EP2312011A1 - Verfahren zur metallischen Beschichtung eines Gussformteiles und aluminisiertes Gussformteil hergestellt durch das Verfahren - Google Patents

Verfahren zur metallischen Beschichtung eines Gussformteiles und aluminisiertes Gussformteil hergestellt durch das Verfahren Download PDF

Info

Publication number
EP2312011A1
EP2312011A1 EP09173138A EP09173138A EP2312011A1 EP 2312011 A1 EP2312011 A1 EP 2312011A1 EP 09173138 A EP09173138 A EP 09173138A EP 09173138 A EP09173138 A EP 09173138A EP 2312011 A1 EP2312011 A1 EP 2312011A1
Authority
EP
European Patent Office
Prior art keywords
casting
coating
metallic coating
mold part
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09173138A
Other languages
English (en)
French (fr)
Inventor
Werner Menk
Thomas Eckardt
Torsten Rieck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Georg Fischer Automotive AG
Original Assignee
Georg Fischer Automotive AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georg Fischer Automotive AG filed Critical Georg Fischer Automotive AG
Priority to EP09173138A priority Critical patent/EP2312011A1/de
Publication of EP2312011A1 publication Critical patent/EP2312011A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath

Definitions

  • the invention relates to a method for the metallic coating of a molded part.
  • Metallic materials are often coated to prevent corrosion during use.
  • Some typical coating materials are glass, enamel, tin, zinc or chromium. Molded parts that are used in the automotive industry, such as wheel carrier, exhaust manifold or turbocharger housing are exposed in the application of corrosive outdoor conditions and high temperatures.
  • This object is achieved by a method for the metallic coating of a cast part, wherein the cast part before the coating process is mechanically and chemically cleaned and wherein the mold part is dipped for coating in a melt of an aluminum-containing alloy.
  • the casting to be coated lingers as possible only a short time in the coating bath in order to save process costs. This is achieved by the immersion time being 2 to 6 minutes.
  • the costs of the coating metal are kept as low as possible. This is achieved by the layer thickness of the coating being between 50 and 500 ⁇ m.
  • the casting surfaces to be coated are free from mold residue and chemically activated before immersion in the coating bath in order to ensure optimum adhesion of the coating metal. This is achieved in that the mechanical cleaning of the casting is carried out by means of cleaning jets and that after the mechanical cleaning process and immediately before the coating process, the casting is pretreated with an acid solution.
  • a high-temperature-resistant aluminum oxide layer is also advantageous for a high-temperature-resistant aluminum oxide layer to be selectively produced on the coated cast part. This is achieved by subjecting the molded part to a heat treatment in an oxidizing atmosphere after the coating process. This is also achieved in that the casting after the heat treatment of anodic oxidation is subjected.
  • the molded part produced by the method according to the invention is used in vehicle construction at temperatures above 500 ° C., for example as a turbocharger housing or exhaust manifold.
  • the molded part can also be used in corrosive environmental conditions in vehicle construction.
  • the coating can be anodized after the coating process and subsequently electroplated.
  • the casting itself may be constructed of lamellar graphite cast iron, vermicular graphite cast iron, spheroidal graphite cast iron, malleable cast iron, aluminum alloy or magnesium alloy.
  • the bath temperature of the melt may be lower than 600 ° C.
  • a casting of Sibodur 450-17 HS, a nodular cast iron and a majority ferritic microstructure, is immersed in a melt containing mostly aluminum at a temperature of 690 ° C for 3 minutes.
  • the molded part After the coating process, the molded part has a layer with a thickness of at least 60 ⁇ m.
  • the coating consists of an alloy with 0.09 wt.% Si, 0.24 wt.% Fe, 0.02 wt.% Cu, 0.12 wt.% Mn, 0.46 wt.% Mg, 4.67 wt.% Zn, 0.07 wt.% Ti, 0.0011 Wt.% Sr, balance aluminum and common impurities.
  • the casting was stored in an oven in air at 700 ° C for 160 hours.
  • the weight gain by oxidation is measured over a period of up to 160 hours and compared to the results of other high temperature resistant materials. In FIG. 1 the results are put together. It can be seen from the comparison that the casting according to the invention has even a slightly better oxidation behavior than a nickel-chromium alloyed spheroidal graphite cast iron (GJSA-XNiSiCr-35-5-2), which is frequently used for high-temperature applications and which is relatively expensive.
  • GJSA-XNiSiCr-35-5-2 nickel-chromium alloyed spheroidal graphite cast iron
  • FIG. 2 shows a micrograph of the inventive coating. The photograph was taken after aging for 50 hours in air at 700 ° C.
  • the coating consists of an alloy with 0.24 wt.% Si, 3.0 wt.% Fe, 0.04 wt.% Cu, 0.1 wt.% Mn, 0.34 wt.% Mg, 4.84 wt.% Zn, 0.06 wt.% Ti, 0.0018 Wt.% Sr, balance aluminum and common impurities.
  • the casting was stored in an oven in air at 700 ° C for 160 hours.
  • the weight gain by oxidation is measured and compared to the results of other high temperature resistant materials.
  • FIG. 3 the results are put together.
  • the casting according to the invention has the same good oxidation behavior as a nickel and chromium alloyed spheroidal graphite cast iron (GJSA-XNiSiCr-35-5-2), which is frequently used for high-temperature applications and which is relatively expensive.
  • FIG. 4 shows a micrograph of the inventive coating.
  • FIG. 5 shows a section of the recording of FIG. 4 , Both images were taken after aging for 154 hours in air at 700 ° C.

