WO2017049849A1 - 一种驱动电路及其驱动方法和显示装置 - Google Patents

一种驱动电路及其驱动方法和显示装置 Download PDF

Info

Publication number
WO2017049849A1
WO2017049849A1 PCT/CN2016/073842 CN2016073842W WO2017049849A1 WO 2017049849 A1 WO2017049849 A1 WO 2017049849A1 CN 2016073842 W CN2016073842 W CN 2016073842W WO 2017049849 A1 WO2017049849 A1 WO 2017049849A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
control line
pole
compensation
switch tube
Prior art date
Application number
PCT/CN2016/073842
Other languages
English (en)
French (fr)
Inventor
青海刚
祁小敬
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/513,080 priority Critical patent/US10403202B2/en
Publication of WO2017049849A1 publication Critical patent/WO2017049849A1/zh
Priority to US16/433,699 priority patent/US10621916B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a driving circuit, a driving method thereof, and a display device.
  • OLED organic light emitting diode
  • a threshold voltage difference occurs in transistors at different positions, which is a current-driven device (such as an OLED light-emitting device).
  • the drive consistency is very fatal, because if the threshold voltages of different drive tubes are different when the same gray scale voltage is input, different threshold voltages will generate different drive currents, resulting in drive current inconsistency. . Therefore, the conventional OLED driving circuit needs to compensate the threshold voltage of the driving tube so that the driving current is no longer affected by the inconsistency of the threshold voltage of the driving tube.
  • the OLED light-emitting element increases, a large number of uncomposited carriers accumulate at the internal interface of the light-emitting layer of the OLED light-emitting element, and the accumulation of carriers causes a built-in electric field to be formed inside the OLED light-emitting element, resulting in an OLED.
  • the threshold voltage of the illuminating element rises, which directly leads to the aging of the luminescent material and shortens its service life.
  • the present invention is directed to the above technical problems existing in the prior art, and provides a driving Circuit and its driving method and display device.
  • the driving circuit can not only compensate the threshold voltage of the driving unit, but also make the driving currents of the driving units tend to be uniform, thereby ensuring the uniformity of the brightness of the light-emitting elements, and also by short-circuiting the cathode and the anode of the light-emitting elements.
  • the carriers which are not composited at the inner surface of the light-emitting layer of the light-emitting element are eliminated, thereby alleviating the aging of the light-emitting material in the light-emitting element and prolonging the service life of the light-emitting material.
  • the present invention provides a driving circuit for driving a light emitting element.
  • the driving circuit comprises: a signal line, a control line, a driving unit, a power supply unit, a compensation unit, an illumination control unit, a data writing unit, a storage unit, and an aging mitigation unit.
  • the power supply unit is configured to provide a power signal to the drive circuit.
  • the driving unit is configured to drive the light emitting element.
  • the signal line is used to provide a data signal to the data writing unit.
  • the control line is configured to provide a control signal for the compensation unit, the illumination control unit, the data writing unit, and the aging mitigation unit.
  • the illumination control unit is configured to control the illumination of the illumination element.
  • the data writing unit is configured to write the data signal to a storage unit.
  • the storage unit is configured to store a data signal voltage written by the data writing unit.
  • the compensation unit is configured to perform threshold voltage compensation on the driving unit according to the data signal and the control signal.
  • the aging mitigation unit is configured to short the cathode and the anode of the illuminating element according to the control signal.
  • control line includes a scan control line, a compensation control line and a light emission control line
  • scan control line is connected to the data writing unit
  • compensation control line is connected to the compensation unit
  • illumination control A line is connected to the illumination control unit.
  • the power supply unit includes a first power terminal connected to the compensation unit and the driving unit, and a second power terminal connected to the aging mitigation unit and the illuminating element.
  • the driving unit includes a driving tube
  • the compensation unit includes a third switching tube
  • the lighting control unit includes a first switching tube and a fourth switching tube
  • the data writing unit includes A five-switch tube
  • the memory unit including a capacitor.
  • a gate of the first switch tube is connected to the light emission control line
  • a first pole of the first switch tube is connected to a second pole of the capacitor and a second pole of the drive tube
  • the second pole of the first switch tube is connected to the anode of the light emitting element.
