WO2014180159A1 - 环状纤维预制件及其制备方法 - Google Patents

环状纤维预制件及其制备方法 Download PDF

Info

Publication number
WO2014180159A1
WO2014180159A1 PCT/CN2014/000249 CN2014000249W WO2014180159A1 WO 2014180159 A1 WO2014180159 A1 WO 2014180159A1 CN 2014000249 W CN2014000249 W CN 2014000249W WO 2014180159 A1 WO2014180159 A1 WO 2014180159A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular
fiber
fabric
shaped
preform
Prior art date
Application number
PCT/CN2014/000249
Other languages
English (en)
French (fr)
Inventor
缪云良
Original Assignee
江苏天鸟高新技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏天鸟高新技术股份有限公司 filed Critical 江苏天鸟高新技术股份有限公司
Priority to ES14794154T priority Critical patent/ES2720209T3/es
Priority to US14/771,706 priority patent/US10202715B2/en
Priority to EP14794154.6A priority patent/EP2982789B1/en
Publication of WO2014180159A1 publication Critical patent/WO2014180159A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/498Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/76Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres otherwise than in a plane, e.g. in a tubular way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/542Shear strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2475/00Frictional elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/14Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a face layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/18Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/06Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/10Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer reinforced with filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary

Definitions

  • the invention relates to the technical field of friction materials, in particular to a fiber preform, such as a ring-shaped fiber preform for an aircraft carbon/carbon brake disc, and a friction material pre-form for a high-speed train or an advanced automobile.
  • a fiber preform such as a ring-shaped fiber preform for an aircraft carbon/carbon brake disc, and a friction material pre-form for a high-speed train or an advanced automobile.
  • Brake disc the prior art is generally prepared by carbon matrix and pre-oxidized fiber reinforced or carbon fiber reinforced composite. Compared with the brake disc prepared by the previous powder metallurgy material, it has good mechanical properties, strong thermal performance, excellent friction performance, and products. The design is strong and so on.
  • the production of composite brake discs is primarily the preparation of annular fiber preforms with excellent structural properties and ease of densification of the later matrix.
  • the prior art discloses an annular fiber preform obtained by needle-stacking an annular layer by a circular needle punching table, wherein the annular layer is two kinds of sectors distributed in a radial and tangential direction by cutting long fibers on the laid fabric.
  • the unit is interlaced into (US5323523, US5705264, US4955123).
  • the material loss is less than that of cutting from a complete square or round piece, but the loss caused by the cutting method is still not negligible.
  • the two types of fan-shaped portions are alternately stacked, and the uniformity between the in-plane and the interlayer is poor, and when the number of the splicing of the sector-shaped unit is an odd number, two kinds of fiber-connecting structures in the pre-formed plane are bound to be uneven, and the prefabricated parts are destroyed.
  • the overall consistency ultimately affects the stability of the friction material.
  • the long fiber content in the direction of the tangential direction of the braking force is small and uneven.
  • the wear resistance and vibration resistance of the friction material after C/C composite are poor.
  • the middle sector unit adopts the overlapping method. The scheme is easy to cause unevenness in the plane and between layers.
  • the overlapping portion is denser and thicker than the layer, which blocks the late carbon matrix deposition channel and increases the difficulty of the composite process control.
  • the preparation of the annular fiber preform by using the pre-oxidized fiber is a currently disclosed and relatively mature process (CN101575766, CN1945048, CN101503844, CN02138191. 7), and the advantage is that the textile has strong operability, and is made into a short fiber mat and a long fiber fabric. Alternately stitched acupuncture to obtain a preform with certain desired characteristics.
  • this technique has some drawbacks. First of all, the above method also needs to remove the material to obtain the annular fiber preform, and the material utilization rate is low.
  • the pre-oxidized fiber needs to be subjected to tension carbonization to obtain better strength, but it is significantly lower than the mechanical characteristics of the carbon fiber and shows More extensive dispersion, and pre-oxidized fiber preforms have larger carbonization deformation.
  • tension carbonization When combined with carbon fiber, the internal thermal stress distribution is uneven due to the different thermal expansion coefficients of the two, which increases the difficulty of process control. The performance of the material.
  • the invention aims at the deficiencies of the prior art, and proposes a ring-shaped fiber preform, which has good overall uniformity, stable structure, high fiber content, excellent mechanical properties, high utilization rate of raw materials, etc., after C/C composite
  • the composite material has improved friction properties and excellent overall performance.
  • the preparation method of the above-mentioned annular fiber preform is also proposed, which effectively eliminates the phenomenon of post-needle deformation and dislocation of the fan-shaped spliced fiber fabric, and overcomes the poor structural stability of the C/C composite friction material caused by the overlapping manner of the fan-shaped fiber fabric. Insufficient, the uniformity of the in-plane and interlayer of the preform is improved, and the overall structure is stable and the performance is excellent.
  • a ring-shaped fiber preform which is a quasi-three-dimensional fabric formed by needle-stacking of annular units, a ring-shaped unit
  • the ring-shaped composite fabric is pre-stitched by the annular fiber fabric and the annular fiber web, or the ring-shaped composite fabric and the annular fiber web are stacked to form a ring
  • the fiber web is made of a chopped fiber mat or a chopped pre-oxidized fiber mat.
  • the looped fiber fabric is composed of 2 to 6 fiber fabrics of the same sector shape. Further, the cyclic composite fabric has a long fiber content of 50% to 90%.
  • the fiber fabric has an areal density of 120 to 450 g/m 2 and a fiber size of 50 K, 48 ⁇ , 24 ⁇ , 12 ⁇ , 6 ⁇ , 3 ⁇ , 1 ⁇ .
  • the chopped carbon fiber mat or the chopped pre-oxidized fiber mat has an areal density of 20 to 300 g/m 2 and a fiber size of 320 K, 50 ⁇ , 48 ⁇ , 24 ⁇ , and 12 ⁇ .
  • the annular fiber preform has an interlayer density of 10 to 18 layers/cm and a long fiber content of 45 to 85%.
  • the preform has a volume density of 0. 35 ⁇ 0. 70g/cm 3 .
  • the present invention provides the following technical solutions: pre-needle-fixing and twisting of a looped fiber fabric and a looped fiber web into a ring-shaped composite fabric by a needle-punching molding process. Then, the annular composite fabric or its stacking needles with the annular net tire constitutes a loop unit, and the annular unit is needle-stacked to form a quasi three-dimensional fabric, that is, a loop fiber preform.
  • Step (1) The annular fiber fabric and the annular fiber mesh tire are pre-needled and shaped to obtain a ring-shaped composite fabric having a needle density of 2 to 6 needles/cm 2 ; or the ring-shaped composite fabric and The annular fiber webs are stacked with acupuncture to form a loop;
  • the preparation method adopts a pre-acupuncture shaping needle forming process, and the ring-shaped fiber fabric splicing ring
  • the fiber-like fabric and the annular fiber web are pre-needled and fixed into an annular composite fabric, and then the needle-shaped forming of the annular unit is performed to realize the preparation of the annular fiber preform.
  • the specific preparation steps include:
  • Width design which is designed to meet the requirements of product size, reduce the loss of surrounding materials and effectively control the utilization of tailings under certain cutting schemes.
  • the width of the fiber fabric and the net tire are designed according to the product size and the cutting angle of the fan-shaped fiber fabric, and the material balance from the cutting edge is controlled within 10 mm.
  • the function is the same as in the prior art, the size and number of the fan-shaped fiber fabric are designed according to the product specifications and structural performance requirements, and the fan-shaped fiber fabric is obtained by the set cutting scheme.
  • the raw material utilization rate is 40%-55%, 50% - 65%, 60% - 75%.
  • Practice shows that the smaller the fan angle, the more batch production products, the higher the utilization rate of raw materials.
