 In addition, for example, the same operation may be performed in the HEMS controller 223, the communication device 228, the terminal 229, and the like.
  • Various operations may be performed by any of the measurement control device 51, the measurement control device 53, the remote controller 55, the HEMS controller 223, the communication device 228, the terminal 229, and the like.
  • FIG. 20 is a flowchart illustrating an example of the HEMS control process executed based on the distance or the estimated arrival time in the control example of the air-conditioning system according to Embodiment 2 of the present invention.
  • Step S61 The air conditioning system determines whether or not there is an operation command. When there is an operation command, the air conditioning system proceeds to step S62. On the other hand, the air conditioning system returns to step S61 when there is no operation command.
  • Step S62 The air conditioning system reads various flags. For example, it is assumed that the distance flag defines whether or not to perform an operation of determining whether or not the distance between the transmission source of the operation command and the transmission destination of the operation command is within a threshold distance. Further, it is assumed that the time flag defines whether or not to perform an operation of determining whether or not the expected arrival time is within the threshold time.
  • Step S63 The air conditioning system determines whether the distance flag is 1. When the distance flag is 1, the air conditioning system proceeds to step S64. On the other hand, if the distance flag is not 1, the air conditioning system proceeds to step S65.
  • Step S64 The air conditioning system determines whether the distance between the operation command transmission source and the operation command transmission destination is within a threshold distance. When the distance between the operation command transmission source and the operation command transmission destination is within the threshold distance, the air conditioning system proceeds to step S67. On the other hand, the air conditioning system ends the process when the distance between the operation command transmission source and the operation command transmission destination is not within the threshold distance.
  • Step S65 The air conditioning system determines whether or not the time flag is 1. If the time flag is 1, the air conditioning system proceeds to step S66. On the other hand, if the time flag is not 1, the air conditioning system ends the process.
  • Step S66 The air conditioning system determines whether the expected arrival time is within a threshold time. If the expected arrival time is within the threshold time, the air conditioning system proceeds to step S67. On the other hand, the air conditioning system ends the process when the expected arrival time is not within the threshold time.
  • Step S67 The air conditioning system executes the energy saving control process and ends the process.
  • the energy saving control process corresponds to the processes in steps S11 to S20 described in FIG.
  • FIG. 21 is a flowchart illustrating an example of the HEMS control process executed based on the life pattern in the control example of the air conditioning system according to Embodiment 2 of the present invention.
  • Step S81 The air conditioning system determines whether or not there is an operation command. When there is an operation command, the air conditioning system proceeds to step S82. On the other hand, the air conditioning system returns to step S81 when there is no operation command.
  • the air conditioning system identifies the corresponding user from the identification code included in the operation command.
  • the identification code for example, assuming that the communication device 228 is a mobile phone, a unique ID number stored in a SIM (Subscriber Identity Module) card may be used.
  • SIM Subscriber Identity Module
  • the identification code is not particularly limited.
  • Step S83 The air conditioning system acquires life pattern data corresponding to the corresponding user.
  • Step S84 The air conditioning system identifies the air conditioner 1 corresponding to the acquired life pattern data.
  • Step S85 The air conditioning system determines whether or not the corresponding user has returned home. When the air conditioning system detects the return of the corresponding user, the process proceeds to step S86. On the other hand, the air conditioning system returns to step S85 when it does not detect the return of the corresponding user.
  • Step S86 The air conditioning system controls the air conditioner 1 corresponding to the acquired lifestyle pattern based on the acquired lifestyle pattern, and ends the process.
  • the control subject is not particularly limited thereto.
  • any device that can acquire various data acquired by the HEMS controller 223 may operate as a control subject.
  • the indoor unit 13 may be the controlling entity.
  • the terminal 229 may be the controlling entity.
  • the communication device 228 may be the control entity. That is, the control subject is not particularly limited.
  • the HEMS can level and reduce the peak of power consumption of the entire home by performing energy-saving control of the air conditioner 1 avoiding the time zone when other home appliances are frequently used. Power saving can also contribute to the power shortage request. Moreover, HEMS can use electric power efficiently by equalizing electric power also when supplying the electric power of the solar cell array 215 or the storage battery 241 installed in the house 3 to the home appliance.
  • the HEMS controller 223 and the air conditioner control module 90 cooperate with each other to execute various processes.
  • the HEMS controller 223, the air conditioner control module 90, the virtual HEMS module 351, and the virtual remote controller module 352 are linked to each other to execute various processes.
  • HEMS can reduce the power consumption of the entire air conditioner 1 while reducing the power consumption of the entire home. Therefore, the HEMS can further reduce power consumption as a whole system.
  • the set temperature command becomes easier to control than the compressor rotation speed command, and is easily applied to the existing air conditioner 1. .
  • the air conditioner 1 can be remotely operated from the communication device 228, driving can be started before returning home, and the room can be brought to a comfortable temperature when returning home. Therefore, comfort can be improved. Even if the return time varies from day to day, it is possible to start driving at an appropriate time, so that convenience can be improved compared to reserved driving from the remote controller 55 provided in the house 3. The power consumption can be reduced by avoiding useless driving in the absence.
  • the user can remotely control the indoor environment 71 in the indoor space 71. It can be managed and convenience can be improved.
  • the state of the air conditioner 1 or air conditioning information can be browsed from the communication device 228, it can be referred to as a criterion for determining whether or not to perform a driving operation from a remote location, and convenience can be improved.
  • the air conditioner 1 to be operated can be freely selected from the communication device 228, so that versatility can be improved.
  • the air conditioner 1 to be operated is automatically determined among the plurality of air conditioners 1, it is not necessary for the user to select each time the operation is performed, so that convenience can be improved. .
  • the control unit applies the corresponding air conditioner among the plurality of air conditioners 1 based on the operation history of the user of the air conditioner 1.
  • Device 1 is selected.
  • the control unit applies the corresponding air conditioner among the plurality of air conditioners 1 based on the life pattern of the user of the air conditioner 1.
  • Device 1 is selected.
  • Embodiment 3 FIG.
  • the configuration example and the operation example of the air conditioning system have been described.
  • a mounting example of the air conditioning system will be described with reference to FIG.
  • FIG. 22 is a diagram showing an example in which various control modules are mounted on various devices from the recording media 401, 403, 405 or the server device 411 according to Embodiment 3 of the present invention.
  • the recording medium 401 stores the air conditioner control module 90
  • the recording medium 401 is mounted on the air conditioner 1
  • the air conditioner control module 90 is installed in the air conditioner 1.
  • a system for executing the various operations described in the above is configured.
  • the recording medium 403 stores the HEMS control module 310, the recording medium 403 is mounted on the HEMS controller 223, and the HEMS control module 310 is installed in the HEMS controller 223, thereby executing the various operations described above. System is configured.
  • the recording medium 405 stores a virtual HEMS module 351 and a virtual remote controller module 352, the recording medium 405 is mounted on the communication device 228, and the virtual HEMS module 351 and the virtual remote controller module 352 are installed in the communication device 228.
  • a system that executes the various operations described above is configured.
  • the server device 411 includes a disk device or the like, and the air conditioner control module 90, the HEMS control module 310, the virtual HEMS module 351, and the virtual remote controller module 352 are stored in the disk device or the like.
  • the server device 411 superimposes the air conditioner control module 90, the HEMS control module 310, the virtual HEMS module 351, and the virtual remote controller module 352 on the carrier wave, and the air conditioner 1, the HEMS controller 223, and the communication device 228.
  • the air conditioner 1, the HEMS controller 223, and the communication device 228 download and install the air conditioner 1, the HEMS controller 223, and the communication device 228 uploaded from the server device 411, thereby performing the various operations described above.
  • a system to execute is configured.
  • an OS Operating System
  • API Application Interface
  • the recording media 401, 403, and 405 are optical disks including magnetic disks (including flexible disks), CD-ROMs (Compact Disk Read-Only Memory) and DVDs (Digital Versatile Disks), MOs (Magneto-Optical Disks), and the like.
  • a computer-readable recording medium such as a removable medium composed of a magneto-optical disk, a semiconductor memory, or the like.
  • various modules can be installed from the recording media 401, 403, 405 or the server device 411.
  • 1 air conditioner, 3 house, 11 outdoor unit, 13 indoor unit, 21 compressor, 22 four-way valve, 23 outdoor heat exchanger, 24 expansion valve, 25 indoor heat exchanger, 31 outdoor blower, 33 indoor blower, 41 indoor temperature Sensor, 43 Infrared sensor, 44 Human sensor, 51, 53 Measurement control device, 55 Remote controller, 61 Refrigerant piping, 63 Communication line, 71 Indoor space, 72 Outdoor space, 90 Air conditioner control module, 91 Normal control unit, 92 Energy saving control unit, 93 Energy saving timer control unit, 101 Proportional control unit, 102 Integration control unit, 103 Differential control unit, 111 First operation unit, 113 Second operation unit, 115 Third operation unit, 119 Fourth operation unit, 121 Set temperature control unit, 141 5th calculation unit, 142 6th calculation unit, 143 7th calculation 144, 8th arithmetic unit, 211 electric vehicle, 213 power conditioner, 215 solar cell array, 217 power company, 219 distribution board, 221 power meter, 223 HEMS controller, 225 communication

Abstract

 圧縮機21を備える空調装置1を制御する空気調和システムであって、空調装置1を制御する制御部を備え、制御部は、通常制御と、通常制御と比べて消費電力量を低減させる省エネ制御と、を切り替えて空調装置1を制御するものであって、通常制御の場合、室内温度と、設定温度との差に応じて圧縮機21の回転数を制御し、省エネ制御の場合、設定温度と、設定温度に対応した最小の消費電力量となる圧縮機21の回転数と、を紐付けした状態で、設定温度を段階的に変更する。

