WO2015022821A1 - 全反射特性と耐食性に優れたAl被覆鋼板およびその製造法 - Google Patents
全反射特性と耐食性に優れたAl被覆鋼板およびその製造法 Download PDFInfo
- Publication number
- WO2015022821A1 WO2015022821A1 PCT/JP2014/068035 JP2014068035W WO2015022821A1 WO 2015022821 A1 WO2015022821 A1 WO 2015022821A1 JP 2014068035 W JP2014068035 W JP 2014068035W WO 2015022821 A1 WO2015022821 A1 WO 2015022821A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- mass
- layer
- less
- molten
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 117
- 239000010959 steel Substances 0.000 title claims abstract description 117
- 230000007797 corrosion Effects 0.000 title claims abstract description 36
- 238000005260 corrosion Methods 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000000034 method Methods 0.000 title description 8
- 239000010410 layer Substances 0.000 claims abstract description 114
- 239000011247 coating layer Substances 0.000 claims abstract description 67
- 239000000956 alloy Substances 0.000 claims abstract description 46
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 45
- 229910018084 Al-Fe Inorganic materials 0.000 claims abstract description 41
- 229910018192 Al—Fe Inorganic materials 0.000 claims abstract description 41
- 239000002344 surface layer Substances 0.000 claims abstract description 38
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 37
- 229910018191 Al—Fe—Si Inorganic materials 0.000 claims abstract description 8
- 238000007747 plating Methods 0.000 claims description 136
- 238000010438 heat treatment Methods 0.000 claims description 69
- 238000009792 diffusion process Methods 0.000 claims description 7
- 230000003647 oxidation Effects 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 description 17
- 238000007743 anodising Methods 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 10
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 6
- 238000002048 anodisation reaction Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 150000002736 metal compounds Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000007598 dipping method Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- RNCNPRCUHHDYPC-UHFFFAOYSA-N 6-[[6-(1-methylpyrazol-4-yl)imidazo[1,2-b]pyridazin-3-yl]methyl]quinoline Chemical compound C1=NN(C)C=C1C1=NN2C(CC=3C=C4C=CC=NC4=CC=3)=CN=C2C=C1 RNCNPRCUHHDYPC-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/012—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
Definitions
- the present invention relates to an Al-coated steel sheet that can be obtained by modifying a plating layer of a hot-dip Al-based plated steel sheet by heat treatment, and in particular, exhibits a high total reflectivity and good corrosion resistance.
- Molten Al-plated steel sheet is widely used mainly for heat-resistant applications.
- Many of the hot-dip Al-based plated steel sheets in practical use are manufactured using an Al-based plating bath containing Si.
- the plating bath temperature can be lowered, and the thickness of the brittle alloy layer (initial thickness of the alloy layer) generated between the base steel plate (plating original plate) and the Al-based plating layer in the hot dipping process Can be made thin.
- the alloy layer may grow even when a hot-dip Al-based plated steel sheet is used for heat resistance.
- a method of applying a heat treatment (post heat treatment) after hot dipping and forming an AlN barrier layer between the base steel plate and the alloy layer is employed. In that case, a base steel sheet containing an amount of N sufficient to form an AlN barrier layer is applied.
- the molten Al-based plated steel sheet is applied to heat-resistant applications as described above, it is desired to have good heat reflection characteristics.
- Such heat and light reflection performance generally depends on the total reflectance. Therefore, in consideration of application to heat-resistant applications and applications utilizing light reflection characteristics, it is advantageous to have characteristics with high total reflectance. In this specification, having a characteristic having a high total reflectance is expressed as “excellent in the total reflection characteristic”.
- the corrosion resistance tends to be lower than that produced with a pure Al plating bath.
- the Al-based plated steel sheet is used after being subjected to anodizing treatment in the same manner as the Al alloy material.
- the conventional Al-based plated steel sheet has a drawback that the appearance after anodizing treatment becomes blackish and it is difficult to realize an anodized surface having good design properties.
- the present invention provides an Al-coated steel sheet that is more excellent in total reflection characteristics, corrosion resistance, and appearance when anodized than conventional molten Al-based plated steel sheets.
- the above object is a steel sheet having an Al coating layer having an average thickness of 7 ⁇ m or more on the surface of a base steel sheet with an Al—Fe—Si alloy layer, and a surface layer from the surface of the Al coating layer to a depth of 3 ⁇ m.
- the average Si concentration in the part is 2.0% by mass or less, preferably 1.3% by mass or less, and the area ratio of the Al—Fe intermetallic phase in the surface of the Al coating layer is 10% or less.
- the Al coating layer is obtained by modifying a molten Al-based plating layer containing Si by heat treatment. At that time, the Si content of the hot dipping bath is preferably 1.5% by mass to 6.0% by mass, and more preferably 1.5% by mass to 3.0% by mass. . You may manage in the range of 1.5 mass% or more and less than 3.0 mass%.
- the Al coating layer is a layer whose matrix (base) is an Al phase.
- An Al—Fe-based metal compound phase or Si phase may be present in the Al coating layer.
- the average Si concentration in the surface layer portion from the surface to a depth of 3 ⁇ m can be determined by performing EDX analysis (energy dispersive X-ray analysis) on a cross section parallel to the thickness direction of the Al coating layer. Specifically, a 3 ⁇ m ⁇ 20 ⁇ m rectangular region having one side of a length of 3 ⁇ m in the thickness direction of the Al coating layer (that is, the plate thickness direction of the steel plate) is assumed in the SEM observation field of magnification of 5000 times with respect to the cross section. The rectangular area where the entire rectangular area covers the Al coating layer (that is, the rectangular area does not protrude from the Al coating layer) and one side of 20 ⁇ m in length is in contact with at least a part of the outermost surface of the Al coating layer.
- EDX analysis energy dispersive X-ray analysis
- the average Si concentration (mass% conversion value) in the measurement region is determined by EDX analysis.
- the above measurement operation is performed for 5 or more randomly selected fields of view, and the average Si concentration of each measurement region can be determined as the “average Si concentration in the surface layer from the surface to a depth of 3 ⁇ m”. .
- the area ratio of the Al—Fe-based intermetallic compound phase occupying the surface of the Al coating layer is the presence of the Al—Fe-based intermetallic compound phase occupying the projected area of the observation area when the surface of the Al coating layer is viewed in the thickness direction. It means the ratio of the area of the part to be.
- the Al—Fe-based intermetallic compound phase appearing on the surface of the Al coating layer can be identified as a phase having the second highest Fe content in terms of mass% after Al.
- an Al-coated steel sheet has been realized that has a high total reflectance on the surface, good corrosion resistance, and excellent appearance when anodized, as compared with a conventional hot-dip Al-plated steel sheet.
- the total reflectance is high, it is excellent in heat reflection characteristics and light reflection characteristics, and is extremely useful in heat resistance applications and applications utilizing light reflection.
- This Al-coated steel sheet can be obtained by subjecting a hot-dip Al-plated steel sheet that can be produced by a general hot-dip plating line to a post-heating treatment. Therefore, this invention contributes to the use expansion of a hot-dip Al type plated steel plate.