  • the method is simple and easy to operate, easy to control, and suitable for automatic preparation, and can avoid a large amount of material loss caused by cutting a square piece or a circular piece into a ring piece.
  • fan-shaped cutting can be performed as shown in Fig. 5, and the fan-shaped central axis and the warp direction of the fiber fabric can be 0. ° or 90° or any value between the two.
  • the pre-needle setting type is spliced into a ring shape by a fan-shaped fiber fabric, and a ring-shaped composite fabric is obtained by pre-needle-setting with a ring-shaped net tire, and the needle density is 26 needles/cm 2 .
  • the method eliminates the deformation and dislocation caused by the fan-shaped spliced annular fiber fabric in the process of the posterior acupuncture, and the pre-needle raft realizes the fixation and connection between the plane plurality of fan-shaped fiber fabrics and the annular fiber mesh tire.
  • the same kind of fan-shaped fiber fabric is formed into a ring shape, which effectively improves the uniformity of the inside and the layers of the preform, and the overall structure is stable, and the structure of the composite friction material is stable.
  • Needle-punching, Z-direction fiber is introduced through a needle punching process to realize the connection between the multilayer annular units, and the needle density is 15-35 needles/cm 2 .
  • the test shows that the circular needle-clamping device is complicated, technically difficult, and it is easy to cause multiple times of repeated acupuncture, which affects the material performance.
  • large-scale flat acupuncture can realize mass production and high degree of automation.
  • the mechanical properties of the preforms involved in the present invention mainly include in-plane tensile properties and interlaminar tensile and shear properties, and the in-plane tensile properties mainly include the axial direction of the shaft and the tangential direction of the braking force plane, wherein the interlayer bonding strength can pass
  • the joint strength of Z-direction fibers in different parts is characterized.
  • the interlaminar shear resistance can be characterized by T-peel strength.
  • test samples are prepared as shown in Figure 7, which provides a reference for the overall performance of the composite.
  • the present invention employs a ring-shaped unit of a ring-shaped composite fabric to perform acupuncture to obtain a preform having a desired thickness and bulk density.
  • the annular composite fabric is pre-needled by the same kind of fan-shaped fiber fabric and the annular fiber web, and the ring-shaped fiber fabric combined with the annular fiber mesh tire is realized by low-density needle punching, and the fiber damage is small.
  • single-layer annular fiber fabric is composed of the same fan-shaped fiber fabric, which further improves the overall uniformity of the preform;
  • the ring-shaped composite fabric is rotated and stacked with staggered stitching seams, and the same material is used as the raw material in the preparation process, which improves the isotropy of the preform, and the fiber cohesion is stronger than the conventional 0 ° /90 ° layered structure.
  • the fan-shaped cutting and splicing ring effectively reduces the material loss caused by cutting from the complete circular or square piece, and the method can improve the long fiber of the rotating surface in the tangential direction of the braking force.
  • the content ensures that the composite has good friction resistance after C/C compounding.
  • the preform has good structural stability, excellent performance, high fiber content, high utilization rate of raw materials, and improved friction properties of the composite after C/C composite, and the comprehensive performance is good.
  • the pre-formed layer has a density of 10-18 layers/cm, a long fiber content of 45-85%, a bulk density of 0.35-0. 70 g/cm 3 , and a raw material utilization rate of 55%-75%.
  • the invention can be applied to aircraft brake disc composite prefabricated parts, and can also be used for friction material prefabricated parts in high speed trains and advanced automobile brake systems.
  • Figure 1 is a schematic view showing the structure of a ring-shaped composite fabric, wherein 1 is an annular fiber mesh tire, and 2 is a ring-shaped fiber fabric;
  • Figure 2 is a schematic view of a looped fiber fabric, and 3 is a fan-shaped fiber fabric;
  • Figure 3 is a schematic view of the structure of the annular fiber preform, 4 is a ring-shaped composite fabric, 5 is a ring-shaped unit;
  • Figure 4 is a schematic view of the cutting of the fan-shaped fiber fabric, three different cutting plans a, b, c, 6 is a fiber fabric;
  • Figure 5 is a schematic view showing the cutting angle of the fan-shaped fiber fabric, the central axis of the N-fan fiber fabric and the warp direction of the fiber fabric;
  • Fig. 6 is a schematic view showing the staggered stitching of the annular composite fabric, wherein a is a three-piece fan-shaped stitching into a ring, b is a five-piece fan-shaped stitching into a ring, c is a six-piece fan-shaped stitching into a ring, and ⁇ is set to a rotation angle;
  • Fig. 7 is a schematic diagram of the sampling test of the performance of the annular fiber preform
  • is the tensile test of the braking force tangential direction
  • the ⁇ is the ⁇ -type peeling performance test
  • is the interlaminar bonding strength
  • a five-piece splicing superimposed rotation angle is 14°
  • b Six pieces of splicing overlap rotation angle of 15 °.
  • the pre-oxidized fiber plain fabric and the chopped pre-oxidized fiber mesh tire were prepared from 48K pre-oxidized fiber with an areal density of 420g/m 2 and 90g/m 2 respectively .
  • the design of the fan-shaped fabric was ⁇ 470 X ⁇ 180 ⁇ (fan shape) The angle is 120°), obtained according to the cutting scheme shown in Fig. 4(b); splicing 3 fan-shaped fiber fabrics into a ring shape, and the chopped pre-oxidized fiber mesh tire is directly cut into a ring shape, which is 5 needles/cm 2 Needle-density density-shaped annular composite fabric; annular composite fabrics are alternately stacked with a needle punching density of 25 needles/cm 2 ; rotating laminated laminated composite fabrics as shown in Fig.
  • every eight-layer loop The unit is a repeating structural unit, and the angle of the stitching seam is set to 15°.
  • a ring-shaped pre-oxidized fiber preform having a size of ⁇ 450 ⁇ X 4)200mm ⁇ 22 legs is obtained, and the interlayer density is 12.7 layers/cm, long.
  • the fiber content was 82%, the bulk density was 0.65 g/cra 3 , and the raw material utilization rate was 58%.
  • the chopped carbon fiber mesh tire and the non-woven fabric are made of 12K polyacrylonitrile-based carbon fiber, and the areal density is 40g/m 2 and 280g/m 2 respectively .
  • the size of the design fan-shaped fiber fabric is ⁇ 520 ⁇ X ⁇ 170 (fan shape) The angle is 72°), obtained according to the cutting scheme shown in Figure 4 (a); splicing 5 fan-shaped fiber fabrics into a ring shape, the chopped carbon fiber mesh tire is directly cut into a ring shape, and needle punched by 3 needles/cm 2 Density-setting annular composite fabric; annular composite fabric and annular fiber mesh tires are alternately stacked to form a loop unit, and needle punching is performed at a needle density of 30 needles/cm 2 ; stacking rings as shown in Fig.
  • each five-layer annular unit is a repeating structural unit, setting the angle of the joint seam to 14°; finally obtaining a ring-shaped carbon fiber preform with a size of ⁇ 500 ⁇ ⁇ 190 leg X24mm, and the interlayer density is 14.3 layers/ Cm, long fiber content of 78%, bulk density of 0.53g/cm 3 , raw material utilization rate of 62%; according to the sampling test shown in Figure 7 (a), the pre-formed braking force tangent plane tensile strength average value of 3.12MPa The average value of the T-type peel strength is 0.818 KN/m, and the average value of the Z-direction joint strength is 0.087 MPa.
  • Example 3 The 50K and 24K polyacrylonitrile-based carbon fibers were used as raw materials to prepare the weft-free fabric and the chopped fiber mesh tire, and the areal density was 180g/m 2 and 90g/m 2 respectively .
  • the size of the design fan-shaped fiber fabric was ⁇ 540 ⁇ .
  • X 4>80 wake up (fan angle is 60°), according to the cutting scheme shown in Figure 4 (c), obtain the fan-shaped fiber fabric and the fan-shaped net tire; respectively, splicing 6 pieces of fan-shaped ring-shaped, ring-shaped fiber fabric and ring-shaped fiber mesh
  • the tire stitching joints are staggered by 30°, and the annular composite fabric is formed by a needle density of 2 needles/cm 2 ; the annular composite fabric is alternately rotated, and the needle punching is performed at a needle punching density of 25 needles/cm 2 ;
  • Figure 6 (c) shows the stacked annular composite fabric, each four-layer annular composite fabric is a repeating structural unit, setting the angle of the joint seam to 15°; finally obtaining the annular carbon fiber preform with the size of ⁇ 520 ⁇ H00mmX35mm , the interlayer density is 17.7 layers / cm, the long fiber content is 67%, the bulk density is 0.48g / cm 3 , the raw material utilization rate is 70%;

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Braking Arrangements (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

一种环状纤维预制件及其制备方法。该预制件由包含环状复合织物(4)的环状单元(5)叠置针刺成型,且环状复合织物(4)由同种扇形纤维织物(3)与环状纤维网胎(1)经预针刺定型。该预制件制备方法将扇形纤维织物拼接的环状纤维织物(2)与环状纤维网胎(1)预针刺固定连结成环状复合织物(4),后进行环状单元(5)的针刺成型,实现所述的环状纤维预制件的制备。本方法有效消除了扇形拼接纤维织物后期针刺变形错位的现象,面内及层间均匀一致性好,具有纤维含量高、力学性能优异、原材料利用率高等优点,经C/C复合后摩擦材料的摩擦性能提高,综合性能优良。该方法生可应用于生产飞机刹车盘复合材料预制件,也可用于生产高速列车和高级汽车刹车系统中摩擦材料预制件。

Description

环状纤维预制件及其制备方法 技术领域
本发明涉及摩擦材料技术领域,尤其是一种纤维预制件,如飞机碳 /碳刹 车盘用环状纤维预制件,也可以用于高速列车、高级汽车等摩擦材料预制件。 背景技术
刹车盘, 现有技术一般采用由碳基体和预氧化纤维增强或碳纤维增强复 合制备, 相比于以前的粉末冶金材料制备的刹车盘, 具有机械性能好、 热库 性能强、 摩擦性能优异、 产品可设计性强等优点。 生产复合材料刹车盘首要 是制备出结构性能优异且易于后期基体增密的环形纤维预制件。
现有技术公开了一种通过圆式针刺台针刺叠置环形层获得的环状纤维预 制件, 其中环形层是由无纬织物上切割长纤维呈径向及切线方向分布的两种 扇形单元交错拼接成 (US5323523 , US5705264 , US4955123 ) , 该方法材料损 失比从完整的方形或圆形件上进行切割要少, 但其提供的切割方式带来的损 耗仍然不可忽视。 以上发明中两种类型扇形部分交错叠置, 面内和层间均匀 一致性差, 且当扇形单元拼接数量为奇数时, 预制体平面内势必出现不均匀 的两种纤维连接结构, 破坏预制件的整体一致性, 最终影响摩擦材料的稳定 性; 同时, 制动力切线方向长纤维含量少而不均匀, 经 C/C复合后摩擦材料 的耐磨损及抗振性差; 还可以明显看出, 发明中扇形单元采用搭接的方式, 该方案易造成面内和层间的不均匀, 搭接处相较之下密实且层厚, 堵塞了后 期碳基体沉积通道, 加大了复合工艺控制难度, 使复合后摩擦材料内部存在 明显的性能差异, 工作稳定性差, 且单层扇形单元数量越多, 预制件厚度越 大, 差异越明显越突出, 整体结构及性能越难控制。
己报道的另一种常见制备方法是由纤维织物叠合经针刺连接后裁切成环 状纤维预制件 (美国专利 US5869411、 中国专利 96121709、 95191073 及 CN02138191. 7 ) ,但上述方法成型的环状纤维预制件均需按照使用形状和尺寸 去除材料, 这使得原材料的有效利用率仅为 30%-55%, 造成材料的严重浪费; 且碳纤维采用 0° /90"纤维叠置, 在制动力切线方向转动面上长纤维量相对 较少, 影响产品质量的一致性和稳定性。
另外, 采用预氧化纤维制备环形纤维预制件是目前公开的、 较成熟工艺 (CN101575766、 CN1945048、 CN101503844、 CN02138191. 7 ) , 其优势在于其 纺织操作性强, 制成短纤维薄毡与长纤维织物交替铺层针刺获得一定预期特 征的预制件。 然而, 该技术有一些缺点。 首先, 以上方法也需去除材料获得 环状纤维预制件, 材料利用率低 ·, 其次, 预氧化纤维需施加张力碳化才能获 得较好的强度, 但与碳纤维的力学特征相比显著降低并显示出更广泛的分散 作用, 且预氧化纤维预制件碳化变形较大, 与碳纤维组合使用时, 由于两者 具有不同的热膨胀系数使得后续高温碳化过程造成内应力分布不均匀, 增加 了工艺控制难度, 影响材料的使用性能。
上述不足仍有值得改进的地方。
发明内容
本发明针对现有技术的不足, 提出一种环状纤维预制件, 该预制件整体 均匀性好, 结构稳定, 具有纤维含量高、 力学性能优异、 原材料利用率高等 优点, 经 C/C复合后复合材料的摩擦性能提高, 综合性能优良。
还提出了上述环状纤维预制件的制备方法, 有效消除了扇形拼接纤维织 物后期针刺变形错位的现象, 克服了扇形纤维织物搭接方式引起的经 C/C复 合后摩擦材料结构稳定性差的不足,提高了预制件面内及层间的均匀一致性, 整体结构稳定、 性能优良。
为了实现上述发明第一目的, 本发明提供以下技术方案: 一种环状纤维 预制件, 该预制件是由环状单元叠置针刺成型的准三维立体织物, 环状单元 为由环状的纤维织物与环状的纤维网胎经预针刺定型的环状复合织物, 或为 该环状复合织物与环状的纤维网胎叠置针刺构成环状物; 环状纤维网胎由短 切纤维薄毡或短切预氧化纤维薄毡制成。
进一步地, 环状纤维织物由 2〜6个相同扇形的纤维织物拼接构成。 进一步地, 环状复合织物中长纤维含量为 50%〜90%。
进一步地, 纤维织物的面密度为 120〜450g/m2, 纤维规格为 50K、 48Κ、 24Κ、 12Κ、 6Κ、 3Κ、 1Κ。
进一步地, 短切碳纤维薄毡或短切预氧化纤维薄毡的面密度为 20〜 300g/m2, 纤维规格为 320K、 50Κ、 48Κ、 24Κ、 12Κ。
进一步地, 该环状纤维预制件层间密度为 10〜18层 /cm, 长纤维含量为 45〜85%。
进一步地, 该预制件体积密度为 0. 35〜0. 70g/cm3
为了实现上述发明第二目的, 本发明提供以下技术方案: 采用预针刺定 型的针刺成型工艺, 将环状的纤维织物与环状的纤维网胎预针刺固定连结成 环状复合织物,然后由环状复合织物或其与环状网胎叠置针剌构成环状单元, 由环状单元叠置针刺成型准三维立体织物, 即环状纤维预制件。
进一步地, 该制备方法的具体步骤包括:
( 1 ) 将纤维织物裁剪为扇形, 并拼接成环状的纤维织物;
( 2 ) 步骤 (1 ) 环状的纤维织物与环状的纤维网胎预针刺定型, 获得环 状复合织物, 针刺密度为 2〜6针 /cm2; 或将该环状复合织物与环状的纤维网 胎叠置针刺构成环状物;
( 3 ) 步骤 (2 ) 的环形复合织物或环状物进行叠置, 旋转错开拼接缝; 并经针刺工艺在叠置层之间引入 Z向纤维, 针刺密度为 15〜35针 /cm2; 即得 到环状纤维预制件。
该制备方法采用预针刺定型的针刺成型工艺, 将扇形纤维织物拼接的环 状纤维织物与环状纤维网胎预针刺固定连结成环状复合织物, 后进行环状单 元的针刺成型, 实现所述的环状纤维预制件的制备, 具体制备步骤包括:
( 1 )幅宽设计, 其作用是满足产品尺寸的要求, 在一定的裁切方案下减 少周边材料的损耗及有效控制尾料的利用率。 根据产品尺寸和扇形纤维织物 裁剪角度要求设计纤维织物及网胎的幅宽, 控制距裁剪边缘的材料余量在 10mm以内。
( 2 )纤维织物与网胎制备,根据产品性能及结构要求选择一定规格的纤 维材料制备所需面密度的纤维织物及网胎。
( 3 )扇形裁剪, 其作用与现有技术相同, 根据产品规格及结构性能要求 设计扇形纤维织物的尺寸和数量, 由设定的裁剪方案获得扇形纤维织物。 例 如制作 Φ 500匪 X Φ 300醒的环状纤维预制件, 如图 4所示 a、 b、 c三种不同 方式进行裁剪, 原材料利用率分别为 40%-55%、 50%- 65%、 60%- 75%。 实践表 明扇形角度越小、 批次生产产品数量越多, 原材料利用率越高。 该方法简单 易操作, 控制容易, 适于自动化制备, 可以避免方形件或圆形件裁切成环形 件造成的大量材料损失。 另外, 为实现产品结构及性能的设计要求, 保留足 够多的一定轨迹分布的连续长纤维含量, 可按图 5所示进行扇形裁剪, 其扇 形中轴线与纤维织物经向夹角 N可以为 0° 或 90° 或两者之间任意值。
( 4)预针剌定型, 由扇形纤维织物拼接成圆环状, 与环状网胎预针刺定 型获得环状复合织物, 针刺密度为 2 6针 /cm2。 该方法消除了扇形拼接的环 状纤维织物在后针剌过程中引起的变形及错位现象, 且预针剌实现了平面多 片扇形纤维织物间及与环状纤维网胎的固定与连接, 同时采用同种扇形纤维 织物拼成圆环状, 均有效提高了预制件面内及层间的均匀一致性, 整体结构 稳定, 复合后摩擦材料结构功能稳定好。
( 5 )旋转叠置, 环形复合织物的叠置按设计角度旋转错开拼接缝, 如图 6所示; 同时, 环状单元由扇形拼接的环形纤维网胎与环状复合织物构成时, 叠置相邻层扇形拼接缝错开; 以上方法可以消除拼接缝重叠对预制件力学性 能的影响, 同时增强预制件材料的各向同性, 满足制动器抗震性的要求。
(6 )针刺成型,经针刺工艺引入 Z向纤维,实现多层环状单元间的连接, 针刺密度为 15-35针 /cm2。 试验表明圆式针剌台装置复杂, 技术难度大, 易 造成多次多处重复针刺, 影响材料性能; 而采用大规格平面针刺可以实现批 量化生产, 自动化程度高; 同时通过旋转预制件, 改变刺针排布方式, 可以 避免同一部分重复针刺造成的性能二次衰减, 实现 Z向纤维分布的均匀性, 增强预制件材料的各向同性, 材料整体一致性好。
( 7 ) 可重复所述步骤 (5 ) 和 (6), 即获得本发明所述的环状纤维预制 件, 成型环状纤维预制件经 C/C复合后可按照设计要求将其加工成所需形状 和尺寸。
众所周知, 预制件材料的各向同性的好坏决定了材料的结构可靠性和性 能稳定性, 于是为了合理客观表征预制件的性能, 性能测试样件的选取和准 备显得至关重要。 本发明中涉及的预制件力学性能主要包括面内拉伸性能和 层间抗拉抗剪性能, 面内拉伸性能主要包括轴径向方向和制动力平面切线方 向, 其中层间结合强度可以通过不同部位 Z向纤维的连接强度表征, 层间抗 剪切性能可以通过 T型剥离强度表征, 这里如图 7所示制备测试样件, 为后 期复合材料的整体性能提供参照作用。