  • the gate of the third switch tube is connected to the compensation control line
  • the first pole of the third switch tube is connected to the first power terminal and the first pole of the drive tube
  • the third switch tube A second pole is coupled to the gate of the drive tube.
  • a gate of the fourth switch tube is connected to the light emission control line, a first pole of the fourth switch tube is connected to a gate of the drive tube and a second pole of the third switch tube, the fourth A second pole of the switch transistor is coupled to the first pole of the capacitor.
  • a gate of the fifth switch tube is connected to the scan control line, a first pole of the fifth switch tube is connected to the signal line, and a second pole of the fifth switch tube is connected to a first pole of the capacitor And a second pole of the fourth switching tube.
  • the second power terminal is connected to a cathode of the light emitting element.
  • the aging mitigation unit includes a second switch tube, a gate of the second switch tube is connected to the scan control line or the compensation control line, and a first pole of the second switch tube is connected to the illuminating The anode of the element, the second pole of the second switch tube is connected to the cathode of the light-emitting element.
  • the first switch tube, the second switch tube, the third switch tube, the fourth switch tube, the fifth switch tube and the drive tube are all N-type thin film transistors.
  • the signal line provides a data signal voltage greater than a first power supply voltage provided by the first power supply terminal.
  • the driving unit includes a driving tube
  • the compensation unit includes a fourth switching tube
  • the lighting control unit includes a first switching tube and a third switching tube
  • the data writing unit includes a second switching transistor
  • the storage unit comprising a capacitor.
  • a gate of the third switch tube is connected to the light emission control line, a first pole of the third switch tube is connected to a first pole of the capacitor and a second pole of the second switch tube, the third A second pole of the switch tube is coupled to the gate of the drive tube.
  • Grid of the fourth switch tube The pole is connected to the compensation control line, the first pole of the fourth switch tube is connected to the gate of the drive tube and the second pole of the third switch tube, and the second pole of the fourth switch tube is connected The second pole of the drive tube and the anode of the light emitting element. A cathode of the light emitting element is coupled to the second power terminal.
  • the aging mitigation unit includes a fifth switch tube, a gate of the fifth switch tube is connected to the compensation control line or the scan control line, and a first pole of the fifth switch tube is connected to the illuminating The anode of the element, the second pole of the fifth switch tube is connected to the cathode of the light-emitting element.
  • the first switch tube, the second switch tube, the third switch tube, the fourth switch tube, the fifth switch tube and the drive tube are all P-type thin film transistors.
  • the signal line provides a data signal voltage that is less than a second power supply voltage provided by the second power supply terminal.
  • the first power supply voltage provided by the first power supply terminal is greater than the second power supply voltage provided by the second power supply terminal.
  • the present invention also provides a display device including a light-emitting element and the above-described driving circuit, the driving circuit being connected to the light-emitting element for driving the light-emitting element.
  • the present invention also provides a method of driving the above driving circuit, the method comprising the steps of: the power supply unit provides a power signal for the driving circuit; the driving unit drives the light emitting element to emit light under the control of the control line; and the control of the signal line in the control line Providing a data signal to the data writing unit; the lighting control unit controls the lighting element to emit light under the control of the control line; the data writing unit writes the data signal to the storage under the control of the control line a storage unit that stores a data signal voltage written by the data write unit; the compensation unit performs threshold voltage compensation on the drive unit under control of the control line; and an aging mitigation unit is The cathode and the anode of the light-emitting element are short-circuited under the control of the control line.
  • the control line includes a scan control line, a compensation control line, and an illumination control line
  • the power supply unit includes a first power supply end and a second power supply end.
  • the method comprises four stages.
  • the signal line is in the sweep Writing the data signal to the storage unit by the data writing unit under the control of the trace control line, while the aging mitigation unit turns the cathode and the anode of the light emitting element under the control of the scan control line Short.
  • the compensation unit performs a threshold compensation voltage under the control of the compensation control line, and at the same time, the aging mitigation unit continues to short the cathode and the anode of the illuminating element under the control of the scanning control line. Pick up.