Description

空気調和システム
 本発明は、空気調和システムに関する。
 従来、室内温度を指定時刻で目標温度に到達させる運転として、前倒し運転制御が行われている。前倒し運転制御は、指定時刻前に空調装置を起動させるものである。前倒し運転制御では、例えば、定速運転と全速運転との2段階で圧縮機の回転数が制御されている。具体的には、前倒し運転制御で圧縮機を定速運転から全速運転へ切り替える際、定速運転から全速運転への切り替え点を制御することで、消費電力を最小とする空気調和システムがある(例えば、特許文献1参照)。
特開昭63-161338号公報(請求項1)
 上記で説明したように、特許文献1に開示されているような従来の空気調和システムは、圧縮機を定速運転又は全速運転の2段階で切り替える制御を行っていた。よって、特許文献1に開示されているような従来の空気調和システムは、圧縮機の回転数を運転途中で連続的に可変制御することができなかった。
 したがって、特許文献1に開示されているような従来の空気調和システムは、空調装置の運転を開始してから室内温度が目標温度に到達するまでに余分な消費電力量が使われるという問題点があった。
 本発明は、上記のような問題点を解決するためになされたもので、空調装置の運転を開始してから室内温度が目標温度に到達するまでに使われる余分な消費電力量を削減することができる空気調和システムを提供することを目的とするものである。
 本発明に係る空気調和システムは、圧縮機を備える空調装置を制御する空気調和システムであって、前記空調装置を制御する制御部を備え、前記制御部は、通常制御と、前記通常制御と比べて消費電力量を低減させる省エネ制御と、を切り替えて前記空調装置を制御するものであって、前記通常制御の場合、室内温度と、設定温度との差に応じて前記圧縮機の回転数を制御し、前記省エネ制御の場合、設定温度と、該設定温度に対応した最小の消費電力量となる前記圧縮機の回転数と、を紐付けした状態で、前記設定温度を段階的に変更するものである。
 本発明は、省エネ制御の場合、設定温度と、最小の消費電力量となる圧縮機の回転数と、を紐付けした状態で、設定温度を段階的に変更することができる。よって、本発明は、空調装置の運転を開始してから室内温度が目標温度に到達するまでに使われる余分な消費電力量を削減することができる。したがって、本発明は、空調装置の運転効率を高めることで、消費電力の少ない省エネルギー運転を行うことができるという効果を有する。
本発明の実施の形態1における空気調和システムの制御対象である空調装置1の概略構成の一例を示す図である。 本発明の実施の形態1における圧縮機21の回転数を一定にして冷房運転した場合の室内温度及び室内熱交換器25の冷媒温度のそれぞれの経時変化の一例を示す図である。 本発明の実施の形態1における圧縮機21の回転数を一定にして暖房運転した場合の室内温度及び室内熱交換器25の冷媒温度のそれぞれの経時変化の一例を示す図である。 本発明の実施の形態1における圧縮機回転数の変動に伴う能力Q、入力W、及び運転効率COPのそれぞれの変動を運転開始時と室内温度変化後とで比較した一例を示す図である。 本発明の実施の形態1における空調装置1を制御する空調装置制御モジュール90の機能ブロックの一例を示す図である。 本発明の実施の形態1における圧縮機回転数の制御方法が通常制御と異なる場合の省エネ制御部92の機能ブロックの一例について示す図である。 本発明の実施の形態1における設定温度の制御方法が通常制御と異なる場合の省エネ制御部92の機能ブロックの一例について示す図である。 本発明の実施の形態1における圧縮機回転数の変動に伴う室内温度1℃変化に対応する時間間隔Δt及び時間間隔Δtあたりの消費電力量のそれぞれの変動を運転開始時と室内温度変化後とで比較した一例を示す図である。 本発明の実施の形態1における空調装置1を圧縮機回転数の指令で省エネ制御を行った場合の室内温度の経時変化の一例を示す図である。 本発明の実施の形態1における空調装置1を設定温度の指令で省エネ制御を行った場合の圧縮機回転数の経時変化の一例を示す図である。 本発明の実施の形態1における空気調和システムの制御例のうち、省エネ制御処理の一例を説明するフローチャートである。 本発明の実施の形態1における空気調和システムの制御例のうち、省エネタイマー制御処理の一例を説明するフローチャートである。 本発明の実施の形態1における空調装置1の概略構成の別の一例を示す図である。 本発明の実施の形態1における設定温度を制限して空調装置1を制御する空調装置制御モジュール90の機能ブロックの一例を示す図である。 本発明の実施の形態1における電流を制限して空調装置1を制御する空調装置制御モジュール90の機能ブロックの一例を示す図である。 本発明の実施の形態1における省エネタイマー制御の許可判定を実行して空調装置1を制御する空調装置制御モジュール90の機能ブロックの一例を示す図である。 本発明の実施の形態1における室内空間71での人の存否判定結果に基づいて空調装置1を制御する空調装置制御モジュール90の機能ブロックの一例を示す図である。 本発明の実施の形態2における空気調和システムの制御対象であるHEMSの概略構成の一例を示す図である。 本発明の実施の形態2におけるシステムの空調装置1を制御する空調装置制御モジュール90、HEMSコントローラー223、及び通信装置228のそれぞれの機能ブロックの一例を示す図である。 本発明の実施の形態2における空気調和システムの制御例のうち、距離又は予想到着時間に基づいて実行するHEMS制御処理の一例を説明するフローチャートである。 本発明の実施の形態2における空気調和システムの制御例のうち、生活パターンに基づいて実行するHEMS制御処理の一例を説明するフローチャートである。 本発明の実施の形態3における記録媒体401、403、405又はサーバー装置411から各種制御モジュールが各種装置へ搭載される一例を示す図である。
 以下、本実施の形態について、図面を用いて詳細に説明する。なお、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとなる。
 さらに、明細書全文に表されている構成要素の形態は、あくまで例示であって、これらの記載に限定されるものではない。また、本発明は、本実施の形態及び図面で限定されるものではない。本発明の要旨を変更しない範囲で本実施の形態及び図面に変更を加えることができるのはもちろんである。
 また、本実施の形態の動作を行うプログラムを記述するステップは、記載された順序に沿って時系列に行われる処理であるが、必ずしも時系列に処理されなくても、並列的又は個別に実行される処理をも含んでもよい。
 また、本実施の形態で説明される各機能をハードウェアで実現するか、ソフトウェアで実現するかは問わない。つまり、本実施の形態で説明される各ブロック図は、ハードウェアのブロック図と考えても、ソフトウェアの機能ブロック図と考えてもよい。例えば、各ブロック図は、回路デバイス等のハードウェアで実現されてもよく、図示しないプロセッサ等の演算装置上で実行されるソフトウェアで実現されてもよい。
 また、本実施の形態で説明されるブロック図の各ブロックは、その機能が実施されればよく、それらの各ブロックで構成が分離されなくてもよい。なお、本実施の形態1~3のそれぞれにおいて、特に記述しない項目については実施の形態1~3と同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。
 また、本実施の形態1~3のそれぞれは、単独で実施されてもよく、組み合わされて実施されてもよい。いずれの場合においても、下記で説明する有利な効果を奏することとなる。また、本実施の形態で説明する各種具体的な設定例及びフラグ例は一例を示すだけであり、特にこれらに限定しない。
 また、本実施の形態において、システムとは、複数の装置で構成される装置全体又は複数の機能で構成される機能全体を表すものである。
実施の形態1.
<全体概要>
 空気調和システムは、省エネ制御の場合、設定温度と、最小の消費電力量となる圧縮機21(後述する)の回転数と、が紐付けされた状態で、設定温度を段階的に変更する。よって、空気調和システムは、余分に使われる消費電力量を削減する。したがって、空気調和システムは、空調装置1(後述する)の運転を開始してから室内温度が目標温度に到達するまでに使われる余分な消費電力量を削減する。この結果、空気調和システムは、空調装置1(後述する)の運転効率を高め、消費電力の少ない省エネルギー運転を行う。なお、本発明は、冷房又は暖房の消費電力量を抑えて起動制御する空気調和システムに好適である。
<空調装置1の構成>
 図1は、本発明の実施の形態1における空気調和システムの制御対象である空調装置1の概略構成の一例を示す図である。図1に示すように、空調装置1は、室外機11と、室内機13とを備えている。室外機11は、例えば、家屋3の外側に設けられている。室内機13は、例えば、家屋3の内側に設けられている。空調装置1は、室内空間71を空調対象としている。つまり、空調装置1は、室内空間71が空気の制御対象空間である。
 よって、室内機13は、室内空間71に空調空気を供給できる場所、例えば、室内空間71を構成する壁に設置されている。空調装置1は、室内機13から空調空気、例えば、冷風を吹き出すことで冷房を行い、温風を吹き出すことで暖房を行う。空調装置1は、蒸気圧縮式の冷凍サイクルを搭載している。室外機11と、室内機13とを接続する冷媒配管61には、冷媒が流通し、室外機11と、室内機13とを接続する通信線63には、各種信号が転送されている。
 室外機11は、圧縮機21、四方弁22、室外熱交換器23、及び膨張弁24を備えている。また、室外機11は、室外熱交換器23のそばに室外送風機31を備えている。また、室外機11は、計測制御装置51を備えている。室内機13は、室内熱交換器25を備えている。また、室内機13は、室内熱交換器25のそばに室内送風機33を備えている。また、室内機13は、計測制御装置53を備えている。また、室内機13は、室内温度センサ41を備えている。また、室内空間71には、リモートコントローラー55が設けられている。リモートコントローラー55は、室内機13が備えている計測制御装置53と各種信号を送受信する。
 圧縮機21、四方弁22、室外熱交換器23、膨張弁24、及び室内熱交換器25が環状に冷媒配管61で接続されることで、冷凍サイクルが構成されている。室外送風機31は、駆動することで室外機11に負圧を生じさせるため、室外空間72の室外空気を室外機11に吸い込み、吸い込んだ室外空気を室外熱交換器23に供給し、室外熱交換器23を経由させ、室外機11から室外空間72へ室外機11内の空気を吹き出す。室内送風機33は、駆動することで室内機13に負圧を生じさせるため、室内空間71の室内空気を室内機13に吸い込み、吸い込んだ室内空気を室内熱交換器25に供給し、室内熱交換器25を経由させ、室内機13から室内空間71へ室内機13内の空気を吹き出す。
 圧縮機21は、低温かつ低圧の冷媒を圧縮して高温かつ高圧の冷媒とするものであって、インバータで駆動され、空調状況に応じて運転容量が制御される。四方弁22は、圧縮機21の吐出側に接続され、空調装置1の運転、例えば、冷房運転又は暖房運転に応じて冷媒の流れを切り替える。室外熱交換器23は、冷凍サイクルを流れる冷媒から供給される冷温熱と、室外空間72の室外空気との間で熱交換を行う。膨張弁24は、室外熱交換器23と、室内熱交換器25との間に接続され、開度が可変に制御可能な弁、例えば、電子式膨張弁で構成され、開度が制御されることで、冷媒を減圧して膨張させる。室内熱交換器25は、冷凍サイクルを流れる冷媒から供給される冷温熱と、室内空間71の室内空気との間で熱交換を行う。
 よって、空調装置1は、室内熱交換器25で熱交換された室内空気を空調空気として室内空間71に供給し、室内空間71の冷暖房を行う。ここで、室内温度センサ41の検知結果である計測情報は、計測制御装置53に供給される。計測制御装置53は、室内温度センサ41の検知結果である計測情報を、通信線63を介して、計測制御装置51に供給する。なお、通信線63は、有線又は無線の何れであってもよく、通信媒体としては特に限定されるものではない。
 計測制御装置51及び計測制御装置53は、室内温度センサ41等の空調装置1に搭載される各種センサから供給される検知情報及び運転情報と、空調装置1の使用者で設定された設定情報とに基づいて、予め搭載されている制御プログラムで空調装置1の運転を指令する。つまり、計測制御装置51及び計測制御装置53は、空調装置1の全体を統括制御する。例えば、計測制御装置51及び計測制御装置53は、マイクロコンピュータ等で構成されている。
 例えば、計測制御装置51は、圧縮機21の駆動周波数の制御を行い、四方弁22の切り替え制御を行い、室外送風機31の回転数の制御を行い、膨張弁24の開度の制御を行う。また、例えば、計測制御装置53は、室内送風機33の回転数の制御を行う。このような動作が行われることで、計測制御装置51及び計測制御装置53は、空調装置1の運転を指令する。なお、計測制御装置51が、室内送風機33の回転数の制御を行ってもよく、計測制御装置53が、圧縮機21の駆動周波数の制御を行い、四方弁22の切り替え制御を行い、室外送風機31の回転数の制御を行い、膨張弁24の開度の制御を行ってもよい。
 上記で説明したように、室内温度センサ41は、室内機13に搭載されている。室内温度センサ41は、室内機13に吸い込まれた室内空間71の室内空気の温度を計測し、計測結果を計測制御装置53等に供給する。なお、図示は省略するが、空調装置1にはその他の各種センサも搭載されている。
 例えば、圧縮機21の吐出側には吐出側圧力センサが搭載され、吐出側圧力センサは、圧縮機21から吐出された冷媒の圧力を計測する。また、例えば、圧縮機21の吸入側には吸入側圧力センサが搭載され、吸入側圧力センサは、圧縮機21に吸入された冷媒の圧力を計測する。また、例えば、圧縮機21の吐出側には吐出側温度センサが搭載され、吐出側温度センサは、圧縮機21から吐出された冷媒の温度を計測する。また、例えば、圧縮機21の吸入側には吸入側温度センサが搭載され、吸入側温度センサは、圧縮機21に吸入された冷媒の温度を計測する。また、例えば、室外機11には、室外温度センサが搭載され、室外温度センサは、室外空間72の室外空気の温度を計測する。
 次に、上記で説明した空調装置1を前提として、空調装置1の使用者が、例えば、リモートコントローラー55等を操作することで、空調装置1に運転開始指令が与えられたと想定する。運転開始指令には冷房運転又は暖房運転等の運転モードが含まれているため、空調装置1では運転開始指令と同時に運転モードが設定される。
<冷房動作>
 例えば、運転モードとして、冷房運転が選択された場合、冷凍サイクルの動作は以下のようになる。圧縮機21から吐出された冷媒は、四方弁22を通過して室外熱交換器23に流れる。室外熱交換器23に流れた冷媒は、室外空間72から吸い込まれた室外空気と熱交換して凝縮液化し、膨張弁24に流れる。膨張弁24に流れた冷媒は、膨張弁24で減圧され、室内熱交換器25に流れる。室内熱交換器25に流れた冷媒は、室内空間71から吸い込まれた室内空気と熱交換して蒸発ガス化し、四方弁22を通過して圧縮機21に再び吸入される。このようにして冷媒が流れることで、室内空間71から吸い込まれた室内空気が室内熱交換器25で冷却される。室内熱交換器25における冷媒と室内空気との熱交換量は、冷却能力Qと呼ばれる。冷却能力Qは、圧縮機21の回転数を変えることで調整される。
<暖房動作>
 例えば、運転モードとして、暖房運転が選択された場合、冷凍サイクルの動作は以下のようになる。圧縮機21から吐出された冷媒は、四方弁22を通過して室内熱交換器25に流れる。室内熱交換器25に流れた冷媒は、室内空間71から吸い込まれた室内空気と熱交換して凝縮液化し、膨張弁24に流れる。膨張弁24に流れた冷媒は、膨張弁24で減圧され、室外熱交換器23に流れる。室外熱交換器23に流れた冷媒は、室外空間72から吸い込まれた室外空気と熱交換して蒸発ガス化し、四方弁22を通過して圧縮機21に再び吸入される。このようにして冷媒が流れることで、室内空間71から吸い込まれた室内空気が室内熱交換器25で加熱される。室内熱交換器25における冷媒と室内空気との熱交換量は、加熱能力Qと呼ばれる。加熱能力Qは、圧縮機21の回転数を変えることで調整される。
 なお、上記の説明では、1台の空調装置1が空気調和システムの制御対象である旨の説明をしたが、制御対象の台数については特に限定されない。例えば、複数台の空調装置1が空気調和システムの制御対象であってもよい。また、上記では、1台の室外機11と、1台の室内機13とで構成される空調装置1について説明したが、空調装置1の構成は特に限定されない。例えば、1台の室外機11と、複数台の室内機13とで構成される空調装置1が空気調和システムの制御対象であってもよい。また、1台の室外機11と、中継機(図示せず)と、逆止弁(図示せず)と、複数台の室内機13とで構成され、冷暖房同時運転を行う空調装置1が空気調和システムの制御対象であってもよい。
 また、図示の関係上、室外機11と、室内機13とは、距離が近い位置に配設されているが、室外機11と、室内機13との配置箇所については特に限定されない。例えば、室外機11が図示しない建物の屋上に配設され、室内機13が天井裏に配設されてもよい。
 要するに、冷凍サイクルを構成する空調装置1が空気調和システムの制御対象であればよく、その制御対象の詳細構成等については、特に限定されるものではない。
 また、後述する空気調和システムの機能構成は、例えば、計測制御装置51に実装されてもよいが、実装場所については特に限定されない。例えば、空気調和システムの機能構成は、計測制御装置53に実装されてもよい。また、例えば、空気調和システムの機能構成は、図16で後述するHEMSコントローラー223に実装されてもよい。また、例えば、空気調和システムの機能構成は、図20で後述するサーバー装置411に実装されてもよい。
 要するに、空気調和システムの機能構成は、実装場所が特に限定されない。例えば、図16で後述する公衆回線227を介して、図16で後述する端末229が複数接続されていると想定すると、その複数の端末229に分散して、空気調和システムの機能構成が物理的に分散して実装されてもよい。例えば、後述する省エネ制御の機能と、後述する通常制御の機能とが、物理的に離れた場所に実装され、公衆回線227等の通信媒体を介して、1つのシステムとして有機的に機能するものであってもよい。つまり、空気調和システムが空調装置1を制御することができればよい。
<冷凍サイクルの状態変化>
 次に、冷媒回路内の冷媒が流通することで生じる各種現象及び各種パラメータの変位について、図2~図4を用いて説明する。図2は、本発明の実施の形態1における圧縮機21の回転数を一定にして冷房運転した場合の室内温度及び室内熱交換器25の冷媒温度のそれぞれの経時変化の一例を示す図である。図2に示すように、冷房運転の場合、室内熱交換器25は、蒸発器として機能する。よって、冷媒の飽和温度は蒸発温度と呼ばれる。冷房運転の場合、運転開始時に冷房運転を開始して室内温度が低下すると、室内熱交換器25の周囲を通過する空気温度は下がる。したがって、室内熱交換器25内部の低温の冷媒は、蒸発ガス化しにくくなることで冷媒のガス量が減少するため、圧力及び蒸発温度が低下する。