- Alloy layer part of the cross section of an Al coated steel sheet obtained by subjecting a hot Al plated steel sheet manufactured using a molten Al based plating bath having a Si content of 2.5% by mass to a post-heating treatment at 450 ° C. for 24 hours in air. SEM photo.
- the Al-coated steel sheet of the present invention can be realized by a technique in which the plated layer of a molten Al-based plated steel sheet manufactured using a hot-dip plating bath containing Si is modified by post heat treatment.
- the post heat treatment it is important to significantly increase the diffusion of Si in the plating layer as compared with the conventional post heat treatment and to reduce the Si concentration in the surface layer portion of the plating layer.
- FIG. 1 schematically shows the as-plated cross-sectional structure of a general molten Al-based plated steel sheet produced using a molten Al-based plating bath containing about 7 to 10% by mass of Si.
- An Al-based plating layer 3 is formed on the surface of a base steel plate 1 that is a plating original plate via an alloy layer 2.
- the alloy layer 2 is an “Al—Fe—Si alloy layer” mainly composed of an intermetallic compound containing Al, Fe, and Si as components.
- an Al—Fe-based intermetallic compound phase 5 and an Si phase 6 exist in an Al phase 4 that is a matrix (substrate).
- Al—Fe-based intermetallic compound phases 5 are relatively distributed near the alloy layer 2
- Si phases 6 are relatively distributed near the surface 10.
- FIG. 2 schematically shows a cross-sectional structure when the plated steel sheet shown in FIG. 1 is post-heat treated at a temperature of about 450 ° C.
- the alloy layer 2 grows slightly and increases its thickness.
- the Si phase 6 present in the plating layer 3 in FIG. 1 is spheroidized and distributed in the Al phase 4 in a large amount.
- the Al—Fe-based intermetallic compound phase 5 tends to be somewhat spherical.
- the Al coating layer derived from the plating layer after undergoing such post-heating treatment is denoted by reference numeral 30 in the drawing.
- FIG. 3 schematically shows the as-plated cross-sectional structure of a molten Al-based plated steel sheet manufactured using a molten Al-based plating bath having a Si content of about 1.5 to 6.0% by mass.
- the alloy layer 2 existing on the surface of the base steel plate 1 tends to be slightly thicker than a general hot-dip Al-based plated steel plate (FIG. 1) manufactured with a hot-dip Al-based plating bath having a high Si content. Degradation of properties such as workability is not a problem in normal use.
- the alloy layer 2 is mainly composed of an Al—Fe based intermetallic compound or an Al—Fe—Si based intermetallic compound as will be described later.
- an Al—Fe-based intermetallic compound phase 5 and a small amount of Si phase 6 are observed in the Al phase 4.
- the amount of Si phase 6 increases or decreases according to the Si content in the plating bath.
- the Al—Fe-based intermetallic compound phase 5 is large near the alloy layer 2 and small near the surface 10.
- the Si phase 6 exists mainly near the surface 10.
- the hot-dip Al-based plated steel sheet obtained in such a hot-dip Al-based plating bath with a relatively small Si content has a small amount of Si phase 6 and is a common hot-dip Al-based plated steel sheet (FIG. 1).
- the structure state of the plating layer 3 is different.
- a sufficient improvement effect cannot be obtained with respect to total reflection characteristics, corrosion resistance, and appearance after anodization only by making such a textured state.
- FIG. 4 schematically shows a cross-sectional structure obtained when the plated steel sheet shown in FIG. 3 is subjected to a post heat treatment at a temperature of about 450 ° C. for a relatively long time, for example, about 24 hours. There is no noticeable growth of the alloy layer 2.
- the Al coating layer 30 derived from the plating layer 3 in FIG. On the other hand, the form of the Al—Fe-based intermetallic compound phase 5 does not change much.
- the average thickness per one surface of the steel sheet of the Al coating layer 30 needs to be 7 ⁇ m or more in order to sufficiently exhibit the heat resistance and corrosion resistance peculiar to the Al-based plating layer, and more preferably 20 ⁇ m or more.
- the upper limit is not particularly defined, it is usually sufficient to set the average thickness in the range of 50 ⁇ m or less, and may be controlled to 40 ⁇ m or less.
- Si in the plating layer 3 is closer to the alloy layer 2. It diffuses into a region having a relatively low Si concentration and is taken into the alloy layer 2. That is, it was found that Si present in the plating layer 3 is used for a reaction to change the alloy layer 2 to an Al—Fe—Si alloy layer mainly composed of an intermetallic compound having a higher Si content. It was. By utilizing this phenomenon, the Si concentration in the surface layer portion close to the surface 10 of the Al coating layer 30 can be reduced.
- the alloy layer 2 is an alloy layer mainly composed of an intermetallic compound having a high Si content. Therefore, the phenomenon that Si in the plating layer 3 is taken into the alloy layer 2 by the post heat treatment does not occur so much.
- the Si concentration particularly in the surface layer portion close to the surface 10 is sufficiently reduced. It was found that the total reflectance and corrosion resistance of the Al coating layer were improved. In order to improve the appearance after the anodizing treatment, it is important to reduce the Si concentration in the surface layer portion. Specifically, the total reflection characteristic and the corrosion resistance can be remarkably improved by setting the average Si concentration in the surface layer portion from the surface to a depth of 3 ⁇ m to 2.0 mass% or less. By setting the average Si concentration of the surface layer portion to 1.3% by mass or less, more excellent total reflection characteristics and corrosion resistance can be realized more stably.
- the lower limit of the average Si concentration in the surface layer portion from the surface of the Al coating layer to a depth of 3 ⁇ m is not particularly required and may be reduced to 0% by mass, but the load of the post heat treatment process is considered. Then, what is necessary is just to set it as the range of 0.5 mass% or more normally.
- the reason why the total reflection characteristic is improved by reducing the Si concentration in the surface layer part is presumed to be that the Al purity of the plating surface layer part is increased and a reflection characteristic closer to pure Al can be imparted.
- the Al—Fe intermetallic compound phase 5 is exposed is formed on the surface 10 of the Al coating layer 30. It has been found that the Al—Fe-based intermetallic compound phase 5 present on the surface causes the appearance after anodizing to be deteriorated. In addition, the total reflection characteristics and the corrosion resistance are reduced. However, when a molten Al-based plating bath containing 1.5% by mass or more of Si is used, the Al—Fe-based intermetallic compound phase 5 tends to be formed near the alloy layer 2 and exists near the surface 10. The amount of the Al—Fe-based intermetallic compound phase 5 is small.
- the area ratio of the Al—Fe-based intermetallic compound phase occupying the surface 10 of the Al coating layer 30 is suppressed to 10% or less, combined with the reduction in the surface layer Si concentration, The appearance after the anodizing treatment can be remarkably improved. Also, heat reflection characteristics and corrosion resistance are improved.
- the point of reducing the area ratio of the Al—Fe-based intermetallic compound phase to 10% or less can be controlled by setting the Si content in the molten Al-based plating bath to 1.5% or more.
- FIG. 5 schematically shows a cross-sectional structure of a hot-dip Al-based plated steel sheet produced using a pure Al plating bath.
- the alloy layer 2 formed between the base steel plate 1 and the plating layer 3 uses the Si-containing plating bath shown in FIGS. 1 and 3 if the steel composition of the base steel plate 1 (plating base plate) is the same. Thickness increases over that.
- the Al—Fe-based intermetallic compound phase 5 generated in the Al phase 4 which is the matrix of the plating layer 3 is generated in a large amount near the surface 10. Even if the post-heating treatment is performed, a large apparent change in the cross-sectional structure does not occur. Therefore, in FIG. 5, reference numeral 30 corresponding to the Al coating layer after the post heat treatment is also added.
- the Al—Fe-based intermetallic compound phase 5 is exposed on the surface of the plating layer 3.
- the Al—Fe-based intermetallic compound phase 5 present on the surface causes deterioration in appearance and corrosion resistance after anodic oxidation.
- FIG. 6 shows the surface layer from the surface of the Al coating layer to a depth of 3 ⁇ m when post-heat treatment is performed on a hot-dip Al-based plated steel sheet manufactured using a hot-dip Al-based plating bath having a Si content of 2.5 mass%.
- the result of investigating the relationship between the heating temperature and the heating time necessary for setting the average Si concentration in the part to 2.0 mass% or less is illustrated.
- a process for post-heating a molten Al-based plated steel sheet has been conventionally known.
- it is difficult to sufficiently reduce the Si concentration in the surface layer portion of the Al coating layer as described above.
- more careful Si diffusion is required.
- FIG. 7 is a photograph of a cross-sectional structure of an as-plated molten Al-based plated steel sheet manufactured using a molten Al-based plating bath having a Si content of 9% by mass.
- an Al—Fe-based metal compound phase that appears light gray and an Si phase that appears black are dispersed in an Al phase that appears white.
- FIG. 8 is a photograph of a cross-sectional structure of an Al-coated steel sheet obtained by subjecting a molten Al-based plated steel sheet produced using a molten Al-based plating bath having a Si content of 9% by mass to 450 ° C.
- an Al—Fe-based metal compound phase that looks light gray and an Si phase that looks dark are dispersed in an Al phase that looks white. These phases are spheroidized by heating.
- FIG. 9 is a photograph of a cross-sectional structure of an as-plated molten Al-based plated steel sheet produced using a molten Al-based plating bath having a Si content of 2.5 mass%.
- an Al—Fe-based metal compound phase that appears light gray is dispersed in an Al phase that appears white.
- the amount of Si phase is greatly reduced compared to the case of FIG.
- FIG. 10 shows a cross section of an Al-coated steel sheet obtained by subjecting a molten Al-based plated steel sheet manufactured using a molten Al-based plating bath having a Si content of 2.5 mass% to post-heating treatment at 450 ° C. for 24 hours in the air. It is an organization photograph.
- an Al—Fe-based metal compound phase that appears light gray is observed in the Al phase that appears white.
- the presence of the Si phase cannot be confirmed from this photograph.
- FIG. 11 illustrates an SEM photograph of the alloy layer portion in the as-plated cross section of a molten Al-based plated steel sheet produced using a molten Al-based plating bath having a Si content of 2.5 mass%.
- the alloy layer has a two-layer structure composed of an “upper layer” indicated by reference numeral 21 and a “lower layer” indicated by reference numeral 22. Below the lower layer is the base steel plate.
- four analysis positions are indicated by symbols a to d. Table 1 shows the measurement results of quantitative analysis by EDX at these four points.
- Both the upper layer and the lower layer have a Si concentration of less than 3.0% by mass in the as-plated state, and the main intermetallic compounds constituting these phases are Al-Fe-based compounds as described in Table 1. Presumed.
- FIG. 12 shows an Al-coated steel sheet obtained by subjecting a molten Al-based plated steel sheet manufactured using a molten Al-based plating bath having a Si content of 2.5 mass% to a post-heating treatment at 450 ° C. for 24 hours in the atmosphere.
- the SEM photograph of the alloy layer part of a cross section is shown.
- four analysis positions are indicated by symbols e to h.
- Table 2 shows the measurement results of quantitative analysis by EDX at these four points.
- the Si content in the upper layer is greatly increased by the post heat treatment. It can be seen that Si present in the plating layer is taken into the upper layer, and the upper layer is changed to a structure mainly composed of an Al—Fe—Si intermetallic compound.
- Base steel sheet Various steel types that have been conventionally applied to hot-dip Al-based plated steel sheets can be used as the base steel sheet that is the plating original sheet. When used for heat-resistant applications, it is desirable to use steel having an N content of 0.004 to 0.015% by mass in order to suppress the growth of the alloy layer. The following can be illustrated as specific steel component content.
- the plate thickness of the plating original plate may be in the range of 0.1 to 3.5 mm. You may manage to 0.2-1.6mm.
- the hot-dip Al-based plated steel sheet to which the present invention is applied can be manufactured by a general continuous hot-dip plating line.
- the plating bath composition it is desirable to use an Al-based plating bath having a Si content of 1.5% by mass or more and 6.0% by mass or less. If the Si content in the bath is too high, it will be difficult to sufficiently reduce the Si concentration in the surface layer portion by post-heating treatment in a later step. On the other hand, if the Si content of the bath is too low, the structure of the plating layer approaches that of pure Al plating, and the tendency that the Al—Fe intermetallic compound phase 5 is formed closer to the surface 10 as shown in FIG. 5 increases.
- the Si content of the bath is 1.5% by mass or more and 3.0% by mass or less.
- the upper limit of the Si content of the bath may be strictly controlled to less than 3.0% by mass.
- Fe is mixed in the bath.
- the Fe content is preferably controlled to 3.0% by mass or less, and more preferably 2.5% by mass or less.
- Ti 1.0% by mass or less
- B 1.0% by mass or less
- Zr 1.0% by mass or less
- Sr 1.0% by mass or less
- Mg You may contain 1 or more types of 5.0 mass% or less.
- Ti, B, and Zr are effective for improving the surface appearance by refining the spangle size
- Sr is effective for refining the generated Si phase
- Mg is effective for improving the corrosion resistance.
- the balance of elements other than the above may be Al and inevitable impurities.
- the plating adhesion amount is desirably such that the plating layer thickness (excluding the alloy layer) per side is 7 ⁇ m or more, and more preferably 20 ⁇ m or more.
- the upper limit is not particularly defined, it is usually sufficient to set the average thickness in the range of 50 ⁇ m or less, and may be controlled to 40 ⁇ m or less.
- the hot-dip Al-based plated steel sheet is heat-treated. Since this is a heat treatment after hot dipping, this is called “post heat treatment” in this specification.
- post heat treatment it is desirable to modify the Al coating layer so that the average Si concentration in the surface layer portion from the surface to a depth of 3 ⁇ m is 2.0 mass% or less. More preferably, the content is 3% by mass or less.
- the Si content is 1.5% by mass or more. It is effective to apply a molten Al-based plated steel sheet produced using a molten Al-based plating bath of 3.0% by mass or less. You may manage so that what uses the molten Al type plating bath whose Si content is 1.5 mass% or more and less than 3.0 mass% may be applied.
- the heating temperature of the post heat treatment can be set in the range of 300 to 460 ° C. A range of 380 to 460 ° C. is more effective. If the heating temperature is too low, it is difficult to reduce the Si in the surface layer portion of the plating layer. If the heating temperature is too high, excessive growth of the alloy layer is likely to occur.
- the atmosphere may be air.
- Si Si phase generated in the plating layer tends to be distributed near the surface.
- Si in the Si phase is consumed for the high Si reaction of the alloy layer, thereby reducing the surface Si of the plating layer.
- Appropriate heating time can be set in advance by grasping the relationship between the heating temperature and the heating time sufficient to achieve low Si reduction in the surface layer portion of the plating layer in accordance with the plating conditions (see FIG. 6).
- the Si content in the plating bath is, for example, about 2.0% by mass
- the average Si concentration in the surface layer portion from the surface to the depth of 3 ⁇ m is usually 2 in the plating layer (before post-heating treatment) as plated. It is as high as about 0.5% by mass. Therefore, it is not sufficient to simply reduce the Si content in the plating bath, and it is possible to obtain the Al-coated steel sheet having the desired low Si surface layer by performing careful post-heating treatment. Become.
- a cold rolled annealed steel sheet having a thickness of 0.8 mm having the following chemical composition was prepared as the base steel sheet.
- a molten Al-based plated steel plate having an average plating layer thickness (here, the portion excluding the alloy layer) in the range of about 30 to 50 ⁇ m was manufactured under the following plating conditions.
- Plating bath immersion time 2 sec Average cooling rate to complete plating layer solidification: 13 ° C / sec
- the obtained molten Al-based plated steel sheet was subjected to post-heating treatment at the heating temperatures and heating times listed in Tables 3 and 4 as test materials and subjected to the following investigation.
- the atmosphere of the post heat treatment was air.
- a test material not subjected to post heat treatment was also prepared.
- the average Si concentration in the surface layer portion from the surface of the Al coating layer to a depth of 3 ⁇ m was determined by averaging the average Si concentration in each measurement region.
- the average thickness of the alloy layer was determined by observing a cross section parallel to the plate thickness direction of the specimen with an SEM.
- the alloy layer had a multiphase structure of an upper layer and a lower layer except for some examples using a plating bath having a high Si content.
- the total reflectance was measured on the surface of the Al coating layer of the test material. Using a Shimadzu MPC3100, measurement was performed under conditions of a reflection angle of 8 ° and a measurement wavelength of 550 nm, and total reflection characteristics were evaluated according to the following criteria. ⁇ Evaluation or higher was determined to be acceptable. ⁇ : Total reflectance of 75% or more ⁇ : Total reflectance of 70% or more and less than 75% ⁇ : Total reflectance of 65% or more and less than 70% ⁇ : Total reflectance of less than 65%
- the total reflection characteristics, corrosion resistance, and appearance after anodizing were improved, and workability and surface appearance were also good.
- the Al coating layer whose average Si concentration up to the depth of 3 ⁇ m was 1.3% by mass or less exhibited extremely excellent total reflection characteristics, corrosion resistance, and appearance after anodization.
- Nos. 31 and 32 which are comparative examples, were produced using a pure Al plating bath, and a large amount of Al—Fe intermetallic compound phase was generated near the surface of the plating layer.
- This Al—Fe-based intermetallic compound phase remained almost unchanged even after the post-heating treatment (No. 32).
- Si does not exist in the surface layer of the Al coating layer
- the surface area ratio of the Al—Fe intermetallic compound phase is high, so the total reflection characteristics and corrosion resistance are not improved, and the appearance after the anodizing treatment It was bad too.
- the workability was poor due to the thick alloy layer.
- 35 and 39 are hot-dip Al-based plated steel sheets manufactured using a plating bath having a high Si content, and the average Si concentration in the surface layer portion of the Al coating layer (in these examples, the Al-based plating layer remains). Since it was high, the total reflection characteristics, corrosion resistance, and appearance after anodizing treatment were bad. Nos. 36 and 40 are obtained by subjecting a hot-dip Al-based plated steel sheet manufactured using a plating bath having a high Si content to post-heating treatment, but sufficiently reduce the average Si concentration in the surface layer portion of the Al coating layer. As a result, total reflection characteristics, corrosion resistance, and appearance after anodization were not improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Coating With Molten Metal (AREA)
- Laminated Bodies (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
Si含有量が2.0質量%以上6.0質量%以下である溶融Al系めっき浴を用いて平均厚さ7μm以上のめっき層を有する溶融Al系めっき鋼板を製造する工程、
前記溶融Al系めっき鋼板を300~460℃の温度に加熱保持することにより、めっき層中のSiの拡散を進行させ、当該めっき層を、表面から深さ3μmまでの表層部における平均Si濃度が2.0質量%以下であるAl被覆層に改質する工程、
を有する製造法が提供される。
Si含有量が1.5質量%以上3.0質量%以下である溶融Al系めっき浴を用いて平均厚さ7μm以上のめっき層を有する溶融Al系めっき鋼板を製造する工程、
前記溶融Al系めっき鋼板を300~460℃の温度に加熱保持することにより、めっき層中のSiの拡散を進行させ、当該めっき層を、表面から深さ3μmまでの表層部における平均Si濃度が1.3質量%以下であるAl被覆層に改質する工程、
を有する製造法が提供される。この場合、溶融Al系めっき浴のSi含有量を1.5質量%以上3.0質量%未満に管理してもよい。
図7は、Si含有量9質量%の溶融Al系めっき浴を用いて製造した溶融Al系めっき鋼板のめっきままの断面組織写真である。めっき層には、白く見えるAl相の中に、薄いグレーに見えるAl-Fe系金属化合物相と、黒っぽく見えるSi相が分散している。
図8は、Si含有量9質量%の溶融Al系めっき浴を用いて製造した溶融Al系めっき鋼板に大気中450℃×24hのポスト加熱処理を施して得られたAl被覆鋼板の断面組織写真である。めっき層に由来するAl被覆層には、白く見えるAl相の中に、薄いグレーに見えるAl-Fe系金属化合物相と、黒っぽく見えるSi相が分散している。これらの相は、加熱により球状化している。
図10は、Si含有量2.5質量%の溶融Al系めっき浴を用いて製造した溶融Al系めっき鋼板に大気中450℃×24hのポスト加熱処理を施して得られたAl被覆鋼板の断面組織写真である。めっき層に由来するAl被覆層には、白く見えるAl相の中に、薄いグレーに見えるAl-Fe系金属化合物相が観察される。Si相の存在は、この写真からは確認できない。
めっき原板である基材鋼板としては、従来、溶融Al系めっき鋼板に適用されている種々の鋼種が適用できる。耐熱用途に使用する場合は合金層の成長を抑制するためにN含有量が0.004~0.015質量%である鋼を適用することが望ましい。具体的な鋼成分含有量として、以下のものが例示できる。
質量%で、C:0.001~0.06%、Si:0.5%以下、Mn:1.0%以下、P:0.016%以下、S:0.007%以下、Al:0.012%以下、N:0.015%以下、Ti:0~0.03%、残部Feおよび不可避的不純物
めっき原板の板厚は、0.1~3.5mmの範囲とすればよく、0.2~1.6mmに管理してもよい。
本発明の適用対象となる溶融Al系めっき鋼板は、一般的な連続溶融めっきラインで製造することができる。めっき浴組成は、Si含有量が1.5質量%以上6.0質量%以下であるAl系めっき浴を使用することが望ましい。浴のSi含有量が高過ぎると後工程でのポスト加熱処理によって表層部のSi濃度を十分に低減することが困難となる。一方、浴のSi含有量が低すぎるとめっき層の組織構造が純Alめっきに近づき、図5に示したようにAl-Fe系金属間化合物相5が表面10寄りに生成する傾向が強まるため、Al-Fe系金属間化合物相面積率を十分に低減することが難しくなる。浴のSi含有量は1.5質量%以上3.0質量%以下とすることがより効果的である。浴のSi含有量の上限は3.0質量%未満に厳しく管理してもよい。
Al系めっき層を改質して表層部のSi濃度が低いAl被覆層を得るために、溶融Al系めっき鋼板を加熱処理する。溶融めっき後の加熱処理であるから、本明細書ではこれを「ポスト加熱処理」と呼んでいる。上述のように、全反射特性等を改善するためには表面から深さ3μmまでの表層部における平均Si濃度が2.0質量%以下であるAl被覆層に改質することが望ましく、1.3質量%以下とすることがより好ましい。
〔基材鋼板の化学組成〕
質量%で、C:0.033%、Si:0.01%未満、Mn:0.23%、P:0.01%未満、S:0.013%、Al:0.01%、O:0.0027%、N:0.0025%、残部はFeおよび不可避的不純物
〔めっき条件〕
Al浴中のSi含有量:表3、表4中に記載
Al浴中のFe含有量:約2質量%
Al浴中のSi、Fe以外の添加元素含有量:表3、表4中に記載
上記元素以外の浴中成分:Alおよび不可避的不純物
めっき浴温:660℃
めっき浴浸漬時間:2sec
めっき層凝固完了までの平均冷却速度:13℃/sec
供試材の板厚方向に平行な断面について以下の方法でEDX分析を行った。倍率5000倍のSEM観察視野において、Al被覆層の厚さ方向に長さ3μmの一辺を持つ3μm×20μmの矩形領域を想定し、その矩形領域の全部がAl被覆層に掛かり、かつ長さ20μmの一辺がAl被覆層の最表面の少なくとも一部に接する矩形領域を測定領域として設定し、当該測定領域における平均Si濃度(質量%換算値)をEDX分析により求めるという操作を、無作為に選択した5視野について行い、各測定領域の平均Si濃度を平均することによって、当該Al被覆層の表面から深さ3μmまでの表層部における平均Si濃度を求めた。
供試材のAl被覆層表面を板厚方向にSEMにて観察し、当該Al被覆層の表面を板厚方向に見た観察領域の投影面積に占めるAl-Fe系金属間化合物相の面積率を求めた。表面に姿を現しているAl-Fe系金属間化合物相の同定は、EDX分析により行うことができる。無作為に選択した5視野について上記面積率を測定し、その平均値をAl-Fe系金属間化合物相の表面占有面積率(%)として採用した。
供試材の板厚方向に平行な断面をSEMにて観察する方法で合金層の平均厚さを求めた。合金層は、Si含有量の高いめっき浴を用いた一部の例を除き、上層と下層の複相構造を呈していた。
供試材の板厚方向に平行な断面において、図12に示した測定点e、fのように、上層の厚さ中央付近に無作為に選んだ10点の測定点でEDX測定を行ってSi濃度を測定し、その平均値を合金層上層の平均Si濃度とした。なお、合金層が単層構造であったものは、その厚さ方向中央部における平均Si濃度を参考値として求めた。
供試材のAl被覆層表面について、全反射率を測定した。島津製MPC3100を用いて、反射角8°、測定波長550nmの条件で測定し、以下の基準で全反射特性を評価した。○評価以上を合格と判定した。
◎:全反射率75%以上
○:全反射率が70%以上75%未満
△:全反射率が65%以上70%未満
×:全反射率が65%未満
供試材を温度90℃、相対湿度95%の環境に500h保持する湿潤試験に供して、表面の錆が発生している面積により錆発生率を測定し、以下の基準で耐食性を評価した。○評価以上を合格と判定した。
◎:錆発生率10%未満
○:錆発生率10%以上20%未満
△:錆発生率20%以上50%未満
×:錆発生率50%以上
供試材を陽極酸化処理し、得られた陽極酸化処理表面のL値(明度)を測定した。陽極酸化処理条件は、処理液:硫酸150g/L+硫酸アルミニウム5g/L、処理温度:25℃、電流密度:5A/dm2、処理時間:10minとした。以下の基準で陽極酸化処理後の外観を評価し、○評価以上を合格と判定した。
◎:L値90以上
○:L値88以上90未満
△:L値85以上88未満
×:L値85未満
供試材を円筒絞り加工に供し、加工品の縦壁部のAl被覆層剥離状態を調べた。円筒絞り加工条件は、絞り比:2.0、ブランク径:80mm、ダイス:径42mm、R5mm、ポンチ:径40mm、R5mmとした。以下の基準で加工性を評価し、○評価を合格と判定した。
○:Al被覆層の剥離なし
×:Al被覆層の剥離あり
供試材のAl被覆層表面のスパングル微細化状態をスパングル密度により評価した。○評価以上を合格と判定した。
◎:スパングル密度200個/cm2以上
○:スパングル密度50個/cm2以上200個/cm2未満
×:スパングル密度50個/cm2未満
結果を表3、表4に示す。
No.33はめっき浴中のSi含有量が低すぎたので、めっき層の表面付近に多量のAl-Fe系金属間化合物相が生成する傾向が維持された。そのため、上記の純Alめっき浴を用いた例と同様、各特性に劣った。なお、この例はポスト加熱処理を行っていないが、ポスト加熱によってもAl-Fe系金属間化合物相の表面占有面積率を低減することは困難である。
No.34、37、38、41は適切なSi含有量のめっき浴を用いたが、ポスト加熱処理を行わなかったこと、または加熱条件が不適切であったことにより、Al被覆層表層部の平均Si濃度が高かった。その結果、全反射特性および陽極酸化処理後の外観が悪く、耐食性の改善も不十分であった。
No.35、39はSi含有量が高いめっき浴を用いて製造された溶融Al系めっき鋼板であり、Al被覆層(これらの例ではAl系めっき層のまま)の表層部の平均Si濃度が高いので、全反射特性、耐食性、陽極酸化処理後の外観が悪かった。
No.36、40はSi含有量が高いめっき浴を用いて製造された溶融Al系めっき鋼板にポスト加熱処理を施したものであるが、Al被覆層表層部の平均Si濃度を十分に低減することができなかったので、全反射特性、耐食性、陽極酸化処理後の外観は改善されなかった。
2 合金層
3 Al系めっき層
4 Al相
5 Al-Fe系金属間化合物相
6 Si相
10 表面
30 Al被覆層
Claims (7)
- 基材鋼板の表面にAl-Fe-Si系合金層を介して平均厚さ7μm以上のAl被覆層を有する鋼板であって、当該Al被覆層の表面から深さ3μmまでの表層部における平均Si濃度が2.0質量%以下であり、当該Al被覆層の表面に占めるAl-Fe系金属間化合物相の面積率が10%以下である、全反射特性および耐食性に優れたAl被覆鋼板。
- 基材鋼板の表面にAl-Fe-Si系合金層を介して平均厚さ7μm以上のAl被覆層を有する鋼板であって、当該Al被覆層の表面から深さ3μmまでの表層部における平均Si濃度が1.3質量%以下であり、当該Al被覆層の表面に占めるAl-Fe系金属間化合物相の面積率が10%以下である、全反射特性および耐食性に優れたAl被覆鋼板。
- Al被覆層は、Siを含有する溶融Al系めっき層を加熱処理により改質したものである請求項1または2に記載の全反射特性および耐食性に優れたAl被覆鋼板。
- Al被覆層は、Si含有量2.0質量%以上6.0質量%以下の溶融Al系めっき浴により形成した溶融Al系めっき層を加熱処理により改質したものである請求項1に記載の全反射特性および耐食性に優れたAl被覆鋼板。
- Al被覆層は、Si含有量1.5質量%以上3.0質量%以下の溶融Al系めっき浴により形成した溶融Al系めっき層を加熱処理により改質したものである請求項2に記載の全反射特性および耐食性に優れたAl被覆鋼板。
- Si含有量が2.0質量%以上6.0質量%以下である溶融Al系めっき浴を用いて平均厚さ7μm以上のめっき層を有する溶融Al系めっき鋼板を製造する工程、
前記溶融Al系めっき鋼板を300~460℃の温度に加熱保持することにより、めっき層中のSiの拡散を進行させ、当該めっき層を、表面から深さ3μmまでの表層部における平均Si濃度が2.0質量%以下であるAl被覆層に改質する工程、
を有する全反射特性および耐食性に優れたAl被覆鋼板の製造法。 - Si含有量が1.5質量%以上3.0質量%以下である溶融Al系めっき浴を用いて平均厚さ7μm以上のめっき層を有する溶融Al系めっき鋼板を製造する工程、
前記溶融Al系めっき鋼板を300~460℃の温度に加熱保持することにより、めっき層中のSiの拡散を進行させ、当該めっき層を、表面から深さ3μmまでの表層部における平均Si濃度が1.3質量%以下であるAl被覆層に改質する工程、
を有する全反射特性および耐食性に優れたAl被覆鋼板の製造法。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167006527A KR102150841B1 (ko) | 2013-08-14 | 2014-07-07 | 전반사 특성과 내식성이 우수한 Al 피복 강판 및 이의 제조법 |
ES14836187T ES2753424T3 (es) | 2013-08-14 | 2014-07-07 | Lámina de acero recubierta con Al que tiene excelentes propiedades de reflexión total y resistencia a la corrosión, y procedimiento de fabricación de la misma |
CA2918863A CA2918863C (en) | 2013-08-14 | 2014-07-07 | Al-coated steel sheet having excellent total reflection characteristics and corrosion resistance, and method for manufacturing same |
BR112016002464A BR112016002464A2 (pt) | 2013-08-14 | 2014-07-07 | lâmina de aço revestida com al que tem excelentes características de reflexão total e resistência à corrosão, e método para fabricar a mesma |
RU2016108542A RU2673263C2 (ru) | 2013-08-14 | 2014-07-07 | Алюминированный стальной лист, имеющий превосходные характеристики общей отражательной способности и коррозионную стойкость, и способ его изготовления |
US14/910,043 US20160186284A1 (en) | 2013-08-14 | 2014-07-07 | Al-coated steel sheet having excellent total reflection characteristics and corrosion resistance, and method for manufacturing same |
CN201480045014.3A CN105555986B (zh) | 2013-08-14 | 2014-07-07 | 全反射性与耐腐蚀性优异的Al被覆钢板及其制造法 |
NZ716829A NZ716829A (en) | 2013-08-14 | 2014-07-07 | Al-coated steel sheet having total reflection characteristics and corrosion resistance, and method for manufacturing same |
EP14836187.6A EP3034647B1 (en) | 2013-08-14 | 2014-07-07 | Al-coated steel sheet having excellent total reflection properties and corrosion resistance, and method for manufacturing same |
AU2014307526A AU2014307526B2 (en) | 2013-08-14 | 2014-07-07 | Al-coated steel sheet having excellent total reflection properties and corrosion resistance, and method for manufacturing same |
MX2016001657A MX2016001657A (es) | 2013-08-14 | 2014-07-07 | Lamina de acero recubierta con ai que tiene excelentes caracteristicas de reflexion total y resistencia a la corrosion, y metodo para fabricar la misma. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-168478 | 2013-08-14 | ||
JP2013168478A JP5873465B2 (ja) | 2013-08-14 | 2013-08-14 | 全反射特性と耐食性に優れたAl被覆鋼板およびその製造法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015022821A1 true WO2015022821A1 (ja) | 2015-02-19 |
Family
ID=52468211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/068035 WO2015022821A1 (ja) | 2013-08-14 | 2014-07-07 | 全反射特性と耐食性に優れたAl被覆鋼板およびその製造法 |
Country Status (14)
Country | Link |
---|---|
US (1) | US20160186284A1 (ja) |
EP (1) | EP3034647B1 (ja) |
JP (1) | JP5873465B2 (ja) |
KR (1) | KR102150841B1 (ja) |
CN (1) | CN105555986B (ja) |
AU (1) | AU2014307526B2 (ja) |
BR (1) | BR112016002464A2 (ja) |
CA (1) | CA2918863C (ja) |
ES (1) | ES2753424T3 (ja) |
MX (1) | MX2016001657A (ja) |
MY (1) | MY177097A (ja) |
NZ (1) | NZ716829A (ja) |
RU (1) | RU2673263C2 (ja) |
WO (1) | WO2015022821A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190078189A1 (en) * | 2016-03-11 | 2019-03-14 | Nisshin Steel Co., Ltd. | HOT-DIP Al-PLATED STEEL SHEET AND METHOD FOR PRODUCING SAME |
JP2020510756A (ja) * | 2017-02-28 | 2020-04-09 | タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv | アルミニウム合金コーティング層を有する鋼ストリップの製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016102504A1 (de) * | 2016-02-08 | 2017-08-10 | Salzgitter Flachstahl Gmbh | Aluminiumbasierte Beschichtung für Stahlbleche oder Stahlbänder und Verfahren zur Herstellung hierzu |
DE102016107152B4 (de) * | 2016-04-18 | 2017-11-09 | Salzgitter Flachstahl Gmbh | Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech und Verfahren zur Herstellung eines solchen Bauteils und dessen Verwendung |
KR102330812B1 (ko) * | 2020-06-30 | 2021-11-24 | 현대제철 주식회사 | 열간 프레스용 강판 및 이의 제조 방법 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61124558A (ja) | 1984-11-22 | 1986-06-12 | Nippon Steel Corp | 耐熱性アルミニウム表面処理鋼板の製造法 |
JPH03104848A (ja) | 1989-09-20 | 1991-05-01 | Nippon Steel Corp | 溶融アルミめっきクロム含有鋼板の製造法 |
JPH06128713A (ja) * | 1992-10-20 | 1994-05-10 | Nippon Steel Corp | 耐食性と加工性に優れた塗装アルミメッキ鋼板の製造法 |
JPH06207262A (ja) | 1993-01-06 | 1994-07-26 | Sky Alum Co Ltd | 遠赤外線放射部材およびその製造方法 |
JPH06316753A (ja) * | 1992-08-12 | 1994-11-15 | Nisshin Steel Co Ltd | 加工性に優れた溶融アルミニウムめっきクロム含有鋼板の製造方法 |
JPH06330274A (ja) | 1993-05-24 | 1994-11-29 | Nippon Steel Corp | 加工部耐食性に優れた溶融アルミめっき鋼板 |
JPH08319549A (ja) | 1995-05-25 | 1996-12-03 | Nippon Steel Corp | 加工後の耐食性に優れた溶融アルミめっき鋼板の製造方法 |
JP2000256816A (ja) * | 1999-03-08 | 2000-09-19 | Nisshin Steel Co Ltd | 加工性及び耐食性に優れた溶融Alめっき鋼帯の製造方法 |
JP2000290764A (ja) | 1999-04-08 | 2000-10-17 | Nippon Steel Corp | 耐加熱黒変性に優れた溶融アルミめっき鋼板とその製造法 |
JP3383119B2 (ja) | 1995-05-18 | 2003-03-04 | 新日本製鐵株式会社 | 光沢保持性、耐食性に優れた溶融アルミめっき鋼板及びその製造法 |
JP3398810B2 (ja) | 1995-10-24 | 2003-04-21 | 日新製鋼株式会社 | 耐熱性にすぐれた溶融アルミめっき鋼板の製造方法 |
JP3485410B2 (ja) | 1996-01-18 | 2004-01-13 | 新日本製鐵株式会社 | 耐加熱黒変性に優れた溶融アルミめっき鋼板の製造法 |
JP2005319481A (ja) * | 2004-05-10 | 2005-11-17 | Nisshin Steel Co Ltd | 鋼/アルミニウム接合構造体の製造方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3383119A (en) | 1966-03-25 | 1968-05-14 | Wilco Corp | Auto trailer |
US3398810A (en) | 1967-05-24 | 1968-08-27 | William T. Clark | Locally audible sound system |
US3485410A (en) | 1968-01-05 | 1969-12-23 | Continental Can Co | Pressure relief score |
JPS58104165A (ja) * | 1981-12-15 | 1983-06-21 | Nisshin Steel Co Ltd | ほうろう加工用アルミニウム被覆鋼板の製造方法 |
DE3212181A1 (de) * | 1982-04-01 | 1983-10-06 | Nisshin Steel Co Ltd | Stahltraeger fuer eine flachdruckplatte, sowie verfahren zur herstellung |
JPS58224159A (ja) * | 1982-06-19 | 1983-12-26 | Nisshin Steel Co Ltd | アルミめつき鋼板およびその製造法 |
US4546051A (en) * | 1982-07-08 | 1985-10-08 | Nisshin Steel Co., Ltd. | Aluminum coated steel sheet and process for producing the same |
JPS61113754A (ja) * | 1984-11-09 | 1986-05-31 | Nippon Steel Corp | 光沢保持性耐熱溶融アルミニウムめつき鋼板 |
JP2852718B2 (ja) * | 1993-12-28 | 1999-02-03 | 新日本製鐵株式会社 | 耐食性に優れた溶融アルミニウムめっき鋼板 |
JP4446428B2 (ja) * | 2003-02-17 | 2010-04-07 | 新日本製鐵株式会社 | 塗装後耐食性に優れた高強度自動車部品 |
CN100434223C (zh) * | 2003-09-29 | 2008-11-19 | 日新制钢株式会社 | 钢/铝焊接构件 |
RU2379374C2 (ru) * | 2005-09-01 | 2010-01-20 | Ниппон Стил Корпорейшн | СТАЛЬНОЙ МАТЕРИАЛ, ПОКРЫТЫЙ Zn-Al-СПЛАВОМ СПОСОБОМ ГОРЯЧЕГО ОКУНАНИЯ, С ОТЛИЧНОЙ ОБРАБАТЫВАЕМОСТЬЮ СГИБАНИЕМ, И СПОСОБ ЕГО ПОЛУЧЕНИЯ |
WO2007118939A1 (fr) * | 2006-04-19 | 2007-10-25 | Arcelor France | Procede de fabrication d'une piece soudee a tres hautes caracteristiques mecaniques a partir d'une tole laminee et revetue |
KR20090038756A (ko) * | 2007-10-16 | 2009-04-21 | 유니온스틸 주식회사 | 용융 알루미늄계 도금강판 및 그 제조방법 |
WO2010082678A1 (ja) * | 2009-01-16 | 2010-07-22 | 新日本製鐵株式会社 | 耐食性に優れる溶融Zn-Al-Mg-Si-Cr合金めっき鋼材 |
ES2899474T3 (es) * | 2011-04-01 | 2022-03-11 | Nippon Steel Corp | Componente de alta resistencia moldeado por estampación en caliente que tiene excelente resistencia a la corrosión después del metalizado |
JP6330274B2 (ja) * | 2013-08-26 | 2018-05-30 | 株式会社リコー | シート処理装置、画像形成システム及びシート束の背面形成方法 |
JP6128713B2 (ja) * | 2016-01-29 | 2017-05-17 | 豊丸産業株式会社 | パチンコ機 |
-
2013
- 2013-08-14 JP JP2013168478A patent/JP5873465B2/ja active Active
-
2014
- 2014-07-07 MY MYPI2016700488A patent/MY177097A/en unknown
- 2014-07-07 CA CA2918863A patent/CA2918863C/en active Active
- 2014-07-07 AU AU2014307526A patent/AU2014307526B2/en active Active
- 2014-07-07 KR KR1020167006527A patent/KR102150841B1/ko active IP Right Grant
- 2014-07-07 RU RU2016108542A patent/RU2673263C2/ru active
- 2014-07-07 US US14/910,043 patent/US20160186284A1/en not_active Abandoned
- 2014-07-07 ES ES14836187T patent/ES2753424T3/es active Active
- 2014-07-07 EP EP14836187.6A patent/EP3034647B1/en active Active
- 2014-07-07 NZ NZ716829A patent/NZ716829A/en unknown
- 2014-07-07 BR BR112016002464A patent/BR112016002464A2/pt active Search and Examination
- 2014-07-07 MX MX2016001657A patent/MX2016001657A/es unknown
- 2014-07-07 CN CN201480045014.3A patent/CN105555986B/zh active Active
- 2014-07-07 WO PCT/JP2014/068035 patent/WO2015022821A1/ja active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61124558A (ja) | 1984-11-22 | 1986-06-12 | Nippon Steel Corp | 耐熱性アルミニウム表面処理鋼板の製造法 |
JPH03104848A (ja) | 1989-09-20 | 1991-05-01 | Nippon Steel Corp | 溶融アルミめっきクロム含有鋼板の製造法 |
JPH06316753A (ja) * | 1992-08-12 | 1994-11-15 | Nisshin Steel Co Ltd | 加工性に優れた溶融アルミニウムめっきクロム含有鋼板の製造方法 |
JPH06128713A (ja) * | 1992-10-20 | 1994-05-10 | Nippon Steel Corp | 耐食性と加工性に優れた塗装アルミメッキ鋼板の製造法 |
JPH06207262A (ja) | 1993-01-06 | 1994-07-26 | Sky Alum Co Ltd | 遠赤外線放射部材およびその製造方法 |
JPH06330274A (ja) | 1993-05-24 | 1994-11-29 | Nippon Steel Corp | 加工部耐食性に優れた溶融アルミめっき鋼板 |
JP3383119B2 (ja) | 1995-05-18 | 2003-03-04 | 新日本製鐵株式会社 | 光沢保持性、耐食性に優れた溶融アルミめっき鋼板及びその製造法 |
JPH08319549A (ja) | 1995-05-25 | 1996-12-03 | Nippon Steel Corp | 加工後の耐食性に優れた溶融アルミめっき鋼板の製造方法 |
JP3398810B2 (ja) | 1995-10-24 | 2003-04-21 | 日新製鋼株式会社 | 耐熱性にすぐれた溶融アルミめっき鋼板の製造方法 |
JP3485410B2 (ja) | 1996-01-18 | 2004-01-13 | 新日本製鐵株式会社 | 耐加熱黒変性に優れた溶融アルミめっき鋼板の製造法 |
JP2000256816A (ja) * | 1999-03-08 | 2000-09-19 | Nisshin Steel Co Ltd | 加工性及び耐食性に優れた溶融Alめっき鋼帯の製造方法 |
JP2000290764A (ja) | 1999-04-08 | 2000-10-17 | Nippon Steel Corp | 耐加熱黒変性に優れた溶融アルミめっき鋼板とその製造法 |
JP2005319481A (ja) * | 2004-05-10 | 2005-11-17 | Nisshin Steel Co Ltd | 鋼/アルミニウム接合構造体の製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190078189A1 (en) * | 2016-03-11 | 2019-03-14 | Nisshin Steel Co., Ltd. | HOT-DIP Al-PLATED STEEL SHEET AND METHOD FOR PRODUCING SAME |
US10760154B2 (en) * | 2016-03-11 | 2020-09-01 | Nisshin Steel Co., Ltd. | Hot-dip Al-plated steel sheet and method for producing same |
JP2020510756A (ja) * | 2017-02-28 | 2020-04-09 | タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv | アルミニウム合金コーティング層を有する鋼ストリップの製造方法 |
JP7330104B2 (ja) | 2017-02-28 | 2023-08-21 | タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ | アルミニウム合金コーティング層を有する鋼ストリップの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3034647A4 (en) | 2017-04-05 |
KR20160043990A (ko) | 2016-04-22 |
CN105555986B (zh) | 2020-08-04 |
CN105555986A (zh) | 2016-05-04 |
KR102150841B1 (ko) | 2020-09-02 |
JP5873465B2 (ja) | 2016-03-01 |
CA2918863A1 (en) | 2015-02-19 |
ES2753424T3 (es) | 2020-04-08 |
EP3034647A1 (en) | 2016-06-22 |
RU2016108542A (ru) | 2017-09-19 |
EP3034647B1 (en) | 2019-09-18 |
RU2673263C2 (ru) | 2018-11-23 |
US20160186284A1 (en) | 2016-06-30 |
MY177097A (en) | 2020-09-05 |
JP2015036447A (ja) | 2015-02-23 |
BR112016002464A2 (pt) | 2017-08-01 |
NZ716829A (en) | 2018-06-29 |
CA2918863C (en) | 2020-04-21 |
MX2016001657A (es) | 2016-06-02 |
AU2014307526A1 (en) | 2016-03-03 |
RU2016108542A3 (ja) | 2018-06-01 |
AU2014307526B2 (en) | 2018-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20200075778A (ko) | 합금 코팅강판 및 그 제조방법 | |
KR101100055B1 (ko) | 용융 Zn-Al 계 합금 도금 강판 및 그 제조 방법 | |
JP5873465B2 (ja) | 全反射特性と耐食性に優れたAl被覆鋼板およびその製造法 | |
KR101207767B1 (ko) | 도금성이 우수한 고망간 고알루미늄 용융아연도금강판 및 그 제조방법 | |
JP6744413B2 (ja) | 合金コーティング鋼板およびその製造方法 | |
WO2016167304A1 (ja) | めっき鋼板およびその製造方法 | |
KR20170076234A (ko) | 합금 코팅 강판 및 이의 제조 방법 | |
JP2023507638A (ja) | 加工性及び耐食性に優れたアルミニウム系合金めっき鋼板及びこの製造方法 | |
JP2023507959A (ja) | 耐腐食性に優れた溶融合金めっき鋼材及びその製造方法 | |
KR101829766B1 (ko) | 합금 코팅 강판 및 이의 제조방법 | |
US11608556B2 (en) | Alloy-coated steel sheet and manufacturing method thereof | |
KR20170117845A (ko) | 합금 코팅 강판 및 이의 제조방법 | |
JP2016113702A (ja) | 陽極酸化処理用Al被覆鋼板およびその製造法 | |
JP7393551B2 (ja) | 加工性及び耐食性に優れたアルミニウム系合金めっき鋼板及びこの製造方法 | |
KR101829765B1 (ko) | 합금 코팅 강판 및 이의 제조방법 | |
KR101829764B1 (ko) | 합금 코팅 강판 및 이의 제조방법 | |
CN108018514A (zh) | 一种控制Zn-Al-Mg合金镀层板材表面缺陷的方法及Zn-Al-Mg合金镀层板材 | |
JP2007321212A (ja) | 摺動性と接触抵抗に優れたNiメッキ鋼板およびその製造方法 | |
JP2004232029A (ja) | 表面外観性に優れた塗装溶融Al−Zn系合金めっき鋼板およびその製造方法 | |
JP2011127153A (ja) | めっき材料とその製造方法 | |
US11731397B2 (en) | Alloy-coated steel sheet and manufacturing method therefor | |
CN115572932B (zh) | 一种锌铝镁镀层、锌铝镁镀层钢板及其制备方法 | |
JP5979615B2 (ja) | めっき材料の製造方法 | |
JP2014129611A (ja) | めっき材料とその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480045014.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14836187 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2918863 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14910043 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/001657 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014836187 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016002464 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2014307526 Country of ref document: AU Date of ref document: 20140707 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20167006527 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201601639 Country of ref document: ID |
|
ENP | Entry into the national phase |
Ref document number: 2016108542 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112016002464 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160204 |