  • the control signals of the scan control line and the compensation control line are simultaneously hopped, and the compensation unit, the illumination control unit, the data writing unit, and the aging mitigation unit are simultaneously turned off.
  • the light emission control unit controls the light emitting element to emit light under the control of the light emission control line.
  • the light emission control line and the scan control line output a first level
  • the compensation control line outputs a second level
  • the light emission control line outputs a second power Flat
  • the scan control line and the compensation control line output a first level
  • the illumination control line, the scan control line, and the compensation control line output a second level
  • the illumination control line outputs a first level
  • the scan control line and the compensation control line output a second level.
  • the first level and the second level are each one of a high level and a low level, respectively.
  • the driving circuit provided by the present invention can realize the compensation of the threshold voltage of the driving unit by setting the compensation unit, the aging mitigation unit, the driving unit, the illuminating control unit, the data writing unit and the storage unit, so that each The driving current of the driving unit tends to be uniform, thereby ensuring the uniformity of the brightness of the light-emitting element; and, by short-circuiting the cathode and the anode of the light-emitting element, the uncomposited carriers at the inner surface of the light-emitting layer of the light-emitting element can be eliminated. Thereby aging of the luminescent material is alleviated and the service life of the luminescent material is prolonged.
  • the display device provided by the present invention uses the above-mentioned driving circuit to make the driving currents of the pixels in the display device tend to be uniform during driving, thereby ensuring the uniformity of brightness of the display device during display, and can also be extended The life of the display device.
  • Embodiment 1 is a circuit diagram of a driving circuit in Embodiment 1 of the present invention.
  • FIG. 2 is a driving timing diagram of the driving circuit of FIG. 1;
  • FIG. 3 is an equivalent circuit diagram of the driving circuit of FIG. 1 in a first stage
  • FIG. 4 is an equivalent circuit diagram of the driving circuit of FIG. 1 in a second stage
  • Figure 5 is an equivalent circuit diagram of the driving circuit of Figure 1 in a third stage
  • FIG. 6 is an equivalent circuit diagram of the driving circuit of FIG. 1 in a fourth stage
  • FIG. 7 is an equivalent circuit diagram of the driving circuit of FIG. 1 in the first stage in the case where the gate of the second switching transistor of FIG. 1 is connected to the compensation control line;
  • Figure 8 is a circuit diagram of a driving circuit in Embodiment 2 of the present invention.
  • Figure 9 is a timing chart of driving of the driving circuit of Figure 8.
  • Figure 10 is an equivalent circuit diagram of the driving circuit of Figure 8 in a first stage
  • Figure 11 is an equivalent circuit diagram of the driving circuit of Figure 8 in a second stage
  • Figure 12 is an equivalent circuit diagram of the driving circuit of Figure 8 in the third stage
  • Figure 13 is an equivalent circuit diagram of the driving circuit of Figure 8 in the fourth stage
  • Fig. 14 is an equivalent circuit diagram of the driving circuit of Fig. 8 in the first stage in the case where the gate of the fifth switching transistor of Fig. 8 is connected to the compensation control line.
  • compensation unit 1. compensation unit; 2. aging mitigation unit; 3. drive unit; 4. illuminating control unit; 5. data writing unit; 6. memory unit.
  • the embodiment provides a driving circuit, as shown in FIG. 1 , for driving the light emitting element OLED, comprising: a signal line data, a control line, a driving unit 3, a power supply unit, a compensation unit 1, an illumination control unit 4, and data.
  • the writing unit 5, the storage unit 6, and the aging mitigation unit 2 are provided.
  • the power unit is used to provide a power signal to the drive circuit No.
  • the driving unit 3 is used for driving the light emitting element OLED
  • the signal line data is used to provide a data signal to the data writing unit 5
  • the control line is used for the compensation unit 1, the lighting control unit 4, the data writing unit 5, and the aging
  • the mitigation unit 2 provides a control signal
  • the illuminating control unit 4 is for controlling the illuminating element OLED to emit light
  • the data writing unit 5 is for writing the data signal to the storage unit 6
  • the storage unit 6 is for storing the data written by the data writing unit 5.
