WO2015018508A1 - Synergetisch wirkende mischung zur verwendung als sauerstoffbindemittel und als korrosionsinhibitor in wäsrrigen systemen - Google Patents

Synergetisch wirkende mischung zur verwendung als sauerstoffbindemittel und als korrosionsinhibitor in wäsrrigen systemen Download PDF

Info

Publication number
WO2015018508A1
WO2015018508A1 PCT/EP2014/002086 EP2014002086W WO2015018508A1 WO 2015018508 A1 WO2015018508 A1 WO 2015018508A1 EP 2014002086 W EP2014002086 W EP 2014002086W WO 2015018508 A1 WO2015018508 A1 WO 2015018508A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
component
amino
oxygen scavenger
ratio
Prior art date
Application number
PCT/EP2014/002086
Other languages
English (en)
French (fr)
Inventor
Andre De Bache
Wolfgang Hater
Original Assignee
Bk Giulini Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bk Giulini Gmbh filed Critical Bk Giulini Gmbh
Priority to CN201480043363.1A priority Critical patent/CN105431570B/zh
Priority to ES14758780.2T priority patent/ES2658685T3/es
Priority to AU2014304911A priority patent/AU2014304911B2/en
Priority to EP14758780.2A priority patent/EP3030692B1/de
Priority to KR1020167003210A priority patent/KR102313924B1/ko
Priority to JP2016532261A priority patent/JP6414217B2/ja
Priority to PL14758780T priority patent/PL3030692T3/pl
Priority to SG11201600118YA priority patent/SG11201600118YA/en
Priority to BR112016002082-0A priority patent/BR112016002082B1/pt
Priority to US14/903,465 priority patent/US20160376711A1/en
Publication of WO2015018508A1 publication Critical patent/WO2015018508A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/141Amines; Quaternary ammonium compounds
    • C23F11/142Hydroxy amines
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/683Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/02Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in air or gases by adding vapour phase inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition

Definitions

  • the present invention relates to a synergistic mixture for use as oxygen scavenger in steam generators, boilers, closed cooling systems, district heating plants or heating circuits. Due to the oxygen binding, the mixture simultaneously acts as a corrosion inhibitor.
  • a known method is e.g. in the combination of thermal degassing and metering of so-called oxygen binders, such as the known hydrazine, or sodium sulfite.
  • Sodium sulfite e.g. is a nonvolatile compound whose oxygen reaction products increase the conductivity of the boiler water and thus cause thickening, especially in systems using demineralised water. Therefore, hydrazine was used because the reaction products with oxygen do not increase the conductivity of the boiler water.
  • hydrazine as well as the compounds often used, such as hydroquinone or methyl ethyl ketoxime, are questionable in terms of occupational safety because they are toxic and carcinogenic.
  • hydroquinone or methyl ethyl ketoxime instead of hydrazine or ketoximes, some alternatives have been proposed over time:
  • Hydrazine has now been completely replaced by aminophenols in US 4,728,497. As a class of compounds, they are less toxic and also have greater oxygen binding capacity. These compounds include, for example, 2,4-diaminophenol, 5-methyl-o-aminophenol, o, or p-aminophenol or salts thereof, etc. Table 1 of this document shows that the aminophenols are indeed more effective than hydrazine They can remove up to 99% oxygen under comparable conditions, but their rate of reaction is relatively slow.
  • the oxygen reduction of a mixture consisting of DEHA, 1-aminopyrrolidone and pyrogallol as catalyst in Table 4 of EP 1 619 272 A1 shows a residual concentration of oxygen after 20 minutes of 0.3 mg / L.
  • Neither the combination of DEHA with heterocyclic compounds containing N-substituted amino groups, nor the sole use of aminophenols has provided a satisfying result in the conditions prevailing in the industry in terms of temperature and pressure in the steam generators and especially the need for the Speed of oxygen removal.
  • US 4,626,411 discloses a mixture for removing oxygen and for reducing corrosion in boilers consisting of three components a, b, and c, wherein component a to component c in the ratio of 10: 1 to 1:10 and component b to component c im Ratio of 10: 1 to 1: 100 is present.
  • Component a is a hydroxylamine compound
  • component b is an aromatic compound, for example, aminophenol
  • component c is an amine which serves to adjust the pH.
  • n 1 to 5, preferably 1 to 2.
  • the component a to be used according to the invention, may e.g. N, N-Diethylhydroxylam having the formula (II):
  • R 2 , R 3 and R 4 are defined as follows: R 2 , R 3 and R 4 independently of one another represent a) C m H 2m + i-N (-R 5 ) (- R 6 ) or
  • R 8 wherein at least one Ri, R 2; R 3 and R 4 is a group C m H 2m + iN (-R 5) (- R 6 ).
  • R 5 , R 6, R 7 , Rg are each, independently of one another, C n H 2n + i and n and m are integers from 0 to 4, preferably integers from 0 to 2.
  • Inventive and preferred arylphenol compounds are:
  • Components a and b are in a weight ratio of 6: 1 to 1: 1.5 in particular in the ratio of 5: 1 to 1: 1. According to the invention, the combination of N, N-diethylhydroxylamine (component a) and 4-amino-3-methylphenol (component b) is particularly preferred.
  • the oxygen concentration measurement was performed using the METTLER TOLEDO Sensor InPro 6800 meter.
  • Mettler-Toledo InPro 6800 sensors are used for inline measurement of oxygen partial pressure in liquids and gases.
  • the 0 2 sensors InPro 6800 with integrated temperature sensor are used for the determination of oxygen.
  • the InPro 6800 is based on the polarographic 0 2 measurement according to Clark, which can be summarized as follows:
  • the Clark sensor consists of working electrode (cathode), counter / reference electrode (anode) and an oxygen-permeable membrane, which separates the electrodes from the measuring medium.
  • the transmitter applies a constant voltage to the cathode to reduce the oxygen.
  • the oxygen molecules diffuse from the measuring medium through the membrane to the electrodes and are reduced at the energized cathode.
  • an oxidation takes place at the anode, in which the anode metal (silver) is released as silver ions into the electrolyte.
  • the electrolyte becomes conductive and a current flows between anode and cathode (ionic conductivity).
  • the generated current is measured by the transmitter and is proportional to the oxygen partial pressure (p0 2 ) in the measuring medium.
  • the oxygen binder is added and measured at defined times the oxygen concentration by means of electrode. During the experiment, the solution was treated with purified nitrogen.
  • the relative synergy effect RS of the mixture results from the measured oxygen reduction Ac g [0 2 ] (t) and the calculated oxygen reduction AC b [0 2 ] (t) at the time of the measurement t according to:
  • the measured oxygen reduction Ac g [0 2 ] (t) results from the difference between the initial oxygen concentration c g [O 2 ] (0) and the measured oxygen concentration at the time of measurement c g [0 2 ] (t):
  • the starting oxygen concentration c g [O 2 ] (0) was 7.1 mg / L.
  • the calculated oxygen reduction Ac b [0 2 ] (t) results from the weighted mean of the measured oxygen reductions Ac g [0 2 ] (A, t) and Ac g [0 2 ] (B, t) of the two individual components a and b alone according to
  • AC b (t) c (A) / 60 * Ac g [0 2 ] (A, t) + c (B) / 60 * Ac g [0 2 ] (B, t).
  • c (A) and c (B) represent the starting concentrations of components a and b in the mixture.
  • Example 1 Mixture of N, N-diethylhydroxylamine and 4-aminophenol
  • the mixture according to the invention is usually metered into the boiler feed water, for example proportional to the quantity of boiler feed water via a metering pump.
  • the dosage of the mixture is usually adjusted so that a minimum concentration of N, N-diethylhydroxylamine can be detected in the condensate and in the boiler water.
  • the success control can be done by measuring the iron content or by inspecting the plant parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

Die vorliegende Erfindung betrifft eine synergistisch wirkende Mischung bestehend aus zwei Komponenten a und b, nämlich aus einer Alkylhydroxylamin Komponente und einer Arylphenolkomponente zur Verwendung als Sauerstoffbindemittel in Dampferzeugern und Boilern. Durch die Sauerstoffbindung wirkt die erfindungsgemäße Mischung gleichzeitig als Korrosionsinhibitor.

Description

SYNERGETISCH WIRKENDE MISCHUNG ZUR VERWENDUNG ALS SAUERSTOFFBINDEMITTEL UND ALS KORROSIONSINHIBITOR IN WÄSRRIGEN SYSTEMEN
Die vorliegende Erfindung betrifft eine synergistisch wirkende Mischung zur Verwendung als Sauerstoffbindemittel in Dampferzeugern, Kesseln, geschlossenen Kühlsystemen, Fernwärmeanlagen oder Heizungskreisläufen. Durch die Sauerstoffbindung wirkt die Mischung gleichzeitig als Korrosionsinhibitor.
In technischen Dampferzeugern und Kesseln, geschlossenen Kühlsystemen, Fernwärmeanlagen oder Heizungskreisläufen bei denen Metalle mit Wasser in Kontakt kommen, besteht die Gefahr der Korrosion. Die Korrosion wird hervorgerufen durch den in Wasser gelöstem Sauerstoff. Dieser Sauerstoff muss daher entfernt werden, entweder durch mechanisch-physikalische Methoden oder durch chemische Behandlung des Sauerstoffs. Es ist auch möglich, beide Methoden zu kombinieren, in dem man die physikalische Methode gleichzeitig mit den chemischen Methoden kombiniert.
Eine bekannte Methode besteht z.B. in der Kombination von thermischer Entgasung und Dosierung von sog. Sauerstoffbindemitteln, wie das bekannte Hydrazin, oder Natriumsulfit.
Natriumsulfit z.B. ist eine schwerflüchtige Verbindung, deren Reaktionsprodukte mit Sauerstoff zur Erhöhung der Leitfähigkeit des Kesselwassers beitragen und somit die Eindickung vor allem bei Anlagen, die mit vollentsalztem Wasser betrieben werden, verursacht. Deshalb wurde Hydrazin eingesetzt, weil die Reaktionsprodukte mit Sauerstoff die Leitfähigkeit des Kesselwassers nicht erhöhen.
Hydrazin aber, sowie auch die oft eingesetzten Verbindungen, wie Hydrochinon oder Methylethylketoxim, sind jedoch in Bezug auf die Arbeitssicherheit bedenklich, weil sie toxisch und kanzerogen sind. Anstelle von Hydrazin oder Ketoximen wurden im Laufe der Zeit einige Alternativen vorgeschlagen:
In US 3,983,048 wurde zwar die Verwendung der Verbindung Hydrazin beschrieben, aber es werden dort neben Hydrazin auch Arylamine in katalytischen Mengen mit eingesetzt. Als Arylamine werden, gemäß Spalte 2, ortho oder para-Phenylendiamine eingesetzt. Die Sauerstoff-Entfernung beträgt nach Tabelle 1 dort nach 10 Minuten lediglich 95 % bei Einsatz von para-Phenylendiamin. Hier konnte durch die Reduktion der Menge an Hydrazin die toxikologische Bedenklichkeit jedoch nicht vollständig ausgeräumt werden.
In der US 4,728,497 wurde Hydrazin nun vollständig durch Aminophenole ersetzt. Als Verbindungsklasse sind sie weniger toxisch und weisen außerdem eine größere Sauerstoffbindungskapazität auf. Zu diesen Verbindungen zählen bspw. 2,4,-Diaminophenol, 5-Methyl-o-Aminophenol, o, oder p-Aminophenol bzw. deren Salze etc. Aus der Tabelle 1 dieser Schrift geht hervor, dass die Aminophenole zwar wirksamer als Hydrazin sind, sie können Sauerstoff bis zu 99 % bei vergleichbaren Bedingungen entfernen, aber dafür ist ihre Reaktionsgeschwindigkeit relativ langsam.
In der US 4,067960 wurden N, N-Diethylhydroxylamin bzw. deren Salze als alternative Sauerstoffbindemittel zu Hydrazin mit geringem Gefährdungspotential vorgeschlagen.
So wurde beispielsweise, unter anderem im Vergleich mit Hydrazin oder Natriumsulfit, bei Einsatz von N, -Diethylhydroxylamin /DEHA/ eine Verbesserung der Reduktion des gelösten Sauerstoffes von 96,8 auf 98 % erreicht. Als Katalysatoren mussten aber Hydrochinon, Benzochinon oder Metallsalze eingesetzt werden, um die Reaktionsgeschwindigkeit zu erhöhen. Die Verwendung dieser Verbindungen ist jedoch aufgrund ihrer Toxizität unerwünscht bzw. nachteilig. Auch die als Katalysatoren eingesetzten Metallsalze, wie Kupfer-oder Kobaltsalze, waren nachteilig, so verursachen sie Kontaktkorrosion oder einige Kobaltsalze sind kanzerogen.
Im Stand der Technik wurde weiterhin versucht DEHA in Kombination mit anderen, weniger toxischen Katalysatoren zu verbessern, vor allem weil DEHA eine relativ langsame Sauerstoffbindung aufweist, wurden in der EP 1 619 272 AI heterocyclische Verbindungen, die N-substituierte Aminogruppen enthalten, vorgeschlagen, beispielsweise l-Amino-4- methylpiperazin, 1-Aminopyrrolidin. Zu DEHA und den beiden genannten Verbindungen musste auch noch ein Katalysator auf Basis von mehreren Hydroxylgruppen enthaltenden Phenolen zugegeben werden.
Die Sauerstoffreduktion einer Mischung bestehend aus DEHA, 1-Aminopyrrolidon und Pyrogallol als Katalysator in der Tabelle 4 der EP 1 619 272 AI zeigt eine Restkonzentration an Sauerstoff nach 20 Minuten von 0,3 mg/L. Weder die Kombination von DEHA mit N-substituierte Aminogruppen enthaltenden heterocyclischen Verbindungen, noch die alleinige Verwendung von Aminophenolen brachte ein befriedigendes Resultat bei den in der Industrie vorherrschenden Bedingungen in Bezug auf Temperatur und Druck in den Dampferzeugern und vor allem auf die Notwendigkeit in Bezug auf die Schnelligkeit der Sauerstoffentfernung.
US 4,626,411 offenbart eine Mischung zur Entfernung von Sauerstoff und zur Verminderung der Korrosion in Boilern bestehend aus drei Komponenten a, b, und c, wobei Komponente a zu Komponente c im Verhältnis von 10:1 bis 1:10 und Komponente b zur Komponente c im Verhältnis von 10: 1 bis 1:100 vorliegt. Komponente a ist eine Hydroxylaminverbindung, Komponente b eine aromatische Verbindung, zum Beispiel Aminophenol, und Komponente c ist ein Amin, das zur Einstellung des pH-Wertes dient.
In Spalte 5, Zeilen 8 ff wird festgestellt, dass nur die Kombination von neutralisierendem Amin und Hydrochinon einen sehr überraschenden Effekt auf den Anstieg der Reaktionsrate oder Reaktionsgeschwindigkeit des Ν,Ν-Diethylhydroxylamins mit dem Sauerstoff bewirkt hat.
Die Verwendung von Hydrochinonen oder auch der Metallkatalysatoren waren jedoch aus Umweltgründen und toxikologischer Sicht nicht angezeigt.
Es hat sich überraschenderweise herausgestellt, dass die Verwendung einer Kombination von nur 2 Komponenten nämlich von einem Hydroxylamin, z.B. des N, N- Diethylhydroxylamins, als Komponente a mit einem Arylphenolderivat, z.B. 4-Aminophenol als Komponente b im Verhältnis von 6:1 bis 1:1,5 unter den Bedingungen der industriellen Dampferzeuger, Widererwarten eine synergistische Wirkung bei der Sauerstoffentfernung und damit auch bei der Verminderung der Korrosion zeigt. Diese Kombination weist gegenüber den Einzelkomponenten eine deutlich verbesserte Reaktionsgeschwindigkeit, d.h. eine erhöhte Sauerstoffbindungsrate auf. Auf die Verwendung einer dritten Komponente, z.B. Chinone oder Hydrochinone, konnte so vorteilhafterweise verzichtet werden. Die allg. Struktur bzw. Summenformel (I) der Hydroxylamine lautet:
(0
HONRV wobei die Substituenten R1 R2 gleich oder verschieden sein können und haben die a Formel
C n H2n+i, wobei n=l bis 5, bevorzugt 1 bis 2.
Die erfindungsgemäß einzusetzende Komponente a, kann z.B. N, N-Diethylhydroxylam sein, welche die Formel (II) hat:
(II)
Figure imgf000005_0001
Die Komponente b, die Arylphenole haben die allgemeine Strukturformel (III):
(III)
Figure imgf000005_0002
Ri ; R2, R3 und R4 sind dabei folgendermaßen definiert: Ri 2, R3 und R4 stellen unabhängig voneinander a) CmH2m+i- N (-R5)(-R6) oder
b) OR7 oder
c) R8 dar, wobei mindestens ein Ri , R2; R3 und R4 eine Gruppe CmH2m+i-N(-R5)(-R6) ist. Dabei stellen R5, R6, R7, Rg jeweils unabhängig voneinander CnH2n+i dar und n und m ganze Zahlen von 0 bis 4, bevorzugt ganze Zahlen von 0 bis 2.
Erfindungsgemäße und bevorzugte Arylphenolverbindungen sind:
4-Aminophenol und 2-Aminophenol
Figure imgf000006_0001
3-Amino-4-methylphenol und 4-Amino-3-methylphenol
Figure imgf000006_0002
und 4-amino-2-(aminomethyl)-phenol
Figure imgf000006_0003
Die Komponenten a und b liegen im Gewichtsverhältnis zueinander von 6: 1 bis 1: 1,5 insbesondere im Verhältnis von 5: 1 bis 1: 1. Besonders bevorzugt ist erfindungsgemäß die Kombination von N, N-Diethylhydroxylamin (Komponente a) und 4-Amino-3-methylphenol (Komponente b).
Messmethode;
Die Messung der Sauerstoffkonzentration wurde mit dem Messgerät Sensor InPro 6800 von METTLER TOLEDO durchgeführt.
Mettler-Toledo InPro 6800 Sensoren dienen zur Inline-Messung des Sauerstoffpartialdrucks in Flüssigkeiten und Gasen.
Die 02 Sensoren InPro 6800 mit integriertem Temperaturfühler dienen zur Bestimmung von Sauerstoff.
Funktionsprinzip
Der InPro 6800 basiert auf der polarographischen 02-Messung nach Clark, die wie folgt zusammengefasst werden kann:
Der Clark-Sensor besteht aus Arbeitselektrode (Kathode), Gegen-/Referenzelektrode (Anode) und einer sauerstoffdurchlässigen Membran, welche die Elektroden vom Messmedium trennt.
Über den Transmitter wird eine konstante Spannung an die Kathode angelegt, um den Sauerstoff zu reduzieren. Die Sauerstoffmoleküle diffundieren vom Messmedium durch die Membran zu den Elektroden und werden an der mit Spannung beaufschlagten Kathode reduziert. Gleichzeitig findet an der Anode eine Oxidation statt, bei der das Anodenmetall (Silber) als Silberionen in den Elektrolyt abgegeben wird. Dadurch wird der Elektrolyt leitend und ein Strom fließt zwischen Anode und Kathode (Ionen-Leitfähigkeit). Der erzeugte Strom wird vom Transmitter gemessen und ist proportional zum Sauerstoffpartialdruck (p02) im Messmedium. Reaktion an der Kathode:
02 + 2 H20 + 4e~ -> 4 0H
Reaktion an der Anode:
4 Ag + 4 CI" -> 4 AgCI + 4e-
Erfindungsgemäße Beispiele:
In einem mit vollentsalztem Wasser (Leitfähigkeit < 1 μ5/αη) gefüllten Kolben, in dem die überstehende Gasmenge minimal ist, wird das Sauerstoffbindemittel zugegeben und nach definierten Zeitpunkten die Sauerstoffkonzentration mittels Elektrode gemessen. Während des Versuches wurde die Lösung mit gereinigten Stickstoff beaufschlagt.
Die Messungen erfolgten bei einer Temperatur von 45 °C.
Der Relative Synergieeffekt RS der Mischung ergibt sich aus der gemessenen Sauerstoffreduktion Acg[02](t) und der berechneten Sauerstoffreduktion ACb[02](t) zum Zeitpunkt der Messung t gemäß:
RS = Acg[02](t)/ Acb[02](t) - l.
Ist RS > 0 liegt eine synergistische Wirkung vor, ist RS < 0 eine antagonistische Wirkung.
Dabei ergibt sich die gemessene Sauerstoffreduktion Acg[02](t) aus der Differenz der Ausgangssauerstoffkonzentration cg[O2](0) und der gemessenen Sauerstoffkonzentration zum jeweiligen Zeitpunkt der Messung cg[02](t):
Acg[02](t) = cg[O2](0) - cg[02](t)
Die Ausgangssauerstoff konzentration cg[O2](0) betrug 7,1 mg/L.
Die berechnete Sauerstoffreduktion Acb[02](t) ergibt sich aus dem gewichteten Mittel der gemessenen Sauerstoffreduktionen Acg[02](A, t) und Acg[02](B, t) der beiden Einzelkomponenten a und b alleine gemäß
ACb(t) = c(A)/60 · Acg[02](A, t) + c(B)/60 · Acg[02](B, t).
Dabei stellen c(A) und c(B) die Ausgangskonzentrationen der Komponenten a und b in der Mischung dar. Beispiel 1: Mischung aus N,N- Diethylhydroxylamin und 4-Aminophenol
Tabelle 1 gemessene Sauerstoffkonzentration cg[02] für Mischungen aus DEHA
Amino henol
Figure imgf000009_0002
Tabelle 2: Relative Synergie RM für Mischungen aus DEHA und 4-Aminophenol
Beispiel 2: Mischung aus Ν,Ν-Diethylhydroxylamin und 4-Amino-3-methylphenol
Figure imgf000009_0003
Tabelle 3: gemessene Sauerstoffkonzentration cg[02] für Mischungen aus
N, N-Diethylhydroxylamin (DEHA) und 4-Amino-3-methylphenol
Figure imgf000009_0001
Tabelle 4: Relative Synergie RM für Mischungen aus N, N-Diethylhydroxylamin (DEHA) und 4-Amino-3-meth lphenol
Figure imgf000010_0001
Für beide Mischungen von Komponente a (DEHA) und Komponente b (4-aminophenol; 4- amino-3-methylphenol) zeigt sich ein synergistischer Effekt (RS > 0) im Verhältnis von 5:1 bis 1:1.
Die erfindungsgemäße Mischung wird in der Regel in das Kesselspeisewasser zudosiert, zum Beispiel mengenproportional zum Kesselspeisewasser über eine Dosierpumpe. Die Dosierung der Mischung wird üblicherweise so eingestellt, dass im Kondensat und im Kesselwasser eine Mindestkonzentration des N, N-Diethylhydroxylamin nachgewiesen werden kann. Die Erfolgskontrolle kann durch Messung des Eisengehaltes oder durch Inspektion der Anlagenteile erfolgen.

Claims

Ansprüche
1) Synergistisches Sauerstoffbindemittel bestehend aus den Komponenten a und b im Verhältnis von 6:1 bis 1:1,5, bevorzugt im Verhältnis 5:1 bis 1:1, wobei Komponente a ein Dialkylhydroxylamin ist welche die allg. Formel (I) aufweist
(I) HONR2 und die Substituenten R gleich oder verschieden sein können, wobei R= C n H2n+i, mit n=l bis 5, bevorzugt 1 bis 2 ist,
Komponente b ein Arylphenolderivat der Formel ( III )
(III)
Figure imgf000011_0001
ist, wobei Ri, R2, R3 und R4 unabhängig voneinander a) CmH2m+i-N(-Rs)(-R6) oder b) OR7 oder c) Rg darstellen, wobei mindestens ein i , R2, R3 und R4 eine Gruppe CmH2m+l-N(-R5)(-R6) ist und R5, R6 R7, R8 jeweils unabhängig voneinander die Formel CnH2n+i haben und m und n ganze Zahlen von 0 bis 4, bevorzugt von 0 bis 2.
2) Sauerstoffbindemittel gemäß Anspruch 1, wobei die Komponenten a und b im Gewichtsverhältnis zwischen 6 : 1 und 1 : 1,5, bevorzugt im Verhältnis zwischen 5:1 und 1 : 1 in dem zu behandelnden Wasser vorliegen.
3) Sauerstoffbindemittel gemäß Anspruch 1, wobei die Komponente a, bevorzugt
N, N-Diethylhydroxylamin (DEHA), ist.
4) Sauerstoffbindemittel gemäß Anspruch 1, wobei wobei Ri , R2, R3 und R4 unabhängig voneinander a) CmH2m+l-N(-R5)(-R6) oder b) OR7 oder c) R8 darstellen, wobei mindestens ein R1# R2, R3 und R4 eine -NH2 Gruppe ist. Dabei stellen R5, R6, R7, Rg jeweils unabhängig voneinander CnH2n+i dar und m und n ganze Zahlen von 0 bis 4, bevorzugt von 0 bis 2. 5) Sauerstoffbindemittel gemäß Anspruch 4, wobei das Arylphenolderivat ausgewählt ist aus n-Aminophenolen mit n = 2,3,4, n-Amino-m-CoH20+i-phenol oder n-Amino-m- C0H2oNH2.phenol, wobei n = 2,3,4 und m = 2,3,4, wobei n ungleich m, und o eine ganze Zahl von 1 bis 4 darstellt.
6) Sauerstoffbindemittel gemäß Anspruch 6, dadurch gekennzeichnet, dass die Komponente b bevorzugt 4-Aminophenol oder 2-Aminophenol oder 4-Amino-3- methylphenol oder 3-Amino-4-methylphenol oder 4-Amino-2-(aminomethyl)-phenol ist.
7) Verwendung der Sauerstoffbindemittel nach den Ansprüchen 1 bis 6 in industriellen Dampferzeugern, Kesseln, geschlossenen Kühlsystemen, Fernwärmeanlagen oder Heizungskreisläufen.
PCT/EP2014/002086 2013-08-07 2014-07-30 Synergetisch wirkende mischung zur verwendung als sauerstoffbindemittel und als korrosionsinhibitor in wäsrrigen systemen WO2015018508A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201480043363.1A CN105431570B (zh) 2013-08-07 2014-07-30 在水性体系中用作氧结合剂和缓蚀剂的协同起作用的混合物
ES14758780.2T ES2658685T3 (es) 2013-08-07 2014-07-30 Mezcla de acción sinérgica para su uso como captador de oxígeno y como inhibidor de la corrosión en sistemas acuosos
AU2014304911A AU2014304911B2 (en) 2013-08-07 2014-07-30 Synergistically active mixture for use as an oxygen binder and as a corrosion inhibitor in aqueous systems
EP14758780.2A EP3030692B1 (de) 2013-08-07 2014-07-30 Synergetisch wirkende mischung zur verwendung als sauerstoffbindemittel und als korrosionsinhibitor in wäsrrigen systemen
KR1020167003210A KR102313924B1 (ko) 2013-08-07 2014-07-30 수성 시스템들에서 산소 결합제 및 부식 억제제로서 사용하기 위한 시너지 활성 혼합물
JP2016532261A JP6414217B2 (ja) 2013-08-07 2014-07-30 酸素結合剤及び水系システムにおける腐食抑制剤として使用される相乗的活性混合物
PL14758780T PL3030692T3 (pl) 2013-08-07 2014-07-30 Mieszanina działająca synergicznie, do stosowania jako środek wiążący tlen i jako inhibitor korozji w układach wodnych
SG11201600118YA SG11201600118YA (en) 2013-08-07 2014-07-30 Synergistically active mixture for use as an oxygen binder and as a corrosion inhibitor in aqueous systems
BR112016002082-0A BR112016002082B1 (pt) 2013-08-07 2014-07-30 Ligante sinérgico de oxigênio e uso dos mesmos
US14/903,465 US20160376711A1 (en) 2013-08-07 2014-07-30 Synergistically active mixture for use as an oxygen binder and as a corrosion inhibitor in aqueous systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013013121.9 2013-08-07
DE201310013121 DE102013013121A1 (de) 2013-08-07 2013-08-07 Sauerstoffbindemittel

Publications (1)

Publication Number Publication Date
WO2015018508A1 true WO2015018508A1 (de) 2015-02-12

Family

ID=51485544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/002086 WO2015018508A1 (de) 2013-08-07 2014-07-30 Synergetisch wirkende mischung zur verwendung als sauerstoffbindemittel und als korrosionsinhibitor in wäsrrigen systemen

Country Status (13)

Country Link
US (1) US20160376711A1 (de)
EP (1) EP3030692B1 (de)
JP (1) JP6414217B2 (de)
KR (1) KR102313924B1 (de)
CN (1) CN105431570B (de)
AU (1) AU2014304911B2 (de)
BR (1) BR112016002082B1 (de)
DE (1) DE102013013121A1 (de)
ES (1) ES2658685T3 (de)
MY (1) MY179015A (de)
PL (1) PL3030692T3 (de)
SG (1) SG11201600118YA (de)
WO (1) WO2015018508A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128755A (ja) * 2016-01-19 2017-07-27 栗田工業株式会社 脱酸素剤及び脱酸素処理方法
WO2018008477A1 (ja) * 2016-07-06 2018-01-11 栗田工業株式会社 ボイラ用脱酸素剤、及びボイラ水系の脱酸素方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3983048A (en) 1972-12-26 1976-09-28 Olin Corporation Composition for accelerating oxygen removal comprised of a mixture of aqueous hydrazine and an aryl amine compound
US4067960A (en) 1975-06-20 1978-01-10 R. P. Scherer Limited Pharmaceutical compositions containing cardiac glycoside
US4626411A (en) 1984-04-18 1986-12-02 Dearborn Chemical Company, Limited Composition and method for deoxygenation
US4728497A (en) 1980-12-15 1988-03-01 Betz Laboratories, Inc. Use of aminophenol compounds as oxygen scavengers in an aqueous medium
EP1619272A1 (de) 2003-04-28 2006-01-25 Kurita Water Industries Ltd. SAUERSTOFFFûNGER UND VERFAHREN ZUR DESOXIDATIONSBEHANDLUNG

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2297814A1 (fr) * 1975-01-20 1976-08-13 Ugine Kuhlmann Procede pour la sequestration de l'oxygene dissous dans l'eau et compositions utilisables a cet effet
JPS5931396B2 (ja) * 1981-06-12 1984-08-01 東海電化工業株式会社 溶存酸素除去法
US4487745A (en) * 1983-08-31 1984-12-11 Drew Chemical Corporation Oximes as oxygen scavengers
US5176849A (en) * 1992-04-15 1993-01-05 W. R. Grace & Co.-Conn. Composition and method for scavenging oxygen
DE69706810T2 (de) * 1996-11-28 2002-03-28 Kurita Water Ind Ltd Sauerstoffentfernungsmittel als Verbindung für die Behandlung von Kesselsteinspeisewasser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3983048A (en) 1972-12-26 1976-09-28 Olin Corporation Composition for accelerating oxygen removal comprised of a mixture of aqueous hydrazine and an aryl amine compound
US4067960A (en) 1975-06-20 1978-01-10 R. P. Scherer Limited Pharmaceutical compositions containing cardiac glycoside
US4728497A (en) 1980-12-15 1988-03-01 Betz Laboratories, Inc. Use of aminophenol compounds as oxygen scavengers in an aqueous medium
US4626411A (en) 1984-04-18 1986-12-02 Dearborn Chemical Company, Limited Composition and method for deoxygenation
EP1619272A1 (de) 2003-04-28 2006-01-25 Kurita Water Industries Ltd. SAUERSTOFFFûNGER UND VERFAHREN ZUR DESOXIDATIONSBEHANDLUNG

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128755A (ja) * 2016-01-19 2017-07-27 栗田工業株式会社 脱酸素剤及び脱酸素処理方法
WO2018008477A1 (ja) * 2016-07-06 2018-01-11 栗田工業株式会社 ボイラ用脱酸素剤、及びボイラ水系の脱酸素方法
KR20190025555A (ko) 2016-07-06 2019-03-11 쿠리타 고교 가부시키가이샤 보일러용 탈산소제 및 보일러수계의 탈산소방법
EP3489387A4 (de) * 2016-07-06 2020-04-01 Kurita Water Industries Ltd. Deoxidationsmittel für kessel und verfahren zur deoxidation eines kesselwassersystems

Also Published As

Publication number Publication date
KR102313924B1 (ko) 2021-10-15
ES2658685T3 (es) 2018-03-12
PL3030692T3 (pl) 2018-07-31
EP3030692B1 (de) 2017-12-27
JP2016534863A (ja) 2016-11-10
KR20160040562A (ko) 2016-04-14
AU2014304911B2 (en) 2017-12-07
SG11201600118YA (en) 2016-02-26
JP6414217B2 (ja) 2018-10-31
EP3030692A1 (de) 2016-06-15
DE102013013121A1 (de) 2015-02-12
BR112016002082A2 (pt) 2017-08-01
AU2014304911A1 (en) 2016-02-04
US20160376711A1 (en) 2016-12-29
MY179015A (en) 2020-10-26
CN105431570B (zh) 2018-05-18
BR112016002082B1 (pt) 2021-10-26
CN105431570A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
CH620096A5 (de)
DE2601466C2 (de) Verfahren zur Entfernung von in Wasser gelöstem Sauerstoff und hierzu geeignete Zubereitungen
DE3136491A1 (de) Zusammensetzung und verfarhen zur korrosionsverhinderung
EP3030692B1 (de) Synergetisch wirkende mischung zur verwendung als sauerstoffbindemittel und als korrosionsinhibitor in wäsrrigen systemen
DE2853119A1 (de) Stabilisierte, waessrige, antimikrobielle zusammensetzung und verfahren zu ihrer herstellung
EP0224580A1 (de) Verwendung von 3-amino-5-(w-hydroxyalkyl)-1,2,4-triazolen als korrosionsinhibitoren für buntmetalle in wässrigen systemen.
DE4416313A1 (de) Verfahren zur Inhibierung der Oxidation und Polymerisation von Furfural und seinen Derivaten
DE2520265A1 (de) Mittel zur verhinderung von korrosionen in waessrigen systemen
DE2554026C2 (de) Verfahren zur Hemmung der Korrosion von Eisen- und Stahloberflächen in einem Kesselwassersystem
EP1198174B1 (de) &#34;biofilmvermeidung&#34;
DE2263596C3 (de) Mikrobicide Mittel
DE2434016B2 (de) Katalysator für den Austausch von Deuterium zwischen Wasserstoff und einem Alkylamin und dessen Verwendung zur Anreicherung von Deuterium
DE1232949B (de) Stabilisierung von Trichlor-und Perchloraethylen
ES2020138A6 (es) Procedimiento de eliminacion de cadmio del acido fosforico.
DE4427038C2 (de) Verfahren zur Entfernung in Wasser gelösten Sauerstoffes, insbesondere in wasserführenden, geschlossenen Systemen
AT261297B (de) Herbizid
DE4337704A1 (de) Verfahren zur Entfernung von Sauerstoff in wasserführenden, geschlossenen Systemen
AT307194B (de) Wässerige Zusammensetzung zur Entfernung physikalisch gelösten Sauerstoffs aus flüssigen Medien
DE2746913A1 (de) Zusammensetzung zur inhibierung der korrosion bei der behandlung von gassystemen mit waessrigem alkanolamin
DE2352630C3 (de) Inhibitorgemisch für Säurelösungen zur Reinigung von Metalloberflächen
DE2163062C3 (de) Mittel zum Frischhalten von Schnittblumen
Huber DNS-Alkylierungen in vitro und in vivo als Folge einer Nitrosierung primärer aliphatischer Amine, untersucht am Beispiel des Methylamins und des Histamins
SU859432A1 (ru) Стабилизатор жиров против окислени
Schwarz-Speck et al. Experimentelle Untersuchungen zur Spezifität der Sensibilisierung gegen Phenylhydroxylamin
DE1236301B (de) Phosphatieren von Metalloberflaechen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043363.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14758780

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14903465

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016532261

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014304911

Country of ref document: AU

Date of ref document: 20140730

Kind code of ref document: A

Ref document number: 20167003210

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014758780

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016002082

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016002082

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160129