WO2018008477A1 - ボイラ用脱酸素剤、及びボイラ水系の脱酸素方法 - Google Patents

ボイラ用脱酸素剤、及びボイラ水系の脱酸素方法 Download PDF

Info

Publication number
WO2018008477A1
WO2018008477A1 PCT/JP2017/023600 JP2017023600W WO2018008477A1 WO 2018008477 A1 WO2018008477 A1 WO 2018008477A1 JP 2017023600 W JP2017023600 W JP 2017023600W WO 2018008477 A1 WO2018008477 A1 WO 2018008477A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
boiler
oxygen scavenger
compound
carbon atoms
Prior art date
Application number
PCT/JP2017/023600
Other languages
English (en)
French (fr)
Inventor
倩 林
幸祐 志村
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to KR1020187036516A priority Critical patent/KR20190025555A/ko
Priority to US16/310,589 priority patent/US20190144314A1/en
Priority to CN201780037878.4A priority patent/CN109312476A/zh
Priority to EP17824083.4A priority patent/EP3489387A4/en
Priority to SG11201811145RA priority patent/SG11201811145RA/en
Publication of WO2018008477A1 publication Critical patent/WO2018008477A1/ja
Priority to PH12018502720A priority patent/PH12018502720A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/12Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/12Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/12Oxygen-containing compounds
    • C23F11/122Alcohols; Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/141Amines; Quaternary ammonium compounds
    • C23F11/142Hydroxy amines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/147Nitrogen-containing compounds containing a nitrogen-to-oxygen bond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/48Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
    • F22B37/52Washing-out devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition

Definitions

  • the present invention relates to a boiler oxygen scavenger and a boiler water-based oxygen scavenging method.
  • Dissolved oxygen contained in the feed water of boilers and steam generators causes corrosion of heat exchangers, economizers, steam condensate piping, etc. arranged in all stages of the boiler. Therefore, in order to prevent the corrosion of these boiler systems, it is necessary to remove the dissolved oxygen from the feed water.
  • a physical treatment method and a chemical treatment method as the deoxygenation treatment method.
  • a chemical treatment method alone or a combination of the physical treatment method and the chemical treatment method is employed.
  • the physical treatment method methods such as heat degassing, vacuum degassing, and membrane degassing are used.
  • a chemical treatment method a method of adding an oxygen scavenger such as hydrazine, sodium sulfite, or glucose to boiler feed water has been widely adopted.
  • Patent Documents 1 to 6 have been proposed as oxygen scavengers instead of hydrazine.
  • carbohydrazide is used as an oxygen scavenger.
  • carbohydrazide is not a fundamental solution because hydrazine is produced at high temperatures.
  • tannin is used as an oxygen scavenger.
  • an aminophenol derivative is used as an oxygen scavenger.
  • the aminophenol derivative has a problem that it is necessary to increase the amount of addition.
  • Patent Document 4 gallic acid and its derivatives are used as an oxygen scavenger.
  • gallic acid and its derivatives have a problem that organic acids are easily generated when the addition amount is increased, and the vapor quality is adversely affected.
  • Patent Document 5 a dialkylhydroxylamine and an aminophenol derivative are used in combination as an oxygen scavenger.
  • dialkylhydroxylamine has a problem that the deoxygenation rate is slow and there is a problem that it is necessary to increase the amount of addition, and an aminophenol derivative also has a problem that it is necessary to increase the amount of addition. For this reason, even when dialkylhydroxylamine and an aminophenol derivative are used in combination, dissolved oxygen cannot be removed with a small addition amount under a wide range of temperature conditions.
  • Patent Document 6 a hydroxylamine compound and a heterocyclic compound having an N-substituted amino group are used in combination as an oxygen scavenger.
  • dialkylhydroxylamine has a problem that the deoxygenation rate is slow and the addition amount needs to be increased, and a heterocyclic compound having an N-substituted amino group has a problem that the deoxygenation rate is low under low temperature conditions. .
  • dissolved oxygen cannot be removed with a small addition amount under a wide range of temperature conditions.
  • the present invention has been made under such circumstances, and an object of the present invention is to provide a boiler oxygen scavenger having an excellent oxygen removal effect under a wide range of temperature conditions, and a boiler water-based oxygen scavenging method using the same. To do.
  • R 1 and R 2 each independently represents an alkyl group having 1 to 5 carbon atoms.
  • R 3 to R 6 each independently represent (a) any one of the following general formulas (III), (b) —OR 10 and (c) —R 11 , wherein R 3 At least one of R 6 represents (a).
  • R 10 and R 11 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 7 represents a single bond or an alkylene group having 1 to 4 carbon atoms.
  • R 8 and R 9 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the aminophenol derivative of the component (C) includes 4-aminophenol, 2-aminophenol, 4-amino-3-methylphenol, 3-amino-4-methylphenol and 4-amino-3- (amino The oxygen scavenger for boilers according to any one of the above [1] to [3], which is one or more selected from methyl) -phenol.
  • the mass ratio of the hydroxylamine compound of the component (A) and the heterocyclic compound of the component (B) is 1:10 to 10: 1, and the hydroxylamine compound of the component (A)
  • the mass ratio of the component (C) to the aminophenol derivative is 2: 1 to 20: 1
  • the mass ratio of the heterocyclic compound (B) to the aminophenol derivative (C) is The boiler oxygen scavenger according to any one of the above [1] to [4], which is 2: 1 to 20: 1.
  • a boiler water-based deoxygenation method wherein the boiler oxygen absorber according to any one of claims 1 to 8 is added to the boiler water system.
  • the concentration of the hydroxylamine compound (A) in the boiler feed water is 0.001 to 1000 mg / L
  • the concentration of the heterocyclic compound (B) in the boiler feed water is 0.001 to 1000 mg / L. L
  • the boiler oxygen scavenger is added so that the concentration of the aminophenol derivative of the component (C) in the boiler feed water is 0.0001 to 500 mg / L.
  • the boiler oxygen scavenger and boiler water deoxygenation method of the present invention can improve oxygen removal efficiency under a wide range of temperature conditions, and can effectively prevent corrosion in feed water to boiler water system.
  • the oxygen scavenger for boilers of the present invention comprises (A) a hydroxylamine compound represented by the following general formula (I), (B) a heterocyclic compound having an N-substituted amino group, and (C) the following general formula ( The aminophenol derivative represented by II) is included.
  • R 1 and R 2 each independently represents an alkyl group having 1 to 5 carbon atoms.
  • R 3 to R 6 each independently represent (a) any one of the following general formulas (III), (b) —OR 10 and (c) —R 11 , wherein R 3 At least one of R 6 represents (a).
  • R 10 and R 11 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 7 represents a single bond or an alkylene group having 1 to 4 carbon atoms.
  • R 8 and R 9 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the boiler oxygen scavenger of the present invention comprises a combination of (A) component hydroxylamine compound, (B) component N-substituted amino group heterocyclic compound, and (C) component aminophenol derivative. This makes it possible to increase the oxygen removal efficiency over a wide range of temperature conditions.
  • hydroxylamine compound as the component (A) is represented by the following general formula (I).
  • R 1 and R 2 each independently represents an alkyl group having 1 to 5 carbon atoms.
  • R 1 and R 2 are preferably alkyl groups having 1 to 2 carbon atoms. Further, the total number of carbon atoms of R 1 and R 2 is preferably 2 to 6, and more preferably 3 to 5.
  • hydroxylamine compound represented by the general formula (I) examples include N, N-dimethylhydroxylamine, N-isopropylhydroxylamine, N, N-diethylhydroxylamine, N, N-dipropylhydroxylamine, N, N-dibutylhydroxylamine and the like can be mentioned.
  • N, N-diethylhydroxylamine (sometimes referred to as “DEHA” in the present specification) is preferable from the viewpoints of the effect of removing oxygen under a wide range of temperature conditions and economical efficiency.
  • the heterocyclic compound having an N-substituted amino group as the component (B) (hereinafter sometimes referred to as “the heterocyclic compound as the component (B)”) has a nitrogen atom as a hetero atom of the heterocyclic ring.
  • the amino group is bonded to at least one of the nitrogen atoms as the hetero atom.
  • the (B) component heterocyclic compound preferably has 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms, and still more preferably 3 to 5 carbon atoms.
  • the heterocyclic compound as the component (B) preferably has no double bond from the viewpoint of the effect of removing oxygen under a wide range of temperature conditions.
  • the heterocyclic ring serving as the basic skeleton of the heterocyclic compound (B) is not particularly limited as long as it has a nitrogen atom as a hetero atom of the heterocyclic ring.
  • Piperazine, pyrrolidine, morpholine, piperidine, hexamethyleneimine examples include ethyleneimine, pyrrole, pyridine, azepine, imidazole, pyrazole, oxazole, imidazoline, and pyrazine.
  • those having 2 to 8 carbon atoms are preferable, those having 2 to 6 carbon atoms are more preferable, and those having 3 to 5 carbon atoms are more preferable.
  • those having no double bond in the heterocyclic ring are preferable.
  • Examples of the heterocycle having 3 to 5 carbon atoms and having no double bond in the heterocycle include piperazine, pyrrolidine, morpholine and piperidine. Of these, piperazine and pyrrolidine are preferred.
  • heterocyclic compound of component (B) examples include 1-amino-4-methylpiperazine, 1-aminopyrrolidine, N-aminomorpholine, N-aminohexamethyleneimine, 1-aminopiperidine and the like.
  • 1-amino-4-methylpiperazine and 1-aminopyrrolidine are preferable from the viewpoints of the effect of removing oxygen under a wide range of temperature conditions and economical efficiency.
  • R 3 to R 6 each independently represent (a) any one of the following general formulas (III), (b) —OR 10 and (c) —R 11 , wherein R 3 At least one of R 6 represents (a).
  • R 10 and R 11 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 7 represents a single bond or an alkylene group having 1 to 4 carbon atoms.
  • R 8 and R 9 each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 10 and R 11 are preferably each independently a hydrogen atom or an alkyl group having 1 to 2 carbon atoms.
  • the number corresponding to (a) the general formula (III) in R 3 to R 6 is preferably 1 or 2, and more preferably 1.
  • at least one of R 3 to R 6 preferably represents (c).
  • the total number of carbon atoms of R 3 to R 6 is preferably 0 to 4, more preferably 0 to 2, and further preferably 1 to 2.
  • R 7 is preferably a single bond or an alkylene group having 1 to 2 carbon atoms, and more preferably a single bond.
  • R 8 and R 9 are preferably each independently a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, and more preferably a hydrogen atom.
  • the aminophenol derivative of component (C) is not particularly limited as long as it corresponds to the above general formula (II), but 4-aminophenol, 2-aminophenol, 2-oxyphenol, 2-aminophenol from the viewpoint of the effect of removing oxygen under a wide range of temperature conditions and economy.
  • 4-aminophenol, 2-aminophenol, 2-oxyphenol, 2-aminophenol from the viewpoint of the effect of removing oxygen under a wide range of temperature conditions and economy.
  • One or more selected from aminophenol, 4-amino-3-methylphenol, 3-amino-4-methylphenol and 4-amino-3- (aminomethyl) phenol are preferred.
  • the oxygen scavenger for boilers of the present invention has a mass ratio of the hydroxylamine compound (A) to the heterocyclic compound (B) (hereinafter sometimes referred to as “A / B ratio”). 1:10 to 10: 1 is preferable, 1: 5 to 5: 1 is more preferable, and 1: 2 to 2: 1 is more preferable.
  • the oxygen scavenger for boilers of the present invention is a mass ratio of the hydroxylamine compound (A) to the aminophenol derivative (C) (hereinafter sometimes referred to as “A / C ratio”). Is preferably 2: 1 to 20: 1, more preferably 3: 1 to 15: 1, and more preferably 4: 1 to 13: 1.
  • the oxygen scavenger for boilers of the present invention may be referred to as a mass ratio (hereinafter referred to as “B / C ratio”) between the heterocyclic compound (B) and the aminophenol derivative (C).
  • B / C ratio a mass ratio between the heterocyclic compound (B) and the aminophenol derivative (C).
  • the interaction between the (A) component, the (B) component, and the (C) component can be easily expressed, and in a wide range of temperature conditions.
  • the oxygen removal efficiency can be easily increased.
  • three stages are shown as suitable ranges of the A / B ratio, the A / C ratio, and the B / C ratio, it is possible to appropriately combine the stages.
  • the A / B ratio is 1:10 to 10: 1 in the first stage
  • the A / C ratio is 3: 1 to 15: 1 in the second stage
  • the B / C ratio is 4: 1 to 13 in the third stage. : 1.
  • the boiler oxygen scavenger of the present invention may further contain, as component (D), an aromatic compound that is substituted with at least two or more hydroxy groups and does not have an amino group or a substituted amino group. .
  • the aromatic compound of component (D) is preferably one substituted with two hydroxy groups, more preferably an aromatic compound substituted with a hydroxy group at positions 1 and 3 of the benzene ring.
  • Examples of the aromatic compound (D) include hydroquinone, pyrogallol, methylhydroquinone, trimethylhydroquinone, t-butylhydroquinone, t-butylcatechol, orcinol (also called 5-methylresorcinol), resorcinol and propyl gallate. .
  • at least one selected from orcinol, resorcinol and propyl gallate is preferable from the viewpoint of the effect of removing oxygen under a wide range of temperature conditions.
  • Ratio of total mass of hydroxylamine compound of component (A) and heterocyclic compound of component (B) to total mass of aminophenol derivative of component (C) and aromatic compound of component (D) is preferably 2: 1 to 20: 1 from the viewpoint of oxygen removal efficiency.
  • the ratio is more preferably 3: 1 to 15: 1, and further preferably 5: 1 to 13: 1.
  • the boiler water deoxygenation method of the present invention is to add the above-described boiler oxygen scavenger of the present invention to a boiler water system.
  • the amount of boiler oxygen absorber added to the boiler water system is appropriately determined according to the dissolved oxygen concentration, water quality, etc. of the water to be treated, and is not particularly limited, but from the viewpoint of the synergistic effect of the components (A) to (C), It is preferable that the concentrations of the components (A) to (C) in the boiler feed water are in the following ranges.
  • the concentration of the hydroxylamine compound as component (A) in the boiler feed water is preferably 0.001 to 1000 mg / L, more preferably 0.005 to 500 mg / L, and 0.01 to 200 mg / L. More preferably.
  • the concentration of the heterocyclic compound (B) in the boiler feed water is preferably 0.001 to 1000 mg / L, more preferably 0.005 to 500 mg / L, and 0.01 to 200 mg / L. More preferably, L is used.
  • the concentration of the aminophenol derivative of component (C) in the boiler feed water is preferably 0.0001 to 500 mg / L, more preferably 0.001 to 100 mg / L, and 0.002 to 50 mg / L. More preferably.
  • the three stages are shown as the preferable ranges of the concentrations of the components (A) to (C) in the boiler feed water, the stages can be appropriately combined.
  • the concentration of component (A) is 0.001 to 1000 mg / L in the first stage
  • the concentration of component (B) is 0.05 to 500 mg / L in the second stage
  • the concentration of component (C) is the third stage. 0.002 to 50 mg / L.
  • the ratio of the concentrations of the components (A) to (C) in the boiler feed water conforms to the mass ratio of the components (A) to (C) in the boiler oxygen absorber described above. .
  • the concentration of the aromatic compound (D) in the boiler feed water is preferably 0.0002 to 500 mg / L, and preferably 0.001 to 100 mg / L. L is more preferable, and 0.002 to 50 mg / L is even more preferable.
  • the ratio of the concentrations of the components (A) to (D) in the boiler feed water should be made to conform to the mass ratio of the components (A) to (D) in the boiler oxygen absorber described above. preferable.
  • the injection point of the boiler oxygen scavenger is not particularly limited, and can be injected into an appropriate location according to the equipment situation, but it is preferable to inject it into the water supply system.
  • the components (A) to (C) and the component (D) to be added as necessary may be added simultaneously, or these may be added separately. May be.
  • ⁇ Other drugs> In the method for removing dissolved oxygen of the present invention, other chemicals such as neutralizing amines, phosphates, alkaline agents, anticorrosives and the like used in normal boiler water treatment can be used in combination as appropriate.
  • Test 1 (Confirmation of oxygen removal effect under general temperature conditions of water supply system) Ultrapure water in which dissolved oxygen in water was adjusted to 500 ⁇ g / L at 40 ° C. was supplied to a 4 L pressure vessel. Sodium hydroxide was added to the feed water to adjust the pH to 10.5. Further, an oxygen scavenger having the composition shown in Table 1 was added to the feed water at a concentration shown in Table 1. Without generating steam, the conditions of a can internal temperature of 180 ° C. and a can internal pressure of 1.0 MPa were maintained for 24 hours.
  • the blown water is cooled to room temperature with a heat exchanger, and the dissolved oxygen concentration in the cooled water is measured using a dissolved oxygen meter, and the deoxygenation rate (%) [(dissolved oxygen concentration before test-after test) Dissolved oxygen concentration) ⁇ 100 / dissolved oxygen concentration before the test] was calculated.
  • DEHA represents N, N-diethylhydroxylamine
  • 1A4MP represents 1-amino-4-methylpiperazine
  • 4A3M represents 4-amino-3-methylphenol.
  • Test 2 (Confirmation of oxygen removal effect under general temperature conditions in boiler can) Ion exchange water saturated with oxygen in the air at 60 ° C. was supplied to a natural circulation test boiler having a capacity of 5 L. Further, an oxygen scavenger having a composition shown in Table 2 was added to the feed water at a concentration shown in Table 2. While adding 1 mg / L of tribasic sodium phosphate to this water supply, the temperature in the can is 290 ° C., the pressure in the can is 7.5 MPa, the evaporation amount is 7 L / h, and the blow amount is 0.8 L / h. Drove. The generated steam was completely condensed in a heat exchanger to form room temperature condensed water, and the dissolved oxygen concentration in this condensed water was measured using a dissolved oxygen meter.
  • the boiler oxygen scavenger of the invention can improve the oxygen removal efficiency under a wide range of temperature conditions from the general temperature condition of the feed water system to the general temperature condition in the boiler can, and effectively prevents corrosion in the feed water to the boiler water system. It can be confirmed that it can be prevented.
  • the oxygen scavenger for boilers (Examples 1-2, 2-3, and 2-4) having the aromatic compound of the component (D) It can be confirmed that it is excellent.
  • the boiler removal of the comparative example not having any of (A) component hydroxylamine compound, (B) component N-substituted amino group, and (C) component aminophenol derivative cannot increase the oxygen removal efficiency under a wide range of temperature conditions from the general temperature condition of the feed water system to the general temperature condition in the boiler can.
  • an oxygen scavenger containing the component (A) and the component (B) but not the component (C) has an oxygen removal efficiency in a high temperature environment (a general temperature condition in the boiler can) close to that of the example.
  • the oxygen removal efficiency in a low temperature environment is insufficient (Comparative Examples 1-1 and 1-7) .
  • the oxygen scavenger containing the component (A) and the component (C) but not the component (B) shows an oxygen removal efficiency in a low temperature environment (general temperature condition of the water supply system) close to that of the example.
  • the oxygen removal efficiency in a high temperature environment is insufficient (Comparative Examples 2-3 and 2-4).
  • the oxygen scavenger that does not contain the component (A) has insufficient oxygen removal efficiency in a low temperature environment (general temperature condition of the water supply system) (Comparative Examples 1-4 and 1-6).

Abstract

幅広い温度条件において、酸素除去効果に優れるボイラ用脱酸素剤を提供する。 (A)下記一般式(I)で表されるヒドロキシルアミン化合物、(B)N-置換アミノ基を有する複素環式化合物、及び(C)下記一般式(II)で表されるアミノフェノール誘導体を含むボイラ用脱酸素剤。式(I)[式(I)中、R及びRは、それぞれ独立して、炭素数1~5のアルキル基を示す。]式(II)[式(II)中、R~Rは、それぞれ独立して、(a)下記一般式(III)、(b)-OR10及び(c)-R11の何れかを示し、R~Rの中の少なくとも1つは(a)を示す。R10及びR11は、それぞれ独立して、水素原子又は炭素数1~4のアルキル基を示す。]式(III)[式(III)中、Rは単結合又は炭素数1~4のアルキレン基を示す。R及びRは、それぞれ独立して、水素原子又は炭素数1~4のアルキル基を示す。]

Description

ボイラ用脱酸素剤、及びボイラ水系の脱酸素方法
 本発明は、ボイラ用脱酸素剤、及びボイラ水系の脱酸素方法に関する。
 ボイラや蒸気発生器等の給水に含まれている溶存酸素は、ボイラ全段に配置される熱交換器やエコノマイザ、蒸気復水系配管等の腐食を引き起こす原因となる。従って、これらボイラシステムの腐食を防止するためには、給水中の溶存酸素を除去する処理が必要である。
 脱酸素処理方法としては、物理的処理方法と化学的処理方法があり、通常、化学的処理方法単独か、或いは物理的処理方法と化学的処理方法を併用する方法が採られる。物理的処理方法としては、加熱脱気、真空脱気、膜脱気などの方法が用いられている。一方、化学的処理方法としては、ヒドラジン、亜硫酸ナトリウムまたはグルコース類といった脱酸素剤をボイラ給水に添加する方法が広く採用されてきた。
 しかしながら、上記従来の脱酸素剤のうち、ヒドラジンは安全性面で疑問が持たれてきたため、その取り扱いが問題視されている。亜硫酸ナトリウムは反応生生物として硫酸イオンを生成するため、ボイラシステムの腐食やスケール付着が起こりやすくなるという問題がある。
 ヒドラジン代替の脱酸素剤として、特許文献1~6の手段が提案されている。
特公昭63-63272号公報 特開2003-147554号公報 特開昭57-102285号公報 米国特許第4929364号 WO2015/018508号 特許第3855961号公報
 特許文献1では、脱酸素剤としてカルボヒドラジドを用いている。しかし、カルボヒドラジドは高温になるとヒドラジンが生成するため根本的な解決にはならない。
 特許文献2では、脱酸素剤としてタンニンを用いている。しかし、タンニンは高温水中に高濃度に添加すると、処理水が着色するという問題がある。
 特許文献3では、脱酸素剤としてアミノフェノール誘導体を用いている。しかし、アミノフェノール誘導体は、添加量を多くする必要があるという問題がある。
 特許文献4では、脱酸素剤として、没食子酸及びその誘導体を用いている。しかし、没食子酸及びその誘導体は、添加量を多くした際に有機酸が発生しやすく、蒸気の質に悪影響を及ぼすという問題がある。
 特許文献5では、脱酸素剤として、ジアルキルヒドロキシルアミン及びアミノフェノール誘導体を併用している。しかし、ジアルキルヒドロキシルアミンは脱酸素速度が遅く、添加量を多くする必要があるという問題があり、アミノフェノール誘導体も添加量を多くする必要があるという問題がある。このため、ジアルキルヒドロキシルアミンとアミノフェノール誘導体とを併用しても、幅広い温度条件下において、少ない添加量で溶存酸素を除去することはできなかった。
 特許文献6では、脱酸素剤として、ヒドロキシルアミン化合物及びN-置換アミノ基を有する複素環式化合物を併用している。しかし、ジアルキルヒドロキシルアミンは脱酸素速度が遅く、添加量を多くする必要があるという問題があり、N-置換アミノ基を有する複素環式化合物は、低温条件における脱酸素速度が遅いという問題がある。このため、ヒドロキシルアミン化合物とN-置換アミノ基を有する複素環式化合物とを併用しても、幅広い温度条件下において、少ない添加量で溶存酸素を除去することはできなかった。
 本発明は、このような状況下になされたものであり、幅広い温度条件において、酸素除去効果に優れるボイラ用脱酸素剤、及びこれを用いたボイラ水系の脱酸素方法を提供することを目的とする。
 上記課題を解決すべく、本発明は、次の[1]~[10]を提供する。
[1](A)下記一般式(I)で表されるヒドロキシルアミン化合物、(B)N-置換アミノ基を有する複素環式化合物、及び(C)下記一般式(II)で表されるアミノフェノール誘導体を含むボイラ用脱酸素剤。
Figure JPOXMLDOC01-appb-C000004

[式(I)中、R及びRは、それぞれ独立して、炭素数1~5のアルキル基を示す。]
Figure JPOXMLDOC01-appb-C000005

[式(II)中、R~Rは、それぞれ独立して、(a)下記一般式(III)、(b)-OR10及び(c)-R11の何れかを示し、R~Rの中の少なくとも1つは(a)を示す。R10及びR11は、それぞれ独立して、水素原子又は炭素数1~4のアルキル基を示す。]
Figure JPOXMLDOC01-appb-C000006

[式(III)中、Rは単結合又は炭素数1~4のアルキレン基を示す。R及びRは、それぞれ独立して、水素原子又は炭素数1~4のアルキル基を示す。]
[2]前記(A)成分のヒドロキシルアミン化合物が、N,N-ジエチルヒドロキシルアミンである上記[1]に記載のボイラ用脱酸素剤。
[3]前記(B)成分の複素環式化合物が、1-アミノ-4-メチルピペラジン及び1-アミノピロリジンから選ばれる1種以上である上記[1]又は[2]に記載のボイラ用脱酸素剤。
[4]前記(C)成分のアミノフェノール誘導体が、4-アミノフェノール、2-アミノフェノール、4-アミノ-3-メチルフェノール、3-アミノ-4-メチルフェノール及び4-アミノ-3-(アミノメチル)-フェノールから選ばれる1種以上である上記[1]から[3]の何れかに記載のボイラ用脱酸素剤。
[5]前記(A)成分のヒドロキシルアミン化合物と、前記(B)成分の複素環式化合物との質量比が1:10~10:1であり、前記(A)成分のヒドロキシルアミン化合物と、前記(C)成分のアミノフェノール誘導体との質量比が2:1~20:1であり、前記(B)成分の複素環式化合物と、前記(C)成分のアミノフェノール誘導体との質量比が2:1~20:1である上記[1]から[4]の何れかに記載のボイラ用脱酸素剤。
[6]さらに、(D)少なくとも二以上のヒドロキシ基で置換されてなり、アミノ基又は置換アミノ基を有さない芳香族化合物を含有する上記[1]から[5]の何れかに記載のボイラ用脱酸素剤。
[7]前記(D)成分の芳香族化合物が、オルシノール、レゾルシノール及び没食子酸プロピルから選ばれる1種以上である上記[6]に記載のボイラ用脱酸素剤。
[8]前記(A)成分のヒドロキシルアミン化合物及び前記(B)成分の複素環式化合物の合計質量と、前記(C)成分のアミノフェノール誘導体及び前記(D)成分の芳香族化合物の合計質量との比が、2:1~20:1である上記[6]又は[7]に記載のボイラ用脱酸素剤。
[9]請求項1~8の何れか1項に記載のボイラ用脱酸素剤をボイラ水系に添加する、ボイラ水系の脱酸素方法。
[10]前記(A)成分のヒドロキシルアミン化合物のボイラ給水中の濃度が0.001~1000mg/L、前記(B)成分の複素環式化合物のボイラ給水中の濃度が0.001~1000mg/L、前記(C)成分のアミノフェノール誘導体のボイラ給水中の濃度が0.0001~500mg/Lとなるように前記ボイラ脱酸素剤を添加する、上記[9]に記載のボイラ水系の脱酸素方法。
 本発明のボイラ用脱酸素剤及びボイラ水系の脱酸素方法は、幅広い温度条件において、酸素除去効率を高めることができ、給水~ボイラ水系における腐食を効果的に防止することができる。
[ボイラ用脱酸素剤]
 本発明のボイラ用脱酸素剤は、(A)下記一般式(I)で表されるヒドロキシルアミン化合物、(B)N-置換アミノ基を有する複素環式化合物、及び(C)下記一般式(II)で表されるアミノフェノール誘導体を含むものである。
Figure JPOXMLDOC01-appb-C000007

[式(I)中、R及びRは、それぞれ独立して、炭素数1~5のアルキル基を示す。]
Figure JPOXMLDOC01-appb-C000008

[式(II)中、R~Rは、それぞれ独立して、(a)下記一般式(III)、(b)-OR10及び(c)-R11の何れかを示し、R~Rの中の少なくとも1つは(a)を示す。R10及びR11は、それぞれ独立して、水素原子又は炭素数1~4のアルキル基を示す。]
Figure JPOXMLDOC01-appb-C000009

[式(III)中、Rは単結合又は炭素数1~4のアルキレン基を示す。R及びRは、それぞれ独立して、水素原子又は炭素数1~4のアルキル基を示す。]
 本発明のボイラ用脱酸素剤は、(A)成分のヒドロキシルアミン化合物、(B)成分のN-置換アミノ基を有する複素環式化合物、及び(C)成分のアミノフェノール誘導体を併用することにより、幅広い温度条件において、酸素除去効率を高めることを可能としている。
<(A)ヒドロキシルアミン化合物>
 (A)成分のヒドロキシルアミン化合物は、下記一般式(I)で表されるものである。
Figure JPOXMLDOC01-appb-C000010

[式(I)中、R及びRは、それぞれ独立して、炭素数1~5のアルキル基を示す。]
 上記一般式(I)において、R及びRは、炭素数1~2のアルキル基であることが好ましい。また、R及びRの炭素数の合計は2~6であることが好ましく、3~5であることがより好ましい。
 上記一般式(I)で表されるヒドロキシルアミン化合物の具体例としては、N,N-ジメチルヒドロキシルアミン、N-イソプロピルヒドロキシルアミン、N,N-ジエチルヒドロキシルアミン、N,N-ジプロピルヒドロキシルアミン、N,N-ジブチルヒドロキシルアミン等が挙げられる。これらの中でも、幅広い温度条件での酸素除去効果及び経済性の観点から、N,N-ジエチルヒドロキシルアミン(本明細書において「DEHA」と称する場合もある)が好ましい。
<(B)N-置換アミノ基を有する複素環式化合物>
 (B)成分のN-置換アミノ基を有する複素環式化合物(以下、「(B)成分の複素環式化合物」と称する場合もある。)は、複素環のヘテロ原子として窒素原子を有し、該ヘテロ原子としての窒素原子の少なくとも一つに、アミノ基が結合してなるものである。
 (B)成分の複素環式化合物は、総炭素数が2~8のものが好ましく、2~6のものがより好ましく、3~5のものがさらに好ましい。また、(B)成分の複素環式化合物は、幅広い温度条件での酸素除去効果の観点から、二重結合を有さないものが好ましい。
 (B)成分の複素環式化合物の基本骨格となる複素環としては、複素環のヘテロ原子として窒素原子を有するものであれば特に限定されず、ピペラジン、ピロリジン、モルホリン、ピペリジン、ヘキサメチレンイミン、エチレンイミン、ピロール、ピリジン、アゼピン、イミダゾール、ピラゾール、オキサゾール、イミダゾリン、ピラジン等が挙げられる。これらの中でも、炭素数が2~8のものが好ましく、2~6のものがより好ましく、3~5のものがさらに好ましい。また、これらの中でも、複素環内に二重結合を有さないものが好ましい。
 炭素数が3~5であり、複素環内に二重結合を有さない複素環としては、ピペラジン、ピロリジン、モルホリン及びピペリジン等が挙げられる。この中でもピペラジン及びピロリジンが好適である。
 (B)成分の複素環式化合物としては、1-アミノ-4-メチルピペラジン、1-アミノピロリジン、N-アミノモルホリン、N-アミノヘキサメチレンイミン、1-アミノピペリジン等が挙げられる。これらの中でも、幅広い温度条件での酸素除去効果及び経済性の観点から、1-アミノ-4-メチルピペラジン及び1-アミノピロリジンから選ばれる一種以上が好適である。
<(C)アミノフェノール誘導体>
 (C)成分のアミノフェノール誘導体は、下記一般式(II)で表されるものである。
Figure JPOXMLDOC01-appb-C000011

[式(II)中、R~Rは、それぞれ独立して、(a)下記一般式(III)、(b)-OR10及び(c)-R11の何れかを示し、R~Rの中の少なくとも1つは(a)を示す。R10及びR11は、それぞれ独立して、水素原子又は炭素数1~4のアルキル基を示す。]
Figure JPOXMLDOC01-appb-C000012

[式(III)中、Rは単結合又は炭素数1~4のアルキレン基を示す。R及びRは、それぞれ独立して、水素原子又は炭素数1~4のアルキル基を示す。]
 上記一般式(II)において、R10及びR11は、それぞれ独立して、水素原子又は炭素数1~2のアルキル基であることが好ましい。
 上記一般式(II)において、R~Rの中で(a)上記一般式(III)に該当する数は1又は2であることが好ましく、1であることがより好ましい。
 上記一般式(II)において、R~Rの中の少なくとも1つは(c)を示すことが好ましい。
 上記一般式(II)において、R~Rの炭素数の合計は0~4であることが好ましく、0~2であることがより好ましく、1~2であることがさらに好ましい。
 上記一般式(III)において、Rは単結合又は炭素数1~2のアルキレン基であることが好ましく、単結合であることがより好ましい。
 上記一般式(III)において、R及びRは、それぞれ独立して、水素原子又は炭素数1~2のアルキル基であることが好ましく、水素原子であることがより好ましい。
 (C)成分のアミノフェノール誘導体は、上記一般式(II)に該当するものであれば特に限定されないが、幅広い温度条件での酸素除去効果及び経済性の観点から、4-アミノフェノール、2-アミノフェノール、4-アミノ-3-メチルフェノール、3-アミノ-4-メチルフェノール及び4-アミノ-3-(アミノメチル)フェノールから選ばれる1種以上であることが好ましい。
<(A)成分~(C)成分の質量比>
 本発明のボイラ用脱酸素剤は、(A)成分のヒドロキシルアミン化合物と、(B)成分の複素環式化合物との質量比(以下、「A/B比」と称する場合がある。)が、1:10~10:1であることが好ましく、1:5~5:1であることがより好ましく、1:2~2:1であることがより好ましい。
 また、本発明のボイラ用脱酸素剤は、(A)成分のヒドロキシルアミン化合物と、(C)成分のアミノフェノール誘導体との質量比(以下、「A/C比」と称する場合がある。)が、2:1~20:1であることが好ましく、3:1~15:1であることがより好ましく、4:1~13:1であることがより好ましい。
 さらに、本発明のボイラ用脱酸素剤は、(B)成分の複素環式化合物と、(C)成分のアミノフェノール誘導体との質量比(以下、「B/C比」と称する場合がある。)が、2:1~20:1であることが好ましく、3:1~15:1であることがより好ましく、4:1~13:1であることがより好ましい。
 A/B比、A/C比、及びB/C比を上記範囲とすることにより、(A)成分、(B)成分及び(C)成分の相互作用が発現しやすくなり、幅広い温度条件において、酸素除去効率を高めやすくできる。
 なお、A/B比、A/C比、及びB/C比の好適な範囲として、それぞれ3段階示したが、各段階を適宜組み合わせることが可能である。例えば、A/B比を1段階目の1:10~10:1、A/C比を2段階目の3:1~15:1、B/C比を3段階目の4:1~13:1としてもよい。
<(D)芳香族化合物>
 本発明のボイラ用脱酸素剤は、さらに、(D)成分として、少なくとも二以上のヒドロキシ基で置換されてなり、アミノ基又は置換アミノ基を有さない芳香族化合物を含有していてもよい。
 (D)成分の芳香族化合物を含むことにより、幅広い温度条件において、酸素除去効率をより高めることができる。
 (D)成分の芳香族化合物は、二つのヒドロキシ基で置換されたものが好ましく、ベンゼン環の1,3位の位置にヒドロキシ基が置換した芳香族化合物がより好ましい。
 (D)成分の芳香族化合物としては、ハイドロキノン、ピロガロール、メチルハイドロキノン、トリメチルハイドロキノン、t-ブチルハイドロキノン、t-ブチルカテコール、オルシノール(別名:5-メチルレゾルシノール)、レゾルシノール及び没食子酸プロピル等が挙げられる。これらの中でも、幅広い温度条件での酸素除去効果の観点から、オルシノール、レゾルシノール及び没食子酸プロピルから選ばれる1種以上が好ましい。
 (A)成分のヒドロキシルアミン化合物及び(B)成分の複素環式化合物の合計質量と、(C)成分のアミノフェノール誘導体及び(D)成分の芳香族化合物の合計質量との比[((A)成分の質量+(B)成分の質量):((C)成分の質量+(D)成分の質量)]は、酸素除去効率の観点から、2:1~20:1であることが好ましく、3:1~15:1であることがより好ましく、5:1~13:1であることがさらに好ましい。
[ボイラ水系の脱酸素方法]
 本発明のボイラ水系の脱酸素方法は、上述した本発明のボイラ用脱酸素剤をボイラ水系に添加するものである。
 ボイラ水系に対するボイラ用脱酸素剤の添加量は、処理対象水の溶存酸素濃度や水質等に応じて適宜決められ、特に限定されないが、(A)~(C)成分の相乗効果の観点から、ボイラ給水中の(A)~(C)成分の濃度が、下記の範囲となるようにすることが好ましい。
 ボイラ給水中の(A)成分のヒドロキシルアミン化合物の濃度は、0.001~1000mg/Lとすることが好ましく、0.005~500mg/Lとすることがより好ましく、0.01~200mg/Lとすることがさらに好ましい。
 ボイラ給水中の(B)成分の複素環式化合物の濃度は、0.001~1000mg/Lとすることが好ましく、0.005~500mg/Lとすることがより好ましく、0.01~200mg/Lとすることがさらに好ましい。
 ボイラ給水中の(C)成分のアミノフェノール誘導体の濃度は、0.0001~500mg/Lとすることが好ましく、0.001~100mg/Lとすることがより好ましく、0.002~50mg/Lとすることがさらに好ましい。
 なお、(A)~(C)成分のボイラ給水中の濃度の好適な範囲として、それぞれ3段階示したが、各段階を適宜組み合わせることが可能である。例えば、(A)成分の濃度を1段階目の0.001~1000mg/L、(B)成分の濃度を2段階目の0.05~500mg/L、(C)成分の濃度を3段階目の0.002~50mg/Lとしてもよい。
 また、ボイラ給水中の(A)成分~(C)成分の濃度の比を、上述したボイラ用脱酸素剤中の(A)成分~(C)成分の質量比に準じるようにすることが好ましい。
 さらに、(D)成分の芳香族化合物を添加する場合、ボイラ給水中の(D)成分の芳香族化合物の濃度は、0.0002~500mg/Lとすることが好ましく、0.001~100mg/Lとすることがより好ましく、0.002~50mg/Lとすることがさらに好ましい。
 その際、ボイラ給水中の(A)成分~(D)成分の濃度の比を、上述したボイラ用脱酸素剤中の(A)成分~(D)成分の質量比に準じるようにすることが好ましい。
 ボイラ用脱酸素剤の注入点は特に限定されず、設備状況に合わせて適切な箇所に注入することができるが、給水系に注入することが好ましい。
 ボイラ水系にボイラ用脱酸素剤を添加する際は、(A)成分~(C)成分、並びに必要に応じて添加する(D)成分を同時に添加してもよいし、これらを別々に添加してもよい。
<その他の薬剤>
 本発明の溶存酸素除去方法において、通常のボイラ水処理に用いられる中和性アミン、リン酸塩、アルカリ剤、防食剤等のその他の薬剤を適宜併用することができる。
 次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
1.試験1(給水系の一般的温度条件での酸素除去効果の確認)
 40℃にて水中の溶存酸素を500μg/Lに調整した超純水を、容量4Lの圧力容器に給水した。給水に水酸化ナトリウムを添加し、pHを10.5に調整した。さらに、給水中に、表1の組成の脱酸素剤を表1の濃度で添加した。蒸気を発生せずに、缶内温度180℃、缶内圧力1.0MPaの条件を24時間維持した。ここでブロー水を熱交換器で室温に冷却し、冷却後の水中の溶存酸素濃度を溶存酸素計を用いて測定し、脱酸素率(%)[(試験前の溶存酸素濃度-試験後の溶存酸素濃度)×100/試験前の溶存酸素濃度]を算出した。
Figure JPOXMLDOC01-appb-T000013
 表1及び表2中、DEHAは、N,N-ジエチルヒドロキシルアミンを示し、1A4MPは、1-アミノ-4-メチルピペラジンを示し、4A3Mは、4-アミノ-3-メチルフェノールを示す。
2.試験2(ボイラ缶内の一般的温度条件での酸素除去効果の確認)
 60℃にて空気中の酸素で飽和させたイオン交換水を、容量5Lの自然循環式テストボイラに給水した。さらに、給水中に、表2の組成の脱酸素剤を表2の濃度で添加した。この給水に第三リン酸ナトリウムを給水に対して1mg/L添加しながら、缶内温度290℃、缶内圧力7.5MPa、蒸発量7L/h、ブロー量0.8L/hの条件にて運転した。発生した蒸気を熱交換器にて完全に凝縮して室温の凝縮水とし、この凝縮水中の溶存酸素濃度を溶存酸素計を用いて測定した。
Figure JPOXMLDOC01-appb-T000014
 表1及び表2の結果から、(A)成分のヒドロキシルアミン化合物、(B)成分のN-置換アミノ基を有する複素環式化合物、及び(C)成分のアミノフェノール誘導体を併用してなる本発明のボイラ用脱酸素剤は、給水系の一般的温度条件~ボイラ缶内の一般的温度条件の幅広い温度条件において、酸素除去効率を高めることができ、給水~ボイラ水系における腐食を効果的に防止することができることが確認できる。特に、(A)~(C)成分に加えて、(D)成分の芳香族化合物を有するボイラ用脱酸素剤(実施例1-2、2-3及び2-4)は、前記効果に極めて優れることが確認できる。
 一方、(A)成分のヒドロキシルアミン化合物、(B)成分のN-置換アミノ基を有する複素環式化合物、及び(C)成分のアミノフェノール誘導体の何れかを有さない比較例のボイラ用脱酸素剤は、給水系の一般的温度条件~ボイラ缶内の一般的温度条件の幅広い温度条件において、酸素除去効率を高めることができない。例えば、(A)成分及び(B)成分を含むが(C)成分を含まない脱酸素剤は、高温環境(ボイラ缶内の一般的温度条件)での酸素除去効率が実施例に近い値を示すが(比較例2-1、2-2及び2-14)、低温環境(給水系の一般的温度条件)での酸素除去効率が不十分である(比較例1-1及び1-7)。また、(A)成分及び(C)成分を含むが(B)成分を含まない脱酸素剤は、低温環境(給水系の一般的温度条件)での酸素除去効率が実施例に近い値を示すが(比較例1-2)、高温環境での酸素除去効率が不十分である(比較例2-3及び2-4)。また、(A)成分を含まない脱酸素剤は、低温環境(給水系の一般的温度条件)での酸素除去効率が不十分である(比較例1-4及び1-6)。

Claims (10)

  1.  (A)下記一般式(I)で表されるヒドロキシルアミン化合物、(B)N-置換アミノ基を有する複素環式化合物、及び(C)下記一般式(II)で表されるアミノフェノール誘導体を含むボイラ用脱酸素剤。
    Figure JPOXMLDOC01-appb-C000001

    [式(I)中、R及びRは、それぞれ独立して、炭素数1~5のアルキル基を示す。]
    Figure JPOXMLDOC01-appb-C000002

    [式(II)中、R~Rは、それぞれ独立して、(a)下記一般式(III)、(b)-OR10及び(c)-R11の何れかを示し、R~Rの中の少なくとも1つは(a)を示す。R10及びR11は、それぞれ独立して、水素原子又は炭素数1~4のアルキル基を示す。]
    Figure JPOXMLDOC01-appb-C000003

    [式(III)中、Rは単結合又は炭素数1~4のアルキレン基を示す。R及びRは、それぞれ独立して、水素原子又は炭素数1~4のアルキル基を示す。]
  2.  前記(A)成分のヒドロキシルアミン化合物が、N,N-ジエチルヒドロキシルアミンである請求項1に記載のボイラ用脱酸素剤。
  3.  前記(B)成分の複素環式化合物が、1-アミノ-4-メチルピペラジン及び1-アミノピロリジンから選ばれる1種以上である請求項1又は2に記載のボイラ用脱酸素剤。
  4.  前記(C)成分のアミノフェノール誘導体が、4-アミノフェノール、2-アミノフェノール、4-アミノ-3-メチルフェノール、3-アミノ-4-メチルフェノール及び4-アミノ-3-(アミノメチル)-フェノールから選ばれる1種以上である請求項1から3の何れか1項に記載のボイラ用脱酸素剤。
  5.  前記(A)成分のヒドロキシルアミン化合物と、前記(B)成分の複素環式化合物との質量比が1:10~10:1であり、前記(A)成分のヒドロキシルアミン化合物と、前記(C)成分のアミノフェノール誘導体との質量比が2:1~20:1であり、前記(B)成分の複素環式化合物と、前記(C)成分のアミノフェノール誘導体との質量比が2:1~20:1である請求項1から4の何れか1項に記載のボイラ用脱酸素剤。
  6.  さらに、(D)少なくとも二以上のヒドロキシ基で置換されてなり、アミノ基又は置換アミノ基を有さない芳香族化合物を含有する請求項1から5の何れか1項に記載のボイラ用脱酸素剤。
  7.  前記(D)成分の芳香族化合物が、オルシノール、レゾルシノール及び没食子酸プロピルから選ばれる1種以上である請求項6に記載のボイラ用脱酸素剤。
  8.  前記(A)成分のヒドロキシルアミン化合物及び前記(B)成分の複素環式化合物の合計質量と、前記(C)成分のアミノフェノール誘導体及び前記(D)成分の芳香族化合物の合計質量との比が、2:1~20:1である請求項6又は7に記載のボイラ用脱酸素剤。
  9.  請求項1~8の何れか1項に記載のボイラ用脱酸素剤をボイラ水系に添加する、ボイラ水系の脱酸素方法。
  10.  前記(A)成分のヒドロキシルアミン化合物のボイラ給水中の濃度が0.001~1000mg/L、前記(B)成分の複素環式化合物のボイラ給水中の濃度が0.001~1000mg/L、前記(C)成分のアミノフェノール誘導体のボイラ給水中の濃度が0.0001~500mg/Lとなるように前記ボイラ脱酸素剤を添加する、請求項9に記載のボイラ水系の脱酸素方法。
PCT/JP2017/023600 2016-07-06 2017-06-27 ボイラ用脱酸素剤、及びボイラ水系の脱酸素方法 WO2018008477A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020187036516A KR20190025555A (ko) 2016-07-06 2017-06-27 보일러용 탈산소제 및 보일러수계의 탈산소방법
US16/310,589 US20190144314A1 (en) 2016-07-06 2017-06-27 Deoxidizing agent for boilers and method for deoxidizing boiler water system
CN201780037878.4A CN109312476A (zh) 2016-07-06 2017-06-27 锅炉用脱氧剂及锅炉水体系的脱氧方法
EP17824083.4A EP3489387A4 (en) 2016-07-06 2017-06-27 DEOXIDING AGENT FOR BOILERS AND METHOD FOR DEOXIDATING A BOILER WATER SYSTEM
SG11201811145RA SG11201811145RA (en) 2016-07-06 2017-06-27 Deoxidizing agent for boilers and method for deoxidizing boiler water system
PH12018502720A PH12018502720A1 (en) 2016-07-06 2018-12-21 Deoxidizing agent for boilers and method for deoxidizing boiler water system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016134271A JP6256538B2 (ja) 2016-07-06 2016-07-06 ボイラ用脱酸素剤、及びボイラ水系の脱酸素方法
JP2016-134271 2016-07-06

Publications (1)

Publication Number Publication Date
WO2018008477A1 true WO2018008477A1 (ja) 2018-01-11

Family

ID=60912639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023600 WO2018008477A1 (ja) 2016-07-06 2017-06-27 ボイラ用脱酸素剤、及びボイラ水系の脱酸素方法

Country Status (9)

Country Link
US (1) US20190144314A1 (ja)
EP (1) EP3489387A4 (ja)
JP (1) JP6256538B2 (ja)
KR (1) KR20190025555A (ja)
CN (1) CN109312476A (ja)
PH (1) PH12018502720A1 (ja)
SG (1) SG11201811145RA (ja)
TW (1) TW201816188A (ja)
WO (1) WO2018008477A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11816591B2 (en) 2019-03-20 2023-11-14 Sony Group Corporation Reinforcement learning through a double actor critic algorithm
US11932795B2 (en) * 2020-06-03 2024-03-19 Ecolab Usa Inc. Aromatic amine epoxide adducts for corrosion inhibition
US11939553B2 (en) 2020-06-03 2024-03-26 Ecolab Usa Inc. Non-caustic cleaning compositions and uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020100896A1 (en) * 2000-12-05 2002-08-01 Kurita Water Industries Ltd. Oxygen scavenger
JP2003147554A (ja) * 2001-11-14 2003-05-21 Kurita Water Ind Ltd 蒸気発生プラント用水処理剤
JP2004323954A (ja) * 2003-04-28 2004-11-18 Kurita Water Ind Ltd 脱酸素剤及び脱酸素処理方法
WO2015018508A1 (de) * 2013-08-07 2015-02-12 Bk Giulini Gmbh Synergetisch wirkende mischung zur verwendung als sauerstoffbindemittel und als korrosionsinhibitor in wäsrrigen systemen

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2515609A (en) * 1947-09-22 1950-07-18 Chemical Process Company Method of removing oxygen
NL261919A (ja) * 1960-03-03
US4728497A (en) 1980-12-15 1988-03-01 Betz Laboratories, Inc. Use of aminophenol compounds as oxygen scavengers in an aqueous medium
US4540494A (en) * 1983-03-10 1985-09-10 Veb Leuna Werke "Walter Ulbricht" Method for the removal of oxygen dissolved in water
CA1210930A (en) * 1984-04-18 1986-09-09 Harvey W. Thompson Composition and method for deoxygenation
JPS6363272A (ja) 1986-09-03 1988-03-19 Konica Corp 読取装置
US4929364A (en) 1987-06-19 1990-05-29 Nalco Chemical Company Amine/gallic acid blends as oxygen scavengers
EP0360009B1 (en) * 1988-08-20 1996-05-08 Nitto Denko Corporation Method of removing dissolved gas from liquid
JPH07106300B2 (ja) * 1989-12-08 1995-11-15 財団法人産業創造研究所 燃焼排ガス中の窒素酸化物除去法
JP6642023B2 (ja) * 2016-01-19 2020-02-05 栗田工業株式会社 脱酸素剤及び脱酸素処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020100896A1 (en) * 2000-12-05 2002-08-01 Kurita Water Industries Ltd. Oxygen scavenger
JP2003147554A (ja) * 2001-11-14 2003-05-21 Kurita Water Ind Ltd 蒸気発生プラント用水処理剤
JP2004323954A (ja) * 2003-04-28 2004-11-18 Kurita Water Ind Ltd 脱酸素剤及び脱酸素処理方法
WO2015018508A1 (de) * 2013-08-07 2015-02-12 Bk Giulini Gmbh Synergetisch wirkende mischung zur verwendung als sauerstoffbindemittel und als korrosionsinhibitor in wäsrrigen systemen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3489387A4 *

Also Published As

Publication number Publication date
CN109312476A (zh) 2019-02-05
KR20190025555A (ko) 2019-03-11
EP3489387A1 (en) 2019-05-29
SG11201811145RA (en) 2019-01-30
US20190144314A1 (en) 2019-05-16
PH12018502720A1 (en) 2019-07-08
EP3489387A4 (en) 2020-04-01
JP2018003124A (ja) 2018-01-11
JP6256538B2 (ja) 2018-01-10
TW201816188A (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
TWI515340B (zh) 鍋爐的抗蝕方法
US7112284B2 (en) Oxygen scavenger and the method for oxygen reduction treatment
JPS60248287A (ja) 酸素捕捉剤組成物及び方法
JP6256538B2 (ja) ボイラ用脱酸素剤、及びボイラ水系の脱酸素方法
JP6160741B2 (ja) ボイラの防食方法及び防食剤
KR20110083683A (ko) 수성 매질에서 부식 억제 방법
JP6642023B2 (ja) 脱酸素剤及び脱酸素処理方法
JP2009285530A (ja) ボイラ装置用水処理剤及びボイラ装置の水処理方法
JP2006274337A (ja) ボイラ水系処理剤、及び、ボイラ水系処理方法
KR20190067015A (ko) 카보히드라지드를 포함하는 발전소 보일러 계통의 수처리 색조용 조성물
JP2003231980A (ja) ボイラ用の防食剤
KR20190067037A (ko) 디에틸히드록실아민을 포함하는 발전소 보일러 계통의 수처리 색조용 조성물
JP4273345B2 (ja) ボイラ給水用脱酸素剤
CN112805408A (zh) 通过部分分解在水性传热系统中释放杂环脂族胺的化合物
JPH1119510A (ja) ボイラ用脱酸素剤
JP2005154905A (ja) 脱酸素剤
JP2005200768A (ja) 脱酸素剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17824083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187036516

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017824083

Country of ref document: EP

Effective date: 20190206