DE102016107152B4 - Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech und Verfahren zur Herstellung eines solchen Bauteils und dessen Verwendung - Google Patents

Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech und Verfahren zur Herstellung eines solchen Bauteils und dessen Verwendung Download PDF

Info

Publication number
DE102016107152B4
DE102016107152B4 DE102016107152.8A DE102016107152A DE102016107152B4 DE 102016107152 B4 DE102016107152 B4 DE 102016107152B4 DE 102016107152 A DE102016107152 A DE 102016107152A DE 102016107152 B4 DE102016107152 B4 DE 102016107152B4
Authority
DE
Germany
Prior art keywords
coating
thickness
steel sheet
microns
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
DE102016107152.8A
Other languages
English (en)
Other versions
DE102016107152A1 (de
Inventor
Thomas Koll
Marc Debeaux
Friedrich Luther
Christian Fritzsche
Stefan Mütze
Frank Beier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Salzgitter Flachstahl GmbH
Original Assignee
Salzgitter Flachstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58668836&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE102016107152(B4) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Salzgitter Flachstahl GmbH filed Critical Salzgitter Flachstahl GmbH
Priority to DE102016107152.8A priority Critical patent/DE102016107152B4/de
Priority to EP17721056.4A priority patent/EP3250727B2/de
Priority to PCT/EP2017/058918 priority patent/WO2017182382A1/de
Priority to RU2018136149A priority patent/RU2704339C1/ru
Priority to KR1020187030273A priority patent/KR102189424B1/ko
Priority to CN201780024316.6A priority patent/CN109477197B/zh
Priority to US16/093,466 priority patent/US11339479B2/en
Publication of DE102016107152A1 publication Critical patent/DE102016107152A1/de
Publication of DE102016107152B4 publication Critical patent/DE102016107152B4/de
Application granted granted Critical
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/324Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal matrix material layer comprising a mixture of at least two metals or metal phases or a metal-matrix material with hard embedded particles, e.g. WC-Me
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe

Abstract

Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech, wobei die Beschichtung einen im Schmelztauchverfahren aufgebrachten Überzug aufweist, der Aluminium und Silizium enthält, welches dadurch gekennzeichnet ist, dass das pressformgehärtete Bauteil im Übergangsbereich zwischen Stahlblech und Überzug eine Interdiffusionszone I aufweist, wobei abhängig von der Schichtauflage des Überzugs vor Erwärmung und Presshärtung die Dicke der Interdiffusionszone I folgender Formel I[µm] < 135 × Auflage beidseitig [g/m2] + 197 gehorcht, auf der Interdiffusionszone I eine Zone mit verschiedenen intermetallischen Phasen mit einer mittleren Gesamtdicke zwischen 8 und 50 µm ausgebildet ist, auf der wiederum eine Aluminiumoxid und/oder -hydroxid enthaltende Deckschicht in einer mittleren Dicke von mindestens 0,05 µm bis höchstens 5 µm angeordnet ist.

