WO2015018175A1 - 连续碳纤维增强的坩埚预制体及其制备方法 - Google Patents
连续碳纤维增强的坩埚预制体及其制备方法 Download PDFInfo
- Publication number
- WO2015018175A1 WO2015018175A1 PCT/CN2014/000248 CN2014000248W WO2015018175A1 WO 2015018175 A1 WO2015018175 A1 WO 2015018175A1 CN 2014000248 W CN2014000248 W CN 2014000248W WO 2015018175 A1 WO2015018175 A1 WO 2015018175A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- crucible
- carbon fiber
- preform
- mesh
- fiber cloth
- Prior art date
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 55
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 55
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 54
- 238000002360 preparation method Methods 0.000 title claims abstract description 6
- 239000000835 fiber Substances 0.000 claims abstract description 48
- 239000004744 fabric Substances 0.000 claims abstract description 42
- 238000004804 winding Methods 0.000 claims abstract description 4
- 238000004080 punching Methods 0.000 claims abstract 4
- 239000002131 composite material Substances 0.000 claims description 19
- 230000002787 reinforcement Effects 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 238000001467 acupuncture Methods 0.000 claims description 5
- 238000000465 moulding Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000005336 cracking Methods 0.000 abstract 1
- 230000008961 swelling Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 49
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 17
- 229910052799 carbon Inorganic materials 0.000 description 13
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 8
- 229910052707 ruthenium Inorganic materials 0.000 description 8
- 241000239226 Scorpiones Species 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- 230000003014 reinforcing effect Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
- C04B35/83—Carbon fibres in a carbon matrix
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5252—Fibers having a specific pre-form
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
Definitions
- the present invention relates to the field of bismuth technology, and more particularly to a continuous carbon fiber reinforced ruthenium preform and a preparation method thereof.
- quartz crucible In the process of single crystal silicon drawing and polysilicon smelting, quartz crucible is used to hold the reaction raw materials, and the crucible made of pure quartz at high temperature is softened and deformed, so it is necessary to use support members to maintain the shape of the quartz crucible.
- Isotropic graphite materials have high heat resistance and high thermal shock resistance, especially good chemical stability, difficult to react with generated reactive gases such as SiO, and react with SiO 2 in quartz crucible materials. The lower rate has always been the material of choice for quartz crucibles.
- Carbon/carbon composite ⁇ as a carbon pot with high designability and excellent performance is an important technical direction for the manufacture of large-sized graphite crucibles, and the carbon fiber preform is a skeleton material of carbon/carbon composite ⁇ .
- Carbon/carbon composite obtained by forming a carbon fiber preform by a conventional fiber winding method and a carbon cloth layering method there is no connection between the layers, the layer is easily delaminated, and the circumferential direction is low in expansion resistance.
- the carbon cloth/net tire asymmetry three-dimensional preform is formed by acupuncture technology, and the bonding strength between layers is high, and it is not easy to stratify.
- the carbon cloth is sawtoothed and cut to cause continuous fibers in the entire structure of the preform.
- the content is small, the bottom of the crucible is multi-petal coated, the fiber continuity is poor, and it is easy to crack when carrying a large amount of heavy objects for a long time.
- the continuous fibers of the scorpion and the scorpion are still insufficient.
- the joint of the bottom of the crucible is easy to fall off as the load-bearing stress concentration point of the crucible, which affects the service life of the crucible. Summary of the invention
- the first object of the present invention is to overcome the deficiencies of the prior art mentioned above, and to provide a continuous carbon fiber reinforced ruthenium preform which has excellent mechanical properties and stable structure, and is resistant to expansion under high load by carbon/carbon composite. Good, good structural stability, high thermal conductivity and long service life.
- a second object of the present invention is to provide a method for producing a continuous carbon fiber reinforced ruthenium preform as described above.
- the present invention provides the following technical solution: a continuous carbon fiber reinforced ruthenium preform, which is formed by a base unit layering, a continuous fiber reinforced layer, and a needle-formed quasi three-dimensional fabric.
- the base unit layup consists of a carbon fiber cloth/mesh tire composite or a carbon fiber cloth and a mesh tire combination layer.
- the ruthenium preform has 5% to 30% of continuous fibers, 50% to 85% of carbon fiber cloth, and 5% to 20% of net tires.
- the carbon fiber cloth/mesh tire composite is formed by needle-fixing a carbon fiber cloth and a net tire.