Abstract

Es wird ein Verfahren zur metallischen Beschichtung eines Gussformteiles vorgeschlagen, wobei das Gussformteil vor dem Beschichtungsvorgang mechanisch und chemisch gereinigt wird und wobei das Gussformteil zur Beschichtung in eine Schmelze einer aluminiumhaltigen Legierung eingetaucht wird.

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur metallischen Beschichtung eines Gussformteiles.
  • Metallische Werkstoffe werden, um in der Anwendung Korrosion zu verhindern, häufig beschichtet. Einige typische Beschichtungswerkstoffe sind Glas, Email, Zinn, Zink oder Chrom. Gussformteile, die im Automobilbau eingesetzt werden, wie beispielsweise Radträger, Auspuffkrümmer oder Turboladergehäuse sind in der Anwendung korrosiven Aussenbedingungen und hohen Temperaturen ausgesetzt.
  • Aus der EP 848 076 A1 ist ein Verfahren zur metallischen Beschichtung von Stahlblech in einem Tauchbad bekannt. Vor dem eigentlichen Beschichtungsvorgang wird das Stahlblech gereinigt, thermisch geglüht, mit einer sehr dünnen Oxydschicht versehen und mit einer zweiten metallischen Unterschicht versehen. Der Stahl enthält unter anderem Silizium, das bei einer Wärmebehandlung vor dem Beschichtungsvorgang oxidierbar ist. Als Beschichtungsmetall werden Zink- oder Aluminiumlegierungen vorgeschlagen. Wenn das Beschichtungsmetall reich an Aluminium ist, beträgt der Siliziumgehalt weniger als 6%.
  • Ausgehend von diesem Stand der Technik ist es Aufgabe der Erfindung, ein Verfahren zur metallischen Beschichtung anzugeben, das möglichst Energie sparend durchgeführt werden kann, das die Beständigkeit gegen Korrosion, Temperaturwechsel und Oxydation eines Gussformteils erhöht und das das Aussehen eines Gussformteils verbessert.
  • Diese Aufgabe wird gelöst durch ein Verfahren zur metallischen Beschichtung eines Gussformteiles, wobei das Gussformteil vor dem Beschichtungsvorgang mechanisch und chemisch gereinigt wird und wobei das Gussformteil zur Beschichtung in eine Schmelze einer aluminiumhaltigen Legierung eingetaucht wird.
  • Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
  • Aus Kostengründen ist es von Vorteil, dass das zu beschichtende Gussformteil möglichst nur kurze Zeit im Beschichtungsbad verweilt, um damit Prozesskosten einzusparen. Dies wird dadurch erreicht, dass die Eintauchzeit 2 bis 6 Minuten beträgt.
  • Es ist auch von Vorteil, dass die Kosten des Beschichtungsmetalls möglichst niedrig gehalten werden. Dies wird dadurch erreicht, dass die Schichtdicke der Beschichtung zwischen 50 und 500 µm beträgt.
  • Es ist auch von Vorteil, dass die zu beschichtenden Gussteiloberflächen vor dem Eintauchen in das Beschichtungsbad frei sind von Formstoffrückständen und chemisch aktiviert sind um eine optimale Haftung des Beschichtungsmetalls zu gewährleisten. Dies wird dadurch erreicht, dass die mechanische Reinigung des Gussformteiles mittels Reinigungsstrahlen durchgeführt wird und dass nach dem mechanischen Reinigungsvorgang und unmittelbar vor dem Beschichtungsvorgang das Gussformteil mit einer Säurelösung vorbehandelt wird.
  • Für die Verwendung von Gussformteilen im Hochtemperaturbereich, zum Beispiel bei Auslasskrümmer oder Turboladergehäuse, ist es weiter auch von Vorteil, dass auf dem beschichteten Gussformteil gezielt eine hochtemperaturbeständige Aluminiumoxidschicht erzeugt wird. Dies wird dadurch erreicht, dass das Gussformteil nach dem Beschichtungsvorgang einer Wärmebehandlung in einer oxidierenden Atmosphäre unterzogen wird. Dies wird auch dadurch erreicht, dass das Gussformteil nach der Wärmebehandlung einer anodischen Oxidation unterzogen wird.
  • Das mit dem erfindungsgemässen Verfahren hergestellte Gussformteil wird im Fahrzeugbau bei Temperaturen über 500 °C, beispielsweise als Turboladergehäuse oder Auslasskrümmer eingesetzt. Das Gussformteil kann auch bei korrosiven Umgebungsbedingungen im Fahrzeugbau eingesetzt werden. Bei Gussformteilen, die im Fahrzeugbau in Bereichen eingesetzt werden, welche gut von Aussen einsehbar sind, kann die Beschichtung nach dem Beschichtungsvorgang anodisch oxidiert und anschliessend galvanisch eingefärbt werden.
  • Das Gussformteil selbst kann aus Gusseisen mit Lamellengraphit, aus Gusseisen mit Vermikulargraphit, aus Gusseisen mit Kugelgraphit, aus Temperguss, aus einer Aluminiumlegierung oder aus einer Magnesiumlegierung aufgebaut sein. Wenn das Gussformteil aus einer Al- oder Mg-Legierung aufgebaut ist, kann die Badtemperatur der Schmelze niedriger als 600 °C sein.
  • Ausführungsbeispiele der Erfindung werden anhand der Figuren beschrieben. Es zeigen:
    • Figur 1 ein Diagramm mit den Messwerten der erfindungsgemässen Beschichtung aus einem ersten Beispiel, verglichen mit den Messwerten anderer Hochtemperaturwerkstoffe,
    • Figur 2 eine mikroskopische Aufnahme der erfindungsgemässen Beschichtung,
    • Figur 3 ein weiteres Diagramm mit den Messwerten der erfindungsgemässen Beschichtung aus einem zweiten Beispiel, verglichen mit den Messwerten anderer Hochtemperaturwerkstoffe,
    • Figur 4 eine mikroskopische Aufnahme der erfindungsgemässen Beschichtung aus Figur 3 und
    • Figur 5 einen vergrösserten Ausschnitt aus der Aufnahme von Figur 5.
    Beispiel 1
  • Ein Gussformteil aus Sibodur 450-17 HS, einem Gusseisen mit Kugelgraphit und einem mehrheitlich ferritischen Gefüge, wird in einer Schmelze, die mehrheitlich Aluminium enthält, bei einer Temperatur von 690 °C während 3 Minuten eingetaucht. Nach dem Beschichtungsvorgang weist das Gussformteil eine Schicht mit einer Stärke von mindestens 60 µm auf. Die Beschichtung besteht aus einer Legierung mit 0.09 Gew. % Si, 0.24 Gew. % Fe, 0.02 Gew. % Cu, 0.12 Gew. % Mn, 0.46 Gew. % Mg, 4.67 Gew. % Zn, 0.07 Gew. % Ti, 0.0011 Gew. % Sr, Rest Aluminium und übliche Verunreinigungen. In einem Oxidationsversuch wurde das Gussformteil nach dem Beschichtungsvorgang in einem Ofen an Luft bei 700°C während 160 Stunden gelagert.
  • Die Gewichtszunahme durch Oxidation wird gemessen über einen Zeitraum von bis zu 160 Stunden und verglichen mit den Ergebnissen anderer hochtemperaturbeständigen Werkstoffe. In Figur 1 sind die Ergebnisse zusammengestellt. Aus dem Vergleich geht hervor, dass das erfindungsgemässe Gussformteil sogar ein leicht besseres Oxidationsverhalten hat als ein mit Nickel und Chrom legiertes Gusseisen mit Kugelgraphit (GJSA-XNiSiCr-35-5-2), das für Hochtemperaturanwendungen häufig eingesetzt wird und das relativ teuer ist.
  • Figur 2 zeigt eine mikroskopische Aufnahme der erfindungsgemässen Beschichtung. Die Aufnahme wurde aufgenommen nach einer Auslagerung von 50 Stunden an Luft bei 700 °C.
  • Beispiel 2
  • Ein weiteres Gussformteil aus Sibodur 450-17 HS, einem Gusseisen mit Kugelgraphit und einem mehrheitlich ferritischen Gefüge, wird in einer Schmelze, die mehrheitlich Aluminium enthält, bei einer Temperatur von 740 °C während 5 Minuten eingetaucht. Nach dem Beschichtungsvorgang weist das Gussformteil eine Schicht mit einer Stärke von mindestens 90 µm auf. Die Beschichtung besteht aus einer Legierung mit 0.24 Gew. % Si, 3.0 Gew. % Fe, 0.04 Gew. % Cu, 0.1 Gew. % Mn, 0.34 Gew. % Mg, 4.84 Gew. % Zn, 0.06 Gew. % Ti, 0.0018 Gew. % Sr, Rest Aluminium und übliche Verunreinigungen. In einem Oxidationsversuch wurde das Gussformteil nach dem Beschichtungsvorgang in einem Ofen an Luft bei 700°C während 160 Stunden gelagert.
  • Die Gewichtszunahme durch Oxidation wird gemessen und verglichen mit den Ergebnissen anderer hochtemperaturbeständigen Werkstoffe. In Figur 3 sind die Ergebnisse zusammengestellt. Aus dem Vergleich geht wiederum hervor, dass das erfindungsgemässe Gussformteil ein gleich gutes Oxidationsverhalten hat als ein mit Nickel und Chrom legiertes Gusseisen mit Kugelgraphit (GJSA-XNiSiCr-35-5-2), das für Hochtemperaturanwendungen häufig eingesetzt wird und das relativ teuer ist.
  • Figur 4 zeigt eine mikroskopische Aufnahme der erfindungsgemässen Beschichtung. Figur 5 zeigt einen Ausschnitt aus der Aufnahme von Figur 4. Beide Aufnahmen wurden aufgenommen nach einer Auslagerung von 154 Stunden an Luft bei 700 °C.

Claims (15)

  1. Verfahren zur metallischen Beschichtung eines Gussformteiles, dadurch gekennzeichnet, dass das Gussformteil vor dem Beschichtungsvorgang mechanisch und chemisch gereinigt wird und dass das Gussformteil zur Beschichtung in eine Schmelze einer aluminiumhaltigen Legierung eingetaucht wird.
  2. Verfahren zur metallischen Beschichtung eines Gussformteiles nach dem Anspruch 1, dadurch gekennzeichnet, dass die mechanische Reinigung des Gussformteiles mittels Reinigungsstrahlen durchgeführt wird.
  3. Verfahren zur metallischen Beschichtung eines Gussformteiles nach dem Anspruch 1 oder 2, dadurch gekennzeichnet, dass nach dem mechanischen Reinigungsvorgang und unmittelbar vor dem Beschichtungsvorgang das Gussformteil mit einer Säurelösung vorbehandelt wird.
  4. Verfahren zur metallischen Beschichtung eines Gussformteiles nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die aluminiumhaltige Legierung mindestens 51.5 Gew. % Al, 6.0 bis 17.2 Gew. % Si, 0.1 bis 14.2 Gew. % Fe, 0.1 bis 7.2 Gew. % Zn, 0.1 bis 5.0 Gew. % Mn, 0.05 bis 4.0 Gew. % Cu und 0.05 bis 0.9 Gew. % Mg enthält.
  5. Verfahren zur metallischen Beschichtung eines Gussformteiles nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die aluminiumhaltige Legierung mindestens 98 Gew. % Al enthält.
  6. Verfahren zur metallischen Beschichtung eines Gussformteiles nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Schmelze eine Badtemperatur zwischen 650 und 800 °C aufweist.
  7. Verfahren zur metallischen Beschichtung eines Gussformteiles nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Eintauchzeit 2 bis 6 Minuten beträgt und dass die Schichtdicke der Beschichtung zwischen 50 und 500 µm beträgt.
  8. Verfahren zur metallischen Beschichtung eines Gussformteiles nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Gussformteil vor dem Beschichtungsvorgang eine Temperatur zwischen der Raumtemperatur und 200 °C und nach dem Beschichtungsvorgang eine Temperatur zwischen 200 °C und der Badtemperatur aufweist.
  9. Verfahren zur metallischen Beschichtung eines Gussformteiles nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Gussformteil nach dem Beschichtungsvorgang einer Wärmebehandlung in einer oxidierenden Atmosphäre unterzogen wird.
  10. Verfahren zur metallischen Beschichtung eines Gussformteiles nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Gussformteil nach der Wärmebehandlung einer anodischen Oxidation unterzogen wird.
  11. Verfahren zur metallischen Beschichtung eines Gussformteiles nach mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Gussformteil nach der anodischen Oxidation eingefärbt wird.
  12. Aluminisiertes Gussformteil hergestellt durch ein Verfahren nach mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das zu beschichtende Gussformteil aus Gusseisen mit Lamellengraphit, aus Gusseisen mit Vermikulargraphit, aus Gusseisen mit Kugelgraphit, aus Temperguss, aus einer Aluminiumlegierung oder aus einer Magnesiumlegierung aufgebaut ist.
  13. Aluminisiertes Gussformteil hergestellt durch ein Verfahren nach mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Gussformteil bei Temperaturen über 500 °C im Fahrzeugbau, beispielsweise als Turboladergehäuse oder Auslasskrümmer eingesetzt wird.
  14. Aluminisiertes Gussformteil hergestellt durch ein Verfahren nach mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Gussformteil bei korrosiven Umgebungsbedingungen im Fahrzeugbau eingesetzt wird.
  15. Aluminisiertes Gussformteil hergestellt durch ein Verfahren nach mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Gussformteil im Fahrzeugbau in Bereichen, welche gut von Aussen einsehbar sind, eingesetzt wird.
EP09173138A 2009-10-15 2009-10-15 Verfahren zur metallischen Beschichtung eines Gussformteiles und aluminisiertes Gussformteil hergestellt durch das Verfahren Withdrawn EP2312011A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09173138A EP2312011A1 (de) 2009-10-15 2009-10-15 Verfahren zur metallischen Beschichtung eines Gussformteiles und aluminisiertes Gussformteil hergestellt durch das Verfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09173138A EP2312011A1 (de) 2009-10-15 2009-10-15 Verfahren zur metallischen Beschichtung eines Gussformteiles und aluminisiertes Gussformteil hergestellt durch das Verfahren

Publications (1)

Publication Number Publication Date
EP2312011A1 true EP2312011A1 (de) 2011-04-20

Family

ID=41480860

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09173138A Withdrawn EP2312011A1 (de) 2009-10-15 2009-10-15 Verfahren zur metallischen Beschichtung eines Gussformteiles und aluminisiertes Gussformteil hergestellt durch das Verfahren

Country Status (1)

Country Link
EP (1) EP2312011A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925945A (zh) * 2012-11-07 2013-02-13 西安西工大超晶科技发展有限责任公司 一种反重力铸造升液管的制造方法
DE102016107152A1 (de) * 2016-04-18 2017-10-19 Salzgitter Flachstahl Gmbh Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech und Verfahren zur Herstellung eines solchen Bauteils und dessen Verwendung
CN112746250A (zh) * 2020-12-29 2021-05-04 平湖市良正五金科技股份有限公司 一种铝型材热挤压模具镀层加工工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3000755A (en) * 1956-10-11 1961-09-19 Gen Motors Corp Oxidation-resistant turbine blades
DE1138603B (de) * 1954-12-21 1962-10-25 Kaiser Aluminium Chem Corp Verfahren zum UEberziehen von Metallen mit Aluminium oder dessen Legierungen
US3617345A (en) * 1969-10-30 1971-11-02 Aluminum Co Of America Method of manufacturing aluminum coated ferrous base articles
EP0848076A1 (de) 1996-12-11 1998-06-17 Sollac Verfahren zur Heisstauch-Beschichtung einer Stahlplatte; galvanisierte oder aluminisierte Stahlplatte so hergestellt
US5853806A (en) * 1995-01-10 1998-12-29 Nihon Parkerizing Co., Ltd. Process for hot dip-coating steel material with molten aluminum alloy by one-stage coating method using flux and bath of molten aluminum alloy metal
EP1525929A1 (de) * 2003-10-20 2005-04-27 Georg Fischer Fahrzeugtechnik AG Formmassenzusammensetzung
EP1624093A1 (de) * 2004-08-04 2006-02-08 Aluminal Oberflächentechnik GmbH & Co. KG Beschichten von Substraten aus Leichtmetallen oder Leichtmetalllegierungen
US20080318035A1 (en) * 2007-06-21 2008-12-25 Beth Ann Sebright Manganese based coating for wear and corrosion resistance
EP2017074A2 (de) * 2007-06-13 2009-01-21 TI Automotive (Heidelberg) GmbH Aluminiumbeschichtete Kraftfahrzeugrohrleitung aus Metall und Verfahren zur Herstellung einer Kraftfahrzeugrohrleitung mittels Schmelztauchbeschichten

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1138603B (de) * 1954-12-21 1962-10-25 Kaiser Aluminium Chem Corp Verfahren zum UEberziehen von Metallen mit Aluminium oder dessen Legierungen
US3000755A (en) * 1956-10-11 1961-09-19 Gen Motors Corp Oxidation-resistant turbine blades
US3617345A (en) * 1969-10-30 1971-11-02 Aluminum Co Of America Method of manufacturing aluminum coated ferrous base articles
US5853806A (en) * 1995-01-10 1998-12-29 Nihon Parkerizing Co., Ltd. Process for hot dip-coating steel material with molten aluminum alloy by one-stage coating method using flux and bath of molten aluminum alloy metal
EP0848076A1 (de) 1996-12-11 1998-06-17 Sollac Verfahren zur Heisstauch-Beschichtung einer Stahlplatte; galvanisierte oder aluminisierte Stahlplatte so hergestellt
EP1525929A1 (de) * 2003-10-20 2005-04-27 Georg Fischer Fahrzeugtechnik AG Formmassenzusammensetzung
EP1624093A1 (de) * 2004-08-04 2006-02-08 Aluminal Oberflächentechnik GmbH & Co. KG Beschichten von Substraten aus Leichtmetallen oder Leichtmetalllegierungen
EP2017074A2 (de) * 2007-06-13 2009-01-21 TI Automotive (Heidelberg) GmbH Aluminiumbeschichtete Kraftfahrzeugrohrleitung aus Metall und Verfahren zur Herstellung einer Kraftfahrzeugrohrleitung mittels Schmelztauchbeschichten
US20080318035A1 (en) * 2007-06-21 2008-12-25 Beth Ann Sebright Manganese based coating for wear and corrosion resistance

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925945A (zh) * 2012-11-07 2013-02-13 西安西工大超晶科技发展有限责任公司 一种反重力铸造升液管的制造方法
DE102016107152A1 (de) * 2016-04-18 2017-10-19 Salzgitter Flachstahl Gmbh Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech und Verfahren zur Herstellung eines solchen Bauteils und dessen Verwendung
WO2017182382A1 (de) 2016-04-18 2017-10-26 Salzgitter Flachstahl Gmbh Bauteil aus pressformgehärtetem, auf basis von aluminium beschichtetem stahlblech und verfahren zur herstellung eines solchen bauteils
DE102016107152B4 (de) * 2016-04-18 2017-11-09 Salzgitter Flachstahl Gmbh Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech und Verfahren zur Herstellung eines solchen Bauteils und dessen Verwendung
CN109477197A (zh) * 2016-04-18 2019-03-15 德国沙士基达板材有限公司 由冲压成型硬化的铝基涂层钢板制成的部件和生产该部件的方法
CN109477197B (zh) * 2016-04-18 2021-10-26 德国沙士基达板材有限公司 由冲压成型硬化的铝基涂层钢板制成的部件和生产该部件的方法
US11339479B2 (en) 2016-04-18 2022-05-24 Salzgitter Flachstahl Gmbh Component made of press-form-hardened, aluminum-based coated steel sheet, and method for producing such a component
CN112746250A (zh) * 2020-12-29 2021-05-04 平湖市良正五金科技股份有限公司 一种铝型材热挤压模具镀层加工工艺
CN112746250B (zh) * 2020-12-29 2022-11-08 平湖市良正五金科技股份有限公司 一种铝型材热挤压模具镀层加工工艺

Similar Documents

Publication Publication Date Title
DE102006019826B3 (de) Bandförmiger Werkstoffverbund und dessen Verwendung, Verbundgleitelement
KR100964855B1 (ko) 차체 외장 패널용 Al-Si-Mg 합금 시트
WO2005021822A1 (de) Verfahren zum herstellen eines gehärteten stahlbauteils
DE10043105A1 (de) Metallurgische Bindung beschichteter Einsätze innerhalb von Metallgußteilen
WO2016132165A1 (fr) Procede de fabrication d'une piece phosphatable a partir d'une tole revetue d'un revetement a base d'aluminium et d'un revetement de zinc
DE102005032070A1 (de) Oberflächenbehandlungsprozess für ein magnesiumbasiertes Material
DE2903080C2 (de) Verfahren zur Ausbildung einer Al-Schicht auf einem Werkstück aus einer Eisenlegierung
DE202004021264U1 (de) Korrosionsschicht und gehärtetes Stahlbauteil
WO2007095927A2 (de) Korrosionsbeständiges substrat und verfahren zu dessen herstellung
DE102013213790A1 (de) Verfahren zur Herstellung einer Bremsscheibe sowie Bremsscheibe
EP3645757B1 (de) Verfahren zum herstellen eines mit einem überzug versehenen stahlbauteils und stahlbauteil
EP2195471A1 (de) Korrosionsschutzbeschichtung mit verbesserter haftung
EP2312011A1 (de) Verfahren zur metallischen Beschichtung eines Gussformteiles und aluminisiertes Gussformteil hergestellt durch das Verfahren
EP1176228A2 (de) Oberflächenschicht und Verfahren zur Herstellung einer Oberflächenschicht
EP3126543A1 (de) Bauteil, insbesondere strukturbauteil, für einen kraftwagen, sowie verfahren zum herstellen eines bauteils
DE102009056875A1 (de) Lagergehäuse, Ladeeinrichtung und Herstellungsverfahren
DE102018102624A1 (de) Verfahren zur Herstellung eines Stahlbandes mit verbesserter Haftung metallischer Schmelztauchüberzüge
DE19640789A1 (de) Verschleißfeste beschichtete Bauteile für Verbrennungskraftmaschinen, insbesondere Kolbenringe und Verfahren zu deren Herstellung
DE3825247C2 (de)
DE4303339A1 (de) Verfahren zur Vorbehandlung von Aluminiumgußteilen
DE102004010763C5 (de) Verbundbauteil
JPH10176287A (ja) 成型後耐食性に優れた燃料タンク用防錆鋼板
DE60319526T2 (de) Verfahren zur Oberflächenbehandlung von Blech oder Band aus Aluminium-Legierung
DE10251902B4 (de) Verfahren zum Beschichten eines Substrats und beschichteter Gegenstand
DE10321259B4 (de) Verfahren zur Oberflächenbehandlung von dynamisch belasteten Bauteilen aus Metall und Verwendung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111021