Description

  • Die Erfindung betrifft ein Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech, wobei die Beschichtung einen im Schmelztauchverfahren aufgebrachten Überzug aufweist, der Aluminium und Silizium enthält. Auch betrifft die Erfindung ein Verfahren zur Herstellung eines solchen Bauteils. Insbesondere betrifft die Beschichtung einen Aluminium-Silizium-Überzug.
  • Es ist bekannt, dass warmumgeformte Stahlbleche insbesondere im Automobilbau immer häufiger Verwendung finden. Durch den auch als Pressformhärten bezeichneten Prozess können hochfeste Bauteile erzeugt werden, die vorwiegend im Bereich der Karosserie eingesetzt werden. Das Pressformhärten kann grundsätzlich mittels zwei verschiedener Verfahrensvarianten durchgeführt werden, nämlich mittels des direkten oder indirekten Verfahrens. Während beim indirekten Verfahren die Prozessschritte des Umformens und Härtens getrennt voneinander ablaufen, finden sie beim direkten Verfahren in einem Werkzeug gemeinsam statt. Im Folgenden wird nur das direkte Verfahren betrachtet.
  • Beim direkten Verfahren wird ein Stahlblech über die sogenannte Austenitisierungstemperatur (Ac3) aufgeheizt. Anschließend wird das so erhitzte Stahlblech in ein Formwerkzeug überführt und in einem einstufigen Umformschritt zum fertigen Bauteil umgeformt und hierbei durch das gekühlte Formwerkzeug gleichzeitig mit einer Geschwindigkeit, die über der kritischen Abkühlgeschwindigkeit des Stahls liegt, abgekühlt, so dass ein gehärtetes Bauteil erzeugt wird. Das Stahlblech selbst wird dabei üblicherweise aus einem meist als Coil aufgewickelten Stahlband herausgeschnitten und anschließend weiterverarbeitet. Das umzuformende Stahlblech wird häufig auch als Platine bezeichnet.
  • Bekannte warmumformbare Stähle für diesen Einsatzbereich sind zum Beispiel der Mangan-Bor-Stahl „22MnB5“ und neuerdings auch luftvergütbare Stähle gemäß des europäischen Patentes EP 2 449 138 B1 .
  • Neben unbeschichteten Stahlblechen werden auch Stahlbleche mit einem Verzunderungsschutz für das Pressformhärten (z.B. für den automobilen Karosseriebau) eingesetzt. Die Vorteile liegen hier neben der erhöhten Korrosionsbeständigkeit des fertigen Bauteils darin, dass die Platinen oder Bauteile im Ofen nicht verzundern, wodurch der Verschleiß der Pressenwerkzeuge durch abgeplatzten Zunder reduziert wird und die Bauteile vor der Weiterverarbeitung oft nicht aufwendig gestrahlt werden müssen.
  • Für das Pressformhärten sind derzeit die folgenden, durch Schmelztauchen aufgebrachten (Legierungs-)Beschichtungen bekannt: Aluminium-Silizium (AS), Zink-Aluminium (Z), Zink-Aluminium-Eisen (ZF/ Galvannealed), Zink-Magnesium-Aluminium (ZM), sowie elektrolytisch abgeschiedene Beschichtungen aus Zink-Nickel oder Zink, wobei die letztere vor der Warmumformung in eine Eisen-Zink-Legierungsschicht umgewandelt wird. Diese Korrosionsschutzbeschichtungen werden üblicherweise in kontinuierlichen Durchlaufverfahren auf das Warm- oder Kaltband aufgebracht.
  • Die Herstellung von Bauteilen mittels Abschrecken von Vorprodukten aus pressformhärtbaren Stählen durch Warmumformen in einem Umformwerkzeug ist aus dem deutschen Patent DE 601 19 826 T2 bekannt. Hier wird eine zuvor oberhalb der Austenitisierungstemperatur auf 800–1200 °C erwärmte und ggf. mit einem metallischen Überzug aus Zink oder auf Basis von Zink versehene Blechplatine in einem fallweise gekühlten Werkzeug durch Warmumformung zu einem Bauteil umgeformt, wobei während des Umformens durch schnellen Wärmeentzug das Blech bzw. Bauteil im Umformwerkzeug eine Abschreckhärtung (Pressformhärtung) erfährt und durch das entstehende martensitische Härtegefüge die geforderten Festigkeitseigenschaften erreicht.
  • Die Herstellung von Bauteilen mittels Abschrecken von mit einer Aluminiumlegierung beschichteten Vorprodukten aus pressformhärtbaren Stählen durch Warmumformen in einem Umformwerkzeug ist aus dem deutschen Patent DE 699 33 751 T2 bekannt. Hier wird ein mit einer Aluminiumlegierung beschichtetes Blech vor einem Umformen auf über 700 °C erwärmt, wobei eine intermetallisch legierte Verbindung auf Basis von Eisen, Aluminium und Silizium auf der Oberfläche entsteht und nachfolgend das Blech umgeformt und mit einer Geschwindigkeit oberhalb der kritischen Abkühlgeschwindigkeit abkühlt.
  • Aus der Offenlegungsschrift US 2011/0300407 A1 ist ein Verfahren zur Herstellung eines pressformgehärteten Stahlblechs zur Verwendung in der Automobilbranche bekannt. Im Schmelztauchverfahren wird das Stahlblech mit einem Aluminium-Silizium(AS)-Überzug mit einer Schichtauflage von 20 bis 80 g/m2 versehen, auf Temperaturen über 820°C erwärmt und die Temperatur für einige Zeit (ca. 3 Minuten) gehalten. Dabei werden im Überzug unterschiedliche intermetallische Phasen ausgebildet, beispielsweise Fe3Al, FeAl oder Fe-Al2O3. Nach dem Warmumformen mittels einer Presse wird das Produkt noch in der Presse abgekühlt.
  • Auch die europäische Patentanmeldung EP 2 312 011 A1 beschreibt ein Verfahren zur Herstellung von metallischen Beschichtungen auf Gussformteilen für den Einsatz im Automobilbau. Dazu wird das Gussformteil in einem Schmelzbad mit einer Aluminiumlegierung versehen und anschließend zur Herstellung einer hochtemperaturbeständigen Aluminiumoxidschicht einer Wärmebehandlung in einer oxidierenden Atmosphäre unterzogen. Nach der Wärmebehandlung ist auch eine anodische Oxidation vorgesehen.
  • Die deutsche Patentschrift DE 198 53 285 C1 stellt ein Verfahren zur Herstellung einer Schutzschicht auf martensitischem Stahl vor. Unter Schutzgasatmosphäre (Argon mit 5% H2) wird der zu beschichtende Stahl in eine Schmelze aus Aluminium oder einer Aluminiumlegierung getaucht, abgekühlt und dann bei Austenitisierungstemperatur heißisostatisch gepresst. Die derart erzeugte Aluminium-Schutzschicht ist zwischen 100 und 200 µm dick und soll an ihrer Oberfläche eine ca. 1 µm dicke Aluminiumoxid-Schicht enthalten, zu deren Entstehung oder Erhalt keine weiteren Angaben gemacht werden.
  • Aus der europäischen Patentanmeldung EP 2 017 074 A2 ist eine Kraftfahrzeugrohrleitung aus einem Stahlrohr mit einer Aluminiumschicht bekannt, die mittels Schmelztauchbeschichten aufgebracht wird. Eine Dicke einer Aluminiumoxidschicht wird über die Temperatur des Aluminiums und der Sauerstoffkonzentration während der Beschichtung eingestellt; sie liegt zwischen 4 und 30 nm.
  • Der Vorteil bei den aluminiumbasierten Überzügen gegenüber den zinkbasierten Überzügen liegt darin, dass neben einem größeren Prozessfenster (z.B. hinsichtlich der Erwärmungsparameter) die fertigen Bauteile vor der Weiterverarbeitung nicht gestrahlt werden müssen. Darüber hinaus besteht bei aluminiumbasierten Überzügen nicht die Gefahr von Flüssigmetallversprödung und es können sich keine Mikrorisse im oberflächennahen Substratbereich an den ehemaligen Austenitkorngrenzen ausbilden, die bei Tiefen über 10 µm einen negativen Effekt auf die Dauerfestigkeit haben können.
  • Nachteilig bei der Verwendung von aluminiumbasierten Überzügen z.B. aus Aluminium-Silizium (AS), ist jedoch die mangelhafte Lackhaftung des umgeformten Bauteils bei der automobiltypischen kathodischen Tauchlackierung (KTL), wenn eine zu kurze Erwärmungszeit beim Pressformhärten verwendet wurde. Bei kurzen Erwärmungszeiten weist die Oberfläche eine zu geringe Rauheit auf, so dass keine ausreichende Lackhaftung erreicht wird.
  • Im Gegensatz zu den zinkbasierten Überzügen lassen sich aluminiumbasierte Überzüge nicht oder nur unzureichend phosphatieren und somit kann durch den Phosphatierschritt keine Verbesserung der Lackhaftung erzielt werden. Aus diesen Gründen müssen bisher bei der Verarbeitung von Platinen mit aluminiumbasierten Überzügen Mindesterwärmzeiten eingehalten werden, wodurch der Überzug mit Eisen durchlegiert und sich eine raue Oberflächentopografie ausbildet, die eine ausreichende Lackhaftung beim Lackieren des umgeformten Bauteils bewirkt.
  • Das Durchlegieren des Überzugs mit Eisen und die Ausbildung einer lackierfähigen Oberflächentopografie erfordern allerdings eine entsprechend lange Verweildauer im üblicherweise verwendeten Rollenherdofen, was die Taktzeiten deutlich verlängert und die Wirtschaftlichkeit des Pressformhärtens reduziert. Die Mindestverweildauer wird somit durch den Überzug bestimmt und nicht durch das Grundmaterial, für das lediglich die Erreichung der notwendigen Austenitisierungstemperatur notwendig wäre. Zudem wird die Korrosionsbeständigkeit durch das stärkere Auflegieren mit Eisen verringert, da der Aluminiumgehalt in der Legierungsschicht mit der Ofenverweilzeit abnimmt und der Eisengehalt ansteigt. Für AS-Platinen werden üblicherweise angepasste, längere Öfen eingesetzt, um trotz der notwendigen Ofenverweilzeit hohe Taktraten zu erzielen. Diese sind jedoch teurer in der Anschaffung und im Betrieb und haben zudem einen sehr großen Platzbedarf.
  • Ein weiterer Nachteil von AS-Überzügen besteht darin, dass bei sehr kurzen Glühzeiten die Schweißbarkeit im Punktschweißverfahren äußerst schlecht ist. Dies drückt sich z.B. in einem nur sehr kleinen Schweißbereich aus. Ursächlich hierfür ist unter anderem ein sehr geringer Übergangswiderstand bei kurzen Glühzeiten.
  • Aufgabe der Erfindung ist es deshalb, ein Bauteil aus einem pressformgehärteten auf Basis von Aluminium beschichteten Stahlblech anzugeben, welches kostengünstig herstellbar ist und eine hervorragende Lackierbarkeit und Schweißbarkeit, insbesondere Widerstandspunktschweißbarkeit, aufweist. Des Weiteren soll ein Verfahren zur Herstellung eines solchen Bauteils angegeben werden.
  • Die Lehre der Erfindung umfasst ein Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech, hergestellt indem in einem Schmelztauchverfahren auf das Stahlblech ein Aluminium und Silizium enthaltener Überzug aufgebracht worden ist, sich nach dem Pressformhärten im Übergangsbereich zwischen Stahlblech und Überzug eine Interdiffusionszone I ausbildet, deren Dicke abhängig ist von der Schichtauflage des Überzugs vor Erwärmung und Pressformhärtung und die Dicke folgender Formel I[µm] < 1 / 35 × Auflage beidseitig [g/m2] + 19 / 7 gehorcht,
    • – auf der Interdiffusionszone I eine Zone mit verschiedenen intermetallischen Phasen mit einer mittleren Gesamtdicke zwischen 8 und 50 µm ausgebildet ist,
    • – auf der wiederum eine Aluminiumoxid und/oder -hydroxid enthaltende Deckschicht in einer mittleren Dicke von mindestens 0,05 µm bis höchstens 5 µm angeordnet ist.
  • Als aluminiumbasierte Überzüge werden nachfolgend metallische Überzüge verstanden, bei denen Aluminium der Hauptbestandteil (in Massenprozent) ist. Beispiele für mögliche aluminiumbasierte Überzüge sind Aluminium-Silizium (AS), Aluminium-Zink-Silizium (AZ), sowie dieselben Überzüge mit Beimischungen zusätzlicher Elemente, wie z.B. Magnesium, Übergangsmetallen wie Mangan, Titan und seltenen Erden. Ein erfindungsgemäßer Überzug des Stahlbleches wird beispielsweise in einem Schmelzbad mit einem Si-Gehalt von 8 bis 12 Gewichts-%, einem Fe-Gehalt von 1 bis 4 Gewichts-%, Rest Aluminium erzeugt.
  • Durch die Ausbildung einer definierten Aluminiumoxid und/oder -hydroxid enthaltenden Deckschicht auf der aluminiumbasierten Beschichtung des Stahlbleches oder des Stahlbandes, können die vorgenannten negativen Aspekte von aluminiumbasierten Beschichtungen deutlich reduziert oder sogar ganz verhindert werden.
  • Die Aluminiumoxid und/oder -hydroxid enthaltenen Deckschichten wirken auf dem durch Pressformhärten umgeformten Bauteil auf Grund ihrer netzartigen Struktur als ideale Haftvermittler für eine anschließende Lackierung, insbesondere der kathodischen Tauchlackierung (KTL). Ein langwieriges Durchlegieren der aluminiumbasierten Beschichtung im Ofen mit Eisen ist damit nicht mehr erforderlich, so dass sich die Durchlaufzeiten im Ofen zum Aufheizen des Stahlblechs auf Umformtemperatur drastisch verkürzen lassen. Während bislang beispielsweise bei Blechdicken von 1,5 mm Glühzeiten im Rollenherdofen von mindestens 4 Minuten bei 950 °C Ofentemperatur für das Durchlegieren der Beschichtung mit Eisen und die Ausbildung einer lackierfähigen Oberflächentopografie erforderlich sind, werden beim erfindungsgemäßen Verfahren bei einer Blechdicke von 1,5 mm Glühzeiten von nur noch 2–3 Minuten benötigt, die Glühzeit wird somit signifikant reduziert. Die maximal möglichen Ofenzeiten ändern sich durch die Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht nicht. Somit wird das Prozessfenster der Erwärmung hin zu kürzeren Ofenzeiten stark erweitert.