- the carbon fiber cloth has an areal density of 100 g/m 2 to 640 g/m 2 , and the fiber size is further, the net tire is a mat made of chopped carbon fiber, and the areal density is 20 g/m. 2 ⁇ 300 g / m 2 , fiber size is 3K.
- the continuous fiber is multi-step multiple rotation, and the fiber size is 1 inch.
- the base unit layup is a multi-step multiple rotation staggered stitching seam.
- the overall structure layer of the ruthenium preform has a density of 6 layers/cm to 13 layers/cm, and a bulk density of 0. 30 g/cm 3 to 0. 55 g/cm 3 .
- step (1) carbon fiber cloth / net tire composite material or carbon fiber cloth and net tire combination layer according to the integral structural layer and the local reinforcement layer for cutting and pasting;
- step (2) and step (3) are fixedly connected by acupuncture, and the needle density is 15-35 needles/cm 2 ;
- step 3.1 the projection of the central axis of the preform on the plane formed by the chord and the gangming trajectory should be projected on the center line of the plane, and the total number of aliquots on the circumference is 2, parallel
- the chord spacing is 3 awake, and the angle between the central axis of the preform and the center line of the plane is 0 ° ⁇ 15 °.
- step 3.2 the projection of the central axis of the preform on the plane formed by the intersecting chord and the gangming trajectory line is projected on the center line of the plane, and the total number of points on the circumference is 6, and the intersection
- the center angle corresponding to the string is 10 ° ⁇ 180 °
- the angle between the central axis of the preform and the plane is 0 ° ⁇ 45 °.
- the present invention has an advantageous effect of ensuring high load strength because the preform increases the overall structural stability by increasing the content of continuous fibers in the overall structure along the curved surface.
- the above continuous fibers form a cross-link at the bottom of the crucible, and serve as a support under load load. It compensates for the lack of fiber continuity and the weak bottom strength caused by the multi-valve coating of the structural unit, and avoids the splitting of the bottom of the crucible.
- the sill bottom joint area is reinforced with continuous fibers along the curved surface to ensure sufficient strength of the weak part.
- the oblique cross-grid structure formed by the slanting cross-grid structure is easily deformed under the action of high load and expansion stress, so that absorption is applied.
- the stress is to avoid the falling off of the joint area of the scorpion.
- the continuous fiber effectively connects the gangs, the bilge and the joints, ensuring the shape stability of the raft under high strength and expansion stress. Therefore, the niobium prepared by the present invention can ensure high strength, maintain excellent shape stability, and meet the requirements for use of a large-sized crystalline silicon furnace.
- the radial direction of each part can be changed.
- the mechanical properties, or the mechanical properties of each part can be changed according to the functional use.
- Figure 1 is a schematic view of the structure of the present invention.
- Figure 2 is a schematic view showing the structure of the overall structural layer layup after cutting with the base unit.
- Figure 3 is a schematic view showing the structure of the partial reinforcement layer layer after cutting with the base unit.
- Figure 4 is a partial schematic view of a fiber reinforced mode-enhanced mode.
- Fig. 5 is a schematic plan view showing a fiber reinforced manner-continuous fiber reinforced structure.
- Figure 6 is a partial schematic view of the fiber reinforced mode two enhancement mode.
- Figure 7 is a schematic plan view showing the structure of the fiber reinforced two continuous fiber reinforced structure.
- the needle-punched quasi-three-dimensional fabric is composed of a composite layer 5 and a partial reinforcement layer 6.
- the base unit is composed of a layer of 3K plain carbon fiber cloth 12 and a layer of density 40g/m 2 net tire 11 pre-needled carbon fiber cloth/mesh tire composite 10 having an areal density of 320g/m 2 and a pre-needling density of 2 needles / cm 2 ;
- the number of slits 13 of the carbon fiber cloth/net tire composite 10 of the integral structural layer 5 is 6;
- the number of slits 13 of the carbon fiber cloth/net tire composite 10 for the local reinforcing layer 6 is 6;
- the overall structural layer 5 is 40 layers; the local reinforcement layer 6 is 20 layers; the fiber reinforcement method 7 is 30 layers;
- the needle density is 25 needles / cm 2 ; ⁇ cm, a bulk density of 0. 45g / cm 3, the ring 3 crucible help to T-type peeling strength was 424. lN / m.
- Example 2
- the base unit is composed of a 12K twill carbon fiber cloth 12 having a density of 400 g/m 2 and a 12 K mesh tire 1 having a layer density of 60 g/m 2 .
- the pre-needled carbon fiber cloth/mesh tire composite 10 has an areal density of 320 g. /m 2 , the pre-needling density is 3 needles/cm 2 ;
- the number of slits 13 of the carbon fiber cloth 12 and the net tire 11 of the integral structural layer 5 is 4, and the number of slits 13 of the carbon fiber cloth 12 and the net tire 11 of the partial reinforcing layer 6 of FIG. 2 is 4, as shown in FIG.
- the fiber-reinforced mode 7 continuous fibers form three equal division directions ( n 2 3) on the circumference of the gang start 4, and the number of parallel chords 14 formed in a single direction is 21, the spacing is 20 awake, the central axis 9 and the chord 14 and ⁇ The line angle ⁇ 18 of the entangled trajectory forming plane 16 is 5 °; as shown in FIGS.
- the fiber reinforced mode 2 8 continuous fibers are formed at the center of the chord 4 on the circumference of the rim 10 at the central angle ⁇ 20 100 °, the central axis 9 chord 19 and the gangming trajectory trajectory form a plane 22 with a line angle ⁇ 24 of 0 °, and the total unequal point m on the circumference of the gang open 4 is 100; as shown in Figures 6 and 7; Number design: the overall structural layer 5 is 23 layers; the local reinforcing layer 6 is 9 layers; the fiber-reinforced mode 7 is 23 layers; the fiber-reinforced mode 2 is 16 layers;
- the needle density is 30 needles / cm 2 ;
- a base unit configured to level density 320g / m 6K Satin 2 Carbon fiber cloth 12 with two levels density 50g / m 12K web 112 of the tread;
- the number of the crevice shears 10 of the carbon fiber cloth 12 and the net tire 11 of the integral structural layer 5 is 6 ;
- the local reinforcing layer 6 is made of carbon fiber cloth 12, and the number of slits 10 of the net tire 11 is 6;
- the center angle ⁇ 20 of the cross chord 19 formed by the fiber reinforced mode 2 8 continuous fibers on the circumference of the gang start 4 is 90°, and the center axis 9 and the chord 19 and the gangming trajectory form a plane angle 22 of the plane 22 of 24 ° , the total number of equal points m on the circumference of the gang start 4 is 82;
- the number of layers is designed: the overall structural layer 5 is 23 layers; the local reinforcing layer 6 is 9 layers; the fiber reinforced mode 2 is 30 layers;
- the needle density is 30 needles / cm 2 ;
- the formed preform has an outer diameter of 560.5 mm, a continuous fiber content of 27.0%, a carbon fiber cloth content of 53.5%, a net tire content of 19.5%, an overall structural layer interlayer density of 6.5 layers/cm, and a bulk density of 0.32 g/cm. 3 , the ⁇ 3 3 ring T-peel strength is 601.6N / m.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Nonwoven Fabrics (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Ceramic Products (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015560530A JP6487856B2 (ja) | 2013-08-06 | 2014-03-11 | 連続炭素繊維で強化された坩堝の予備成形体およびその製造方法 |
KR1020157024320A KR101877280B1 (ko) | 2013-08-06 | 2014-03-11 | 연속 탄소섬유 강화 도가니 예비 성형체 및 이의 제조방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310337762.6 | 2013-08-06 | ||
CN201310337762.6A CN103482995B (zh) | 2013-08-06 | 2013-08-06 | 连续碳纤维增强的坩埚预制体及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015018175A1 true WO2015018175A1 (zh) | 2015-02-12 |
Family
ID=49823658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/000248 WO2015018175A1 (zh) | 2013-08-06 | 2014-03-11 | 连续碳纤维增强的坩埚预制体及其制备方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6487856B2 (zh) |
KR (1) | KR101877280B1 (zh) |
CN (1) | CN103482995B (zh) |
WO (1) | WO2015018175A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108411498A (zh) * | 2018-05-17 | 2018-08-17 | 佛山维顺翔复合材料有限公司 | 一种埚帮自动成型机 |
CN111703140A (zh) * | 2020-05-22 | 2020-09-25 | 宜兴市华恒高性能纤维织造有限公司 | 一种双层连续缠绕针刺筒形件及其制备方法 |
CN112341232A (zh) * | 2020-10-28 | 2021-02-09 | 西安超码科技有限公司 | 一种炭/炭坩埚及其制造方法 |
CN112553779A (zh) * | 2020-12-20 | 2021-03-26 | 西安美兰德新材料有限责任公司 | 一种针刺碳碳埚托的生产工艺 |
CN113858477A (zh) * | 2021-11-23 | 2021-12-31 | 常州善巧复合材料科技有限公司 | 抗热振预制体及其制备工艺 |
WO2023217360A1 (de) * | 2022-05-11 | 2023-11-16 | Schunk Kohlenstofftechnik Gmbh | Verfahren zur herstellung eines vorformlings und vorformling sowie verfahren zur ausbildung eines faserverbundbauteils und faserverbundbauteil |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103482995B (zh) * | 2013-08-06 | 2015-01-07 | 江苏天鸟高新技术股份有限公司 | 连续碳纤维增强的坩埚预制体及其制备方法 |
CN106393727A (zh) * | 2015-07-16 | 2017-02-15 | 江苏天鸟高新技术股份有限公司 | 一种三维预制体 |
CN106245117B (zh) * | 2016-08-29 | 2019-02-01 | 湖南省鑫源新材料股份有限公司 | 整体式碳碳坩埚及其制造方法 |
CN108997019B (zh) * | 2017-06-02 | 2021-04-20 | 上海新昇半导体科技有限公司 | 石墨坩埚及其制造方法 |
CN107336377B (zh) * | 2017-06-09 | 2019-10-11 | 长沙晶优新材料科技有限公司 | 一种多曲面纤维布预制件的缝合方法 |
CN109354507A (zh) * | 2018-11-02 | 2019-02-19 | 西安超码科技有限公司 | 一种新型长寿命炭/炭复合材料坩埚预制体的制作方法 |
CN111002435A (zh) * | 2019-12-19 | 2020-04-14 | 保定顺天新材料股份有限公司 | 一种单晶硅炉用碳碳坩埚预制体编织工艺 |
CN114717508A (zh) * | 2020-12-22 | 2022-07-08 | 武汉苏泊尔炊具有限公司 | 抗菌刀具及抗菌刀具的制造方法 |
CN113121254B (zh) * | 2021-04-19 | 2022-09-16 | 福建康碳复合材料科技有限公司 | 一种大尺寸r角坩埚用预制体的制备方法 |
CN113151893A (zh) * | 2021-04-29 | 2021-07-23 | 上海骐杰碳素材料有限公司 | 纤维碗形预制体、碳碳碗体及包括其的坩埚 |
CN113277867A (zh) * | 2021-05-11 | 2021-08-20 | 广州三的投资管理企业(有限合伙) | 一种碳/碳/碳化硅复合材料坩埚的制备方法 |
CN113427843B (zh) * | 2021-08-16 | 2022-11-11 | 因达孚先进材料(苏州)有限公司 | 一种单晶硅炉坩埚碳纤维预制体的制备方法 |
CN113999034B (zh) * | 2021-11-12 | 2023-03-10 | 青海中昱新材料科技有限公司 | 一种高寿命碳碳埚帮的制备方法 |
CN114315399B (zh) * | 2021-12-23 | 2023-06-27 | 湖南金博碳素股份有限公司 | 碳/碳复合模具及其制备方法和应用 |
CN114656271A (zh) * | 2022-04-19 | 2022-06-24 | 浙江德鸿碳纤维复合材料有限公司 | 一种碳碳坩埚及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101319353A (zh) * | 2008-05-20 | 2008-12-10 | 湖南金博复合材料科技有限公司 | 炭/炭复合材料坩埚及其生产工艺 |
CN102060555A (zh) * | 2010-11-24 | 2011-05-18 | 西安超码科技有限公司 | 一种高强度炭/炭热压模具的制造方法 |
CN102093069A (zh) * | 2010-12-03 | 2011-06-15 | 西安超码科技有限公司 | 一种提高炭/炭坩埚强度的炭布铺层方法 |
CN102140676A (zh) * | 2010-02-01 | 2011-08-03 | 科发伦材料株式会社 | 碳纤维补强碳复合材料坩埚以及该坩埚的制造方法 |
CN102166840A (zh) * | 2011-01-27 | 2011-08-31 | 江苏天鸟高新技术股份有限公司 | Z向有连续炭纤维预制体 |
CN102992800A (zh) * | 2012-08-17 | 2013-03-27 | 江苏天鸟高新技术股份有限公司 | 多晶硅铸锭炉热场s形加热器碳纤维预制体的制备方法 |
CN103482995A (zh) * | 2013-08-06 | 2014-01-01 | 江苏天鸟高新技术股份有限公司 | 连续碳纤维增强的坩埚预制体及其制备方法 |
CN203411478U (zh) * | 2013-08-06 | 2014-01-29 | 江苏天鸟高新技术股份有限公司 | 连续碳纤维增强的坩埚预制体 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3279916B2 (ja) * | 1996-03-28 | 2002-04-30 | 日本カーボン株式会社 | シリコン単結晶引上げ用炭素繊維強化炭素ルツボ |
JP4029147B2 (ja) * | 1996-06-27 | 2008-01-09 | 東洋炭素株式会社 | 単結晶引き上げ用ルツボ及びその製造方法 |
JPH11255586A (ja) * | 1998-03-12 | 1999-09-21 | Sumitomo Metal Ind Ltd | 単結晶引き上げ用炭素繊維強化炭素材るつぼおよびその製造方法 |
US6837952B1 (en) * | 1999-11-24 | 2005-01-04 | Snecma Moteurs | Method for making a bowl in thermostructural composite material |
CN100432023C (zh) * | 2006-07-20 | 2008-11-12 | 西安超码科技有限公司 | 单晶硅拉制炉用热场炭/炭坩埚的制备方法 |
CN100400471C (zh) * | 2006-07-20 | 2008-07-09 | 西安超码科技有限公司 | 单晶硅拉制炉用热场炭/炭导流筒的制备方法 |
CN100497753C (zh) * | 2007-05-23 | 2009-06-10 | 西安超码科技有限公司 | 单晶硅拉制炉用炭/炭保温罩的制备方法 |
KR101230568B1 (ko) * | 2007-08-21 | 2013-02-06 | 후난 킹보 카본-카본 컴포지트 컴퍼니 리미티드 | 탄소/탄소 복합재료 도가니 및 그 생산공정 |
JP2009203093A (ja) * | 2008-02-26 | 2009-09-10 | Ibiden Co Ltd | ルツボ保持部材 |
JP2011201750A (ja) * | 2010-03-26 | 2011-10-13 | Toyo Tanso Kk | C/cコンポジット材及びその製造方法 |
-
2013
- 2013-08-06 CN CN201310337762.6A patent/CN103482995B/zh active Active
-
2014
- 2014-03-11 WO PCT/CN2014/000248 patent/WO2015018175A1/zh active Application Filing
- 2014-03-11 JP JP2015560530A patent/JP6487856B2/ja active Active
- 2014-03-11 KR KR1020157024320A patent/KR101877280B1/ko active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101319353A (zh) * | 2008-05-20 | 2008-12-10 | 湖南金博复合材料科技有限公司 | 炭/炭复合材料坩埚及其生产工艺 |
CN102140676A (zh) * | 2010-02-01 | 2011-08-03 | 科发伦材料株式会社 | 碳纤维补强碳复合材料坩埚以及该坩埚的制造方法 |
CN102060555A (zh) * | 2010-11-24 | 2011-05-18 | 西安超码科技有限公司 | 一种高强度炭/炭热压模具的制造方法 |
CN102093069A (zh) * | 2010-12-03 | 2011-06-15 | 西安超码科技有限公司 | 一种提高炭/炭坩埚强度的炭布铺层方法 |
CN102166840A (zh) * | 2011-01-27 | 2011-08-31 | 江苏天鸟高新技术股份有限公司 | Z向有连续炭纤维预制体 |
CN102992800A (zh) * | 2012-08-17 | 2013-03-27 | 江苏天鸟高新技术股份有限公司 | 多晶硅铸锭炉热场s形加热器碳纤维预制体的制备方法 |
CN103482995A (zh) * | 2013-08-06 | 2014-01-01 | 江苏天鸟高新技术股份有限公司 | 连续碳纤维增强的坩埚预制体及其制备方法 |
CN203411478U (zh) * | 2013-08-06 | 2014-01-29 | 江苏天鸟高新技术股份有限公司 | 连续碳纤维增强的坩埚预制体 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108411498A (zh) * | 2018-05-17 | 2018-08-17 | 佛山维顺翔复合材料有限公司 | 一种埚帮自动成型机 |
CN108411498B (zh) * | 2018-05-17 | 2023-07-21 | 张晓红 | 一种埚帮自动成型机 |
CN111703140A (zh) * | 2020-05-22 | 2020-09-25 | 宜兴市华恒高性能纤维织造有限公司 | 一种双层连续缠绕针刺筒形件及其制备方法 |
CN112341232A (zh) * | 2020-10-28 | 2021-02-09 | 西安超码科技有限公司 | 一种炭/炭坩埚及其制造方法 |
CN112553779A (zh) * | 2020-12-20 | 2021-03-26 | 西安美兰德新材料有限责任公司 | 一种针刺碳碳埚托的生产工艺 |
CN113858477A (zh) * | 2021-11-23 | 2021-12-31 | 常州善巧复合材料科技有限公司 | 抗热振预制体及其制备工艺 |
CN113858477B (zh) * | 2021-11-23 | 2023-07-25 | 常州善巧复合材料科技有限公司 | 抗热振预制体及其制备工艺 |
WO2023217360A1 (de) * | 2022-05-11 | 2023-11-16 | Schunk Kohlenstofftechnik Gmbh | Verfahren zur herstellung eines vorformlings und vorformling sowie verfahren zur ausbildung eines faserverbundbauteils und faserverbundbauteil |
Also Published As
Publication number | Publication date |
---|---|
KR101877280B1 (ko) | 2018-08-09 |
CN103482995B (zh) | 2015-01-07 |
KR20150136478A (ko) | 2015-12-07 |
CN103482995A (zh) | 2014-01-01 |
JP2016513611A (ja) | 2016-05-16 |
JP6487856B2 (ja) | 2019-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015018175A1 (zh) | 连续碳纤维增强的坩埚预制体及其制备方法 | |
JP2015504799A5 (zh) | ||
CN102140676B (zh) | 碳纤维补强碳复合材料坩埚以及该坩埚的制造方法 | |
CN106346635A (zh) | 一种高密度回转型针刺预成型体的制备方法 | |
CN109354507A (zh) | 一种新型长寿命炭/炭复合材料坩埚预制体的制作方法 | |
WO2014180159A1 (zh) | 环状纤维预制件及其制备方法 | |
CN102093069B (zh) | 一种提高炭/炭坩埚强度的炭布铺层方法 | |
JP2008137203A (ja) | サンドイッチパネル | |
CN102990799A (zh) | 多晶硅氢化炉热场带筋保温盖碳纤维预制体的制备方法 | |
CN102990800B (zh) | 单晶硅炉热场支撑隔热部件碳纤维预制体的制备方法 | |
CN101618970B (zh) | 坩埚保持部件及其制造方法 | |
CN108928057A (zh) | 一种纤维增强的柔性二氧化硅气凝胶 | |
CN106626718A (zh) | 一种提高碳纤维针刺预制体密度的方法 | |
CN107142611A (zh) | 一种气凝胶复合纤维针刺毡及其制作方法 | |
CN102808222A (zh) | 一种具有不同密度层的套筒式单晶炉保温筒 | |
CN203411478U (zh) | 连续碳纤维增强的坩埚预制体 | |
CN103496175B (zh) | 一种玻璃钢烟囱烟道的整体缠绕成型加强筋的制备方法 | |
JP5490554B2 (ja) | 炭素繊維強化炭素複合材ルツボ及びこのルツボの製造方法 | |
CN105507436B (zh) | 一种竖丝玻棉或岩棉保温板及粘贴工艺和浇灌工艺 | |
CN205875582U (zh) | 一种组合结构锚固件及复合保温板 | |
CN205530736U (zh) | 一种竖丝玻棉或岩棉保温板 | |
JP2012211062A (ja) | 炭素繊維強化炭素複合材ルツボ | |
CN206814970U (zh) | 一种气凝胶复合纤维针刺毡 | |
CN202192806U (zh) | 复合隔热材料 | |
CN213597233U (zh) | 一种断热墙体拉结件及具有该拉结件的装配式建筑墙体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14834259 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015560530 Country of ref document: JP Kind code of ref document: A Ref document number: 20157024320 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14834259 Country of ref document: EP Kind code of ref document: A1 |