 図3は、本発明の実施の形態1における圧縮機21の回転数を一定にして暖房運転した場合の室内温度及び室内熱交換器25の冷媒温度のそれぞれの経時変化の一例を示す図である。図3に示すように、暖房運転の場合、室内熱交換器25は、凝縮器として機能する。よって、冷媒の飽和温度は凝縮温度と呼ばれる。暖房運転の場合、運転開始時に暖房運転を開始して室内温度が上昇すると、室内熱交換器25の周囲を通過する空気温度は上がる。したがって、室内熱交換器25内部の高温の冷媒は、凝縮液化しにくくなることで冷媒のガス量が増加するため、圧力及び凝縮温度が上昇する。
 図4は、本発明の実施の形態1における圧縮機回転数の変動に伴う能力(冷却能力及び加熱能力)Q、入力W、及び運転効率COPのそれぞれの変動を運転開始時と室内温度変化後とで比較した一例を示す図である。上記で説明したように、冷房運転の場合、室内熱交換器25内部の冷媒の圧力は、運転開始時から室内温度変化後へと低下するため、圧縮機21が吸入する冷媒の密度が減少することで冷凍サイクル内を循環する冷媒の流量は減少する。よって、冷却能力Qは、運転開始時から室内温度変化後へと減少する。また、圧縮機21の吸入圧力、すなわち、低圧側の圧力が下がるため、圧縮機21の吐出圧力、すなわち、高圧側の圧力との圧力差が広がることで圧縮機21の入力Wは増加する。
 また、上記で説明したように、暖房運転の場合、室内熱交換器25内部の冷媒の圧力は、運転開始時から室内温度変化後へと上昇するため、加熱能力Qは、運転開始時から室内温度変化後へと減少する。また、圧縮機21の吐出圧力、すなわち、高圧側の圧力が上がるため、圧縮機21の吸入圧力、すなわち、低圧側の圧力との圧力差が広がることで圧縮機21の入力Wは増加する。
 以上の結果、冷房運転の場合、冷却能力Qが運転開始時から室内温度変化後へと低下し、入力Wが運転開始時から室内温度変化後へと増加する傾向となるため、運転効率COP(Coefficient Of Performance)は運転開始時から室内温度変化後へと低下する。一方、暖房運転の場合、加熱能力Qが運転開始時から室内温度変化後にかけて低下し、入力Wが運転開始時から室内温度変化後にかけて増加する傾向となるため、運転効率COPは運転開始時から室内温度変化後にかけて低下する。つまり、冷房運転及び暖房運転の何れの場合であっても、空調装置1の運転効率COPは、運転開始時から室内温度変化後にかけて低下する。なお、運転効率COPは、冷却能力Q又は加熱能力Qを入力Wで除することで求まる値である。つまり、運転効率COPは、能力Qを入力Wで除した値である。
 図4を参照することで、圧縮機21の回転数の変位に伴う観点から能力Q、入力W、及び運転効率COPの関係について検討する。上記で説明したように、圧縮機21の回転数が増加するにつれ、相対的に、吸入圧力が低下して吐出圧力が上昇することとなるため、圧力比が増加する。この結果、図4に示すように、入力Wが増えると共に、運転効率COPは低下する。ここで、運転効率COPを能力Qの一次式に近似した場合、次に示す式(1)のように表される。
Figure JPOXMLDOC01-appb-M000001
 A及びBは、運転効率COP特性を示すパラメータであって、空調装置1の構成及び空調装置1の環境条件に基づいて定まるものである。式(1)に示すように、運転効率COPは、Aに能力Qを乗算したものにBを加算したもので表されている。また、上記で説明したように、運転効率COPは、能力Qを入力Wで除した値であるため、その関係式から次に示す式(2)が導出される。
Figure JPOXMLDOC01-appb-M000002
 つまり、式(2)に示すように、入力Wは、能力Qを式(1)で除したもので表される。次に、空調装置1が実行する運転モードについて説明する。
<運転モード>
 空気調和システムは、運転モードとして、例えば、通常制御と、省エネ制御とを備えている。通常制御は、室内温度と、設定温度との差に応じて圧縮機21の回転数を制御する。省エネ制御は、通常制御と比べて消費電力量を削減させる。空気調和システムは、例えば、使用者で選択された省エネモードの入切で、通常制御と、省エネ制御との切り替えを行っている。空気調和システムは、省エネモードの入が選択された場合に省エネ制御に切り替え、省エネモードの切が選択された場合に通常制御に切り替える。例えば、使用者は、リモートコントローラー55を介して、省エネモードを選択した状態で、空調装置1の運転開始指令を室内機13に送信した場合、空調装置1は、省エネ制御で運転を行う。
 また、使用者が、省エネモード等の運転モードを選択し、タイマー予約運転をするために指定時刻を入力すれば、空気調和システムは、指定時刻に室内温度が目標温度に到達するように、指定時刻前から空調装置1を起動して省エネ制御で前倒し運転制御である予冷予暖運転を行うことができる。なお、上記の説明では、リモートコントローラー55を用いることで、省エネモードの選択、運転開始指令の送信、及びタイマー予約の設定が行われる一例について説明したが、特にこれに限定されない。
 次に、空気調和システムの機能構成の一例を説明するために、空気調和システムの機能ブロック例として、空調装置制御モジュール90について図5を用いて説明する。図5は、本発明の実施の形態1における空調装置1を制御する空調装置制御モジュール90の機能ブロックの一例を示す図である。図5に示すように、空調装置制御モジュール90は、通常制御部91、省エネ制御部92、及び省エネタイマー制御部93を備えている。
<通常制御>
 通常制御部91は、通常制御を実行し、例えば、比例制御部101、積分制御部102、及び微分制御部103を備えている。通常制御部91は、省エネ制御が終了した旨を報知された場合又は使用者から直接指令が供給された場合、通常制御を開始する。運転モードが通常制御の場合、空調装置1は、室内温度として室内空間71の代表温度を検知する室内温度センサ41の計測値が、使用者で設定された設定温度となるように運転を実行する。
 例えば、比例制御部101は、比例制御を行う。具体的には、比例制御部101は、室内温度と、設定温度との温度差が予め定めた設定値と比べて大きい場合、圧縮機21の回転数を増加することで、空調装置1の冷却能力Q又は空調装置1の加熱能力Qが大きくなるようにして室内温度が設定温度に収束する状態への到達を早めるように運転指令を出す。
 例えば、積分制御部102は、積分制御を行う。具体的には、積分制御部102は、室内温度の時間変化が予め定めた設定値と比べて小さいため、室内温度が設定温度に到達するまでの時間がかかっている場合、圧縮機21の回転数を増加することで、空調装置1の冷却能力Q又は空調装置1の加熱能力Qを増加し、室内温度が設定温度に到達するように運転指令を出す。また、例えば、微分制御部103は、図示しない窓の開閉等に起因して室内温度が急激に変化した場合、室内温度の時間変動に応じて圧縮機21の運転容量を変更する。
 例えば、空調装置1は、室内温度が設定温度に到達すると圧縮機21の運転を停止し、室内温度と設定温度との温度差が予め設定された値以上になると、圧縮機21を再び起動する。なお、通常制御では、運転開始時に、室内温度と、設定温度との温度差が大きいため、圧縮機21の回転数が大きくなり、運転効率COPが低下し、消費電力量が増加する。
<省エネ制御>
 省エネ制御部92は、省エネ制御を実行し、例えば、図6で後述するように、第1演算部111、第2演算部113、第3演算部115、及び第4演算部119を備えている。また、例えば、図7で後述するように、第1演算部111、第2演算部113、第3演算部115、及び設定温度制御部121を備えていてもよい。省エネ制御部92は、省エネ制御が終了した場合、その旨を通常制御部91に報知する。
 式(3)は、室内空間71、すなわち、部屋の熱容量Cと、空調装置1の能力Qと、家屋3の外壁を貫流する熱、換気に起因する熱、日射熱、照明235(後述する)又は人等の内部発熱を意味する熱負荷Dと、に基づいて、室内温度を1℃冷却又は加熱するために必要な時間間隔Δtを表す。
Figure JPOXMLDOC01-appb-M000003
 式(4)は、時間間隔Δtと、入力Wと、に基づいて、室内温度を1℃冷却又は加熱する際にかかる消費電力量を表す。
Figure JPOXMLDOC01-appb-M000004
 なお、入力Wは、式(2)から求められ、時間間隔Δtは、式(3)から求められる。次に、式(4)から消費電力量最小点の能力Qに関する式(5)を導出する。式(5)は、消費電力量最小点、すなわち、最小消費電力量を求める式である。
Figure JPOXMLDOC01-appb-M000005
 次に、第3演算部115は、式(3)と、式(5)とから消費電力量最小点に対応する時間間隔Δtを求める式(6)を導出する。
Figure JPOXMLDOC01-appb-M000006
 省エネ制御部92は図6と図7の2パターンが考えられる。
 図6は、実施の形態1における圧縮機回転数の制御方法が通常制御と異なる場合の省エネ制御部92の機能ブロックの一例について示す図である。図6においては、例えば、室内機13又は室外機11に省エネ制御部92が組み込まれることが想定される。つまり、省エネ制御部92の出力が圧縮機回転数となる一例である。第1演算部111は、室内温度や室外温度や室内湿度などのセンサ値から運転効率COP特性のA及びBを求める。第2演算部113は、センサ値から熱負荷Dを求める。第3演算部115は、運転効率COP特性のA及びB、並びに熱負荷Dから能力Qを求める。第4演算部119は、能力Qとセンサ値と室内風量設定などから圧縮機回転数を求める。
 図7は、実施の形態1における設定温度の制御方法が通常制御と異なる場合の省エネ制御部92の機能ブロックの一例について示す図である。図7においては、例えば、室内機13及び室外機11の外部に省エネ制御部92が組み込まれることが想定される。つまり、省エネ制御部92の出力が設定温度となる一例である。通常制御では、設定温度は使用者がリモートコントローラー55から手動で操作するが、この場合は設定温度を自動的に変更する。第1演算部111は、室内温度や室外温度や室内湿度などのセンサ値から運転効率COP特性のA及びBを求める。第2演算部113は、センサ値から熱容量Cと熱負荷Dを求める。第3演算部115は、運転効率COP特性のA及びB、熱容量C、並びに熱負荷Dから時間間隔Δtを求める。設定温度制御部121では、時間間隔Δtに応じて設定温度を変更する。省エネ制御部92は、設定温度を通常制御部91に供給することで通常制御部91で圧縮機回転数を求めてもよく、また、設定温度を室外機11に供給することで、室外機11で圧縮機回転数を求めてもよい。圧縮機制御部122は通常制御部91と同じで、設定温度と室内温度の差によって圧縮機回転数を制御する。
 なお、図6に示すパターンと、図7に示すパターンとは別個のものであって、いずれかの機能が搭載されれば、他の一方の機能は搭載されないこととなる。例えば、圧縮機回転数が省エネ制御部92から出力される場合には、設定温度が省エネ制御部92から出力されることはない。また、例えば、設定温度が省エネ制御部92から出力される場合には、圧縮機回転数が省エネ制御部92から出力されることはない。
 ただし、省エネ制御部92の構成は、上記の説明に限定されない。例えば、上記で説明した各機能が統合されて1つのモジュールとして構成されていてもよい。また、例えば、上記で説明した機能が、省エネ制御部92の外部に構成されていれば、省エネ制御部92は、そのように構成された外部の機能を呼び出す構成であればよい。いずれにせよ、上記で説明したように、式(1)~式(6)等で規定されるアルゴリズムを利用することで、省エネ制御部92が、直接又は間接的に、消費電力量最小点に対応する圧縮機回転数又は設定温度を求めることができればよい。
 具体的には、第3演算部115は、最小消費電力量、時間間隔Δt、圧縮機回転数、熱負荷D、及び設定温度のそれぞれを紐付けさせ、最小消費電力量、時間間隔Δt、圧縮機回転数、熱負荷D、及び設定温度を最小消費電力量関連データとして、例えば、記憶部に供給する。記憶部は、圧縮機回転数に関するデータを圧縮機回転数データ群に蓄積し、最小消費電力量に関するデータを最小消費電力量データ群に蓄積し、時間間隔Δtに関するデータを時間間隔Δtデータ群に蓄積し、熱負荷Dに関するデータを熱負荷Dデータ群に蓄積し、設定温度に関するデータを設定温度データ群に蓄積する。なお、上記で説明した各種データ群は一例であって、特にこれらに限定されない。要するに、最小消費電力量、時間間隔Δt、圧縮機回転数、熱負荷D、及び設定温度のそれぞれが紐付けされていればよい。
 第4演算部119は、設定温度、室内温度、刻み幅、目標温度、及び最小消費電力量関連データに基づいて、圧縮機回転数を求める。ここで、刻み幅は、設定温度を段階的に変更するときの変更量である。刻み幅は、例えば、整数値で設定されるが、特にこれに限定されない。
 なお、上記の説明では、式(1)~式(6)を直接的に利用して各種パラメータを求める一例について説明したが、各種パラメータの求め方は特に限定されない。例えば、式(1)~式(6)のそれぞれに対応するものがテーブルで定義されてもよい。例えば、式(5)の場合、A、B、及びDに基づいてQを求めているため、A、B、及びDと、Qとの写像関係が定義されたテーブルを用いることで、Qを求めてもよい。その際、直接的に該当する数値がなかったとしても、補間処理等を行えばよい。いずれにしても、式(1)~式(6)に相当するアルゴリズムで各種パラメータが演算されればよい。
<省エネタイマー制御>
 省エネタイマー制御部93は、省エネタイマー制御を実行し、例えば、図5に示すように、第5演算部141、第6演算部142、第7演算部143、及び第8演算部144を備えている。第5演算部141は、使用者で設定された設定値又は過去の情報からの推定値に基づいて、在室情報を求める。在室情報は、例えば、使用者が在室を始める時刻、使用者が在室を続ける時間幅、及び使用者が不在となる時刻を含む。在室情報は、使用者で設定される場合、例えば、リモートコントローラー55が利用される。なお、使用者が在室情報を設定する機器は、リモートコントローラー55に限定されない。例えば、図1に示す計測制御装置51又は計測制御装置53であってもよい。また、図18で後述するHEMSコントローラー223、通信装置228、又は端末229であってもよい。
<在室開始時刻について>
 また、在室情報が過去の情報からの推定値で設定される場合、室内空間71に存在する各種機器、例えば、リモートコントローラー55等の過去の情報が用いられることで在室情報が推定され、推定された在室情報が設定されてもよい。具体的には、朝、昼、夕方、及び夜間等の特定の時間帯ごとに、使用者がリモートコントローラー55の操作を初めて行った時間をリモートコントローラー55又は空調装置1に記憶させておく。次に、空気調和システムは、そのようにして記憶させたリモートコントローラー55が使用された時間を収集し、収集した結果に基づいて、使用者が在室を始める時刻、すなわち、在室開始時間を推定し、推定した在室開始時間を設定する。なお、在室開始時間が複数得られる場合、空気調和システムは、例えば、平均値を求め、その平均値を在室開始時間に決定してもよい。
 また、過去の情報からの推定値は、上記で説明したリモートコントローラー55が使用された時間等の操作履歴に限定されない。例えば、空気調和システムは、室内空間71に、図18で後述する端末229、IHクッキングヒーター231、レンジグリル233、照明235、又はテレビジョン受像機(図示省略)の使用情報、すなわち、各種電気機器の操作履歴をHEMSコントローラー223で収集させ、その収集結果に基づいて在室情報を求めてもよい。
 また、過去の情報からの推定値は、図18で後述する電力計測器221で計測した消費電力量を分析することで在室情報を求めてもよい。また、過去の情報からの推定値は、図13で後述する赤外線センサ43又は人感センサ44の検知結果を利用することで在室情報を求めてもよい。また、過去の情報からの推定値は、図1で示す室内空間71に取り付けられている室内ドア(図示省略)の開閉情報を利用することで在室情報を求めてもよい。また、使用者が図18で後述する通信装置228を保有し、通信装置228に現在位置を検出する機能が搭載されていると想定した場合、使用者の位置情報を利用して在室情報を求めてもよい。また、インターホン(図示省略)にカメラが設けられている場合には、そのカメラの撮像結果を用いることで使用者の帰宅が検知されてもよい。なお、使用者の位置情報は、例えば、Wi-Fi(登録商標)(Wireless Fidelity)接続有無又はGPS(Global Positioning System)の位置情報が用いられればよい。
 なお、空調装置制御モジュール90は、本発明における制御部に相当する。また、空調装置制御モジュール90は、計測制御装置51に制御指令を供給してもよい。また、空調装置制御モジュール90は、計測制御装置53に制御指令を供給してもよい。また、空調装置制御モジュール90は、計測制御装置51及び計測制御装置53を経由させ、空調装置1の駆動機器、例えば、圧縮機21、四方弁22、膨張弁24、室外送風機31、及び室内送風機33に制御指令を供給してもよい。また、空調装置制御モジュール90は、計測制御装置51及び計測制御装置53を経由せず、空調装置1の駆動機器、例えば、圧縮機21、四方弁22、膨張弁24、室外送風機31、及び室内送風機33に制御指令を供給してもよい。
 第6演算部142は、在室情報から在室開始時刻を求め、求めた在室開始時刻を第7演算部143に供給する。第7演算部143は、在室開始時刻と、空調情報とに基づいて、予冷予暖開始時刻を求め、求めた予冷予暖開始時刻を第8演算部144に供給する。空調情報は、例えば、空調装置1の機種特性に関連する情報である。第7演算部143は、空調情報から各設定温度に対応する時間間隔Δtを求め、在室開始時刻から時間間隔Δtの合計時間を差し引いて予冷予暖開始時刻を決定する。なお、時間間隔Δtについては、後述する図8~図10を用いて詳細に説明する。
 なお、予冷予暖開始時刻は、図18で後述する公衆回線227及び通信機225を介して、HEMSコントローラー223等にダウンロードされてもよい。また、予冷予暖開始時刻は、使用者が直接指定してもよい。
 第8演算部144は、予冷予暖開始時刻が到来した場合、省エネ制御部92に省エネ制御の指令を供給する。
 なお、過去の情報からの推定値に基づいて在室情報を得る動作は、その在室情報は日々異なることが想定される場合に有効となる。
 上記で説明した省エネ制御では、運転開始時から室内温度が目標温度に到達するまでの消費電力量を最小化するように空調装置1の運転容量が制御される。つまり、空気調和システムは、空調装置1の運転を開始してから室内温度が目標温度に到達するまでの合計の消費電力量を大幅に削減する省エネ制御を実行する。省エネ制御を実行する際の注意点は、圧縮機21の回転数を通常制御と比べて単純に下げれば運転効率COPは向上するが、能力Qが低下するため、室内温度が設定温度に到達しなくなったり、室内温度が設定温度に到達するまでに時間がかかったりすることがある点である。よって、空気調和システムは、省エネ制御を実行する際、圧縮機21の回転数を適切に制御する必要がある。そこで、その適切に制御する動作原理について以降で説明する。
<省エネ制御の動作点>
 圧縮機21の回転数を適切に制御する一手法として、空調装置1の運転を開始してから室内温度が目標温度に到達するまでの合計の消費電力を大幅に削減させる動作原理について、図8~図10を用いて説明する。図8は、本発明の実施の形態1における圧縮機回転数の変動に伴う室内温度1℃変化に対応する時間間隔Δt及び時間間隔Δtあたりの消費電力量のそれぞれの変動を運転開始時と室内温度変化後とで比較した一例を示す図である。図8においては、中抜きの丸印が省エネ制御の動作点を意味するものとして説明する。
 図4に示すように、圧縮機21の回転数が小さくなるにつれ、空調装置1の能力Qは減少する。よって、上記で説明した式(3)から、圧縮機21の回転数が小さくなるにつれ、時間間隔Δtは増加する。また、上記で説明した式(3)から、空調装置1の能力Qと、熱負荷Dとが同等となる圧縮機21の回転数では、室内温度は変化しないため、時間間隔Δtは無限大となる。
 また、一般的に、外気温度と、室内温度との温度差が大きくなるにつれ、熱負荷Dは大きくなる。例えば、空調装置1の運転開始時に外気温度が30℃、室内温度が30℃であれば、外気温度と室内温度との温度差は0℃である。また、空調装置1の運転開始後であって、室内温度変化後に外気温度が30℃、室内温度が25℃であれば、外気温度と室内温度との温度差は5℃である。よって、運転開始時と比べて室内温度変化後のほうが熱負荷Dは大きくなる。したがって、時間間隔Δtは、運転開始時Δtと比べて室内温度変化後Δtのほうが長くかかる。
 また、図8に示すように、時間間隔Δtあたりの消費電力量は、最小点が存在する。最小点から圧縮機回転数を増加させると、入力Wが増加して運転効率COPが低下するため、消費電力量は増加する。また、最小点から圧縮機回転数を低下させると、時間間隔Δtが延びるため、消費電力量は増加する。
 運転開始時と比べて室内温度変化後のほうが熱負荷Dが大きくなり、式(5)において消費電力量最小点の能力Qは増加するため、消費電力量最小点に対応する圧縮機回転数は、図8に示すようにNからNにかけて増加する。
 ここで、運転効率COPの観点から、上記で説明した式(5)の運転効率COP特性のA及びBについて説明する。図4に示したように、運転効率COPは運転開始時と比べて室内温度変化後のほうが傾き(-A)は小さく、緩やかになる。圧縮機回転数が小さいほど、室内熱交換器25の冷媒飽和温度は室内温度に近く、室内温度変化の影響を強く受ける。よって、室内温度変化後のCOP低下は圧縮機回転数が小さいほど顕著になる。
 室内温度変化後のほうが、傾き(-A)は小さくなるため、B/(-A)は増加傾向となる。よって、上記で説明した式(5)において、運転開始時と比べ室内温度変化後のほうが消費電力量最小点の能力Qは増加する。よって、室内温度の変化とともに、圧縮機21の運転容量、すなわち、圧縮機回転数を大きくしたほうがよい。
 省エネ制御では、最適な圧縮機回転数Nを指令制御してもよく、設定温度を時間間隔Δtごとに指令制御してもよい。なお、冷却能力Q又は加熱能力Qには、顕熱及び潜熱が含まれているが、室内温度の変化には、顕熱能力が影響するため、冷却能力Q又は加熱能力Qは、顕熱分だけの能力Qとしてもよい。
 以上の説明から、熱負荷Dを介して、最小の消費電力量となる圧縮機21の回転数と、室内温度1℃変化に対応する時間間隔Δtと、を紐付けしておき、設定温度の刻み幅を1℃として設定温度を設定し、設定温度と、最小の消費電力量となる圧縮機21の回転数と、を紐付けした状態で、設定温度を段階的に変更すれば、時間間隔Δtの間に圧縮機21が消費する消費電力量は最小となる。よって、空調装置1の運転を開始してから室内温度が目標温度に到達するまでの合計の消費電力量を大幅に削減することができる。したがって、空気調和システムは、空調装置1の運転効率を高めることで、消費電力の少ない省エネルギー運転を行うことができる。
<省エネ制御;圧縮機回転数制御>
 図9は、本発明の実施の形態1における空調装置1を圧縮機回転数の指令で省エネ制御を行った場合の室内温度の経時変化の一例を示す図である。図9は、暖房運転の場合の一例を示す。図9に示すように、空気調和システムは、運転開始時から室内温度変化後にかけて、圧縮機回転数をNからNにかけて制御すると、室内温度は、時間間隔Δt及び時間間隔Δtのそれぞれで、1℃の温度勾配で変化する。よって、最適な圧縮機回転数Nを指令することで、省エネ制御が実行される。
<省エネ制御;設定温度制御>
 図10は、本発明の実施の形態1における空調装置1を設定温度の指令で省エネ制御を行った場合の圧縮機回転数の経時変化の一例を示す図である。図10は、暖房運転の場合の一例を示す。図10に示すように、空気調和システムは、運転開始時では設定温度を室内温度+1℃に設定し、時間間隔Δt経過したら、設定温度を1℃増加する。そして、室内温度変化後では時間間隔Δt経過したら設定温度を1℃増加する。このとき、空気調和システムは、圧縮機回転数を通常制御と同様に設定温度と室内温度との温度差に応じて制御すると、結果的にNからNに近い回転数で制御される。
 なお、上記では、室内温度1℃変化に対応する時間間隔Δtと、圧縮機21の消費電力量が最小となる圧縮機回転数とが紐付けされる一例について説明したが、特にこれに限定されない。例えば、室内温度0.1℃変化に対応する時間間隔Δtと、圧縮機21の消費電力量が最小となる圧縮機回転数とが紐付けされてもよい。また、例えば、室内温度1.75℃変化に対応する時間間隔Δtと、圧縮機21の消費電力量が最小となる圧縮機回転数とが紐付けされてもよい。要するに、室内温度の変化に対応する時間間隔Δtと、圧縮機21の消費電力量が最小となる圧縮機回転数とが紐付けされていればよい。
<省エネ制御の動作>
 次に、上記で説明した動作原理に基づいて、省エネ制御を行う動作について図11を用いて説明する。図11は、本発明の実施の形態1における空気調和システムの制御例のうち、省エネ制御処理の一例を説明するフローチャートである。
 なお、ステップS11~ステップS20の処理が、上記で説明した省エネ制御処理に対応し、ステップS21の処理が、上記で説明した通常制御処理に対応する。
(ステップS11)
 空気調和システムは、省エネ制御が選択された状態であるか否かを判定する。空気調和システムは、省エネ制御が選択された状態である場合、ステップS12に進む。一方、空気調和システムは、省エネ制御が選択された状態でない場合、ステップS21に進む。
(ステップS12)
 空気調和システムは、温度に関連したデータを取得する。例えば、空気調和システムは、室内温度、外気温度、目標温度、及び在室開始温度等の空調情報を取得する。また、空気調和システムは、空調情報として、設定温度の刻み幅を取得する。
(ステップS13)
 空気調和システムは、nに1を設定する。ここで、nは、複数の時間間隔Δtのうち、該当する時間間隔Δtを参照するために用いる添え字である。よって、nには1以外の値が設定されてもよい。要するに、複数の時間間隔Δtのうち、該当する時間間隔Δtを参照することができればよい。
(ステップS14)
 空気調和システムは、何れの運転モードが選択されているかを判定する。空気調和システムは、運転モードが暖房である場合、ステップS15に進む。空気調和システムは、運転モードが冷房である場合、ステップS16に進む。空気調和システムは、運転モードがそれ以外の場合、ステップS21に進む。
(ステップS15)
 空気調和システムは、室内温度に刻み幅を加算して設定温度とする。例えば、空気調和システムは、設定温度の刻み幅が1℃である場合、設定温度=室内温度+刻み幅℃=室内温度+1℃と設定する。
(ステップS16)
 空気調和システムは、室内温度に刻み幅を減算して設定温度とする。例えば、空気調和システムは、設定温度の刻み幅が1℃である場合、設定温度=室内温度-刻み幅℃=室内温度-1℃と設定する。
(ステップS17)
 空気調和システムは、空調装置1の運転を開始する。
(ステップS18)
 空気調和システムは、時間間隔Δtが経過したか否かを判定する。空気調和システムは、時間間隔Δtが経過した場合、ステップS19に進む。一方、空気調和システムは、時間間隔Δtが経過しない場合、ステップS18に戻る。
(ステップS19)
 空気調和システムは、nに1を加算する。例えば、空気調和システムは、nを+1歩進するために、n=n+1と設定する。
(ステップS20)
 空気調和システムは、設定温度が目標温度に到達したか否かを判定する。空気調和システムは、設定温度が目標温度に到達した場合、ステップS21に進む。一方、空気調和システムは、設定温度が目標温度に到達しない場合、ステップS14に戻る。
(ステップS21)
 空気調和システムは、通常制御を実行し、処理を終了する。なお、通常制御は、上記で説明したように、比例制御、積分制御、及び微分制御の何れか又はその組み合わせである。
 以上の結果、空気調和システムは、時間間隔Δtが経過したら、暖房では設定温度を1℃上げ、冷房では設定温度を1℃下げるといった処理を行う。つまり、空気調和システムは、設定温度が目標温度に到達するまで時間間隔Δtごとに設定温度を変更していく。なお、設定温度の刻み幅は1℃に限定せず、さらに小さい値であっても、さらに大きい値であってもよい。また、ステップS20において、設定温度が目標温度に到達したか否かで判定されるのではなく、現在時刻が在室開始時刻等の指定時刻に到達したか否かで判定されてもよい。
<省エネタイマー制御の動作>
 次に、省エネ制御を実行させるタイミングの制御例について、図12を用いて説明する。図12は、本発明の実施の形態1における空気調和システムの制御例のうち、省エネタイマー制御処理の一例を説明するフローチャートである。
 なお、ステップS41~ステップS47の処理は、省エネタイマー制御処理に対応し、ステップS48の処理は、上記で説明した省エネ制御処理に対応し、ステップS49の処理は、上記で説明した通常制御処理に対応する。
(ステップS41)
 空気調和システムは、在室情報を取得する。
(ステップS42)
 空気調和システムは、在室情報に基づいて在室開始時刻を求める。
(ステップS43)
 空気調和システムは、空調情報を取得する。
(ステップS44)
 空気調和システムは、空調情報に基づいて設定温度ごとの時間間隔Δtを求める。
(ステップS45)
 空気調和システムは、時間間隔Δtの合計時間を求める。
(ステップS46)
 空気調和システムは、在室開始時刻から時間間隔Δtの合計時間を差し引いて予冷予暖開始時刻を決定する。
(ステップS47)
 空気調和システムは、予冷予暖開始時刻であるか否かを判定する。空気調和システムは、予冷予暖開始時刻である場合、ステップS48に進む。一方、空気調和システムは、予冷予暖開始時刻でない場合、ステップS47に戻る。
(ステップS48)
 空気調和システムは、省エネ制御処理を実行する。具体的には、上記で説明したステップS11~ステップS20の処理を実行する。
(ステップS49)
 空気調和システムは、通常制御処理を実行する。具体的には、上記で説明したステップS21の処理を実行し、処理を終了する。
<赤外線センサの利用>
 次に、図1で説明した空調装置1に各種センサを追加した一例について図13を用いて説明する。図13は、本発明の実施の形態1における空調装置1の概略構成の別の一例を示す図である。図13に示すように、室内機13に赤外線センサ43が設けられ、室内空間71に人感センサ44が設けられている。赤外線センサ43は、放射温度等のような物体の放射エネルギーを検知する。よって、赤外線センサ43は、室内空間71に存在する躯体の温度を検知することができる。したがって、赤外線センサ43の検知結果を空調装置1の制御に用いる各種パラメータのうちの一つである室内温度に利用することができる。なお、赤外線センサ43は、本発明における第1センサに相当する。
 また、人感センサ44は、赤外線センサ43と同様に、放射温度等のような物体の放射エネルギーを検知することで制御対象空間である室内空間71における人の存否を検知する。例えば、人感センサ44は、チューニング又はその構成に応じて、赤外線を検知したり、超音波を検知したり、可視光を検知したりできるようにすればよい。よって、人感センサ44の検知結果を空調装置1の制御に用いる各種パラメータのうちの一つに利用することができる。なお、人感センサ44は、本発明における第2センサに相当する。
 次に、各種パラメータに制限をかけて動作を行わせる一例について、図14及び図15を用いて説明する。図14は、本発明の実施の形態1における設定温度を制限して空調装置1を制御する空調装置制御モジュール90の機能ブロックの一例を示す図である。図15は、本発明の実施の形態1における電流を制限して空調装置1を制御する空調装置制御モジュール90の機能ブロックの一例を示す図である。
<設定温度制限>
 図14においては、図5で示した空調装置制御モジュール90と比べ、例えば、温度範囲補正テーブルが追加され、省エネ制御部92に設定温度制限指令が供給される点が相違する。温度範囲補正テーブルは、設定温度の範囲と、制限をかけた目標温度とが紐付けされたものである。省エネ制御部92は、設定温度制限指令が供給された場合、温度範囲補正テーブルを参照し、設定温度に対応する目標温度に制限をかける。
 例えば、省エネ制御部92に設定温度制限指令が供給されたと想定する。この場合、省エネ制御時に、目標温度の上限又は下限をリモートコントローラー55の操作可能範囲と比べて狭く限定することができる。例えば、冷房運転で省エネ制御が実行されている場合、リモートコントローラー55では設定温度の範囲が16℃~30℃で選択できたとしても、省エネ制御の目標温度は25℃~28℃に限定される。また、例えば、暖房運転で省エネ制御が実行されている場合、リモートコントローラー55では設定温度の範囲が16℃~30℃で選択できたとしても、省エネ制御の目標温度は19℃~22℃に限定される。
<電流制限>
 図15において、図5で示した空調装置制御モジュール90と比べ、例えば、使用電流範囲補正テーブルが追加され、省エネ制御部92に電流制限指令が供給される点が相違する。使用電流範囲補正テーブルは、使用電流の範囲と、制限をかけた使用電流の範囲とが紐付けされたものである。省エネ制御部92は、電流制限指令が供給された場合、使用電流範囲補正テーブルを参照し、使用電流に制限をかける。
 例えば、省エネ制御部92に電流制限指令が供給されたと想定する。この場合、省エネ制御をする際には電流制限値が何段階かに分けて設定されてもよい。また、例えば、空調装置1又はHEMSコントローラー223(後述する)に節電モードの設定がされ、第4演算部119に電流制限指令が供給されている場合、電流制限値が設定されてもよい。
 例えば、空調装置1の消費電力の内訳は、圧縮機21が約80%~90%、室内送風機33が約5%~10%、及び室外送風機31が約5%~10%を占める。よって、空調装置1の電流を制限する場合、空気調和システムは、圧縮機21の回転数を下げることで運転容量を減少させたり、室内送風機33又は室外送風機31の回転数を下げることで風量を減少させたりする必要がある。
 電流を制限するには、電流制限値は、例えば、電流制限のない場合を100%とした場合、電流制限値70%と入った相対値(%)で設定されてもよく、具体的に電流制限値3A(アンペア)等のような絶対値で設定されてもよい。
 例えば、空調装置1又はHEMSコントローラー223(後述する)に節電モードの設定がされていると想定する。この場合、例えば、電流制限値が70%であれば、空気調和システムは、圧縮機21の上限回転数を最大回転数の70%に制限したり、室内送風機33又は室外送風機31の回転数を最大回転数の70%に制限したりすればよい。
 また、例えば、電流制限値が3Aであれば、電流制限がないときの運転電流が5Aであれば、空気調和システムは、圧縮機21の上限回転数を最大回転数の3/5に制限したり、室内送風機33又は室外送風機31の回転数を最大回転数の3/5に制限したりすればよい。なお、一般的には、電流制限がないときの運転電流は機種ごとに明示されている。
 以上、上記の説明では、電流制限がない基準(100%)が圧縮機回転数の最大値又は送風機回転数の最大値とした場合について説明したが、特にこれらに限定されない。例えば、通常制御で通常運転時の圧縮機回転数又は送風機回転数を基準として制限が設定されてもよい。例えば、電流制限がない場合の通常制御では、圧縮機回転数が50rps(rotation per second)の予定であれば、電流制限値70%の場合、35rpsとすればよい。また、電流制限がない通常制御において、室内送風機33が強風設定で回転数1000rpm(rotation per minute)の予定であれば、電流制限値70%の場合、700rpmとすればよい。
<自動運転の通達>
 次に、省エネ制御を時限制御する場合に、外部に許可を求める一例について、図16を用いて説明する。図16は、本発明の実施の形態1における省エネタイマー制御の許可判定を実行して空調装置1を制御する空調装置制御モジュール90の機能ブロックの一例を示す図である。図16においては、図5で示した空調装置制御モジュール90と比べ、省エネタイマー制御部93の第8演算部144から外部に許可判定要求又は運転開始通知が供給される点が相違する。
 例えば、省エネタイマー制御の許可判定要求が使用者に送信されたり、又は省エネタイマー制御の運転開始通知が使用者に送信されたりした場合を想定する。例えば、空気調和システムは、後述する公衆回線227を介して、使用者が所有する携帯電話、スマートフォン、パソコン、又はカーナビ等の通信装置228(後述する)に許可判定要求を送って運転開始の許可ボタンを押すように要求したり、メール等を送って運転開始の通達を行う。
<使用者が帰宅しなかった場合>
 次に、省エネ制御を時限制御する場合に、人の存否判定結果に応じて、制御内容を変更する一例について図17を用いて説明する。図17は、本発明の実施の形態1における室内空間71での人の存否判定結果に基づいて空調装置1を制御する空調装置制御モジュール90の機能ブロックの一例を示す図である。図17においては、図5で示した空調装置制御モジュール90と比べ、省エネタイマー制御部93の第8演算部144に、人の存否に関するデータである存否判定データが供給されたり、省エネタイマー制御部93の第8演算部144から空調装置1に空調停止命令が供給されたり、省エネタイマー制御部93の第8演算部144から省エネ制御部92に設定温度変更指令が供給されたりする点が相違する。
 図17に示すように、例えば、省エネタイマー制御を実行中に、存否判定データを受信した場合を想定する。例えば、省エネタイマー制御を運転開始後、予め設定された時間が経過しても使用者の在室、すなわち、使用者の帰宅が検知されなかった場合、空気調和システムは、設定温度を変更したり、空調装置1を停止させたりする。
 ここで、使用者の在室の検知には、上記で説明した赤外線センサ43又は人感センサ44の検知結果を用いればよい。また、使用者の在室の検知には、リモートコントローラー55の入力操作が利用されてもよい。また、使用者の在室の検知には、上記で説明したように、各種電気機器の操作履歴をHEMSコントローラー223で収集させ、その収集結果に基づいて在室情報を求めてもよい。また、使用者の在室の検知には、消費電力量、室内ドア(図示省略)の開閉情報、使用者の位置情報、又はインターホン(図示省略)に設けられたカメラの撮像結果等が用いられてもよい。
 また、設定温度が変更される場合、特定の温度で固定に決めてもよい。また、設定温度が変更される場合、本来の目標温度との相対値、例えば、冷房であれば目標温度と比べて2℃高い値に設定し、暖房であれば目標温度と比べて2℃低い値に設定してもよい。
<効果>
 上記の構成で、空気調和システムは、省エネ制御の場合、設定温度と、最小の消費電力となる圧縮機21の回転数と、を紐付けした状態で、設定温度を段階的に変更することができる。よって、空気調和システムは、余分に使われる消費電力量を削減する。したがって、空気調和システムは、空調装置1の運転を開始してから室内温度が目標温度に到達するまでに使われる余分な消費電力量を削減することができる。この結果、空気調和システムは、空調装置1の運転効率を高めることで、消費電力の少ない省エネルギー運転を行うことができる。
 換言すれば、空気調和システムは、空調装置1の運転を開始してから室内温度が目標温度に到達するまで、空調装置1の能力Qと、空調装置1の運転効率COP特性とに応じて、空調装置1の運転容量を決定する。空気調和システムは、このように空調装置1の運転容量を決定することで、室内温度が目標温度に到達するまでの合計の消費電力、すなわち、消費電力量を最小化することができる。
 例えば、空気調和システムは、省エネ制御では、圧縮機21の運転容量、すなわち、圧縮機21の回転数を適度に低い容量で運転させ、高効率の運転を実施している。一方、空気調和システムは、通常制御では、室内温度と、設定温度との温度差が大きい場合、この温度差を早急になくすように運転する。よって、空気調和システムは、通常制御では、圧縮機21の運転容量が高くなる。したがって、空気調和システムは、通常制御では、室内温度の変化が早くなって使用者の快適性の悪化を最低限に抑制することができるものの、その分だけ運転容量が増大することで運転効率COPは低下し、空調装置1の消費電力量が増加する。そこで、空気調和システムは、上記で説明したように、このような運転を回避し、空調装置1の圧縮機21の運転容量を抑制することで、空調装置1の運転効率COPを高め、さらなる消費電力の少ない省エネルギー運転を行うことができる。
 具体的には、空気調和システムは、消費電力量の最小点で運転させるために、設定温度を時間間隔Δtごとに変更する場合、空調装置1の運転開始時から室内温度変化後にかけて、設定温度の時間間隔Δtを長くしていく制御をする。この結果、空気調和システムは、圧縮機21の運転容量を抑制することができつつ、消費電力量の最小点近傍で運転できるため、省エネルギ-運転を行うことができる。
 例えば、冷房運転又は暖房運転を開始後、時間の経過と共に、室内温度が変化していくため、室内温度と、外気温度との温度差が広がっていく。この結果、熱負荷Dが増加していくため、設定温度の時間間隔Δtが一定では、時間の経過と共に、室内温度と、設定温度との温度差が生じやすくなる。圧縮機21の運転容量は、室内温度と、設定温度との温度差に応じて定まっていくため、室内温度と、設定温度との温度差が広がるにつれ、圧縮機21の運転容量は増加する。よって、設定温度の時間間隔Δtが一定であれば、圧縮機回転数は、消費電力量最小点の動作点からずれる。そこで、空気調和システムは、時間の経過と共に、室内温度と、外気温度との温度差が広がるにつれ、時間間隔Δtを長くしていけば、消費電力量最小点の動作点を維持できるため、省エネルギー運転を行うことができる。
 さらに、空気調和システムは、省エネ制御では、設定温度が目標温度に到達したら、通常制御に切り替えるので、室内温度が目標温度に到達する前後では、圧縮機回転数をそれぞれ最適な動作点で運転できるので、空調装置1の消費電力量を削減することができる。また、空気調和システムは、省エネ制御では、室内温度を変化させることを前提としているため、熱負荷Dと比べて大きい能力Qを出させているが、室内温度を一定に保ちたい場合には、熱負荷Dを同等の能力Qで運転させればよいため、通常制御に切り替えることで能力過多を防いでいる。
 また、空気調和システムは、省エネ制御では、予め定めた時刻になった場合に通常制御に切り替える動作をすれば、省エネ制御と、通常制御との切り替えタイミングを明確にすることができる。
 また、空気調和システムは、使用者で定められた時刻と比べて前に省エネ制御を実行するタイマー予約運転を行う場合、家屋3の入室時には冷房運転又は暖房運転が実施されているため、使用者が部屋に入室したときの快適性を向上させることができる。
 また、省エネ制御実施時には、外部からの熱侵入に起因する熱負荷と比べ、室内空間71の躯体を設定温度まで冷却するのに要する熱のほうが大きい。よって、省エネ制御を適切に実施するために、躯体の熱量を処理できているか否かを判定することが重要となる。例えば、室内温度を判定基準とした場合、躯体と比べて熱容量が少ないため、空調装置1の応答結果が早く表れる。よって、躯体がまだ高温であったとしても、室内空間71が十分に冷却されたと判定される虞がある。そこで、空気調和システムは、赤外線センサ43を用いて躯体温度を検知し、躯体温度が設定温度となるように省エネ制御を行えば、さらに快適性の高い運転を実現することができる。
 また、睡眠中の人又は小さい子供等のようにリモートコントローラー55を操作できない状態の人が室内空間71に存在する場合、タイマー運転が自動的に働くと、暑さ又は寒さ等で健康を損ねる虞がある。そこで、空気調和システムは、目標温度の範囲を限定すれば、そのような事態を回避することができ、同時に、冷房での冷やしすぎ又は暖房での暖めすぎを防ぐことができることで省エネ性を向上させることができる。
 また、空気調和システムは、電流制限値を設定すれば、使用者の意図をさらに制御に反映させることができ、狙い通りに消費電力を抑制できることで省エネ性を向上させることができる。
 また、タイマー予約は使用者が不在の場合に空調装置1の状態が確認できないが、空気調和システムは、タイマー予約の開始前に使用者に確認する動作を行えば、安全性を向上させることができる。また、使用者の帰宅時間がいつもと変わったとしても、空気調和システムは、タイマー予約の開始前に使用者に確認する動作を行えば、運転を回避することができるため、電力を浪費することを防ぐことができ、省エネ性を向上させることができる。
 また、空気調和システムは、省エネタイマー制御を運転開始した後、予め定めた時間が経過しても使用者の在室、すなわち、使用者の帰宅が検知されなかった場合、設定温度を変更したり、空調装置1を停止したりすれば、急な用事で使用者の帰宅が予定と比べて遅れたとしても、使用者の不在時に、無駄な運転を回避することができ、空調装置1の消費電力量を削減することができる。
 以上、本実施の形態1において、圧縮機21を備える空調装置1を制御する空気調和システムであって、空調装置1を制御する制御部を備え、制御部は、通常制御と、通常制御と比べて消費電力量を低減させる省エネ制御と、を切り替えて空調装置1を制御するものであって、通常制御の場合、室内温度と、設定温度との差に応じて圧縮機21の回転数を制御し、省エネ制御の場合、設定温度と、設定温度に対応した最小の消費電力量となる圧縮機21の回転数と、を紐付けした状態で、設定温度を段階的に変更する空気調和システムが構成される。
 上記構成で、設定温度と、最小の消費電力となる圧縮機21の回転数と、を紐付けした状態で、設定温度を段階的に変更することができる。よって、空気調和システムは、余分に使われる消費電力量を削減する。したがって、空気調和システムは、空調装置1の運転を開始してから室内温度が目標温度に到達するまでの合計の消費電力量を大幅に削減することができる。この結果、空気調和システムは、空調装置1の運転効率を高めることで、消費電力の少ない省エネルギー運転を行うことができる。
 また、本実施の形態1において、制御部は、省エネ制御の場合、設定温度の増減幅である温度の増減幅を設定し、設定温度を、増減幅ごとに変更し、増減幅に対応する時間間隔Δtを、増減幅に対応する熱負荷ごとに設定し、設定温度と、時間間隔Δtとが紐付けされた状態で、時間間隔Δtを段階的に大きな値に設定する。
 また、本実施の形態1において、熱負荷は、外気温度と、室内温度との温度差が大きくなるにつれ、増加するものであって、制御部は、熱負荷が増加するにつれ、時間間隔Δtを段階的に大きな値に設定する。
 また、本実施の形態1において、制御部は、省エネ制御に対応する目標温度を設定し、省エネ制御で空調装置1を運転中、設定温度が目標温度に到達した場合、通常制御に切り替える。
 また、本実施の形態1において、制御部は、通常制御を開始する指定時刻が予め設定され、省エネ制御で空調装置1を運転中、現在時刻が指定時刻に到達した場合、通常制御に切り替える。
 また、本実施の形態1において、制御部は、空調装置1の制御対象空間に在室を開始する在室開始時間が予め設定された場合、在室開始時間と、時間間隔Δtの合計時間とに基づいて、予冷又は予暖を開始する予冷予暖開始時刻を決定し、予冷予暖開始時刻に省エネ制御の実行を開始する。
 また、本実施の形態1において、制御部は、物体の放射エネルギーを検知する赤外線センサ43が設けられている場合、赤外線センサ43の検知結果に基づいて、室内温度を求める。
 また、本実施の形態1において、制御部は、設定温度を整数値に設定する。
 また、本実施の形態1において、制御部は、省エネ制御の場合、設定温度の上限値を、設定温度の上限値と比べて下げた目標上限値に設定し、設定温度の下限値を、設定温度の下限値と比べて上げた目標下限値に設定する。
 また、本実施の形態1において、制御部は、省エネ制御の場合、空調装置1に供給する電流の上限値を、電流の上限値と比べて下げた制限上限値に設定する。
 また、本実施の形態1において、制御部は、省エネ制御を開始する場合、運転開始を通知する運転開始通知又は運転開始の許可を求める許可判定要求を、空調装置1の使用者に送信する。
 また、本実施の形態1において、制御部は、省エネ制御の開始時から予め設定された時間までの待ち時間が予め設定され、制御対象空間に人の存否を検知する人感センサ44が設けられている場合、省エネ制御を実行中、人感センサ44の検知結果と、待ち時間とに基づいて、設定温度の変更又は空調装置1の停止を実行する。
 また、本実施の形態1において、制御部は、制御対象空間における人の存否の判定情報を含む在室情報に基づいて、人の存否を判断するものであって、在室情報は、空調装置1の使用者で設定された設定値又は過去の情報からの推定値を含み、過去の情報は、空調装置1に各種指令を送信するリモートコントローラー55の操作履歴、電気機器の使用履歴、消費電力量に関する電力情報、人感センサ44の検知結果、ドアの開閉情報、又は空調装置1の使用者の位置情報を含む。
 以上の説明から、空気調和システムは、空調装置1の運転を開始してから室内温度が目標温度に到達するまでの合計の消費電力量を特に顕著に削減することができる。したがって、空気調和システムは、空調装置1の運転効率を特に顕著に高めることで、消費電力の少ない省エネルギー運転を特に顕著に行うことができる。
実施の形態2.
 実施の形態1との相違点は、HEMSを空気調和システムの制御対象とする点である。具体的には、実施の形態1では、空調装置制御モジュール90は、空調装置1を制御対象としていた。そこで、実施の形態2では、空調装置制御モジュール90は、空調装置1の他に、HEMSを制御対象に加える。よって、実施の形態2では、HEMSの制御と、空調装置制御モジュール90の制御とが連係して行われることで、余分に使われる消費電力量をさらに削減する。まず、実施の形態2におけるHEMSについて説明する。図18は、本発明の実施の形態2における空気調和システムの制御対象であるHEMSの概略構成の一例を示す図である。
<HEMSの構成>
 図18に示すように、HEMSは、図1に示す家屋3には、空調装置1の室内機13、端末229、IHクッキングヒーター231、レンジグリル233、及び照明235等の家電機器である電気機器が設けられている。また、HEMSは、図1に示す家屋3の屋外には、蓄電池241を搭載した電気自動車211、パワーコンディショナー213、太陽電池アレイ215、分電盤219、及び電力計測器221等の電気機器が設けられている。各電気機器は、電源線251で接続されている。また、電気機器のうち、家電機器は、電力会社217から供給される電力、太陽電池アレイ215から供給される電力、又は電気自動車211に搭載された蓄電池241から供給される電力で駆動し、電力計測器221で消費電力が測定される。
 電気機器のうち、家電機器は、HEMSコントローラー223と通信線253で接続されているため、HEMSコントローラー223は、家電機器の運転情報を取得したり、家電機器へ制御指令を送信することができる。例えば、HEMSコントローラー223は、空調装置1の運転指示、空調装置1の停止指示、空調装置1の冷房、暖房、送風、及び除湿等の運転モードの変更指示、又は空調装置1の設定温度、風量、及び風向きの変更指示のようなリモートコントローラー55の操作で得られる指示を空調装置1に送ることができる。また、例えば、HEMSコントローラー223は、空調装置1を制御する空調装置制御モジュール90と各種信号を送受信する。よって、HEMSコントローラー223は、空調装置制御モジュール90と連係して各種処理を実行することで、余分な消費電力量を削減することができる。
 また、HEMSコントローラー223は、パワーコンディショナー213及び電力計測器221と通信線253で接続されているため、パワーコンディショナー213及び電力計測器221の電力情報を取得することができる。また、HEMSコントローラー223は、通信機225と接続され、通信機225が公衆回線227と接続されているため、外部と各種データの送受信をすることができる。例えば、通信装置228が、公衆回線227を介して、HEMSコントローラー223と通信を行うことができる。通信装置228は、使用者が操作する機器であって、例えば、携帯電話、スマートフォン、タブレット、パソコン、又はカーナビ等である。
 HEMSが構成されているシステム内での各種通信は、有線であっても無線であってもよく、通信形態は特に限定されない。また、上記で説明したHEMSの構成は一例を示し、特にこれに限定されない。
<遠隔操作>
 遠隔から通信装置228を用いることで、空調装置1の省エネ制御を実行する一例について説明する。使用者は、携帯電話、スマートフォン、タブレット、パソコン、又はカーナビ等の通信装置228を所有していると想定する。また、家屋3の内側である宅内又は家屋3の外側である宅外の何れかに存在する通信装置228が、公衆回線227を介して各種データをHEMSコントローラー223へ向けて送信したと想定する。
 この場合、通信機225は、通信装置228から送信された各種データを受信し、受信した各種データをHEMSコントローラー223に供給する。また、HEMSコントローラー223は、必要に応じて、各種データに対する返信をする場合、通信機225を介して、通信装置228に返信がなされる。
 よって、HEMSコントローラー223を使用者が直接操作する場合と同様に、遠隔からHEMSコントローラー223が保有する各種情報を取得したり、遠隔から各種操作指令をすることができる。したがって、通信装置228から家電機器に操作指令を送信したり、家電機器の運転情報を通信装置228で受信したり、パワーコンディショナー213又は電力計測器221の電力情報を通信装置228で受信したりすることができる。
 例えば、通信装置228がスマートフォンであると想定する。この場合、通信装置228の画面から空調装置1の運転指示、空調装置1の停止指示を行うことができる。また、通信装置228の画面から空調装置1の冷房運転、暖房運転、送風運転、又は除湿運転というような運転モードの選択をすることができる。また、通信装置228の画面から空調装置1の設定温度、風量、又は風向の変更というようなリモートコントローラー55の操作のような指令を送ることができる。
 また、通信装置228の画面から、運転若しくは停止、冷房、暖房、送風、及び除湿というような運転モード、並びに設定温度、風量、若しくは風向き等の空調装置1の空調情報を確認できる。また、通信装置228の画面から、空調装置1で計測している吸込空気温度(室内温度)、室内湿度、又は外気温度というような空調情報を表示して確認することができる。例えば、空調装置1の状態を確認した結果、既に空調装置1が動いていた場合、他の家族等が使用していると想定し、遠隔からの操作をやめる判断をしたり、空調情報を確認して室内温度が30℃を超えていたら遠隔から冷房をつけるといった判断をすることができる。
 また、上記で説明したHEMSの構成を前提とすれば、通信装置228から省エネモードを選択して直ちに空調装置1を起動したり、通信装置228から省エネタイマーの在室開始時刻(帰宅時間)を通信装置228から変更したり、通信装置228から予冷予暖開始時刻を指令したりすることができる。
 また、上記で説明したHEMSの構成を前提とし、通信装置228にGPSが搭載されていると想定した場合、通信装置228は、現在値情報と、家の位置情報とを比較し、予冷予暖開始時刻を自動的に判断してもよい。例えば、通信装置228がGPSを搭載したカーナビ又は携帯電話であると想定すると、HEMSコントローラー223は、通信装置228から運転指令があったとき、現在地が家から30km離れていて、予想到着時間が1時間後であったと判断した場合、直ちに省エネ制御を行わない。
 具体的には、HEMSコントローラー223は、省エネ制御での冷房を空調装置1に直ちに行わせず、現在地と家との距離が予め定めた距離内に入った場合又は予想到着時間が予め定めた時間内になった場合、省エネ制御を空調装置1に実行させる。また、例えば、HEMSコントローラー223は、空調装置1の目標温度、室内温度、又は外気温度から自動的に求めた最適な予冷予暖時間が20分の場合、予想到着時間が20分になった時点で省エネ制御を空調装置1に開始させる。
<空調装置1の選択方法>
 なお、HEMSに空調装置1が複数台ある場合を想定すると、通信装置228から空調装置1の操作指令をするときに、複数台の空調装置1のうち、どの空調装置1を操作対象とするかを選択する必要がある。例えば、通信装置228の操作指令用のアプリケーションに空調装置1を選択するボタン又は選択画面等を表示させてもよい。この場合、1度選択された空調装置1が記憶され、次回操作時には自動的に記憶された空調装置1が操作対象となるようにしてもよい。また、通信装置228ごとに、操作対象となる空調装置1を予め固定登録してもよい。また、通信装置228と、空調装置1との組み合わせ情報は、HEMSコントローラー223で記憶させてもよく、通信装置228で記憶させてもよい。