本发明采用包含环状复合织物的环状单元叠置针刺获得厚度和体积密度 预期要求的预制件。 环状复合织物由同种扇形纤维织物与环状纤维网胎经预 针刺定型, 通过低密度针刺实现扇形拼接的环状纤维织物与环状纤维网胎的 复合,该方法纤维损伤小,有效地将单层相邻扇形纤维织物进行固定和连结, 消除了扇形拼接纤维织物后期针刺变形及错位的现象, 克服了搭接方式带来 复合后摩擦材料结构稳定性差的不足, 提高了面内和层间的均匀性; 单层环 状纤维织物由同种扇形纤维织物构成, 进一步提高了预制件整体的均匀性; 另外, 环状复合织物旋转叠置错开拼接缝, 制备过程均采用相同材料为原材 料, 均提高了预制件的各向同性, 与传统 0 ° /90 ° 铺层结构相比, 纤维抱合 力强, 确保了面内纤维的力学特征良好; 同时扇形裁剪拼接环形有效减少了 从完整的圆形件或方形件上进行切割造成的材料损失, 该方法可以提高制动 力切线方向转动面上长纤维的含量, 确保 C/C复合后复合材料的耐摩擦性能 好。 综合来讲, 该预制件结构稳定性好, 性能优异、 纤维含量高, 原材料利 用率高, 预制件经 C/C复合后复合材料的摩擦性能提高, 综合性能好。 该预 制件层间密度为 10-18层 /cm,长纤维含量为 45-85%,体积密度为 0. 35-0. 70 g/cm3 , 原材料利用率为 55%-75%。 本发明可应用于飞机刹车盘复合材料预制 件, 也可用于高速列车和高级汽车刹车系统中摩擦材料预制件。
附图说明
图 1为环状复合织物结构示意图, 1为环状纤维网胎, 2为表示环状纤维 织物;
图 2为环状纤维织物示意图, 3为扇形纤维织物;
图 3为环状纤维预制件结构示意图, 4为环状复合织物, 5为环状单元; 图 4为扇形纤维织物裁剪示意图, a、 b、 c三种不同裁剪方案, 6为纤维 织物;
图 5为扇形纤维织物裁剪角度示意图, N扇形纤维织物中轴线与纤维织 物经向夹角;
图 6为环状复合织物错开拼接缝示意图, a为三片扇形拼接成环, b为五 片扇形拼接成环, c为六片扇形拼接成环, α设定旋转角度;
图 7为环状纤维预制件性能测试取样示意图, ΧΥ为制动力切线方向拉伸 测试, Τ为 Τ型剥离性能测试, Ζ为层间结合强度, a五片拼接叠置旋转角度 为 14° , b六片拼接叠置旋转角度为 15 ° 。
具体实施方式 下面结合实施例和附图对本发明进行详细描述, 本部分的描述仅是示范 性和解释性, 不应对本发明的保护范围有任何的限制作用。
实施例 1
由 48K预氧化纤维制备预氧化纤维平纹织物及短切预氧化纤维网胎, 其 面密度分别为 420g/m2、 90g/m2 ; 设计扇形纤维织物尺寸为 Φ 470醒 X Φ 180匪 (扇形角度为 120° ), 按图 4 (b)所示裁剪方案获得; 拼接 3片扇形纤维织 物成圆环状, 短切预氧化纤维网胎直接裁剪成圆环状, 经 5针 /cm2的针剌密 度定型环状复合织物;环状复合织物交替叠置以 25针 /cm2的针刺密度进行针 刺; 按图 6 (a)所示旋转叠置环状复合织物, 每八层环状单元为一个重复结 构单元, 设定拼接缝夹角为 15° ; 最终获得尺寸为 Φ450匪 X 4)200mmX22腿 的环状预氧化纤维预制件, 其层间密度为 12.7层 /cm, 长纤维含量为 82%, 体积密度为 0.65g/cra3, 原材料利用率为 58%。
实施例 2
由 12K聚丙烯腈基碳纤维制成短切碳纤维网胎和无纬织物, 其面密度分 别为 40g/m2, 280g/m2; 设计扇形纤维织物的尺寸为 Φ 520匪 X Φ 170讓(扇形 角度为 72° ), 按图 4 (a) 所示裁剪方案获得; 拼接 5片扇形纤维织物成圆 环状, 短切碳纤维网胎直接裁剪成圆环状, 经 3针 /cm2的针刺密度定型环状 复合织物;环状复合织物及环状纤维网胎交替叠置组成环状单元,以 30针 /cm2 的针刺密度进行针刺; 按图 6 (b)所示叠置环状复合织物, 每五层环状单元 为一个重复结构单元, 设定拼接缝夹角为 14° ; 最终获得尺寸为 Φ500πιπιΧ Φ190腿 X24mm的环状碳纤维预制件, 其层间密度为 14.3层 /cm, 长纤维含 量为 78%, 体积密度为 0.53g/cm3, 原材料利用率为 62%; 按图 7 (a)所示取 样测试,该预制件制动力切线平面拉伸强度均值为 3.12MPa, T型剥离强度均 值为 0.818KN/m, Z向连接强度均值为 0.087MPa。
实施例 3 分别采用 50K和 24K的聚丙烯腈基碳纤维为原料制备成无纬织物和短切 纤维网胎, 其面密度分别为 180g/m2、 90g/m2 ; 设计扇形纤维织物的尺寸为 Φ 540匪 X 4>80醒(扇形角度为 60° ), 按图 4 (c)所示裁剪方案获得扇形纤维 织物及扇形网胎; 分别拼接 6片扇形组成圆环状, 环形纤维织物与环状纤维 网胎拼接缝错开 30° 叠置, 经 2针 /cm2的针刺密度成型环状复合织物; 交错 旋转叠置环状复合织物, 以 25针 /cm2的针刺密度进行针刺; 按图 6 (c) 所 示叠置环状复合织物, 每四层环状复合织物为一个重复结构单元, 设定拼接 缝夹角为 15° ;最终获得尺寸为 Φ520ΜΙΙΧ H00mmX35mm的环状碳纤维预制 件, 其层间密度为 17.7层 /cm, 长纤维含量为 67%, 体积密度为 0.48g/cm3, 原材料利用率为 70%; 按图 7 (b) 所示取样测试, 该预制件制动力切线平面 拉伸强度均值为 2.84MPa, T型剥离强度均值为 0.832KN/m, Z向连接强度均 值为 0.088MPa。

Claims

权 利 要 求 书
1、一种环状纤维预制件,该预制件是由环状单元叠置针刺成型的准三维 立体织物, 其特征在于: 环状单元为由环状的纤维织物与环状的纤维网胎经 预针刺定型的环状复合织物, 或为该环状复合织物与环状的纤维网胎叠置针 刺构成环状物; 环状纤维网胎由短切纤维薄毡或短切预氧化纤维薄毡制成。
2、如权利要求 1所述环状纤维预制件,其特征在于:环状纤维织物由 2〜 6个相同扇形的纤维织物拼接构成。
3、如权利要求 1所述环状纤维预制件, 其特征在于: 环状复合织物中长 纤维含量为 50%〜90%。
4、如权利要求 1或 2所述环状纤维预制件, 其特征在于: 纤维织物的面 密度为 120〜450g/m2, 纤维规格为 50Κ、 48Κ、 24Κ、 12Κ、 6Κ、 3Κ、 1Κ。
5、如权利要求 1所述环状纤维预制件, 其特征在于: 短切碳纤维薄毡或 短切预氧化纤维薄毡的面密度为 20〜300g/m2, 纤维规格为 320K、 50Κ、 48Κ、 24K、 12Kc
6、如权利要求 1所述环状纤维预制件, 其特征在于: 该环状纤维预制件 层间密度为 10〜: 18层 /cm, 长纤维含量为 45〜85%。
7、如权利要求 1所述环状纤维预制件, 其特征在于: 该预制件体积密度 为 0. 35〜0. 70g/cm:ic
8、一种权利要求 1所述环状纤维预制件的制备方法,该制备方法采用预 针刺定型的针剌成型工艺, 将环状的纤维织物与环状的纤维网胎预针刺固定 连结成环状复合织物, 然后由环状复合织物或其与环状网胎叠置针刺构成环 状单元, 由环状单元叠置针剌成型准三维立体织物, 即环状纤维预制件。
9、如权利要求 8所述制备方法, 其特征在于: 该制备方法的具体步骤包 括:
( 1 ) 将纤维织物裁剪为扇形, 并拼接成环状的纤维织物; (2) 步骤 (1) 环状的纤维织物与环状的纤维网胎预针刺定型, 获得环 状复合织物, 针刺密度为 2〜6针 /cm2; 或将该环状复合织物与环状的纤维网 胎叠置针刺构成环状物;
(3) 步骤 (2) 的环形复合织物或环状物进行叠置, 旋转错开拼接缝; 并经针刺工艺在叠置层之间引入 Z向纤维, 针刺密度为 15〜35针 /cm2; 即得 到环状纤维预制件。
PCT/CN2014/000249 2013-05-07 2014-03-11 环状纤维预制件及其制备方法 WO2014180159A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES14794154T ES2720209T3 (es) 2013-05-07 2014-03-11 Preforma de fibra anular y método para preparar la misma
US14/771,706 US10202715B2 (en) 2013-05-07 2014-03-11 Annular fibrous preform and method of preparing the same
EP14794154.6A EP2982789B1 (en) 2013-05-07 2014-03-11 Annular fibre preform and method of preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310164378.0 2013-05-07
CN201310164378.0A CN103233323B (zh) 2013-05-07 2013-05-07 环状纤维预制件及其制备方法

Publications (1)

Publication Number Publication Date
WO2014180159A1 true WO2014180159A1 (zh) 2014-11-13

Family

ID=48881387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000249 WO2014180159A1 (zh) 2013-05-07 2014-03-11 环状纤维预制件及其制备方法

Country Status (6)

Country Link
US (1) US10202715B2 (zh)
EP (1) EP2982789B1 (zh)
CN (1) CN103233323B (zh)
ES (1) ES2720209T3 (zh)
TR (1) TR201907827T4 (zh)
WO (1) WO2014180159A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116198055A (zh) * 2023-03-10 2023-06-02 西安航空制动科技有限公司 一种粒子改性碳纤维复合材料针刺预制体的制备方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233323B (zh) * 2013-05-07 2015-09-02 江苏天鸟高新技术股份有限公司 环状纤维预制件及其制备方法
CN103835067A (zh) * 2014-03-13 2014-06-04 宜兴市宜泰碳纤维织造有限公司 一种准三维预制件
US9719199B2 (en) * 2014-05-23 2017-08-01 Goodrich Corporation System and method for transport of fibers to/from a circular needle-punching loom
US11215250B2 (en) * 2015-06-10 2022-01-04 Freni Brembo S.P.A. Shaped material and manufacturing method
US10457016B2 (en) * 2016-02-23 2019-10-29 Honeywell International Inc. Differential needling of a carbon fiber preform
CN107059242B (zh) * 2017-04-26 2019-05-17 湖南大学 一种高导热沥青基炭纤维复合材料预制体的制作方法
CN107443616A (zh) * 2017-07-26 2017-12-08 河南科技大学 圆管三维编织预成型体、编织复合圆管及两者的成型方法
IT201800003741A1 (it) * 2018-03-19 2019-09-19 Freni Brembo Spa Metodo per realizzare una preforma fibrosa e una preforma fibrosa così ottenuta
CN110304895A (zh) * 2018-03-27 2019-10-08 江苏天鸟高新技术股份有限公司 低密度纤维预制体及制备方法和应用其的隔热保温件
US10746246B2 (en) * 2018-08-27 2020-08-18 Honeywell International Inc. Segmented layer carbon fiber preform
CN109795180B (zh) * 2019-02-28 2021-02-12 山东道普安制动材料有限公司 一种汽车制动盘的碳纤维预制体的编织方法
CN110485047B (zh) * 2019-09-18 2024-04-05 江苏恒神股份有限公司 一种飞机刹车盘用准三维预制体及其制备方法
CN110820169B (zh) * 2019-11-04 2021-01-29 江苏天鸟高新技术股份有限公司 一种t型结构纤维针刺预制体
CN110952223A (zh) * 2019-12-23 2020-04-03 宜兴市华恒高性能纤维织造有限公司 一种新型针刺三维立体结构件
US11614136B2 (en) * 2020-01-14 2023-03-28 Goodrich Corporation Wear liner manufacturing systems and methods
CN111703140A (zh) * 2020-05-22 2020-09-25 宜兴市华恒高性能纤维织造有限公司 一种双层连续缠绕针刺筒形件及其制备方法
CN114013121B (zh) * 2021-11-08 2024-01-19 西安康本材料有限公司 一种大直径圆筒预制体的制作方法
CN113858477B (zh) * 2021-11-23 2023-07-25 常州善巧复合材料科技有限公司 抗热振预制体及其制备工艺
IT202100029540A1 (it) * 2021-11-23 2023-05-23 Brembo Sgl Carbon Ceram Brakes S P A Metodo per realizzare una preforma fibrosa in carbonio e/o fibre di un precursore del carbonio di altezza predeterminata e preforma direttamente ottenuta
CN114771044A (zh) * 2022-05-06 2022-07-22 浙江航引新材料科技有限公司 一种窄边非等截面复合材料构件纤维预制体制备方法
CN115235289A (zh) * 2022-06-30 2022-10-25 江苏恒神股份有限公司 一种复合材料弹托及成型方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4955123A (en) 1986-01-28 1990-09-11 Lawton Peter G Production of a shaped filamentary structure
US5323523A (en) 1986-01-28 1994-06-28 Aerospace Preforms Limited Production of shaped filamentary structures
CN1155024A (zh) * 1995-10-04 1997-07-23 B·F·谷德里奇公司 具有贯穿固定数目层的z-纤维的层状纤维结构
US5705264A (en) 1987-01-27 1998-01-06 Aerpspace Preforms Limited Production of shaped filamentary structures
US5869411A (en) 1991-09-04 1999-02-09 The B. F. Goodrich Company Carbon fiber reinforced carbon/carbon composite and method of its manufacture
CN1408920A (zh) * 2002-08-27 2003-04-09 宜兴市天鸟高新技术有限公司 一种可针刺无纺织物及准三维预制件
CN1945048A (zh) 2006-10-27 2007-04-11 上海应用技术学院 一种高速列车碳/碳制动材料的制备方法
CN101503844A (zh) 2009-03-02 2009-08-12 宜兴市飞舟高新科技材料有限公司 预氧化丝长纤维/碳纤维网胎复合针刺预制体及制备方法
CN101575766A (zh) 2009-06-10 2009-11-11 西安超码科技有限公司 一种针刺炭纤维准三向预制体的制作方法
CN102992798A (zh) * 2012-08-17 2013-03-27 江苏天鸟高新技术股份有限公司 碳纤维复合碳化硅纤维针刺预制体的制备方法
CN103233323A (zh) * 2013-05-07 2013-08-07 江苏天鸟高新技术股份有限公司 环状纤维预制件及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882781A (en) * 1986-01-28 1999-03-16 Aerospace Preforms Limited Shaped fibrous fabric structure comprising multiple layers of fibrous material
US5662855A (en) * 1994-05-17 1997-09-02 The B.F. Goodrich Company Method of making near net shaped fibrous structures
US6029327A (en) * 1994-07-25 2000-02-29 The B.F. Goodrich Company Process for forming fibrous structures with predetermined Z-fiber distributions
FR2726013B1 (fr) 1994-10-20 1997-01-17 Carbone Ind Procede de realisation d'un substrat fibreux par superposition de couches fibreuses et substrat ainsi obtenu
US5546880A (en) * 1994-12-29 1996-08-20 The Bf Goodrich Company Annular filamentary structures and methods of making
FR2735456B1 (fr) * 1995-06-19 1997-09-12 Europ Propulsion Procedes et appareil pour la fabrication de pieces annulaires en materiau composite et de preformes pour ces pieces
FR2741634B1 (fr) * 1995-11-27 1998-04-17 Europ Propulsion Procede pour la realisation de preformes fibreuses destinees a la fabrication de pieces annulaires en materiau composite
US6105223A (en) * 1997-04-30 2000-08-22 The B. F. Goodrich Company Simplified process for making thick fibrous structures
FR2780420B1 (fr) * 1998-06-25 2000-08-11 Mci Technologies Procede de fabrication d'un revetement de fibres de verre
US6691393B2 (en) * 2001-04-09 2004-02-17 Honeywell International Inc. Wear resistance in carbon fiber friction materials
FR2839985B1 (fr) * 2002-05-23 2004-08-20 Messier Bugatti Procede et installation pour la fabrication de preformes fibreuses annulaires
FR2869330B1 (fr) * 2004-04-23 2006-07-21 Messier Bugatti Sa Procede de fabrication de nappe fibreuse bidimensionnelle helicoidale
US20110033622A1 (en) * 2009-08-06 2011-02-10 Honeywell International Inc. Nonwoven preforms made with increased areal weight fabric segments for aircraft friction materials
FR2954358B1 (fr) * 2009-12-23 2012-01-13 Messier Bugatti Table d'aiguilletage circulaire d'une structure textile formee a partir d'une preforme fibreuse annulaire
CN102990799B (zh) * 2012-08-17 2016-02-24 江苏天鸟高新技术股份有限公司 多晶硅氢化炉热场带筋保温盖碳纤维预制体的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4955123A (en) 1986-01-28 1990-09-11 Lawton Peter G Production of a shaped filamentary structure
US5323523A (en) 1986-01-28 1994-06-28 Aerospace Preforms Limited Production of shaped filamentary structures
EP0232059B2 (en) * 1986-01-28 1994-09-28 Aerospace Preforms Limited Production of a shaped filamentary structure
US5705264A (en) 1987-01-27 1998-01-06 Aerpspace Preforms Limited Production of shaped filamentary structures
US5869411A (en) 1991-09-04 1999-02-09 The B. F. Goodrich Company Carbon fiber reinforced carbon/carbon composite and method of its manufacture
CN1155024A (zh) * 1995-10-04 1997-07-23 B·F·谷德里奇公司 具有贯穿固定数目层的z-纤维的层状纤维结构
CN1408920A (zh) * 2002-08-27 2003-04-09 宜兴市天鸟高新技术有限公司 一种可针刺无纺织物及准三维预制件
CN1945048A (zh) 2006-10-27 2007-04-11 上海应用技术学院 一种高速列车碳/碳制动材料的制备方法
CN101503844A (zh) 2009-03-02 2009-08-12 宜兴市飞舟高新科技材料有限公司 预氧化丝长纤维/碳纤维网胎复合针刺预制体及制备方法
CN101575766A (zh) 2009-06-10 2009-11-11 西安超码科技有限公司 一种针刺炭纤维准三向预制体的制作方法
CN102992798A (zh) * 2012-08-17 2013-03-27 江苏天鸟高新技术股份有限公司 碳纤维复合碳化硅纤维针刺预制体的制备方法
CN103233323A (zh) * 2013-05-07 2013-08-07 江苏天鸟高新技术股份有限公司 环状纤维预制件及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116198055A (zh) * 2023-03-10 2023-06-02 西安航空制动科技有限公司 一种粒子改性碳纤维复合材料针刺预制体的制备方法

Also Published As

Publication number Publication date
EP2982789A1 (en) 2016-02-10
US20160017526A1 (en) 2016-01-21
CN103233323A (zh) 2013-08-07
ES2720209T3 (es) 2019-07-18
EP2982789B1 (en) 2019-03-06
US10202715B2 (en) 2019-02-12
CN103233323B (zh) 2015-09-02
TR201907827T4 (tr) 2019-06-21
EP2982789A4 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2014180159A1 (zh) 环状纤维预制件及其制备方法
JPH05230748A (ja) 炭素繊維強化された炭素/炭素複合材料及びその製造方法
JPH094661A (ja) 付形繊維構造物およびその作製方法
JP4248879B2 (ja) 環状のプリホーム複合体を作る方法
JP2894828B2 (ja) 炭素繊維予備成形物およびその製造方法
CN102166840B (zh) Z向有连续炭纤维预制体
CN109023721B (zh) 一种密度梯度纤维垫的制备方法及纤维垫
JP5718462B2 (ja) 強化不織布
CN104711775A (zh) 一种连续分散型长丝纤维针刺毡及其制备方法
TW201144255A (en) A method of fabricating a friction part based on c/c composite material
US6660355B2 (en) Wear resistant articles
CN104626690A (zh) 一种天然纤维复合板材及其制备方法
CN101012600A (zh) 超厚玻璃纤维针刺毡及其制造方法
JP3445828B2 (ja) 超−高性能炭素繊維複合材料
CN110485047B (zh) 一种飞机刹车盘用准三维预制体及其制备方法
CN110923943A (zh) 一种异型纤维多层复合保暖絮片及其制备方法
CN103879076A (zh) 编织物针刺毡集合体及其制备方法
CN102152555B (zh) 制造碳/碳复合材料刹车盘环形预制体及其编织工艺方法
JP3061228B2 (ja) 複合材料製品の製造用の繊維プレフォームの製造方法
CN110863296B (zh) 分层碳纤维预制件
EP2473752B1 (en) Porous, carbon-containing preform and process for producing the same
CN105063895A (zh) 一种准三维预制体的制备方法
CN211057374U (zh) 一种飞机刹车盘用准三维预制体
CN112047750B (zh) 一种复合结构摩擦材料及其制备方法
CN109866479A (zh) 编织物针刺毡集合体及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794154

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014794154

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14771706

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE