WO2015018161A1 - 一种oled交流驱动电路、驱动方法及显示装置 - Google Patents

一种oled交流驱动电路、驱动方法及显示装置 Download PDF

Info

Publication number
WO2015018161A1
WO2015018161A1 PCT/CN2013/089509 CN2013089509W WO2015018161A1 WO 2015018161 A1 WO2015018161 A1 WO 2015018161A1 CN 2013089509 W CN2013089509 W CN 2013089509W WO 2015018161 A1 WO2015018161 A1 WO 2015018161A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
oled
input terminal
signal input
voltage
Prior art date
Application number
PCT/CN2013/089509
Other languages
English (en)
French (fr)
Inventor
青海刚
祁小敬
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/369,416 priority Critical patent/US9286831B2/en
Priority to KR1020147017717A priority patent/KR101580757B1/ko
Priority to JP2016532198A priority patent/JP6669651B2/ja
Priority to EP13863697.2A priority patent/EP2854123A4/en
Publication of WO2015018161A1 publication Critical patent/WO2015018161A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0814Several active elements per pixel in active matrix panels used for selection purposes, e.g. logical AND for partial update
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an OLED AC drive circuit, a driving method, and a display device.
  • a driving circuit for driving OLED light is a 2T1C (two thin film transistors and one capacitor) circuit.
  • the circuit contains only two transistors, the first transistor T1 acts as a switch and the second transistor DTFT is used to drive the transistor.
  • the operation of the circuit is also relatively simple.
  • the level of the scan signal is low, the first transistor T1 is turned on, and the gray scale voltage on the data line charges the capacitor C.
  • the first one Transistor T1 is turned off and capacitor C holds the gray scale voltage. Since the power supply voltage is high, the second transistor DTFT is saturated, and the current generated by it drives the OLED to emit light.
  • the conventional 2T1C circuit to drive OLED illumination has the following technical problems: 1) The uniformity of brightness of the display panel is poor, and the luminance of the OLED and the brightness of the display panel are reduced; 2) The lifetime of the OLED is short.
  • Cause presence of the technical problem 1) is characterized by: a) Since the preparation process (e.g., low-temperature polysilicon technology) immature, even preclude the use of the same process parameters, display threshold voltage of the transistor at different positions of the panel ⁇ ⁇ also have greater Difference, and the driving current for driving the OLED illumination is related to the threshold voltage ⁇ ⁇ of the driving transistor. Therefore, when the same gray scale voltage is input, different threshold voltages of the driving transistor may cause different driving currents, thereby causing the display panel The brightness of different positions is different, and the uniformity of brightness is poor; b) Since there is internal resistance in the line, once a current flows, a voltage drop will occur on the internal resistance of the line, which will affect the voltage difference across the capacitor C.
  • the preparation process e.g., low-temperature polysilicon technology
  • the voltage difference across the capacitor C does not reach the required voltage, and thus the OLED brightness Decrease; c) As the use time of the OLED is prolonged, many uncomplexed carriers will accumulate at the internal interface of the OLED light-emitting layer, and the formation of the carrier will cause a built-in electric field to be formed inside the OLED, resulting in an OLED.
  • the threshold voltage ⁇ ⁇ drifts (ie, rises continuously), so that the luminance of the OLED is lowered, and the brightness of the display panel is lowered.
  • the reason for the above technical problem 2) is that as the use time of the OLED is prolonged, some micro-channel "Filaments" which are partially turned on, which are actually made of some kind” Caused by pinholes, which can affect the life of the OLED.
  • OLED driving circuits only use AC driving to avoid the constant drift of the threshold voltage of the OLED, and eliminate the micro-channel "filament" of the partial conduction of the OLED, thereby delaying the degradation of the characteristics of the OLED and aging, however,
  • the effect of the threshold voltage of the driving transistor on the brightness of the display panel is not considered; or the threshold voltage of the driving transistor is compensated, the influence of the threshold voltage of the driving transistor on the brightness of the display panel is eliminated, but the characteristic degradation and aging of the OLED are not delayed.
  • the lifetime of OLED is short.
  • the technical problem to be solved by the present invention is: how to provide an OLED AC driving circuit, a driving method and a display device to solve the brightness unevenness of the display panel existing in the existing OLED driving circuit, the characteristic degradation of the OLED, and the lifetime Short of shortcomings.
  • the present invention provides an OLED AC driving circuit, characterized in that the circuit comprises: a charging control unit, an illumination control unit, a storage unit, and a driving unit, wherein the charging control unit is used for controlling The alternating current drive The storage unit is charged, and wherein the illumination control unit is configured to control the AC drive circuit to cause the storage unit to drive the OLED to emit light by controlling the drive unit.
  • the AC drive circuit further includes: a first signal input end, a second signal input end, and a third signal input end, wherein the first signal input end is connected to the illumination control unit and the storage a unit, the second signal input is coupled to a cathode of the OLED, and the third signal input is coupled to the charge control unit.
  • the illumination control unit includes: an illumination control signal input end, the illumination control signal input end is configured to input an illumination control signal; and the first transistor, the gate of the first transistor is connected to the illumination control signal input End, the source of the first transistor is connected to the first signal input end, the drain of the first transistor is connected to the driving unit; the fourth transistor, the gate of the fourth transistor is connected to the a light-emitting control signal input terminal, a source of the first transistor is connected to the driving unit, and a drain of the west transistor is connected to an anode of the OLED.
  • the charging control unit includes: a scan signal input end, the scan signal input end is used to input a scan signal; a data signal input end, the data signal input end is used to input a data signal; and a second transistor, the a gate of the second transistor is connected to the scan signal input terminal, a source of the second transistor is connected to the data signal input terminal, and a drain of the second transistor is connected to a drain of the first transistor a third transistor, a gate of the third transistor is connected to the scan signal input terminal, a source of the third transistor is connected to the memory cell, and a drain of the third transistor is connected to the drive a fifth transistor, a gate of the fifth transistor is connected to the scan signal input terminal, a source of the fifth transistor is connected to a drain of the first transistor, and a drain of the fifth transistor is connected To the third signal input terminal.
  • the driving unit includes: a driving transistor, a gate of the driving transistor is connected to the memory unit, a source of the driving transistor is connected to a drain of the first transistor, and a drain of the driving transistor a source connected to the first transistor Extreme.
  • the storage unit includes: a capacitor, one end of the capacitor is connected to the first signal input end, and the other end of the capacitor is connected to a source of the third transistor.
  • the AC drive circuit further includes: a first voltage source, wherein the first voltage source inputs a first voltage control signal to the first signal input end.
  • the AC drive circuit further includes: a second voltage source, wherein the second voltage source inputs a second voltage control signal to the second signal input end.
  • the AC drive circuit further includes: a third voltage source, wherein the third voltage source inputs a third voltage control signal to the third signal input end.
  • the first transistor, the second transistor, the third transistor, the fourth transistor, the fifth transistor, and the driving transistor are all P-type transistors.
  • the voltage value of the first voltage control signal is greater than the voltage value of the second voltage control signal.
  • the voltage value of the second voltage control signal is greater than the voltage value of the third voltage control signal.
  • a display device comprising the above OLED AC drive circuit.
  • a driving method of an OLED AC driving circuit comprising a charging control unit, an emission control unit, a storage unit, and a driving unit
  • the charging control unit is configured to control the AC driving circuit to the storage The unit is charged
  • the illumination control unit is configured to control the AC drive circuit to cause the storage unit to drive the OLED to emit light by controlling the drive unit
  • the method comprises: clearing the a data signal stored by the storage unit; charging the storage unit to store a new data signal; isolating a new data signal stored by the storage unit; the storage unit controls the drive unit to enable It drives the OLED to emit light.
  • the OLED is reverse biased. .
  • the OLED AC drive circuit of the present invention is turned on by controlling the second transistor, the third transistor, and the fifth transistor, and the first transistor and the fourth transistor are turned on, so that the gate of the driving transistor connected to the storage capacitor is normal in the OLED.
  • the other end of the storage capacitor is connected to the first voltage source, so that the voltage change caused by the internal resistance of the line does not affect the voltage difference across the capacitor, thereby ensuring a constant gate-source voltage of the driving transistor, so that the flow
  • the current through the OLED is independent of the internal resistance of the line, ensuring a constant current through the OLED, ensuring the same brightness of the OLED.
  • the OLED AC drive circuit of the present invention compensates the influence of the threshold voltage of the drive transistor on the luminescence current of the OLED by writing the data signal to the storage capacitor while also writing the threshold voltage of the drive transistor to the storage capacitor. The uniformity of the brightness of the display panel is ensured.
  • the OLED AC drive circuit of the present invention eliminates the uncomplexed carriers at the light-emitting interface of the OLED and the built-in electric field formed by the carriers by reverse-biasing the OLED, thereby avoiding the threshold voltage of the OLED. Drift, and can "burn out” some of the partially-conducted microscopic small channel “filaments” of the OLED, increasing the lifetime of the OLED.
  • the OLED AC drive circuit of the present invention has a simple structure, and can use a thin film transistor of amorphous silicon, polysilicon, oxide, etc., and has a simple circuit operation and is easy to be mass-produced and applied.
  • FIG. 1 is a block diagram showing the composition of an OLED AC drive circuit according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram of an OLED AC drive circuit provided in accordance with an embodiment of the present invention.
  • 3 is a driving timing diagram of an OLED AC drive circuit provided in accordance with an embodiment of the present invention.
  • FIG. 4 is an equivalent circuit diagram of an OLED AC drive circuit for clearing a data signal stored by a memory cell, in accordance with an embodiment of the present invention.
  • FIG. 5 is an equivalent circuit diagram of an OLED AC drive circuit for charging the memory cell in accordance with an embodiment of the present invention.
  • FIG. 6 is an equivalent circuit diagram of an OLED AC drive circuit for isolating a new data signal stored by the memory cell, in accordance with an embodiment of the present invention.
  • FIG 7 is an equivalent circuit diagram of an OLED AC drive circuit provided when the memory cell controls the drive unit to drive the OLED to emit light, in accordance with an embodiment of the present invention.
  • an embodiment of the present invention provides an OLED alternating current driving circuit, a driving method, and a display device.
  • Example 1
  • the OLED AC drive circuit of the present embodiment includes: a charging control unit, an illumination control unit, a storage unit, and a driving unit, a first signal input end, a second signal input end, and a third signal input end,
  • the charging control unit is configured to control the AC driving circuit to charge the storage unit
  • the lighting control unit is configured to control the AC driving circuit, so that the storage unit is driven by controlling the driving unit.
  • the OLED emits light, and wherein the first signal input is coupled to the An illumination control unit and the storage unit, the second signal input is connected to the
  • the third signal input being coupled to the charge control unit.
  • the illumination control unit comprises: an illumination control signal input end, the illumination control signal input end is configured to input an illumination control signal; and the first transistor, the gate of the first transistor is connected to the illumination control signal input End, the source of the first transistor is connected to the first signal input end, the drain of the first transistor is connected to the driving unit; the fourth transistor, the gate of the fourth transistor is connected to the a light-emitting control signal input terminal, a source of the fourth transistor is connected to the driving unit, and a drain of the fourth transistor is connected to an anode of the OLED.
  • the charging control unit comprises: a scan signal input end, the scan signal input end is for inputting a scan signal; a data signal input end, the data signal input end is for inputting a data signal; and a second transistor, the a gate of the second transistor is connected to the scan signal input terminal, a source of the second transistor is connected to the data signal input terminal, and a drain of the second transistor is connected to a drain of the first transistor a third transistor, a gate of the third transistor is connected to the scan signal input terminal, a source of the third transistor is connected to the memory cell, and a drain of the third transistor is connected to the drive a fifth transistor, a gate of the fifth transistor is connected to the scan signal input terminal, a source of the fifth transistor is connected to a drain of the first transistor, and a drain of the fifth transistor is connected To the third signal input terminal.
  • the driving unit includes: a driving transistor, a gate of the driving transistor is connected to the memory unit, a source of the driving transistor is connected to a drain of the first transistor, and a drain of the driving transistor A pole is coupled to a source of the first transistor.
  • the storage unit comprises: a capacitor, one end of the capacitor is connected to the first signal input end, and the other end of the capacitor is connected to a source of the third transistor.
  • each signal input end may be a voltage signal input end, or may be a current signal input end, which may be externally connected to a voltage source or a current source.
  • the OLED AC drive circuit of the present embodiment further includes: a voltage source and/or a current source as a signal source of each signal input end.
  • the OLED AC drive circuit of the embodiment further includes: a first voltage source, wherein the first voltage source inputs a first voltage control signal to the first signal input end.
  • the OLED AC drive circuit of the embodiment further includes: a second voltage source, wherein the second voltage source inputs a second voltage control signal to the second signal input end.
  • the OLED AC drive circuit of the embodiment further includes: a third voltage source, wherein the third voltage source inputs a third voltage control signal to the third signal input end.
  • the first transistor, the second transistor, the third transistor, the fourth transistor, the fifth transistor, and the driving transistor are all P-type transistors.
  • the source and the drain of the transistor in this embodiment may be interchanged, that is, the scope of the embodiment of the present invention also covers the interchange of the source and the drain of the transistor in the embodiment mode. The implementation of the situation.
  • the voltage value of the first voltage control signal output by the first voltage source is greater than the voltage value of the second voltage control signal output by the second voltage source.
  • the voltage value of the second voltage control signal output by the second voltage source is greater than the voltage value of the third voltage control signal output by the third voltage source. That is, the voltage values of the first voltage control signal, the second voltage control signal, and the third voltage control signal output by the first voltage source, the second voltage source, and the third voltage source are respectively ⁇ , V ss . V ref , And ⁇ > ⁇ > .
  • FIG. 2 is a circuit diagram of an OLED AC drive circuit provided in accordance with an embodiment of the present invention.
  • the OLED alternating current driving circuit of the present embodiment pairs the first transistor T1, the second transistor ⁇ 2, the third transistor ⁇ 3, the fourth transistor ⁇ 4, the fifth transistor ⁇ 5, the driving transistor DTFT, and the capacitor Cst by the scanning signal, the illuminating control signal, and the data signal. Control is performed so that the current flowing through the OLED is independent of the internal resistance of the line, eliminating the internal resistance of the line to the OLED The effect of the illuminating current.
  • the OLED AC drive circuit of the present embodiment writes the threshold voltage of the drive transistor to the storage capacitor while writing the data signal to the storage capacitor, thereby compensating for the influence of the threshold voltage of the drive transistor on the luminescence current of the OLED. The uniformity of the brightness of the display panel is ensured.
  • the OLED AC drive circuit of the embodiment avoids the threshold voltage of the OLED by eliminating the uncomplexed carriers at the light-emitting interface of the OLED and the built-in electric field formed by the carriers by reverse biasing the OLED.
  • Example 2
  • An embodiment of the present invention further provides a display device comprising the OLED AC drive circuit described in Embodiment 1 above.
  • Example 3
  • Embodiments of the present invention also provide a driving method of an OLED AC driving circuit.
  • the method includes four stages, and FIG. 3 shows a drive timing diagram corresponding to the four stages.
  • ⁇ a is the output voltage of the data signal
  • G(n) is the output voltage value of the scanning signal of the nth row
  • EM( n ) is the output voltage value of the lighting control signal of the nth row.
  • Phase 1 Clear the data signals stored by the memory unit.
  • the scan signal and the light emission control signal are at a low level, so that the first transistor T1 and the fourth transistor T4 included in the light emission control unit, and the charge control unit are included
  • the second transistor ⁇ 2, the third transistor ⁇ 3, and the fifth transistor ⁇ 5 are both turned on to clear the data signal stored by the storage capacitor and reverse bias the OLED.
  • the third transistor T3 Since the third transistor T3 is turned on, the gate and drain of the driving transistor DTFT are connected, that is, the driving transistor DTFT is in a diode connection manner. Moreover, due to the fourth crystal When the transistor T4 and the fifth transistor T5 are turned on, the gate potential of the driving transistor DTFT connected to the capacitor Cst is pulled down to /5 to clear the data signal voltage of the gate of the driving transistor DTFT in the previous frame display.
  • the data signal is at a high level (the first transistor T1 and the second transistor ⁇ 2 are turned on, so that the data signal and the source of the driving transistor DTFT are both connected to the first voltage control signal), so that the data signal and the first voltage
  • the voltage of the control signal ⁇ » acts in conjunction with the source of the drive transistor DTFT.
  • the fifth transistor T5 since the fifth transistor T5 is turned on, the anode potential of the OLED becomes the voltage of the third voltage control signal, and the voltage of the third voltage control signal is smaller than the voltage V ss of the second voltage control signal, thereby making the OLED Reverse biasing, the OLED changes from forward biasing to reverse biasing during illumination, which enables AC drive to the OLED.
  • the reverse bias of the OLED does not cause the OLED to emit light, but does not cause the composite carrier to move backward in the luminescent interface at the OLED, thereby eliminating the absence of composite carriers at the luminescent interface in the OLED and by the carrier.
  • the built-in electric field is formed to avoid drift of the threshold voltage of the OLED.
  • the reverse bias of the OLED can also "burn out" some of the partially-conducted micro-channel "filaments" of the OLED, increasing the lifetime of the OLED.
  • the equivalent circuit of the OLED AC drive circuit shown in Figure 2 is shown in Figure 4.
  • Phase 2 The storage unit is charged to store a new data signal.
  • the scan signal is at a low level
  • the light emission control signal is at a high level, so that the second transistor T2, the third transistor ⁇ 3, and the fifth transistor ⁇ 5 included in the charge control unit are turned on.
  • the first transistor T1 and the fourth transistor T4 included in the illumination control unit are turned off to enable charging of the storage capacitor Cst.
  • the voltage of the data signal changes from ⁇ to data signal.
  • the voltage driving transistor DTFT is still diode-connected, and the first transistor T1 and the fourth transistor T4 are turned off, so that the data signal voltage is from the source of the driving transistor DTFT.
  • the capacitor Cst is charged by the driving transistor DTFT until the gate potential of the driving transistor DTFT rises, and the driving transistor DTFT is turned off, where ⁇ is the threshold voltage of the driving transistor.
  • the voltage of the first voltage control signal is a designed voltage value.
  • the fifth transistor T5 is turned on, and at this time, since the voltage V ref of the third voltage control signal is smaller than the voltage V ss of the second voltage control signal, the OLED light emitting diode remains reverse biased and continues to consume Excess uncomplexed carriers at the internal interface of the luminescent layer, so that the built-in electric field is continuously reduced, and continue to "blow" some of its partially-conducted micro-channel "filaments", thereby mitigating aging of the OLED .
  • the equivalent circuit of the OLED AC drive circuit shown in Figure 2 is shown in Figure 5.
  • Phase 3 Isolate the new data signal stored by the storage unit.
  • the scan signal and the illumination control signal are at a high level, so that the first transistor T1 and the fourth transistor T4 included in the illumination control unit, and the second included in the charging control unit
  • the transistor ⁇ 2, the third transistor ⁇ 3, and the fifth transistor ⁇ 5 are all turned off to achieve isolation of the new data signal stored by the capacitor Cst.
  • the illumination control signal remains at a high level in order to avoid unnecessary noise when the voltage of the illumination control signal is simultaneously hopped.
  • Stage 4 The memory unit controls the drive unit to cause it to drive the OLED to emit light.
  • the scan signal is at a high level
  • the light emission control signal is at a low level.
  • the second transistor T2, the third transistor ⁇ 3, and the fifth transistor ⁇ 5 included in the charge control unit are both off. Breaking, the first transistor T1 included in the illumination control unit
  • the fourth transistor T4 is turned on, and the storage capacitor Cst controls the driving transistor DTFT to drive the OLED to emit light. At this point, the OLED becomes forward biased and begins to illuminate.
  • the gate of the driving transistor DTFT is in a floating state (the floating state is also turned on), and at this time, the capacitor (the one end of the capacitor is suspended, and the other end is connected to the voltage V DD of the first voltage control signal, Therefore, the voltage across the capacitor ( ⁇ is still the voltage reached in phase 2, and the voltage difference between the two ends of the voltage due to the current flowing through the voltage of the first voltage control signal is not affected.
  • the gate-source voltage of the transistor DTFT is the capacitance (the voltage across the terminal ( : Therefore, the saturation current (ie, the luminescence current of the OLED) J w through the driving transistor DTFT is: Among them, for the constants related to the process and drive design, ⁇ is the threshold voltage of the driving transistor DTFT.
  • the equivalent circuit of the OLED AC drive circuit shown in FIG. 2 is as shown in FIG.
  • the second transistor, the third transistor and the fifth transistor are turned off, and the first transistor and the fourth transistor are turned on, so that the current flowing through the OLED is independent of the internal resistance of the line, and the current flowing through the OLED is ensured. Constant, ensuring the same brightness of the OLED.
  • the OLED is forward biased when light is emitted, and the OLED is reverse biased during the operation phase of the circuit. Moreover, when the OLED emits light, the current flowing through the OLED is only proportional to the data signal voltage and the designed supply voltage DD . The size of the Regardless of the threshold voltage of the driving transistor DTFT, at the same time, the illuminating current of the OLED is not affected by the internal resistance of the line.
  • the OLED is in a reverse bias state, which consumes uncomplexed carriers at the luminescent interface within the OLED, thereby eliminating built-in electric fields, enhancing carrier injection and recombination, and enhancing carriers. Recombination rate.
  • the OLED reverse bias can "burn out” some of the locally-conducted microscopic small channels “Filaments", which are actually caused by some kind of "pinhole".
  • the elimination of filaments can greatly alleviate the aging of OLEDs and extend the life of OLEDs.
  • the data signal voltage is directly written into the storage capacitor Cst by means of charging, and the method avoids various parasitics as compared with many ways of writing the data signal voltage to the storage capacitor through the coupling capacitor.
  • the effect of a capacitor on the voltage write of a data signal This is because if the data signal voltage is written to the storage capacitor through the coupling capacitor, various parasitic capacitances will divide the voltage of the coupling jump, which affects the accuracy of data signal voltage writing.
  • the OLED AC drive circuit of the present invention can use thin film transistors of amorphous silicon, polysilicon, oxide, etc., but using a single MOS (i.e., all P-MOS) transistors can reduce the complexity and cost of the process.
  • MOS i.e., all P-MOS
  • the OLED AC driving circuit of the invention has a simple structure, and can adopt a thin film transistor of a process of amorphous silicon, polycrystalline silicon, oxide or the like, and the circuit is simple in operation and easy to be mass-produced and applied.

Abstract

一种OLED交流驱动电路、驱动方法及显示装置。该OLED交流驱动电路包括发光控制单元(T1,T4)、充电控制单元(T2,T3,T5)、驱动单元(DTFT)、存储单元(Cst)、发光单元(OLED)、第一电压信号输入端、第二电压信号输入端和第三电压信号输入端。该OLED交流驱动电路能够使得流过OLED的电流和线路的内阻无关,保证了流过OLED的电流恒定,确保了OLED的亮度不受内阻影响;同时,该OLED交流驱动电路补偿了驱动晶体管(DTFT)的阈值电压,消除了驱动晶体管(DTFT)的阈值电压对OLED的发光电流的影响,从而使包括该OLED交流驱动电路的显示面板的亮度的均匀性好。此外,该OLED交流驱动电路通过使OLED反向偏置而消除了OLED的发光层的内部界面处的未复合的载流子和由这些载流子形成的内建电场,从而避免了OLED的阈值电压的不断升高及其对OLED的发光亮度的影响,并且使OLED反向偏置能够增加OLED的使用寿命。

Description

一种 OLED交流驱动电路、 驱动方法及显示装置
技术领域
本发明涉及显示技术领域,特别涉及 OLED交流驱动电路、驱动 方法及显示装置。
背景技术
传统的显示装置中, 用于驱动 OLED发光的驱动电路为 2T1C (两 个薄膜晶体管和一个电容)电路。该电路只含有两个晶体管, 第一个 晶体管 T1用作开关, 第二个晶体管 DTFT用于驱动晶体管。 该电路的 操作也比较简单, 当扫描信号的电平为低时, 第一个晶体管 T1打 开, 数据线上的灰阶电压对电容 C充电, 当扫描信号的电平为高时, 第一个晶体管 T1关闭, 电容 C保存灰阶电压。 由于电源电压较高, 因此第二个晶体管 DTFT处于饱和状态, 其产生的电流驱动 OLED发 光。
但是, 釆用传统的 2T1C电路来驱动 OLED发光存在以下技术问 题: 1 )显示面板的亮度的均匀性差, 且 OLED的发光亮度及显示面板 的亮度会降低; 2 ) OLED的使用寿命短。
存在上述技术问题 1 )的原因在于: a ) 由于制备工艺(例如, 低 温多晶硅技术)的不成熟, 即便是釆用相同的工艺参数, 显示面板的 不同位置的晶体管的阈值电压 νΛ也有较大差异, 而用于驱动 OLED发 光的驱动电流与驱动晶体管的阈值电压 νΛ相关, 因此, 当输入相同 的灰阶电压时, 驱动晶体管的不同阈值电压会导致不同的驱动电流, 从而造成显示面板的不同位置的亮度不同, 其亮度的均匀性差; b ) 由于线路存在内阻, 一旦有电流流过, 线路内阻上必然产生电压降, 因此会影响电容 C两端的电压差, 例如电容 C两端的电压差达不到要 求的电压, 从而 OLED的发光亮度下降; c )随着 OLED的使用时间的 延长, 在 OLED发光层的内部界面处会积累很多未复合的载流子, 该 载流子的形成会使得 OLED的内部形成内建电场, 导致 OLED的阈值 电压 νΛ漂移(即, 不断升高), 从而 OLED的发光亮度降低, 显示面 板的亮度降低。
存在上述技术问题 2 )的原因在于:随着 OLED的使用时间的延长, 其中会产生某些局部导通的微观小通道 "细丝(Filaments )" , 这种细 丝实际上是由某种 "针孔" 引起的, 其会影响 OLED的使用寿命。
而目前大多数 OLED驱动电路要么只是使用交流驱动避免了 OLED的阈值电压的不断漂移、 消除了 OLED的局部导通的微观小通 道 "细丝", 从而延缓了 OLED的特性退化及老化, 但是, 没有考虑驱 动晶体管的阈值电压对显示面板的亮度的影响; 要么是补偿了驱动 晶体管的阈值电压, 消除了驱动晶体管的阈值电压对显示面板的亮 度的影响, 但是, 没有延缓 OLED的特性退化及老化, OLED的使用 寿命短。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是:如何提供一种 OLED交流驱动电路、 驱动方法及显示装置, 来解决釆用现有的 OLED驱动电路所存在的显 示面板的亮度不均匀、 OLED的特性退化、 寿命短等不足。
(二)技术方案
为解决上述技术问题, 本发明提供了一种 OLED交流驱动电路, 其特征是, 该电路包括: 充电控制单元、 发光控制单元、 存储单 元、 和驱动单元, 其中,所述充电控制单元用于控制所述交流驱动电 路对所述存储单元进行充电, 以及其中, 所述发光控制单元用于控制 所述交流驱动电路,使所述存储单元通过控制所述驱动单元来驱动所 述 OLED发光。
进一步地, 所述交流驱动电路还包括: 第一信号输入端、 第二信 号输入端、 和第三信号输入端, 其中, 所述第一信号输入端连接至所 述发光控制单元和所述存储单元, 所述第二信号输入端连接至所述 OLED的阴极, 所述第三信号输入端连接至所述充电控制单元。
进一步地, 所述发光控制单元包括: 发光控制信号输入端,所述 发光控制信号输入端用于输入发光控制信号;第一晶体管, 所述第一 晶体管的栅极连接至所述发光控制信号输入端,所述第一晶体管的源 极连接至所述第一信号输入端,所述第一晶体管的漏极连接至所述驱 动单元; 第四晶体管, 所述第四晶体管的栅极连接至所述发光控制 信号输入端, 所述第 晶体管的源极连接至所述驱动单元, 所述第西 晶体管的漏极连接至所述 OLED的阳极。
进一步地, 所述充电控制单元包括: 扫描信号输入端,所述扫描 信号输入端用于输入扫描信号; 数据信号输入端, 所述数据信号输入 端用于输入数据信号;第二晶体管, 所述第二晶体管的栅极连接至所 述扫描信号输入端,所述第二晶体管的源极连接至所述数据信号输入 端,所述第二晶体管的漏极连接至所述第一晶体管的漏极; 第三晶体 管, 所述第三晶体管的栅极连接至所述扫描信号输入端,所述第三晶 体管的源极连接至所述存储单元,所述第三晶体管的漏极连接至所述 驱动单元; 第五晶体管, 所述第五晶体管的栅极连接至所述扫描信 号输入端, 所述第五晶体管的源极连接至所述第 晶体管的漏极, 所 述第五晶体管的漏极连接至所述第三信号输入端。
进一步地, 所述驱动单元包括: 驱动晶体管, 所述驱动晶体管 的栅极连接至所述存储单元,所述驱动晶体管的源极连接至所述第一 晶体管的漏极, 所述驱动晶体管的漏极连接至所述第 晶体管的源 极。
进一步地, 所述存储单元包括: 电容, 所述电容的一端连接至 所述第一信号输入端,所述电容的另一端连接至所述第三晶体管的源 极。
进一步地, 所述交流驱动电路还包括:第一电压源, 所述第一电 压源向所述第一信号输入端输入第一电压控制信号。
进一步地, 所述交流驱动电路还包括:第二电压源, 所述第二电 压源向所述第二信号输入端输入第二电压控制信号。
进一步地, 所述交流驱动电路还包括:第三电压源, 所述第三电 压源向所述第三信号输入端输入第三电压控制信号。
进一步地, 所述第一晶体管、 第二晶体管、 第三晶体管、 第四 晶体管、 第五晶体管、 驱动晶体管均为 P型晶体管。
进一步地, 所述第一电压控制信号的电压值大于所述第二电压 控制信号的电压值。
进一步地, 所述第二电压控制信号的电压值大于所述第三电压 控制信号的电压值。
一种显示装置, 包括上述的 OLED交流驱动电路。
一种 OLED交流驱动电路的驱动方法, 所述交流驱动电路包括充 电控制单元、 发光控制单元、 存储单元、 和驱动单元, 其中,所述充 电控制单元用于控制所述交流驱动电路对所述存储单元进行充电, 以 及其中, 所述发光控制单元用于控制所述交流驱动电路, 使所述存储 单元通过控制所述驱动单元来驱动所述 OLED发光, 其特征是, 该方 法包括: 清除所述存储单元所存储的数据信号; 对所述存储单元进 行充电, 以使其存储新的数据信号; 隔离所述存储单元所存储的新的 数据信号; 所述存储单元控制所述驱动单元, 以使其驱动所述 OLED 发光。
进一步地, 在清除所述存储单元所存储的数据信号的同时, 使所 述 OLED反向偏置。 。
(三)有益效果
1、 本发明的 OLED交流驱动电路通过控制第二晶体管、 第三晶 体管和第五晶体管关断、第一晶体管和第四晶体管导通, 使得与存储 电容相连接的驱动晶体管的栅极在 OLED正常发光时处于悬空状态, 存储电容的另一端与第一电压源相连, 因而线路内阻引起的电压变 化不会影响到电容两端的电压差, 从而保证了驱动晶体管的栅源电 压的恒定, 使得流过 OLED的电流和线路的内阻无关, 保证了流过 OLED的电流的恒定, 确保了 OLED的亮度相同。
2、本发明的 OLED交流驱动电路通过在将数据信号写入存储电容 的同时, 也将驱动晶体管的阈值电压写入了存储电容, 从而补偿了驱 动晶体管的阈值电压对 OLED的发光电流的影响, 确保了显示面板的 亮度的均匀性。
3、 本发明的 OLED交流驱动电路通过将 OLED反向偏置, 消除了 OLED内发光界面处的未复合的载流子和由这些载流子形成的内建电 场, 避免了 OLED的阈值电压的漂移, 并且可以 "烧断(Burn out )" OLED的某些局部导通的微观小通道 "细丝", 增加了 OLED的使用寿 命。
4、 本发明的 OLED交流驱动电路的结构简单, 可以釆用非晶 硅、 多晶硅、 氧化物等工艺的薄膜晶体管, 且其电路操作简便, 易 于大规模生产和应用。
附图说明
图 1是根据本发明的实施方式所提供的 OLED交流驱动电路的组 成框图。
图 2是根据本发明的实施方式所提供的 OLED交流驱动电路的电 路图。 图 3是根据本发明的实施方式所提供的 OLED交流驱动电路的驱 动时序图。
图 4是根据本发明的实施方式所提供的 OLED交流驱动电路在清 除存储单元所存储的数据信号时的等效电路图。
图 5是根据本发明的实施方式所提供的 OLED交流驱动电路在对 所述存储单元进行充电时的等效电路图。
图 6是根据本发明的实施方式所提供的 OLED交流驱动电路在隔 离所述存储单元所存储的新的数据信号时的等效电路图。
图 7是根据本发明的实施方式所提供的 OLED交流驱动电路在所 述存储单元控制所述驱动单元来驱动所述 OLED发光时的等效电路 图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细 描述。 以下实施例用于说明本发明, 但不用来限制本发明的范围。
为了解决釆用现有的 OLED驱动电路所存在的显示面板的亮度不 均匀、 OLED的特性退化、 寿命短等不足, 本发明的实施方式提供了 一种 OLED交流驱动电路、 驱动方法及显示装置。 实施例 1
图 1是根据本发明的实施方式所提供的 OLED交流驱动电路的组 成框图。 如图 1所示,本实施方式的 OLED交流驱动电路包括: 充电控 制单元、 发光控制单元、 存储单元、 和驱动单元, 第一信号输入端、 第二信号输入端、 和第三信号输入端, 其中, 所述充电控制单元用于 控制所述交流驱动电路对所述存储单元进行充电,所述发光控制单元 用于控制所述交流驱动电路,使所述存储单元通过控制所述驱动单元 来驱动所述 OLED发光, 以及其中, 所述第一信号输入端连接至所述 发光控制单元和所述存储单元, 所述第二信号输入端连接至所述
OLED的阴极, 所述第三信号输入端连接至所述充电控制单元。
优选地, 所述发光控制单元包括: 发光控制信号输入端,所述发 光控制信号输入端用于输入发光控制信号;第一晶体管, 所述第一晶 体管的栅极连接至所述发光控制信号输入端,所述第一晶体管的源极 连接至所述第一信号输入端,所述第一晶体管的漏极连接至所述驱动 单元; 第四晶体管, 所述第四晶体管的栅极连接至所述发光控制信 号输入端, 所述第四晶体管的源极连接至所述驱动单元, 所述第四晶 体管的漏极连接至所述 OLED的阳极。
优选地, 所述充电控制单元包括: 扫描信号输入端,所述扫描信 号输入端用于输入扫描信号; 数据信号输入端, 所述数据信号输入端 用于输入数据信号;第二晶体管, 所述第二晶体管的栅极连接至所述 扫描信号输入端, 所述第二晶体管的源极连接至所述数据信号输入 端,所述第二晶体管的漏极连接至所述第一晶体管的漏极; 第三晶体 管, 所述第三晶体管的栅极连接至所述扫描信号输入端,所述第三晶 体管的源极连接至所述存储单元,所述第三晶体管的漏极连接至所述 驱动单元; 第五晶体管, 所述第五晶体管的栅极连接至所述扫描信 号输入端, 所述第五晶体管的源极连接至所述第 晶体管的漏极, 所 述第五晶体管的漏极连接至所述第三信号输入端。
优选地, 所述驱动单元包括: 驱动晶体管, 所述驱动晶体管的 栅极连接至所述存储单元,所述驱动晶体管的源极连接至所述第一晶 体管的漏极,所述驱动晶体管的漏极连接至所述第 晶体管的源极。
优选地, 所述存储单元包括: 电容, 所述电容的一端连接至所 述第一信号输入端, 所述电容的另一端连接至所述第三晶体管的源 极。
本实施方式中,各个信号输入端可以为电压信号输入端, 也可以 为电流信号输入端, 其可以外接电压源或电流源。 优选地, 本实施方式的 OLED交流驱动电路还包括: 电压源和 / 或电流源, 作为各个信号输入端的信号来源。
优选地, 本实施方式的 OLED交流驱动电路还包括: 第一电压 源, 所述第一电压源向所述第一信号输入端输入第一电压控制信 号。
优选地, 本实施方式的 OLED交流驱动电路还包括: 第二电压 源, 所述第二电压源向所述第二信号输入端输入第二电压控制信 号。
优选地, 本实施方式的 OLED交流驱动电路还包括: 第三电压 源, 所述第三电压源向所述第三信号输入端输入第三电压控制信号。
所述第一晶体管、 第二晶体管、 第三晶体管、 第四晶体管、 第 五晶体管、 驱动晶体管均为 P型晶体管。
需说明的是, 本实施方式中的晶体管的源极和漏极可以互相调 换使用, 即本发明的实施方式的范围还涵盖了将本实施例方式中的 晶体管的源极和漏极互换的情况的实施方式。
其中,所述第一电压源输出的第一电压控制信号的电压值大于所 述第二电压源输出的第二电压控制信号的电压值。 所述第二电压源 输出的第二电压控制信号的电压值大于所述第三电压源输出的第三 电压控制信号的电压值。 即, 第一电压源、 第二电压源、和第三电压 源输出的第一电压控制信号、第二电压控制信号和第三电压控制信号 的电压值分别为^ ^、 Vss . Vref , 且^ >^ > 。
图 2为根据本发明的实施方式所提供的 OLED交流驱动电路的电 路图。
本实施方式的 OLED交流驱动电路通过扫描信号、 发光控制信号 和数据信号对第一晶体管 Tl、 第二晶体管 Τ2、 第三晶体管 Τ3、 第四 晶体管 Τ4、 第五晶体管 Τ5、 驱动晶体管 DTFT和电容 Cst进行控制, 使得流过 OLED的电流和线路的内阻无关, 消除了线路内阻对 OLED 的发光电流的影响。 而且, 本实施方式的 OLED交流驱动电路在将数 据信号写入存储电容的同时, 也将驱动晶体管的阈值电压写入了存 储电容, 从而补偿了驱动晶体管的阈值电压对 OLED的发光电流的影 响, 确保了显示面板的亮度的均匀性。 此外, 本实施例的 OLED交流 驱动电路通过将 OLED反向偏置, 消除了 OLED内发光界面处的未复 合的载流子和由这些载流子形成的内建电场, 避免了 OLED的阈值电 压的漂移, 并且可以 "烧断 (Burn out ) " OLED的某些局部导通的 微观小通道 "细丝" , 增加了 OLED的使用寿命。 实施例 2
本发明的实施方式还提供了一种显示装置, 所述显示装置包括 上述实施例 1所述的 OLED交流驱动电路。 实施例 3
本发明的实施方式还提供了一种 OLED交流驱动电路的驱动方 法。 该方法包括 4个阶段,图 3示出了对应于该 4个阶段的驱动时序图。 图 3中, ^a是数据信号的输出电压, G(n)是第 n行的扫描信号的输出 电压值, EM(n)是第 n行的发光控制信号的输出电压值。
所述 4个阶段的具体操作如下所述。
阶段 1: 清除存储单元所存储的数据信号。
具体地, 该阶段中, 使所述扫描信号和所述发光控制信号为低电 平, 从而所述发光控制单元所包含的第一晶体管 T1和第四晶体管 T4、 以及所述充电控制单元所包含的第二晶体管 Τ2、 第三晶体管 Τ3 和第五晶体管 Τ5均导通, 以清除存储电容所存储的数据信号, 并使 得 OLED反向偏置。
由于第三晶体管 T3导通, 因此驱动晶体管 DTFT的栅极和漏极连 接, 即, 驱动晶体管 DTFT为二极管连接方式。 而且, 由于第四晶体 管 T4和第五晶体管 T5导通, 则与电容 Cst相连接的驱动晶体管 DTFT 的栅极电位被下拉为 / 5 清除了上一帧显示时驱动晶体管 DTFT的 栅极的数据信号电压。 此时, 数据信号为高电平 (第一晶体管 T1 和第二晶体管 Τ2导通后, 使得数据信号和驱动晶体管 DTFT的源极都 连接至第一电压控制信号), 从而数据信号与第一电压控制信号的电 压^ »共同作用于驱动晶体管 DTFT的源极。 此外, 由于第五晶体管 T5导通, 使得 OLED的阳极电位变为第三电压控制信号的电压^ ^, 由于第三电压控制信号的电压 ,小于第二电压控制信号的电压 Vss , 因此使得 OLED反向偏置, OLED从发光时的正向偏置变为反 向偏置, 这样实现了对 OLED的交流驱动。 OLED的反向偏置不会使 得 OLED发光, 而会使得 OLED内发光界面处没有复合的载流子反向 运动, 从而消除了 OLED内发光界面处没有复合的载流子和由该载流 子形成的内建电场, 避免了 OLED的阈值电压的漂移。 此外, OLED 的反向偏置还可以 "烧断 (Burn out ) " OLED的某些局部导通的微 观小通道 "细丝" , 增加了 OLED的使用寿命。该阶段中, 图 2所示的 OLED交流驱动电路的等效电路如图 4所示。
阶段 2: 对所述存储单元进行充电, 以使其存储新的数据信号。 该阶段中, 使所述扫描信号为低电平、所述发光控制信号为高电 平, 从而所述充电控制单元所包含的第二晶体管 T2、 第三晶体管 Τ3 和第五晶体管 Τ5导通, 而所述发光控制单元所包含的第一晶体管 T1 和第四晶体管 Τ4关断, 以实现对所述存储电容 Cst进行充电。
即, 数据信号的电压从^ ^跳变为数据信号电压 驱动晶体 管 DTFT仍然为二极管连接方式, 第一晶体管 T1和第四晶体管 T4关 断, 从而, 数据信号电压^ ^从驱动晶体管 DTFT的源极通过驱动晶 体管 DTFT对电容 Cst充电, 直到驱动晶体管 DTFT的栅极电位上升到 时, 驱动晶体管 DTFT截止, 其中, ^为驱动晶体管的阈 值电压。 此时, 第一电压控制信号的电压为设计的电压值。 为了将 有电流流过(OLED发光) 时由于线路内阻而产生了电压降的第一电 压控制信号的电压与没有电流流过时无电压降产生的第一电压控制 信号的电压区分开, 这里使用 。表示没有电压降产生的第一电压 控制信号的电压。 则该阶段中, 电容 Crf上的电压为:
而且,该阶段中, 第五晶体管 T5导通, 此时由于第三电压控制信 号的电压 Vref小于第二电压控制信号的电压 Vss , 因此 OLED发光二极 管仍然保持反向偏置, 继续消耗其发光层内部界面处多余的未复合 的载流子, 从而使其内建电场不断减小, 并且继续 "烧断"其某些局 部导通的微观小通道 "细丝", 从而缓解 OLED的老化。 该阶段中, 图 2所示的 OLED交流驱动电路的等效电路如图 5所示。
阶段 3: 隔离所述存储单元所存储的新的数据信号。
该阶段中, 使所述扫描信号和所述发光控制信号为高电平, 从而 所述发光控制单元所包含的第一晶体管 T1和第四晶体管 T4、 以及所 述充电控制单元所包含的第二晶体管 Τ2、 第三晶体管 Τ3和第五晶体 管 Τ5均关断, 以实现对电容 Cst所存储的新的数据信号的隔离。
该阶段中,所述发光控制信号仍然保持为高电平是为了避免所述 发光控制信号的电压同时跳变时可能引起不必要的杂讯。
此时, OLED仍然反向偏置不导通。 由于第五晶体管 T5关断, 因此第三电压控制信号的电压 ,不再作用到 OLED的阳极。 该阶段 中, 图 2所示的 OLED交流驱动电路的等效电路如图 6所示。
阶段 4: 所述存储单元控制所述驱动单元, 以使其驱动 OLED发 光。 该阶段中, 使所述扫描信号为高电平、所述发光控制信号为低电 平, 此时所述充电控制单元所包含的第二晶体管 T2、 第三晶体管 Τ3 和第五晶体管 Τ5均关断, 所述发光控制单元所包含的第一晶体管 T1 和第四晶体管 T4导通, 所述存储电容 Cst控制所述驱动晶体管 DTFT, 使其驱动 OLED发光。 此时, OLED变为正向偏置, 开始发光。 由于第三晶体管 T3关 断, 因此驱动晶体管 DTFT的栅极处于悬空状态(悬空也属于导通), 此时, 电容 (^的一端悬空、 另一端连接至第一电压控制信号的电压 VDD , 因此电容 (^两端的电压仍然为在阶段 2所达到的电压, 而不会 因为第一电压控制信号的电压 因有电流流过产生电压降而影响电 容 (^两端的电压差。 此时, 驱动晶体管 DTFT的栅源电压 ^即为电 容 (^两端的电压 (
Figure imgf000014_0001
\ 因此, 通过驱动晶体管 DTFT的饱和电流(即, OLED的发光电流) J w的大小为:
Figure imgf000014_0002
其中, 为与工艺和驱动设计有关的常数, ^为驱动晶体管 DTFT的阈值电压。 该阶段中, 图 2所示的 OLED交流驱动电路的等效 电路如图 7所示。
由上述公式可知, 第二晶体管、 第三晶体管和第五晶体管关 断, 以及第一晶体管和第四晶体管导通, 使得流过 OLED的电流和线 路的内阻无关, 保证了流过 OLED的电流的恒定, 确保了 OLED的亮 度相同。
此外, 本实施方式的驱动电路中, OLED发光时正向偏置, 而在 电路的操作阶段, OLED反向偏置。 而且, OLED发光时, 流过 OLED 的电流大小只与数据信号电压和设计的电源电压 DD。的大小有关, 而与驱动晶体管 DTFT的阈值电压无关, 同时, OLED的发光电流也不 受线路内阻的影响。 在电路的操作阶段, OLED处于反向偏置状态, 该状态可消耗 OLED内发光界面处的未复合的载流子, 从而消除内建 电场, 增强载流子的注入与复合, 提高载流子的复合率。 同时, OLED反向偏置可以 "烧断 (Burn out)" 某些局部导通的微观小通道 "细丝 (Filaments)" , 这种细丝实际上是由某种 "针孔" 引起的, 细 丝 (即, 针孔) 的消除可以大大缓解 OLED的老化, 延长 OLED的使 用寿命。 此外, 该 OLED交流驱动电路中, 数据信号电压直接通过充 电的方式写入到存储电容 Cst中, 相比于很多通过耦合电容将数据信 号电压写入存储电容的方式, 该方法避免了各种寄生电容对数据信 号电压写入的影响。 这是因为如果通过耦合电容将数据信号电压写 入存储电容, 则各种寄生电容会对耦合跳变的电压进行分压,影响数 据信号电压写入的精确性。
本发明的 OLED交流驱动电路可釆用非晶硅、 多晶硅、 氧化物等 工艺的薄膜晶体管, 但是釆用单一 MOS (即, 全部为 P-MOS ) 晶体 管, 能够降低工艺的复杂程度和成本。 当然,可以经过简化、 替代、 组合等而容易地改成釆用 N-MOS或 CMOS晶体管的电路, 这都属于 本发明的范畴。
本发明的 OLED交流驱动电路的结构简单, 可以釆用非晶硅、 多 晶硅、 氧化物等工艺的薄膜晶体管, 其电路操作简便, 易于大规模 生产和应用。
以上实施方式仅用于说明本发明, 而并非对本发明的限制。本发 明的实施方式可以省略上述技术特征中的一些技术特征,仅解决现有 技术中存在的部分技术问题, 而且, 所公开的技术特征可以进行任意 组合。有关技术领域的普通技术人员在不脱离本发明的精神和范围的 情况下做出的各种变化和变型也属于本发明的范畴。本发明的专利保 护范围应由权利要求限定。

Claims

权 利 要 求 书
1、 一种 OLED交流驱动电路, 其特征是, 该电路包括: 充电控制单元、 发光控制单元、 存储单元、 和驱动单元, 其中,所述充电控制单元用于控制所述交流驱动电路对所述存储 单元进行充电, 以及
其中, 所述发光控制单元用于控制所述交流驱动电路, 使所述存 储单元通过控制所述驱动单元来驱动所述 OLED发光。
2、 如权利要求 1所述的交流驱动电路, 其特征是, 还包括: 第一信号输入端、 第二信号输入端、 和第三信号输入端, 其中,所述第一信号输入端连接至所述发光控制单元和所述存储 单元, 所述第二信号输入端连接至所述 OLED的阴极, 所述第三信号 输入端连接至所述充电控制单元。
3、 如权利要求 2所述的交流驱动电路, 其特征是, 所述发光控 制单元包括:
发光控制信号输入端,所述发光控制信号输入端用于输入发光控 制信号;
第一晶体管, 所述第一晶体管的栅极连接至所述发光控制信号 输入端, 所述第一晶体管的源极连接至所述第一信号输入端, 所述第 一晶体管的漏极连接至所述驱动单元;
第 晶体管, 所述第 晶体管的栅极连接至所述发光控制信号 输入端, 所述第四晶体管的源极连接至所述驱动单元, 所述第四晶体 管的漏极连接至所述 OLED的阳极。
4、 如权利要求 3所述的交流驱动电路, 其特征是, 所述充电控 制单元包括:
扫描信号输入端, 所述扫描信号输入端用于输入扫描信号; 数据信号输入端, 所述数据信号输入端用于输入数据信号; 第二晶体管, 所述第二晶体管的栅极连接至所述扫描信号输入 端, 所述第二晶体管的源极连接至所述数据信号输入端, 所述第二晶 体管的漏极连接至所述第一晶体管的漏极;
第三晶体管, 所述第三晶体管的栅极连接至所述扫描信号输入 端, 所述第三晶体管的源极连接至所述存储单元, 所述第三晶体管的 漏极连接至所述驱动单元;
第五晶体管, 所述第五晶体管的栅极连接至所述扫描信号输入 端, 所述第五晶体管的源极连接至所述第 晶体管的漏极, 所述第五 晶体管的漏极连接至所述第三信号输入端。
5、 如权利要求 4所述的交流驱动电路, 其特征是, 所述驱动单 元包括:
驱动晶体管, 所述驱动晶体管的栅极连接至所述存储单元,所述 驱动晶体管的源极连接至所述第一晶体管的漏极,所述驱动晶体管的 漏极连接至所述第西晶体管的源极。
6、 如权利要求 5所述的交流驱动电路, 其特征是, 所述存储单 元包括:
电容, 所述电容的一端连接至所述第一信号输入端,所述电容的 另一端连接至所述第三晶体管的源极。
7、 如权利要去 6所述的交流驱动电路, 其特征是, 还包括: 第一电压源, 所述第一电压源向所述第一信号输入端输入第一 电压控制信号。
8、 如权利要去 7所述的交流驱动电路, 其特征是, 还包括: 第二电压源, 所述第二电压源向所述第二信号输入端输入第二 电压控制信号。
9、 如权利要去 8所述的交流驱动电路, 其特征是, 还包括: 第三电压源, 所述第三电压源向所述第三信号输入端输入第三 电压控制信号。
10、 如权利要求 9所述的交流驱动电路, 其特征是, 所述第一晶 体管、 第二晶体管、 第三晶体管、 第 晶体管、 第五晶体管、 驱动 晶体管均为 P型晶体管。
11、 如权利要求 10所述的交流驱动电路, 其特征是, 所述第一 电压控制信号的电压值大于所述第二电压控制信号的电压值。
12、 如权利要求 11所述的交流驱动电路, 其特征是, 所述第二 电压控制信号的电压值大于所述第三电压控制信号的电压值。
13、 一种显示装置, 其特征是, 包括权利要求 1-12中任一项所 述的 OLED交流驱动电路。
14、 一种 OLED交流驱动电路的驱动方法, 所述交流驱动电路 包括充电控制单元、 发光控制单元、 存储单元、 和驱动单元, 其中, 所述充电控制单元用于控制所述交流驱动电路对所述存储单元进行 充电, 以及其中, 所述发光控制单元用于控制所述交流驱动电路, 使 所述存储单元通过控制所述驱动单元来驱动所述 OLED发光, 其特征 是, 该方法包括:
清除所述存储单元所存储的数据信号;
对所述存储单元进行充电, 以使其存储新的数据信号; 隔离所述存储单元所存储的新的数据信号;
所述存储单元控制所述驱动单元, 以使其驱动所述 OLED发
15、 如权利要求 14所述的驱动方法, 其特征是, 其中, 在清除所述存储单元所存储的数据信号的同时, 使所述 OLED反 向偏置。
PCT/CN2013/089509 2013-08-07 2013-12-16 一种oled交流驱动电路、驱动方法及显示装置 WO2015018161A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/369,416 US9286831B2 (en) 2013-08-07 2013-12-16 AC drive circuit for OLED, drive method and display apparatus
KR1020147017717A KR101580757B1 (ko) 2013-08-07 2013-12-16 Oled용 ac 구동 회로, 구동 방법 및 디스플레이 장치
JP2016532198A JP6669651B2 (ja) 2013-08-07 2013-12-16 Oled交流駆動回路、駆動方法及びディスプレイデバイス
EP13863697.2A EP2854123A4 (en) 2013-08-07 2013-12-16 ALTERNATIVE OLED CURRENT ATTACK CIRCUIT, ATTACK METHOD, AND DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310341693.6 2013-08-07
CN201310341693.6A CN103440843B (zh) 2013-08-07 2013-08-07 一种抑制老化的oled交流驱动电路、驱动方法及显示装置

Publications (1)

Publication Number Publication Date
WO2015018161A1 true WO2015018161A1 (zh) 2015-02-12

Family

ID=49694534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089509 WO2015018161A1 (zh) 2013-08-07 2013-12-16 一种oled交流驱动电路、驱动方法及显示装置

Country Status (6)

Country Link
US (1) US9286831B2 (zh)
EP (1) EP2854123A4 (zh)
JP (1) JP6669651B2 (zh)
KR (1) KR101580757B1 (zh)
CN (1) CN103440843B (zh)
WO (1) WO2015018161A1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104751777B (zh) * 2013-12-31 2017-10-17 昆山工研院新型平板显示技术中心有限公司 像素电路、像素及包括该像素的amoled显示装置及其驱动方法
US10607542B2 (en) 2013-12-31 2020-03-31 Kunshan New Flat Panel Display Technology Center Co., Ltd. Pixel circuit, pixel, and AMOLED display device comprising pixel and driving method thereof
JP6528267B2 (ja) 2014-06-27 2019-06-12 Tianma Japan株式会社 画素回路及びその駆動方法
JP2016075836A (ja) * 2014-10-08 2016-05-12 Nltテクノロジー株式会社 画素回路、その駆動方法及び表示装置
TWI533278B (zh) * 2014-10-31 2016-05-11 友達光電股份有限公司 畫素結構及其驅動方法
CN104464618B (zh) * 2014-11-04 2017-02-15 深圳市华星光电技术有限公司 Amoled驱动装置及驱动方法
KR20160103567A (ko) * 2015-02-24 2016-09-02 삼성디스플레이 주식회사 데이터 구동 장치 및 이를 포함하는 유기 발광 표시 장치
TWI543143B (zh) * 2015-04-16 2016-07-21 友達光電股份有限公司 像素控制電路及像素陣列控制電路
CN105427805B (zh) * 2016-01-04 2018-09-14 京东方科技集团股份有限公司 像素驱动电路、方法、显示面板和显示装置
KR20180066338A (ko) 2016-12-07 2018-06-19 삼성디스플레이 주식회사 표시 장치
KR20180066327A (ko) 2016-12-07 2018-06-19 삼성디스플레이 주식회사 표시장치 및 그의 구동방법
CN106783931B (zh) * 2016-12-29 2019-11-26 上海天马有机发光显示技术有限公司 Oled显示面板及其制作方法
KR20180082692A (ko) 2017-01-10 2018-07-19 삼성디스플레이 주식회사 표시 장치 및 그의 구동 방법
CN106531075B (zh) * 2017-01-10 2019-01-22 上海天马有机发光显示技术有限公司 有机发光像素驱动电路、驱动方法以及有机发光显示面板
US10796642B2 (en) 2017-01-11 2020-10-06 Samsung Display Co., Ltd. Display device
CN106847175B (zh) * 2017-03-01 2018-12-28 京东方科技集团股份有限公司 电致发光显示屏及其亮度均匀性补偿方法、系统
US10276105B2 (en) 2017-06-07 2019-04-30 Qualcomm Incorporated Reversible bias organic light-emitting diode (OLED) drive circuit without initialization voltage
CN107424570B (zh) * 2017-08-11 2022-07-01 京东方科技集团股份有限公司 像素单元电路、像素电路、驱动方法和显示装置
CN107393466B (zh) * 2017-08-14 2019-01-15 深圳市华星光电半导体显示技术有限公司 耗尽型tft的oled外部补偿电路
CN109509427A (zh) * 2017-09-15 2019-03-22 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
CN107591126A (zh) 2017-10-26 2018-01-16 京东方科技集团股份有限公司 一种像素电路的控制方法及其控制电路、显示装置
CN107945741A (zh) * 2017-11-07 2018-04-20 深圳市华星光电半导体显示技术有限公司 Oled像素驱动电路、阵列基板及显示装置
CN108682387B (zh) * 2018-07-18 2020-03-20 深圳吉迪思电子科技有限公司 一种像素电路、像素电路的衰退补偿方法及显示屏
CN108877674A (zh) 2018-07-27 2018-11-23 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN110060635A (zh) * 2019-04-08 2019-07-26 深圳市华星光电半导体显示技术有限公司 像素电路及oled显示面板
CN109903722B (zh) * 2019-04-10 2020-11-17 京东方科技集团股份有限公司 像素驱动电路、显示装置及像素驱动方法
CN110364117B (zh) * 2019-07-17 2021-10-01 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板和显示装置
CN110910835B (zh) * 2019-12-31 2021-03-23 武汉华星光电半导体显示技术有限公司 像素驱动电路及像素驱动方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050068288A1 (en) * 2003-09-25 2005-03-31 Jang Min-Hwa Display panel driving circuits and methods for driving image data from multiple sources within a frame
CN1964585A (zh) * 2005-11-09 2007-05-16 三星Sdi株式会社 像素和使用该像素的有机发光显示装置
KR100836431B1 (ko) * 2007-02-05 2008-06-09 삼성에스디아이 주식회사 화소 및 이를 이용한 유기전계발광 표시장치
CN102122490A (zh) * 2011-03-18 2011-07-13 华南理工大学 一种有源有机发光二极管显示器的交流驱动电路及其方法
CN102222468A (zh) * 2011-06-23 2011-10-19 华南理工大学 有源有机发光二极管显示器交流像素驱动电路及驱动方法
CN202110796U (zh) * 2011-06-23 2012-01-11 华南理工大学 有源有机发光二极管显示器交流像素驱动电路
CN102915709A (zh) * 2012-08-31 2013-02-06 友达光电股份有限公司 电泳显示系统
CN103187024A (zh) * 2011-12-28 2013-07-03 群康科技(深圳)有限公司 像素电路、显示装置及驱动方法
CN103198788A (zh) * 2013-03-06 2013-07-10 京东方科技集团股份有限公司 一种像素电路、有机电致发光显示面板及显示装置
CN203085137U (zh) * 2013-03-06 2013-07-24 京东方科技集团股份有限公司 一种像素电路、有机电致发光显示面板及显示装置
CN203520830U (zh) * 2013-08-07 2014-04-02 京东方科技集团股份有限公司 一种抑制老化的oled交流驱动电路及显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100731741B1 (ko) * 2005-04-29 2007-06-22 삼성에스디아이 주식회사 유기전계발광장치
KR100719924B1 (ko) * 2005-04-29 2007-05-18 비오이 하이디스 테크놀로지 주식회사 유기 전계발광 표시장치
KR100833753B1 (ko) 2006-12-21 2008-05-30 삼성에스디아이 주식회사 유기 전계 발광 표시 장치 및 그 구동방법
KR101499236B1 (ko) * 2008-12-29 2015-03-06 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
JP2010217661A (ja) * 2009-03-18 2010-09-30 Seiko Epson Corp 画素回路、発光装置、電子機器及び画素回路の駆動方法
CN102044212B (zh) * 2009-10-21 2013-03-20 京东方科技集团股份有限公司 电压驱动像素电路及其驱动方法、有机发光显示器件
KR20110091998A (ko) * 2010-02-08 2011-08-17 삼성전기주식회사 유기 전계 발광 표시 장치
KR101323390B1 (ko) * 2010-09-20 2013-10-29 엘지디스플레이 주식회사 유기발광다이오드 표시소자와 그 저전력 구동방법
KR101323493B1 (ko) 2010-12-22 2013-10-31 엘지디스플레이 주식회사 유기발광다이오드 표시소자
WO2013076774A1 (ja) * 2011-11-24 2013-05-30 パナソニック株式会社 表示装置及びその制御方法
KR101517035B1 (ko) * 2011-12-05 2015-05-06 엘지디스플레이 주식회사 유기발광 다이오드 표시장치 및 그 구동방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050068288A1 (en) * 2003-09-25 2005-03-31 Jang Min-Hwa Display panel driving circuits and methods for driving image data from multiple sources within a frame
CN1964585A (zh) * 2005-11-09 2007-05-16 三星Sdi株式会社 像素和使用该像素的有机发光显示装置
KR100836431B1 (ko) * 2007-02-05 2008-06-09 삼성에스디아이 주식회사 화소 및 이를 이용한 유기전계발광 표시장치
CN102122490A (zh) * 2011-03-18 2011-07-13 华南理工大学 一种有源有机发光二极管显示器的交流驱动电路及其方法
CN102222468A (zh) * 2011-06-23 2011-10-19 华南理工大学 有源有机发光二极管显示器交流像素驱动电路及驱动方法
CN202110796U (zh) * 2011-06-23 2012-01-11 华南理工大学 有源有机发光二极管显示器交流像素驱动电路
CN103187024A (zh) * 2011-12-28 2013-07-03 群康科技(深圳)有限公司 像素电路、显示装置及驱动方法
CN102915709A (zh) * 2012-08-31 2013-02-06 友达光电股份有限公司 电泳显示系统
CN103198788A (zh) * 2013-03-06 2013-07-10 京东方科技集团股份有限公司 一种像素电路、有机电致发光显示面板及显示装置
CN203085137U (zh) * 2013-03-06 2013-07-24 京东方科技集团股份有限公司 一种像素电路、有机电致发光显示面板及显示装置
CN203520830U (zh) * 2013-08-07 2014-04-02 京东方科技集团股份有限公司 一种抑制老化的oled交流驱动电路及显示装置

Also Published As

Publication number Publication date
CN103440843B (zh) 2016-10-19
CN103440843A (zh) 2013-12-11
JP2016532900A (ja) 2016-10-20
EP2854123A1 (en) 2015-04-01
KR20150027735A (ko) 2015-03-12
US9286831B2 (en) 2016-03-15
US20150221252A1 (en) 2015-08-06
EP2854123A4 (en) 2015-10-14
KR101580757B1 (ko) 2015-12-28
JP6669651B2 (ja) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2015018161A1 (zh) 一种oled交流驱动电路、驱动方法及显示装置
WO2018090620A1 (zh) 像素电路、显示面板、显示设备及驱动方法
US9460655B2 (en) Pixel circuit for AC driving, driving method and display apparatus
WO2015062318A1 (zh) 交流驱动的像素电路、驱动方法及显示装置
WO2016161866A1 (zh) 像素电路及其驱动方法、显示装置
WO2018068392A1 (zh) Amoled像素驱动电路及驱动方法
WO2017118124A1 (zh) 像素电路、驱动方法、有机电致发光显示面板及显示装置
WO2016165529A1 (zh) 像素电路及其驱动方法、显示装置
WO2015180352A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2015169006A1 (zh) 一种像素驱动电路及其驱动方法和显示装置
WO2015062322A1 (zh) 交流驱动的像素电路、驱动方法及显示装置
WO2015192399A1 (zh) 有机发光二极管的像素驱动电路及像素驱动方法
WO2015000249A1 (zh) 像素电路、显示面板及显示装置
WO2014146340A1 (zh) 像素电路及其驱动方法、显示装置
WO2018161553A1 (zh) 显示装置、显示面板、像素驱动电路和驱动方法
WO2015010385A1 (zh) Oled交流驱动电路、驱动方法及显示装置
WO2014169537A1 (zh) 像素电路、像素电路驱动方法及显示装置
JP2004252036A (ja) アクティブ駆動型発光表示装置およびその駆動制御方法
WO2015000245A1 (zh) 像素电路及其驱动方法、显示面板及显示装置
WO2014169512A1 (zh) 像素电路、像素电路驱动方法及显示装置
WO2016023311A1 (zh) 像素驱动电路及其驱动方法和显示装置
WO2015051682A1 (zh) 像素电路及其驱动方法、薄膜晶体管背板
WO2013078931A1 (zh) 像素单元驱动电路和方法、像素单元以及显示装置
WO2016078282A1 (zh) 像素单元驱动电路和方法、像素单元和显示装置
WO2013064028A1 (zh) 一种像素单元驱动电路及其驱动方法、显示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016532198

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147017717

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013863697

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14369416

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE