WO2015019614A1 - 懸濁重合用分散安定剤およびビニル系樹脂の製造方法 - Google Patents

懸濁重合用分散安定剤およびビニル系樹脂の製造方法 Download PDF

Info

Publication number
WO2015019614A1
WO2015019614A1 PCT/JP2014/004115 JP2014004115W WO2015019614A1 WO 2015019614 A1 WO2015019614 A1 WO 2015019614A1 JP 2014004115 W JP2014004115 W JP 2014004115W WO 2015019614 A1 WO2015019614 A1 WO 2015019614A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl
polymerization
pva
suspension polymerization
dispersion stabilizer
Prior art date
Application number
PCT/JP2014/004115
Other languages
English (en)
French (fr)
Inventor
忠仁 福原
熊木 洋介
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN201480044514.5A priority Critical patent/CN105452308B/zh
Priority to JP2015530709A priority patent/JP6228213B2/ja
Priority to US14/910,595 priority patent/US9562115B2/en
Priority to KR1020167006105A priority patent/KR102178402B1/ko
Priority to EP14835372.5A priority patent/EP3031830B1/en
Priority to ES14835372T priority patent/ES2797701T3/es
Publication of WO2015019614A1 publication Critical patent/WO2015019614A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/20Aqueous medium with the aid of macromolecular dispersing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/02Monomers containing chlorine
    • C08F114/04Monomers containing two carbon atoms
    • C08F114/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F18/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F18/02Esters of monocarboxylic acids
    • C08F18/04Vinyl esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/38Alcohols, e.g. oxidation products of paraffins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/30Emulsion polymerisation with the aid of emulsifying agents non-ionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/54Aqueous solutions or dispersions

Definitions

  • the present invention relates to a dispersion stabilizer for suspension polymerization of vinyl compounds.
  • the present invention also relates to a method for producing a vinyl resin in which a vinyl compound is subjected to suspension polymerization in the presence of the dispersion stabilizer for suspension polymerization.
  • a vinyl resin from a vinyl compound for example, vinyl chloride
  • suspension polymerization of the vinyl compound has been performed.
  • a dispersion stabilizer for suspension polymerization of a vinyl compound it is known to use a partially saponified vinyl alcohol polymer (hereinafter, the vinyl alcohol polymer may be abbreviated as PVA).
  • the performance required for the dispersion stabilizer for suspension polymerization of vinyl compounds is as follows: (1) Even if the amount of the dispersion stabilizer for suspension polymerization is small, the plasticizer has high absorbability and is easy to process. (2) It is easy to remove the remaining monomer component from the resulting vinyl resin, (3) The resulting vinyl resin has less formation of coarse particles, (4) For example, the dispersion stabilizer for suspension polymerization is excellent in handling properties.
  • the level required for these performances (1) to (4) is increasing day by day, and in particular, regarding the removability of the monomer component described in (2) above, for example, for polyvinyl chloride for medical use, food use, etc.
  • the regulation of the amount of residual monomer is very high.
  • high-temperature conditions or long-time drying is necessary to remove the residual monomer.
  • demands such as reduction of drying energy cost are becoming stricter.
  • Patent Documents 1 and 2 propose a method in which PVA having an alkyl group at the terminal is used for suspension polymerization of a vinyl compound. .
  • the saponification degree and polymerization degree of PVA are low, the above-mentioned required performances (1) to (2) are effective to some extent, but they become insoluble in water. The performance cannot be satisfied.
  • the water solubility is improved, but the required performances (1) and (2) cannot be satisfied.
  • JP 59-166505 A Japanese Patent Laid-Open No. 54-025990
  • the present invention relates to a dispersion stabilizer for suspension polymerization having excellent handling properties.
  • the plasticizer is used even if the amount used is small. It is easy to remove the remaining monomer component from the obtained vinyl resin, and the resulting vinyl resin is less likely to form coarse particles.
  • An object is to provide a dispersion stabilizer for turbid polymerization.
  • the present inventors have an saponification degree of 35 mol% or more and 65 mol% or less, a viscosity average polymerization degree of 100 or more and 480 or less, an aliphatic hydrocarbon group having 6 to 12 carbon atoms at the terminal, and remaining.
  • the concentration of the vinyl alcohol polymer (A) is 20% by mass or more and 50% by mass or less
  • the dispersion stabilizer for suspension polymerization in which the relationship between the viscosity average polymerization degree P of the vinyl alcohol polymer (A) and the modification amount S of the aliphatic hydrocarbon group is within the range of the following formula (1) is The present inventors have found that the object can be achieved and have completed the present invention. 50 ⁇ S ⁇ P / 1.880 ⁇ 100 (1)
  • the present invention is as follows. [1] The degree of saponification is 35 mol% or more and 65 mol% or less, the viscosity average degree of polymerization is 100 or more and 480 or less, the terminal has an aliphatic hydrocarbon group having 6 to 12 carbon atoms, A dispersion stabilizer for suspension polymerization in the form of an aqueous liquid, containing a vinyl alcohol polymer (A) having a block character of 0.5 or more, and water, The concentration of the vinyl alcohol polymer (A) is 20% by mass or more and 50% by mass or less, A dispersion stabilizer for suspension polymerization in which the relationship between the viscosity average polymerization degree P of the vinyl alcohol polymer (A) and the modified amount S of the aliphatic hydrocarbon group is within the range of the following formula (1).
  • the dispersion stabilizer for suspension polymerization of the present invention is excellent in handling properties because it is in the form of a low viscosity and high concentration aqueous liquid.
  • suspension polymerization of a vinyl compound is performed in the presence of the dispersion stabilizer for suspension polymerization according to the present invention, the polymerization stability is high, so that the formation of coarse particles is small and the vinyl resin particles have a uniform particle size. Is obtained.
  • vinyl resin particles having high plasticizer absorbability and easy processing can be obtained.
  • the vinyl resin particles having a high removal ratio of the residual vinyl compound per unit time in the vinyl resin particles and excellent in demonomerization properties can be obtained.
  • the dispersion stabilizer for suspension polymerization of the present invention contains a vinyl alcohol polymer (A) having a specific structure and water (in this specification, unless otherwise specified, the vinyl alcohol polymer ( A) may be simply abbreviated as PVA (A)).
  • the dispersion stabilizer for suspension polymerization is a PVA other than PVA (A) (for example, the degree of saponification described below exceeds 65 mol% and the viscosity average degree of polymerization exceeds 480 within the range not impairing the gist of the present invention.
  • a vinyl alcohol polymer (B)) and other components may be contained. Hereinafter, each component will be described in detail.
  • the PVA (A) used in the present invention has an aliphatic hydrocarbon group at the terminal, but from the viewpoint of the production efficiency of the PVA (A) and the performance of the dispersion stabilizer, the terminal aliphatic carbon contained in the PVA (A). It is important that the carbon number of the hydrogen group is 6 or more and 12 or less. When the terminal aliphatic hydrocarbon group has less than 6 carbon atoms, the boiling point of the chain transfer agent for introducing the aliphatic hydrocarbon group becomes too low, and other substances may be used in the recovery step when producing PVA (A). Separation from (a vinyl ester monomer such as vinyl acetate and a solvent such as methanol) becomes difficult.
  • the number of carbon atoms of the terminal aliphatic hydrocarbon group of PVA (A) is preferably 8 or more.
  • the solubility in a solvent such as methanol suitably used in the polymerization process when producing PVA (A) is lowered. Therefore, the chain transfer agent for introducing an aliphatic hydrocarbon group during polymerization is dissolved in a solvent such as methanol, and the chain transfer agent is precipitated due to low solubility in the sequential addition operation. It becomes difficult.
  • the structure of the aliphatic hydrocarbon group having 6 to 12 carbon atoms at the end of PVA (A) is not particularly limited, and may be linear, branched, or cyclic.
  • the aliphatic hydrocarbon group include a saturated aliphatic hydrocarbon group (alkyl group), an aliphatic hydrocarbon group having a double bond (alkenyl group), and an aliphatic hydrocarbon group having a triple bond (alkynyl group). be able to.
  • the aliphatic hydrocarbon group is preferably an alkyl group, more preferably a linear alkyl group or a branched alkyl group.
  • PVA (A) preferably has an alkylthio group, an alkenylthio group, or an alkynylthio group directly bonded to the main chain at the end, and more preferably an alkylthio group bonded directly to the main chain.
  • alkylthio group having 6 to 12 carbon atoms examples include n-hexylthio group, cyclohexylthio group, adamantylthio group, n-heptylthio group, n-octylthio group, n-nonylthio group, n-decylthio group, n-undecylthio group Group, n-dodecylthio group, t-dodecylthio group and the like.
  • the PVA (A) used in the present invention is a partially saponified PVA, and therefore includes a vinyl alcohol unit and a vinyl ester monomer unit as a repeating unit.
  • the degree of saponification of PVA (A) is important to be 35 mol% or more and 65 mol% or less from the viewpoint of the performance of the dispersion stabilizer.
  • the degree of saponification of PVA (A) is preferably 40 mol% or more, more preferably 44 mol% or more, and even more preferably 47 mol% or more.
  • the degree of saponification of PVA (A) is preferably 63 mol% or less, more preferably 61 mol% or less, further preferably less than 60 mol%, most preferably 58 mol% or less. preferable.
  • the degree of saponification of PVA (A) is determined by the method described in 1 H-NMR measurement from the ratio of the hydroxyl group of the vinyl alcohol unit to the residual ester group of the vinyl ester monomer unit, or by the method described in JIS K 6726 (1994). be able to.
  • the PVA (A) used in the present invention may have a repeating unit other than the vinyl ester monomer unit and the vinyl alcohol unit as long as the gist of the present invention is not impaired.
  • the repeating unit include a unit derived from a comonomer copolymerizable with a vinyl ester monomer (hereinafter also referred to as a comonomer unit). Examples of the comonomer will be described later.
  • the comonomer unit is preferably 10 mol% or less in all repeating units of PVA (A).
  • the degree of saponification of PVA (A) having an arbitrary comonomer unit can also be determined by a method for determining the ratio of hydroxyl groups to residual acetic acid groups by 1 H-NMR, or by the method described in JIS K 6726 (1994).
  • copolymerized comonomer units exist in addition to the vinyl ester monomer units and vinyl alcohol units in the PVA repeating units.
  • the molecular weight and modification amount of the repeating unit other than the system monomer unit and the vinyl alcohol unit increase, the value deviates from the true degree of saponification.
  • the PVA (A) used in the present invention has a viscosity average polymerization degree P of 100 or more.
  • the viscosity average polymerization degree P of PVA (A) is preferably 110 or more, more preferably 120 or more, further preferably 150 or more, and most preferably 180 or more.
  • it is also important that the viscosity average polymerization degree P of PVA (A) is 480 or less.
  • the viscosity average polymerization degree P of PVA (A) exceeds 480, it becomes difficult to remove the monomer component from the vinyl resin particles obtained by suspension polymerization of the vinyl compound, or the plasticity of the obtained vinyl resin particles is increased. The agent absorbability is lowered, or the viscosity becomes very high when it is provided as a high-concentration aqueous liquid, and handling properties are lowered.
  • the viscosity average polymerization degree P of PVA (A) is preferably 400 or less, more preferably 370 or less, and further preferably 320 or less.
  • the viscosity average degree of polymerization P of PVA (A) is determined by the equation of Nakajima from the measurement of the intrinsic viscosity of an acetone solution of the vinyl ester polymer after acetylating the PVA substantially completely and then acetylating it into a vinyl ester polymer. (Akio Nakajima: Polymer Chemistry 6 (1949)).
  • the block character of the residual ester group of PVA (A) is 0.5 or more, it is important when providing a low-concentration high-concentration aqueous liquid.
  • PVA having a block character of less than 0.5 has low water solubility and cannot form an aqueous liquid, or causes problems such as poor handling properties due to too high viscosity when used as a high concentration aqueous liquid.
  • the block character is preferably 0.56 or more, and more preferably 0.6 or more.
  • the above-mentioned block character is a numerical value representing the distribution of the residual ester group and the hydroxyl group generated by saponification of the ester group, and takes a value between 0 and 2.
  • 0 indicates that the remaining ester groups or hydroxyl groups are completely distributed in a block manner, and the alternation increases as the value increases
  • 1 indicates that the remaining ester groups and hydroxyl groups exist completely randomly
  • 2 Indicates that the remaining ester groups and hydroxyl groups exist completely alternately.
  • the residual ester group is an ester group (—O—C ( ⁇ O) —Y (Y is vinyl) contained in the vinyl ester monomer unit in the vinyl alcohol polymer (A) obtained through saponification.
  • the block character can be obtained by 13 C-NMR measurement.
  • PVA (A) contains a repeating unit other than a vinyl ester monomer unit and / or a vinyl alcohol unit
  • the block character is a vinyl ester monomer unit and / or vinyl in PVA (A). It is calculated for all sites where alcohol units are continuous.
  • the above block characters can be adjusted by the type of vinyl ester monomer, saponification conditions such as catalyst and solvent, heat treatment after saponification, and the like. Specifically, if the saponification is performed using an acid catalyst, the value of the block character can be easily increased. In addition, when saponification is performed using a basic catalyst such as sodium hydroxide, the block character is usually less than 0.5. However, by performing heat treatment thereafter, the block character is set to a value of 0.5 or more. can do.
  • the relationship between the viscosity average polymerization degree P of PVA (A) and the modification rate S (mol%) of the aliphatic hydrocarbon group satisfies the following formula (1). is important. 50 ⁇ S ⁇ P / 1.880 ⁇ 100 (1)
  • the value represented by “S ⁇ P / 1.880” in the above formula (1) generally represents the introduction rate of the chain transfer agent having an aliphatic hydrocarbon group when PVA (A) is synthesized. is there. It is important that “S ⁇ P / 1.880” is 50 or more. When “S ⁇ P / 1.880” is less than 50, it is difficult to remove the monomer component from the resulting vinyl resin particles. Or the plasticizer absorbability of the resulting vinyl-based resin particles decreases, and the performance of the dispersion stabilizer decreases. “S ⁇ P / 1.880” is preferably 55 or more, and more preferably 60 or more.
  • “S ⁇ P / 1.880” is 100 or less. This is because PVA (A) with “S ⁇ P / 1.880” exceeding 100 is difficult to synthesize. In chain transfer polymerization, a reaction in which the chain transfer agent is introduced only at one end of the resulting PVA (A) is the main reaction. Therefore, in order to make “S ⁇ P / 1.880” exceed 100, for example, in the polymerization process for producing PVA (A), a special operation that promotes bimolecular termination is introduced, It is necessary to increase the probability that PVA (A) into which two or more aliphatic hydrocarbon groups are introduced is generated by adding a special catalyst or the like.
  • the solvent is reduced at one end of PVA (A) by making the polymerization rate very low, or by making the ratio of the solvent used for polymerization very small relative to vinyl ester monomers such as vinyl acetate.
  • An operation for suppressing the introduced side reaction is required. Adopting such an operation is not practical because it causes problems such as high costs, poor productivity, and inability to control quality.
  • “S ⁇ P / 1.880” is preferably less than 100.
  • the viscosity average polymerization degree P is divided by 1.880 to convert the viscosity average polymerization degree P to the number average polymerization degree Pn.
  • the ratio of the number average polymerization degree Pn and the weight average polymerization degree Pw (Pn / Pw) is 1/2.
  • [ ⁇ ] is the intrinsic viscosity of the polymer
  • M is the molecular weight
  • K and ⁇ are constants.
  • the value (P / Pn) of the viscosity average polymerization degree P and the number average polymerization degree Pn is calculated to be 1.880 by using the ⁇ value 0.74 of polyvinyl acetate in acetone. .
  • S modification rate
  • the above-mentioned modification rate S (mol%) of the aliphatic hydrocarbon group means the mole percentage of the aliphatic hydrocarbon group with respect to all repeating units constituting the PVA (A), and can be obtained by 1 H-NMR measurement. it can.
  • the integral value of the proton peak characteristic for each repeating unit constituting PVA (A) and the integral peak value of the proton characteristic for the terminal aliphatic hydrocarbon group are used.
  • a characteristic peak refers to a peak that does not overlap with other peaks or that can calculate an integrated value of the peak from the relationship with other peaks even if they overlap.
  • the numerical value of the above formula (1) can be adjusted by the kind and amount of the vinyl ester monomer, the kind and amount of the chain transfer agent, the polymerization conditions such as a catalyst and a solvent, and the like.
  • a various method is employable.
  • a production method for example, (i) a vinyl ester monomer is polymerized in the presence of a chain transfer agent having an aliphatic hydrocarbon group having 6 to 12 carbon atoms to obtain a vinyl ester polymer, A method of partially saponifying the vinyl ester polymer, (ii) introducing a functional group into the terminal of the partially saponified PVA, and reacting a group having reactivity with the functional group and an aliphatic hydrocarbon group having 6 to 12 carbon atoms. The method of making the compound which has it react with the functional group of the said terminal group etc. are mentioned.
  • the method (i) is preferable, and in particular, a vinyl ester such as vinyl acetate in the presence of an alkylthiol as a chain transfer agent. It is preferable to obtain a vinyl ester polymer by polymerizing and then partially saponify the vinyl ester polymer (see JP-A-57-28121 and JP-A-57-105410).
  • vinyl ester monomers used in the production of PVA (A) include vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl versatate, vinyl caproate, and capryl.
  • a comonomer that can be copolymerized with a vinyl ester monomer may be copolymerized within a range that does not impair the spirit of the present invention.
  • the monomer that can be used as the comonomer include ⁇ -olefins such as ethylene, propylene, n-butene, and isobutylene; acrylic acid and salts thereof; acrylamide; N-methylacrylamide, N-ethylacrylamide, N, N Acrylamide derivatives such as dimethyl acrylamide, diacetone acrylamide, acrylamide propane sulfonic acid and salts thereof, acrylamide propyl dimethylamine and salts thereof or quaternary salts thereof, N-methylol acrylamide and derivatives thereof; methacrylamide; N-methyl methacrylamide; N-ethylmethacrylamide, methacrylamidepropanesulfonic acid and salts thereof, methacrylamidepropyldimethylamine and
  • chain transfer agent having an aliphatic hydrocarbon group having 6 to 12 carbon atoms for example, alcohols, aldehydes, thiols and the like having an aliphatic hydrocarbon group having 6 to 12 carbon atoms can be used.
  • An alkylthiol having 6 to 12 carbon atoms is used.
  • alkylthiols having 6 to 12 carbon atoms examples include n-hexanethiol, cyclohexanethiol, adamantanethiol, n-heptanethiol, n-octanethiol, n-nonanethiol, n-decanethiol, n-undecanethiol, Examples thereof include n-dodecanethiol and t-dodecanethiol.
  • the temperature at which the vinyl ester monomer is polymerized in the presence of a chain transfer agent is not particularly limited, but is preferably 0 ° C. or higher and 200 ° C. or lower, more preferably 30 ° C. or higher and 140 ° C. or lower. preferable.
  • the polymerization temperature is lower than 0 ° C., a sufficient polymerization rate cannot be obtained, which is not preferable.
  • polymerizes is higher than 200 degreeC, the target polymer is difficult to be obtained.
  • a method of controlling the temperature employed in the polymerization to 0 ° C. or more and 200 ° C.
  • the balance between the heat generated by the polymerization and the heat radiation from the surface of the reactor can be achieved.
  • the method of controlling by an external jacket using an appropriate heat medium, and the latter method is preferred from the viewpoint of safety.
  • the polymerization method employed for performing the above-described polymerization may be any of batch polymerization, semi-batch polymerization, continuous polymerization, and semi-continuous polymerization.
  • the polymerization method an arbitrary method can be adopted from known methods such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method.
  • a bulk polymerization method in which polymerization is performed in the absence of a solvent and a solution polymerization method in which polymerization is performed in the presence of an alcohol solvent are preferably employed.
  • an emulsion polymerization method is employed.
  • the alcohol solvent used in the solution polymerization method include, but are not limited to, methanol, ethanol, n-propanol and the like. These solvents can be used in combination of two or more.
  • azo initiators As the initiator used for polymerization, conventionally known azo initiators, peroxide initiators, redox initiators and the like are appropriately selected according to the polymerization method.
  • the azo initiator include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy-2,4- Dimethylvaleronitrile) and the like.
  • Peroxide-based initiators include perisopropyl compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, diethoxyethyl peroxydicarbonate; t-butyl peroxyneodecanate, ⁇ -kumi Examples include perester compounds such as ruperoxyneodecanate and t-butylperoxydecanate; acetylcyclohexylsulfonyl peroxide; 2,4,4-trimethylpentyl-2-peroxyphenoxyacetate and the like.
  • the initiator can be combined with potassium persulfate, ammonium persulfate, hydrogen peroxide, or the like to form an initiator.
  • the redox initiator include a combination of the above-described peroxide and a reducing agent such as sodium hydrogen sulfite, sodium hydrogen carbonate, tartaric acid, L-ascorbic acid, or longalite.
  • an antioxidant such as tartaric acid may be added to the polymerization system in an amount of about 1 ppm to 100 ppm with respect to the mass of the vinyl ester monomer.
  • the polymerization may be carried out in the presence of another chain transfer agent as long as the gist of the present invention is not impaired.
  • Chain transfer agents include aldehydes such as acetaldehyde and propionaldehyde; ketones such as acetone and methyl ethyl ketone; mercaptans such as 2-hydroxyethanethiol; halogenated hydrocarbons such as trichloroethylene and perchloroethylene; sodium phosphinate 1 And phosphinic acid salts such as hydrates.
  • aldehydes and ketones are preferably used.
  • the addition amount of the chain transfer agent may be determined according to the chain transfer constant of the chain transfer agent to be added and the degree of polymerization of the target vinyl ester polymer, and is generally 0.1% relative to the vinyl ester monomer. It is desirable that the content is not less than 10% by mass and not more than 10% by mass.
  • the stirring blade used for the polymerization is not particularly limited, and any stirring blade such as an anchor blade, a paddle blade, or a Max blend blade can be used.
  • the Max blend blade improves the stirring efficiency, and the resulting vinyl ester polymer.
  • the ratio of the weight average molecular weight Mw to the number average molecular weight Mn (Mw / Mn) can be reduced. That is, it is preferable because a vinyl ester polymer having a narrow molecular weight distribution can be obtained and the performance of the dispersion stabilizer for suspension polymerization of the present invention can be improved.
  • a conventionally known basic catalyst such as sodium hydroxide, potassium hydroxide or sodium methoxide or an acidic catalyst such as p-toluenesulfonic acid, hydrochloric acid, sulfuric acid or nitric acid is used.
  • Alcohol decomposition reaction or hydrolysis reaction can be applied.
  • Solvents usable in this reaction include water; alcohols such as methanol and ethanol; esters such as methyl acetate and ethyl acetate; ketones such as acetone and methyl ethyl ketone; aromatic hydrocarbons such as benzene and toluene. It is done. These can be used alone or in combination of two or more.
  • block characters can be easily raised by conducting saponification reaction using methanol or methanol / methyl acetate mixed solution or water as a solvent and acidic catalyst such as p-toluenesulfonic acid, hydrochloric acid, sulfuric acid, nitric acid as catalyst. It is preferable because it is possible.
  • acidic catalyst such as p-toluenesulfonic acid, hydrochloric acid, sulfuric acid, nitric acid as catalyst. It is preferable because it is possible.
  • the concentration of the vinyl ester polymer in the alcohol is not particularly limited, but is selected from the range of 10 to 80% by mass.
  • the amount of alkali or acid to be used is adjusted according to the target degree of saponification, but it should be 1 to 100 mmol equivalent to the vinyl ester polymer to prevent PVA coloring, acetic acid, sodium acetate, catalyst origin This is preferable from the viewpoint of keeping the amount of by-products low.
  • the saponification temperature is not particularly limited, but is preferably in the range of 10 ° C to 100 ° C, preferably 20 ° C to 80 ° C.
  • reaction time is not particularly limited, but is about 30 minutes to 5 hours.
  • the block character value is less than 0.5, so it is necessary to perform heat treatment after saponification.
  • the heat treatment temperature is usually 60 to 200 ° C., preferably 80 to 160 ° C.
  • the heat treatment time is usually 5 minutes to 20 hours, preferably 30 minutes to 15 hours.
  • the dispersion stabilizer for suspension polymerization of the present invention takes the form of an aqueous liquid. Therefore, it contains water. And it is important that the density
  • the concentration of PVA (A) is preferably 26% by mass or more, and more preferably 31% by mass or more. When the concentration exceeds 50% by mass, the viscosity increases, and the handling property decreases.
  • the aqueous liquid refers to an aqueous solution or an aqueous dispersion
  • the aqueous dispersion refers to a mixture in which components other than water are uniformly dispersed in water without precipitation or phase separation.
  • PVA (A) a high-concentration aqueous liquid
  • a small amount of nonionic, cationic or anionic surfactant or the like may be added within a range not impairing the spirit of the present invention.
  • the dispersion stabilizer for suspension polymerization of the present invention may further contain PVA (B) having a saponification degree exceeding 65 mol% and a viscosity average polymerization degree exceeding 480, in addition to the PVA (A). preferable.
  • PVA (B) whose saponification degree and viscosity average polymerization degree are higher than PVA (A)
  • the polymerization stability is further improved and coarsening can be further prevented.
  • the degree of saponification of PVA (B) used in the present invention is more than 65 mol%, preferably more than 65 mol% and not more than 95 mol%, more preferably not less than 68 mol% and not more than 90 mol%. preferable.
  • the saponification degree of PVA (B) is 65 mol% or less, the water-solubility of PVA (B) may fall and handling property may deteriorate.
  • the vinyl resin particles that can be obtained due to unstable polymerization may be coarse.
  • the degree of saponification of PVA (B) can be measured according to JIS K 6726 (1994).
  • the viscosity average polymerization degree of PVA (B) exceeds 480, preferably 500 or more and 8000 or less, and more preferably 600 or more and 3500 or less.
  • the viscosity average degree of polymerization of PVA (B) can be calculated according to the same method as PVA (A) described above, and can be measured according to JIS K 6726 (1994).
  • PVA (B) One type of PVA (B) may be used, or two or more types having different characteristics may be used in combination.
  • the solid content ratio is less than 10/90, it becomes difficult to remove the monomer component from the vinyl resin particles obtained by suspension polymerization of the vinyl compound, or the plasticizer absorbability of the obtained vinyl resin particles is low. In some cases, the performance of the dispersion stabilizer may decrease.
  • the solid content ratio exceeds 55/45 the polymerization stability of the suspension polymerization of the vinyl compound decreases, and the vinyl resin particles obtained by suspension polymerization become coarse particles. May cause problems such as failure to obtain
  • the dispersion stabilizer for suspension polymerization of the present invention contains PVA (B)
  • the dispersion stabilizer for suspension polymerization of the present invention is solid or aqueous PVA (B) in the aqueous liquid of PVA (A). May be in a product form to which is added, or may be in a product form in which an aqueous liquid of PVA (A) and an aqueous liquid of solid PVA (B) or PVA (B) are packaged.
  • the dispersion stabilizer for suspension polymerization of the present invention may contain PVA other than the above PVA (A) and PVA (B) as long as the gist of the present invention is not impaired.
  • the saponification degree is 35 mol% or more and 65 mol% or less
  • the viscosity average polymerization degree is 100 or more and 480 or less
  • the block character of the residual ester group is 0.5 or more
  • the terminal has 6 to 12 carbon atoms.
  • PVA which does not have an aliphatic hydrocarbon group may be included.
  • the PVA can be produced when the aliphatic hydrocarbon group of the chain transfer agent is not introduced at the end of PVA during the synthesis of PVA (A).
  • the dispersion stabilizer for suspension polymerization of the present invention may contain other various additives as long as the gist of the present invention is not impaired.
  • the additives include polymerization regulators such as aldehydes, halogenated hydrocarbons and mercaptans; polymerization inhibitors such as phenolic compounds, sulfur compounds and N-oxide compounds; pH adjusting agents; cross-linking agents; An antifungal agent, an antiblocking agent, an antifoaming agent, a compatibilizing agent and the like.
  • the dispersion stabilizer for suspension polymerization of the present invention is used for suspension polymerization of vinyl compounds.
  • another aspect of the present invention is a method for producing a vinyl resin, which includes a step of suspension polymerization of a vinyl compound in the presence of the dispersion stabilizer for suspension polymerization.
  • vinyl compounds include vinyl halides such as vinyl chloride; vinyl esters such as vinyl acetate and vinyl propionate; acrylic acid, methacrylic acid, their esters and salts; maleic acid, fumaric acid, their esters and anhydrides; styrene , Acrylonitrile, vinylidene chloride, vinyl ether and the like.
  • vinyl chloride is preferable.
  • a combination of vinyl chloride and a monomer copolymerizable therewith is also preferred.
  • Examples of monomers copolymerizable with vinyl chloride include vinyl esters such as vinyl acetate and vinyl propionate; (meth) acrylic esters such as methyl (meth) acrylate and ethyl (meth) acrylate; ethylene and propylene ⁇ -olefins of the above; unsaturated dicarboxylic acids such as maleic anhydride and itaconic acid; acrylonitrile, styrene, vinylidene chloride, vinyl ether and the like.
  • oil-soluble or water-soluble polymerization initiators conventionally used for polymerization of vinyl chloride and the like can be used.
  • the oil-soluble polymerization initiator include percarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, diethoxyethyl peroxydicarbonate; t-butyl peroxyneodecanate, t -Perester compounds such as butyl peroxypivalate, t-hexylperoxypivalate, ⁇ -cumylperoxyneodecanate; acetylcyclohexylsulfonyl peroxide, 2,4,4-trimethylpentyl-2-peroxyphenoxyacetate Peroxides such as 3,5,5-trimethylhexanoyl peroxide and lauroyl peroxide; azo compounds such as azobis-2,4-dimethylvaleronitrile and
  • water-soluble polymerization initiator examples include potassium persulfate, ammonium persulfate, hydrogen peroxide, cumene hydroperoxide, and the like. These oil-soluble or water-soluble polymerization initiators can be used alone or in combination of two or more.
  • the polymerization temperature is not particularly limited, and can be adjusted to a high temperature exceeding 90 ° C. as well as a low temperature of about 20 ° C.
  • methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl which are usually used for suspension polymerization of vinyl compounds in an aqueous medium.
  • Water-soluble cellulose ethers such as methyl cellulose; water-soluble polymers such as gelatin; oil-soluble emulsifiers such as sorbitan monolaurate, sorbitan trioleate, glycerin tristearate, ethylene oxide propylene oxide block copolymer; polyoxyethylene sorbitan monolaurate, polyoxy
  • water-soluble emulsifiers such as ethyleneglycerin oleate and sodium laurate.
  • the dispersion stabilizer for suspension polymerization includes PVA (B)
  • PVA (A) and PVA (B) may be mixed and charged.
  • PVA (A) and PVA (B) may be charged separately.
  • PVA (A) and PVA (B) may be charged before starting polymerization, or PVA (A) is charged before starting polymerization.
  • the PVA (B) may be charged after the start of polymerization.
  • the dispersion stabilizer for suspension polymerization is charged to the polymerization tank, from the viewpoint of handling properties and environmental impact, the dispersion stabilizer for suspension polymerization is used as it is or without using an organic solvent such as methanol. Dilute with and pour.
  • PVA (B) is preferably charged as an aqueous solution or an aqueous dispersion.
  • the ratio of the vinyl compound to be charged is not particularly limited. However, the lower the ratio of the vinyl compound to water, the more stable the polymerization is, but the lower the productivity is. The higher the ratio of the vinyl compound to water is, the higher the production is. However, the polymerization becomes unstable. Usually, the mass ratio of [vinyl compound]: [water] ([vinyl compound] / [water]) is 4/7 to 5/4. On the other hand, if it is less than 5/4, the polymerization becomes very unstable, and the resulting vinyl resin particles tend to become coarse particles or increase the fish eye of the resulting product.
  • the polymerization conditions are such that the ratio of the vinyl compound to water is large and the polymerization tends to become unstable, specifically, the mass ratio [vinyl compound] / [ Polymerization can proceed stably even under polymerization conditions where water is greater than 3/4. Therefore, it is preferable that the mass ratio [vinyl compound] / [water] is larger than 3/4 because the effect of preventing coarsening of the obtained vinyl polymer particles is more exhibited. On the other hand, the mass ratio [vinyl compound] / [water] is preferably smaller than 10/9.
  • the dispersion stabilizer for suspension polymerization of the present invention is excellent in handling properties because it is in the form of a low viscosity and high concentration aqueous liquid. Moreover, according to the dispersion stabilizer for suspension polymerization of the present invention, it is not necessary to use an organic solvent such as methanol, so that the environmental load is low and the economy is excellent.
  • an organic solvent such as methanol
  • suspension polymerization of a vinyl compound is performed in the presence of the dispersion stabilizer for suspension polymerization according to the present invention, the polymerization stability is high, so that the formation of coarse particles is small and the vinyl resin particles have a uniform particle size. Is obtained.
  • the amount of the dispersion stabilizer for suspension polymerization of the present invention is small, vinyl resin particles having high plasticizer absorbability and easy processing can be obtained. Furthermore, the vinyl resin particles having a high removal ratio of the residual vinyl compound per unit time in the vinyl resin particles and excellent in demonomerization properties can be obtained. The obtained particles can be appropriately mixed with a plasticizer and used for various molded products.
  • the PVA obtained by the following production examples was evaluated according to the following method.
  • Viscosity average polymerization degree of PVA The viscosity average degree of polymerization of PVA was determined by determining the viscosity of the PVA from a completely complete saponified acetylated vinyl ester polymer and measuring the intrinsic viscosity of the vinyl ester polymer in an acetone solution (Akio Nakajima: Polymer chemistry 6 (1949)) was used for calculation.
  • the block character of the residual ester group of PVA is a two-unit chain that appears in the methylene region by performing 13 C-NMR measurement on a sample in which PVA is dissolved in a heavy water / heavy methanol mixed solvent at a measurement temperature of 70 ° C. and a cumulative number of 18,000 It was obtained from the integrated value of the peak by analyzing three peaks related to the structure (dyad). The three peaks are the main chain carbon atom bonded to the remaining ester group (—O—C ( ⁇ O) —Y (Y has the same meaning as above)) and the main chain carbon bonded to the hydroxyl group.
  • the measurement method and calculation method are described in Poval (Polymer publication, 1984, pp. 246-249) and Macromolecules, 10, 532 (1977).
  • Viscosity of dispersion stabilizer for suspension polymerization The viscosity of the dispersion stabilizer for suspension polymerization as an aqueous liquid was measured at 20 ° C. using a B-type viscometer. ⁇ 10000 mPa ... good fluidity 10,000-15000 mPa ... fluidity> 15000 mPa ... poor fluidity
  • Production Example 1 (Production of dispersion stabilizer for suspension polymerization: PVA (A1))
  • a polymerization vessel was charged with 1404 parts of vinyl acetate (hereinafter abbreviated as VAc), 396 parts of methanol, and 0.54 part of n-dodecanethiol (hereinafter abbreviated as DDM), and after substitution with nitrogen, the mixture was heated to the boiling point.
  • VAc vinyl acetate
  • DDM n-dodecanethiol
  • 0.15% of 2,2′-azobisisobutyronitrile and 10 parts of methanol were added.
  • p-toluenesulfonic acid was used as a saponification catalyst in a molar ratio of 0.027 with respect to PVAc under the conditions of a PVAc concentration of 30%, a temperature of 60 ° C., and a moisture content of 1% in a methanol solvent.
  • the saponification reaction was performed for 3 hours.
  • Sodium bicarbonate was added at a ratio of molar ratio of acid catalyst ⁇ 1.15 to neutralize, followed by drying, viscosity average polymerization degree 250, saponification degree 54 mol%, block character value 0.739, PVA with “S ⁇ P / 1.880” of formula (1) of 77 was obtained. After drying, water was added to obtain a dispersion stabilizer for suspension polymerization: PVA (A1) having a solid concentration of 40 wt% and a viscosity of 6000 mPa ⁇ s.
  • Production Examples 2 to 12, 17 to 26 (Production of PVA (A2 to A12, A17 to A26)) Charge amount of vinyl acetate and methanol, type of chain transfer agent having an aliphatic hydrocarbon group used during polymerization, its use amount and addition concentration, initiator use amount, polymerization conditions such as target polymerization rate and saponification conditions, aqueous liquid Except for changing the concentration, the dispersion stabilizers for suspension polymerization: PVA (A2 to A12, A17 to A26) shown in Table 2 were produced in the same manner as in Production Example 1. The production conditions are shown in Table 1, and the types of chain transfer agents used and the saponification conditions are shown in Tables 3 and 5, respectively.
  • Production Examples 13 to 15 (Production of PVA (A13 to A15))
  • Production Example 1 was performed except that the polymerization was continued by adding a methanol solution of the unsaturated monomer so that the concentration of the unsaturated monomer to be copolymerized after the initiation of polymerization was always constant with respect to VAc.
  • dispersion stabilizers for suspension polymerization: PVA (A13 to A15) shown in Table 2 were produced.
  • the production conditions are shown in Table 1, and the types of chain transfer agents used and the unsaturated monomers used are shown in Tables 3 and 4, respectively.
  • Production Example 16 (Production of PVA (A16))
  • the PVA of Production Example 23 was heat-treated at 130 ° C. for 10 hours in a nitrogen atmosphere, and then water was added to obtain a 40 wt% aqueous liquid, to obtain a dispersion stabilizer for suspension polymerization: PVA (A16) shown in Table 2.
  • Production Example 27 (Production of PVA (a)) Except that the amount of vinyl acetate and methanol used, the chain transfer agent having an aliphatic hydrocarbon group used during polymerization was not used, and the polymerization conditions such as the amount of initiator used were changed, the same as in Production Example 1.
  • Example 1 A suspension of the above-mentioned suspension polymerization was prepared by charging PVA (B) having a viscosity average polymerization degree of 2400 and a saponification degree of 80 mol% into a 5 liter autoclave as a deionized aqueous solution of 100 parts so as to be 1000 ppm based on the vinyl chloride monomer.
  • Stabilizer: PVA (A1) was charged so that the PVA in the dispersion stabilizer for suspension polymerization was 400 ppm relative to the vinyl chloride monomer, and deionized so that the total amount of deionized water charged was 1230 parts. Charged with additional water.
  • the polymerization was stopped when the pressure in the autoclave reached 0.70 MPa, the unreacted vinyl chloride monomer was removed, the polymerization reaction product was taken out, and 65 Drying was carried out at ° C for 16 hours to obtain vinyl chloride polymer particles.
  • Plasticizer absorbability 100 ⁇ [ ⁇ (CA) / (BA) ⁇ -1]
  • Examples 2 to 16 Vinyl chloride suspension polymerization was performed in the same manner as in Example 1 except that PVA (A2 to 16) was used, respectively, to obtain vinyl chloride polymer particles.
  • Table 6 shows the evaluation results of the vinyl chloride polymer particles.
  • Example 17 Except that the total amount of deionized water charged was 1640 parts, suspension polymerization of vinyl chloride was performed in the same manner as in Example 1 to obtain vinyl chloride polymer particles. Table 7 shows the evaluation results of the obtained polymer particles.
  • Comparative Example 1 Suspension polymerization of vinyl chloride was performed in the same manner as in Example 1 except that PVA (A1) was not used. Table 6 shows the evaluation results of the vinyl chloride polymer particles. In this case, the resulting vinyl chloride polymer particles were insufficient in plasticizer absorbability and demonomerization.
  • Comparative Example 2 In place of PVA (A1), suspension polymerization of vinyl chloride was performed in the same manner as in Example 1 except that PVA (A17) synthesized using n-butanethiol as a chain transfer agent was used. Table 6 shows the evaluation results of the vinyl chloride polymer particles. In this case, the resulting vinyl chloride polymer particles had insufficient demonomerization properties.
  • Comparative Example 3 In place of PVA (A1), suspension polymerization of vinyl chloride was carried out in the same manner as in Example 1 except that PVA (A18) synthesized using n-octadecanethiol as a chain transfer agent was used. Table 6 shows the evaluation results of the vinyl chloride polymer particles. In this case, the viscosity of the aqueous liquid was very high, and handling properties were difficult. Further, the resulting vinyl chloride polymer particles had insufficient demonomerization properties.
  • Comparative Example 5 In place of PVA (A1), suspension polymerization of vinyl chloride was carried out in the same manner as in Example 1 except that PVA (A20) having a saponification degree of 72 mol% was used. Table 6 shows the evaluation results of the vinyl chloride polymer particles. In this case, the viscosity of the aqueous liquid was very high, and handling properties were difficult. Further, the obtained vinyl chloride polymer particles were insufficient in plasticizer absorbability and demonomerization, and many 42-mesh-on vinyl chloride polymer particles were observed, and the polymerization was unstable.
  • Comparative Example 6 instead of PVA (A1), suspension polymerization of vinyl chloride was performed in the same manner as in Example 1 except that PVA (A21) having a viscosity average polymerization degree of 520 was used. Table 6 shows the evaluation results of the vinyl chloride polymer particles. In this case, the viscosity of the aqueous liquid was very high, and handling properties were difficult. Furthermore, the plasticizer absorbability and demonomerization properties of the obtained vinyl chloride polymer particles were insufficient.
  • Comparative Example 7 In place of PVA (A1), suspension polymerization of vinyl chloride was carried out in the same manner as in Example 1 except that PVA (A22) having a viscosity average polymerization degree of 80 was used. Table 6 shows the evaluation results of the vinyl chloride polymer particles. In this case, the obtained vinyl chloride polymer particles had good plasticizer absorbability and demonomerization, but the vinyl chloride polymer particles became very coarse, and 42 mesh-on and 60 mesh-on vinyl chloride weights were obtained. The ratio of the coalesced particles was large, resulting in poor polymerization stability.
  • Comparative Example 8 In place of PVA (A1), suspension polymerization of vinyl chloride was carried out in the same manner as in Example 1 except that PVA (A23) having a residual acetic acid group block character of 0.433 was used. Table 6 shows the evaluation results of the vinyl chloride polymer particles. In this case, the obtained vinyl chloride polymer particles had good de-monomer properties, but had a very high viscosity when used as an aqueous liquid and had difficulty in handling.
  • Comparative Example 9 instead of PVA (A1), suspension polymerization of vinyl chloride was carried out in the same manner as in Example 1 except that PVA (A24) having an aqueous liquid concentration of 55% was used. Table 6 shows the evaluation results of the vinyl chloride polymer particles. In this case, the viscosity of the aqueous liquid was very high, and handling properties were difficult.
  • Comparative Example 11 instead of PVA (A1), suspension polymerization of vinyl chloride was carried out in the same manner as in Example 1 except that PVA (A26) having a value of formula (1) of 43 was used. Table 6 shows the evaluation results of the vinyl chloride polymer particles. In this case, the resulting vinyl chloride polymer particles had insufficient demonomerization properties.
  • Comparative Example 12 instead of PVA (A1), suspension polymerization of vinyl chloride was carried out in the same manner as in Example 1 except that PVA (a) having no aliphatic hydrocarbon group at the terminal was used.
  • Table 6 shows the evaluation results of the vinyl chloride polymer particles. In this case, the resulting vinyl chloride polymer particles had insufficient demonomerization properties. Further, from Table 1, when synthesizing PVA (a), the proportion of vinyl acetate was very low with respect to the solvent, the yield per one polymerization was low, and the productivity was poor.
  • Comparative Example 13 Vinyl chloride suspension polymerization was carried out in the same manner as in Comparative Example 7 except that the total amount of deionized water charged was 1640 parts to obtain vinyl chloride polymer particles. Table 7 shows the evaluation results of the obtained polymer particles. In this case, the vinyl chloride polymer particles were very coarse, and the proportion of 42 mesh-on vinyl chloride polymer particles was large, resulting in poor polymerization stability. Further, comparing Examples 1 and 17 and Comparative Examples 7 and 13 in Table 7, according to the dispersion stabilizer for suspension polymerization of the present invention, the ratio of vinyl chloride to water is high, and the polymerization is easy to form coarse particles. Even if the conditions are employed, the resulting vinyl chloride polymer particles are not coarsened and can be stably polymerized.
  • the saponification degree of the present invention is 35 mol% or more and 65 mol% or less
  • the viscosity average polymerization degree is 100 or more and 480 or less
  • the terminal is an aliphatic group having 6 to 12 carbon atoms.
  • the dispersion stabilizer for suspension polymerization is a low-concentration, high-concentration aqueous liquid that does not intentionally use an organic solvent such as methanol, has excellent handling properties, and has a low environmental impact. And productivity at the time of manufacture is also high. Therefore, the industrial usefulness of the dispersion stabilizer for suspension polymerization of the present invention is extremely high.
  • the present invention is useful for the production of various vinyl resins (especially vinyl chloride resins) using a suspension polymerization method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

 本発明は、ハンドリング性に優れる懸濁重合用分散安定剤であって、該懸濁重合用分散安定剤をビニル化合物の懸濁重合に用いた場合に、使用量が少量であっても可塑剤の吸収性が高く加工が容易なビニル系樹脂が得られ、得られるビニル系樹脂から残存するモノマー成分を除去することが容易であり、かつ得られるビニル系樹脂に粗大粒子の形成が少ない、懸濁重合用分散安定剤を提供する。本発明は、けん化度が35モル%以上65モル%以下、かつ粘度平均重合度が100以上480以下であり、末端に炭素数6以上12以下の脂肪族炭化水素基を有し、残存エステル基のブロックキャラクターが0.5以上であるPVAを濃度20質量%以上50質量%以下で含有する水性液形態の懸濁重合用分散安定剤であって、PVAの粘度平均重合度Pと脂肪族炭化水素基の変性量Sが、50≦S×P/1.880≦100を満たす懸濁重合用分散安定剤に関する。

Description

懸濁重合用分散安定剤およびビニル系樹脂の製造方法
 本発明は、ビニル化合物の懸濁重合用分散安定剤に関する。また、本発明は、該懸濁重合用分散安定剤の存在下で、ビニル化合物の懸濁重合を行うビニル系樹脂の製造方法に関する。
 従来より、ビニル化合物(例えば、塩化ビニル)からビニル系樹脂を得るために、ビニル化合物を懸濁重合することが行われている。ビニル化合物の懸濁重合用分散安定剤として、部分けん化ビニルアルコール系重合体(以下、ビニルアルコール系重合体をPVAと略記することがある)を用いることが知られている。
 ビニル化合物の懸濁重合用分散安定剤に要求される性能としては、(1)懸濁重合用分散安定剤の使用量が少量であっても、可塑剤の吸収性が高く加工が容易なビニル系樹脂が得られること、(2)得られるビニル系樹脂から残存するモノマー成分を除去することが容易であること、(3)得られるビニル系樹脂に粗大粒子の形成が少ないこと、(4)懸濁重合用分散安定剤がハンドリング性に優れること等が挙げられる。
 これらの性能(1)~(4)への要求レベルは日々高まってきており、特に上記(2)に記載のモノマー成分の除去性に関し、例えば医療用途、食品用途等のポリ塩化ビニルについては、残存モノマー量の規制が非常にハイレベルになっている。また、重合終了後の乾燥工程においてポリ塩化ビニル粒子中に残存する塩化ビニルモノマーが除去しづらい場合、残存モノマー除去のために、高温条件または長時間の乾燥が必要となるが、汎用のポリ塩化ビニルについても、乾燥エネルギーコストの削減等の要求が厳しくなってきている。また、上記(4)に記載のハンドリング性については、メタノール等の有機溶媒を使用することは環境問題上、現在好まれておらず、懸濁重合用分散安定剤が、低粘度で高濃度の水性液の形態で提供されることへの要望がある。
 このような要求レベルの高まりに対し、従来用いられていた通常の部分けん化PVAを懸濁重合用分散安定剤として用いたのでは、これらの要求性能すべてを十分に満たすことが困難となっている。
 部分けん化PVAを用いた懸濁重合用分散安定剤を高性能化する方法として、特許文献1~2では、末端にアルキル基を有するPVAをビニル化合物の懸濁重合に用いる方法が提案されている。しかしながらこの方法では、PVAのけん化度および重合度が低い場合、上記(1)~(2)の要求性能についてはある程度の効果を発揮するが、水に不溶となってしまうため(4)の要求性能を満足できない。けん化度を高めることで水溶性は改善されるが、(1)~(2)の要求性能を満足できなくなる。
 このように、高まった(1)~(4)の要求性能に対し、現在のところ、特許文献1~2に記載のPVAを用いた懸濁重合用分散安定剤を含め、これらの要求性能を十分満足させるビニル化合物の懸濁重合用分散安定剤が存在するとは言いがたい。
特開昭59-166505号公報 特開昭54-025990号公報
 本発明は、ハンドリング性に優れる懸濁重合用分散安定剤であって、該懸濁重合用分散安定剤をビニル化合物の懸濁重合に用いた場合に、使用量が少量であっても可塑剤の吸収性が高く加工が容易なビニル系樹脂が得られ、得られるビニル系樹脂から残存するモノマー成分を除去することが容易であり、かつ得られるビニル系樹脂に粗大粒子の形成が少ない、懸濁重合用分散安定剤を提供することを目的とする。
 本発明者らは、けん化度が35モル%以上65モル%以下、かつ粘度平均重合度が100以上480以下であり、末端に炭素数6以上12以下の脂肪族炭化水素基を有し、残存エステル基のブロックキャラクターが0.5以上であるビニルアルコール系重合体(A)、および水を含有する、水性液形態の懸濁重合用分散安定剤であって、
 前記ビニルアルコール系重合体(A)の濃度が20質量%以上50質量%以下であり、
 前記ビニルアルコール系重合体(A)の粘度平均重合度Pと脂肪族炭化水素基の変性量Sの関係が次に示す式(1)の範囲内にある懸濁重合用分散安定剤が上記の目的を達成するものであることを見出し、本発明を完成するに至った。
   50≦S×P/1.880≦100  (1)
 すなわち、本発明は、以下の通りである。
[1] けん化度が35モル%以上65モル%以下、かつ粘度平均重合度が100以上480以下であり、末端に炭素数6以上12以下の脂肪族炭化水素基を有し、残存エステル基のブロックキャラクターが0.5以上であるビニルアルコール系重合体(A)、および水を含有する、水性液形態の懸濁重合用分散安定剤であって、
 前記ビニルアルコール系重合体(A)の濃度が20質量%以上50質量%以下であり、
 前記ビニルアルコール系重合体(A)の粘度平均重合度Pと脂肪族炭化水素基の変性量Sの関係が次に示す式(1)の範囲内にある懸濁重合用分散安定剤。
   50≦S×P/1.880≦100  (1)
[2] 前記ビニルアルコール系重合体(A)の粘度平均重合度が150以上である上記[1]に記載の懸濁重合用分散安定剤。
[3] さらにけん化度が65モル%を超え、かつ粘度平均重合度が480を超えるビニルアルコール系重合体(B)を含む上記[1]または[2]に記載の懸濁重合用分散安定剤。
[4] 前記ビニルアルコール系重合体(A)と前記ビニルアルコール系重合体(B)との質量比〔ビニルアルコール系重合体(A)〕/〔ビニルアルコール系重合体(B)〕が、固形分比で10/90~55/45である上記[3]に記載の懸濁重合用分散安定剤。
[5] 上記[1]~[4]のいずれかに記載の懸濁重合用分散安定剤の存在下で、ビニル化合物の懸濁重合を行う工程を含む、ビニル系樹脂の製造方法。
[6] 前記懸濁重合が水の存在下に行われ、前記ビニル化合物と前記水の質量比〔ビニル系化合物〕/〔水〕が、3/4より大きい上記[5]に記載の製造方法。
 本発明の懸濁重合用分散安定剤は、低粘度で高濃度の水性液の形態にあるため、ハンドリング性に優れる。本発明の懸濁重合用分散安定剤の存在下でビニル化合物の懸濁重合を行った場合には、重合安定性が高いため、粗大粒子の形成が少なく、粒径が均一なビニル系樹脂粒子が得られる。さらに、本発明の懸濁重合用分散安定剤の使用量が少量であっても、可塑剤の吸収性が高く加工が容易なビニル系樹脂粒子が得られる。またさらに、ビニル系樹脂粒子における単位時間当たりの残存ビニル化合物の除去割合が高く、脱モノマー性に優れたビニル系樹脂粒子が得られる。
 <懸濁重合用分散安定剤>
 本発明の懸濁重合用分散安定剤は、特定の構造を有するビニルアルコール系重合体(A)および水を含有する(なお、本明細書において、特に断らない限り、該ビニルアルコール系重合体(A)のことを単にPVA(A)と略記することがある)。該懸濁重合用分散安定剤は、本発明の趣旨を損なわない範囲で、PVA(A)以外のPVA(例えば、後述のけん化度が65モル%を超え、かつ粘度平均重合度が480を超えるビニルアルコール系重合体(B))および他の成分を含有してもよい。以下、各成分について詳述する。
[PVA(A)]
 本発明で用いられるPVA(A)は、末端に脂肪族炭化水素基を有するが、PVA(A)の生産効率および分散安定剤の性能の観点から、PVA(A)に含まれる末端脂肪族炭化水素基の炭素数が6以上12以下であることが重要である。末端脂肪族炭化水素基の炭素数が6未満である場合、脂肪族炭化水素基を導入するための連鎖移動剤の沸点が低くなりすぎ、PVA(A)を製造する際の回収工程で他物質(酢酸ビニル等のビニルエステル系単量体およびメタノール等の溶媒)との分離が困難になる。また、該炭素数が6未満である場合、得られるビニル系樹脂粒子からモノマー成分を除去することが困難になるとともに、ビニル系樹脂粒子の可塑剤吸収性が低下する。PVA(A)の末端脂肪族炭化水素基の炭素数は、8以上であることが好ましい。一方、PVA(A)の末端脂肪族炭化水素基の炭素数が12を超える場合、PVA(A)を製造する際の重合過程で好適に用いられるメタノール等の溶媒への溶解性が低下する。そのため、重合時に脂肪族炭化水素基を導入するための連鎖移動剤をメタノール等の溶媒に溶解し、逐次添加する操作において溶解性が低いことに起因する連鎖移動剤の析出等が発生し添加が困難になる。また、連鎖移動剤が溶解しないまま添加することによる重合反応ムラも生じる。このように該炭素数が12を超える場合、製造過程での操作の煩雑さおよび製品の品質管理面で問題が生じ、さらに、製造できたPVAを懸濁重合用分散安定剤に使用したとしても、得られるビニル系樹脂粒子からモノマー成分を除去することが困難である。
 PVA(A)の末端の炭素数6以上12以下の脂肪族炭化水素基の構造に特に制限はなく、直鎖状、分岐鎖状、環状のいずれであってもよい。脂肪族炭化水素基としては、飽和脂肪族炭化水素基(アルキル基)、二重結合を有する脂肪族炭化水素基(アルケニル基)、三重結合を有する脂肪族炭化水素基(アルキニル基)等を挙げることができる。脂肪族炭化水素基を導入するための連鎖移動剤の経済性、生産性を考えると、脂肪族炭化水素基としては、アルキル基が好ましく、直鎖アルキル基および分岐アルキル基がより好ましい。
 脂肪族炭化水素基がPVA(A)の末端に結合する様式としては特に限定はないが、製造の容易さの観点から、チオエーテル(-S-)を介してPVA(A)主鎖の末端に直接結合していることが好ましい。すなわち、PVA(A)は末端に、主鎖に直接結合する、アルキルチオ基、アルケニルチオ基、またはアルキニルチオ基を有することが好ましく、主鎖に直接結合するアルキルチオ基を有することがより好ましい。
 炭素数6以上12以下のアルキルチオ基の例としては、n-ヘキシルチオ基、シクロヘキシルチオ基、アダマンチルチオ基、n-ヘプチルチオ基、n-オクチルチオ基、n-ノニルチオ基、n-デシルチオ基、n-ウンデシルチオ基、n-ドデシルチオ基、t-ドデシルチオ基等を挙げる事ができる。
 本発明で用いられるPVA(A)は、部分けん化PVAであり、したがって、繰り返し単位としてビニルアルコール単位およびビニルエステル系単量体単位を含む。PVA(A)のけん化度は、分散安定剤の性能の面から35モル%以上65モル%以下であることが重要である。PVA(A)のけん化度が35モル%未満であると、ビニル化合物の懸濁重合により得られるビニル系樹脂粒子からモノマー成分を除去するのが困難になったり、得られるビニル系樹脂粒子の可塑剤吸収性が低下したり、PVA(A)の水溶性が低下し、水を加えた際、析出する、沈殿物が生じる等の問題が生じ、高濃度水性液としての提供が困難となる。PVA(A)のけん化度は、40モル%以上であることが好ましく、44モル%以上であることがより好ましく、47モル%以上であることがさらに好ましい。一方、PVA(A)のけん化度が65モル%を超える場合はビニル化合物の懸濁重合により得られるビニル系樹脂粒子からモノマー成分を除去するのが困難になったり、得られるビニル系樹脂粒子の可塑剤吸収性が低下したり、高濃度水性液とした際の粘度が増大しハンドリング性が低下する。PVA(A)のけん化度は、63モル%以下であることが好ましく、61モル%以下であることがより好ましく、60モル%未満であることがさらに好ましく、58モル%以下であることが最も好ましい。
 PVA(A)のけん化度は、1H-NMR測定によってビニルアルコール単位の水酸基とビニルエステル系単量体単位の残存エステル基の比率から求める方法やJIS K 6726(1994)に記載の方法により求めることができる。
 本発明で用いられるPVA(A)は、本発明の主旨を損なわない範囲で、ビニルエステル系単量体単位およびビニルアルコール単位以外の繰り返し単位を有していてもよい。該繰り返し単位としては、ビニルエステル系単量体と共重合可能なコモノマーに由来する単位(以下、コモノマー単位ともいう)が挙げられる。該コモノマーの例については後述する。該コモノマー単位は、PVA(A)の全繰り返し単位中、10モル%以下であることが好ましい。
 なお、上記任意のコモノマー単位を有するPVA(A)のけん化度も、1H-NMRによって水酸基と残存酢酸基の比率から求める方法やJIS K 6726(1994)に記載の方法により求めることができる。ただし、後者の方法で求める場合、PVAの繰り返し単位の中にビニルエステル系単量体単位およびビニルアルコール単位以外に、共重合させたコモノマー単位が存在することとなり、そのままけん化度を求めるとビニルエステル系単量体単位およびビニルアルコール単位以外の繰り返し単位の分子量や変性量が大きくなるほど、真のけん化度から外れた値となってしまう。そのため、ビニルエステル系単量体単位およびビニルアルコール単位以外の繰り返し単位を有するPVAのけん化度をJIS K 6726(1994)に記載の方法により求める場合、JIS K 6726(1994)に記載のけん化度を求める式中の平均分子量の項において、ビニルエステル系単量体およびビニルアルコール単位以外の繰り返し単位を加味した平均分子量を用いて計算する必要がある。なおこの求め方で求めるけん化度は1H-NMR測定によって求められる値とほぼ一致する。
 本発明で用いられるPVA(A)の粘度平均重合度Pが100以上であることが重要である。PVA(A)の粘度平均重合度Pが100未満になるとビニル化合物の懸濁重合の重合安定性が低下し、懸濁重合によって得られるビニル系樹脂粒子が粗粒となる、均一な粒子径の粒子が得られない等の問題が生じる。PVA(A)の粘度平均重合度Pは、110以上であることが好ましく、120以上であることがより好ましく、150以上であることがさらに好ましく、180以上であることが最も好ましい。一方、PVA(A)の粘度平均重合度Pが480以下であることも重要である。PVA(A)の粘度平均重合度Pが480を超えると、ビニル化合物の懸濁重合により得られるビニル系樹脂粒子からモノマー成分を除去するのが困難になったり、得られるビニル系樹脂粒子の可塑剤吸収性が低下したり、高濃度水性液として提供する際に粘度が非常に高くなり、ハンドリング性が低下する。PVA(A)の粘度平均重合度Pは、400以下であることが好ましく、370以下であることがより好ましく、320以下であることがさらに好ましい。
 PVA(A)の粘度平均重合度Pは、PVAを実質的に完全にけん化した後、アセチル化してビニルエステル系重合体とし、該ビニルエステル系重合体のアセトン溶液の極限粘度測定から中島の式(中島章夫:高分子化学6(1949))を用いて算出することができる。
 PVA(A)の残存エステル基のブロックキャラクターは0.5以上であることが低粘度の高濃度水性液として提供する際に重要である。ブロックキャラクターが0.5未満のPVAは水溶性が低く、水性液を形成できない、あるいは高濃度水性液とした際の粘度が高すぎてハンドリング性が悪い等の問題を生じる。ブロックキャラクターは、0.56以上が好ましく、0.6以上がより好ましい。
 なお、上述のブロックキャラクターとは、残存エステル基と、エステル基のけん化によって生じる水酸基の分布を表した数値であり、0から2の間の値をとる。0が完全にブロック的に残存エステル基または水酸基が分布しているということを示し、値が増加するにつれて交互性が増していき、1が残存エステル基と水酸基が完全にランダムに存在し、2が残存エステル基と水酸基が完全に交互に存在することを示している。前記残存エステル基とは、けん化処理を経て得られるビニルアルコール系重合体(A)におけるビニルエステル系単量体単位に含まれるエステル基(-O-C(=O)-Y(Yは、ビニルエステル系単量体に含まれる、CH=CH-O-C(=O)部分以外の炭化水素基を表す。))を意味する。なお、ブロックキャラクターは、13C-NMR測定により求めることができる。PVA(A)が、ビニルエステル系単量体単位および/またはビニルアルコール単位以外の繰り返し単位を含む場合には、ブロックキャラクターは、PVA(A)中のビニルエステル系単量体単位および/またはビニルアルコール単位が連続する部位すべてを対象として算出される。
 上述のブロックキャラクターはビニルエステル系単量体の種類、触媒や溶媒等のけん化条件、けん化後の熱処理等で調整することができる。具体的には、酸触媒を用いてけん化すれば、ブロックキャラクターの値を容易に高くすることができる。また、水酸化ナトリウム等の塩基性触媒を用いてけん化を行った場合には、通常ブロックキャラクターは0.5未満となるが、その後熱処理を行うことによって、ブロックキャラクターを0.5以上の値にすることができる。
 本発明の懸濁重合用分散安定剤において、PVA(A)の粘度平均重合度Pと脂肪族炭化水素基の変性率S(モル%)の関係が次に示す式(1)を満たすことが重要である。
      50≦S×P/1.880≦100  (1)
 上記式(1)中の「S×P/1.880」で示される値は、PVA(A)を合成した際の、脂肪族炭化水素基を有する連鎖移動剤の導入率を概ね表すものである。「S×P/1.880」が50以上であることが重要であり、「S×P/1.880」が50未満の場合、得られるビニル系樹脂粒子からモノマー成分を除去するのが困難になったり、得られるビニル系樹脂粒子の可塑剤吸収性が低下したりして、分散安定剤の性能が低下する。「S×P/1.880」は、55以上であることが好ましく、60以上であることがより好ましい。
 また、「S×P/1.880」が100以下であることが重要である。「S×P/1.880」が100を超えるPVA(A)は合成することが困難であるためである。連鎖移動重合においては、連鎖移動剤は得られるPVA(A)の片末端にのみ導入される反応が主反応となる。そのため、「S×P/1.880」を100を超えるようにするためには、例えばPVA(A)を製造する重合過程で、二分子停止を促進させるような特殊な操作を導入したり、特殊な触媒等を添加することで、脂肪族炭化水素基が2つ以上導入されたPVA(A)が生成する確率を上げる必要がある。そしてさらに、重合率を非常に低くしたり、重合に使用する溶媒の比率を酢酸ビニル等のビニルエステル系単量体に対して非常に小さくすることによって、溶媒がPVA(A)の片末端に導入される副反応を抑制する操作が必要となる。このような操作を採用することは、コストがかかる、生産性が悪化する、品質が制御できないなどの問題が生じるので、現実的ではない。「S×P/1.880」は100未満であることが好ましい。
 上記式(1)の中で、粘度平均重合度Pを1.880で割ることで粘度平均重合度Pから数平均重合度Pnへの変換を行っている。PVA(A)を合成する際のラジカル重合工程において、理想的に重合が進行したとみなし、数平均重合度Pnと重量平均重合度Pwとの比(Pn/Pw)の値を1/2とした際の数平均重合度Pnと粘度平均重合度Pとの関係はMark-Houwink-桜田の式[η]=KMαで求めることができる。ここで[η]は高分子の極限粘度、Mは分子量、K、αは定数である。この式において、アセトン中におけるポリ酢酸ビニルのαの値0.74を用いることで粘度平均重合度Pと数平均重合度Pnとの比(P/Pn)の値が1.880と算出される。この比を脂肪族炭化水素基の変性率S(モル%)と組み合わせることで、PVA(A)を合成した際の脂肪族炭化水素基を有する連鎖移動剤の導入率を概ね表せる式を導いた。(大津隆行:改訂高分子合成の化学,11(1979)、中島章夫:高分子化学6(1949)、高分子学会:高分子科学実験法)
 上述の脂肪族炭化水素基の変性率S(モル%)は、PVA(A)を構成する全繰り返し単位に対する脂肪族炭化水素基のモル百分率のことをいい、1H-NMR測定により求めることができる。例えば、測定した1H-NMRスペクトルから、PVA(A)を構成する各繰り返し単位に特徴的なプロトンのピークの積分値と、末端脂肪族炭化水素基に特徴的なプロトンのピーク積分値を用いて算出することができる。なお、特徴的なピークとは他のピークと重ならない、または重なったとしても他のピークとの関係からそのピークの積分値を計算可能なピークを指す。上述の式(1)の数値は、ビニルエステル系単量体の種類、量、連鎖移動剤の種類、量、触媒や溶媒等の重合条件等で調整することができる。
 PVA(A)の製造法については特に制限はなく、種々の方法を採用することができる。製造法としては、例えば(i)炭素数6以上12以下の脂肪族炭化水素基を有する連鎖移動剤の存在下にビニルエステル系単量体を重合させてビニルエステル系重合体を得て、次いで該ビニルエステル系重合体を部分けん化する方法、(ii)部分けん化PVAの末端に官能基を導入し、該官能基に対する反応性を有する基と炭素数6以上12以下の脂肪族炭化水素基を有する化合物を、前記末端基の官能基と反応させる方法などが挙げられる。これらの内でも、より経済的かつ効率的に脂肪族炭化水素基を導入できることから、(i)の方法が好ましく、特に、連鎖移動剤としてのアルキルチオールの存在下で、酢酸ビニル等のビニルエステルを重合してビニルエステル系重合体を得て、次いで該ビニルエステル系重合体を部分けん化する方法が好ましい(特開昭57-28121号公報および特開昭57-105410号公報参照)。
 PVA(A)の製造において用いられるビニルエステル系単量体としては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、オレイン酸ビニル、安息香酸ビニル等が挙げられる。中でも酢酸ビニルが最も好ましい。
 PVA(A)の合成に際して、本発明の趣旨を損なわない範囲で、ビニルエステル系単量体と共重合可能なコモノマーを共重合させても差し支えない。該コモノマーとして使用しうる単量体としては、例えば、エチレン、プロピレン、n-ブテン、イソブチレン等のα-オレフィン;アクリル酸およびその塩;アクリルアミド;N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸およびその塩、アクリルアミドプロピルジメチルアミンおよびその塩またはその4級塩、N-メチロールアクリルアミドおよびその誘導体等のアクリルアミド誘導体;メタクリルアミド;N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸およびその塩、メタクリルアミドプロピルジメチルアミンおよびその塩またはその4級塩、N-メチロールメタクリルアミドおよびその誘導体等のメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル、2,3-ジアセトキシ-1-ビニルオキシプロパン等のビニルエーテル類;アクリロニトリル、メタクリロニトリル等のニトリル類;塩化ビニル、フッ化ビニル等のハロゲン化ビニル類;塩化ビニリデン、フッ化ビニリデン等のハロゲン化ビニリデン類;酢酸アリル、2,3-ジアセトキシ-1-アリルオキシプロパン、塩化アリル等のアリル化合物;マレイン酸、イタコン酸、フマル酸等の不飽和ジカルボン酸およびその塩またはそのエステル;ビニルトリメトキシシラン等のビニルシリル化合物;酢酸イソプロペニル等が挙げられる。このようなビニルエステル系単量体と共重合可能なコモノマーの共重合量は、通常10モル%以下である。
 炭素数6以上12以下の脂肪族炭化水素基を有する連鎖移動剤としては、例えば、炭素数6以上12以下の脂肪族炭化水素基を有する、アルコール、アルデヒド、チオール等を用いることができ、好ましくは、炭素数6以上12以下のアルキルチオールが用いられる。炭素数6以上12以下のアルキルチオールの例としては、n-ヘキサンチオール、シクロヘキサンチオール、アダマンタンチオール、n-ヘプタンチオール、n-オクタンチオール、n-ノナンチオール、n-デカンチオール、n-ウンデカンチオール、n-ドデカンチオール、t-ドデカンチオール等を挙げることができる。
 PVA(A)の合成に際して、連鎖移動剤の存在下にビニルエステル系単量体を重合させる際の温度は特に限定されないが、0℃以上200℃以下が好ましく、30℃以上140℃以下がより好ましい。重合を行う温度が0℃より低い場合は、十分な重合速度が得られないため好ましくない。また、重合を行う温度が200℃より高い場合、目的とする重合体が得られにくい。重合を行う際に採用される温度を0℃以上200℃以下に制御する方法としては、例えば、重合速度を制御することで、重合により生成する発熱と反応器の表面からの放熱とのバランスをとる方法や、適当な熱媒を用いた外部ジャケットにより制御する方法等が挙げられるが、安全性の面からは後者の方法が好ましい。
 上述の重合を行うのに採用される重合方式としては、回分重合、半回分重合、連続重合、半連続重合のいずれでもよい。重合方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等公知の方法の中から、任意の方法を採用することができる。その中でも、無溶媒下で重合を行う塊状重合法やアルコール系溶媒存在下で重合を行う溶液重合法が好適に採用される。高重合度の重合物の製造を目的とする場合は乳化重合法が採用される。溶液重合法に用いられるアルコール系溶媒としては、メタノール、エタノール、n-プロパノール等が挙げられるが、これらに限定されるものではない。またこれらの溶媒は2種類またはそれ以上の種類を併用することができる。
 重合に使用される開始剤としては、重合方法に応じて従来公知のアゾ系開始剤、過酸化物系開始剤、レドックス系開始剤などが適宜選ばれる。アゾ系開始剤としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)などが挙げられる。過酸化物系開始剤としては、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネートなどのパーカーボネート化合物;t-ブチルパーオキシネオデカネート、α-クミルパーオキシネオデカネート、t-ブチルパーオキシデカネートなどのパーエステル化合物;アセチルシクロヘキシルスルホニルパーオキシド;2,4,4-トリメチルペンチル-2-パーオキシフェノキシアセテートなどが挙げられる。さらには、上記開始剤に過硫酸カリウム、過硫酸アンモニウム、過酸化水素などを組み合わせて開始剤とすることもできる。また、レドックス系開始剤としては、上記の過酸化物と、亜硫酸水素ナトリウム、炭酸水素ナトリウム、酒石酸、L-アスコルビン酸、ロンガリットなどの還元剤とを組み合わせたものが挙げられる。
 また、重合を高い温度で行った場合、ビニルエステル系単量体の分解に起因するPVAの着色等が見られることがある。その場合には着色防止の目的で重合系に酒石酸のような酸化防止剤を、ビニルエステル系単量体の質量に対して1ppm以上100ppm以下程度添加してもよい。
 また、重合に際して得られるビニルエステル系重合体の重合度を調節すること等を目的として、本発明の主旨を損なわない範囲で他の連鎖移動剤の存在下で重合を行ってもよい。連鎖移動剤としては、アセトアルデヒド、プロピオンアルデヒド等のアルデヒド類;アセトン、メチルエチルケトン等のケトン類;2-ヒドロキシエタンチオール等のメルカプタン類;トリクロロエチレン、パークロロエチレン等のハロゲン化炭化水素類;ホスフィン酸ナトリウム1水和物等のホスフィン酸塩類が挙げられる。中でもアルデヒド類およびケトン類が好適に用いられる。連鎖移動剤の添加量は、添加する連鎖移動剤の連鎖移動定数および目的とするビニルエステル系重合体の重合度に応じて決定すればよく、一般にビニルエステル系単量体に対して0.1質量%以上10質量%以下が望ましい。
 重合に際して用いる攪拌翼には特に制限はなく、アンカー翼、パドル翼、マックスブレンド翼等、任意の攪拌翼を用いることができるが、マックスブレンド翼は攪拌効率を高め、得られるビニルエステル系重合体の重量平均分子量Mwと数平均分子量Mnとの比(Mw/Mn)の値を小さくすることができる。すなわち分子量分布が狭いビニルエステル系重合体を得ることができ、本発明の懸濁重合用分散安定剤の性能を向上させることが可能であるため好ましい。
 ビニルエステル系重合体のけん化反応には、従来公知の水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド等の塩基性触媒またはp-トルエンスルホン酸、塩酸、硫酸、硝酸等の酸性触媒を用いた加アルコール分解反応ないし加水分解反応を適用することができる。この反応に使用しうる溶媒としては、水;メタノール、エタノール等のアルコール類;酢酸メチル、酢酸エチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ベンゼン、トルエン等の芳香族炭化水素等が挙げられる。これらは単独で、または2種以上を組み合わせて用いることができる。中でもメタノールまたはメタノール/酢酸メチル混合溶液、または水を溶媒とし、p-トルエンスルホン酸、塩酸、硫酸、硝酸等の酸性触媒を触媒に用いてけん化反応を行うことが、ブロックキャラクターを簡便に上昇させることが可能であるため好ましい。アルコール中のビニルエステル系重合体の濃度は、特に限定するものではないが、10~80質量%の範囲から選ばれる。用いるアルカリや酸の使用量は目標とするけん化度に合わせて調整を行うが、ビニルエステル系重合体に対して1~100ミリモル当量にすることがPVAの着色防止や酢酸、酢酸ナトリウム、触媒由来の副生成物の量を低く抑えるという点から好ましい。けん化を行うに際して、ビニルエステル系重合体に導入した官能基が、けん化触媒を消費する官能基である場合には、触媒の量を消費される分だけ上記範囲より多く加えて、けん化を実施してもよい。けん化温度は特に限定されるものではないが、10℃~100℃、好ましくは20℃~80℃の範囲がよい。また、酸を用いてけん化反応を行う場合、アルカリを用いる場合に比べ反応速度が低下する可能性があるため、アルカリを用いる場合よりも高温でけん化を実施してもよい。反応時間は特に限定されるものではないが30分~5時間程度である。
 また、塩基性触媒を使用してけん化反応を行った場合には、ブロックキャラクターの値が0.5未満となるため、けん化後に熱処理を行う必要がある。該熱処理は、熱処理温度としては、通常60~200℃、好ましくは80~160℃であり、熱処理時間としては、通常5分~20時間、好ましくは30分~15時間である。
 本発明の懸濁重合用分散安定剤は、水性液の形態をとる。したがって、水を含む。そして、水性液におけるPVA(A)の濃度が、20質量%以上50質量%以下であることが重要である。濃度が20質量%未満となると経済性が低下したり、水性液の安定性が低下し、沈殿等を生じやすくなる。PVA(A)の濃度は26質量%以上が好ましく、31質量%以上がさらに好ましい。濃度が50質量%を超えると粘度が増大し、ハンドリング性が低下する。なお、本発明において水性液とは、水溶液または水分散液のことをいい、水分散液とは、水以外の成分が沈殿または相分離することなく水に均一に分散している混合物を指す。
 PVA(A)を高濃度水性液とする際の方法に特に制限はなく、ビニルエステル系重合体をけん化後、得られたPVA(A)を一度乾燥させてから水を加えて溶解または分散させる方法、またはけん化後、スチームを吹き込む、水を加えてから加熱する等の方法でけん化溶媒と水を置換する方法のいずれの方法でも適用することが可能である。
 PVA(A)を高濃度水性液とする際に、本発明の趣旨を損なわない範囲でノニオン性、カチオン性またはアニオン性界面活性剤等を少量添加しても構わない。
[PVA(B)]
 本発明の懸濁重合用分散安定剤は、上記PVA(A)に加えて、けん化度が65モル%を超え、かつ粘度平均重合度が480を超えるPVA(B)を、さらに含有することが好ましい。けん化度および粘度平均重合度がPVA(A)よりも高いPVA(B)をさらに含有することで、重合安定性がさらに向上し、粗粒化をさらに防止できる。
 本発明で用いられるPVA(B)のけん化度は65モル%を超えるものであり、65モル%を超え95モル%以下であることが好ましく、68モル%以上90モル%以下であることがより好ましい。PVA(B)のけん化度が65モル%以下の場合には、PVA(B)の水溶性が低下してハンドリング性が悪化する場合がある。また、重合が不安定となり得られるビニル系樹脂粒子が粗粒となる場合がある。なお、PVA(B)のけん化度は、JIS K 6726(1994)に準じて測定することができる。
 また、PVA(B)の粘度平均重合度は480を超えるものであり、500以上8000以下であることが好ましく、600以上3500以下であることがより好ましい。PVA(B)の粘度平均重合度が480以下の場合には、ビニル化合物を懸濁重合する際の重合安定性が低下するおそれがある。なお、PVA(B)の粘度平均重合度は、上述のPVA(A)と同様の方法により算出できる他、JIS K 6726(1994)に準じて測定することができる。
 PVA(B)は一種類を使用してもよいし、特性の異なる二種類以上のものを組み合わせて用いてもよい。
 使用するPVA(A)とPVA(B)との質量比は固形分比で〔PVA(A)〕/〔PVA(B)〕=10/90~55/45が好ましく、15/85~50/50がより好ましい。当該固形分比が10/90より少なくなるとビニル化合物の懸濁重合により得られるビニル系樹脂粒子からモノマー成分を除去するのが困難になったり、また得られるビニル系樹脂粒子の可塑剤吸収性が低下したりと分散安定剤の性能が低下する場合がある。一方、当該固形分比が55/45よりも多くなるとビニル化合物の懸濁重合の重合安定性が低下し、懸濁重合によって得られるビニル系樹脂粒子が粗粒となる、均一な粒子径の粒子が得られない等の問題が生じる場合がある。
 本発明の懸濁重合用分散安定剤がPVA(B)を含む場合には、本発明の懸濁重合用分散安定剤は、PVA(A)の水性液に固形または水性液のPVA(B)が添加された製品形態にあってもよいし、PVA(A)の水性液と、固形のPVA(B)またはPVA(B)の水性液とが分包された製品形態にあってもよい。
[その他の成分]
 本発明の懸濁重合用分散安定剤は、本発明の趣旨を損なわない範囲で、上記のPVA(A)およびPVA(B)以外のPVAを含有していてもよい。例えば、けん化度が35モル%以上65モル%以下、かつ粘度平均重合度が100以上480以下であり、残存エステル基のブロックキャラクターが0.5以上であり、末端に炭素数6以上12以下の脂肪族炭化水素基を有さないPVAを含んでいてもよい。該PVAは、PVA(A)の合成時に、連鎖移動剤が有する脂肪族炭化水素基がPVAの末端に導入されなかったときに生成し得るものである。
 本発明の懸濁重合用分散安定剤は、本発明の趣旨を損なわない範囲で、その他の各種添加剤を含有してもよい。上記添加剤としては、例えば、アルデヒド類、ハロゲン化炭化水素類、メルカプタン類などの重合調節剤;フェノール化合物、イオウ化合物、N-オキサイド化合物などの重合禁止剤;pH調整剤;架橋剤;防腐剤;防黴剤、ブロッキング防止剤、消泡剤、相溶化剤等が挙げられる。
[用途(ビニル系樹脂の製造方法)]
 本発明の懸濁重合用分散安定剤は、ビニル化合物の懸濁重合に用いられる。そこで本発明は、別の側面から、上記の懸濁重合用分散安定剤の存在下で、ビニル化合物の懸濁重合を行う工程を含む、ビニル系樹脂の製造方法である。
 ビニル化合物としては、塩化ビニル等のハロゲン化ビニル;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸、メタクリル酸、これらのエステルおよび塩;マレイン酸、フマル酸、これらのエステルおよび無水物;スチレン、アクリロニトリル、塩化ビニリデン、ビニルエーテル等が挙げられる。これらの中でも、塩化ビニルが好ましい。また、塩化ビニルおよびそれと共重合可能な単量体との組み合わせも好ましい。塩化ビニルと共重合可能な単量体としては、酢酸ビニル、プロピオン酸ビニルなどのビニルエステル;(メタ)アクリル酸メチル、(メタ)アクリル酸エチルなどの(メタ)アクリル酸エステル;エチレン、プロピレンなどのα-オレフィン;無水マレイン酸、イタコン酸などの不飽和ジカルボン酸類;アクリロニトリル、スチレン、塩化ビニリデン、ビニルエーテル等が挙げられる。
 ビニル化合物の懸濁重合には、従来から塩化ビニル等の重合に使用されている、油溶性または水溶性の重合開始剤を用いることができる。油溶性の重合開始剤としては、例えば、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネート等のパーカーボネート化合物;t-ブチルパーオキシネオデカネート、t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、α-クミルパーオキシネオデカネート等のパーエステル化合物;アセチルシクロヘキシルスルホニルパーオキサイド、2,4,4-トリメチルペンチル-2-パーオキシフェノキシアセテート、3,5,5-トリメチルヘキサノイルパーオキサイド、ラウロイルパーオキサイド等の過酸化物;アゾビス-2,4-ジメチルバレロニトリル、アゾビス(4-2,4-ジメチルバレロニトリル)等のアゾ化合物等が挙げられる。水溶性の重合開始剤としては、例えば過硫酸カリウム、過硫酸アンモニウム、過酸化水素、クメンハイドロパーオキサイド等が挙げられる。これらの油溶性または水溶性の重合開始剤は単独で、または2種類以上を組合せて用いることができる。
 ビニル化合物の懸濁重合に際し、重合温度には特に制限はなく、20℃程度の低い温度はもとより、90℃を超える高い温度に調整することもできる。また、重合反応系の除熱効率を高めるために、リフラックスコンデンサー付の重合器を用いることも好ましい実施態様の一つである。
 ビニル系樹脂を上記の懸濁重合用分散安定剤を用いて製造する場合、重合温度によらず得られたビニル系樹脂からモノマー成分を除去することに関して顕著な効果を発揮する。ビニル系樹脂に残留するモノマー成分が比較的除去しやすい重合温度60℃未満で懸濁重合する際に上記の懸濁重合用分散安定剤を用いるよりも、残留するモノマー成分が除去しづらい重合温度60℃以上で懸濁重合する際に上記の懸濁重合用分散安定剤を用いた方が特に効果を発揮するため好ましい。
 ビニル化合物の懸濁重合において、上記の懸濁重合用分散安定剤の他に、ビニル化合物を水性媒体中で懸濁重合する際に通常使用される、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースなどの水溶性セルロースエーテル;ゼラチンなどの水溶性ポリマー;ソルビタンモノラウレート、ソルビタントリオレート、グリセリントリステアレート、エチレンオキシドプロピレンオキシドブロックコポリマーなどの油溶性乳化剤;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレングリセリンオレート、ラウリン酸ナトリウムなどの水溶性乳化剤等を併用してもよい。その添加量については特に制限は無いが、ビニル化合物100質量部あたり0.01質量部以上1.0質量部以下が好ましい。
 ビニル化合物の懸濁重合に際し、上記の懸濁重合用分散安定剤の重合槽への仕込み方には特に制限はない。例えば、上記の懸濁重合用分散安定剤がPVA(B)を含む場合には、PVA(A)およびPVA(B)を混合して仕込んでもよい。また、PVA(A)およびPVA(B)は別々に仕込んでもよく、例えば、重合開始前にPVA(A)およびPVA(B)をそれぞれ仕込んでもよいし、重合開始前にPVA(A)を仕込み、重合開始後にPVA(B)を仕込んでもよい。
 上記の懸濁重合用分散安定剤を重合槽へ仕込む場合にはハンドリング性、環境への影響の観点から、メタノール等の有機溶剤を用いずに、懸濁重合用分散安定剤はそのまま、あるいは水で希釈してから流し込む。PVA(B)は水溶液または水分散液として仕込むことが好ましい。
 ビニル化合物の懸濁重合に際し、仕込むビニル化合物と水の比は特に限定されないが、ビニル化合物の水に対する割合が低いほど重合は安定するが生産性が低く、ビニル化合物の水に対する割合が高いほど生産性は高くなるが、重合が不安定となる。通常、〔ビニル化合物〕:〔水〕の質量比(〔ビニル化合物〕/〔水〕)は4/7~5/4であり、該比が4/7より小さいと得られるビニル系樹脂の生産性が低く、逆に5/4より大きくなると重合が非常に不安定になり、生成するビニル系樹脂粒子が粗粒子化したり、得られる製品のフィッシュアイが増加する傾向にあり好ましくない。しかしながら、上記の懸濁重合用分散安定剤を用いる場合、その重合条件はビニル化合物の水に対する割合が多く、重合が不安定になりやすい条件、具体的には、質量比〔ビニル化合物〕/〔水〕が3/4よりも大きい重合条件でも重合を安定に進行させることができる。よって、得られるビニル重合体粒子の粗粒化防止効果がより発揮されることから、質量比〔ビニル系化合物〕/〔水〕が3/4よりも大きいことが好ましい。一方で、質量比〔ビニル系化合物〕/〔水〕は、10/9より小さいことが好ましい。
 本発明の懸濁重合用分散安定剤は、低粘度で高濃度の水性液の形態にあるため、ハンドリング性に優れる。また、本発明の懸濁重合用分散安定剤によれば、メタノール等の有機溶剤を使用する必要がないため、環境負荷が低く、経済性にも優れる。本発明の懸濁重合用分散安定剤の存在下でビニル化合物の懸濁重合を行った場合には、重合安定性が高いため、粗大粒子の形成が少なく、粒径が均一なビニル系樹脂粒子が得られる。さらに、本発明の懸濁重合用分散安定剤の使用量が少量であっても、可塑剤の吸収性が高く加工が容易なビニル系樹脂粒子が得られる。またさらに、ビニル系樹脂粒子における単位時間当たりの残存ビニル化合物の除去割合が高く、脱モノマー性に優れたビニル系樹脂粒子が得られる。得られた粒子は、適宜可塑剤などを配合して、各種の成形品用途に用いることができる。
 以下、本発明を実施例によりさらに詳細に説明するが、本発明は、これら実施例に限定されるものではない。以下の実施例および比較例において、特に断りがない場合、「部」および「%」はそれぞれ「質量部」および「質量%」を示す。
 下記の製造例により得られたPVAについて、以下の方法にしたがって評価を行った。
[PVAの粘度平均重合度]
 PVAの粘度平均重合度は、PVAを実質的に完全にけん化した後、アセチル化してビニルエステル系重合体とし、該ビニルエステル系重合体のアセトン溶液の極限粘度測定から中島の式(中島章夫:高分子化学6(1949))を用いて算出した。
[PVAのけん化度]
 PVAのけん化度は、JIS K 6726(1994)に記載の方法で求めた。ただし、不飽和単量体を共重合したPVAの場合、JIS K 6726(1994)に記載のけん化度を求める式において、共重合した不飽和単量体ユニットを加味した平均分子量を用いてなすべき補正を行い計算した。
[PVAのブロックキャラクター]
 PVAの残存エステル基のブロックキャラクターは、PVAを重水/重メタノール混合溶媒に溶解させた試料について、測定温度70℃、積算回数18000回で13C-NMR測定を行い、メチレン領域に現れる2単位連鎖構造(dyad)に関する3本のピークの解析により、ピークの積分値から求めた。前記3本のピークは、残存エステル基(-O-C(=O)-Y(Yは上記と同一意味を有する))に結合した主鎖の炭素原子と、水酸基に結合した主鎖の炭素原子とに挟まれたメチレン炭素;残存エステル基に結合した主鎖の炭素原子と、該炭素原子に近接し、残存エステル基に結合した主鎖の炭素原子とに挟まれたメチレン炭素;および水酸基に結合した主鎖の炭素原子と、該炭素原子に近接し、水酸基に結合した主鎖の炭素原子とに挟まれたメチレン炭素に相当する。測定法、計算法についてはポバール(高分子刊行会、1984年発行、第246~249頁)およびMacromolecules,10,532(1977年)に記載されている。
[S×P/1.880値]
 Pには、上記測定したPVAの粘度平均重合度の値を用いた。Sは、PVAを構成する全繰り返し単位に対する脂肪族炭化水素基のモル百分率(モル%)として、1H-NMR測定により求めた。具体的には、PVAを構成する各繰り返し単位の主鎖メチンのプロトンに由来する全ピークの面積と脂肪族炭化水素末端メチルのプロトンに由来するピークの面積との比をプロトン数を考慮して用いて求めた。このPとSの値を用いて、S×P/1.880値を求めた。
[水性液の安定性]
 PVAを水に溶解したのち、25℃で1日放置して沈殿の有無を目視で確認し、以下の基準に従って評価した。
 A:沈殿が生じておらず、透明な溶液となっている。
 B:沈殿が生じている。または相分離している。
 C:水に溶解せず相分離したままである。
[懸濁重合用分散安定剤の粘度]
 水性液とした懸濁重合用分散安定剤の粘度はB型粘度計を用いて20℃での値を測定した。
 <10000mPa…流動性良
 10000~15000mPa…流動性有
 >15000mPa…流動性不良
製造例1(懸濁重合用分散安定剤:PVA(A1)の製造)
 酢酸ビニル(以下VAcと略す)1404部、メタノール396部、およびn-ドデカンチオール(以下DDMと略す)0.54部を重合缶に仕込み、窒素置換後加熱して沸点まで昇温させたVAcに対して0.15%の2,2’-アゾビスイソブチロニトリルと、メタノール10部を加えた。直ちに室温のDDMメタノール溶液(濃度5wt%)を重合缶内に添加開始し、該重合缶内部のDDMの濃度がVAcに対して常に一定になるように、DDMメタノール溶液を添加し続け重合を行った。重合率が70%となったところで重合を停止し、減圧下残存するVAcをメタノールとともに系外に追い出す操作をメタノールを添加しながら行い、ポリ酢酸ビニル(以下PVAcと略す)のメタノール溶液(濃度75%)を得た。次いでメタノール溶媒中で、PVAc濃度30%、温度60℃、けん化反応液含水率1%の条件下で、けん化触媒としてPVAcに対してモル比0.027の割合でp-トルエンスルホン酸を用い、3時間けん化反応を行った。炭酸水素ナトリウムを酸触媒のモル比×1.15の割合で添加して中和を行い、次いで乾燥を行い、粘度平均重合度250、けん化度54モル%、ブロックキャラクターの値が0.739、式(1)の「S×P/1.880」が77のPVAを得た。乾燥後水を加えて固形分濃度40wt%、粘度6000mPa・sの懸濁重合用分散安定剤:PVA(A1)を得た。
製造例2~12、17~26(PVA(A2~A12、A17~A26)の製造)
 酢酸ビニルおよびメタノールの仕込み量、重合時に使用する脂肪族炭化水素基を有する連鎖移動剤の種類およびその使用量や添加濃度、開始剤使用量、目標重合率等の重合条件およびけん化条件、水性液濃度を変更したこと以外は、製造例1と同様にして表2に示す懸濁重合用分散安定剤:PVA(A2~A12、A17~A26)を製造した。製造条件を表1に、用いた連鎖移動剤の種類、およびけん化条件をそれぞれ表3、5に示す。
製造例13~15(PVA(A13~A15)の製造)
 重合時に使用する脂肪族炭化水素基を有する連鎖移動剤の種類およびその使用量や添加濃度、開始剤使用量等の重合条件を変更したこと、共重合を行う不飽和単量体を予め仕込み、かつ重合開始後共重合を行う不飽和単量体の濃度がVAcに対して常に一定になるように、不飽和単量体のメタノール溶液を添加し続け重合を行ったこと以外は、製造例1と同様にして表2に示す懸濁重合用分散安定剤:PVA(A13~A15)を製造した。製造条件を表1に、用いた連鎖移動剤の種類、および用いた不飽和単量体をそれぞれ表3、4に示す。
製造例16(PVA(A16)の製造)
 製造例23のPVAを窒素雰囲気下、130℃で10時間熱処理してから水を加えて40wt%の水性液とし、表2に示す懸濁重合用分散安定剤:PVA(A16)を得た。
製造例27(PVA(a)の製造)
 酢酸ビニルおよびメタノールの仕込み量、重合時に使用する脂肪族炭化水素基を有する連鎖移動剤を使用しなかったこと、開始剤使用量等の重合条件を変更したこと以外は、製造例1と同様にして表2に示す懸濁重合用分散安定剤:PVA(a)を製造した。製造条件を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
実施例1
 容量5Lのオートクレーブに粘度平均重合度2400、けん化度80モル%のPVA(B)を塩化ビニル単量体に対して1000ppmとなるように100部の脱イオン水溶液として仕込み、上記懸濁重合用分散安定剤:PVA(A1)を、懸濁重合用分散安定剤中のPVAが塩化ビニル単量体に対して400ppmとなるように仕込み、仕込む脱イオン水の合計が1230部となるように脱イオン水を追加して仕込んだ。次いで、ジ(2-エチルヘキシル)パーオキシジカーボネートの70%トルエン溶液1.07部をオートクレーブに仕込んだ。オートクレーブ内の圧力が0.2MPaとなるように窒素を導入、導入した窒素のパージ、という作業を計5回行い、オートクレーブ内を十分に窒素置換して酸素を除いた後、塩化ビニル940部を仕込み、オートクレーブ内の内容物を65℃に昇温して攪拌下で塩化ビニル単量体の重合を開始した。重合開始時におけるオートクレーブ内の圧力は1.03MPaであった。重合を開始してから約3時間経過後、オートクレーブ内の圧力が0.70MPaとなった時点で重合を停止し、未反応の塩化ビニル単量体を除去した後、重合反応物を取り出し、65℃にて16時間乾燥を行い、塩化ビニル重合体粒子を得た。
(塩化ビニル重合体粒子の評価)
 実施例1で得られた塩化ビニル重合体粒子について、(1)平均粒子径、(2)粒度分布、(3)可塑剤吸収性および(4)脱モノマー性を以下の方法にしたがって評価した。評価結果を表6に示す。
(1)平均粒子径
 タイラーメッシュ基準の金網を使用して、乾式篩分析により粒度分布を測定し、塩化ビニル重合体粒子の平均粒子径を求めた。
(2)粒度分布
 JIS標準篩い42メッシュオンの含有量を質量%で表示した。
  A:0.5%未満
  B:0.5%以上1%未満
  C:1%以上
 JIS標準篩い60メッシュオンの含有量を質量%で表示した。
  A:5%未満
  B:5%以上10%未満
  C:10%以上
 なお、42メッシュオンの含有量および60メッシュオンの含有量はともに、値が小さいほど粗大粒子が少なくて粒度分布が狭く、重合安定性に優れていることを示している。
(3)可塑剤吸収性
 脱脂綿を0.02g詰めた容量5mLのシリンジの質量を量り(Agとする)、そこに塩化ビニル重合体粒子0.5gを入れ質量を量り(Bgとする)、そこにジオクチルフタレート(DOP)1gを入れ15分静置後、3000rpmで40分間遠心分離して質量を量った(Cgとする)。そして、下記の計算式より可塑剤吸収性(%)を求めた。
  可塑剤吸収性(%)=100×[{(C-A)/(B-A)}-1]
(4)脱モノマー性(残留モノマー割合)
 塩化ビニルの懸濁重合における重合反応物を取り出したのち、75℃にて乾燥を1時間、および3時間行い、それぞれの時点での残留モノマー量をヘッドスペースガスクロマトグラフィーにて測定し、(3時間乾燥時の残留モノマー量/1時間乾燥時の残留モノマー量)×100の式より残留モノマー割合を求めた。この値が小さいほど1時間乾燥時から3時間乾燥時、すなわち2時間のうちに塩化ビニル重合体粒子に残存するモノマーが乾燥によって除去された割合が多いということであり、この値が残存するモノマーの除去され易さ、すなわち脱モノマー性を表す指標となる。
実施例2~16
 PVA(A2~16)をそれぞれ使用したこと以外は実施例1と同様にして塩化ビニルの懸濁重合を行い、塩化ビニル重合体粒子を得た。塩化ビニル重合体粒子の評価結果を表6に示す。
実施例17
 仕込んだ脱イオン水の合計を1640部としたこと以外は実施例1と同様にして塩化ビニルの懸濁重合を行い、塩化ビニル重合体の粒子を得た。得られた重合体粒子の評価結果を表7に示す。
比較例1
 PVA(A1)を使用しなかったこと以外は実施例1と同様にして、塩化ビニルの懸濁重合を行った。塩化ビニル重合体粒子の評価結果を表6に示す。この場合、得られた塩化ビニル重合体粒子の可塑剤吸収性や脱モノマー性が不十分であった。
比較例2
 PVA(A1)に代えて、連鎖移動剤にn-ブタンチオールを用いて合成したPVA(A17)を使用したこと以外は実施例1と同様にして塩化ビニルの懸濁重合を行った。塩化ビニル重合体粒子の評価結果を表6に示す。この場合、得られた塩化ビニル重合体粒子の脱モノマー性が不十分であった。
比較例3
 PVA(A1)に代えて、連鎖移動剤にn-オクタデカンチオールを用いて合成したPVA(A18)を使用したこと以外は実施例1と同様にして塩化ビニルの懸濁重合を行った。塩化ビニル重合体粒子の評価結果を表6に示す。この場合、水性液とした際の粘度が非常に高く、ハンドリング性に難があった。さらに得られた塩化ビニル重合体粒子の脱モノマー性が不十分であった。
比較例4
 PVA(A1)に代えて、けん化度が32モル%であるPVA(A19)を使用したが、該PVA(A19)はけん化度が低すぎるためか、水性液の形態にすることができず、評価を行うことができなかった。
比較例5
 PVA(A1)に代えて、けん化度が72モル%であるPVA(A20)を使用したこと以外は実施例1と同様にして塩化ビニルの懸濁重合を行った。塩化ビニル重合体粒子の評価結果を表6に示す。この場合、水性液とした際の粘度が非常に高く、ハンドリング性に難があった。さらに得られた塩化ビニル重合体粒子の可塑剤吸収性や脱モノマー性が不十分であり、かつ42メッシュオンの塩化ビニル重合体粒子が多く見受けられ、重合不安定であった。
比較例6
 PVA(A1)に代えて、粘度平均重合度が520であるPVA(A21)を使用したこと以外は実施例1と同様にして塩化ビニルの懸濁重合を行った。塩化ビニル重合体粒子の評価結果を表6に示す。この場合、水性液とした際の粘度が非常に高く、ハンドリング性に難があった。さらに得られた塩化ビニル重合体粒子の可塑剤吸収性や脱モノマー性が不十分であった。
比較例7
 PVA(A1)に代えて、粘度平均重合度が80であるPVA(A22)を使用したこと以外は実施例1と同様にして塩化ビニルの懸濁重合を行った。塩化ビニル重合体粒子の評価結果を表6に示す。この場合、得られた塩化ビニル重合体粒子の可塑剤吸収性や脱モノマー性は良好であったが、塩化ビニル重合体粒子が非常に粗粒となり、42メッシュオン、60メッシュオンの塩化ビニル重合体粒子の割合が多く、重合安定性に劣る結果となった。
比較例8
 PVA(A1)に代えて、残存酢酸基のブロックキャラクターが0.433であるPVA(A23)を使用したこと以外は実施例1と同様にして塩化ビニルの懸濁重合を行った。塩化ビニル重合体粒子の評価結果を表6に示す。この場合、得られた塩化ビニル重合体粒子の脱モノマー性は良好であったが、水性液とした際の粘度が非常に高く、ハンドリング性に難があった。
比較例9
 PVA(A1)に代えて、水性液の濃度が55%であるPVA(A24)を使用したこと以外は実施例1と同様にして塩化ビニルの懸濁重合を行った。塩化ビニル重合体粒子の評価結果を表6に示す。この場合、水性液とした際の粘度が非常に高く、ハンドリング性に難があった。
比較例10
 PVA(A1)に代えて、水性液の濃度が15%であるPVA(A25)を使用したが、水性液の安定性が非常に悪く、沈殿を生じてしまったため評価を行うことができなかった。
比較例11
 PVA(A1)に代えて、式(1)の値が43であるPVA(A26)を使用したこと以外は実施例1と同様にして塩化ビニルの懸濁重合を行った。塩化ビニル重合体粒子の評価結果を表6に示す。この場合、得られた塩化ビニル重合体粒子の脱モノマー性が不十分であった。
比較例12
 PVA(A1)に代えて、末端に脂肪族炭化水素基を有さないPVA(a)を使用したこと以外は実施例1と同様にして塩化ビニルの懸濁重合を行った。塩化ビニル重合体粒子の評価結果を表6に示す。この場合、得られた塩化ビニル重合体粒子の脱モノマー性が不十分であった。また、表1より、PVA(a)を合成する際には酢酸ビニルの割合が溶媒に対して非常に低く重合1回あたりの収量が低く生産性が悪かった。
比較例13
 仕込んだ脱イオン水の合計を1640部としたこと以外は比較例7と同様にして塩化ビニルの懸濁重合を行い、塩化ビニル重合体の粒子を得た。得られた重合体粒子の評価結果を表7に示す。この場合、塩化ビニル重合体粒子が非常に粗粒となり、42メッシュオンの塩化ビニル重合体粒子の割合が多く、重合安定性に劣る結果となった。また、表7の実施例1、17、比較例7、13をそれぞれ比較すると本発明の懸濁重合用分散安定剤によれば、塩化ビニルの水に対する割合が高く、粗粒が形成しやすい重合条件を採用しても、得られる塩化ビニル重合体粒子がほぼ粗粒化せず安定に重合が可能である。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 上記実施例において示されているように、本発明のけん化度が35モル%以上65モル%以下、かつ粘度平均重合度が100以上480以下であり、末端に炭素数6以上12以下の脂肪族炭化水素基を有し、残存エステル基のブロックキャラクターが0.5以上であるPVA(A)を濃度20質量%以上50質量%以下で含有する水性液形態の懸濁重合用分散安定剤であって、PVA(A)の粘度平均重合度Pと脂肪族炭化水素基の変性量Sが特定の関係を満たす懸濁重合用分散安定剤を、ビニル化合物の懸濁重合に用いた場合には、重合安定性が高いため粗大粒子の形成が少なく、粒子径が均一な粒子が得られる。また、可塑剤吸収性に優れた重合体粒子を得ることが可能であり、特に脱モノマー性の面で非常に優れた効果を発揮し、残留モノマーの除去効率のよい重合体粒子を得ることが可能である。さらに、本懸濁重合用分散安定剤はメタノール等の有機溶剤を意図的に使用することのない低粘度の高濃度水性液であり、ハンドリング性に非常に優れ、環境への負荷も低い。かつ、製造時の生産性も高い。よって本発明の懸濁重合用分散安定剤の工業的な有用性はきわめて高い。
 本発明は、懸濁重合法を用いた種々のビニル系樹脂(特に塩化ビニル系樹脂)の製造に有用である。

Claims (6)

  1.  けん化度が35モル%以上65モル%以下、かつ粘度平均重合度が100以上480以下であり、末端に炭素数6以上12以下の脂肪族炭化水素基を有し、残存エステル基のブロックキャラクターが0.5以上であるビニルアルコール系重合体(A)、および水を含有する、水性液形態の懸濁重合用分散安定剤であって、
     前記ビニルアルコール系重合体(A)の濃度が20質量%以上50質量%以下であり、
     前記ビニルアルコール系重合体(A)の粘度平均重合度Pと脂肪族炭化水素基の変性量Sの関係が次に示す式(1)の範囲内にある懸濁重合用分散安定剤。
       50≦S×P/1.880≦100  (1)
  2.  前記ビニルアルコール系重合体(A)の粘度平均重合度が150以上である請求項1に記載の懸濁重合用分散安定剤。
  3.  さらにけん化度が65モル%を超え、かつ粘度平均重合度が480を超えるビニルアルコール系重合体(B)を含む請求項1または2に記載の懸濁重合用分散安定剤。
  4.  前記ビニルアルコール系重合体(A)と前記ビニルアルコール系重合体(B)との質量比〔ビニルアルコール系重合体(A)〕/〔ビニルアルコール系重合体(B)〕が、固形分比で10/90~55/45である請求項3に記載の懸濁重合用分散安定剤。
  5.  請求項1に記載の懸濁重合用分散安定剤の存在下で、ビニル化合物の懸濁重合を行う工程を含む、ビニル系樹脂の製造方法。
  6.  前記懸濁重合が水の存在下に行われ、前記ビニル化合物と前記水の質量比〔ビニル系化合物〕/〔水〕が、3/4より大きい請求項5に記載の製造方法。
PCT/JP2014/004115 2013-08-07 2014-08-06 懸濁重合用分散安定剤およびビニル系樹脂の製造方法 WO2015019614A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480044514.5A CN105452308B (zh) 2013-08-07 2014-08-06 悬浮聚合用分散稳定剂和乙烯基系树脂的制造方法
JP2015530709A JP6228213B2 (ja) 2013-08-07 2014-08-06 懸濁重合用分散安定剤およびビニル系樹脂の製造方法
US14/910,595 US9562115B2 (en) 2013-08-07 2014-08-06 Dispersion stabilizer for suspension polymerization and method for producing vinyl resin
KR1020167006105A KR102178402B1 (ko) 2013-08-07 2014-08-06 현탁 중합용 분산 안정제 및 비닐계 수지의 제조 방법
EP14835372.5A EP3031830B1 (en) 2013-08-07 2014-08-06 Dispersion stabilizer for suspension polymerization, and manufacturing method for vinyl resin
ES14835372T ES2797701T3 (es) 2013-08-07 2014-08-06 Estabilizador de dispersión para la polimerización en suspensión y método de fabricación de resina de vinilo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013164605 2013-08-07
JP2013-164605 2013-08-07

Publications (1)

Publication Number Publication Date
WO2015019614A1 true WO2015019614A1 (ja) 2015-02-12

Family

ID=52460969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004115 WO2015019614A1 (ja) 2013-08-07 2014-08-06 懸濁重合用分散安定剤およびビニル系樹脂の製造方法

Country Status (8)

Country Link
US (1) US9562115B2 (ja)
EP (1) EP3031830B1 (ja)
JP (1) JP6228213B2 (ja)
KR (1) KR102178402B1 (ja)
CN (1) CN105452308B (ja)
ES (1) ES2797701T3 (ja)
TW (1) TWI616457B (ja)
WO (1) WO2015019614A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017061656A (ja) * 2015-09-25 2017-03-30 日本酢ビ・ポバール株式会社 懸濁重合用分散助剤およびその水性液、並びに、それらを用いるビニル系樹脂の製造方法
WO2017208974A1 (ja) * 2016-05-31 2017-12-07 株式会社クラレ ビニルアルコール系重合体の製造方法
WO2018096937A1 (ja) * 2016-11-24 2018-05-31 デンカ株式会社 変性ビニルアルコール系重合体及びその製造方法
WO2018199158A1 (ja) * 2017-04-27 2018-11-01 株式会社クラレ ビニル化合物の懸濁重合用分散安定剤及びその製造方法、並びにビニル系樹脂の製造方法
WO2019098247A1 (ja) * 2017-11-15 2019-05-23 国立大学法人徳島大学 ビニルアルコール-酢酸ビニル共重合体
JP2020022966A (ja) * 2019-10-24 2020-02-13 日本酢ビ・ポバール株式会社 懸濁重合用分散助剤およびその水性液、並びに、それらを用いるビニル系樹脂の製造方法
WO2021132517A1 (ja) * 2019-12-26 2021-07-01 株式会社クラレ 組成物、フィルム及び包装体
DE112021004264T5 (de) 2020-08-12 2023-05-25 Kuraray Co., Ltd. Vinylalkoholpolymer und dessen Verwendung
WO2024075829A1 (ja) * 2022-10-06 2024-04-11 株式会社クラレ 組成物、懸濁重合用分散剤、及びビニル系重合体の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI647242B (zh) * 2014-04-09 2019-01-11 可樂麗股份有限公司 乙烯樹脂之製造方法
TWI669318B (zh) * 2014-11-12 2019-08-21 日商可樂麗股份有限公司 懸浮聚合用分散安定劑及乙烯系樹脂之製造方法
WO2018194122A1 (ja) * 2017-04-21 2018-10-25 株式会社クラレ ビニル化合物の懸濁重合用分散安定剤及びその製造方法、並びにビニル系重合体の製造方法
CN113603815A (zh) * 2021-08-25 2021-11-05 云南唯益新材料有限公司 低聚合度聚乙烯醇的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425990A (en) 1977-07-28 1979-02-27 Nippon Synthetic Chem Ind Co Ltd:The Dispersion stabilizer for suspension polymerization of vinyl compound
JPS55137105A (en) * 1979-04-12 1980-10-25 Denki Kagaku Kogyo Kk Suspension stabilizer
JPS5728121A (en) 1980-07-28 1982-02-15 Kuraray Co Ltd Production of low polymerization-degree polyvinyl acetate and low polymerization-degree polyvinyl alcohol
JPS57105410A (en) 1980-12-23 1982-06-30 Kuraray Co Ltd Continuous preparation of polyvinyl acetate and polyvinyl alcohol having low polymerization degree
JPS59166505A (ja) 1983-03-10 1984-09-19 Kuraray Co Ltd 懸濁重合用分散安定剤
WO1991015518A1 (fr) * 1990-04-05 1991-10-17 Kuraray Co., Ltd. Polymerisation en suspension d'un compose vinylique
JPH09183805A (ja) * 1995-12-28 1997-07-15 Nippon Synthetic Chem Ind Co Ltd:The ビニル系化合物の懸濁重合用分散助剤

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655403A (en) * 1979-10-13 1981-05-16 Denki Kagaku Kogyo Kk Suspension stabilizer for vinyl compound
KR100414408B1 (ko) * 1999-12-03 2004-01-07 가부시키가이샤 구라레 수성 에멀션 및 비닐 화합물의 현탁 중합용 분산제
JP4390992B2 (ja) * 2000-08-30 2009-12-24 日本合成化学工業株式会社 ビニル系化合物の懸濁重合用分散助剤
JP4238286B2 (ja) * 2007-04-16 2009-03-18 株式会社クラレ 懸濁重合用分散安定剤
EP2876116B1 (en) * 2012-07-19 2019-02-20 Kuraray Co., Ltd. Dispersion stabilizer for suspension polymerization, and manufacturing method for vinyl resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425990A (en) 1977-07-28 1979-02-27 Nippon Synthetic Chem Ind Co Ltd:The Dispersion stabilizer for suspension polymerization of vinyl compound
JPS55137105A (en) * 1979-04-12 1980-10-25 Denki Kagaku Kogyo Kk Suspension stabilizer
JPS5728121A (en) 1980-07-28 1982-02-15 Kuraray Co Ltd Production of low polymerization-degree polyvinyl acetate and low polymerization-degree polyvinyl alcohol
JPS57105410A (en) 1980-12-23 1982-06-30 Kuraray Co Ltd Continuous preparation of polyvinyl acetate and polyvinyl alcohol having low polymerization degree
JPS59166505A (ja) 1983-03-10 1984-09-19 Kuraray Co Ltd 懸濁重合用分散安定剤
WO1991015518A1 (fr) * 1990-04-05 1991-10-17 Kuraray Co., Ltd. Polymerisation en suspension d'un compose vinylique
JPH09183805A (ja) * 1995-12-28 1997-07-15 Nippon Synthetic Chem Ind Co Ltd:The ビニル系化合物の懸濁重合用分散助剤

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AKIO NAKAJIMA, KOBUNSHI-KAGAKU, vol. 6, 1949
KOBUNSHI KANKO KAI, 1984, pages 246 - 249
MACROMOLECULES, vol. 10, 1977, pages 532
TAKAYUKI OTSU, KAITEI KOBUNSHI GOSEI NO KAGAKU, vol. 11, 1979

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017061656A (ja) * 2015-09-25 2017-03-30 日本酢ビ・ポバール株式会社 懸濁重合用分散助剤およびその水性液、並びに、それらを用いるビニル系樹脂の製造方法
WO2017208974A1 (ja) * 2016-05-31 2017-12-07 株式会社クラレ ビニルアルコール系重合体の製造方法
CN109153744A (zh) * 2016-05-31 2019-01-04 株式会社可乐丽 乙烯醇系聚合物的制备方法
JPWO2017208974A1 (ja) * 2016-05-31 2019-03-28 株式会社クラレ ビニルアルコール系重合体の製造方法
CN109153744B (zh) * 2016-05-31 2021-09-28 株式会社可乐丽 乙烯醇系聚合物的制备方法
US11091574B2 (en) 2016-05-31 2021-08-17 Kuraray Co., Ltd. Method for producing vinyl alcohol polymers
WO2018096937A1 (ja) * 2016-11-24 2018-05-31 デンカ株式会社 変性ビニルアルコール系重合体及びその製造方法
JPWO2018096937A1 (ja) * 2016-11-24 2018-11-29 デンカ株式会社 変性ビニルアルコール系重合体及びその製造方法
WO2018199158A1 (ja) * 2017-04-27 2018-11-01 株式会社クラレ ビニル化合物の懸濁重合用分散安定剤及びその製造方法、並びにビニル系樹脂の製造方法
JPWO2019098247A1 (ja) * 2017-11-15 2020-10-01 国立大学法人徳島大学 ビニルアルコール−酢酸ビニル共重合体
CN111094369A (zh) * 2017-11-15 2020-05-01 国立大学法人德岛大学 乙烯醇-乙酸乙烯酯共聚物
WO2019098247A1 (ja) * 2017-11-15 2019-05-23 国立大学法人徳島大学 ビニルアルコール-酢酸ビニル共重合体
US11377506B2 (en) 2017-11-15 2022-07-05 Tokushima University Vinyl alcohol-vinyl acetate copolymer
JP7226734B2 (ja) 2017-11-15 2023-02-21 国立大学法人徳島大学 ビニルアルコール-酢酸ビニル共重合体
CN111094369B (zh) * 2017-11-15 2023-10-27 国立大学法人德岛大学 乙烯醇-乙酸乙烯酯共聚物
JP2020022966A (ja) * 2019-10-24 2020-02-13 日本酢ビ・ポバール株式会社 懸濁重合用分散助剤およびその水性液、並びに、それらを用いるビニル系樹脂の製造方法
JP2022003139A (ja) * 2019-10-24 2022-01-11 日本酢ビ・ポバール株式会社 懸濁重合用分散助剤およびその水性液、並びに、それらを用いるビニル系樹脂の製造方法
JP7472383B2 (ja) 2019-10-24 2024-04-22 日本酢ビ・ポバール株式会社 懸濁重合用分散助剤およびその水性液、並びに、それらを用いるビニル系樹脂の製造方法
WO2021132517A1 (ja) * 2019-12-26 2021-07-01 株式会社クラレ 組成物、フィルム及び包装体
DE112021004264T5 (de) 2020-08-12 2023-05-25 Kuraray Co., Ltd. Vinylalkoholpolymer und dessen Verwendung
WO2024075829A1 (ja) * 2022-10-06 2024-04-11 株式会社クラレ 組成物、懸濁重合用分散剤、及びビニル系重合体の製造方法

Also Published As

Publication number Publication date
JP6228213B2 (ja) 2017-11-08
EP3031830A4 (en) 2017-03-15
CN105452308B (zh) 2017-03-15
KR102178402B1 (ko) 2020-11-13
CN105452308A (zh) 2016-03-30
ES2797701T3 (es) 2020-12-03
EP3031830A1 (en) 2016-06-15
EP3031830B1 (en) 2020-04-22
US9562115B2 (en) 2017-02-07
JPWO2015019614A1 (ja) 2017-03-02
TW201512227A (zh) 2015-04-01
KR20160042042A (ko) 2016-04-18
US20160194412A1 (en) 2016-07-07
TWI616457B (zh) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6228213B2 (ja) 懸濁重合用分散安定剤およびビニル系樹脂の製造方法
JP6257629B2 (ja) 懸濁重合用分散安定剤およびビニル系樹脂の製造方法
JP6225391B2 (ja) 懸濁重合用分散安定剤及びビニル系樹脂の製造方法
JP6260041B2 (ja) 懸濁重合用分散安定剤及びビニル系樹脂の製造方法
US9834629B1 (en) Dispersion stabilizer for suspension polymerization and method for producing vinyl resin
CN109153744B (zh) 乙烯醇系聚合物的制备方法
JP6163130B2 (ja) 懸濁重合用安定剤及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044514.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530709

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14910595

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014835372

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167006105

Country of ref document: KR

Kind code of ref document: A