WO2015192399A1 - 有机发光二极管的像素驱动电路及像素驱动方法 - Google Patents

有机发光二极管的像素驱动电路及像素驱动方法 Download PDF

Info

Publication number
WO2015192399A1
WO2015192399A1 PCT/CN2014/081440 CN2014081440W WO2015192399A1 WO 2015192399 A1 WO2015192399 A1 WO 2015192399A1 CN 2014081440 W CN2014081440 W CN 2014081440W WO 2015192399 A1 WO2015192399 A1 WO 2015192399A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
electrically connected
light emitting
source
drain
Prior art date
Application number
PCT/CN2014/081440
Other languages
English (en)
French (fr)
Inventor
韩佰祥
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/381,901 priority Critical patent/US9495907B2/en
Publication of WO2015192399A1 publication Critical patent/WO2015192399A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a pixel driving circuit and a driving method for an organic light emitting diode. Background technique
  • AMOLED Active Matrix/Organic Light Emitting Diode
  • OLED Organic Light-Emitting Diode
  • AMOLED is a current-driven device. The brightness is determined by the current flowing through the OLED itself.
  • ICs integrated circuits
  • Most existing integrated circuits (ICs) only transmit voltage signals, so the AMOLED pixel circuit needs to complete the conversion of the voltage signal into a current. The task of the signal is usually to use a 2T1C V/I conversion circuit.
  • the method includes: a switching transistor ( ⁇ ), a driving transistor ( ⁇ 2,), a storage capacitor (Cl,), and an organic light emitting diode (OLED); and a scanning control terminal (Scan,), a data signal terminal (Data,), a power supply a voltage (VDD,), and a negative power supply (VSS, );
  • the switching transistor ( ⁇ ) includes a first gate ( gl , ), a first source ( sl , ), and a first drain ( dl , )
  • the driving transistor (T2,) includes a second gate (g2,), a second source (s2,), and a second drain (d2, ); the first gate (gl,) is electrically connected
  • the first source (s1) is electrically connected to the data signal end (Data'), and the first drain (dl,) is electrically connected to the second gate ( G2,) a lower plate of the storage capacitor (Cl,); the power supply voltage (VDD
  • the driving transistor ( ⁇ 2') is used for determining a driving current of an AMOLED panel driving circuit, and the organic light emitting diode (OLED) is configured to emit light in response to a driving current;
  • the storage capacitor (Cl,) is mainly for storing a data signal a gray scale voltage signal outputted by the terminal (Data'), the driving current of the driving transistor (T2,) is determined by the magnitude of the gray scale voltage stored in the storage capacitor (Cl,);
  • the switching transistor ( ⁇ And the driving transistor (T2, ) is a thin film transistor (TFT).
  • the threshold voltage (Vth) of the driving transistor drifts, the current changes excessively, and the circuit fails.
  • this simple design pixel is sensitive to the threshold voltage (Vth) and channel mobility of the thin film transistor, the organic light emitting diode startup voltage and quantum efficiency, and the transient process of the power supply. Since the threshold voltage of the driving transistor (T2,) drifts with the operation time, the light emission of the organic light emitting diode (OLED) is unstable; in addition, the storage capacitor is caused by the leakage current of the switching transistor ( ⁇ ') The voltage of (Cl,) is unstable, which also causes unstable illumination of the organic light emitting diode (OLED). Moreover, since the shift of the threshold voltage of the driving transistor (?2) of each pixel is different, it is increased or decreased, so that the light emission between the respective pixels is uneven. Therefore, with this 2T1C pixel circuit without compensation, the AMOLED brightness unevenness is about 50% or more.
  • Another object of the present invention is to provide a pixel driving method for an organic light emitting diode, which effectively compensates for the unevenness caused by the threshold voltage variation of the driving transistor and ensures the light emitting stability of the organic light emitting diode.
  • the present invention provides a pixel driving circuit for an organic light emitting diode, comprising: a first transistor (T1), a second transistor ( ⁇ 2), a third transistor ( ⁇ 3), a fourth transistor ( ⁇ 4), and a fifth Transistor ( ⁇ 5), sixth transistor ( ⁇ 6), storage capacitor (Cl), organic light emitting diode (OLED); also includes scanning control terminal (Scan), data signal terminal (Data), constant current source (Iref), control illumination a signal terminal (Em), a power supply voltage (VDD), and a power supply negative electrode (VSS);
  • the first transistor (T1) is a driving transistor, and the first transistor (T1) includes a first gate (gl), first a source (s1) and a first drain (d1), the second transistor (T2) comprising a second gate (g2), a second source (s2), and a second drain (d2)
  • the third transistor (T3) includes a third gate (g3), a third source (s3), and a third drain (d3)
  • Vth threshold voltage
  • the threshold voltage (Vth) capture is achieved by a constant current source (Iref).
  • the constant current source (Iref) is used to compensate for the threshold voltage (Vth) of the first transistor (T1).
  • the first transistor (T1), the second transistor ( ⁇ 2), the third transistor ( ⁇ 3), the fourth transistor ( ⁇ 4), the fifth transistor ( ⁇ 5), and the sixth transistor ( ⁇ 6) are all thin film transistors.
  • the present invention also provides a pixel driving circuit of an organic light emitting diode, comprising: a first transistor (T1), a second transistor ( ⁇ 2), a third transistor ( ⁇ 3), a fourth transistor ( ⁇ 4), and a fifth transistor ( ⁇ 5) a sixth transistor ( ⁇ 6), a storage capacitor (C1), an organic light emitting diode (OLED); a scanning control terminal (Scan), a data signal terminal (Data), a constant current source (Iref), and a control light emitting terminal (EM) a power supply voltage (VDD), and a negative power supply (VSS);
  • the first transistor (T1) is a driving transistor
  • the first transistor (T1) includes a first gate (gl), a first source (si) And a first drain (d1)
  • the second transistor (T2) includes a second gate (g2), a second source (s2), and a second drain (d2)
  • the third transistor (T3) includes a third gate (g3), a third source (s3), and
  • the fourth gate (g4) is electrically connected to the scan control terminal (Scan), and the fourth drain (d4) is electrically connected to the lower plate of the storage capacitor (C1) and the first gate (gl)
  • the fourth source (s4) is electrically connected to the third drain (d3);
  • the third gate (g3) is electrically connected to the scan control terminal (Scan), the third source (s3) Electrically connected to a constant current source (Iref);
  • the fifth gate (g5) is electrically connected to the control light-emitting signal terminal ( Em ), and the power supply voltage ( VDD ) is electrically connected to the upper plate of the storage capacitor ( C1 ) a fifth source ( s5 );
  • the first drain ( dl ) is electrically connected to
  • the threshold voltage (Vth) capture is achieved by a constant current source (Iref);
  • the first transistor (T1), the second transistor ( ⁇ 2), the third transistor ( ⁇ 3), the fourth transistor ( ⁇ 4), the fifth transistor ( ⁇ 5), and the sixth transistor ( ⁇ 6) are all thin film transistors.
  • the invention also provides a pixel driving method for an organic light emitting diode, comprising:
  • Step 100 providing a first transistor (T1), a second transistor (?2), a third transistor (?3), a fourth transistor (? 4 ), a fifth transistor (?5), a sixth transistor (?6), a storage capacitor (Cl)
  • An organic light emitting diode (OLED) the first transistor (T1) is a driving transistor, and the first transistor (T1) is electrically connected to the second transistor (T2), the fourth transistor ( ⁇ 4), and the fifth transistor. ( ⁇ 5), a sixth transistor ( ⁇ 6), and a storage capacitor (C1), the third transistor ( ⁇ 3) is electrically connected to the fourth transistor ( ⁇ 4), and the sixth transistor ( ⁇ 6) is electrically connected to the organic Light emitting diode (OLED);
  • Step 200 further providing a scan control end (Scan), a data signal end (Data), a constant current source (Iref), a control illumination signal end (Em), a power supply voltage (VDD), and a power supply negative pole (VSS);
  • the control terminal (Scan) is electrically connected to the second transistor (T2), the third transistor ( ⁇ 3), and the fourth transistor ( ⁇ 4), and the data signal terminal (Data) is electrically connected to the second transistor (T2).
  • the constant current source (Iref) is electrically connected to the third transistor (T3), and the control light emitting signal terminal (E1) is electrically connected to the fifth transistor (T5) and the sixth transistor (T6), respectively.
  • the voltage (VDD) is electrically connected to the storage capacitor (C1) and the fifth transistor (T5), and the power supply cathode (VSS) is electrically connected to the organic light emitting diode (OLED);
  • Step 300 The control light emitting signal end ( Em ) signal is at a high level, the scan control end (Scan ) signal is at a low level, and the first transistor (T1) is short-circuited into a diode structure;
  • Step 400 The control LED signal (Em) signal is at a low level, and the scan control terminal (Scan) signal is at a high level, and the first transistor (T1) is restored to a thin film transistor structure.
  • Vth Data writing and threshold voltage (Vth) capture are performed simultaneously.
  • the threshold voltage (Vth) capture is achieved by a constant current source (Iref).
  • the threshold current (Vth) of the driving transistor (T1) is compensated by the constant current source (Iref).
  • the present invention provides a pixel driving circuit and a driving method for an organic light emitting diode, wherein a threshold voltage of a driving transistor in each pixel is compensated by a 6T1C compensation circuit, and a threshold voltage is realized by a constant current source.
  • the capture, and data writing and threshold voltage capture simultaneously, the introduction of the constant current source signal line facilitates subsequent panel testing, which makes it easier to perform defect analysis.
  • Figure 1 is a conventional 2T1C V/I conversion circuit diagram
  • Figure 2 is a conventional 2T1C V/I conversion circuit analog data table
  • FIG. 3 is a structural diagram of a 6T1C compensation circuit used in the present invention.
  • 4a is a schematic diagram of the first stage of operation of the 6T1C compensation circuit used in the present invention.
  • Figure 4b is a schematic diagram showing the second stage of operation of the 6T1C compensation circuit used in the present invention.
  • Fig. 5 is a simulation data table of the 6T1C compensation circuit for the present invention. detailed description
  • FIG. 3 is a structural diagram of a 6T1C compensation circuit used in the present invention, taking an internal compensation circuit of a single pixel as an example.
  • the method includes: a first transistor (T1), a second transistor ( ⁇ 2), a third transistor ( ⁇ 3), a fourth transistor ( ⁇ 4), a fifth transistor ( ⁇ 5), a sixth transistor ( ⁇ 6), a storage capacitor (Cl), Organic light-emitting diode (OLED); also includes scanning control terminal (Scan), data signal terminal (Data), constant current source (Iref), control light-emitting signal terminal (Em), power supply voltage (VDD), and power supply negative electrode (VSS)
  • the first transistor (T1) is a driving transistor
  • the first transistor (T1) includes a first gate (gl), a first source (si), and a first drain (dl)
  • the second transistor (T2) includes a second gate (g2), a second source (s2), and a second drain (d2)
  • the third transistor (T3) includes
  • the fourth gate (g4) is electrically connected to the scan control terminal (Scan), and the fourth drain (d4) is electrically connected to the lower plate of the storage capacitor (C1) and the first gate (gl)
  • the fourth source (s4) is electrically connected to the third drain (d3);
  • the third gate (g3) is electrically connected to the scan control terminal (Scan), the third source (s3) Electrically connected to the constant current source (Iref);
  • the second gate (g2) is electrically connected to the scan control terminal (Scan), and the second source (s2) is electrically connected to the data signal terminal (Data).
  • the second drain ( d2 ) is electrically connected to the first source ( si ) and the fifth drain ( d5 ); the fifth gate ( g5 ) is electrically connected to the control light-emitting signal terminal ( Em ),
  • the power supply voltage (VDD) is electrically connected to the upper and fifth sources (s5) of the storage capacitor (C1); the first drain (dl) is electrically connected to the sixth source (s6),
  • the sixth gate (g6) is electrically connected to the control light emitting signal terminal (Em), and the sixth drain electrode (d6) is electrically connected to the anode of the organic light emitting diode (OLED), and the organic light emitting diode (OLED) Cathodic electricity It is connected to a negative power supply (VSS).
  • the first transistor (T1), the second transistor ( ⁇ 2), the third transistor ( ⁇ 3), the fourth transistor ( ⁇ 4), the fifth transistor ( ⁇ 5), and the sixth transistor ( ⁇ 6) are all thin film transistors.
  • FIG. 4a and FIG. 3 is a schematic diagram of the first stage of operation of the 6T1C compensation circuit used in the present invention.
  • the first stage is a data write and store threshold voltage (Vth) stage in which the control illuminating signal (Em) signal is longer than the scan control (Scan) signal.
  • Vth threshold voltage
  • Em control illuminating signal
  • Scan scan control
  • the data signal terminal (Data) generates a voltage drop
  • Vds , reference MOSFET IV calculation formula:
  • Cox is the unit area capacitance
  • is the electron mobility
  • W/L is the width to length ratio of the thin film transistor
  • the data writing and threshold voltage (Vth) capture are performed simultaneously, and the threshold voltage (Vth) is captured by a constant current source (Iref), and the pixel driving circuit of the organic light emitting diode uses a constant current source (Iref).
  • the threshold voltage variation of the first transistor is compensated, and the introduction of the constant current source (Iref) signal line facilitates subsequent panel testing, which facilitates defect analysis.
  • FIG. 4b is a schematic diagram of the second stage working principle of the 6T1C compensation circuit used in the present invention.
  • the second stage is an organic light emitting diode (OLED) illumination stage in which the signal of the control signal (Em) is longer than the signal of the scan control terminal (Scan). Controlling the illuminating signal terminal (Em) signal to be low level, the fifth transistor (T5) and the sixth transistor (T6) are turned on, the scanning control terminal (Scan) signal is high level, the second transistor (T2), the third transistor ( ⁇ 3), and the fourth transistor ( ⁇ 4) is turned off, and the fourth transistor ( ⁇ 4) is turned off to restore the first transistor (T1) to the thin film transistor structure.
  • OLED organic light emitting diode
  • the direction of the arrow shown in Figure 4b is connected by a power source, and the organic light emitting diode (OLED) emits light.
  • the gate voltage (Vg) of the first transistor (T1) is the storage capacitor (C1) in the first stage.
  • the potential of the stored G point (VG) Data-
  • the source voltage (Vs) of the first transistor (T1) is the power supply voltage (VDD)
  • the MOSFET IV formula can be obtained by the organic light emitting diode (OLED).
  • the current which is independent of the threshold voltage (Vth) of the first transistor (T1), compensates well for the electrical drift of the first transistor (T1).
  • the current drift rate AIOLED of the organic light emitting diode (OLED) in Fig. 5 using the 6T1C compensation circuit is significantly smaller than that of the conventional 2T1C V/I conversion circuit.
  • the current drift rate of the organic light emitting diode (OLED') is AIOLED'. Therefore, the OLED driving circuit provided by the present invention effectively compensates for the unevenness caused by the threshold voltage variation of the driving transistor, and ensures the organic light emitting diode (OLED). ) Luminous stability for improved display quality.
  • the invention also provides a pixel driving method for an organic light emitting diode, comprising:
  • Step 100 providing a first transistor (T1), a second transistor (T2), a third transistor (T3), a fourth transistor ( T4 ), a fifth transistor ( ⁇ 5), a sixth transistor ( ⁇ 6), a storage capacitor (Cl), an organic light emitting diode (OLED);
  • the first transistor (T1) is a driving transistor, the first The transistor (T1) is electrically connected to the second transistor (T2), the fourth transistor ( ⁇ 4), the fifth transistor ( ⁇ 5), the sixth transistor ( ⁇ 6), and the storage capacitor (C1), and the third transistor ( ⁇ 3) Electrically connected to the fourth transistor ( ⁇ 4), the sixth transistor ( ⁇ 6) is electrically connected to the organic light emitting diode (OLED);
  • Step 200 further providing a scan control end (Scan), a data signal end (Data), a constant current source (Iref), a control illumination signal end (Em), a power supply voltage (VDD), and a power supply negative pole (VSS);
  • the control terminal (Scan) is electrically connected to the second transistor (T2), the third transistor ( ⁇ 3), and the fourth transistor ( ⁇ 4), and the data signal terminal (Data) is electrically connected to the second transistor (T2).
  • the constant current source (Iref) is electrically connected to the third transistor (T3), and the control light emitting signal terminal (E1) is electrically connected to the fifth transistor (T5) and the sixth transistor (T6), respectively.
  • the voltage (VDD) is electrically connected to the storage capacitor (C1) and the fifth transistor (T5), and the power supply cathode (VSS) is electrically connected to the organic light emitting diode (OLED);
  • Step 300 The control light emitting signal end ( Em ) signal is at a high level, the scan control end (Scan ) signal is at a low level, and the first transistor (T1) is short-circuited into a diode structure;
  • Step 400 The control LED signal (Em) signal is at a low level, and the scan control terminal (Scan) signal is at a high level, and the first transistor (T1) is restored to a thin film transistor structure.
  • Vth threshold voltage
  • the threshold voltage (Vth) capture is achieved by a constant current source (Iref).
  • the constant current source (Iref) is used to compensate for the threshold voltage (Vth) of the first transistor (T1).
  • the first transistor (T1), the second transistor ( ⁇ 2), the third transistor ( ⁇ 3), the fourth transistor ( ⁇ 4), the fifth transistor ( ⁇ 5), and the sixth transistor ( ⁇ 6) are all thin film transistors.
  • the pixel driving method of the OLED can be understood according to the foregoing description and FIG. 3, FIG. 4a and FIG. 4b, and details are not described herein again.
  • the present invention provides a pixel driving circuit and a pixel driving method for an organic light emitting diode, wherein a threshold voltage of a driving transistor in each pixel is compensated by a 6T1C compensation circuit, and a threshold voltage is realized by a constant current source.
  • the capture, and data writing and threshold voltage capture simultaneously, the introduction of the constant current source signal line facilitates subsequent panel testing, which makes it easier to perform defect analysis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机发光二极管的像素驱动电路及像素驱动方法,该像素驱动电路包括:第一晶体管(T1)、第二晶体管(T2)、第三晶体管(T3)、第四晶体管(T4)、第五晶体管(T5)、第六晶体管(T6)、存储电容(C1)、有机发光二极管(OLED);还包括扫描控制端(Scan)、数据信号端(Data)、恒流源(Iref)、控制发光信号端(Em)、电源电压(VDD)、及电源负极(VSS);所述第一晶体管(T1)为驱动晶体管。通过采用6T1C补偿电路,对每一个像素中的驱动晶体管的阈值电压(Vth)进行补偿,通过恒流源(Iref)实现对阈值电压(Vth)的抓取,且数据写入和阈值电压(Vth)抓取同时进行,有效的补偿了驱动晶体管阈值电压(Vth)变化,提升了显示品质。

Description

有机发光二极管的像素驱动电路及像素驱动方法 技术领域
本发明涉及显示技术领域, 尤其涉及一种有机发光二极管的像素驱动 电路及驱动方法。 背景技术
作为新一代显示技术, AMOLED ( Active Matrix/Organic Light Emitting Diode, 有源矩阵有机发光二极体面板)具有亮度高、 色域广、 视角宽、 响 应快、 体积小等优点。 AMOLED 的发光器件为有机发光二极管 (Organic Light-Emitting Diode, OLED ), 在 AMOLED驱动电路的驱动下, 当有电流 流过有机发光二极管时,有机发光二极管发光。 AMOLED是电流驱动器件, 亮度由流过有机发光二极管自身的电流大小决定, 大部分已有的集成电路 ( Integrated Circuit, IC )都只传输电压信号, 故 AMOLED像素电路需要完 成将电压信号转变为电流信号的任务, 通常釆用 2T1C V/I变换电路。
请参阅图 1 , 为传统的 2T1C V/I变换电路。 包括: 开关晶体管 (ΤΓ )、 驱动晶体管 (Τ2,)、 存储电容(Cl,)、 及有机发光二极管 (OLED,); 还包 括扫描控制端(Scan,)、 数据信号端(Data,)、 电源电压(VDD,)、 及电源 负极( VSS, );所述开关晶体管( ΤΓ )包括第一栅极( gl,)、第一源极( sl,)、 及第一漏极(dl,), 所述驱动晶体管 (T2,) 包括第二栅极(g2,)、 第二源 极( s2,)、 及第二漏极( d2, ); 所述第一栅极( gl,)电性连接于扫描控制端 ( Scan' ), 所述第一源极(sl,)电性连接于数据信号端(Data' ), 所述第一 漏极(dl,) 电性连接于第二栅极(g2,) 与存储电容(Cl,) 的下极板; 所 述电源电压( VDD,)电性连接于存储电容( Cl,)的上极板与第二源极( s2' ); 所述有机发光二极管( OLED' )的阳极电性连接于第二漏极( d2, ), 所述有 机发光二极管(OLED,)的阴极电性连接于电源负极(VSS,)。 所述驱动晶 体管 (Τ2' )用于确定 AMOLED面板驱动电路的驱动电流, 所述有机发光 二极管 (OLED,)用于响应驱动电流而发光显示; 所述存储电容(Cl,)主 要是存储数据信号端(Data' )输出的灰阶(Gray scale ) 电压信号, 所述驱 动晶体管 (T2,) 的驱动电流大小由存储电容(Cl,) 中存储的灰阶电压大 小决定; 所述开关晶体管( ΤΓ )与驱动晶体管( T2, )均为薄膜晶体管( Thin Film Transistor, TFT )。
请参阅图 2并结合图 1 , 为传统的 2T1C V/I变换电路模拟数据表, 其 中 Vth,为阈值电压,IOUiD,为通过有机发光二极管(OLED,)的电流, AIOUiD, 为通过有机发光二极管( OLED' )的电流漂移率: AIOLED2'=( I0LED2'-IOLED1' ) I IOLEDI,, △ IOLED3,= ( IOLED3,-Ioled1, ) I IOLEDl,。 根据图 2中的模拟数据可 知, 驱动晶体管的阈值电压(Vth) 漂移, 电流变化过大, 电路失效。
由此可见, 这种设计简单的像素对薄膜晶体管的阈值电压(Vth)和沟 道迁移率、 有机发光二极管启动电压和量子效率以及供电电源的瞬变过程 都很敏感。 由于驱动晶体管 (T2,) 的阈值电压会随着工作时间而漂移, 从 而导致有机发光二极管 (OLED,) 的发光不稳定; 另外, 由于开关晶体管 (ΤΙ') 的泄漏电流的存在, 使得存储电容(Cl,) 的电压不稳定, 从而也 导致了有机发光二极管 (OLED,) 的发光不稳定。 而且, 由于各个像素的 驱动晶体管 (Τ2,) 的阈值电压的漂移不同, 增大或减小, 使得各个像素间 的发光不均匀。 因此, 使用这种不带补偿的 2T1C像素电路, AMOLED亮 度的不均匀性约为 50%, 或者更大。
解决不均匀性的一个方法是对每一个像素加补偿电路, 补偿意味着必 须对每一个像素中的驱动薄膜晶体管的参数 (例如阈值电压和迁移率)进行 补偿, 使输出电流变得与这些参数无关。 发明内容
本发明的目的在于提供一种有机发光二极管的像素驱动电路, 有效的 补偿了驱动晶体管阈值电压变化, 提升显示品质。
本发明的另一目的在于提供一种有机发光二极管的像素驱动方法, 有 效的补偿了驱动晶体管阈值电压变化引起的不均, 保证了有机发光二极管 的发光稳定性。
为实现上述目的, 本发明提供一种有机发光二极管的像素驱动电路, 包括: 第一晶体管(Tl)、 第二晶体管(Τ2)、 第三晶体管(Τ3)、 第四晶体 管 (Τ4)、 第五晶体管 (Τ5)、 第六晶体管 (Τ6)、 存储电容(Cl)、 有机发 光二极管 (OLED); 还包括扫描控制端 (Scan)、 数据信号端 (Data)、 恒 流源(Iref)、控制发光信号端(Em)、电源电压(VDD)、及电源负极(VSS); 所述第一晶体管 (T1) 为驱动晶体管, 所述第一晶体管 (T1) 包括第一栅 极(gl)、 第一源极(sl)、 及第一漏极(dl), 所述第二晶体管 (T2) 包括 第二栅极(g2)、 第二源极(s2)、 及第二漏极(d2), 所述第三晶体管(T3) 包括第三栅极(g3)、 第三源极(s3)、 及第三漏极(d3), 所述第四晶体管 ( T4 ) 包括第四栅极 ( g4 )、 第四源极( s4 )、 及第四漏极 ( d4 ), 所述第五 晶体管 (T5) 包括第五栅极(g5)、 第五源极(s5)、 及第五漏极(d5), 所 述第六晶体管(T6)包括第六栅极(g6)、第六源极(s6)、及第六漏极(d6); 所述第四栅极( g4 )电性连接于扫描控制端( Scan ),所述第四漏极( d4 ) 电性连接于存储电容( C1 )的下极板与第一栅极 ( gl ), 所述第四源极( s4 ) 电性连接于第三漏极(d3); 所述第三栅极(g3) 电性连接于扫描控制端 ( Scan ),所述第三源极( s3 )电性连接于恒流源( Iref ); 所述第二栅极 ( g2 ) 电性连接于扫描控制端 (Scan), 第二源极(s2) 电性连接于数据信号端 ( Data), 所述第二漏极( d2 )电性连接于第一源极( si )与第五漏极 ( d5 ); 所述第五栅极( g5 )电性连接于控制发光信号端( Em ),所述电源电压( VDD ) 电性连接于存储电容( C1 )的上极板与第五源极( s5 ); 所述第一漏极( dl ) 电性连接于第六源极(s6), 所述第六栅极 (g6) 电性连接于控制发光信号 端(Em), 所述第六漏极(d6) 电性连接于有机发光二极管 (OLED) 的阳 极, 所述有机发光二极管 (OLED) 的阴极电性连接于电源负极(VSS)。
数据写入和阈值电压(Vth)抓取同时进行。
所述阈值电压(Vth)抓取是通过恒流源 (Iref) 实现的。
釆用所述恒流源 (Iref)补偿第一晶体管 (T1) 的阈值电压 (Vth) 变 化。
所述第一晶体管(Tl)、 第二晶体管(Τ2)、 第三晶体管(Τ3)、 第四晶 体管 (Τ4)、 第五晶体管 (Τ5)、 第六晶体管 (Τ6) 均为薄膜晶体管。
本发明还提供一种有机发光二极管的像素驱动电路, 包括: 第一晶体 管 (Tl)、 第二晶体管 (Τ2)、 第三晶体管 (Τ3)、 第四晶体管 (Τ4)、 第五 晶体管( Τ5 )、第六晶体管( Τ6 )、存储电容( C1 )、有机发光二极管( OLED ); 还包括扫描控制端(Scan)、 数据信号端(Data)、 恒流源(Iref)、 控制发光 信号端( Em )、电源电压( VDD )、及电源负极( VSS );所述第一晶体管( T1 ) 为驱动晶体管, 所述第一晶体管(T1)包括第一栅极(gl)、 第一源极(si )、 及第一漏极(dl), 所述第二晶体管 (T2) 包括第二栅极(g2)、 第二源极 (s2)、 及第二漏极(d2), 所述第三晶体管 (T3) 包括第三栅极(g3)、 第 三源极(s3)、及第三漏极(d3),所述第四晶体管(T4)包括第四栅极(g4)、 第四源极(s4)、 及第四漏极(d4), 所述第五晶体管 (T5) 包括第五栅极 (g5)、 第五源极(s5)、 及第五漏极(d5), 所述第六晶体管 (T6) 包括第 六栅极(g6)、 第六源极(s6)、 及第六漏极(d6);
所述第四栅极( g4 )电性连接于扫描控制端( Scan ),所述第四漏极( d4 ) 电性连接于存储电容( C1 )的下极板与第一栅极 ( gl ), 所述第四源极( s4 ) 电性连接于第三漏极(d3); 所述第三栅极(g3) 电性连接于扫描控制端 ( Scan ),所述第三源极( s3 )电性连接于恒流源( Iref); 所述第二栅极 ( g2 ) 电性连接于扫描控制端 (Scan), 第二源极(s2) 电性连接于数据信号端 ( Data), 所述第二漏极( d2 )电性连接于第一源极( si )与第五漏极 ( d5 ); 所述第五栅极( g5 )电性连接于控制发光信号端( Em ),所述电源电压( VDD ) 电性连接于存储电容( C1 )的上极板与第五源极( s5 ); 所述第一漏极( dl ) 电性连接于第六源极( s6 ), 所述第六栅极 ( g6 ) 电性连接于控制发光信号 端(Em), 所述第六漏极(d6) 电性连接于有机发光二极管(OLED) 的阳 极, 所述有机发光二极管 (OLED) 的阴极电性连接于电源负极(VSS); 数据写入和阈值电压(Vth)抓取同时进行;
所述阈值电压(Vth)抓取是通过恒流源 (Iref) 实现的;
釆用所述恒流源 (Iref)补偿第一晶体管 (T1) 的阈值电压 (Vth) 变 化;
所述第一晶体管(Tl)、 第二晶体管(Τ2)、 第三晶体管(Τ3)、 第四晶 体管 (Τ4)、 第五晶体管 (Τ5)、 第六晶体管 (Τ6) 均为薄膜晶体管。
本发明还提供一种有机发光二极管的像素驱动方法, 包括:
步骤 100、提供第一晶体管( T1 )、第二晶体管( Τ2 )、第三晶体管( Τ3 )、 第四晶体管(Τ4)、 第五晶体管(Τ5)、 第六晶体管(Τ6)、 存储电容(Cl)、 有机发光二极管 (OLED); 所述第一晶体管 (T1) 为驱动晶体管, 所述第 一晶体管 (T1) 电性连接于第二晶体管 (T2)、 第四晶体管 (Τ4)、 第五晶 体管 (Τ5)、 第六晶体管 (Τ6)、 及存储电容(C1), 所述第三晶体管 (Τ3) 电性连接于第四晶体管(Τ4), 所述第六晶体管(Τ6)电性连接于有机发光 二极管 (OLED);
步骤 200、还提供扫描控制端( Scan )、数据信号端( Data )、恒流源( Iref )、 控制发光信号端(Em)、 电源电压(VDD )、 及电源负极(VSS); 所述扫描 控制端 (Scan)分别电性连接于第二晶体管 (T2)、 第三晶体管 ( Τ3 )、 第 四晶体管 (Τ4), 所述数据信号端 (Data) 电性连接于第二晶体管 (T2), 所述恒流源( Iref)电性连接于第三晶体管( T3 ),所述控制发光信号端( Em ) 分别电性连接于第五晶体管( T5 )、第六晶体管( T6 ),所述电源电压( VDD ) 电性连接于存储电容(C1)与第五晶体管(T5), 所述电源负极(VSS) 电 性连接于有机发光二极管 (OLED);
步骤 300、所述控制发光信号端( Em )信号为高电平,扫描控制端( Scan ) 信号为低电平, 将第一晶体管 (T1)短路为二极管结构;
步骤 400、所述控制发光信号端( Em )信号为低电平,扫描控制端( Scan ) 信号为高电平, 将第一晶体管 (T1)恢复为薄膜晶体管结构。
数据写入和阈值电压(Vth)抓取同时进行。 所述阈值电压(Vth)抓取是通过恒流源 (Iref) 实现的。
釆用所述恒流源 (Iref)补偿驱动晶体管 (T1) 的阈值电压 (Vth) 变 化。
本发明的有益效果: 本发明提供一种有机发光二极管的像素驱动电路 及驱动方法, 釆用 6T1C补偿电路,对每一个像素中的驱动晶体管的阈值电 压进行补偿, 通过恒流源实现对阈值电压的抓取, 且数据写入和阈值电压 抓取同时进行, 恒流源信号线的引入有助于后续的面板测试, 能更方便的 进行缺陷分析。
为了能更进一步了解本发明的特征以及技术内容, 请参阅以下有关本 发明的详细说明与附图, 然而附图仅提供参考与说明用, 并非用来对本发 明加以限制。 附图说明
下面结合附图, 通过对本发明的具体实施方式详细描述, 将使本发明 的技术方案及其它有益效果显而易见。
附图中,
图 1为传统的 2T1C V/I变换电路图;
图 2为传统的 2T1C V/I变换电路模拟数据表;
图 3为本发明釆用的 6T1C补偿电路结构图;
图 4a为本发明釆用的 6T1C补偿电路第一阶段工作原理图;
图 4b为本发明釆用的 6T1C补偿电路第二阶段工作原理图;
图 5为本发明釆用 6T1C补偿电路模拟数据表。 具体实施方式
为更进一步阐述本发明所釆取的技术手段及其效果, 以下结合本发明 的优选实施例及其附图进行详细描述。
请参阅图 3, 为本发明釆用的 6T1C补偿电路结构图, 以对单像素的内 部补偿电路为例。 包括: 第一晶体管 (Tl)、 第二晶体管 (Τ2)、 第三晶体 管 (Τ3)、 第四晶体管 (Τ4)、 第五晶体管 (Τ5)、 第六晶体管 (Τ6)、 存储 电容(Cl)、 有机发光二极管 (OLED); 还包括扫描控制端 (Scan)、 数据 信号端(Data)、 恒流源(Iref)、控制发光信号端(Em)、 电源电压(VDD)、 及电源负极(VSS); 所述第一晶体管 (T1) 为驱动晶体管, 所述第一晶体 管 (T1) 包括第一栅极(gl)、 第一源极(si )、 及第一漏极(dl), 所述第 二晶体管 (T2) 包括第二栅极(g2)、 第二源极(s2)、 及第二漏极(d2), 所述第三晶体管 (T3) 包括第三栅极(g3)、 第三源极(s3)、 及第三漏极 (d3), 所述第四晶体管 (T4) 包括第四栅极(g4)、 第四源极(s4)、 及第 四漏极( d4 ), 所述第五晶体管( T5 )包括第五栅极 ( g5 )、 第五源极( s5 )、 及第五漏极(d5), 所述第六晶体管 (T6) 包括第六栅极(g6)、 第六源极 (s6)、 及第六漏极(d6);
所述第四栅极( g4 )电性连接于扫描控制端( Scan ),所述第四漏极( d4 ) 电性连接于存储电容( C1 )的下极板与第一栅极 ( gl ), 所述第四源极( s4 ) 电性连接于第三漏极(d3); 所述第三栅极(g3) 电性连接于扫描控制端 ( Scan ),所述第三源极( s3 )电性连接于恒流源( Iref ); 所述第二栅极 ( g2 ) 电性连接于扫描控制端 (Scan), 第二源极(s2) 电性连接于数据信号端 ( Data), 所述第二漏极( d2 )电性连接于第一源极( si )与第五漏极 ( d5 ); 所述第五栅极( g5 )电性连接于控制发光信号端( Em ),所述电源电压( VDD ) 电性连接于存储电容( C1 )的上极板与第五源极( s5 ); 所述第一漏极( dl ) 电性连接于第六源极(s6), 所述第六栅极 (g6) 电性连接于控制发光信号 端(Em), 所述第六漏极(d6) 电性连接于有机发光二极管(OLED)的阳 极, 所述有机发光二极管 (OLED) 的阴极电性连接于电源负极(VSS)。 所述第一晶体管(Tl)、 第二晶体管(Τ2)、 第三晶体管(Τ3)、 第四晶体管 (Τ4)、 第五晶体管 (Τ5)、 第六晶体管 (Τ6) 均为薄膜晶体管。
具体地, 请参阅图 4a并结合图 3, 图 4a为本发明釆用的 6T1C补偿电 路第一阶段工作原理图。 该第一阶段为数据写入及存储阈值电压(Vth)阶 段, 其中, 控制发光信号端 (Em)信号长于扫描控制端 (Scan) 的信号。 控制发光信号端( Em )信号为高电平,第五晶体管( T5 )与第六晶体管( T6 ) 关闭, 扫描控制端(Scan)信号为低电平, 第二晶体管(T2)、 第三晶体管 (Τ3)、 及第四晶体管(Τ4)开启, 第四晶体管(Τ4)开启后将第一晶体管 (T1 )短路为二极管结构, 图 4a 中所示箭头方向在恒流源 (Iref)作用下 连通, 数据信号端 (Data)通过第一晶体管 (T1)产生压降 |AV|, 该压降 | △ V|为第一晶体管 (T1)短路为二极管结构时二极管两端的电压 (Vds), 即 I△ V|=Vds , 引用 MOSFET I-V计算公式:
1= i/2£¾s(p.W/L}(¾^ - ¾|2 = i/2fe¾: ( L)(丽 +
表达式中 Cox为单位绝缘面积电容, μ为电子迁移率, W/L为薄膜晶 体管的宽长比, 变换后可以得到压降 |AV|: 相当于M又第一晶体管( T1 )的阈值电压( Vth M言息, G点的电位( VG ) 为 Data-|AV|。 该 G点的电位( Vg)被存储电容(C1 )储存等待下一阶段。
所述数据写入和阈值电压 (Vth)抓取同时进行, 且阈值电压 (Vth) 抓取是通过恒流源 (Iref) 实现的, 有机发光二极管的像素驱动电路釆用恒 流源(Iref)补偿第一晶体管的阈值电压变化, 该恒流源(Iref)信号线的引 入有助于后续的面板(panel) 测试, 能更方便的进行缺陷分析。
请参阅图 4b并结合图 3与图 4a, 图 4b为本发明釆用的 6T1C补偿电 路第二阶段工作原理图。该第二阶段为有机发光二极管( OLED )发光阶段, 其中, 控制发光信号端 (Em)信号长于扫描控制端 (Scan) 的信号。 控制 发光信号端 (Em)信号为低电平, 第五晶体管 (T5)与第六晶体管 (T6) 开启, 扫描控制端(Scan)信号为高电平, 第二晶体管(T2)、 第三晶体管 (Τ3)、 及第四晶体管(Τ4)关闭, 第四晶体管(Τ4)关闭后将第一晶体管 (T1)恢复为薄膜晶体管结构。 图 4b 中所示箭头方向在电源 (power)作 用下连通, 有机发光二极管(OLED)发光, 此时, 第一晶体管(T1)的栅 极电压( Vg )为第一阶段中存储电容( C1 )储存的 G点的电位( VG ) =Data-| △ V|,第一晶体管(T1 )的源极电压( Vs)为电源电压( VDD),引用 MOSFET I-V公式可得到通过有机发光二极管 (OLED) 的电流, 该电流和第一晶体 管(T1)的阈值电压 (Vth)无关, 很好的补偿了第一晶体管(T1)的电性 漂移。
请参阅图 5, 为本发明釆用 6T1C补偿电路模拟数据表, 其中 Vth为阈 值电压, IOLED为通过有机发光二极管 (OLED) 的电流, AIOLED为通 过有机发光二极管( OLED )的电流漂移率: △ IOLED2= ( IOLED2-IOLED1 ) / IOLED 1, AIOLED3= ( IOLED3 -IOLED 1 ) / IOLED 1。 根据图 5中的模拟 数据可知, 该电路很好的补偿了第一晶体管阈值电压(Vth)漂移引起的不 均。
通过图 2与图 5之间模拟数据的对比, 可知, 釆用 6T1C补偿电路的图 5中通过有机发光二极管(OLED)的电流漂移率 AIOLED明显小于釆用传 统 2T1C V/I变换电路的图 2中通过有机发光二极管 ( OLED' ) 的电流漂移 率 AIOLED', 因此, 本发明提供的有机发光二极管像素驱动电路, 有效的 补偿了驱动晶体管阈值电压变化引起的不均, 保证了有机发光二极管 (OLED) 的发光稳定性, 提升显示品质。
本发明还提供一种有机发光二极管的像素驱动方法, 包括:
步骤 100、提供第一晶体管( T1 )、第二晶体管( T2 )、第三晶体管( T3 )、 第四晶体管(T4)、 第五晶体管(Τ5)、 第六晶体管(Τ6)、 存储电容(Cl)、 有机发光二极管 (OLED); 所述第一晶体管 (T1) 为驱动晶体管, 所述第 一晶体管 (T1) 电性连接于第二晶体管 (T2)、 第四晶体管 (Τ4)、 第五晶 体管 (Τ5)、 第六晶体管 (Τ6)、 及存储电容(C1), 所述第三晶体管 (Τ3) 电性连接于第四晶体管(Τ4), 所述第六晶体管(Τ6)电性连接于有机发光 二极管 (OLED);
步骤 200、还提供扫描控制端( Scan )、数据信号端( Data )、恒流源( Iref )、 控制发光信号端(Em)、 电源电压(VDD)、 及电源负极(VSS); 所述扫描 控制端 (Scan)分别电性连接于第二晶体管 (T2)、 第三晶体管 ( Τ3 )、 第 四晶体管 (Τ4), 所述数据信号端 (Data) 电性连接于第二晶体管 (T2), 所述恒流源( Iref)电性连接于第三晶体管( T3 ),所述控制发光信号端( Em ) 分别电性连接于第五晶体管( T5 )、第六晶体管( T6 ),所述电源电压( VDD ) 电性连接于存储电容(C1)与第五晶体管(T5), 所述电源负极(VSS) 电 性连接于有机发光二极管 (OLED);
步骤 300、所述控制发光信号端( Em )信号为高电平,扫描控制端( Scan ) 信号为低电平, 将第一晶体管 (T1)短路为二极管结构;
步骤 400、所述控制发光信号端( Em )信号为低电平,扫描控制端( Scan ) 信号为高电平, 将第一晶体管 (T1)恢复为薄膜晶体管结构。
数据写入和阈值电压(Vth)抓取同时进行。
所述阈值电压(Vth)抓取是通过恒流源 (Iref) 实现的。
釆用所述恒流源 (Iref)补偿第一晶体管 (T1) 的阈值电压 (Vth) 变 化。
所述第一晶体管(Tl)、 第二晶体管(Τ2)、 第三晶体管(Τ3)、 第四晶 体管 (Τ4)、 第五晶体管 (Τ5)、 第六晶体管 (Τ6) 均为薄膜晶体管。
该有机发光二极管的像素驱动方法可以根据前述说明及图 3, 图 4a及 图 4b来理解, 在此不再赘述。
综上所述, 本发明提供一种有机发光二极管的像素驱动电路及像素驱 动方法, 釆用 6T1C补偿电路, 对每一个像素中的驱动晶体管的阈值电压进 行补偿, 通过恒流源实现对阈值电压的抓取, 且数据写入和阈值电压抓取 同时进行, 恒流源信号线的引入有助于后续的面板测试, 能更方便的进行 缺陷分析。
以上所述, 对于本领域的普通技术人员来说, 可以根据本发明的技术 方案和技术构思作出其他各种相应的改变和变形, 而所有这些改变和变形 都应属于本发明权利要求的保护范围。

Claims

权 利 要 求
1、 一种有机发光二极管的像素驱动电路, 包括: 第一晶体管、 第二晶 体管、 第三晶体管、 第四晶体管、 第五晶体管、 第六晶体管、 存储电容、 有机发光二极管; 还包括扫描控制端、 数据信号端、 恒流源、 控制发光信 号端、 电源电压、 及电源负极; 所述第一晶体管为驱动晶体管, 所述第一 晶体管包括第一栅极、 第一源极、 及第一漏极, 所述第二晶体管包括第二 栅极、 第二源极、 及第二漏极, 所述第三晶体管包括第三栅极、 第三源极、 及第三漏极, 所述第四晶体管包括第四栅极、 第四源极、 及第四漏极, 所 述第五晶体管包括第五栅极、 第五源极、 及第五漏极, 所述第六晶体管包 括第六栅极、 第六源极、 及第六漏极;
所述第四栅极电性连接于扫描控制端, 所述第四漏极电性连接于存储 电容的下极板与第一栅极, 所述第四源极电性连接于第三漏极; 所述第三 栅极电性连接于扫描控制端, 所述第三源极电性连接于恒流源; 所述第二 栅极电性连接于扫描控制端, 第二源极电性连接于数据信号端, 所述第二 漏极电性连接于第一源极与第五漏极; 所述第五栅极电性连接于控制发光 信号端, 所述电源电压电性连接于存储电容的上极板与第五源极; 所述第 一漏极电性连接于第六源极, 所述第六栅极电性连接于控制发光信号端, 所述第六漏极电性连接于有机发光二极管的阳极, 所述有机发光二极管的 阴极电性连接于电源负极。
2、 如权利要求 1所述的有机发光二极管的像素驱动电路, 其中, 数据 写入和阈值电压抓取同时进行。
3、 如权利要求 2所述的有机发光二极管的像素驱动电路, 其中, 所述 阈值电压抓取是通过恒流源实现的。
4、 如权利要求 3所述的有机发光二极管的像素驱动电路, 其中, 釆用 所述恒流源补偿第一晶体管的阈值电压变化。
5、 如权利要求 1所述的有机发光二极管的像素驱动电路, 其中, 所述 第一晶体管、 第二晶体管、 第三晶体管、 第四晶体管、 第五晶体管、 第六 晶体管均为薄膜晶体管。
6、 一种有机发光二极管的像素驱动电路, 包括: 第一晶体管、 第二晶 体管、 第三晶体管、 第四晶体管、 第五晶体管、 第六晶体管、 存储电容、 有机发光二极管; 还包括扫描控制端、 数据信号端、 恒流源、 控制发光信 号端、 电源电压、 及电源负极; 所述第一晶体管为驱动晶体管, 所述第一 晶体管包括第一栅极、 第一源极、 及第一漏极, 所述第二晶体管包括第二 栅极、 第二源极、 及第二漏极, 所述第三晶体管包括第三栅极、 第三源极、 及第三漏极, 所述第四晶体管包括第四栅极、 第四源极、 及第四漏极, 所 述第五晶体管包括第五栅极、 第五源极、 及第五漏极, 所述第六晶体管包 括第六栅极、 第六源极、 及第六漏极;
所述第四栅极电性连接于扫描控制端, 所述第四漏极电性连接于存储 电容的下极板与第一栅极, 所述第四源极电性连接于第三漏极; 所述第三 栅极电性连接于扫描控制端, 所述第三源极电性连接于恒流源; 所述第二 栅极电性连接于扫描控制端, 第二源极电性连接于数据信号端, 所述第二 漏极电性连接于第一源极与第五漏极; 所述第五栅极电性连接于控制发光 信号端, 所述电源电压电性连接于存储电容的上极板与第五源极; 所述第 一漏极电性连接于第六源极, 所述第六栅极电性连接于控制发光信号端, 所述第六漏极电性连接于有机发光二极管的阳极, 所述有机发光二极管的 阴极电性连接于电源负极;
其中, 数据写入和阈值电压抓取同时进行;
其中 , 所述阈值电压抓取是通过恒流源实现的;
其中, 釆用所述恒流源补偿第一晶体管的阈值电压变化;
其中, 所述第一晶体管、 第二晶体管、 第三晶体管、 第四晶体管、 第 五晶体管、 第六晶体管均为薄膜晶体管。
7、 一种有机发光二极管的像素驱动方法, 用于有机发光二极管的像素 驱动电路, 包括:
步骤 100、 提供第一晶体管、 第二晶体管、 第三晶体管、 第四晶体管、 第五晶体管、 第六晶体管、 存储电容、 有机发光二极管; 所述第一晶体管 为驱动晶体管, 所述第一晶体管电性连接于第二晶体管、 第四晶体管、 第 五晶体管、 第六晶体管、 及存储电容, 所述第三晶体管电性连接于第四晶 体管, 所述第六晶体管电性连接于有机发光二极管;
步骤 200、 还提供扫描控制端、 数据信号端、 恒流源、 控制发光信号端 电源电压、 及电源负极; 所述扫描控制端分别电性连接于第二晶体管、 第 三晶体管、 第四晶体管, 所述数据信号端电性连接于第二晶体管, 所述恒 流源电性连接于第三晶体管, 所述控制发光信号端分别电性连接于第五晶 体管、 第六晶体管, 所述电源电压电性连接于存储电容与第五晶体管, 所 述电源负极电性连接于有机发光二极管;
步骤 300、 所述控制发光信号端信号为高电平, 扫描控制端信号为低电 平, 将第一晶体管短路为二极管结构; 步骤 400、 所述控制发光信号端信号为低电平, 扫描控制端信号为高电 平, 将第一晶体管恢复为薄膜晶体管结构。
8、 如权利要求 7所述的有机发光二极管的像素驱动方法, 其中, 数据 写入和阈值电压抓取同时进行。
9、 如权利要求 8所述的有机发光二极管的像素驱动方法, 其中, 所述 阈值电压抓取是通过恒流源实现的。
10、 如权利要求 9所述的有机发光二极管的像素驱动方法, 其中, 釆 用所述恒流源补偿第一晶体管的阈值电压变化。
11、 如权利要求 7所述的有机发光二极管的像素驱动方法, 其中, 所 述第一晶体管、 第二晶体管、 第三晶体管、 第四晶体管、 第五晶体管、 第 六晶体管均为薄膜晶体管。
PCT/CN2014/081440 2014-06-16 2014-07-02 有机发光二极管的像素驱动电路及像素驱动方法 WO2015192399A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/381,901 US9495907B2 (en) 2014-06-16 2014-07-02 Pixel driving circuit and pixel driving method of organic light-emitting diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410268620.3 2014-06-16
CN201410268620.3A CN103996379B (zh) 2014-06-16 2014-06-16 有机发光二极管的像素驱动电路及像素驱动方法

Publications (1)

Publication Number Publication Date
WO2015192399A1 true WO2015192399A1 (zh) 2015-12-23

Family

ID=51310525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081440 WO2015192399A1 (zh) 2014-06-16 2014-07-02 有机发光二极管的像素驱动电路及像素驱动方法

Country Status (3)

Country Link
US (1) US9495907B2 (zh)
CN (1) CN103996379B (zh)
WO (1) WO2015192399A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107331352B (zh) * 2017-08-16 2019-02-12 深圳市华星光电半导体显示技术有限公司 一种oled像素驱动电路及像素驱动方法
TWI533278B (zh) * 2014-10-31 2016-05-11 友達光電股份有限公司 畫素結構及其驅動方法
CN104680976B (zh) * 2015-02-09 2017-02-22 京东方科技集团股份有限公司 像素补偿电路、显示装置及驱动方法
CN104658483B (zh) * 2015-03-16 2017-02-01 深圳市华星光电技术有限公司 Amoled像素驱动电路及像素驱动方法
KR102559083B1 (ko) * 2015-05-28 2023-07-25 엘지디스플레이 주식회사 유기발광 표시장치
CN104882099B (zh) * 2015-06-10 2017-08-25 京东方科技集团股份有限公司 一种像素驱动电路、阵列基板和显示装置
CN107705748B (zh) 2015-10-30 2023-10-27 京东方科技集团股份有限公司 显示基板及其驱动方法以及显示装置
CN105609050B (zh) * 2016-01-04 2018-03-06 京东方科技集团股份有限公司 像素补偿电路及amoled显示装置
CN105469744B (zh) 2016-01-29 2018-09-18 深圳市华星光电技术有限公司 像素补偿电路、方法、扫描驱动电路及平面显示装置
CN105931599B (zh) * 2016-04-27 2018-06-29 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示面板、显示装置
CN106128362B (zh) * 2016-06-24 2018-11-30 北京大学深圳研究生院 一种像素电路及显示装置
CN106504702A (zh) * 2016-10-18 2017-03-15 深圳市华星光电技术有限公司 Amoled像素驱动电路及驱动方法
CN106504703B (zh) * 2016-10-18 2019-05-31 深圳市华星光电技术有限公司 Amoled像素驱动电路及驱动方法
CN106448565A (zh) * 2016-12-26 2017-02-22 武汉华星光电技术有限公司 有机发光二极管像素补偿电路及有机发光显示装置
CN108630147A (zh) * 2017-03-17 2018-10-09 昆山工研院新型平板显示技术中心有限公司 有源矩阵有机发光显示器及其驱动方法
CN107301844A (zh) * 2017-07-19 2017-10-27 深圳市华星光电半导体显示技术有限公司 Oled像素驱动电路
CN107369410B (zh) * 2017-08-31 2023-11-21 京东方科技集团股份有限公司 像素电路、驱动方法和显示装置
CN108182897B (zh) * 2017-12-28 2019-12-31 武汉华星光电半导体显示技术有限公司 测试像素驱动电路的方法
CN110033733B (zh) * 2019-04-19 2021-11-23 深圳市华星光电半导体显示技术有限公司 Oled显示面板及其驱动方法
CN108682382A (zh) * 2018-05-25 2018-10-19 南京微芯华谱信息科技有限公司 带阈值补偿的电压型像素单元电路、阈值电压补偿的驱动方法、图像或者视频的显示方法
CN109087610A (zh) * 2018-08-20 2018-12-25 武汉华星光电半导体显示技术有限公司 Amoled像素驱动电路、驱动方法及显示面板
WO2020146978A1 (zh) 2019-01-14 2020-07-23 京东方科技集团股份有限公司 像素电路、显示面板及像素电路的驱动方法
CN109873025B (zh) * 2019-04-11 2021-10-08 京东方科技集团股份有限公司 有机发光二极管阵列基板及显示装置
CN110060638B (zh) * 2019-06-04 2021-09-07 南华大学 Amoled电压编程像素电路及其驱动方法
CN112837649B (zh) * 2019-11-01 2022-10-11 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示面板、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651189A (zh) * 2011-05-17 2012-08-29 京东方科技集团股份有限公司 有机发光二极管驱动电路、显示面板及显示器
CN102651197A (zh) * 2011-11-01 2012-08-29 京东方科技集团股份有限公司 有机发光二极管驱动电路、显示面板、显示器及驱动方法
CN103000127A (zh) * 2011-09-13 2013-03-27 胜华科技股份有限公司 发光元件驱动电路及其相关的像素电路与应用
CN103150991A (zh) * 2013-03-14 2013-06-12 友达光电股份有限公司 一种用于amoled显示器的像素补偿电路
US20130169516A1 (en) * 2011-12-28 2013-07-04 Lien-Hsiang CHEN Pixel circuit, display apparatus and driving method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177709A (ja) * 2001-12-13 2003-06-27 Seiko Epson Corp 発光素子用の画素回路
JP4131227B2 (ja) * 2003-11-10 2008-08-13 ソニー株式会社 画素回路、表示装置、および画素回路の駆動方法
KR100673759B1 (ko) * 2004-08-30 2007-01-24 삼성에스디아이 주식회사 발광 표시장치
KR100604060B1 (ko) * 2004-12-08 2006-07-24 삼성에스디아이 주식회사 발광 표시장치와 그의 구동방법
KR101202040B1 (ko) * 2006-06-30 2012-11-16 엘지디스플레이 주식회사 유기발광다이오드 표시소자 및 그 구동방법
KR100833753B1 (ko) * 2006-12-21 2008-05-30 삼성에스디아이 주식회사 유기 전계 발광 표시 장치 및 그 구동방법
KR100873076B1 (ko) * 2007-03-14 2008-12-09 삼성모바일디스플레이주식회사 화소 및 이를 이용한 유기전계발광 표시장치 및 그의구동방법
KR101113430B1 (ko) * 2009-12-10 2012-03-02 삼성모바일디스플레이주식회사 화소 및 그를 이용한 유기전계발광표시장치
TWI436335B (zh) * 2011-03-17 2014-05-01 Au Optronics Corp 具臨界電壓補償機制之有機發光顯示裝置及其驅動方法
CN102222468A (zh) * 2011-06-23 2011-10-19 华南理工大学 有源有机发光二极管显示器交流像素驱动电路及驱动方法
CN103050080B (zh) * 2011-10-11 2015-08-12 上海天马微电子有限公司 有机发光显示器的像素电路及其驱动方法
KR101853453B1 (ko) * 2012-07-10 2018-05-02 삼성디스플레이 주식회사 화소 및 화소를 포함하는 유기발광 표시장치
KR20140013587A (ko) * 2012-07-25 2014-02-05 삼성디스플레이 주식회사 화소 및 이를 이용한 유기전계발광 표시장치
KR101999759B1 (ko) * 2012-09-11 2019-07-16 삼성디스플레이 주식회사 유기전계발광 표시장치 및 그의 구동방법
KR101993400B1 (ko) * 2012-10-10 2019-10-01 삼성디스플레이 주식회사 유기전계발광 표시장치 및 그의 구동방법
TWI485684B (zh) * 2013-06-13 2015-05-21 Au Optronics Corp 像素驅動器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102651189A (zh) * 2011-05-17 2012-08-29 京东方科技集团股份有限公司 有机发光二极管驱动电路、显示面板及显示器
CN103000127A (zh) * 2011-09-13 2013-03-27 胜华科技股份有限公司 发光元件驱动电路及其相关的像素电路与应用
CN102651197A (zh) * 2011-11-01 2012-08-29 京东方科技集团股份有限公司 有机发光二极管驱动电路、显示面板、显示器及驱动方法
US20130169516A1 (en) * 2011-12-28 2013-07-04 Lien-Hsiang CHEN Pixel circuit, display apparatus and driving method
CN103150991A (zh) * 2013-03-14 2013-06-12 友达光电股份有限公司 一种用于amoled显示器的像素补偿电路

Also Published As

Publication number Publication date
US20160240136A1 (en) 2016-08-18
CN103996379A (zh) 2014-08-20
CN103996379B (zh) 2016-05-04
US9495907B2 (en) 2016-11-15

Similar Documents

Publication Publication Date Title
WO2015192399A1 (zh) 有机发光二极管的像素驱动电路及像素驱动方法
CN107492343B (zh) 用于oled显示设备的像素驱动电路、oled显示设备
WO2018045667A1 (zh) Amoled像素驱动电路及驱动方法
WO2016155053A1 (zh) Amoled像素驱动电路及像素驱动方法
US10262593B2 (en) Light emitting drive circuit and organic light emitting display
WO2019196758A1 (zh) 像素电路、显示面板及其驱动方法
WO2019037300A1 (zh) Amoled像素驱动电路
WO2019041818A1 (zh) 像素电路及其驱动方法、显示基板及其驱动方法、显示装置
WO2016119304A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2016145693A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2018228202A1 (zh) 像素电路、像素驱动方法和显示装置
WO2017020360A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2016123855A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2015010385A1 (zh) Oled交流驱动电路、驱动方法及显示装置
WO2016161896A1 (zh) 像素驱动电路、显示装置和像素驱动方法
WO2019033487A1 (zh) 用于oled显示设备的像素驱动电路及oled显示设备
JP2020503553A (ja) Oled駆動薄膜トランジスタの閾値電圧検出方法
WO2014153815A1 (zh) Amoled像素单元及其驱动方法、显示装置
WO2017049849A1 (zh) 一种驱动电路及其驱动方法和显示装置
WO2016086627A1 (zh) 一种像素驱动电路、像素驱动方法和显示装置
WO2016119305A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2016023311A1 (zh) 像素驱动电路及其驱动方法和显示装置
JP2012242830A (ja) 画素ユニット回路、画素アレイ、パネル、パネル駆動方法
WO2019085512A1 (zh) 一种像素电路及其驱动方法、显示装置
WO2014153820A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14381901

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14895239

Country of ref document: EP

Kind code of ref document: A1