WO2017056403A1 - 空調制御方法、空調制御装置及び空調制御プログラム - Google Patents

空調制御方法、空調制御装置及び空調制御プログラム Download PDF

Info

Publication number
WO2017056403A1
WO2017056403A1 PCT/JP2016/004057 JP2016004057W WO2017056403A1 WO 2017056403 A1 WO2017056403 A1 WO 2017056403A1 JP 2016004057 W JP2016004057 W JP 2016004057W WO 2017056403 A1 WO2017056403 A1 WO 2017056403A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air conditioner
time
room temperature
room
Prior art date
Application number
PCT/JP2016/004057
Other languages
English (en)
French (fr)
Inventor
泰治 佐々木
昌明 原田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016145253A external-priority patent/JP6807556B2/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201680002577.3A priority Critical patent/CN106817909B/zh
Publication of WO2017056403A1 publication Critical patent/WO2017056403A1/ja
Priority to US15/911,671 priority patent/US10584892B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems

Definitions

  • the present disclosure relates to an air conditioning control device connected to an air conditioner via a predetermined network, an air conditioning control method and an air conditioning control program for the air conditioning control device, and in particular, an air conditioning control connected to an air conditioner via a predetermined network.
  • the present invention relates to a device air conditioning control method and the like.
  • AV home appliances such as TVs and recorders that can be connected to the Internet have increased, and video distribution services such as movies and sports have been provided.
  • video distribution services such as movies and sports have been provided.
  • household appliances such as air conditioners, weight scales, activity meters, rice cookers, microwave ovens, refrigerators, etc. are connected to the Internet, and various services are being provided.
  • a system for remotely controlling an air conditioner using an information terminal connectable to the Internet is provided.
  • Patent Document 1 predicts the temperature of the room at the wake-up time based on the temperature of the room at the current time and the time up to the user's wake-up time, and the set temperature of the floor heating device and the predicted wake-up time.
  • An indoor temperature control system that sets the activation time of the floor heating device based on the difference from the temperature of the living room is disclosed.
  • An air-conditioning control method is an air-conditioning control method in an air-conditioning control apparatus connected to an air-conditioning apparatus via a predetermined network, and the room-temperature change in a room where the air-conditioning apparatus adjusts the temperature
  • the room temperature history information indicating the history is stored in a predetermined database in association with the operation history information indicating the operation history of the air conditioner, and the air conditioning is based on the room temperature history information and the operation history information.
  • Predicting the future room temperature of the living room when the apparatus does not adjust the temperature as the predicted off-time room temperature, and causing the room temperature of the living room to reach the predetermined target temperature at a predetermined target time based on the predicted off-time room temperature The control parameters of the air conditioner used in the above are determined.
  • FIG. 1 is a block diagram illustrating an example of a configuration of an air conditioning control system according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of a data structure stored in the environment history DB illustrated in FIG.
  • FIG. 3 is a diagram showing an example of a set temperature pattern determined by the air conditioning setting unit shown in FIG.
  • FIG. 4 is a flowchart showing an example of data accumulation processing of the air conditioning control system shown in FIG.
  • FIG. 5 is a diagram illustrating an example of a processing sequence of the air conditioner and the cloud server that executes the data storage process illustrated in FIG. 4.
  • FIG. 6 is a flowchart illustrating an example of an air conditioning setting process of the air conditioning control system illustrated in FIG. 1.
  • FIG. 1 is a block diagram illustrating an example of a configuration of an air conditioning control system according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating an example of a data structure stored in the environment history DB illustrated in FIG.
  • FIG. 3
  • FIG. 7 is a diagram illustrating an example of a setting screen and an indoor temperature change graph in the air conditioning setting process illustrated in FIG. 6.
  • FIG. 8 is a diagram illustrating an example of a processing sequence of the user device, the cloud server, and the air conditioner that executes the air conditioning setting process illustrated in FIG. 6.
  • FIG. 9 is a diagram showing an example of a user interface for air conditioning setting in the user device shown in FIG.
  • FIG. 10 is a diagram illustrating an example of another set temperature pattern determined by the air conditioning setting unit illustrated in FIG. 1.
  • FIG. 11 is a diagram illustrating a first example of a data analysis result by the indoor environment prediction unit illustrated in FIG. 1.
  • FIG. 12 is a diagram illustrating a second example of the data analysis result by the indoor environment prediction unit illustrated in FIG. 1.
  • FIG. 13 is a diagram illustrating a third example of the data analysis result by the indoor environment prediction unit illustrated in FIG. 1.
  • FIG. 14 is a diagram illustrating an example of the prediction accuracy of the predicted on-time room temperature and predicted on-time power consumption for the set temperature pattern determined by the air conditioning setting unit illustrated in FIG. 1.
  • FIG. 15 is a diagram illustrating an example of a user interface for air conditioning setting in the user device illustrated in FIG. 1 in consideration of power consumption.
  • FIG. 16 is a diagram for explaining an example of a temperature control method having a high energy saving effect using the comfortable temperature range by the air conditioning control system shown in FIG. 1.
  • FIG. 17 is a block diagram illustrating an example of a configuration of a whole building air conditioning system according to another embodiment of the present disclosure.
  • FIG. 18 is a diagram illustrating an overview of services provided in the embodiment of the present disclosure.
  • FIG. 19 is a diagram illustrating a service type (in-house data center type) according to the embodiment of the present disclosure.
  • FIG. 20 is a diagram illustrating a service type (IaaS usage type) according to the embodiment of the present disclosure.
  • FIG. 21 is a diagram illustrating a service type (PaaS usage type) according to the embodiment of the present disclosure.
  • FIG. 22 is a diagram illustrating a service type (SaaS usage type) according to the embodiment of the present disclosure.
  • a control instruction can be transmitted from the information terminal to the air conditioner via the Internet, and the air conditioner at home can be controlled from the outside.
  • the air conditioner at home can be controlled from the outside.
  • Patent Document 1 predicts the temperature of the room at the wake-up time based on the temperature of the room at the current time and the time until the user's wake-up time, and sets the set temperature of the floor heating device and the room temperature at the predicted wake-up time.
  • a technique for setting the activation time of a floor heating device based on a difference from temperature is disclosed. Thereby, insufficient heating and overheating can be suppressed, and the comfort and energy saving of the room when getting up can be improved.
  • the present disclosure provides an air conditioning control method, an air conditioning control device, and an air conditioning control program capable of controlling an air conditioner that is comfortable for a user while suppressing power consumption.
  • the inventors of the present application have examined the following improvement measures in order to improve the functions of an air conditioning control device connected via a network to an air conditioning device that adjusts the temperature of a living room.
  • An air-conditioning control method is an air-conditioning control method in an air-conditioning control apparatus connected to an air-conditioning apparatus via a predetermined network, and the room-temperature change in a room where the air-conditioning apparatus adjusts the temperature
  • the room temperature history information indicating the history is stored in a predetermined database in association with the operation history information indicating the operation history of the air conditioner, and the air conditioning is based on the room temperature history information and the operation history information.
  • Predicting the future room temperature of the living room when the apparatus does not adjust the temperature as the predicted off-time room temperature, and causing the room temperature of the living room to reach the predetermined target temperature at a predetermined target time based on the predicted off-time room temperature The control parameters of the air conditioner used in the above are determined.
  • the future room temperature of the living room when the air conditioning apparatus does not adjust the temperature is predicted as the predicted off-time room temperature, and the target room temperature is calculated based on the predicted off-time room temperature. Since the control parameters of the air conditioner used to bring the room temperature of the room to the target temperature at the time are determined, the air conditioner follows the changes in the room environment such as aging of the house and air conditioner. The accuracy of room temperature prediction during operation and non-operation of the device is increased, and the air conditioner that is comfortable for the user can be controlled while suppressing power consumption in accordance with the target time to reach the target temperature desired by the user. It becomes possible.
  • the air conditioning control method receives target temperature information indicating a target temperature of a room in which the air conditioner adjusts a temperature, and set time information indicating a target time for causing the temperature of the room to reach the target temperature, Based on the predicted off-time room temperature, the control parameter of the air conditioner used to reach the target temperature indicated by the target temperature information at the target time indicated by the set time information is determined and determined.
  • the control instruction information including the control parameter and indicating an operation instruction for operating the air conditioner with the control parameter may be transmitted to the air conditioner via the network.
  • the target temperature information indicating the target temperature of the living room and the set time information indicating the target time for causing the temperature of the living room to reach the target temperature are received, and the set time information is based on the predicted off-time room temperature.
  • the air conditioning control method further predicts the future room temperature of the living room when the air conditioner adjusts the temperature as an on-time predicted room temperature.
  • the control parameter of the air conditioner may be determined based on the predicted off-room temperature and the on-time predicted room temperature.
  • the future room temperature of the living room when the air conditioner adjusts the temperature is predicted as the on-time predicted room temperature. Since the control parameters of the air conditioner are determined based on the predicted room temperature, the room temperature when the air conditioner is in operation and when it is not in operation, even if the environment of the room such as aging of the house or the air conditioner changes The accuracy of prediction is further improved, and it is possible to control the air conditioner that is more comfortable for the user while further reducing power consumption in accordance with the target time to reach the target temperature desired by the user.
  • the air conditioning control method further stores power consumption history information indicating a history of power consumption of the air conditioner in the database, and includes the room temperature history information, the operation history information, and the power consumption history information. Further predicting the future power consumption of the air conditioning apparatus when the air conditioning apparatus adjusts the temperature as the predicted power consumption during on-time, the predicted off-time room temperature, the predicted on-time room temperature, and The control parameter may be determined based on the on-time predicted power consumption.
  • the power consumption amount of the air conditioner when the air conditioner adjusts the temperature is predicted as the on-time predicted power consumption amount.
  • the control parameters of the air conditioner are determined based on the predicted off-room temperature, predicted on-time room temperature, and predicted on-time power consumption. Even when there is a change, the accuracy of room temperature prediction during operation and non-operation of the air conditioner and the accuracy of power consumption prediction during operation of the air conditioner are further increased, and the target time to reach the target temperature desired by the user is reached. In addition, the air conditioner can be controlled more comfortably for the user while further reducing power consumption.
  • the control parameter may include start time information indicating a time at which the operation of the air conditioner is started.
  • the control parameter may include operation pattern information indicating an operation pattern for operating the air conditioner.
  • the air conditioner can be accurately controlled with the operation pattern indicated by the operation pattern information.
  • the air conditioning control method further stores, in the database, at least one of the entry history information indicating the entry history and the exit history information indicating the exit history of the user with respect to the room, and includes the entry history information and the exit history information. Based on at least one of them, the use time when the user uses the living room may be estimated, and the use time may be determined as the target time.
  • the user estimates the use time for using the room and determines the use time as the target time, so that the room temperature is the target temperature.
  • the use time when the user uses the room can be automatically set as the target time that the user desires to reach.
  • the air conditioning control method is provided in the living room, receives a detection result of a human sensor that detects presence or absence of the user in the living room via the network, and is based on the detection result of the human sensor. Then, at least one of the room entry history information and the room leaving history information may be updated.
  • the usage time can be automatically set according to the user's usage history.
  • the air conditioning control method receives GPS (Global Positioning System) information of an information terminal possessed by the user via the network, and enters the user's room based on the GPS information received from the information terminal. At least one of entering the room and leaving the room, and updating at least one of the entry history information and the leaving history information based on at least one of the determined entry and exit. It may be.
  • GPS Global Positioning System
  • the use time at which the user uses the room can be automatically set according to the user's use history as the target time at which the user wants the room temperature to reach the target temperature.
  • the air conditioning control method further stores in the database at least one of outdoor temperature history information indicating a history of temperature changes outside the room and opening / closing history information indicating an opening / closing history of a window provided in the room,
  • the control parameter may be determined based on at least one of the outdoor temperature history information and the opening / closing history information.
  • the control parameters are determined based on at least one of the outdoor temperature history information and the opening / closing history information in addition to the room temperature history information and the operation history information. Even when the environment of the room changes due to aging, etc., the accuracy of the room temperature prediction when the air conditioner is operating and when not operating is further increased, and the power consumption can be adjusted according to the target time to reach the target temperature desired by the user. It is possible to perform control of the air conditioner that is more comfortable for the user while further suppressing.
  • the air conditioning control method further stores temperature range information indicating a predetermined temperature range in which the user can live comfortably in the database, and the target temperature is an upper limit or a lower limit of the temperature range indicated by the temperature range information. May be included.
  • the air conditioning control method When the air conditioning control method does not detect the user entering the room until a predetermined time has elapsed from the target time, the air conditioning control method sends stop instruction information for stopping the operation of the air conditioner via the network. , It may be transmitted to the air conditioner.
  • the present disclosure can be realized not only as an air conditioning control method for executing the characteristic processing as described above, but also with an air conditioning control having a characteristic configuration corresponding to the characteristic processing executed by the air conditioning control method. It can also be realized as a device. Moreover, it is also realizable as a computer program which makes a computer perform the characteristic process contained in such an air-conditioning control method. Therefore, also in the following other aspects, the same effect as the above air conditioning control method can be obtained.
  • An air conditioning control device is an air conditioning control device that is connected to an air conditioner via a predetermined network, and shows a history of changes in room temperature in a room in which the air conditioner adjusts the temperature.
  • the air conditioner does not adjust the temperature based on the database that stores the room temperature history information in association with the operation history information indicating the operation history of the air conditioner, the room temperature history information, and the operation history information.
  • a prediction unit that predicts the future room temperature of the room as an off-time predicted room temperature, and based on the off-time predicted room temperature, the room is used to reach the predetermined target temperature at a predetermined target time.
  • a determination unit for determining a control parameter of the air conditioner.
  • An air-conditioning control program for causing a computer to function as an air-conditioning control device connected to an air-conditioning apparatus via a predetermined network.
  • the room temperature history information indicating the history of the room temperature change in the room where the air conditioner adjusts the temperature is stored in a predetermined database in association with the operation history information indicating the operation history of the air conditioner, and the room temperature history information, Based on the operation history information, predict the future room temperature of the living room when the air conditioning apparatus does not adjust the temperature as the predicted off-time room temperature, and based on the predicted off-time room temperature, at the predetermined target time Determine the control parameters of the air conditioner used to bring the room temperature of the living room to a predetermined target temperature To.
  • the computer program as described above can be distributed through a computer-readable non-transitory recording medium such as a CD-ROM or a communication network such as the Internet.
  • a part of the components of the air-conditioning control apparatus according to an embodiment of the present disclosure and other components may be configured as a system dispersed in a plurality of computers.
  • FIG. 1 is a block diagram illustrating a configuration of an air conditioning control system according to Embodiment 1 of the present disclosure.
  • the air conditioning control system shown in FIG. 1 includes an air conditioner 10 and a cloud server 20.
  • the cloud server 20 is connected to the air conditioner 10, the weather information server 40, and the user device 50 via the network 30.
  • the air conditioner 10 is an example of an air conditioner that adjusts the temperature of the room used by the user
  • the cloud server 20 is an example of an air conditioner control apparatus that controls the air conditioner
  • the user device 50 is It is an example of the information terminal which a user possesses.
  • the air conditioner 10 is a device that adjusts the indoor air quality environment, for example, a room air conditioner.
  • the air conditioner 10 includes a temperature / humidity information acquisition unit 11, a control information acquisition unit 12, and an air conditioning control unit 13.
  • the air-conditioning control unit 13 is a control mechanism that adjusts the temperature and humidity of indoor air.
  • the air-conditioning control unit 13 is a controller for the air-conditioning function of the air conditioner, but may be a control mechanism that can control the temperature and humidity of the room. For example, it is not limited to this.
  • the temperature / humidity information acquisition unit 11 acquires the indoor temperature and humidity and the outdoor temperature and humidity using a temperature and humidity sensor.
  • the indoor and outdoor humidity is also acquired, but is not particularly limited to this example, and only the indoor and outdoor temperatures may be acquired or other measured values may be acquired. Good.
  • the control information acquisition unit 12 acquires air conditioning control information from the air conditioning control unit 13 or the like.
  • the air conditioning control information is information indicating the control contents of the air conditioning control unit 13, and specifically, the operation status (ON / OFF), the operation mode (cooling / heating / dehumidification / automatic), the set temperature, the air volume, the wind direction. It is information such as.
  • the cloud server 20 includes a temperature / humidity information storage unit 21, a control information storage unit 22, an indoor environment prediction unit 23, an air conditioning setting unit 24, an interface unit 25, an environment history DB (database) 26, and an external environment prediction unit 27.
  • the temperature / humidity information storage unit 21 stores the temperature / humidity information acquired through the temperature / humidity information acquisition unit 11 of the air conditioner 10 in the environment history DB 26. Communication between the temperature / humidity information storage unit 21 and the temperature / humidity information acquisition unit 11 is performed using a network 30 which is a communication means such as the Internet. For example, the temperature / humidity information storage unit 21 is once every five minutes. The temperature / humidity information is acquired from the temperature / humidity information acquisition unit 11 and stored in the environment history DB 26.
  • the communication method is not particularly limited to this example, and the temperature / humidity information acquisition unit 11 may periodically upload information to the temperature / humidity information storage unit 21.
  • the control information storage unit 22 stores the air conditioning control information acquired through the control information acquisition unit 12 of the air conditioner 10 in the environment history DB 26. Communication between the control information storage unit 22 and the control information acquisition unit 12 is performed using a network 30 which is a communication means such as the Internet. For example, the control information storage unit 22 performs control information once every 5 minutes. Air conditioning control information is acquired from the acquisition unit 12 and stored in the environment history DB 26.
  • the communication method is not particularly limited to this example, and may be a method of periodically uploading information from the control information acquisition unit 12 to the control information storage unit 22 or an event in which the control of the air conditioner 10 is changed. As a trigger, the control information acquisition unit 12 may upload to the control information storage unit 22.
  • the environmental history DB 26 is a database that stores temperature / humidity information and air conditioning control information received from the temperature / humidity information storage unit 21 and the control information storage unit 22.
  • the database format is generally a relational DB such as SQL (Structured Query Language), but it may be a DB structure called NoSQL that forms data with a simple relationship such as a Key-Value type.
  • FIG. 2 shows an example of the table structure of the environment history DB 26.
  • ID is a unique ID (identification information) for identifying each record
  • time is information indicating the time when each information is acquired
  • outdoor humidity are temperature.
  • It is temperature / humidity information acquired through the humidity information acquisition unit 11, and the operation status, operation mode, set temperature, air volume, and wind direction are air conditioning control information acquired through the control information acquisition unit 12.
  • the temperature / humidity information and the air conditioning control information are collected in one table, but may be managed as separate tables.
  • the time and room temperature information corresponds to an example of room temperature history information indicating a history of room temperature change in the room where the air conditioner adjusts the temperature, and includes time, operation status, operation mode, set temperature, air volume, and
  • the wind direction information corresponds to an example of operation history information indicating the operation history of the air conditioner
  • the time and outdoor temperature information corresponds to an example of outdoor temperature history information indicating a history of temperature change outside the room.
  • the information stored in the environment history DB 26 is not particularly limited to the above example.
  • the power consumption history information indicating the history of the power consumption of the air conditioner or the window provided in the room is used. Opening / closing history information indicating the opening / closing history may be included.
  • the external environment prediction unit 27 receives future weather prediction information, past weather prediction information, and the like in an appropriate area where the air conditioner 10 exists from an external weather information server 40 and the like and inputs the information to the indoor environment prediction unit 23.
  • the indoor environment prediction unit 23 uses the environment history DB 26 to predict the future indoor environment (room temperature, indoor humidity, etc.) by machine learning. Specifically, the indoor environment prediction unit 23 uses the following machine learning to predict the future room temperature of the room when the air conditioner 10 does not adjust the temperature based on the room temperature history information and the operation history information. An off-time room temperature prediction model is created, and the future room temperature of the room when the air conditioner 10 does not adjust the temperature is predicted as the off-time prediction room temperature using the off-time room temperature prediction model.
  • the air conditioning setting unit 24 determines a control parameter of the air conditioner 10 that is used for causing the room temperature of the room to reach a predetermined target temperature at a predetermined target time, based on the predicted off-time room temperature.
  • machine learning is classified into two steps, and the two steps are called a learning phase and an identification phase.
  • learning phase training data such as past history data is input and data analysis is performed to extract the relationship between the data.
  • identification data input parameters for performing prediction
  • a predicted value is output based on the relationship between the data extracted in the learning phase.
  • the indoor environment prediction unit 23 receives temperature / humidity information and air conditioning control information in the environment history DB 26 and past weather prediction information acquired from the outside environment prediction unit 27 as training data.
  • the indoor environment prediction unit 23 is input with the future time, the predicted weather value such as the future weather forecast, and the setting information of the air conditioner as the identification data.
  • the indoor environment prediction unit 23 predicts environmental information (room temperature, indoor humidity, etc.) at a future time.
  • what kind of data is input as training data and what data is input as identification data is a point for improving the accuracy of prediction.
  • There are various learning algorithms such as linear regression, neural network, Bayesian filter, SVM (Support Vector Machine), etc., but not limited here.
  • Services on the cloud for machine learning include Google's Predition API and Microsoft's Azure ML, which are easy to use in general, and the indoor environment prediction unit 23 uses such a library or API (Application Program Interface). It may be configured to utilize
  • the indoor environment prediction unit 23 learns the data in the environment history DB 26 and the weather information from the outside environment prediction unit 27 as training data, but is stored in the environment history DB 26 as in the example of FIG. It is possible to extract the relationship between the setting of the air conditioner 10 and the room temperature or weather forecast by using the air conditioning control information or the like that is the setting information of the air conditioner 10 that is present. Thus, by inputting the setting information of the air conditioner 10 to the indoor environment prediction unit 23 as identification data, the indoor environment prediction unit 23 can perform room temperature prediction for the corresponding setting with high accuracy.
  • the interface unit 25 is an external interface that receives input from the user device 50 used by the user, and is, for example, an external I / F (WebAPI) that communicates using the http protocol, and receives setting information for the user's air conditioner 10.
  • WebAPI external I / F
  • the user downloads an application to the user device 50 such as a smartphone or a tablet, and determines setting information for the air conditioner 10 using a graphical user interface (GUI) of the application.
  • GUI graphical user interface
  • the user device 50 converts the setting information into the http protocol format and notifies the interface unit 25 of the converted setting information.
  • the air conditioning setting unit 24 determines a setting pattern (operation pattern) of the air conditioner 10 as a control parameter while using the indoor environment prediction unit 23 based on the setting information received by the interface unit 25.
  • the air conditioning setting unit 24 includes control parameters determined using the indoor environment prediction unit 23, and sends control instruction information representing an operation instruction for operating the air conditioner 10 using the control parameters via the interface unit 25. It transmits to the air conditioner 10.
  • the control parameter includes start time information indicating a time at which the operation of the air conditioner 10 is started and / or operation pattern information indicating an operation pattern at which the air conditioner 10 is operated.
  • the interface unit 25 receives the return time (room entry time) and the target environment value (for example, the target indoor temperature) as the setting information from the user device 50, and the air conditioning setting unit 24 uses the indoor environment prediction unit 23. Predict the transition of the room temperature up to the time of returning home. As the prediction at this time, a transition of the predicted room temperature at the time of OFF when the air conditioner 10 is not operated is predicted.
  • the air conditioning setting unit 24 determines an operation pattern of the air conditioner 10 for reaching the target temperature at the time of returning home (room entry time) based on the transition of the predicted room temperature at the time of off.
  • the air conditioning setting unit 24 uses the indoor environment prediction unit 23 to input the set temperature of the air conditioner 10 as identification data and obtain the transition of the predicted on-time room temperature for reaching the target temperature at the time of returning home.
  • the operation pattern including the set temperature pattern for energy saving is determined.
  • FIG. 3 is a diagram showing an example of a set temperature pattern determined by the air conditioning setting unit 24 shown in FIG.
  • the target temperature is set to 25 ° C. at the time of returning home.
  • the air-conditioning setting unit 24 sets the set temperature to 25 ° C. in order to set the indoor temperature at the time of returning home to 25 ° C., and when the air conditioner 10 adjusts the temperature using the indoor environment prediction unit 23 Predict the transition of the predicted room temperature by back calculation.
  • the air conditioning setting unit 24 specifies a time when the difference between the set temperature and the predicted on-time room temperature is 1.5 ° C., and this time is time A shown in FIG.
  • the air conditioning setting unit 24 reduces the set temperature by 1 ° C. from this time A, and further predicts the transition of the on-time predicted room temperature by back calculation. And the air-conditioning setting part 24 calculates
  • the air conditioning setting unit 24 determines an operation pattern including the set temperature pattern of the air conditioner 10 and controls the air conditioner 10 according to the determined operation pattern. Specifically, the air conditioning setting unit 24 outputs a control command (control instruction information) for operating with the determined operation pattern to the air conditioning control unit 13 of the air conditioner 10 to control the air conditioner 10. .
  • the output timing of the control instruction information may be before the operation start time.
  • the air conditioning setting unit 24 sends the control instruction information when the operation start time is reached, or the control start information and the control start information are controlled.
  • a list with the instruction information may be passed to the air conditioning control unit 13 in advance, and each control may be performed when the air conditioning control unit 13 reaches each operation start time.
  • the air conditioning setting unit 24 uses the indoor environment prediction unit 23 to predict the on-time predicted room temperature when the air conditioner 10 adjusts the temperature by back calculation.
  • the on-time predicted room temperature may be predicted as follows.
  • the indoor environment prediction unit 23 uses the above machine learning to predict the future room temperature of the room when the air conditioner 10 does not adjust the temperature based on the room temperature history information and the operation history information.
  • An off-time room temperature prediction model is created, and using this off-time room temperature prediction model, the future room temperature of the room when the air conditioner 10 does not adjust the temperature is predicted as the off-time prediction room temperature, and the air conditioner 10 determines the temperature.
  • An on-time room temperature prediction model for predicting the future room temperature of the room when adjusting is created, and the future room temperature of the room when the air conditioner 10 adjusts the temperature is turned on using the on-time room temperature prediction model. Predict as hourly predicted room temperature.
  • the air conditioning setting unit 24 determines the control parameters of the air conditioner 10 based on the predicted off-room temperature and the predicted on-room temperature.
  • the air conditioner 10 As a result, even when the environment of the room such as aged deterioration of the house or the air conditioner 10 changes, the accuracy of the room temperature prediction when the air conditioner 10 is operating and when not operating is further increased, and the target temperature desired by the user is reached. In accordance with the target time, it is possible to control the air conditioner 10 more comfortably for the user while further reducing power consumption.
  • the air conditioning control process in the air conditioning control system of the present embodiment is divided into two processes.
  • One process is a data accumulation process, and the other process is an air conditioning setting process.
  • FIG. 4 is a flowchart showing an example of data storage processing of the air conditioning control system shown in FIG.
  • step S11 the air conditioner 10 acquires the temperature and humidity information of the temperature and humidity sensor by the temperature and humidity information acquisition unit 11.
  • step S12 the air conditioner 10 acquires the air conditioning control information of the air conditioner 10 by the control information acquisition unit 12.
  • step S13 the temperature / humidity information acquisition unit 11 and the control information acquisition unit 12 of the air conditioner 10 provide the cloud server 20 with the temperature / humidity information acquired in step S11 and the air conditioning control acquired in step S12. Transmit information.
  • the cloud server 20 receives the temperature / humidity information and the air conditioning control information from the temperature / humidity information storage unit 21 and the control information storage unit 22 and registers them in the environment history DB 26.
  • step S14 the air conditioner 10 performs a wait process for a certain period (for example, 5 minutes), and then returns to step S11 to continue the subsequent processes.
  • a certain period for example, 5 minutes
  • FIG. 5 is a diagram illustrating an example of a processing sequence of the air conditioner 10 and the cloud server 20 that executes the data storage process illustrated in FIG.
  • the air conditioner 10 executes the temperature / humidity information acquisition process in step S ⁇ b> 11 and the air conditioning control information acquisition process in step S ⁇ b> 12, and the data between the air conditioner 10 and the cloud server 20 in step S ⁇ b> 13.
  • the air conditioner 10 executes the wait process of step S14, returns to step S11, and continues the subsequent processes.
  • the above data storage process continues to operate when the communication path between the air conditioner 10 and the cloud server 20 is established and the power is on. In this way, all temperature and humidity information and air conditioning control information are registered in the environment history DB 26.
  • the temperature / humidity information acquisition process and the air conditioning control information acquisition process are performed sequentially, but may be performed in parallel.
  • the air conditioning control information acquisition process may be configured to be uploaded to the cloud server 20 at a timing when the control of the air conditioner 10 is changed instead of being periodically executed.
  • FIG. 6 is a flowchart showing an example of the air conditioning setting process of the air conditioning control system shown in FIG. 1
  • FIG. 7 is a diagram showing an example of a setting screen and an indoor temperature change graph in the air conditioning setting process shown in FIG. .
  • the setting screen on the left side of FIG. 7 shows an example of a GUI application for the user to determine the setting information of the air conditioner 10, and the graph on the right side of FIG. 7 is a graph showing changes in indoor temperature. It is.
  • the step In S21 the user device 50 notifies the interface unit 25 of the user input values (for example, the return time “18:00”, the return target temperature “25 ° C.”) as the entry time and the target value.
  • the air conditioning setting unit 24 uses the indoor environment prediction unit 23 based on the setting information (room entry time and target value) acquired from the interface unit 25 to determine the on-time predicted room temperature until the return time. Predict the transition.
  • the dotted line in the graph on the right side of FIG. 7 predicts the transition of the indoor temperature from the history information in the environment history DB 26 ((ii) in FIG. 7), and shows the transition of the predicted value.
  • the predicted value at this time is a value obtained by predicting the transition of the room temperature (predicted room temperature when OFF) when the air conditioner 10 is not operated.
  • step S23 the air conditioning setting unit 24 determines the operation pattern of the air conditioner 10 to reach the target temperature at the time of return based on the transition of the predicted on-time room temperature predicted in step S22.
  • the air conditioning setting unit 24 uses the indoor environment prediction unit 23 to input the set temperature of the air conditioner 10 shown in FIG. 3 as identification data, and to reach the target temperature at the time of return home, Ask for.
  • the target temperature is set to 25 ° C. at the time of returning home.
  • the air conditioning setting unit 24 sets the set temperature to 25 ° C. and uses the indoor environment prediction unit 23 to predict the transition of the on-time predicted room temperature by back calculation in order to set the room temperature at the time of returning home to 25 ° C.
  • the air conditioning setting unit 24 specifies a time when the difference between the set temperature and the predicted on-time room temperature is 1.5 ° C., and this time is time A shown in FIG.
  • the air conditioning setting unit 24 reduces the set temperature by 1 ° C. from this time A, and further predicts the transition of the on-time predicted room temperature by back calculation. And the air-conditioning setting part 24 calculates
  • the thick straight line in the graph on the right side of FIG. 7 shows the transition of the predicted value based on the history information in the environment history DB 26 (FIG. 7 (iii)).
  • step S24 the air conditioning setting unit 24 controls the air conditioner 10 according to the operation pattern, and ends the process. Specifically, the air conditioning setting unit 24 outputs a control command (control instruction information) for operating in the above operation pattern to control the air conditioner 10.
  • FIG. 8 is a diagram illustrating an example of a processing sequence of the user device 50, the cloud server 20, and the air conditioner 10 that execute the air conditioning setting process illustrated in FIG.
  • the user device 50 handled by the user transmits the setting information (room entry time and target value) to the cloud server 20 in step S21.
  • the cloud server 20 uses the indoor environment prediction unit 23 to determine the on-time predicted room temperature until the return time (room entry time). A transition is predicted, and in step S23, an operation pattern for reaching the target temperature at the time of returning home is determined based on the predicted transition of the predicted on-time room temperature.
  • step S24 the cloud server 20 controls the air conditioner 10 based on the operation pattern.
  • the cloud server 20 communicates an air conditioner control command (control instruction information) for controlling the air conditioner 10.
  • control instruction information for controlling the air conditioner 10.
  • a data format for example, there is an Echonet light standard.
  • FIG. 9 is a diagram showing an example of a user interface for air conditioning setting in the user device 50 shown in FIG.
  • the upper part of FIG. 9 is a GUI screen for setting the user's return time (entry time) and the target temperature when returning home, where the vertical axis indicates temperature and the horizontal axis indicates time, and the display unit of the user device 50 In (not shown), a screen in which the room temperature transition predicted based on the indoor environment prediction unit 23 is graphed is displayed. The user can easily specify the target temperature and the return time by tapping on the graph displayed on the display unit.
  • the set temperature and the indoor temperature when the air conditioner 10 is operated at the set temperature (predicted room temperature when turned on) You may make it show a prediction result and the driving
  • the environment history DB 26 may be configured to store the power consumption amount of the air conditioner 10 per unit time, and may be configured to be input as training data of the indoor environment prediction unit 23.
  • the air conditioning setting unit 24 uses the indoor environment prediction unit 23 to minimize the power consumption of the air conditioner 10 from the relationship between the set temperature, the room temperature, the outside air temperature, and the power consumption. It is also possible to determine the control method.
  • the air conditioning setting unit 24 uses the indoor environment prediction unit 23 to prepare several set temperature pattern candidates, and then inputs the set temperature pattern to the indoor environment prediction unit 23 as identification data. 10 prediction of power consumption is obtained. If the operation pattern that minimizes the power consumption is employed, the air conditioner 10 can be operated with a control with a small amount of power consumption.
  • the power consumption may be measured within the air conditioner 10 or may be measured at an outlet that supplies power to the air conditioner 10.
  • the control information acquisition unit 12 acquires the power consumption of the air conditioner 10 per unit time as the air conditioning control information from the air conditioning control unit 13 or the like, and the control information storage unit 22 stores the air conditioning control information including the power consumption in the environment.
  • the environment history DB 26 stores the power consumption of the air conditioner 10 per unit time as power consumption history information indicating a history of the power consumption of the air conditioner 10.
  • the indoor environment prediction unit 23 uses the above machine learning to predict the future room temperature of the room when the air conditioner 10 does not adjust the temperature based on the room temperature history information, the operation history information, and the power consumption history information.
  • the off-time room temperature prediction model is created, and the off-room temperature prediction model is used to predict the future room temperature of the living room when the air conditioner 10 does not adjust the temperature as the off-time prediction room temperature.
  • An on-room temperature prediction model for predicting the future room temperature of the room when the temperature is adjusted is created, and the future room temperature of the room when the air conditioner 10 adjusts the temperature using the on-room temperature prediction model is created.
  • Is predicted as the on-time predicted room temperature, and an on-time power consumption prediction model for predicting the future power consumption of the air conditioner 10 when the air conditioner 10 adjusts the temperature is created.
  • the air conditioner 10 is predicted as on-time predicted consumed electric power amount of the power consumption of the future of the air conditioner 10 when adjusting the temperature.
  • the air conditioning setting unit 24 determines the control parameters of the air conditioner 10 based on the predicted off-room temperature, the predicted on-room temperature, and the predicted on-time power consumption.
  • the accuracy of the room temperature prediction when the air conditioner 10 is operating and when not operating and the power consumption prediction when the air conditioner 10 is operating The accuracy is further improved, and the air conditioner 10 can be controlled more comfortably for the user while further reducing power consumption in accordance with the target time for reaching the target temperature desired by the user.
  • FIG. 10 is a diagram illustrating an example of a set temperature pattern determined by the air conditioning setting unit 24 in consideration of the above power consumption.
  • the air conditioning setting unit 24 uses the indoor environment prediction unit 23 to predict the predicted off-time room temperature, the on-time predicted room temperature, and the on-time predicted power consumption for a plurality of operation patterns.
  • the operation pattern with the lowest power consumption among the plurality of operation patterns is determined as the energy saving operation pattern.
  • the dotted line in FIG. 10 indicates the predicted off-time room temperature
  • the thin solid line in the staircase shape is the set temperature of the energy saving operation pattern that is the set temperature pattern (22 ° C. before 45 minutes, 23 degrees before 30 minutes, 15 Minutes before the target temperature is 24 ° C.). Therefore, the air conditioner 10 is controlled with the energy saving operation pattern from 45 minutes before the entrance time.
  • the thick solid line in FIG. 10 indicates the predicted on-time room temperature during the energy saving operation pattern, and the bar graph indicated by the hatching of the thick line indicates the power consumption at each time.
  • an alternate long and short dash line shown in FIG. 10 shows an on time when a normal operation pattern (a pattern in which control is started 15 minutes before the entrance time and the set temperature (target temperature) is 24 ° C.).
  • the bar graph which shows the predicted room temperature and is indicated by the hatching of the thin line indicates the power consumption amount in the normal operation pattern.
  • the total value of power consumption is smaller in the energy saving operation pattern than in the normal operation pattern, and the peak value of power consumption every 15 minutes is also normal in the energy saving operation pattern. It is smaller than the driving pattern.
  • the air conditioning setting unit 24 controls the air conditioner 10 with the energy saving operation pattern determined from the plurality of operation patterns using the indoor environment prediction unit 23, thereby further reducing the power consumption of the air conditioner 10. You can see that you can.
  • 11 to 13 are diagrams showing first to third examples of data analysis results by the indoor environment prediction unit 23 shown in FIG.
  • the example of FIG. 11 is an example in which a linear regression model having a learning parameter as a one hour previous room temperature, an outside air temperature, and a time is used as the off-time room temperature prediction model. It is the analysis result which analyzed the correlation.
  • the correlation coefficient of room temperature one hour before the current room temperature was 0.969
  • the correlation coefficient of the outside temperature with respect to the current room temperature was 0.724.
  • the correlation coefficient has a correlation when it is 0.4 to 0.7, and has a strong correlation when it is 0.7 or more. Therefore, it was found that the off-time predicted room temperature can be predicted with high accuracy by using a linear regression model having the room temperature one hour ago, the outside air temperature, and the time as learning parameters as the off-time room temperature prediction model.
  • the example of FIG. 12 is an example in which a linear regression model having the set temperature, room temperature, and time as learning parameters is used as the on-time room temperature prediction model, and the rising temperature after 15 minutes, the outside temperature, and the set temperature It is the analysis result which analyzed the difference with the difference with room temperature, and external temperature.
  • the correlation coefficient of the outside air temperature with respect to the rising temperature after 15 minutes was 0.373
  • the correlation coefficient of the difference between the set temperature and the room temperature with respect to the rising temperature after 15 minutes was 0.812. . Therefore, it was found that the on-time predicted room temperature can be predicted with high accuracy by using a linear regression model having the set temperature, room temperature, and time as learning parameters as the on-time room temperature prediction model.
  • the example of FIG. 13 is an example in which a linear regression model using the set temperature, room temperature, outside air temperature, and time as learning parameters is used as the on-time power consumption prediction model. And an analysis result of analyzing the correlation between the difference between the set temperature and room temperature.
  • the correlation coefficient of the outside air temperature with respect to the integrated electric energy for 15 minutes was 0.463
  • the correlation coefficient of the difference between the set temperature and the room temperature with respect to the integrated electric energy for 15 minutes was 0.950. . Therefore, it can be understood that the on-time predicted power consumption can be predicted with high accuracy by using a linear regression model with the set temperature, room temperature, outside temperature and time as learning parameters as the on-time power consumption prediction model. It was.
  • FIG. 14 is a diagram illustrating an example of prediction accuracy of the on-time predicted room temperature and the on-time predicted power consumption with respect to the set temperature pattern determined by the air conditioning setting unit 24 illustrated in FIG. 1.
  • the indoor environment prediction unit 23 uses the linear regression models described with reference to FIGS. 11 to 13 to perform a plurality of operation patterns.
  • the predicted off-room temperature, on-time predicted room temperature, and on-time predicted power consumption are predicted, and the air conditioning setting unit 24 determines the energy saving operation pattern with the lowest power consumption.
  • the actually measured on-time room temperature and the actually-on-time measured power consumption when the air conditioner 10 is actually controlled with the set temperature pattern of this energy saving operation pattern, and the on-time predicted room temperature predicted by the indoor environment prediction unit 23 are shown. And the predicted power consumption when on.
  • the stepped thin solid line shown in FIG. 14 indicates the set temperature of the energy saving operation pattern (21 minutes before 60 minutes, 22 degrees before 45 minutes, 23 degrees before 30 minutes, and 15 minutes before the target temperature. 24.degree. C.), and the air conditioner 10 is actually controlled from 60 minutes before the entrance time in this energy saving operation pattern.
  • the thick solid line shown in FIG. 14 indicates the predicted on-time room temperature
  • the bar graph indicated by the thick hatching indicates the predicted on-time power consumption at each time.
  • the black circles shown in FIG. 14 indicate the measured room temperature at the time of on
  • the bar graph indicated by the thin line hatching indicates the measured power consumption at the time of each time.
  • FIG. 14 shows that the predicted on-time room temperature substantially matches the on-time measured room temperature, and the on-time predicted power consumption approximately matches the on-time measured power consumption.
  • the average room temperature change after 60 minutes is + 3.2 ° C. in the case of the on-time predicted room temperature, and +3.6 in the case of the on-time actual room temperature.
  • the estimated value error with respect to the actually measured value was 0.4 ° C.
  • the total power consumption was 206.6 Wh in the case of the on-time predicted power consumption, and 196.0 Wh in the case of the on-time actual measurement power consumption.
  • the error of the predicted value with respect to the actual measurement value was 5.1%.
  • the indoor environment prediction unit 23 can predict the on-time predicted room temperature and the on-time predicted power consumption with high accuracy by using each linear regression model described with reference to FIGS. did it.
  • FIG. 15 is a diagram illustrating an example of a user interface for air conditioning setting in consideration of power consumption in the user device 50 illustrated in FIG.
  • the display unit of the user device 50 is shown in FIG. A GUI screen is displayed.
  • the set temperature of the energy-saving operation pattern determined by the air conditioning setting unit 24 the indoor temperature predicted by the indoor environment prediction unit 23 when the air conditioner 10 is operated at the set temperature (predicted room temperature when turned on)
  • the air conditioning control up to the room entry time may be configured such that the air volume is strong wind, and the wind direction is horizontal when cooling, and downward when heating.
  • the air volume may be increased.
  • the determination of whether or not a person is in the room is more efficient and more efficient when using a human sensor as well as user settings.
  • the control after entering the room may be configured such that the air volume is automatically made weak.
  • the return time is specified by the GUI.
  • the return time is specified by a human sensor or GPS (Global Positioning System). It may be configured to perform room entry and exit prediction by machine learning using the history data. Also, input the day of the week, time, human sensor, and GPS history data as training data, and use the current GPS position information, day of the week, and time as identification data, and predict the entry / exit time of the day You may comprise.
  • the environment history DB 26 stores at least one of the entry history information indicating the entry history and the exit history information indicating the exit history of the user with respect to the room, and the indoor environment prediction unit 23 stores the entry history information and the exit history information. Based on at least one of them, the use time when the user uses the room may be estimated, and the air conditioning setting unit 24 may determine the estimated use time as the target time.
  • the interface unit 25 is installed in a living room, receives a detection result of a human sensor that detects the presence or absence of a user in the living room via the network 30, and based on the detection result of the human sensor, At least one of the room entry history information and the room exit history information stored in the history DB 26 may be updated.
  • the interface unit 25 receives GPS information of the user device 50 possessed by the user via the network 30, and enters and exits the user's room based on the GPS information received from the user device 50. At least one of them may be determined, and at least one of the entry history information and the exit history information stored in the environment history DB 26 may be updated based on at least one of the determined entry and exit.
  • the air conditioning setting unit 24 sends the stop instruction information for stopping the operation of the air conditioner 10 through the network 30 when the user does not enter the room until a predetermined time has elapsed from the target time. You may make it transmit to the apparatus 10.
  • a target value for the return time (entry time) is set, and the driving pattern is determined by predicting to reach the value.
  • a target value may be set and control may be performed toward that time.
  • the air conditioning setting unit 24 uses the indoor environment prediction unit 23 to determine the operation pattern so that 27 ° C. and the target value are sequentially set at 5:00 and the target temperature at that time is reached. You may comprise as follows. By configuring in this way, it is possible to realize an efficient operation in terms of power consumption rather than simply setting the set temperature at the corresponding time.
  • the user sets the target temperature by using the GUI
  • this may be automated using the user's action history and immediately preceding temperature / humidity information.
  • the temperature at which people feel comfortable is likely to be affected by the environment that they had just before.For example, when you come home from outside in the winter and enter the room, the temperature setting in the room is low because the body is cold. Good, but if you enter another room from the next room in winter, it is preferable to set the temperature in that room higher because the body is already warm.
  • the user's behavior before entering the room and after leaving the room and the temperature and humidity inside and outside the room may be set as parameters.
  • the user's behavior is, for example, information such as “going home”, “at home”, “taking a bath”, etc., even if the user sets himself, it is automatically detected by a human sensor or the like. Also good.
  • a temperature sensor may be built in a smartphone or a smart watch, and the data may be used. With this configuration, the user can automatically perform comfortable temperature setting without setting the temperature himself.
  • various sensors are used to open / close the window of the room, the amount of light ( It is preferable to acquire the amount of solar radiation), the sound volume, and the presence / absence of the user because the accuracy of prediction of the room temperature transition is improved.
  • a light amount sensor, a volume sensor, a human sensor, a window opening / closing detection sensor, and the like are appropriately arranged in a target room. These pieces of information may be detected and specified from image data of a sensor or camera of the air conditioner 10.
  • the cloud server 20 stores in the environmental history DB 26 at least one of outdoor temperature history information indicating a history of temperature changes outside the room and opening / closing history information indicating the opening / closing history of windows provided in the room, and sets the air conditioning.
  • the unit 24 uses the indoor environment prediction unit 23 to determine the control parameter based on at least one of the outdoor temperature history information and the opening / closing history information in addition to the room temperature history information and the operation history information. Also good.
  • the room environment prediction unit 23 predicts the room temperature transition and performs control
  • the room temperature is below a specific threshold or above the threshold with respect to the predicted value (the temperature does not increase in winter, summer In this case, the temperature does not decrease)
  • the door or window may be left open, or a possibility of failure may be considered. Therefore, the user may be configured to be notified of an alert.
  • the user can suppress unnecessary operation of the air conditioner 10 when the window is open, for example.
  • the set temperature of the air conditioner 10 may be increased or decreased to correct the control of the air conditioner 10. .
  • an alert may be configured to notify the user that the temperature may be too low for summer) and other heat sources may be present.
  • the user can suppress unnecessary operation of the air conditioner 10 when there is another heat source, for example.
  • the set temperature of the air conditioner 10 may be increased or decreased to correct the control of the air conditioner 10. .
  • control method of the air conditioner 10 before entering, after entering and after leaving the room may be configured as shown in FIG. 16A is a diagram for explaining an existing temperature control method for an air conditioner that is not connected to a network when winter is assumed, and FIG. 16B is an air conditioning control shown in FIG. It is a figure for demonstrating an example of the temperature control method with a high energy-saving effect using the comfortable temperature range by a system.
  • the horizontal axis indicates time
  • the vertical axis indicates temperature and power consumption
  • the thin solid line indicates the upper and lower limits of the set temperature or comfortable temperature range
  • the thick solid line indicates the transition of room temperature
  • the hatched area indicates the power consumption.
  • the control of the air conditioner is started with the remote controller at the time of entering the room.
  • the remote controller since the difference between the set temperature and the room temperature is large, the load on the air conditioner 10 is large and the consumption of electric power is intense. Also, remote control starts after entering the room, so it is cold immediately after entering the room.
  • the air conditioner 10 is controlled using a comfortable temperature range (for example, 22 to 25 ° C.) that is a constant temperature range in which a person can live comfortably.
  • a comfortable temperature range for example, 22 to 25 ° C.
  • the environment history DB 26 stores temperature range information indicating a predetermined temperature range in which the user can live comfortably, and the target temperature includes an upper limit or a lower limit of the temperature range indicated by the temperature range information.
  • the air conditioning setting unit 24 uses the indoor environment prediction unit 23 to acquire temperature range information from the environment history DB 26, and determines the set temperature so that the comfortable temperature lower limit (for example, 22 ° C.) is reached when entering the room. To do.
  • the air conditioning setting unit 24 uses the indoor environment prediction unit 23 to determine the set temperature so as to maintain a comfortable temperature range (for example, 25 ° C.) from the time of entering the room to the time before leaving the room. .
  • the air conditioning setting unit 24 uses the indoor environment prediction unit 23 to determine to turn off the air conditioner 10 (or lower the set temperature) in advance so as to reach the comfortable temperature lower limit when leaving the room. .
  • the air conditioning setting unit 24 notifies the air conditioning control unit 13 of the air conditioner 10 in advance of the operation pattern determined as described above.
  • the air conditioner 10 is activated from the operation start time and adjusts the room temperature according to the notified operation pattern.
  • the comfortable temperature range may be determined by the user using a GUI or the like, or may be automatically calculated from the average outside air temperature or the like.
  • the environment history data stored in the environment history DB 26 is not particularly limited to the data acquired from the internal sensor of the air conditioner 10, and uses data acquired from a temperature / humidity sensor or a human sensor installed in the room. May be.
  • the efficiency of air conditioning control is achieved by predicting the indoor temperature.
  • it may be configured to reflect the humidity prediction in the operation pattern.
  • a discomfort index as a human comfort index, which is determined by room temperature and humidity.
  • the setting pattern of the air conditioner 10 is determined with the target value being to keep the discomfort index at the time of entering the room below a certain level. May be.
  • the efficiency of air conditioning control is measured by predicting the indoor temperature.
  • the sensor value of CO 2 carbon dioxide
  • the driving pattern may be determined in consideration of the prediction.
  • the setting pattern of the ventilation function of the air conditioner 10 is determined by setting the CO 2 concentration at the entrance time to a certain value or less. You may make it the structure which does.
  • FIG. 17 is a block diagram illustrating an example of the configuration of the entire building air conditioning system according to another embodiment of the present disclosure. Detailed description of points common to the air conditioning control system shown in FIG. 1 and the entire building air conditioning system shown in FIG. 17 will be omitted, and only different points will be described in detail below.
  • the air conditioner 10a shown in FIG. 17 is connected to three ducts 60 that are pipes for flowing air to each room, and the air conditioner 10a is configured to reduce the amount of cooled air or warm air discharged to each room. Can be determined.
  • Each room is provided with a temperature / humidity information acquisition unit 11a, and the temperature / humidity information of each room acquired by the temperature / humidity information acquisition unit 11a is transmitted to the cloud server 20a via a predetermined network (not shown). Is transmitted.
  • the air conditioning control information acquired through the control information acquisition unit 12 (not shown) of the air conditioner 10a includes information on the amount of air discharged to each room and the like in the environment history DB 26 (not shown) of the cloud server 20a.
  • the other configurations of the air conditioner 10a and the cloud server 20a are the same as the configurations of the air conditioner 10 and the cloud server 20 shown in FIG.
  • the entire building air conditioning system shown in FIG. 17 utilizes the temperature and humidity history information of each room and the air conditioning control information history information of the air conditioner 10a, and the indoor environment of the cloud server 20a.
  • the prediction unit 23 (not shown) can predict the temperature and humidity for each room, and can control the air conditioner using this.
  • FIG. 18A shows an overall image of the service according to the present embodiment.
  • some or all of the blocks of the cloud server 20 described above belong to either the cloud server 111 of the data center operating company 110 or the server 121 of the service provider 120 shown in FIG.
  • the group 100 is, for example, a company, an organization, a home, etc., and may be of any size.
  • group 100 there are a plurality of devices 101, device A, device B, and home gateway 102.
  • the plurality of devices 101 include devices that can be connected to the Internet (for example, smartphones, PCs, TVs, etc.) and devices that cannot be connected to the Internet by themselves (for example, lighting, washing machines, refrigerators, etc.). To do. Even if the device itself cannot be connected to the Internet, there may be a device that can be connected to the Internet via the home gateway 102.
  • the group 100 includes a user 10Y who uses a plurality of devices 101.
  • the data center operating company 110 has a cloud server 111.
  • the cloud server 111 is a virtualization server that cooperates with various devices via the Internet.
  • the cloud server 111 mainly manages huge data (big data) that is difficult to handle with a normal database management tool or the like.
  • the data center operating company 110 performs data management, management of the cloud server 111, operation of the data center that performs them, and the like. Details of services performed by the data center operating company 110 will be described later.
  • the data center operating company 110 is not limited to a company that performs only data management, operation of the cloud server 111, or the like.
  • the device manufacturer can contact the data center operating company 110.
  • Applicable FIG. 18B
  • the data center operating company 110 is not limited to one company.
  • the device manufacturer and another management company jointly or share the data management and operation of the cloud server 111, both or one of them corresponds to the data center operating company 110 (FIG. 18). (C)).
  • the service provider 120 has a server 121.
  • the server 121 referred to here includes, for example, a memory in a personal PC regardless of the scale. In some cases, the service provider does not have the server 121.
  • the home gateway 102 is not essential in the above service. For example, when the cloud server 111 manages all data, the home gateway 102 becomes unnecessary. In addition, there may be no device that cannot be connected to the Internet by itself, as in the case where every device in the home is connected to the Internet.
  • the device A or device B of the group 100 transmits each log information to the cloud server 111 of the data center operating company 110.
  • the cloud server 111 accumulates log information of the device A or the device B (FIG. 18A).
  • the log information is information indicating, for example, driving conditions and operation dates / times of the plurality of devices 101.
  • the log information may be provided directly to the cloud server 111 from a plurality of devices 101 themselves via the Internet.
  • log information may be temporarily accumulated in the home gateway 102 from a plurality of devices 101 and provided to the cloud server 111 from the home gateway 102.
  • the cloud server 111 of the data center operating company 110 provides the collected log information to the service provider 120 in a certain unit.
  • a unit that can organize and provide the information collected by the data center operating company to the service provider 120 or a unit requested by the service provider 120 may be used. Although described as a fixed unit, it may not be fixed, and the amount of information to be provided may change depending on the situation.
  • the log information is stored in the server 121 held by the service provider 120 as necessary (FIG. 18B).
  • the service provider 120 organizes the log information into information suitable for the service provided to the user, and provides the information to the user.
  • the user to be provided may be a user 10Y using a plurality of devices 101 or an external user 20Y.
  • a service providing method for a user may be provided directly to a user from a service provider (FIGS. 18F and 18E).
  • the service providing method for the user may be provided to the user via the cloud server 111 of the data center operating company 110 again (FIGS. 18C and 18D), for example.
  • the cloud server 111 of the data center operating company 110 may organize the log information into information suitable for the service provided to the user and provide the information to the service provider 120.
  • the user 10Y and the user 20Y may be different or the same.
  • the technology described in the above aspect can be realized, for example, in the following types of cloud services.
  • the type in which the technique described in the above embodiment is realized is not limited to this.
  • FIG. 19 shows service type 1 (in-house data center type).
  • This type is a type in which the service provider 120 acquires information from the group 100 and provides a service to the user.
  • the service provider 120 has a function of a data center operating company. That is, the service provider has a cloud server 111 that manages big data. Therefore, there is no data center operating company.
  • the service provider 120 operates and manages the data center (cloud server 111) (203).
  • the service provider 120 manages the OS (202) and the application (201).
  • the service provider 120 provides a service using the OS (202) and the application (201) managed by the service provider 120 (204).
  • FIG. 20 shows service type 2 (IaaS usage type).
  • IaaS is an abbreviation for infrastructure as a service, and is a cloud service provision model that provides a base for constructing and operating a computer system as a service via the Internet.
  • the data center operating company operates and manages the data center (cloud server 111) (203).
  • the service provider 120 manages the OS (202) and the application (201).
  • the service provider 120 provides a service using the OS (202) and the application (201) managed by the service provider 120 (204).
  • FIG. 21 shows service type 3 (PaaS usage type).
  • PaaS is an abbreviation for Platform as a Service
  • PaaS is a cloud service provision model that provides a platform serving as a foundation for constructing and operating software as a service via the Internet.
  • the data center operating company 110 manages the OS (202) and operates and manages the data center (cloud server 111) (203).
  • the service provider 120 manages the application (201).
  • the service provider 120 provides a service using the OS (202) managed by the data center operating company and the application (201) managed by the service provider 120 (204).
  • FIG. 22 shows service type 4 (SaaS usage type).
  • SaaS is an abbreviation for software as a service.
  • SaaS a function that allows applications provided by a platform provider who owns a data center (cloud server) to be used via a network such as the Internet by a company / individual (user) who does not have a data center (cloud server).
  • This is a cloud service provision model.
  • the data center operating company 110 manages the application (201), manages the OS (202), and operates and manages the data center (cloud server 111) (203).
  • the service provider 120 provides a service using the OS (202) and the application (201) managed by the data center operating company 110 (204).
  • the service provider 120 performs a service providing act.
  • the service provider or the data center operating company may develop an OS, an application, a big data database, or the like, or may be outsourced to a third party.
  • the air conditioning control system has high applicability in the consumer electronics industry because the air conditioner can be controlled with high energy saving efficiency and comfortably.

Abstract

クラウドサーバ(20)は、空調機(10)が温度を調節する居室における室温変化の履歴を示す室温履歴情報を、空調機(10)の動作履歴を示す動作履歴情報に対応付けて記憶する環境履歴DB(26)と、室温履歴情報と、動作履歴情報とに基づいて、空調機(10)が温度を調節しない場合の居室の将来の室温をオフ時予測室温として予測する室内環境予測部(23)と、オフ時予測室温に基づいて、所定の目標時刻において居室の室温を所定の目標温度に到達させるために用いられる、空調機(10)の制御パラメータを決定する空調設定部(24)とを備える。

Description

空調制御方法、空調制御装置及び空調制御プログラム
 本開示は、所定のネットワークを介して空気調和装置に接続される空調制御装置、該空調制御装置の空調制御方法及び空調制御プログラムに関し、特に、所定のネットワークを介してエアコンに接続される空調制御装置の空調制御方法等に関するものである。
 近年、インターネットに接続可能なテレビ及びレコーダなどのAV家電が増加し、映画、スポーツなどの動画配信サービスが提供されている。また、AV家電に限らず、エアコン、体重計、活動量計、炊飯器、オーブンレンジ、冷蔵庫などの生活家電と呼ばれる家電機器もインターネットへの接続が進み、様々なサービスが提供されつつある。生活家電の中でも、エアコンに対して、インターネットに接続可能な情報端末を用いて、遠隔制御を行なうシステムが提供されている。
 また、特許文献1には、現在時刻の居室の温度とユーザの起床時刻までの時間とに基づいて、起床時刻の居室の温度を予測し、床暖房装置の設定温度と予測された起床時刻における居室の温度との差分に基づいて、床暖房装置の起動時刻を設定する室内温度制御システムが開示されている。
 しかしながら、上記のシステムは、更なる改善が必要であった。
特開2013-204985号公報
 本開示の一態様に係る空調制御方法は、所定のネットワークを介して空気調和装置に接続される空調制御装置における空調制御方法であって、前記空気調和装置が温度を調節する居室における室温変化の履歴を示す室温履歴情報を、前記空気調和装置の動作履歴を示す動作履歴情報に対応付けて、所定のデータベースに記憶し、前記室温履歴情報と、前記動作履歴情報とに基づいて、前記空気調和装置が温度を調節しない場合の前記居室の将来の室温をオフ時予測室温として予測し、前記オフ時予測室温に基づいて、所定の目標時刻において前記居室の室温を所定の目標温度に到達させるために用いられる、前記空気調和装置の制御パラメータを決定する。
 上記態様により、さらなる改善を実現できた。
 本開示によれば、消費電力を抑えつつ、ユーザにとって快適な空気調和装置の制御を行うことができる。
図1は、本開示の一実施の形態における空調制御システムの構成の一例を示すブロック図である。 図2は、図1に示す環境履歴DBに格納されるデータ構造の一例を示す図である。 図3は、図1に示す空調設定部により決定される設定温度パターンの一例を示す図である。 図4は、図1に示す空調制御システムのデータ蓄積処理の一例を示すフローチャートである。 図5は、図4に示すデータ蓄積処理を実行する空調機及びクラウドサーバの処理シーケンスの一例を示す図である。 図6は、図1に示す空調制御システムの空調設定処理の一例を示すフローチャートである。 図7は、図6に示す空調設定処理における設定画面及び室内の温度変化グラフの一例を示す図である。 図8は、図6に示す空調設定処理を実行するユーザデバイス、クラウドサーバ及び空調機の処理シーケンスの一例を示す図である。 図9は、図1に示すユーザデバイスにおける空調設定用のユーザインターフェースの一例を示す図である。 図10は、図1に示す空調設定部により決定される他の設定温度パターンの一例を示す図である。 図11は、図1に示す室内環境予測部によるデータ分析結果の第1の例を示す図である。 図12は、図1に示す室内環境予測部によるデータ分析結果の第2の例を示す図である。 図13は、図1に示す室内環境予測部によるデータ分析結果の第3の例を示す図である。 図14は、図1に示す空調設定部により決定される設定温度パターンに対するオン時予測室温及びオン時予測消費電力量の予測精度の一例を示す図である。 図15は、図1に示すユーザデバイスにおける、消費電力量を考慮した場合の空調設定用のユーザインターフェースの一例を示す図である。 図16は、図1に示す空調制御システムによる快適温度範囲を使った省エネルギー効果の高い温度制御方法の一例を説明するための図である。 図17は、本開示の他の実施の形態における全館空調システムの構成の一例を示すブロック図である。 図18は、本開示の実施の形態において提供するサービスの全体像を示す図である。 図19は、本開示の実施の形態におけるサービスの類型(自社データセンタ型)を示す図である。 図20は、本開示の実施の形態におけるサービスの類型(IaaS利用型)を示す図である。 図21は、本開示の実施の形態におけるサービスの類型(PaaS利用型)を示す図である。 図22は、本開示の実施の形態におけるサービスの類型(SaaS利用型)を示す図である。
 (本開示の基礎となった知見)
 エアコンの遠隔制御システムでは、例えば、情報端末からインターネットを経由してエアコンへ制御指示を送信することができ、外出先から自宅のエアコンを制御することが可能となる。このサービスを利用すれば、家に帰る前に外出先でエアコンの動作をONにすることで、帰宅時には十分に部屋が冷えた状態又は暖まった状態にしておくことが可能となる。
 一方で、家に帰る前に、手動でエアコンの設定を行う場合には、エアコンの設定時と帰宅時との時間差が大き過ぎる場合には、部屋を冷やし過ぎ、又は暖め過ぎとなってしまい、エアコンの動作に係る消費電気量が無駄になってしまう可能性がある。また、反対にエアコンの設定時と帰宅時との時間差が小さ過ぎる場合には、十分に部屋が冷えない、もしくは、暖まらない状態となる。
 特許文献1には、現在時刻の居室の温度とユーザの起床時刻までの時間とに基づいて、起床時刻の居室の温度を予測し、床暖房装置の設定温度と予測された起床時刻における居室の温度との差分に基づいて、床暖房装置の起動時刻を設定する技術が開示されている。これによって、暖房不足や過暖房を抑制でき、起床時の居室の快適性、及び省エネルギー性を向上できる。
 しかし、特許文献1に開示されている技術では、現在時刻からユーザの起床時刻までの居室の温度変化を、線形モデルでの計算によって予測している。そのため、温度変化の予測精度は高くなく、また、床暖房稼働による温度変化を考慮していない。そのため、居室の環境によっては、温度変化を正確に予測ができず、過暖房又は暖房不足の状況となってしまうといった課題がある。
 本開示は、消費電力を抑えつつ、ユーザにとって快適な空気調和装置の制御を行うことができる空調制御方法、空調制御装置及び空調制御プログラムを提供する。
 本願発明者らは、居室の温度を調節する空気調和装置とネットワークを介して接続する空調制御装置の機能向上のため、以下の改善策を検討した。
 本開示の一態様に係る空調制御方法は、所定のネットワークを介して空気調和装置に接続される空調制御装置における空調制御方法であって、前記空気調和装置が温度を調節する居室における室温変化の履歴を示す室温履歴情報を、前記空気調和装置の動作履歴を示す動作履歴情報に対応付けて、所定のデータベースに記憶し、前記室温履歴情報と、前記動作履歴情報とに基づいて、前記空気調和装置が温度を調節しない場合の前記居室の将来の室温をオフ時予測室温として予測し、前記オフ時予測室温に基づいて、所定の目標時刻において前記居室の室温を所定の目標温度に到達させるために用いられる、前記空気調和装置の制御パラメータを決定する。
 このような構成により、室温履歴情報及び動作履歴情報に基づいて、空気調和装置が温度を調節しない場合の居室の将来の室温をオフ時予測室温として予測し、オフ時予測室温に基づいて、目標時刻に居室の室温を目標温度に到達させるために用いられる、空気調和装置の制御パラメータを決定しているので、家や空気調和装置の経年劣化などの居室の環境の変化に追従し、空気調和装置の稼働時及び非稼働時の室温予測の精度が高まり、ユーザが希望する目標温度に到達させる目標時刻に合わせて、消費電力を抑えつつ、ユーザにとって快適な空気調和装置の制御を行うことが可能となる。
 上記空調制御方法は、前記空気調和装置が温度を調節する居室の目標温度を示す目標温度情報と、前記居室の温度を前記目標温度に到達させる目標時刻を示す設定時刻情報とを受信し、前記オフ時予測室温に基づいて、前記設定時刻情報が示す目標時刻において前記居室の室温を前記目標温度情報が示す目標温度に到達させるために用いられる、前記空気調和装置の制御パラメータを決定し、決定した前記制御パラメータを含み、前記制御パラメータにて前記空気調和装置を動作させる動作指示を表わす制御指示情報を、前記ネットワークを介して、前記空気調和装置へ送信するようにしてもよい。
 このような構成により、居室の目標温度を示す目標温度情報と、居室の温度を目標温度に到達させる目標時刻を示す設定時刻情報とを受信し、オフ時予測室温に基づいて、設定時刻情報が示す目標時刻において居室の室温を目標温度情報が示す目標温度に到達させるために用いられる、空気調和装置の制御パラメータを決定し、決定した制御パラメータを含み、この制御パラメータにて空気調和装置を動作させる動作指示を表わす制御指示情報を、ネットワークを介して、空気調和装置へ送信しているので、家や空気調和装置の経年劣化などの居室の環境が変化した場合でも、設定時刻情報が示す目標時刻において居室の室温を目標温度情報が示す目標温度に正確に到達させることができる。
 上記空調制御方法は、前記室温履歴情報と、前記動作履歴情報とに基づいて、さらに、前記空気調和装置が温度を調節する場合の前記居室の将来の室温をオン時予測室温として予測し、前記オフ時予測室温及び前記オン時予測室温に基づいて、前記空気調和装置の制御パラメータを決定するようにしてもよい。
 このような構成により、室温履歴情報及び動作履歴情報に基づいて、さらに、空気調和装置が温度を調節する場合の居室の将来の室温をオン時予測室温として予測し、オフ時予測室温及びオン時予測室温に基づいて、空気調和装置の制御パラメータを決定しているので、家や空気調和装置の経年劣化などの居室の環境が変化した場合でも、空気調和装置の稼働時及び非稼働時の室温予測の精度がより高まり、ユーザが希望する目標温度に到達させる目標時刻に合わせて、消費電力をより抑えつつ、ユーザにとってより快適な空気調和装置の制御を行うことが可能となる。
 上記空調制御方法は、さらに、前記空気調和装置の消費電力量の履歴を示す消費電力履歴情報を前記データベースに記憶し、前記室温履歴情報と、前記動作履歴情報と、前記消費電力履歴情報とに基づいて、さらに、前記空気調和装置が温度を調節する場合の前記空気調和装置の将来の消費電力量をオン時予測消費電力量として予測し、前記オフ時予測室温、前記オン時予測室温、及び前記オン時予測消費電力量に基づいて、前記制御パラメータを決定するようにしてもよい。
 このような構成により、室温履歴情報、動作履歴情報及び消費電力履歴情報に基づいて、さらに、空気調和装置が温度を調節する場合の空気調和装置の消費電力量をオン時予測消費電力量として予測し、オフ時予測室温、オン時予測室温、及びオン時予測消費電力量に基づいて、空気調和装置の制御パラメータを決定しているので、家や空気調和装置の経年劣化などの居室の環境が変化した場合でも、空気調和装置の稼働時及び非稼働時の室温予測の精度並びに空気調和装置の稼働時の消費電力量予測の精度がより高まり、ユーザが希望する目標温度に到達させる目標時刻に合わせて、消費電力をさらに抑えつつ、ユーザにとってより快適な空気調和装置の制御を行うことが可能となる。
 前記制御パラメータは、前記空気調和装置の動作を開始させる時刻を示す開始時刻情報を含むようにしてもよい。
 このような構成により、開始時刻情報が示す時刻において空気調和装置を正確に起動し、上記の制御を行うことができる。
 前記制御パラメータは、前記空気調和装置を動作させる動作パターンを示す動作パターン情報を含むようにしてもよい。
 このような構成により、動作パターン情報が示す動作パターンで空気調和装置を正確に制御することができる。
 上記空調制御方法は、さらに、前記居室に対するユーザの、入室履歴を示す入室履歴情報及び退室履歴を示す退室履歴情報のうち少なくとも一方を前記データベースに記憶し、前記入室履歴情報及び退室履歴情報のうち少なくとも一方に基づいて、ユーザが前記居室を使用する使用時刻を推定し、前記使用時刻を前記目標時刻として決定するようにしてもよい。
 このような構成により、入室履歴情報及び退室履歴情報のうち少なくとも一方に基づいて、ユーザが居室を使用する使用時刻を推定し、この使用時刻を目標時刻として決定しているので、室温が目標温度に到達することをユーザが希望する目標時刻として、ユーザが居室を使用する使用時刻を自動的に設定することができる。
 上記空調制御方法は、前記居室に設置され、前記居室内の前記ユーザの存在の有無を検知する人感センサの検知結果を、前記ネットワークを介して受信し、前記人感センサの検知結果に基づいて、前記入室履歴情報及び前記退室履歴情報のうち少なくとも一方を更新するようにしてもよい。
 このような構成により、入室履歴情報及び退室履歴情報のうち少なくとも一方を自動的に更新することができるので、室温が目標温度に到達することをユーザが希望する目標時刻として、ユーザが居室を使用する使用時刻をユーザの使用履歴に応じて自動的に設定することができる。
 上記空調制御方法は、前記ネットワークを介して、前記ユーザが所持する情報端末のGPS(Global Positioning System)情報を受信し、前記情報端末から受信した前記GPS情報に基づいて、前記ユーザの前記居室への入室及び前記居室からの退室のうち少なくとも一方を決定し、決定した前記入室及び前記退室のうち少なくとも一方に基づいて、前記入室履歴情報及び前記退室履歴情報のうち少なくとも一方を更新するようにしてもよい。
 このような構成により、ユーザが所持する情報端末の位置を表すGPS情報を利用して、入室履歴情報及び退室履歴情報のうち少なくとも一方を自動的に更新することができるので、人感センサ等の新たなセンサを用いることなく、室温が目標温度に到達することをユーザが希望する目標時刻として、ユーザが居室を使用する使用時刻をユーザの使用履歴に応じて自動的に設定することができる。
 上記空調制御方法は、さらに、前記居室の外の温度変化の履歴を示す室外温度履歴情報及び前記居室に備え付けられた窓の開閉履歴を示す開閉履歴情報のうち少なくとも一方を前記データベースに記憶し、前記室温履歴情報と、前記動作履歴情報とに加えて、前記室外温度履歴情報及び前記開閉履歴情報のうち少なくとも一方に基づいて、前記制御パラメータを決定するようにしてもよい。
 このような構成により、室温履歴情報と、動作履歴情報とに加えて、室外温度履歴情報及び開閉履歴情報のうち少なくとも一方に基づいて、制御パラメータを決定しているので、家や空気調和装置の経年劣化などの居室の環境が変化した場合でも、空気調和装置の稼働時及び非稼働時の室温予測の精度がさらに高まり、ユーザが希望する目標温度に到達させる目標時刻に合わせて、消費電力をさらに抑えつつ、ユーザにとってさらに快適な空気調和装置の制御を行うことが可能となる。
 上記空調制御方法は、さらに、前記ユーザが快適に生活可能な所定の温度範囲を示す温度範囲情報を前記データベースに記憶し、前記目標温度は、前記温度範囲情報が示す前記温度範囲の上限又は下限を含むようにしてもよい。
 このような構成により、温度範囲情報が示す温度範囲の上限又は下限が目標温度として自動的に設定されるので、ユーザが快適に生活可能な温度範囲の中で最も消費電力を抑制することができる制御パラメータを自動的に決定することができる。
 上記空調制御方法は、前記目標時刻から所定時間経過するまで、前記ユーザの前記居室への入室を検知しない場合には、前記空気調和装置の動作を停止させる停止指示情報を、前記ネットワークを介して、前記空気調和装置へ送信するようにしてもよい。
 このような構成により、ユーザが居室に入室していない場合、空気調和装置の動作を自動的に停止することができるので、不要な消費電力を抑制することができる。
 また、本開示は、以上のような特徴的な処理を実行する空調制御方法として実現することができるだけでなく、空調制御方法が実行する特徴的な処理に対応する特徴的な構成を備える空調制御装置などとして実現することもできる。また、このような空調制御方法に含まれる特徴的な処理をコンピュータに実行させるコンピュータプログラムとして実現することもできる。したがって、以下の他の態様でも、上記の空調制御方法と同様の効果を奏することができる。
 本開示の他の態様に係る空調制御装置は、所定のネットワークを介して空気調和装置に接続される空調制御装置であって、前記空気調和装置が温度を調節する居室における室温変化の履歴を示す室温履歴情報を、前記空気調和装置の動作履歴を示す動作履歴情報に対応付けて記憶するデータベースと、前記室温履歴情報と、前記動作履歴情報とに基づいて、前記空気調和装置が温度を調節しない場合の前記居室の将来の室温をオフ時予測室温として予測する予測部と、前記オフ時予測室温に基づいて、所定の目標時刻において前記居室の室温を所定の目標温度に到達させるために用いられる、前記空気調和装置の制御パラメータを決定する決定部とを備える。
 本開示の他の態様に係る空調制御プログラムは、所定のネットワークを介して空気調和装置に接続される空調制御装置として、コンピュータを機能させるための空調制御プログラムであって、前記コンピュータに、前記空気調和装置が温度を調節する居室における室温変化の履歴を示す室温履歴情報を、前記空気調和装置の動作履歴を示す動作履歴情報に対応付けて、所定のデータベースに記憶し、前記室温履歴情報と、前記動作履歴情報とに基づいて、前記空気調和装置が温度を調節しない場合の前記居室の将来の室温をオフ時予測室温として予測し、前記オフ時予測室温に基づいて、所定の目標時刻において前記居室の室温を所定の目標温度に到達させるために用いられる、前記空気調和装置の制御パラメータを決定する、処理を実行させる。
 そして、上記のようなコンピュータプログラムを、CD-ROM等のコンピュータ読み取り可能な非一時的な記録媒体あるいはインターネット等の通信ネットワークを介して流通させることができるのは、言うまでもない。
 また、本開示の一実施の形態に係る空調制御装置の構成要素の一部とそれ以外の構成要素とを複数のコンピュータに分散させたシステムとして構成してもよい。
 なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示すためのものである。以下の実施の形態で示される数値、形状、構成要素、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、全ての実施の形態において、各々の内容を組み合わせることもできる。
 (実施の形態)
 以下、本開示の実施の形態について、図面を参照しながら説明する。図1は、本開示の実施の形態1における空調制御システムの構成を示すブロック図である。
 図1に示す空調制御システムは、空調機10、及びクラウドサーバ20を備える。クラウドサーバ20は、ネットワーク30を介して、空調機10、気象情報サーバ40及びユーザデバイス50に接続される。ここで、空調機10は、ユーザが使用する居室の温度を調節する空気調和装置の一例であり、クラウドサーバ20は、空気調和装置を制御する空調制御装置の一例であり、ユーザデバイス50は、ユーザが所持する情報端末の一例である。
 空調機10は、室内の空質環境を調整する機器であり、例えば、ルームエアコンである。空調機10は、温湿度情報取得部11、制御情報取得部12、及び空調制御部13を備える。
 空調制御部13は、室内の空気の温度や湿度などを調整する制御機構であり、具体的には、エアコンの空調機能の制御器であるが、部屋の温度や湿度をコントロールできる制御機構であれば、これに限らない。
 温湿度情報取得部11は、室内の温度及び湿度と、室外の温度及び湿度とを、温湿度センサを利用して取得する。なお、本実施の形態では、室内及び室外の湿度も取得しているが、この例に特に限定されず、室内及び室外の温度のみを取得したり、他の計測値を取得したりしてもよい。
 制御情報取得部12は、空調制御部13等から空調制御情報を取得する。空調制御情報とは、空調制御部13の制御内容を示す情報であり、具体的には、運転ステータス(ON/OFF)、運転モード(冷房/暖房/除湿/自動)、設定温度、風量、風向などの情報である。
 以上が空調機10の構成の説明である。
 クラウドサーバ20は、温湿度情報格納部21、制御情報格納部22、室内環境予測部23、空調設定部24、インターフェース部25、環境履歴DB(データベース)26、及び外環境予測部27を備える。
 温湿度情報格納部21は、空調機10の温湿度情報取得部11を通じて取得した温湿度情報を環境履歴DB26に格納する。温湿度情報格納部21と温湿度情報取得部11との間の通信は、インターネット等の通信手段であるネットワーク30を使って行われ、例えば、温湿度情報格納部21は、5分に1回、温湿度情報取得部11から温湿度情報を取得して環境履歴DB26に格納する。なお、通信方法は、この例に特に限定されず、温湿度情報取得部11が温湿度情報格納部21に、定期的に情報をアップロードする方法でもよい。
 制御情報格納部22は、空調機10の制御情報取得部12を通じて取得した空調制御情報を環境履歴DB26に格納する。制御情報格納部22と制御情報取得部12との間の通信は、インターネット等の通信手段であるネットワーク30を使って行われ、例えば、制御情報格納部22は、5分に1回、制御情報取得部12から空調制御情報を取得して環境履歴DB26に格納する。なお、通信方法は、この例に特に限定されず、制御情報取得部12から制御情報格納部22に、定期的に情報をアップロードする方法でもよく、又は、空調機10の制御が変更されたイベントをトリガーとして、制御情報取得部12が、制御情報格納部22にアップロードする方法でもよい。
 環境履歴DB26は、温湿度情報格納部21及び制御情報格納部22から受け取った温湿度情報及び空調制御情報を格納するデータベースである。データベースの形式は、SQL(Structured Query Language)等のリレーショナルDBが一般的であるが、Key-Value型などの簡素な関係性でデータを構成するNoSQLと呼ばれるDBの構成であってもよい。
 図2は、環境履歴DB26のテーブル構造の一例を示している。図2において、IDは各レコードを識別するユニークなID(識別情報)、時刻は各情報を取得した時刻を示す情報、室内温度、室内湿度、室外気温(室外温度)、及び室外湿度は、温湿度情報取得部11を通じて取得した温湿度情報であり、運転ステータス、運転モード、設定温度、風量、及び風向は、制御情報取得部12を通じて取得した空調制御情報である。説明を容易にするため、温湿度情報と、空調制御情報とを1つのテーブルにまとめているが、別のテーブルとして管理してもよい。
 ここで、時刻及び室内温度の情報が、空気調和装置が温度を調節する居室における室温変化の履歴を示す室温履歴情報の一例に相当し、時刻、運転ステータス、運転モード、設定温度、風量、及び風向の情報が空気調和装置の動作履歴を示す動作履歴情報の一例に相当し、時刻及び室外気温の情報が居室の外の温度変化の履歴を示す室外温度履歴情報の一例に相当する。なお、環境履歴DB26に記憶される情報は、上記の例に特に限定されず、後述するように、空気調和装置の消費電力量の履歴を示す消費電力履歴情報や、居室に備え付けられた窓の開閉履歴を示す開閉履歴情報等を含むようにしてもよい。
 外環境予測部27は、外部の気象情報サーバ40などから空調機10が存在する該当地域における今後の天候予測情報及び過去の天候予測情報等を受け取り、室内環境予測部23に入力する。
 室内環境予測部23は、環境履歴DB26を利用して、今後の室内における環境(室温、室内湿度等)を、機械学習により予測する。具体的には、室内環境予測部23は、下記の機械学習を用い、室温履歴情報と、動作履歴情報とに基づいて、空調機10が温度を調節しない場合の居室の将来の室温を予測するためのオフ時室温予測モデルを作成し、このオフ時室温予測モデルを用いて、空調機10が温度を調節しない場合の居室の将来の室温をオフ時予測室温として予測する。空調設定部24は、オフ時予測室温に基づいて、所定の目標時刻において居室の室温を所定の目標温度に到達させるために用いられる、空調機10の制御パラメータを決定する。
 一般に、機械学習は、2つのステップに分類され、2つのステップは、学習フェーズと、識別フェーズとよばれる。学習フェーズは、過去の履歴データなどの訓練データを入力し、データ解析することで、そのデータの関係性を抽出する。そして、次の識別フェーズでは、識別データ(予測を行うための入力パラメータ)を入力し、学習フェーズで抽出したデータの関係性に基づき、予測値を出力する。
 ここで、室内環境予測部23は、訓練データとして、環境履歴DB26の温湿度情報及び空調制御情報と、外環境予測部27から取得した過去の天候予測情報とを入力される。そして、室内環境予測部23は、識別データとして、未来の時刻、今後の天気予報などの天候予測値、及び空調機の設定情報を入力される。
 このようにして、室内環境予測部23は、今後の時刻での環境情報(室温、室内湿度等)を予測する。機械学習を行う上では、どのようなデータを訓練データとして入力し、どのようなデータを識別データとして入力するのかが、予測の精度を上げるポイントとなる。学習のアルゴリズムは、線形回帰、ニューラルネットワーク、ベイジアンフィルタやSVM(Support Vector Machine)等の多岐に渡るが、ここでは限定しない。機械学習のクラウド上のサービスとして、Google社のPredition APIやMicrosoft社のAzure MLなどがあり、一般に利用されやすくなっており、室内環境予測部23は、そのようなライブラリやAPI(Application Program Interface)を活用するような構成でもよい。
 ここで、室内環境予測部23は、環境履歴DB26のデータ及び外環境予測部27からの天候情報などを訓練データとして学習を行うが、図2の例のように、環境履歴DB26に記憶されている空調機10の設定情報である空調制御情報等を使用することにより、空調機10の設定と室温や天気予報との関係性を抽出することが可能になる。このように、空調機10の設定情報を識別データとして室内環境予測部23に入力することにより、室内環境予測部23は、該当設定に対する室温予測を高精度に行うことができる。
 インターフェース部25は、ユーザが使用するユーザデバイス50からの入力を受け付ける外部インターフェースであり、例えば、httpプロトコルで通信する外部I/F(WebAPI)であり、ユーザの空調機10に対する設定情報を受け付ける。例えば、ユーザは、スマートフォンやタブレット等のユーザデバイス50にアプリケーションをダウンロ―ドし、そのアプリケースションのグラフィカル・ユーザ・インターフェース(GUI)を使いて空調機10に対する設定情報を決定する。ユーザデバイス50は、その設定情報をhttpプロトコルのフォーマットに変換して、インターフェース部25に通知する。
 空調設定部24は、インターフェース部25で受け取った設定情報を基に、室内環境予測部23を活用しながら、制御パラメータとして、空調機10の設定パターン(動作パターン)を決定する。また、空調設定部24は、室内環境予測部23を用いて決定した制御パラメータを含み、この制御パラメータにて空調機10を動作させる動作指示を表わす制御指示情報を、インターフェース部25を介して、空調機10へ送信する。ここで、制御パラメータは、空調機10の動作を開始させる時刻を示す開始時刻情報及び/又は空調機10を動作させる動作パターンを示す動作パターン情報を含む。
 例えば、インターフェース部25は、設定情報として、帰宅時刻(入室時刻)と、目標環境値(例えば、目標室内温度)をユーザデバイス50から受け取り、空調設定部24は、室内環境予測部23を用いて、帰宅時刻までの室内温度の推移を予測する。この時の予測としては、空調機10を稼働させない場合のオフ時予測室温の推移を予測する。空調設定部24は、オフ時予測室温の推移を基に、帰宅時刻(入室時刻)に目標温度に到達するための、空調機10の運転パターンを決定する。
 一般にエアコンの運転においては、室温と設定温度との差が小さい方が省エネルギーになると言われている。そこで、空調設定部24は、室内環境予測部23を利用して、空調機10の設定温度を識別データとして入力し、帰宅時刻に目標温度に到達するための、オン時予測室温の推移を求め、省エネルギーになる設定温度パターンを含む動作パターンを決定する。
 図3は、図1に示す空調設定部24により決定される設定温度パターンの一例を示す図である。例えば、図3では、帰宅時刻に25℃になることが目標温度として設定されている。このとき、空調設定部24は、帰宅時刻における室内温度を25℃にするため、設定温度を25℃とし、室内環境予測部23を利用して、空調機10が温度を調整する場合のオン時予測室温の推移を逆算で予測する。そして、空調設定部24は、設定温度とオン時予測室温との差が1.5℃となる時刻を特定し、この時刻が図3に示す時刻Aである。
 次に、空調設定部24は、この時刻Aから設定温度を1℃落として、さらに、オン時予測室温の推移を逆算で予測する。そして、空調設定部24は、空調機10が温度を調整しない場合のオフ時予測室温と、オン時予測室温との交点Bを求め、時刻Bを空調機10の運転開始時刻とする。
 このようにして、空調設定部24は、空調機10の設定温度パターンを含む運転パターンを決定し、決定した運転パターンに従って、空調機10の制御を行う。具体的には、空調設定部24は、空調機10の空調制御部13に対して、決定した運転パターンで動作するための制御命令(制御指示情報)を出力し、空調機10の制御を行う。
 なお、制御指示情報の出力タイミングとして、運転開始時刻の前であればよく、例えば、運転開始時刻になったときに空調設定部24が制御指示情報を送付したり、又は、運転開始時刻と制御指示情報とのリストを予め空調制御部13に渡して、空調制御部13が各運転開始時刻になったときに、各制御を行うようにしたりしてもよい。
 また、上記の説明では、空調設定部24が室内環境予測部23を用いて空調機10が温度を調整する場合のオン時予測室温の推移を逆算で予測したが、オン時予測室温の予測方法は、この例に特に限定されず、例えば、以下のようにして、オン時予測室温を予測してもよい。
 この場合、室内環境予測部23は、上記の機械学習を用い、室温履歴情報と、動作履歴情報とに基づいて、空調機10が温度を調節しない場合の居室の将来の室温を予測するためのオフ時室温予測モデルを作成し、このオフ時室温予測モデルを用いて、空調機10が温度を調節しない場合の居室の将来の室温をオフ時予測室温として予測するとともに、空調機10が温度を調節する場合の居室の将来の室温を予測するためのオン時室温予測モデルを作成し、このオン時室温予測モデルを用いて、空調機10が温度を調節する場合の居室の将来の室温をオン時予測室温として予測する。空調設定部24は、オフ時予測室温及びオン時予測室温に基づいて、空調機10の制御パラメータを決定する。
 この結果、家や空調機10の経年劣化などの居室の環境が変化した場合でも、空調機10の稼働時及び非稼働時の室温予測の精度がより高まり、ユーザが希望する目標温度に到達させる目標時刻に合わせて、消費電力をより抑えつつ、ユーザにとってより快適な空調機10の制御を行うことが可能となる。
 以上が本実施の形態における空調制御システムのシステム構成についての説明である。
 次に、本実施の形態における空調制御システムの空調制御処理について説明する。本実施の空調制御システムにおける空調制御処理は、2つの処理に分けられる。一方の処理は、データ蓄積処理であり、他方の処理は、空調設定処理である。
 図4は、図1に示す空調制御システムのデータ蓄積処理の一例を示すフローチャートである。
 まず、ステップS11にて、空調機10は、温湿度情報取得部11により温湿度センサの温湿度情報を取得する。
 次に、ステップS12にて、空調機10は、制御情報取得部12により空調機10の空調制御情報を取得する。
 次に、ステップS13にて、空調機10の温湿度情報取得部11及び制御情報取得部12は、クラウドサーバ20に対して、ステップS11によって取得した温湿度情報や、ステップS12によって取得した空調制御情報を伝送する。クラウドサーバ20は、温湿度情報格納部21及び制御情報格納部22により温湿度情報や空調制御情報を受け取り、環境履歴DB26に登録する。
 次に、ステップS14にて、空調機10は、一定期間(例えば、5分間)のウェイト処理を行い、その後、ステップS11に戻り、以降の処理を継続する。
 図5は、図4に示すデータ蓄積処理を実行する空調機10及びクラウドサーバ20の処理シーケンスの一例を示す図である。図5に示すように、空調機10は、ステップS11の温湿度情報取得処理及びステップS12の空調制御情報取得処理を実行し、ステップS13において、空調機10とクラウドサーバ20との間でのデータ伝送が行われ、その後、空調機10は、ステップS14のウェイト処理を実行した後、ステップS11に戻り、以降の処理を継続する。
 上記データ蓄積処理は、空調機10とクラウドサーバ20との通信経路が確立されていて、電源ONの状態では常に動き続ける。このようにして、温湿度情報及び空調制御情報がすべて環境履歴DB26に登録される。また、図4では、温湿度情報取得処理と空調制御情報取得処理をシーケンシャルに行ったが、並列に実行してもよい。また、空調制御情報取得処理については、定期的に実行するのではなく、空調機10の制御が変更されたタイミングで、クラウドサーバ20にアップロードするように構成してもよい。
 以上がデータ蓄積処理の説明である。
 次に、空調設定処理について説明する。図6は、図1に示す空調制御システムの空調設定処理の一例を示すフローチャートであり、図7は、図6に示す空調設定処理における設定画面及び室内の温度変化グラフの一例を示す図である。
 図6及び図7を参照し、空調設定処理について以下に説明する。なお、図7の左側の設定画面は、ユーザが空調機10の設定情報を決定するためのGUIアプリケーションの例を示しており、図7の右側のグラフは、室内の温度変化をグラフ化したものである。
 まず、ユーザが、図7の左側の設定画面を利用して、帰宅時刻(入室時刻)と、帰宅時目標温度(目標値)をユーザデバイス50に入力すると(図7の(i))、ステップS21にて、ユーザデバイス50は、ユーザの入力値(例えば、帰宅時刻「18:00」、帰宅時目標温度「25℃」)を入室時刻及び目標値としてインターフェース部25に通知する。
 次に、ステップS22にて、空調設定部24は、インターフェース部25から取得した設定情報(入室時刻及び目標値)に基づき、室内環境予測部23を用いて、帰宅時刻までのオン時予測室温の推移を予測する。図7の右側のグラフの点線は、環境履歴DB26の履歴情報から、室内の温度の推移を予測し(図7の(ii))、その予測値の推移を示している。この時の予測値は、空調機10を稼働させない場合の室内温度(オフ時予測室温)の推移を予測した値である。
 次に、ステップS23にて、空調設定部24は、ステップS22で予測したオン時予測室温の推移を基に、帰宅時刻に目標温度に到達するための、空調機10の運転パターンを決定する。一般に、エアコンの運転においては、室温と設定温度との差が小さい方が省エネルギーになると言われている。そこで、空調設定部24は、室内環境予測部23を利用して、図3に示す空調機10の設定温度を識別データとして入力し、帰宅時刻に目標温度に到達するための、オン時予測室温を求める。
 例えば、図3では、帰宅時刻に25℃になることが目標温度として設定されている。このとき、空調設定部24は、帰宅時刻における室内温度を25℃とするため、設定温度を25℃とし、室内環境予測部23を利用して、オン時予測室温の推移を逆算で予測する。そして、空調設定部24は、設定温度とオン時予測室温との差が1.5℃となる時刻を特定し、この時刻が図3に示す時刻Aである。
 次に、空調設定部24は、この時刻Aから設定温度を1℃落として、さらに、オン時予測室温の推移を逆算で予測する。そして、空調設定部24は、空調機10が温度を調整しない場合のオフ時予測室温と、オン時予測室温との交点Bを求め、時刻Bを空調機10の運転開始時刻とする。このようにして、空調設定部24は、空調機10の運転パターンを決定する。図7の右側のグラフの太い直線は、環境履歴DB26の履歴情報から、オン時予測室温の推移を予測し(図7の(iii))、その予測値の推移を示している。
 次に、ステップS24にて、空調設定部24は、その運転パターンに従って、空調機10の制御を行い、処理を終了する。具体的には、空調設定部24は、上記の運転パターンで動作するための制御命令(制御指示情報)を出力し、空調機10の制御を行う。
 図8は、図6に示す空調設定処理を実行するユーザデバイス50、クラウドサーバ20及び空調機10の処理シーケンスの一例を示す図である。図8に示すように、ユーザが扱うユーザデバイス50は、ステップS21にて、設定情報(入室時刻及び目標値)をクラウドサーバ20に伝送する。クラウドサーバ20は、ステップS22にて、インターフェース部25から取得した設定情報(入室時刻及び目標値)に基づき、室内環境予測部23を用いて、帰宅時刻(入室時刻)までのオン時予測室温の推移を予測し、ステップS23にて、予測したオン時予測室温の推移を基に、帰宅時刻に目標温度に到達するための運転パターンを決定する。また、クラウドサーバ20は、ステップS24にて、運転パターンに基づき、空調機10の制御を行うが、この際には、空調機10を制御するエアコン制御コマンド(制御指示情報)を通信する。データフォーマットとしては、例えば、エコーネットライト規格などがある。
 以上が空調設定処理の説明である。
 なお、ユーザが空調機10の設定を指示するためのGUIの構成として、図9のような構成にしてもよい。図9は、図1に示すユーザデバイス50における空調設定用のユーザインターフェースの一例を示す図である。
 図9の上段は、ユーザの帰宅時刻(入室時刻)と帰宅時の目標温度を設定するためのGUI画面であり、縦軸が温度、横軸が時刻となっており、ユーザデバイス50の表示部(図示省略)には、室内環境予測部23に基づいて予測された室温推移をグラフ化した画面が表示されている。そして、ユーザは、表示部に表示されたグラフ上にタップすることで、目標温度と帰宅時刻とを容易に指定することができる。
 このように構成することで、室温の推移予測をわかりやすく提示することにより、目標とする温度をどこに設定すべきかの判断材料が提示されるため、ユーザには、目標温度及び帰宅時刻の設定が容易になる。
 また、ユーザが目標温度及び帰宅時刻を設定した場合には、図9の下段のように、設定温度と、その設定温度で空調機10を動作させたときの室内温度(オン時予測室温)の予測結果と、「ON」の文字で表される運転開始時刻とを提示するようにしてもよい。このように構成することで、ユーザにとって、空調機10の設定がどのような温度変化をもたらすのかが分かりやすく提示されるとともに、空調機10の設定内容が提示され、空調機10がいつから制御されるのかを確認することができる。
 また、環境履歴DB26に、単位時間当たりの空調機10の消費電力量を格納するように構成し、室内環境予測部23の訓練データとして入力するように構成してもよい。このように構成することで、空調設定部24は、室内環境予測部23を用いて、設定温度、室温、外気温及び消費電力量の関係性から、空調機10の消費電力量が最小となるように制御方法を決めることも可能となる。
 例えば、空調設定部24は、室内環境予測部23を用いて、設定温度パターンの候補を幾つか用意した後に、該当設定温度パターンを室内環境予測部23に識別データとして入力した場合の、空調機10の消費電力量の予測を求める。その中で、消費電力量の最小となる運転パターンを採用するように構成すれば、消費電力量の少ない制御で空調機10を動作させることが可能となる。
 このように構成して、図9の下段のように、設定温度パターンが決まった後に、消費電力量から求めた電気代の予測を提示するように構成すれば、ユーザはどのくらい電気代がかかるのかを事前に把握することができる。消費電力量は、空調機10内で計測できるようにしてもよいし、空調機10に電力を供給するコンセントで計測できるようにしてもよい。
 次に、上記の消費電力量を考慮した空調機10の制御パラメータの決定方法について、さらに詳細に説明する。
 制御情報取得部12は、空調制御情報として、単位時間当たりの空調機10の消費電力量を空調制御部13等から取得し、制御情報格納部22は、消費電力量を含む空調制御情報を環境履歴DB26に格納し、環境履歴DB26は、単位時間当たりの空調機10の消費電力量を、空調機10の消費電力量の履歴を示す消費電力履歴情報として記憶する。
 室内環境予測部23は、上記の機械学習を用い、室温履歴情報と、動作履歴情報と、消費電力履歴情報に基づいて、空調機10が温度を調節しない場合の居室の将来の室温を予測するためのオフ時室温予測モデルを作成し、このオフ時室温予測モデルを用いて、空調機10が温度を調節しない場合の居室の将来の室温をオフ時予測室温として予測するとともに、空調機10が温度を調節する場合の居室の将来の室温を予測するためのオン時室温予測モデルを作成し、このオン時室温予測モデルを用いて、空調機10が温度を調節する場合の居室の将来の室温をオン時予測室温として予測し、さらに、空調機10が温度を調節する場合の空調機10の将来の消費電力量を予測するためのオン時消費電力量予測モデルを作成し、このオン時消費電力量予測モデルを用いて、空調機10が温度を調節する場合の空調機10の将来の消費電力量をオン時予測消費電力量として予測する。
 空調設定部24は、オフ時予測室温、オン時予測室温、及びオン時予測消費電力量に基づいて、空調機10の制御パラメータを決定する。
 この場合、家や空調機10の経年劣化などの居室の環境が変化した場合でも、空調機10の稼働時及び非稼働時の室温予測の精度並びに空調機10の稼働時の消費電力量予測の精度がより高まり、ユーザが希望する目標温度に到達させる目標時刻に合わせて、消費電力をさらに抑えつつ、ユーザにとってより快適な空調機10の制御を行うことが可能となる。
 図10は、上記の消費電力量を考慮した場合に空調設定部24により決定される設定温度パターンの一例を示す図である。図10に示す例では、空調設定部24は、室内環境予測部23を用いて、複数の運転パターンに対して、オフ時予測室温、オン時予測室温、及びオン時予測消費電力量を予測させ、複数の運転パターンの中から消費電力量が最も低い運転パターンを省エネルギー運転パターンとして決定する。
 図10中の点線は、オフ時予測室温を示しており、階段状の細い実線は、設定温度パターンとなる省エネルギー運転パターンの設定温度(45分前が22℃、30分前が23度、15分前が目標温度である24℃)を示している。したがって、入室時刻の45分前から省エネルギー運転パターンで空調機10が制御される。図10中の太い実線は、省エネルギー運転パターン時のオン時予測室温を示しており、太線のハッチングで示す棒グラフが各時刻の消費電力量を示している。
 一方、比較例として、図10に示す一点鎖線は、通常運転パターン(入室時刻の15分前から制御を開始し、設定温度(目標温度)を24℃とするパターン)時としたときのオン時予測室温を示しており、細線のハッチングで示す棒グラフは、通常運転パターン時の消費電力量を示している。
 図10に示すように、消費電力量の合計値は、省エネルギー運転パターンの方が通常運転パターンより小さくなっており、また、15分ごとの消費電力量のピーク値も省エネルギー運転パターンの方が通常運転パターンより小さくなっている。このように、空調設定部24が、室内環境予測部23を用いて複数の運転パターンの中から決定した省エネルギー運転パターンで空調機10を制御することにより、空調機10の消費電力量をより低減することができることがわかる。
 次に、室内環境予測部23の機械学習によるデータ分析結果について説明する。図11~図13は、図1に示す室内環境予測部23によるデータ分析結果の第1~第3の例を示す図である。
 図11の例は、オフ時室温予測モデルとして、1時間前室温、外気温、及び時刻を学習パラメータとする線形回帰モデルを用いた例であり、1時間前の室温及び外気温と現在温度との相関を分析した分析結果である。この場合、現在室温に対する1時間前の室温の相関係数は、0.969であり、現在室温に対する外気温の相関係数は、0.724であった。一般に、相関係数は、0.4~0.7の場合に相関関係があり、0.7以上の場合に強い相関関係がある。したがって、オフ時室温予測モデルとして、1時間前室温、外気温、及び時刻を学習パラメータとする線形回帰モデルを用いることにより、オフ時予測室温を高精度に予測することができることがわかった。
 図12の例は、オン時室温予測モデルとして、設定温度、室温、及び時刻を学習パラメータとする線形回帰モデルを用いた例であり、15分後の上昇温度と、外気温、及び設定温度と室温との差及び外気温との相関を分析した分析結果である。この場合、15分後の上昇温度に対する外気温の相関係数は、0.373であり、15分後の上昇温度に対する設定温度と室温との差の相関係数は、0.812であった。したがって、オン時室温予測モデルとして、設定温度、室温、及び時刻を学習パラメータとする線形回帰モデルを用いることにより、オン時予測室温を高精度に予測することができることがわかった。
 図13の例は、オン時消費電力量予測モデルとして、設定温度、室温、外気温、及び時刻を学習パラメータとする線形回帰モデルを用いた例であり、15分間の積算電力量と、外気温、及び設定温度と室温との差との相関を分析した分析結果である。この場合、15分間の積算電力量に対する外気温の相関係数は、0.463であり、15分間の積算電力量に対する設定温度と室温との差の相関係数は、0.950であった。したがって、オン時消費電力量予測モデルとして、設定温度、室温、外気温及び時刻を学習パラメータとする線形回帰モデルを用いることにより、オン時予測消費電力量を高精度に予測することができることがわかった。
 次に、上記のオフ時室温予測モデル、オン時室温予測モデル及びオン時消費電力量予測モデルを用いたときの室内環境予測部23の機械学習によるオン時予測室温及びオン時予測消費電力量の予測精度について説明する。図14は、図1に示す空調設定部24により決定される設定温度パターンに対するオン時予測室温及びオン時予測消費電力量の予測精度の一例を示す図である。
 例えば、帰宅時刻が24:00で目標温度が24℃の場合に、室内環境予測部23は、図11~図13を用いて説明した各線形回帰モデルを用いて、複数の運転パターンに対して、オフ時予測室温、オン時予測室温及びオン時予測消費電力量を予測し、空調設定部24は、消費電力量が最も低い省エネルギー運転パターンを決定する。
 図14の例は、この省エネルギー運転パターンの設定温度パターンで実際に空調機10を制御したときのオン時実測室温及びオン時実測消費電力量と、室内環境予測部23が予測したオン時予測室温及びオン時予測消費電力量とを示している。
 ここで、図14に示す階段状の細い実線は、省エネルギー運転パターンの設定温度(60分前が21℃、45分前が22℃、30分前が23℃、15分前が目標温度である24℃)を示しており、この省エネルギー運転パターンで入室時刻の60分前から実際に空調機10が制御される。
 この場合において、予想値として、図14に示す太い実線は、オン時予測室温を示しており、太線のハッチングで示す棒グラフは、各時刻のオン時予測消費電力量を示している。一方、実測値として、図14に示す黒丸は、オン時実測室温を示しており、細線のハッチングで示す棒グラフは、各時刻のオン時実測消費電力量を示している。
 図14から、オン時予測室温は、オン時実測室温にほぼ一致し、オン時予測消費電力量は、オン時実測消費電力量と概ね一致している。例えば、予想値と実測値との12回平均を取った場合、60分後の平均室温変化量は、オン時予測室温の場合は+3.2℃となり、オン時実測室温の場合は+3.6℃となり、実測値に対する予測値の誤差は、0.4℃であった。また、総消費電力量は、オン時予測消費電力量の場合206.6Whとなり、オン時実測消費電力量の場合196.0Whとなり、実測値に対する予測値の誤差は5.1%であった。
 上記のように、室内環境予測部23は、図11~図13を用いて説明した各線形回帰モデルを用いることにより、オン時予測室温及びオン時予測消費電力量を高精度に予測することができた。
 次に、消費電力量を考慮した場合のユーザデバイス50における空調設定用のユーザインターフェースについて説明する。図15は、図1に示すユーザデバイス50における消費電力量を考慮した場合の空調設定用のユーザインターフェースの一例を示す図である。
 図9の上段に示すようなGUI画面を用いて、ユーザの帰宅時刻を24:00に、帰宅時の目標温度を24℃に設定した場合、ユーザデバイス50の表示部には、図15に示すGUI画面が表示される。図15に示す例では、空調設定部24が決定した省エネルギー運転パターンの設定温度、その設定温度で空調機10を動作させたときの室内環境予測部23が予測した室内温度(オン時予測室温)及び消費電力量(オン時予測消費電力量)をグラフ化した画面が表示される。
 このように構成することで、室温の推移予測だけでなく、消費電力量の推移予測もわかりやすく提示することにより、省エネルギーを考慮して、目標とする温度をどこに設定すべきかの判断材料が提示されるため、ユーザには、省エネルギーを考慮した時の目標温度及び帰宅時刻の設定が容易になる。
 なお、空調機10がルームエアコンである場合に、入室時刻までの効率的な空調機10の制御方法としては、人がいないため、風量を上げて風を出し、部屋の空気を循環させることが好ましい。つまり、入室時刻までの空調制御は、風量は強風とし、風向きは、冷房の場合は水平方向とし、暖房の場合は下方向とするように構成してもよい。一般に、人が部屋にいる場合には、強風にしてしまうと不快に感じてしまうが、人がいないのであれば、風量を強風にしてもよい。人が部屋にいるかいないかの判断は、ユーザの設定だけでなく、人感センサなどを使うと、より精度が高くなり効率的である。また、入室以降の制御は、反対に風量を自動に弱風とするように構成してもよい。
 また、本実施の形態では、帰宅時刻(入室時刻)の指定を、GUIによって設定するとしたが、帰宅時刻(入室時刻)の指定は、人感センサやGPS(Global Positioning System)での入室及び退室の履歴データを使って機械学習により、入室及び退室予測を行うような構成にしてもよい。また、訓練データとして、曜日、時刻、人感センサ、及びGPSの履歴データを入力して、現在のGPSの位置情報、曜日、及び時刻を識別データとし、その日の入退室時刻の予測を行うように構成してもよい。
 例えば、環境履歴DB26は、居室に対するユーザの、入室履歴を示す入室履歴情報及び退室履歴を示す退室履歴情報のうち少なくとも一方を記憶し、室内環境予測部23は、入室履歴情報及び退室履歴情報のうち少なくとも一方に基づいて、ユーザが居室を使用する使用時刻を推定し、空調設定部24は、推定された使用時刻を目標時刻として決定するようにしてもよい。
 また、インターフェース部25は、居室に設置され、居室内のユーザの存在の有無を検知する人感センサの検知結果を、ネットワーク30を介して受信し、人感センサの検知結果に基づいて、環境履歴DB26に記憶されている入室履歴情報及び退室履歴情報のうち少なくとも一方を更新するようにしてもよい。
 又は、インターフェース部25は、ネットワーク30を介して、ユーザが所持するユーザデバイス50のGPS情報を受信し、ユーザデバイス50から受信したGPS情報に基づいて、ユーザの居室への入室及び居室からの退室のうち少なくとも一方を決定し、決定した入室及び退室のうち少なくとも一方に基づいて、環境履歴DB26に記憶されている入室履歴情報及び退室履歴情報のうち少なくとも一方を更新するようにしてもよい。
 また、空調設定部24は、目標時刻から所定時間経過するまで、ユーザの居室への入室を検知しない場合には、空調機10の動作を停止させる停止指示情報を、ネットワーク30を介して、空調機10へ送信するようにしてもよい。
 また、本実施の形態では、帰宅時刻(入室時刻)に対する目標値を設定して、その値に到達するように予測して運転パターンを決定するとしたが、既に入室した状態で、ある特定の時刻に対して、目標値を設定して、その時刻に向けて制御を行うように構成してもよい。
 例えば、睡眠時には、概日リズムにより、睡眠開始後、徐々に温度を上げていくことが好ましいと言われている。そこで、P.M.11:00に睡眠する場合には、P.M.11:00に25℃、A.M.2:00に26℃、A.M.5:00に27℃と目標値を順次設定して、その目標時刻にその時刻の目標温度に到達するように、空調設定部24は、室内環境予測部23を用いて、運転パターンを決定するように構成してもよい。このように構成することで、単純に設定温度を該当時刻に設定するよりも、消費電力量において、効率的な運転が実現できる。
 また、目標温度の設定は、GUIによってユーザが行うとしたが、これをユーザの行動履歴や直前の温湿度情報を用いて自動化してもよい。一般に、人が快適に思う温度は、直前までいた環境の影響を受けやすく、例えば、冬に外出先から帰宅し入室する場合は、体が冷えているため、部屋の中の温度設定は低めで良いが、冬に隣の部屋から別の部屋に入室する場合は、既に体が温まっているため、その部屋の中の温度設定は高めが好ましい。
 この人の特性を踏まえて、快適な温度設定を行うためには、入室前及び退室後のユーザの行動や室内及び室外の温湿度をパラメータとして設定するように構成してもよい。ユーザの行動は、例えば、「外出先から帰る」、「家にいる」、「お風呂に入る」などの情報であり、ユーザが自分で設定しても、人感センサ等で自動検知してもよい。室内及び室外の温湿度は、例えば、スマートフォンやスマートウォッチに温度センサを内蔵しておき、そのデータを利用してもよい。このように構成することで、ユーザは、自分で温度設定をしなくても、快適な温度設定を自動で行うことができる。
 また、環境履歴DB26において、時刻、室内温度、室内湿度、室外温度、室外湿度、空調制御設定情報、及び消費電力量の他に、各種のセンサを用いて、部屋の窓の開閉状況、光量(日射量)、音量、ユーザの在/不在を取得すると、室温推移の予測の精度が向上して好ましい。各種センサとしては、例えば、光量センサ、音量センサ、人感センサ、窓の開閉検知センサなどを、対象とする部屋内に適宜配置する。これらの情報は、空調機10のセンサやカメラの画像データから検出して特定してもよい。
 例えば、クラウドサーバ20は、居室の外の温度変化の履歴を示す室外温度履歴情報及び居室に備え付けられた窓の開閉履歴を示す開閉履歴情報のうち少なくとも一方を環境履歴DB26に記憶し、空調設定部24は、室内環境予測部23を用いて、室温履歴情報と、動作履歴情報とに加えて、室外温度履歴情報及び開閉履歴情報のうち少なくとも一方に基づいて、制御パラメータを決定するようにしてもよい。
 また、室内環境予測部23によって室温推移を予測して制御を行った後に、室温が予測値に対して特定の閾値以下又は閾値以上であった場合に(冬の場合は温度が高くならない、夏の場合は温度が低くならない)、ドアや窓が開きっぱなしの状態であることや、故障の可能性が考えられるため、ユーザにアラートを通知するように構成してもよい。
 このように構成することで、ユーザは、例えば、窓が開いている場合に無駄な空調機10の運転を抑えることができる。なお、室内温度が予測値を特定の閾値以上で下回る又は上回る場合には、空調機10の設定温度を高めたり又は低めたりして、空調機10の制御を調整するように補正してもよい。
 また、室内環境予測部23によって室温推移を予測して制御を行った後に、室温が予測値に対して特定の閾値以下又は閾値以上であった場合に(冬の場合は温度が高くなりすぎる、夏の場合は温度が低くなりすぎる)、他の熱源が存在する可能性があることを知らせるアラートをユーザに通知するように構成してもよい。このように構成することで、ユーザは、例えば、他の熱源がある場合に無駄な空調機10の運転を抑えることができる。なお、室内温度が予測値を特定の閾値以上で下回る又は上回る場合には、空調機10の設定温度を高めたり又は低めたりして、空調機10の制御を調整するように補正してもよい。
 また、入室前、入室後及び退室後の空調機10の制御方法として、図16に示すような構成で行うように構成してもよい。図16の(A)は、冬場を想定した場合のネットワーク接続されていない空調機の既存の温度制御方法を説明するための図であり、図16の(B)は、図1に示す空調制御システムによる快適温度範囲を使った省エネルギー効果の高い温度制御方法の一例を説明するための図である。
 図16において、横軸は時刻、縦軸は温度及び消費電力量を示し、細い実線は設定温度又は快適温度範囲の上限及び下限、太い実線は室温の推移、ハッチング領域は消費電力量をそれぞれ示す。
 図16の(A)に示すように、ネットワーク接続されていない空調機の場合、入室したタイミングで、手元のリモコンで空調機の制御を開始する。この場合、設定温度と室温との開きが大きいため、空調機10の負荷が大きく、電力量の消費が激しい。また、室内に入ってからリモコン制御を開始するため、入室直後は寒い。
 一方、図16の(B)に示す温度制御では、人が快適に暮らせる一定の温度範囲である快適温度範囲(例えば、22~25℃)を用いて空調機10を制御している。
 具体的には、環境履歴DB26は、ユーザが快適に生活可能な所定の温度範囲を示す温度範囲情報を記憶し、目標温度は、温度範囲情報が示す温度範囲の上限又は下限を含む。空調設定部24は、室内環境予測部23を用いて、環境履歴DB26から温度範囲情報を取得し、入室時においては、快適温度下限(例えば、22℃)に到達するように、設定温度を決定する。次に、空調設定部24は、室内環境予測部23を用いて、入室時から退室時の所定時間前まで、快適温度範囲内(例えば、25℃)を維持するように、設定温度を決定する。また、空調設定部24は、室内環境予測部23を用いて、退室時においては、快適温度下限に到達するように、事前に空調機10をオフする(又は設定温度を下げる)ことを決定する。
 空調設定部24は、上記のようにして決定された運転パターンを空調機10の空調制御部13に予め通知する。空調機10は、通知された運転パターンに従って、運転開始時刻から起動して室温を調整する。
 このように構成することで、快適性を維持しつつ、省エネルギー効率が高い状態に、空調機10を制御することが可能となる。ここで、快適温度範囲は、ユーザがGUI等で決定してもよいし、平均外気温などから自動的に計算して決定してもよい。
 また、環境履歴DB26に格納する環境履歴データは、空調機10の内部センサから取得されたデータに特に限定されず、室内に設置された温湿度センサや人感センサ等から取得されたデータを利用してもよい。
 また、本実施の形態においては、室内の温度を予測することで、空調制御の効率性を図るとしたが、湿度の予測を考慮して運転パターンに反映するように構成してもよい。例えば、人の快適性の指数として不快指数があり、この指数は、室温と湿度とによって決定される。したがって、室内の温度に加えて、室内の湿度も予測することで、例えば、入室時刻での不快指数を一定以下に抑えることを目標値として、空調機10の設定パターンを決定するような構成にしてもよい。
 また、本実施の形態においては、室内の温度を予測することで、空調制御の効率性を測るとしたが、空調機10が換気機能を有するとすれば、CO(二酸化炭素)のセンサ値を環境履歴DB26に格納し、その予測を考慮して運転パターンを決定するように構成してもよい。この場合、室内の温度に加えて、CO濃度も予測することで、例えば、入室時刻でのCO濃度を一定以下に抑えることを目標値として、空調機10の換気機能の設定パターンを決定するような構成にしてもよい。
 また、本実施の形態においては、1つの空調機10に対して、1つの部屋を想定して説明を行ったが、空調制御システムの構成は、この例に特に限定されず、例えば、1つの空調機を複数の部屋に接続して、空調制御を行う全館空調システムに適用してもよい。
 図17は、本開示の他の実施の形態における全館空調システムの構成の一例を示すブロック図である。なお、図1に示す空調制御システムと図17に示す全館空調システムとで共通する点については、詳細な説明を省略し、以下異なる点についてのみ詳細に説明する。
 図17に示す空調機10aは、各部屋に空気を流すパイプである3つのダクト60と接続されており、空調機10aは、冷やされた空気又は暖められた空気の各部屋への排出量を決定することができる。各部屋には、温湿度情報取得部11aが配置されており、温湿度情報取得部11aによって取得された各部屋の温湿度情報は、所定のネットワーク(図示省略)を介して、クラウドサーバ20aに伝送される。また、空調機10aの制御情報取得部12(図示省略)を通じて取得される空調制御情報は、各部屋への空気の排出量等に関する情報を含み、クラウドサーバ20aの環境履歴DB26(図示省略)に記憶される。空調機10a及びクラウドサーバ20aのその他の構成は、図1に示す空調機10及びクラウドサーバ20の構成と同様であるため、詳細な説明は省略する。
 このような構成にすることで、図17に示す全館空調システムでは、各部屋の温度及び湿度の履歴情報と、空調機10aの空調制御情報の履歴情報とを活用し、クラウドサーバ20aの室内環境予測部23(図示省略)により、部屋ごとの温度及び湿度を予測することが可能となり、これを利用した空調機の制御が可能となる。
 以上が本実施の形態における全館空調システムの説明である。
 (提供するサービスの全体像)
 図18(A)には、本実施の形態にかかるサービスの全体像が示されている。例えば、上記したクラウドサーバ20のブロックの一部もしくは全ては、図18に示すデータセンタ運営会社110のクラウドサーバ111もしくはサービスプロバイダ120のサーバ121のどちらかに属す。
 グループ100は、例えば、企業、団体、家庭等であり、その規模を問わない。グループ100には、複数の機器101である機器A、機器B及びホームゲートウェイ102が存在する。複数の機器101には、インターネットと接続可能な機器(例えば、スマートフォン、PC、TV等)もあれば、それ自身ではインターネットと接続不可能な機器(例えば、照明、洗濯機、冷蔵庫等)も存在する。それ自身ではインターネットと接続不可能な機器であっても、ホームゲートウェイ102を介してインターネットと接続可能となる機器が存在してもよい。また、グループ100には複数の機器101を使用するユーザ10Yが存在する。
 データセンタ運営会社110には、クラウドサーバ111が存在する。クラウドサーバ111とは、インターネットを介して様々な機器と連携する仮想化サーバである。クラウドサーバ111は、主に通常のデータベース管理ツール等で扱うことが困難な巨大なデータ(ビッグデータ)等を管理する。データセンタ運営会社110は、データ管理やクラウドサーバ111の管理、それらを行うデータセンタの運営等を行っている。データセンタ運営会社110が行っている役務については詳細を後述する。ここで、データセンタ運営会社110は、データ管理やクラウドサーバ111の運営等のみを行っている会社に限らない。例えば、複数の機器101のうちの一つの機器を開発及び製造している機器メーカが、併せてデータ管理やクラウドサーバ111の管理等を行っている場合は、機器メーカがデータセンタ運営会社110に該当する(図18(B))。また、データセンタ運営会社110は一つの会社に限らない。例えば、機器メーカ及び他の管理会社が共同もしくは分担してデータ管理やクラウドサーバ111の運営を行っている場合は、両者もしくはいずれか一方がデータセンタ運営会社110に該当するものとする(図18(C))。
 サービスプロバイダ120は、サーバ121を保有している。ここで言うサーバ121とは、その規模は問わず例えば、個人用PC内のメモリ等も含む。また、サービスプロバイダがサーバ121を保有していない場合もある。
 なお、上記サービスにおいてホームゲートウェイ102は必須ではない。例えば、クラウドサーバ111が全てのデータ管理を行っている場合等は、ホームゲートウェイ102は不要となる。また、家庭内のあらゆる機器がインターネットに接続されている場合のように、それ自身ではインターネットと接続不可能な機器は存在しない場合もある。
 次に、上記サービスにおける機器のログ情報(操作履歴情報及び動作履歴情報等)の流れを説明する。
 まず、グループ100の機器A又は機器Bは、各ログ情報をデータセンタ運営会社110のクラウドサーバ111に送信する。クラウドサーバ111は、機器A又は機器Bのログ情報を集積する(図18(a))。ここで、ログ情報とは、複数の機器101の、例えば運転状況や動作日時等を示す情報である。例えば、テレビの視聴履歴やレコーダの録画予約情報、洗濯機の運転日時・洗濯物の量、冷蔵庫の開閉日時・開閉回数などであるが、これらのものに限らずあらゆる機器から取得が可能なすべての情報をいう。ログ情報は、インターネットを介して複数の機器101自体から直接クラウドサーバ111に提供される場合もある。また、複数の機器101から一旦ホームゲートウェイ102にログ情報が集積され、ホームゲートウェイ102からクラウドサーバ111に提供されてもよい。
 次に、データセンタ運営会社110のクラウドサーバ111は、集積したログ情報を一定の単位でサービスプロバイダ120に提供する。ここで、データセンタ運営会社が集積した情報を整理してサービスプロバイダ120に提供することのできる単位でもよいし、サービスプロバイダ120が要求した単位でもよい。一定の単位と記載したが一定でなくてもよく、状況に応じて提供する情報量が変化する場合もある。ログ情報は、必要に応じてサービスプロバイダ120が保有するサーバ121に保存される(図18(b))。そして、サービスプロバイダ120は、ログ情報をユーザに提供するサービスに適合する情報に整理し、ユーザに提供する。提供するユーザは、複数の機器101を使用するユーザ10Yでもよいし、外部のユーザ20Yでもよい。ユーザへのサービス提供方法は、例えば、サービスプロバイダから直接ユーザへ提供されてもよい(図18(f)、(e))。また、ユーザへのサービス提供方法は、例えば、データセンタ運営会社110のクラウドサーバ111を再度経由して、ユーザに提供されてもよい(図18(c)、(d))。また、データセンタ運営会社110のクラウドサーバ111がログ情報をユーザに提供するサービスに適合する情報に整理し、サービスプロバイダ120に提供してもよい。
 なお、ユーザ10Yとユーザ20Yとは、別でも同一でもよい。
 上記態様において説明された技術は、例えば、以下のクラウドサービスの類型において実現されうる。しかし、上記態様において説明された技術が実現される類型はこれに限られるものでない。
 (サービスの類型1:自社データセンタ型)
 図19は、サービスの類型1(自社データセンタ型)を示す。本類型は、サービスプロバイダ120がグループ100から情報を取得し、ユーザに対してサービスを提供する類型である。本類型では、サービスプロバイダ120が、データセンタ運営会社の機能を有している。即ち、サービスプロバイダが、ビッグデータの管理をするクラウドサーバ111を保有している。従って、データセンタ運営会社は存在しない。
 本類型では、サービスプロバイダ120は、データセンタ(クラウドサーバ111)を運営、管理している(203)。また、サービスプロバイダ120は、OS(202)及びアプリケーション(201)を管理する。サービスプロバイダ120は、サービスプロバイダ120が管理するOS(202)及びアプリケーション(201)を用いてサービス提供を行う(204)。
 (サービスの類型2:IaaS利用型)
 図20は、サービスの類型2(IaaS利用型)を示す。ここでIaaSとはインフラストラクチャー・アズ・ア・サービスの略であり、コンピュータシステムを構築及び稼動させるための基盤そのものを、インターネット経由のサービスとして提供するクラウドサービス提供モデルである。
 本類型では、データセンタ運営会社がデータセンタ(クラウドサーバ111)を運営、管理している(203)。また、サービスプロバイダ120は、OS(202)及びアプリケーション(201)を管理する。サービスプロバイダ120は、サービスプロバイダ120が管理するOS(202)及びアプリケーション(201)を用いてサービス提供を行う(204)。
 (サービスの類型3:PaaS利用型)
 図21は、サービスの類型3(PaaS利用型)を示す。ここでPaaSとはプラットフォーム・アズ・ア・サービスの略であり、ソフトウェアを構築及び稼動させるための土台となるプラットフォームを、インターネット経由のサービスとして提供するクラウドサービス提供モデルである。
 本類型では、データセンタ運営会社110は、OS(202)を管理し、データセンタ(クラウドサーバ111)を運営、管理している(203)。また、サービスプロバイダ120は、アプリケーション(201)を管理する。サービスプロバイダ120は、データセンタ運営会社が管理するOS(202)及びサービスプロバイダ120が管理するアプリケーション(201)を用いてサービス提供を行う(204)。
 (サービスの類型4:SaaS利用型)
 図22は、サービスの類型4(SaaS利用型)を示す。ここでSaaSとはソフトウェア・アズ・ア・サービスの略である。例えばデータセンタ(クラウドサーバ)を保有しているプラットフォーム提供者が提供するアプリケーションを、データセンタ(クラウドサーバ)を保有していない会社・個人(利用者)がインターネットなどのネットワーク経由で使用できる機能を有するクラウドサービス提供モデルである。
 本類型では、データセンタ運営会社110は、アプリケーション(201)を管理し、OS(202)を管理し、データセンタ(クラウドサーバ111)を運営、管理している(203)。また、サービスプロバイダ120は、データセンタ運営会社110が管理するOS(202)及びアプリケーション(201)を用いてサービス提供を行う(204)。
 以上いずれの類型においても、サービスプロバイダ120がサービス提供行為を行ったものとする。また例えば、サービスプロバイダ若しくはデータセンタ運営会社は、OS、アプリケーション若しくはビックデータのデータベース等を自ら開発してもよいし、また、第三者に外注させてもよい。
 本開示の一態様に係る空調制御システムは、空調機の制御を省エネルギー効率が高く、且つ快適に行うことが可能となるので、生活家電産業において高い利用可能性を持つ。
 10,10a 空調機
 11,11a 温湿度情報取得部
 12 制御情報取得部
 13 空調制御部
 20,20a クラウドサーバ
 21 温湿度情報格納部
 22 制御情報格納部
 23 室内環境予測部
 24 空調設定部
 25 インターフェース部
 26 環境履歴DB
 27 外環境予測部
 30 ネットワーク
 40 気象情報サーバ
 50 ユーザデバイス
 60 ダクト

Claims (14)

  1.  所定のネットワークを介して空気調和装置に接続される空調制御装置における空調制御方法であって、
     前記空気調和装置が温度を調節する居室における室温変化の履歴を示す室温履歴情報を、前記空気調和装置の動作履歴を示す動作履歴情報に対応付けて、所定のデータベースに記憶し、
     前記室温履歴情報と、前記動作履歴情報とに基づいて、前記空気調和装置が温度を調節しない場合の前記居室の将来の室温をオフ時予測室温として予測し、
     前記オフ時予測室温に基づいて、所定の目標時刻において前記居室の室温を所定の目標温度に到達させるために用いられる、前記空気調和装置の制御パラメータを決定する、
     空調制御方法。
  2.  前記空気調和装置が温度を調節する居室の目標温度を示す目標温度情報と、前記居室の温度を前記目標温度に到達させる目標時刻を示す設定時刻情報とを受信し、
     前記オフ時予測室温に基づいて、前記設定時刻情報が示す目標時刻において前記居室の室温を前記目標温度情報が示す目標温度に到達させるために用いられる、前記空気調和装置の制御パラメータを決定し、
     決定した前記制御パラメータを含み、前記制御パラメータにて前記空気調和装置を動作させる動作指示を表わす制御指示情報を、前記ネットワークを介して、前記空気調和装置へ送信する、
     請求項1に記載の空調制御方法。
  3.  前記室温履歴情報と、前記動作履歴情報とに基づいて、さらに、前記空気調和装置が温度を調節する場合の前記居室の将来の室温をオン時予測室温として予測し、
     前記オフ時予測室温及び前記オン時予測室温に基づいて、前記空気調和装置の制御パラメータを決定する、
     請求項1又は2に記載の空調制御方法。
  4.  さらに、前記空気調和装置の消費電力量の履歴を示す消費電力履歴情報を前記データベースに記憶し、
     前記室温履歴情報と、前記動作履歴情報と、前記消費電力履歴情報とに基づいて、さらに、前記空気調和装置が温度を調節する場合の前記空気調和装置の将来の消費電力量をオン時予測消費電力量として予測し、
     前記オフ時予測室温、前記オン時予測室温、及び前記オン時予測消費電力量に基づいて、前記制御パラメータを決定する、
     請求項3に記載の空調制御方法。
  5.  前記制御パラメータは、前記空気調和装置の動作を開始させる時刻を示す開始時刻情報を含む、
     請求項1~4のいずれかに記載の空調制御方法。
  6.  前記制御パラメータは、前記空気調和装置を動作させる動作パターンを示す動作パターン情報を含む、
     請求項1~5のいずれかに記載の空調制御方法。
  7.  さらに、前記居室に対するユーザの、入室履歴を示す入室履歴情報及び退室履歴を示す退室履歴情報のうち少なくとも一方を前記データベースに記憶し、
     前記入室履歴情報及び退室履歴情報のうち少なくとも一方に基づいて、ユーザが前記居室を使用する使用時刻を推定し、前記使用時刻を前記目標時刻として決定する、
     請求項1に記載の空調制御方法。
  8.  前記居室に設置され、前記居室内の前記ユーザの存在の有無を検知する人感センサの検知結果を、前記ネットワークを介して受信し、
     前記人感センサの検知結果に基づいて、前記入室履歴情報及び前記退室履歴情報のうち少なくとも一方を更新する、
     請求項7に記載の空調制御方法。
  9.  前記ネットワークを介して、前記ユーザが所持する情報端末のGPS情報を受信し、
     前記情報端末から受信した前記GPS情報に基づいて、前記ユーザの前記居室への入室及び前記居室からの退室のうち少なくとも一方を決定し、
     決定した前記入室及び前記退室のうち少なくとも一方に基づいて、前記入室履歴情報及び前記退室履歴情報のうち少なくとも一方を更新する、
     請求項7に記載の空調制御方法。
  10.  さらに、前記居室の外の温度変化の履歴を示す室外温度履歴情報及び前記居室に備え付けられた窓の開閉履歴を示す開閉履歴情報のうち少なくとも一方を前記データベースに記憶し、
     前記室温履歴情報と、前記動作履歴情報とに加えて、前記室外温度履歴情報及び前記開閉履歴情報のうち少なくとも一方に基づいて、前記制御パラメータを決定する、
     請求項1~9のいずれかに記載の空調制御方法。
  11.  さらに、前記ユーザが快適に生活可能な所定の温度範囲を示す温度範囲情報を前記データベースに記憶し、
     前記目標温度は、前記温度範囲情報が示す前記温度範囲の上限又は下限を含む、
     請求項1~10のいずれかに記載の空調制御方法。
  12.  前記目標時刻から所定時間経過するまで、前記ユーザの前記居室への入室を検知しない場合には、前記空気調和装置の動作を停止させる停止指示情報を、前記ネットワークを介して、前記空気調和装置へ送信する、
     請求項1~11のいずれかに記載の空調制御方法。
  13.  所定のネットワークを介して空気調和装置に接続される空調制御装置であって、
     前記空気調和装置が温度を調節する居室における室温変化の履歴を示す室温履歴情報を、前記空気調和装置の動作履歴を示す動作履歴情報に対応付けて記憶するデータベースと、
     前記室温履歴情報と、前記動作履歴情報とに基づいて、前記空気調和装置が温度を調節しない場合の前記居室の将来の室温をオフ時予測室温として予測する予測部と、
     前記オフ時予測室温に基づいて、所定の目標時刻において前記居室の室温を所定の目標温度に到達させるために用いられる、前記空気調和装置の制御パラメータを決定する決定部とを備える、
     空調制御装置。
  14.  所定のネットワークを介して空気調和装置に接続される空調制御装置として、コンピュータを機能させるための空調制御プログラムであって、
     前記コンピュータに、
     前記空気調和装置が温度を調節する居室における室温変化の履歴を示す室温履歴情報を、前記空気調和装置の動作履歴を示す動作履歴情報に対応付けて、所定のデータベースに記憶し、
     前記室温履歴情報と、前記動作履歴情報とに基づいて、前記空気調和装置が温度を調節しない場合の前記居室の将来の室温をオフ時予測室温として予測し、
     前記オフ時予測室温に基づいて、所定の目標時刻において前記居室の室温を所定の目標温度に到達させるために用いられる、前記空気調和装置の制御パラメータを決定する、
     処理を実行させる空調制御プログラム。
PCT/JP2016/004057 2015-10-01 2016-09-06 空調制御方法、空調制御装置及び空調制御プログラム WO2017056403A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680002577.3A CN106817909B (zh) 2015-10-01 2016-09-06 空调控制方法、空调控制装置以及计算机可读记录介质
US15/911,671 US10584892B2 (en) 2015-10-01 2018-03-05 Air-conditioning control method, air-conditioning control apparatus, and storage medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015195569 2015-10-01
JP2015-195569 2015-10-01
JP2016-145253 2016-07-25
JP2016145253A JP6807556B2 (ja) 2015-10-01 2016-07-25 空調制御方法、空調制御装置及び空調制御プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/911,671 Continuation US10584892B2 (en) 2015-10-01 2018-03-05 Air-conditioning control method, air-conditioning control apparatus, and storage medium

Publications (1)

Publication Number Publication Date
WO2017056403A1 true WO2017056403A1 (ja) 2017-04-06

Family

ID=58422818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004057 WO2017056403A1 (ja) 2015-10-01 2016-09-06 空調制御方法、空調制御装置及び空調制御プログラム

Country Status (1)

Country Link
WO (1) WO2017056403A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120568A (ja) * 2017-12-29 2019-07-22 ナガノサイエンス株式会社 温度特性評価方法
CN110554608A (zh) * 2018-05-31 2019-12-10 北京源码智能技术有限公司 室内设备的调节方法、装置、系统和存储介质
JP2020165642A (ja) * 2019-03-29 2020-10-08 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィMitsubishi Electric R&D Centre Europe B.V. 空調システム、サーバシステム、ネットワーク、空調システムを制御する方法、およびネットワークを制御する方法
JP2021071261A (ja) * 2019-10-31 2021-05-06 株式会社富士通ゼネラル 空気調和システム
US11067305B2 (en) * 2018-06-27 2021-07-20 Lennox Industries Inc. Method and system for heating auto-setback
WO2022059502A1 (ja) * 2020-09-18 2022-03-24 ダイキン工業株式会社 選択装置、選択方法及びプログラム
EP3922919A4 (en) * 2019-03-21 2022-06-29 GD Midea Air-Conditioning Equipment Co., Ltd. Control method, control device, air conditioner system, and storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151828A (en) * 1980-04-24 1981-11-25 Mitsubishi Electric Corp Precool and preheat starting controlling system for air conditioner
JPS5835956Y2 (ja) * 1979-05-24 1983-08-13 株式会社明電舎 空調機の予冷予熱時間の予測制御装置
JPH0642765A (ja) * 1992-07-24 1994-02-18 Misawa Homes Co Ltd ヒートポンプ式暖房装置
JP2004012006A (ja) * 2002-06-06 2004-01-15 Mitsubishi Electric Corp 空気調和機の制御装置
JP2005229758A (ja) * 2004-02-13 2005-08-25 Tyrell Express Kk エネルギー消費管理システム
JP2011247435A (ja) * 2010-05-21 2011-12-08 Panasonic Electric Works Co Ltd 空調システム
JP2013224812A (ja) * 2012-03-19 2013-10-31 Toshiba Lighting & Technology Corp 空気調和機及びそのシステム
WO2015029177A1 (ja) * 2013-08-29 2015-03-05 三菱電機株式会社 空気調和システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835956Y2 (ja) * 1979-05-24 1983-08-13 株式会社明電舎 空調機の予冷予熱時間の予測制御装置
JPS56151828A (en) * 1980-04-24 1981-11-25 Mitsubishi Electric Corp Precool and preheat starting controlling system for air conditioner
JPH0642765A (ja) * 1992-07-24 1994-02-18 Misawa Homes Co Ltd ヒートポンプ式暖房装置
JP2004012006A (ja) * 2002-06-06 2004-01-15 Mitsubishi Electric Corp 空気調和機の制御装置
JP2005229758A (ja) * 2004-02-13 2005-08-25 Tyrell Express Kk エネルギー消費管理システム
JP2011247435A (ja) * 2010-05-21 2011-12-08 Panasonic Electric Works Co Ltd 空調システム
JP2013224812A (ja) * 2012-03-19 2013-10-31 Toshiba Lighting & Technology Corp 空気調和機及びそのシステム
WO2015029177A1 (ja) * 2013-08-29 2015-03-05 三菱電機株式会社 空気調和システム

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120568A (ja) * 2017-12-29 2019-07-22 ナガノサイエンス株式会社 温度特性評価方法
JP7079955B2 (ja) 2017-12-29 2022-06-03 ナガノサイエンス株式会社 温度特性評価方法
CN110554608A (zh) * 2018-05-31 2019-12-10 北京源码智能技术有限公司 室内设备的调节方法、装置、系统和存储介质
US11067305B2 (en) * 2018-06-27 2021-07-20 Lennox Industries Inc. Method and system for heating auto-setback
US20210310681A1 (en) * 2018-06-27 2021-10-07 Lennox Industries Inc. Method and system for heating auto-setback
US11512863B2 (en) * 2018-06-27 2022-11-29 Lennox Industries Inc. Method and system for heating auto-setback
EP3922919A4 (en) * 2019-03-21 2022-06-29 GD Midea Air-Conditioning Equipment Co., Ltd. Control method, control device, air conditioner system, and storage medium
JP2020165642A (ja) * 2019-03-29 2020-10-08 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィMitsubishi Electric R&D Centre Europe B.V. 空調システム、サーバシステム、ネットワーク、空調システムを制御する方法、およびネットワークを制御する方法
US11781772B2 (en) 2019-03-29 2023-10-10 Mitsubishi Electric Corporation Air conditioning system, server system, network, method for controlling air conditioning system and method for controlling network with self-tuning for optimal configuration of the air conditioning system
JP2021071261A (ja) * 2019-10-31 2021-05-06 株式会社富士通ゼネラル 空気調和システム
JP7310549B2 (ja) 2019-10-31 2023-07-19 株式会社富士通ゼネラル 空気調和システム
JP2022050897A (ja) * 2020-09-18 2022-03-31 ダイキン工業株式会社 選択装置、選択方法及びプログラム
JP7247151B2 (ja) 2020-09-18 2023-03-28 ダイキン工業株式会社 選択装置、選択方法及びプログラム
WO2022059502A1 (ja) * 2020-09-18 2022-03-24 ダイキン工業株式会社 選択装置、選択方法及びプログラム

Similar Documents

Publication Publication Date Title
JP6807556B2 (ja) 空調制御方法、空調制御装置及び空調制御プログラム
WO2017056403A1 (ja) 空調制御方法、空調制御装置及び空調制御プログラム
JP6861373B2 (ja) 制御方法及び制御システム
KR102213752B1 (ko) 구조의 열역학 모델들의 생성 및 구현
CN107750323B (zh) 用于控制空调装置的启动的方法及其设备
JP6900100B2 (ja) 温度調節方法及び装置
US9857238B2 (en) Thermodynamic model generation and implementation using observed HVAC and/or enclosure characteristics
JP6735492B2 (ja) 空気調和機のレコメンド処理を実行するサーバおよびレコメンド処理システム
US11060745B1 (en) Energy reduction
US20130274940A1 (en) Cloud enabled building automation system
US20170102681A1 (en) Coordinating energy use of disparately-controlled devices in the smart home based on near-term predicted hvac control trajectories
CN103871141A (zh) 基于生物特征识别的室内环境控制系统
EP2954377A1 (en) Cloud enabled building automation system
US10731886B2 (en) HVAC system including energy analytics engine
JP2019100687A (ja) 空調制御方法及び空調制御装置
CN113348330B (zh) 空调系统的管理方法、控制方法及存储介质、控制平台
JP2013048326A (ja) 家電機器制御システムおよび家電機器制御方法
Jain et al. Portable+ A Ubiquitous And Smart Way Towards Comfortable Energy Savings
JP2018055172A (ja) エネルギー使用量監視装置、機器管理システム及びプログラム
CN103189810A (zh) 利用习惯导向控制的电气系统的能源节省方法
KR101668630B1 (ko) Gps 정보를 이용한 스마트 제어 장치, 시스템 및 방법, 그 방법을 수행하기 위한 기록 매체
KR101538016B1 (ko) 개인생활공간 맞춤형 스마트 자동전력제어 장치 및 그 방법
JP2021063611A (ja) 空気調和システム
JP2017089996A (ja) 空調制御システム、空調制御方法及び制御プログラム
JP6635857B2 (ja) 機器制御システム、機器制御方法、コントローラ、及び機器制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16850584

Country of ref document: EP

Kind code of ref document: A1