 また、帰宅後の生活パターンを日常的にHEMSコントローラー223が記憶すれば、通信装置228から操作指令があったときには、HEMSコントローラー223は、生活パターンに応じて自動的に空調装置1を選択してもよい。例えば、生活パターンとしては、料理をする、食事をする、テレビを見る、入浴する、眠る、パソコン又は読書をする等があり、それらの生活パターンに応じて、キッチン、ダイニング、リビング、お風呂場、寝室、及び書斎にそれぞれの空調に対応する空調装置1が選択対象となればよい。
 また、使用者が複数存在する場合、使用者ごとに生活パターンをHEMSコントローラー223に記憶させておけば、HEMSコントローラー223は、通信装置228の識別情報から使用者を特定し、特定した使用者に対応する生活パターンに基づいて、該当する空調装置1を制御することができる。
 また、HEMSコントローラー223で使用者の帰宅を検知するには、通信装置228が携帯電話であると想定すると、HEMSコントローラー223は、携帯電話からの各種情報、例えば、Wi-Fi(登録商標)接続有無又はGPSの位置情報で使用者の帰宅を判断し、携帯電話の識別で使用者を特定してもよい。
 また、HEMSコントローラー223は、インターホン(図示省略)のカメラで顔認識をすることで使用者を特定してもよい。また、HEMSコントローラー223は、使用者の帰宅検知後、家電機器の消費電力から生活パターンを分析したり、人感センサ44の検知結果から生活パターンを分析したりして、各種情報を日常的に蓄積することができる。人感センサ44は、物体の放射エネルギーを検知するため、赤外線、超音波、及び可視光等の検出度合いに応じて、生活パターンを分析してもよい。なお、赤外線、超音波、及び可視光等の検出に用いるセンサは、人感センサ44である必要はなく、これらのセンシングを行うことができるセンサであればよく、その設置場所も特に特定されず、家屋3の壁、家屋3の天井、又は家屋3の床等に設置されてもよい。
 次に、空気調和システムの機能構成の一例を説明するために、空気調和システムの機能ブロック例として、空調装置制御モジュール90、HEMS制御モジュール310、仮想HEMSモジュール351、及び仮想リモートコントローラーモジュール352について図19を用いて説明する。図19は、本発明の実施の形態2におけるシステムの空調装置1を制御する空調装置制御モジュール90、HEMSコントローラー223、及び通信装置228のそれぞれの機能ブロックの一例を示す図である。
 図19に示すように、HEMSコントローラー223の機能ブロックとしては、送受信部301、記憶部302、出力部303、入力部304、及び制御部305が設けられている。記憶部302は、HEMS制御モジュール310が設けられている。HEMS制御モジュール310は、生活パターンデータ群311、運転情報データ群312,電力情報データ群313、及び管理部314が設けられている。生活パターンデータ群311は、複数の使用者生活パターンデータと、複数の対象空調装置データとが紐付けされている。
 また、通信装置228の機能ブロックとしては、送受信部331、記憶部332、出力部333、入力部334、及び制御部335が設けられている。記憶部332には、仮想HEMSモジュール351及び仮想リモートコントローラーモジュール352が設けられている。仮想HEMSモジュール351には、設定確認部361、空気調和情報確認部362、現在地推定部363、位置情報データ群364、設定入力部365が設けられている。設定入力部365には、空調装置選択部371及び仮想リモートコントローラー呼出部372が設けられている。仮想リモートコントローラーモジュール352には、運転モード設定部367が設けられている。運転モード設定部367には、通常制御モード設定部375、省エネ制御モード設定部376、及び省エネタイマー制御モード設定部377が設けられている。
 なお、空調装置制御モジュール90、HEMS制御モジュール310、仮想HEMSモジュール351、及び仮想リモートコントローラーモジュール352の何れかが、本発明における制御部に相当する。また、空調装置制御モジュール90、HEMS制御モジュール310、仮想HEMSモジュール351、及び仮想リモートコントローラーモジュール352の全てが、本発明における制御部に相当してもよい。この場合には、空調装置制御モジュール90、HEMS制御モジュール310、仮想HEMSモジュール、及び仮想リモートコントローラーモジュール352が互いに連係することで、一つのシステムとして有機的に機能する。
 なお、実施の形態1においては、リモートコントローラー55で省エネモード等の運転モードの選択、運転開始指令の送信、及びタイマー予約が行われる一例について説明したが、実施の形態2においては、リモートコントローラー55の他に、例えば、HEMSコントローラー223、通信装置228、及び端末229等で同様の動作が行われてもよい。また、各種動作は、計測制御装置51、計測制御装置53、リモートコントローラー55、HEMSコントローラー223、通信装置228、及び端末229等の何れが行ってもよい。
 次に、HEMSコントローラー223を制御主体とした場合の空気調和システムの動作例について、図20及び図21を用いてそれぞれ説明する。
図20は、本発明の実施の形態2における空気調和システムの制御例のうち、距離又は予想到着時間に基づいて実行するHEMS制御処理の一例を説明するフローチャートである。
(ステップS61)
 空気調和システムは、運転指令があるか否かを判定する。空気調和システムは、運転指令がある場合、ステップS62に進む。一方、空気調和システムは、運転指令がない場合、ステップS61に戻る。
(ステップS62)
 空気調和システムは、各種フラグを読み込む。例えば、距離フラグは、運転指令の送信元と、運転指令の送信先との距離が閾値距離内であるか否かを判定する動作をするか否かを規定するものと想定する。また、時間フラグは、予想到着時間が閾値時間内であるか否かを判定する動作をするか否かを規定するものと想定する。
(ステップS63)
 空気調和システムは、距離フラグが1であるか否かを判定する。空気調和システムは、距離フラグが1である場合、ステップS64に進む。一方、空気調和システムは、距離フラグが1でない場合、ステップS65に進む。
(ステップS64)
 空気調和システムは、運転指令の送信元と運転指令の送信先である家との距離が閾値距離内であるか否かを判定する。空気調和システムは、運転指令の送信元と運転指令の送信先である家との距離が閾値距離内である場合、ステップS67に進む。一方、空気調和システムは、運転指令の送信元と運転指令の送信先である家との距離が閾値距離内でない場合、処理を終了する。
(ステップS65)
 空気調和システムは、時間フラグが1であるか否かを判定する。空気調和システムは、時間フラグが1である場合、ステップS66に進む。一方、空気調和システムは、時間フラグが1でない場合、処理を終了する。
(ステップS66)
 空気調和システムは、予想到着時間が閾値時間内であるか否かを判定する。空気調和システムは、予想到着時間が閾値時間内である場合、ステップS67に進む。一方、空気調和システムは、予想到着時間が閾値時間内でない場合、処理を終了する。
(ステップS67)
 空気調和システムは、省エネ制御処理を実行し、処理を終了する。なお、省エネ制御処理は、図11で説明したステップS11~ステップS20の処理に相当する。
 図21は、本発明の実施の形態2における空気調和システムの制御例のうち、生活パターンに基づいて実行するHEMS制御処理の一例を説明するフローチャートである。
(ステップS81)
 空気調和システムは、運転指令があるか否かを判定する。空気調和システムは、運転指令がある場合、ステップS82に進む。一方、空気調和システムは、運転指令がない場合、ステップS81に戻る。
(ステップS82)
 空気調和システムは、運転指令に含まれる識別コードから該当する使用者を特定する。識別コードは、例えば、通信装置228が携帯電話であると想定すると、SIM(Subscriber Identity Module)カードに記憶されている固有のID番号を用いればよい。なお、識別コードは特に限定されない。
(ステップS83)
 空気調和システムは、該当する使用者に対応する生活パターンデータを取得する。
(ステップS84)
 空気調和システムは、取得した生活パターンデータに対応する空調装置1を特定する。
(ステップS85)
 空気調和システムは、該当する使用者の帰宅を検知したか否かを判定する。空気調和システムは、該当する使用者の帰宅を検知した場合、ステップS86に進む。一方、空気調和システムは、該当する使用者の帰宅を検知しない場合、ステップS85に戻る。
(ステップS86)
 空気調和システムは、取得した生活パターンに基づいて取得した生活パターンに対応する空調装置1を制御し、処理を終了する。
 なお、上記の説明では、HEMSコントローラー223を制御主体とした場合の空気調和システムの動作例について説明したが、制御主体は特にこれに限定されない。例えば、HEMSコントローラー223で取得した各種データを取得できる機器であれば、制御主体として動作してもよい。例えば、室内機13が制御主体となってもよい。また、例えば、端末229が制御主体となってもよい。また、例えば、通信装置228が制御主体となってもよい。つまり、制御主体は特に限定されるものではない。
<効果>
 上記の説明から、HEMSは、空調装置1の省エネ制御を他の家電機器が多く使われる時間帯を避けて実施することで、家庭全体の消費電力のピークを下げて平準化でき、社会的な電力不足の要請にも節電で貢献することができる。また、HEMSは、家屋3に設置された太陽電池アレイ215又は蓄電池241の電力を家電機器に供給する場合も電力の平準化で効率良く電力を使用することができる。
 そして、HEMSは、HEMSコントローラー223と、空調装置制御モジュール90とが互いに連係して各種処理を実行する。また、HEMSは、HEMSコントローラー223と、空調装置制御モジュール90と、仮想HEMSモジュール351と、仮想リモートコントローラーモジュール352とが互いに連係して各所処理を実行する。よって、HEMSは、家庭全体の消費電力を削減できつつ、特に、空調装置1の余分な消費電力量を削減することができる。したがって、HEMSは、システム全体として、消費電力をさらに削減することができる。
 また、HEMSコントローラー223等の外部の制御装置から空調装置1を制御する場合、圧縮機回転数の指令と比べ、設定温度の指令のほうが制御が容易になり、既存の空調装置1に適用しやすい。
 また、HEMSコントローラー223等の外部の制御装置から空調装置1を制御する場合、どのメーカーの空調装置1であっても、運転停止、運転モードの変更、及び設定温度の変更等の操作が共通にできるように、ECHONET Lite(登録商標)等の推奨標準インタフェース規格がある。このような標準インタフェースでは、設定温度の変更は、1℃の刻み幅であるため、省エネ制御の設定温度を整数値に設定することで、空調装置1のメーカーを問わずに上記で説明した省エネ制御を適用することができるため、汎用性を向上させることができる。
 また、通信装置228から空調装置1が遠隔操作をすることができるため、帰宅前に運転を開始し、帰宅したときに部屋を快適な温度にできる。よって、快適性を向上させることができる。帰宅時間が日々異なる場合であっても、適切な時間に運転を開始することができるため、家屋3に設けられているリモートコントローラー55からの予約運転と比べ、利便性を向上させることができると共に、不在時の無駄な運転を回避することで、消費電力量を削減することができる。
 また、空調装置1の操作に不慣れな人が家屋3に存在したり、ペットを家屋3に残して外出中の場合には、使用者が遠隔操作をすることで、室内空間71の室内環境を管理することができ、利便性を向上させることができる。また、通信装置228から空調装置1の状態又は空調情報を閲覧可能であるため、遠隔から運転操作をするか否かの判断基準として参照することができ、利便性を向上させることができる。また、通信装置228の位置情報から自動的に予冷制御の開始を判断することができるため、さらに利便性を向上させることができると共に、不在時の無駄な運転を回避し、消費電力量を削減することができる。
 また、HEMSに空調装置1が複数台設けられている場合、通信装置228から自由に操作対象となる空調装置1を選択できるので、汎用性を向上させることができる。また、複数台の空調装置1のうち、自動的に操作対象となる空調装置1が決定されれば、使用者が毎回操作のたびに選択する必要がなくなるため、利便性を向上させることができる。
 また、HEMSに空調装置1が複数台設けられ、帰宅後の生活パターンに応じて複数台の空調装置1のうち、自動的に操作対象となる空調装置1が決定される場合、使用者が空調装置1を選択する必要がなくなり、利便性を向上させることができる。
 以上、本実施の形態2において、制御部は、空調装置1が複数台設けられている場合、空調装置1の使用者の操作履歴に基づいて、複数台の空調装置1のうち、該当する空調装置1を選択する。
 また、本実施の形態2において、制御部は、空調装置1が複数台設けられている場合、空調装置1の使用者の生活パターンに基づいて、複数台の空調装置1のうち、該当する空調装置1を選択する。
 上記構成で、空調装置1を使用する際の利便性を向上させることができる。
実施の形態3.
 実施の形態1及び実施の形態2では、空気調和システムの構成例及び動作例について説明した。実施の形態3においては、空気調和システムの実装形態例について、図22を用いて説明する。
 図22は、本発明の実施の形態3における記録媒体401、403、405又はサーバー装置411から各種制御モジュールが各種装置へ搭載される一例を示す図である。図22に示すように、記録媒体401には、空調装置制御モジュール90が記憶され、空調装置1に記録媒体401がマウントされ、空調装置制御モジュール90が空調装置1にインストールされることで、上記で説明した各種動作を実行するシステムが構成される。
 また、記録媒体403には、HEMS制御モジュール310が記憶され、HEMSコントローラー223に記録媒体403がマウントされ、HEMS制御モジュール310がHEMSコントローラー223にインストールされることで、上記で説明した各種動作を実行するシステムが構成される。
 また、記録媒体405には、仮想HEMSモジュール351及び仮想リモートコントローラーモジュール352が記憶され、通信装置228に記録媒体405がマウントされ、仮想HEMSモジュール351及び仮想リモートコントローラーモジュール352が通信装置228にインストールされることで、上記で説明した各種動作を実行するシステムが構成される。
 また、サーバー装置411がディスク装置等を備え、空調装置制御モジュール90、HEMS制御モジュール310、仮想HEMSモジュール351及び仮想リモートコントローラーモジュール352がディスク装置等に格納されていると想定する。この場合、例えば、サーバー装置411は、搬送波に空調装置制御モジュール90、HEMS制御モジュール310、仮想HEMSモジュール351及び仮想リモートコントローラーモジュール352を重畳させて、空調装置1、HEMSコントローラー223、及び通信装置228にアップロードする。空調装置1、HEMSコントローラー223、及び通信装置228は、サーバー装置411からアップロードされている空調装置1、HEMSコントローラー223、及び通信装置228をダウンロードし、インストールすることで、上記で説明した各種動作を実行するシステムが構成される。
 また、例えば、通信装置228の記憶部332の論理的な記憶階層に着目すると、各種モジュールをインストール後には、OS(Operating System)421、API(Application Interface)422、仮想HEMSモジュール351、仮想リモートコントローラーモジュール352が構成されている。つまり、上記で説明した各種機能を、OS421が分担して実現したり、OS421と、各種アプリケーションとの協働で実現する場合等には、上記で説明したように、OS421以外の部分のみを媒体に格納して配布し、また、ダウンロードしてもよい。
 なお、記録媒体401、403、405は、磁気ディスク(フレキシブルディスクを含む)、CD-ROM(Compact Disk Read-Only Memory)及びDVD(Digital Versatile Disk)を含む光ディスク、MO(Magneto-Optical Disk)等の光磁気ディスク、半導体メモリ等から構成されるリムーバブルメディア、又はハードディスク等のようなコンピュータ読み取り可能な記録媒体である。
<効果>
 上記の説明から、記録媒体401、403、405又はサーバー装置411から各種モジュールをインストールすることができる。
 以上、本実施の形態3において、制御部の各種機能が記録媒体401、403、405に記憶された場合、記録媒体401、403、405を介して、制御部の各種機能が実装され、制御部の各種機能が通信媒体上で転送される場合、通信媒体を介して、制御部の各種機能が実装された。
 上記構成で、記録媒体401、403、405又はサーバー装置411から各種モジュールをインストールすることができる。
 1 空調装置、3 家屋、11 室外機、13 室内機、21 圧縮機、22 四方弁、23 室外熱交換器、24 膨張弁、25 室内熱交換器、31 室外送風機、33 室内送風機、41 室内温度センサ、43 赤外線センサ、44 人感センサ、51、53 計測制御装置、55 リモートコントローラー、61 冷媒配管、63 通信線、71 室内空間、72 室外空間、90 空調装置制御モジュール、91 通常制御部、92 省エネ制御部、93 省エネタイマー制御部、101 比例制御部、102 積分制御部、103 微分制御部、111 第1演算部、113 第2演算部、115 第3演算部、119 第4演算部、121 設定温度制御部、141 第5演算部、142 第6演算部、143 第7演算部、144 第8演算部、211 電気自動車、213 パワーコンディショナー、215 太陽電池アレイ、217 電力会社、219 分電盤、221 電力計測器、223 HEMSコントローラー、225 通信機、227 公衆回線、228 通信装置、229 端末、231 IHクッキングヒーター、233 レンジグリル、235 照明、241 蓄電池、301、331 送受信部、302、332 記憶部、303、333 出力部、304、334 入力部、305、335 制御部、310 HEMS制御モジュール、311 生活パターンデータ群、312 運転情報データ群、313 電力情報データ群、314 管理部、351 仮想HEMSモジュール、352 仮想リモートコントローラーモジュール、361 設定確認部、362 空気調和情報確認部、363 現在値推定部、364 位置情報データ群、365 設定入力部、367 運転モード設定部、371 空調装置選択部、372 仮想リモートコントローラー呼出部、375 通常制御モード設定部、376 省エネ制御モード設定部、377 省エネタイマー制御モード設定部、401、403、405 記録媒体、411 サーバー装置、421 OS、422 API。

Claims (16)

  1.  圧縮機を備える空調装置を制御する空気調和システムであって、
     前記空調装置を制御する制御部を備え、
     前記制御部は、
     通常制御と、前記通常制御と比べて消費電力量を低減させる省エネ制御と、を切り替えて前記空調装置を制御するものであって、
     前記通常制御の場合、室内温度と、設定温度との差に応じて前記圧縮機の回転数を制御し、
     前記省エネ制御の場合、設定温度と、該設定温度に対応した最小の消費電力量となる前記圧縮機の回転数と、を紐付けした状態で、前記設定温度を段階的に変更する
    ことを特徴とする空気調和システム。
  2.  前記制御部は、
     前記省エネ制御の場合、
     前記設定温度の増減幅である温度の増減幅を設定し、
     前記設定温度を、前記増減幅ごとに変更し、
     前記増減幅に対応する時間間隔を、前記増減幅に対応する熱負荷ごとに設定し、
     前記設定温度と、前記時間間隔とが紐付けされた状態で、前記時間間隔を段階的に大きな値に設定する
    ことを特徴とする請求項1に記載の空気調和システム。
  3.  前記熱負荷は、外気温度と、前記室内温度との温度差が大きくなるにつれ、増加するものであって、
     前記制御部は、
     前記熱負荷が増加するにつれ、前記時間間隔を段階的に大きな値に設定する
    ことを特徴とする請求項2に記載の空気調和システム。
  4.  前記制御部は、
     前記省エネ制御に対応する目標温度を設定し、前記省エネ制御で前記空調装置を運転中、前記設定温度が前記目標温度に到達した場合、前記通常制御に切り替える
    ことを特徴とする請求項3に記載の空気調和システム。
  5.  前記制御部は、
     前記通常制御を開始する指定時刻が予め設定され、前記省エネ制御で前記空調装置を運転中、現在時刻が前記指定時刻に到達した場合、前記通常制御に切り替える
    ことを特徴とする請求項3に記載の空気調和システム。
  6.  前記制御部は、
     前記空調装置の制御対象空間に在室を開始する在室開始時間が予め設定された場合、
     前記在室開始時間と、前記時間間隔の合計時間とに基づいて、予冷又は予暖を開始する予冷予暖開始時刻を決定し、
     前記予冷予暖開始時刻に前記省エネ制御の実行を開始する
    ことを特徴とする請求項4又は5に記載の空気調和システム。
  7.  前記制御部は、
     物体の放射エネルギーを検知する第1センサが設けられている場合、
     前記第1センサの検知結果に基づいて、前記室内温度を求める
    ことを特徴とする請求項1~6の何れか一項に記載の空気調和システム。
  8.  前記制御部は、
     前記設定温度を整数値に設定する
    ことを特徴とする請求項1~7の何れか一項に記載の空気調和システム。
  9.  前記制御部は、
     前記省エネ制御の場合、
     前記設定温度の上限値を、前記設定温度の上限値と比べて下げた目標上限値に設定し、
     前記設定温度の下限値を、前記設定温度の下限値と比べて上げた目標下限値に設定する
    ことを特徴とする請求項1~8の何れか一項に記載の空気調和システム。
  10.  前記制御部は、
     前記省エネ制御の場合、
     前記空調装置に供給する電流の上限値を、前記電流の上限値と比べて下げた制限上限値に設定する
    ことを特徴とする請求項1~9の何れか一項に記載の空気調和システム。
  11.  前記制御部は、
     前記省エネ制御を開始する場合、
     運転開始を通知する運転開始通知又は運転開始の許可を求める許可判定要求を、前記空調装置の使用者に送信する
    ことを特徴とする請求項1~10の何れか一項に記載の空気調和システム。
  12.  前記制御部は、
     前記省エネ制御の開始時から予め設定された時間までの待ち時間が予め設定され、前記制御対象空間に人の存否を検知する第2センサが設けられている場合、
     前記省エネ制御を実行中、前記第2センサの検知結果と、前記待ち時間とに基づいて、前記設定温度の変更又は前記空調装置の停止を実行する
    ことを特徴とする請求項6~11の何れか一項に記載の空気調和システム。
  13.  前記制御部は、
     前記制御対象空間における人の存否の判定情報を含む在室情報に基づいて、人の存否を判断するものであって、
     前記在室情報は、
     前記空調装置の使用者で設定された設定値又は過去の情報からの推定値を含み、
     前記過去の情報は、
     前記空調装置に各種指令を送信するリモートコントローラーの操作履歴、電気機器の使用履歴、消費電力量に関する電力情報、前記第2センサの検知結果、ドアの開閉情報、又は前記空調装置の使用者の位置情報を含む
    ことを特徴とする請求項12に記載の空気調和システム。
  14.  前記制御部は、
     前記空調装置が複数台設けられている場合、
     前記空調装置の使用者の操作履歴に基づいて、複数台の前記空調装置のうち、該当する前記空調装置を選択する
    ことを特徴とする請求項1~13の何れか一項に記載の空気調和システム。
  15.  前記制御部は、
     前記空調装置が複数台設けられている場合、
     前記空調装置の使用者の生活パターンに基づいて、複数台の前記空調装置のうち、該当する前記空調装置を選択する
    ことを特徴とする請求項1~13の何れか一項に記載の空気調和システム。
  16.  前記制御部の各種機能が記録媒体に記憶された場合、前記記録媒体を介して、前記制御部の各種機能が実装され、
     前記制御部の各種機能が通信媒体上で転送される場合、前記通信媒体を介して、前記制御部の各種機能が実装された
    ことを特徴とする請求項1~15の何れか一項に記載の空気調和システム。
PCT/JP2013/073082 2013-08-29 2013-08-29 空気調和システム WO2015029177A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015533859A JP6091624B2 (ja) 2013-08-29 2013-08-29 空気調和システム
PCT/JP2013/073082 WO2015029177A1 (ja) 2013-08-29 2013-08-29 空気調和システム
EP13892371.9A EP3040633A4 (en) 2013-08-29 2013-08-29 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/073082 WO2015029177A1 (ja) 2013-08-29 2013-08-29 空気調和システム

Publications (1)

Publication Number Publication Date
WO2015029177A1 true WO2015029177A1 (ja) 2015-03-05

Family

ID=52585795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073082 WO2015029177A1 (ja) 2013-08-29 2013-08-29 空気調和システム

Country Status (3)

Country Link
EP (1) EP3040633A4 (ja)
JP (1) JP6091624B2 (ja)
WO (1) WO2015029177A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115108A (zh) * 2015-09-14 2015-12-02 苏州紫荆清远新能源汽车技术有限公司 一种基于can的电动汽车空调自动控制方法及装置
CN105676913A (zh) * 2016-04-13 2016-06-15 北京航天发射技术研究所 一种基于多线程独立调节可配置温控系统模拟方法
CN105912050A (zh) * 2016-04-13 2016-08-31 北京航天发射技术研究所 一种双模式自动保护动力源可切换调温控制方法
WO2017056403A1 (ja) * 2015-10-01 2017-04-06 パナソニックIpマネジメント株式会社 空調制御方法、空調制御装置及び空調制御プログラム
JP2017067427A (ja) * 2015-10-01 2017-04-06 パナソニックIpマネジメント株式会社 空調制御方法、空調制御装置及び空調制御プログラム
JP2017198428A (ja) * 2016-04-28 2017-11-02 ダイキン工業株式会社 ヒートポンプシステム及びこれを備えた電力制限システム
JP2018109461A (ja) * 2016-12-28 2018-07-12 パナソニック株式会社 空調システム
CN111649439A (zh) * 2020-05-08 2020-09-11 宁波奥克斯电气股份有限公司 一种空调控制方法
WO2020261506A1 (ja) * 2019-06-27 2020-12-30 ミノリソリューションズ株式会社 空調機集中制御装置
WO2022222606A1 (zh) * 2021-04-22 2022-10-27 青岛海尔空调器有限总公司 用于空调压缩机的控制方法及装置和空调器
US11525595B2 (en) 2019-03-18 2022-12-13 Daikin Industries, Ltd. System for determining operation condition of precooling operation/preheating operation of air conditioner
JP7446546B1 (ja) 2023-07-18 2024-03-08 三菱電機株式会社 制御装置、制御システム、制御方法、および、プログラム
JP7477904B2 (ja) 2022-09-07 2024-05-02 株式会社Fhアライアンス 空調システム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110192069B (zh) * 2016-11-16 2021-03-16 三菱电机株式会社 空调控制装置及空调控制方法
DE102017204122B4 (de) 2017-03-13 2020-07-16 Audi Ag Verfahren zum Betreiben eines Kältemittelkreislaufs für eine Fahrzeugklimaanlage
CN106885344A (zh) * 2017-04-01 2017-06-23 青岛海尔空调器有限总公司 空调控制方法及装置
CN107726550B (zh) * 2017-09-20 2019-10-01 青岛海尔空调器有限总公司 一种室内空气湿度推算方法及空调器
WO2020003373A1 (ja) * 2018-06-26 2020-01-02 三菱電機株式会社 空調管理装置および空調システム
AU2019422797B2 (en) * 2019-01-17 2022-07-14 Mitsubishi Electric Corporation Air conditioning control system
EP4019856A4 (en) * 2019-08-19 2022-08-17 Mitsubishi Electric Corporation INFORMATION PROCESSING DEVICE
JP6941819B2 (ja) * 2019-09-24 2021-09-29 パナソニックIpマネジメント株式会社 空気調和機の運転を開始させる方法および制御装置
CN113847715B (zh) * 2020-06-28 2024-01-02 中兴通讯股份有限公司 基站的空调调控的方法以及装置、电子设备、介质
CN112083746B (zh) * 2020-09-25 2022-01-28 陕西科技大学 一种智能电网系统
CN112665255A (zh) * 2020-12-28 2021-04-16 江苏拓米洛环境试验设备有限公司 一种制冷系统多间室顶层模式控制方法、装置及制冷系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161338A (ja) 1986-12-24 1988-07-05 Hitachi Ltd 空気調和機の前倒し運転制御方法
JPH1114119A (ja) * 1997-06-25 1999-01-22 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
JPH11201523A (ja) * 1997-11-11 1999-07-30 Mitsubishi Electric Corp 空気調和装置及びその制御方法
JP2000257939A (ja) * 1999-03-05 2000-09-22 Hitachi Ltd 空気調和装置
JP2010276212A (ja) * 2009-05-26 2010-12-09 Panasonic Electric Works Co Ltd 設備制御システム及び設備制御装置
JP2011144956A (ja) * 2010-01-12 2011-07-28 Mitsubishi Electric Corp 空気調和機の制御装置
JP2011153735A (ja) * 2010-01-26 2011-08-11 Mitsubishi Heavy Ind Ltd 空気調和システム及びその制御方法並びに制御プログラム
JP2012167924A (ja) * 2012-05-07 2012-09-06 Daikin Industries Ltd 空気調和機
JP2012233689A (ja) * 2012-08-03 2012-11-29 Mitsubishi Electric Corp 制御装置、制御方法及びプログラム
JP2013072568A (ja) * 2011-09-27 2013-04-22 Toshiba Corp 空気調和機
JP2013164187A (ja) * 2012-02-10 2013-08-22 Daikin Industries Ltd 空気調和装置のリモコン

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144531A (ja) * 1993-11-22 1995-06-06 Sanden Corp 自動車用電動空気調和装置の制御装置
JPH07332730A (ja) * 1994-06-02 1995-12-22 Toshiba Corp 空気調和機
JP2001336801A (ja) * 2000-05-30 2001-12-07 Hitachi Ltd 空気調和機制御システム
JP2002349940A (ja) * 2001-05-30 2002-12-04 Matsushita Electric Ind Co Ltd 空気調和システム
US8141791B2 (en) * 2009-03-26 2012-03-27 Howard Rosen Energy management improvement for a heating system with reduced setpoint temperature during no occupancy based upon historical sampling of room thermal response with highest power heat applied
JP5300793B2 (ja) * 2010-06-11 2013-09-25 三菱電機株式会社 空気調和機
JP4993014B2 (ja) * 2010-09-30 2012-08-08 ダイキン工業株式会社 コントローラおよび空調処理システム
JP5701137B2 (ja) * 2011-04-18 2015-04-15 三菱電機株式会社 空調装置、空調方法及びプログラム
JP2013088087A (ja) * 2011-10-21 2013-05-13 Hitachi Appliances Inc 空気調和機

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63161338A (ja) 1986-12-24 1988-07-05 Hitachi Ltd 空気調和機の前倒し運転制御方法
JPH1114119A (ja) * 1997-06-25 1999-01-22 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
JPH11201523A (ja) * 1997-11-11 1999-07-30 Mitsubishi Electric Corp 空気調和装置及びその制御方法
JP2000257939A (ja) * 1999-03-05 2000-09-22 Hitachi Ltd 空気調和装置
JP2010276212A (ja) * 2009-05-26 2010-12-09 Panasonic Electric Works Co Ltd 設備制御システム及び設備制御装置
JP2011144956A (ja) * 2010-01-12 2011-07-28 Mitsubishi Electric Corp 空気調和機の制御装置
JP2011153735A (ja) * 2010-01-26 2011-08-11 Mitsubishi Heavy Ind Ltd 空気調和システム及びその制御方法並びに制御プログラム
JP2013072568A (ja) * 2011-09-27 2013-04-22 Toshiba Corp 空気調和機
JP2013164187A (ja) * 2012-02-10 2013-08-22 Daikin Industries Ltd 空気調和装置のリモコン
JP2012167924A (ja) * 2012-05-07 2012-09-06 Daikin Industries Ltd 空気調和機
JP2012233689A (ja) * 2012-08-03 2012-11-29 Mitsubishi Electric Corp 制御装置、制御方法及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3040633A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115108A (zh) * 2015-09-14 2015-12-02 苏州紫荆清远新能源汽车技术有限公司 一种基于can的电动汽车空调自动控制方法及装置
US10584892B2 (en) 2015-10-01 2020-03-10 Panasonic Intellectual Property Management Co., Ltd. Air-conditioning control method, air-conditioning control apparatus, and storage medium
WO2017056403A1 (ja) * 2015-10-01 2017-04-06 パナソニックIpマネジメント株式会社 空調制御方法、空調制御装置及び空調制御プログラム
JP2017067427A (ja) * 2015-10-01 2017-04-06 パナソニックIpマネジメント株式会社 空調制御方法、空調制御装置及び空調制御プログラム
CN105912050B (zh) * 2016-04-13 2017-12-01 北京航天发射技术研究所 一种双模式自动保护动力源可切换调温控制方法
CN105912050A (zh) * 2016-04-13 2016-08-31 北京航天发射技术研究所 一种双模式自动保护动力源可切换调温控制方法
CN105676913A (zh) * 2016-04-13 2016-06-15 北京航天发射技术研究所 一种基于多线程独立调节可配置温控系统模拟方法
JP2017198428A (ja) * 2016-04-28 2017-11-02 ダイキン工業株式会社 ヒートポンプシステム及びこれを備えた電力制限システム
JP2018109461A (ja) * 2016-12-28 2018-07-12 パナソニック株式会社 空調システム
US11525595B2 (en) 2019-03-18 2022-12-13 Daikin Industries, Ltd. System for determining operation condition of precooling operation/preheating operation of air conditioner
WO2020261506A1 (ja) * 2019-06-27 2020-12-30 ミノリソリューションズ株式会社 空調機集中制御装置
CN111649439A (zh) * 2020-05-08 2020-09-11 宁波奥克斯电气股份有限公司 一种空调控制方法
CN111649439B (zh) * 2020-05-08 2021-12-31 宁波奥克斯电气股份有限公司 一种空调控制方法
WO2022222606A1 (zh) * 2021-04-22 2022-10-27 青岛海尔空调器有限总公司 用于空调压缩机的控制方法及装置和空调器
JP7477904B2 (ja) 2022-09-07 2024-05-02 株式会社Fhアライアンス 空調システム
JP7446546B1 (ja) 2023-07-18 2024-03-08 三菱電機株式会社 制御装置、制御システム、制御方法、および、プログラム

Also Published As

Publication number Publication date
JP6091624B2 (ja) 2017-03-08
JPWO2015029177A1 (ja) 2017-03-02
EP3040633A1 (en) 2016-07-06
EP3040633A4 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP6091624B2 (ja) 空気調和システム
JP6025833B2 (ja) 空調装置および空気調和システム
JP6125040B2 (ja) 空調制御装置
JP6125039B2 (ja) 空調制御装置
JP6328049B2 (ja) 空調装置
JP6270996B2 (ja) 空調装置
JP6250076B2 (ja) 空調制御装置、空調制御システム、空調制御方法及びプログラム
JP6790246B2 (ja) 空調装置、制御装置、空調方法及びプログラム
JP5642121B2 (ja) 空調装置
JP2017198393A (ja) 制御装置、空調システム、制御方法、及び、プログラム
WO2022044325A1 (ja) 換気報知装置および換気報知プログラム
JP2019184154A (ja) 空調装置
JP7050760B2 (ja) 空調装置、制御装置、空調方法及びプログラム
JP5619056B2 (ja) 空調装置
JP6932264B2 (ja) 空調装置、制御装置、空調方法及びプログラム
JP6730536B1 (ja) 空気調和装置、運転制御方法およびプログラム
JP7191110B2 (ja) 空調装置、制御装置、空調方法及びプログラム
JP7016601B2 (ja) 空調装置、制御装置、空調方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015533859

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013892371

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013892371

Country of ref document: EP