  • Für dickere Bleche verlängert sich die Ofenzeit bedingt durch die geringere Aufheizgeschwindigkeit des Stahlwerkstoffes entsprechend. Die typischen Ofentemperaturen zwischen 900 und 950 °C sollten auch hier eingehalten werden. Für hohe Taktzeiten sind Ofentemperaturen zwischen 930 und 950 °C vorteilhaft.
  • Zudem wirkt sich die erfindungsgemäße Deckschicht aus Aluminiumoxiden und/oder -hydroxiden vorteilhaft auf die Widerstandpunktschweißbarkeit bei kurzen Ofenzeiten aus, da der Übergangswiderstand erhöht wird und so eine gute Widerstandserwärmung erreicht wird. Für eine gute Schweißbarkeit nach kurzen Erwärmzeiten hat sich daher eine Dicke dieser Deckschicht von mindestens 0,05 µm als positiv herausgestellt.
  • Bei Versuchen wurde festgestellt, dass die Lackhaftung besser bzw. die Unterwanderung infolge eines korrosiven Angriffs umso geringer wird, je dicker die Aluminiumoxid und/oder -hydroxid enthaltende Deckschicht ist. Andererseits ist bei zu großer Dicke dieser Deckschicht der Übergangswiderstand beim Widerstandspunktschweißen zu hoch, wodurch sich die Schweißbarkeit wiederum verschlechtern würde. Daher sollte eine maximale Dicke der Deckschicht von 5 µm nicht überschritten werden.
  • Als guter Kompromiss zwischen Schweißeignung und Lackhaftung wurde für die Deckschicht eine Dicke zwischen 0,10 und 3 µm gefunden.
  • Für eine hervorragende Schweißeignung bei guter Lackhaftung sind Deckschichten mit einer mittleren Dicke zwischen 0,15 und 1 µm besonders vorteilhaft.
  • Erfindungsgemäß umfasst die Erfindung ebenfalls ein Verfahren zur Herstellung eines Bauteils, insbesondere nach Anspruch 1, aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech mit besonderer Eignung zum Lackieren und Widerstandspunktschweißen, wobei als Beschichtung ein aluminiumbasierter Überzug im Schmelztauchverfahren auf das Stahlblech aufgebracht wird, welches dadurch gekennzeichnet ist,
    • – dass das in dem Schmelztauchverfahren mit dem Überzug versehene Stahlblech oder Stahlband vor dem Pressformhärten einer Behandlung durch anodische Oxidation und/oder einer Plasmaoxidation und/oder einer Heißwasserbehandlung und/oder einer Behandlung in einer Atmosphäre, die mindestens variable Anteile von Sauerstoff und Wasserdampf enthält, unterzogen wird
    • – dass die Heißwasserbehandlung oder die Behandlung unter Wasserdampf bei Temperaturen von wenigstens 90 °C erfolgt
    • – dass im Zuge der Behandlung auf der Oberfläche des Überzugs unter Ausbildung von Oxiden oder Hydroxiden eine Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht mit einer Dicke von mindestens 0,05 µm bis höchstens 5µm ausgebildet wird
    • – dass das Stahlblech oder Stahlband zumindest bereichsweise auf eine Temperatur oberhalb der Austenitisierungstemperatur erwärmt wird
    • – dass das erwärmte Stahlblech oder Stahlband anschließend umgeformt und danach mit einer Geschwindigkeit abgekühlt wird, die zumindest bereichsweise oberhalb der kritischen Abkühlgeschwindigkeit liegt.
  • Bevorzugt wird die Deckschicht in einem kontinuierlichen Prozess auf die Oberfläche des Überzugs aufgebracht.
  • Vorteilhafter Weise erfolgt die Heißwasserbehandlung oder die Behandlung unter Wasserdampf bei Temperaturen von wenigstens 95 °C.
  • Vorteilhafter Weise findet die Behandlung in einer Atmosphäre statt, die auch Anteile basischer Komponenten, vorzugsweise Ammoniak (NH3), primäre, sekundäre oder tertiäre aliphatische Amine (NH2R, NHR2) enthält.
  • Verfahrenstechnisch kann eine dünne oxidische Deckschicht vorteilhaft durch anodische Oxidation (Dünnschichteloxieren), Plasmaoxidation und eine Hydroxid enthaltene Deckschicht mittels einer Heißwasserbehandlung der aluminiumbasierten Beschichtung bei Temperaturen von mindestens 90 °C, vorteilhaft mindestens 95 °C und/oder einer Behandlung in Wasserdampf bei Temperaturen von mindestens 90 °C, vorteilhaft mindestens 95 °C hergestellt werden.
  • Alternativ zur Anodisierung führt auch eine Gasphasenbehandlung der AS-Oberfläche zum gleichen Ziel. Hierzu wird die AS-Oberfläche mit einer Atmosphäre behandelt, die mindestens variable Anteile von Sauerstoff, Wasserdampf, optional auch Anteile basischer Komponenten, insbesondere Ammoniak, primären, sekundären oder tertiären aliphatischen Aminen enthalten kann. Diese Behandlung führt zu einem zeit- bzw. temperaturgesteuerten Wachstum einer Aluminiumoxid und/oder -hydroxid enthaltenen Deckschicht. Weiterhin lässt sich die Zusammensetzung der Gasphase zur Steuerung des Schichtdickenwachstums dieser Deckschicht nutzen. Die Behandlung wird bei einer Temperatur von 40 °C bis 100 °C, vorzugsweise 90 bis 100 °C durchgeführt. Niedrigere Behandlungstemperaturen verlängern die Behandlungsdauer, Behandlungstemperaturen über 100 °C erfordern ggf. Druckbehälter.
  • Sowohl Anodisierung als auch Gasphasenbehandlung führen zu einer Aluminiumoxid und/oder -hydroxid enthaltenden Deckschicht, die an ihrer Oberfläche netz- oder nadelartige Strukturen aufweist. Die damit verbundene Oberflächenvergrößerung verbessert die Haftung einer nachfolgenden KT-Lackierung.
  • Da längere Erwärmungszeiten zur Ausbildung einer lackierfähigen Oberflächentopografie nicht mehr erforderlich sind, wird zudem der Korrosionsschutz der Beschichtung erhöht. Dies ist damit zu erklären, dass bei einer nur kurzen erforderlichen Glühzeit im Rollenherdofen weniger Diffusion von Aluminium und Eisen stattfindet. Dies führt unter anderem auch zu einer relativ gering ausgebildeten Interdiffusionszone. Beispielhaft ist diese für eine AS-Auflage des Überzugs von 150 g/m2 (AS150) unterhalb von 7 µm.
  • In Versuchen wurden je nach Ofenverweildauer bei Verwendung von Platinen mit einer AS-Auflage von 150 g/m2 auch Dicken der Diffusionszone von unterhalb 5 µm, und sogar unterhalb 4 µm am fertigen Bauteil erzielt.
  • Bei Verwendung von Platinen mit einer AS-Auflage von 80 g/m2 (AS80) ist bekannt, dass sich hier die Ofenzeit auch bei nicht erfindungsgemäßem Überzug geringfügig reduzieren lässt und auch dadurch dünnere Diffusionsschichten von z.B. 5 µm resultieren. Versuche haben gezeigt, dass sich mit der erfindungsgemäßen Lösung die Ofenzeiten auch in diesem Fall noch weiter reduzieren lassen und hierdurch Dicken der Diffusionsschichten von unterhalb 5 µm am fertigen Bauteil erzielt werden können. In weiteren Versuchen konnten durch eine weitere Verkürzung der Erwärmzeit im Ofen auch noch geringere Dicken der Diffusionsschichten von unterhalb 3 µm, und sogar unterhalb von 2 µm am fertigen Bauteil erzielt werden.
  • Bei Einsatz von Platinen mit einer Schichtauflage zwischen AS80 und AS150 und bei Schichtauflagen die kleiner als AS80 sind oder größer als AS150 ergeben sich nach dem Pressformhärten die Dicken der erfindungsgemäßen Interdiffusionschichten I für eine Schichtauflage des Überzugs aus dem linearen Zusammenhang gemäß den folgenden Formeln für verschiedene blechdickenabhängige Erwärmzeiten: I[µm] < 1 / 35 × Auflage beidseitig [g/m2] + 19 / 7 (kurze Erwärmzeit) I[µm] < 1 / 35 × Auflage beidseitig [g/m2] + 5 / 7 (sehr kurze Erwärmzeit) I[µm] < 1 / 35 × Auflage beidseitig [g/m2] – 2 / 7 (äußerst kurze Erwärmzeit)
  • Die notwendige Erwärmzeit im Ofen richtet sich erfindungsgemäß nur nach der Blechdicke, da der erfindungsgemäße Überzug keine Haltezeit im Ofen zur Erzeugung einer lackierfähigen Oberfläche erfordert. Dickere Bleche erfordern für die Erwärmung daher längere Erwärmzeiten als dünnere Bleche.
  • Beispielhaft für Bleche mit 1,5 mm Dicke sind in Tabelle 1 kurze (220 Sekunden), sehr kurze (180 Sekunden) und äußerst kurze (150 Sekunden) Erwärmzeiten im Vergleich zu üblichen Erwärmzeiten (360 Sekunden) im Rollenherdofen aufgeführt.
  • Ein weiterer positiver Effekt der kurzen Erwärmzeit ist ein deutlich verringerter Porenanteil in der Legierungsschicht sowie in der Diffusionszone. Poren entstehen bei längeren Glühzeiten z.B. durch den Kirkendall-Effekt. Bei Versuchen wurde festgestellt, dass sich durch die Kurzzeitglühung der Gesamtporenanteil auf Werte von weniger als 6% und sogar auf Werte von unter 4 bzw. 2% reduzieren lässt. Was sich z.B. vorteilhaft auf die Schweißeignung auswirken kann.
  • Für das Pressformhärten von Platinen mit einer Aluminium-Silizium Beschichtung ist es nun nicht mehr erforderlich, lange Verweilzeiten des Stahlbleches im Ofen einzuhalten. Das Stahlblech muss nur noch auf die erforderliche Umformtemperatur aufgeheizt werden und kann bei Erreichen der Umformtemperatur sofort der Umformpresse zugeführt, umgeformt und abgeschreckt werden.
  • Dadurch können auch vorteilhaft kürzere Rollenherdöfen als die bislang eingesetzten verwendet werden. Darüber hinaus ist die Verwendung von anderen Ofentypen beispielsweise zur induktiven oder konduktiven Schnellerwärmung möglich, ohne dass die erwärmten Platinen zur Ausbildung einer lackierfähigen Oberflächentopografie auf Temperatur gehalten werden müssen.
  • Weiter ist es nun möglich, Platinen nur partiell zu erwärmen und zu härten, wodurch auch in den Bereichen mit geringem Wärmeeinfluss eine gute Punktschweißbarkeit und KT-Lackhaftung gegeben ist.
  • Nachfolgend wird anhand der dargestellten Figuren die Erfindung näher beschrieben.
  • 1 zeigt schematisch den Schichtaufbau der Beschichtung an einem pressformgehärteten Bauteil mit einer Beschichtung aus AS und üblicher, zur Erzielung einer Durchlegierung des Überzugs mit Eisen, langer Erwärmungszeit nach dem Stand der Technik. Für das Bauteil wurde ein Stahlblech mit einem Überzug aus AS150, also mit einer Schichtauflage des Überzugs von 150 g/m2 verwendet. Auf dem martensitischen Stahlgrundwerkstoff ist eine Interdiffusionszone Fe(Al, Si) mit einer Dicke von 7 bis 14 µm ausgebildet, auf der sich eine Zone mit verschiedenen intermetallischen Phasen (z.B. Fe2SiAl2 und FeAl2) gebildet hat, wobei die einzelnen Phasen in dieser Zone zeilenförmig oder auch clusterförmig verteilt auftreten können. Durch die Oxidation im Ofen sowie beim Transfer in die Presse hat sich eine nur sehr dünne Aluminiumoxidschicht mit einer Dicke von weniger als 0,05 µm gebildet. Zu erkennen sind ebenfalls Poren, die sich in den verschiedenen Zonen gebildet haben.
  • 2 zeigt im Vergleich dazu den Schichtaufbau einer erfindungsgemäßen Beschichtung an einem pressformgehärteten Bauteil mit einer AS-Beschichtung auf der eine erfindungsgemäße Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht von mindestens 0,05 µm ausgebildet ist und die mit im Vergleich zum Stand der Technik verkürzten Erwärmzeiten erzeugt wurde. Im Übergangsbereich zwischen Stahlblech und Beschichtung ist eine Interdiffusionszone ausgebildet, in der Aluminium und Silizium in den Stahl hinein diffundiert sind Fe(Al, Si). Durch die nur noch sehr kurze notwendige Erwärmungszeit im Ofen auf Austenitisierungstemperatur, weist diese Schicht beispielsweise für AS150 eine Dicke von weniger als 7 µm im Mittel auf. Auf dieser Schicht bildet sich im Zuge der Erwärmung eine weitere Schicht mit verschiedenen intermetallischen Phasen (z.B. Fe2SiAl2 und FeAl2), wobei die einzelnen Phasen in dieser Zone zeilenförmig oder auch clusterförmig verteilt auftreten können und, auf der eine Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht in einer mittleren Dicke von mindestens 0,05 µm bis höchstens 5 µm angeordnet ist.
  • 3 zeigt grafisch die erfindungsgemäße Dicke I der Interdiffusionszone für eine Schichtauflage des Überzugs zwischen 50 g/m2 und 180 g/m2 nach dem folgenden Zusammenhang: I[µm] < 1 / 35 × Auflage beidseitig [g/m2] + 19 / 7
  • Tabelle 1 fasst Versuche zur Lackhaftung (automobiltypische Phosphatierungsbehandlung und kathodische Tauchlackierung; Prüfung nach 72 Stunden Kondenswasser-Konstantklima gemäß DIN EN ISO 6270-2:2005 CH) und Schweißeignung (Widerstandpunktschweißen) pressgehärteter AS150-Proben bei 940 °C Ofentemperatur und verschiedenen Erwärmzeiten zusammen. Die Blechdicke der Proben beträgt 1,5 mm. Zu erkennen ist, dass sich nur eine gute Lackhaftung und Schweißeignung bei Erwärmzeiten von 220 s und weniger ergibt, wenn eine erfindungsgemäße Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht vorhanden ist. Bei kurzen Erwärmzeiten von 220 s und weniger ergaben sich darüber hinaus Interdiffusionsschichten von weniger als 7 µm am pressgehärteten Bauteil. Bei den nicht erfindungsgemäßen langen Erwärmzeiten von 360 s nach dem Stand der Technik, ist hingegen auf Grund der Durchlegierung des Überzugs mit Eisen auch bei den Proben ohne die erfindungsgemäße Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht eine gute Lackhaftung und Schweißeignung gegeben. Die Dicke der Interdiffusionsschichten liegt nach 360 s Erwärmzeit deutlich über 7 µm.

Claims (15)

  1. Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech, hergestellt indem – in einem Schmelztauchverfahren auf das Stahlblech ein Aluminium und Silizium enthaltener Überzug aufgebracht worden ist, sich nach dem Pressformhärten im Übergangsbereich zwischen Stahlblech und Überzug eine Interdiffusionszone I ausbildet, deren Dicke abhängig ist von der Schichtauflage des Überzugs vor Erwärmung und Pressformhärtung und die Dicke folgender Formel I[µm] < 1 / 35 × Auflage beidseitig [g/m2] + 19 / 7 gehorcht, – auf der Interdiffusionszone I eine Zone mit verschiedenen intermetallischen Phasen mit einer mittleren Gesamtdicke zwischen 8 und 50 µm ausgebildet ist, – auf der wiederum eine Aluminiumoxid und/oder -hydroxid enthaltende Deckschicht in einer mittleren Dicke von mindestens 0,05 µm bis höchstens 5 µm angeordnet ist.
  2. Bauteil nach Anspruch 1, dadurch gekennzeichnet, dass abhängig von der Schichtauflage des Überzugs die Dicke der Interdiffusionszone I gemäß folgender Formel I[µm] < 1 / 35 × Auflage beidseitig [g/m2] + 5 / 7 ausgebildet ist.
  3. Bauteil nach Anspruch 2, dadurch gekennzeichnet, dass abhängig von der Schichtauflage des Überzugs die Dicke der Interdiffusionszone I gemäß folgender Formel I[µm] < 1 / 35 × Auflage beidseitig [g/m2] – 2 / 7 ausgebildet ist.
  4. Bauteil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die mittlere Schichtdicke der Deckschicht mindestens 0,10 µm und höchstens 3,0 µm beträgt.
  5. Bauteil nach Anspruch 4, dadurch gekennzeichnet, dass die mittlere Schichtdicke der Deckschicht mindestens 0,15 µm und höchstens 1,0 µm beträgt.
  6. Bauteil nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Überzug eine Gesamtporosität von weniger als 6 %, vorteilhaft weniger als 4 % und optimal weniger als 2 % aufweist.
  7. Bauteil nach einem der Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass der Überzug des Stahlbleches in einem Schmelzbad mit einem Si-Gehalt von 8 bis 12 Gewichts-%, einem Fe-Gehalt von 1 bis 4 Gewichts-%, Rest Aluminium und nicht vermeidbaren Verunreinigungen hergestellt wurde.
  8. Verfahren zur Herstellung eines Bauteils aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech oder Stahlband mit besonderer Eignung zum Lackieren und Widerstandspunktschweißen, wobei als Beschichtung ein aluminiumbasierter Überzug im Schmelztauchverfahren auf das Stahlblech oder Stahlband aufgebracht wird, dadurch gekennzeichnet, – dass das in dem Schmelztauchverfahren mit dem Überzug versehene Stahlblech oder Stahlband vor dem Pressformhärten einer Behandlung durch anodische Oxidation und/oder einer Plasmaoxidation und/oder einer Heißwasserbehandlung und/oder einer Behandlung in einer Atmosphäre, die mindestens variable Anteile von Sauerstoff und Wasserdampf enthält, unterzogen wird – dass die Heißwasserbehandlung oder die Behandlung unter Wasserdampf bei Temperaturen von wenigstens 90 °C erfolgt – dass im Zuge der Behandlung auf der Oberfläche des Überzugs unter Ausbildung von Oxiden oder Hydroxiden eine Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht mit einer Dicke von mindestens 0,05 µm bis höchstens 5 µm ausgebildet wird – dass das Stahlblech oder Stahlband zumindest bereichsweise auf eine Temperatur oberhalb der Austenitisierungstemperatur erwärmt wird – dass das erwärmte Stahlblech oder Stahlband anschließend umgeformt und danach mit einer Geschwindigkeit abgekühlt wird, die zumindest bereichsweise oberhalb der kritischen Abkühlgeschwindigkeit liegt.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Heißwasserbehandlung oder die Behandlung unter Wasserdampf bei Temperaturen von wenigstens 95 °C erfolgt.
  10. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Deckschicht in einem kontinuierlichen Prozess auf die Oberfläche des Überzugs aufgebracht wird.
  11. Verfahren nach Anspruch 8 oder 10, dadurch gekennzeichnet, dass abhängig von der Schichtauflage des Überzugs die Dicke der Interdiffusionszone I gemäß folgender Formel I[µm] < 1 / 35 × Auflage beidseitig [g/m2] + 19 / 7 ausgebildet ist, darauf eine Zone mit verschiedenen intermetallischen Phasen mit einer Dicke zwischen 8 und 50 µm ausgebildet wird.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass abhängig von der Schichtauflage des Überzugs die Dicke der Interdiffusionszone I gemäß folgender Formel I[µm] < 1 / 35 × Auflage beidseitig [g/m2] + 5 / 7 ausgebildet wird.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass abhängig von der Schichtauflage des Überzugs die Dicke der Interdiffusionszone I gemäß folgender Formel I[µm] < 1 / 35 × Auflage beidseitig [g/m2] – 2 / 7 ausgebildet wird.
  14. Verfahren nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass die Behandlung in einer Atmosphäre stattfindet, die auch Anteile basischer Komponenten, vorzugsweise Ammoniak (NH3), primäre, sekundäre oder tertiäre aliphatische Amine (NH2R, NHR2) enthält.
  15. Verwendung eines Bauteils nach den Ansprüchen 1 bis 7 zur Herstellung von Kraftfahrzeugen.
DE102016107152.8A 2016-04-18 2016-04-18 Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech und Verfahren zur Herstellung eines solchen Bauteils und dessen Verwendung Withdrawn - After Issue DE102016107152B4 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102016107152.8A DE102016107152B4 (de) 2016-04-18 2016-04-18 Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech und Verfahren zur Herstellung eines solchen Bauteils und dessen Verwendung
KR1020187030273A KR102189424B1 (ko) 2016-04-18 2017-04-13 프레스 성형-경화된 알루미늄 기반 코팅 강판으로 만들어진 부품 및 이 같은 부품을 생산하기 위한 방법
PCT/EP2017/058918 WO2017182382A1 (de) 2016-04-18 2017-04-13 Bauteil aus pressformgehärtetem, auf basis von aluminium beschichtetem stahlblech und verfahren zur herstellung eines solchen bauteils
RU2018136149A RU2704339C1 (ru) 2016-04-18 2017-04-13 Деталь из закаленного под прессом стального листа с покрытием на основе алюминия и способ изготовления такой детали
EP17721056.4A EP3250727B2 (de) 2016-04-18 2017-04-13 Verfahren zur herstellung eines bauteils aus pressformgehärtetem, auf basis von aluminium beschichtetem stahlblech
CN201780024316.6A CN109477197B (zh) 2016-04-18 2017-04-13 由冲压成型硬化的铝基涂层钢板制成的部件和生产该部件的方法
US16/093,466 US11339479B2 (en) 2016-04-18 2017-04-13 Component made of press-form-hardened, aluminum-based coated steel sheet, and method for producing such a component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016107152.8A DE102016107152B4 (de) 2016-04-18 2016-04-18 Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech und Verfahren zur Herstellung eines solchen Bauteils und dessen Verwendung

Publications (2)

Publication Number Publication Date
DE102016107152A1 DE102016107152A1 (de) 2017-10-19
DE102016107152B4 true DE102016107152B4 (de) 2017-11-09

Family

ID=58668836

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016107152.8A Withdrawn - After Issue DE102016107152B4 (de) 2016-04-18 2016-04-18 Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech und Verfahren zur Herstellung eines solchen Bauteils und dessen Verwendung

Country Status (7)

Country Link
US (1) US11339479B2 (de)
EP (1) EP3250727B2 (de)
KR (1) KR102189424B1 (de)
CN (1) CN109477197B (de)
DE (1) DE102016107152B4 (de)
RU (1) RU2704339C1 (de)
WO (1) WO2017182382A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171157A1 (en) * 2018-03-09 2019-09-12 Arcelormittal A manufacturing process of press hardened parts with high productivity
EP4151770A4 (de) * 2020-05-13 2023-10-04 Nippon Steel Corporation Heissprägeelement
US11926120B2 (en) * 2020-05-13 2024-03-12 Nippon Steel Corporation Steel sheet for hot stamping
JP7269525B2 (ja) * 2020-05-13 2023-05-09 日本製鉄株式会社 ホットスタンプ用鋼板
DE102020120580A1 (de) * 2020-08-04 2022-02-10 Muhr Und Bender Kg Verfahren zum herstellen von beschichtetem stahlband, und verfahren zum herstellen eines gehärteten stahlprodukts
DE102021118766A1 (de) * 2021-07-20 2023-01-26 Kamax Holding Gmbh & Co. Kg Bauteil mit integrierter Aluminiumdiffusionsschicht und Aluminiumoxidschicht

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19853285C1 (de) * 1998-11-19 2000-06-15 Karlsruhe Forschzent Verfahren zur Herstellung einer Schutzschicht auf einem martensitischen Stahl und Verwendung des mit der Schutzschicht versehenen Stahls
EP2017074A2 (de) * 2007-06-13 2009-01-21 TI Automotive (Heidelberg) GmbH Aluminiumbeschichtete Kraftfahrzeugrohrleitung aus Metall und Verfahren zur Herstellung einer Kraftfahrzeugrohrleitung mittels Schmelztauchbeschichten
EP2312011A1 (de) * 2009-10-15 2011-04-20 Georg Fischer Automotive AG Verfahren zur metallischen Beschichtung eines Gussformteiles und aluminisiertes Gussformteil hergestellt durch das Verfahren
US20110300407A1 (en) * 2009-01-09 2011-12-08 Posco Aluminum-Plated Steel Sheet Having Superior Corrosion Resistance, Hot Press Formed Product Using the Same, and Method for Production Thereof

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2836878C2 (de) 1978-08-23 1984-05-30 Siemens AG, 1000 Berlin und 8000 München Verfahren zur anodischen Herstellung hydrophober Oxidschichten auf Aluminium- Folien für Elektrolytkondensatoren
US4546051A (en) * 1982-07-08 1985-10-08 Nisshin Steel Co., Ltd. Aluminum coated steel sheet and process for producing the same
KR100212596B1 (ko) * 1995-02-24 1999-08-02 하마다 야스유키(코가 노리스케) 용융 알루미늄 도금 강판과 그 제조방법 및 합금층 제어 장치
FR2787735B1 (fr) 1998-12-24 2001-02-02 Lorraine Laminage Procede de realisation d'une piece a partir d'une bande de tole d'acier laminee et notamment laminee a chaud
FR2807447B1 (fr) 2000-04-07 2002-10-11 Usinor Procede de realisation d'une piece a tres hautes caracteristiques mecaniques, mise en forme par emboutissage, a partir d'une bande de tole d'acier laminee et notamment laminee a chaud et revetue
CA2387322C (en) * 2001-06-06 2008-09-30 Kawasaki Steel Corporation High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same
HUE036195T2 (hu) * 2006-10-30 2018-06-28 Arcelormittal Bevonatolt acélszalagok, eljárások azok elõállítására, eljárások azok alkalmazására, azokból készített nyersdarabok, azokból készített sajtolt termékek, továbbá ilyen sajtolt terméket tartalmazó késztermékek
WO2009090443A1 (en) * 2008-01-15 2009-07-23 Arcelormittal France Process for manufacturing stamped products, and stamped products prepared from the same
DE102010024664A1 (de) 2009-06-29 2011-02-17 Salzgitter Flachstahl Gmbh Verfahren zum Herstellen eines Bauteils aus einem lufthärtbaren Stahl und ein damit hergestelltes Bauteil
FR2947566B1 (fr) 2009-07-03 2011-12-16 Snecma Procede d'elaboration d'un acier martensitique a durcissement mixte
DE102009053260B4 (de) 2009-11-05 2011-09-01 Salzgitter Flachstahl Gmbh Verfahren zum Beschichten von Stahlbändern und beschichtetes Stahlband
JP5263258B2 (ja) 2010-10-25 2013-08-14 新日鐵住金株式会社 高強度自動車部品の製造方法および高強度部品
DE102011001140A1 (de) * 2011-03-08 2012-09-13 Thyssenkrupp Steel Europe Ag Stahlflachprodukt, Verfahren zum Herstellen eines Stahlflachprodukts und Verfahren zum Herstellen eines Bauteils
ES2899474T3 (es) * 2011-04-01 2022-03-11 Nippon Steel Corp Componente de alta resistencia moldeado por estampación en caliente que tiene excelente resistencia a la corrosión después del metalizado
US9677145B2 (en) * 2011-08-12 2017-06-13 GM Global Technology Operations LLC Pre-diffused Al—Si coatings for use in rapid induction heating of press-hardened steel
DE102012002079B4 (de) 2012-01-30 2015-05-13 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines kalt- oder warmgewalzten Stahlbandes aus einem höchstfesten Mehrphasenstahl
DE102013004905A1 (de) 2012-03-23 2013-09-26 Salzgitter Flachstahl Gmbh Zunderarmer Vergütungsstahl und Verfahren zur Herstellung eines zunderarmen Bauteils aus diesem Stahl
DE102012006941B4 (de) 2012-03-30 2013-10-17 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Bauteils aus Stahl durch Warmumformen
DE102013005301A1 (de) 2013-03-21 2014-09-25 Salzgitter Flachstahl Gmbh Verfahren zur Verbesserung der Schweißbarkeit von hochmanganhaltigen Stahlbändern und beschichtetes Stahlband
DE102013009232A1 (de) 2013-05-28 2014-12-04 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Bauteils durch Warmumformen eines Vorproduktes aus Stahl
JP5873465B2 (ja) * 2013-08-14 2016-03-01 日新製鋼株式会社 全反射特性と耐食性に優れたAl被覆鋼板およびその製造法
DE102013015032A1 (de) 2013-09-02 2015-03-05 Salzgitter Flachstahl Gmbh Zinkbasierte Korrosionsschutzbeschichtung für Stahlbleche zur Herstellung eines Bauteils bei erhöhter Temperatur durch Presshärten
CA2933039C (en) 2013-12-25 2019-06-25 Nippon Steel & Sumitomo Metal Corporation Automobile part and method for manufacturing automobile part
WO2015150848A1 (fr) * 2014-03-31 2015-10-08 Arcelormittal Investigación Y Desarrollo Sl Procede de fabrication a haute productivite de pieces d'acier revêtues et durcies a la presse
ES2813870T3 (es) 2014-09-05 2021-03-25 Thyssenkrupp Steel Europe Ag Producto plano de acero con un revestimiento de Al, procedimiento para su fabricación y procedimiento para la fabricación de un elemento constructivo conformado en caliente
DE102014016614A1 (de) 2014-10-31 2016-05-04 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Bauteils durch Umformen einer Platine aus Stahl
JP2016101911A (ja) * 2014-11-18 2016-06-02 株式会社シマノ 自転車用チェーン
DE102016215709A1 (de) * 2015-08-28 2017-03-02 Tsubakimoto Chain Co. Kettenkomponente und Kette
US10481052B2 (en) 2018-03-28 2019-11-19 Ford Global Technologies, Llc Quality control process to assess the aluminized coating characteristics of hot stamped parts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19853285C1 (de) * 1998-11-19 2000-06-15 Karlsruhe Forschzent Verfahren zur Herstellung einer Schutzschicht auf einem martensitischen Stahl und Verwendung des mit der Schutzschicht versehenen Stahls
EP2017074A2 (de) * 2007-06-13 2009-01-21 TI Automotive (Heidelberg) GmbH Aluminiumbeschichtete Kraftfahrzeugrohrleitung aus Metall und Verfahren zur Herstellung einer Kraftfahrzeugrohrleitung mittels Schmelztauchbeschichten
US20110300407A1 (en) * 2009-01-09 2011-12-08 Posco Aluminum-Plated Steel Sheet Having Superior Corrosion Resistance, Hot Press Formed Product Using the Same, and Method for Production Thereof
EP2312011A1 (de) * 2009-10-15 2011-04-20 Georg Fischer Automotive AG Verfahren zur metallischen Beschichtung eines Gussformteiles und aluminisiertes Gussformteil hergestellt durch das Verfahren

Also Published As

Publication number Publication date
KR102189424B1 (ko) 2020-12-11
CN109477197A (zh) 2019-03-15
RU2704339C1 (ru) 2019-10-28
EP3250727B2 (de) 2024-01-17
EP3250727B1 (de) 2021-07-07
KR20190003502A (ko) 2019-01-09
DE102016107152A1 (de) 2017-10-19
US20200308708A1 (en) 2020-10-01
WO2017182382A1 (de) 2017-10-26
CN109477197B (zh) 2021-10-26
EP3250727A1 (de) 2017-12-06
US11339479B2 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
DE102016107152B4 (de) Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech und Verfahren zur Herstellung eines solchen Bauteils und dessen Verwendung
EP3041969B1 (de) Zinkbasierte korrosionsschutzbeschichtung für stahlbleche zur herstellung eines bauteils bei erhöhter temperatur durch presshärten
EP2656187B1 (de) Verfahren zum erzeugen gehärteter bauteile
DE112006003169B4 (de) Stahlbleche zum Warmpressformen mit ausgezeichneten Wärmebehandlungs- und Schlageigenschaften, daraus hergestellte Warmpressteile und Verfahren zu deren Herstellung
DE60119826T2 (de) Verfahren zum Herstellen eines Bauteils mit sehr guten mechanischen Eigenschaften, Umformung durch Tiefziehen, aus gewalztem insbesondere warmgewalztem und beschichtetem Stahlblech
DE102011053939B4 (de) Verfahren zum Erzeugen gehärteter Bauteile
EP2848709A1 (de) Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils und Stahlbauteil
EP2733226A1 (de) Verfahren zum Herstellen eines Erzeugnisses aus flexibel gewalztem Bandmaterial
DE102010017354A9 (de) Verfahren zum Herstellen eines warmgeformten und gehärteten, mit einer metallischen Korrosionsschutzbeschichtung überzogenen Stahlbauteils aus einem Stahlflachprodukt
DE102010056265B3 (de) Verfahren zum Erzeugen gehärteter Bauteile
DE102015118869A1 (de) Verfahren zum Herstellen einer Korrosionsschutzbeschichtung für härtbare Stahlbleche und Korrosionsschutzschicht für härtbare Stahlbleche
DE102010056264B4 (de) Verfahren zum Erzeugen gehärteter Bauteile
EP3056591A1 (de) Verfahren zum herstellen eines erzeugnisses aus gewalztem bandmaterial
WO2016026885A1 (de) Oberflächenveredeltes stahlblech und verfahren zu dessen herstellung
EP3303647B1 (de) Umformgehärtetes bauteil aus verzinktem stahl, herstellverfahren hierzu und verfahren zur herstellung eines stahlbandes geeignet zur umformhärtung von bauteilen
EP4038215A1 (de) Verfahren zur herstellung eines pressgehärteten stahlblechbauteils mit einem aluminiumbasierten überzug sowie eine ausgangsplatine und ein pressgehärtetes stahlblechbauteil hieraus
EP3585917A1 (de) Verfahren zum beschichten von stahlblechen oder stahlbändern und verfahren zur herstellung von pressgehärteten bauteilen hieraus
EP4247992A1 (de) Stahlmaterial und verfahren zu seiner herstellung

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R081 Change of applicant/patentee

Owner name: SALZGITTER FLACHSTAHL GMBH, DE

Free format text: FORMER OWNER: SALZGITTER FLACHSTAHL GMBH, 38239 SALZGITTER, DE

Owner name: VOLKSWAGEN AG, DE

Free format text: FORMER OWNER: SALZGITTER FLACHSTAHL GMBH, 38239 SALZGITTER, DE

R082 Change of representative

Representative=s name: MOSER GOETZE & PARTNER PATENTANWAELTE MBB, DE

R026 Opposition filed against patent
R083 Amendment of/additions to inventor(s)
R120 Application withdrawn or ip right abandoned
R028 Decision that opposition inadmissible now final