  • the compensation unit 1 is configured to perform threshold voltage compensation on the driving unit 3 according to the control signal;
  • the aging relieving unit 2 is configured to short the cathode and the anode of the light emitting element OLED according to the control signal.
  • the driving circuit provided by the embodiment can realize the compensation of the threshold voltage of the driving unit, and the driving current of each driving unit Convergence, thereby ensuring the uniformity of the brightness of the OLED of the illuminating element; furthermore, by providing the aging mitigation unit 2 to short the cathode and the anode of the OLED, the driving circuit provided in this embodiment can also eliminate the OLED of the OLED.
  • the internal interface of the luminescent layer has no composite carriers, thereby alleviating the aging of the luminescent material and prolonging the service life of the luminescent material.
  • control line includes a scan control line G(n), a compensation control line C(n), and an illumination control line EM(n), and the scan control line G(n) is connected to the data writing unit 5 to compensate
  • the control line C(n) is connected to the compensation unit 1
  • the illumination control line EM(n) is connected to the illumination control unit 4.
  • the power supply unit includes a first power supply terminal ELVDD and a second power supply terminal ELVSS, the first power supply terminal ELVDD is connected to the compensation unit 1 and the driving unit 3, and the second power supply terminal ELVSS is connected to the aging mitigation unit 2 and the light-emitting element OLED.
  • the driving unit 3 includes a driving tube DTFT;
  • the compensation unit 1 includes a third switching tube T3;
  • the lighting control unit 4 includes a first switching tube T1 and a fourth switching tube T4; and
  • the data writing unit 5 includes a fifth switching tube T5;
  • the memory unit 6 includes a capacitor Cst.
  • the gate of the first switching transistor T1 is connected to the illumination control line EM(n), the first pole of the first switching transistor T1 is connected to the second pole of the capacitor Cst and the second pole of the driving transistor DTFT, and the second pole of the first switching transistor T1
  • the anode is connected to the anode of the light-emitting element OLED.
  • the gate of the third switching transistor T3 is connected to the compensation control line C(n), and the first pole of the third switching transistor T3 is connected to the first power terminal ELVDD and the first pole of the driving transistor DTFT, and the third switching transistor T3
  • the second pole is connected to the gate of the drive transistor DTFT.
  • the gate of the fourth switch tube T4 is connected to the illumination control line EM(n), the first pole of the fourth switch tube T4 is connected to the gate of the drive tube DTFT and the second pole of the third switch tube T3, and the fourth switch tube T4
  • the second pole connects the first pole of the capacitor Cst.
  • the gate of the fifth switch T5 is connected to the scan control line G(n), the first pole of the fifth switch T5 is connected to the signal line data, and the second pole of the fifth switch T5 is connected to the first pole and the fourth of the capacitor Cst.
  • the second power supply terminal ELVSS is connected to the cathode of the light emitting element OLED.
  • the aging mitigation unit 2 includes a second switch tube T2.
  • the gate of the second switch tube T2 is connected to the scan control line G(n), and the first pole of the second switch tube T2 is connected to the anode of the OLED.
  • the second pole of the second switching transistor T2 is connected to the cathode of the light emitting element OLED.
  • the gate of the second switching transistor T2 may also be connected to the compensation control line C(n). Regardless of whether the gate of the second switching transistor T2 is connected to the scan control line G(n) or the compensation control line C(n), the second switching transistor T2 can short the cathode and the anode of the light emitting element OLED according to the control signal provided by the control line. In order to eliminate the uncomplexed carriers in the light-emitting element OLED, the aging of the luminescent material in the light-emitting element OLED is alleviated.
  • the first switch tube T1, the second switch tube T2, the third switch tube T3, the fourth switch tube T4, the fifth switch tube T5, and the drive tube DTFT are all N-type thin film transistors.
  • the data signal voltage Vdata provided by the signal line data is greater than the first power supply voltage VDD provided by the first power supply terminal ELVDD.
  • the first power supply voltage VDD provided by the first power supply terminal ELVDD is greater than the second power supply voltage VSS provided by the second power supply terminal ELVSS.
  • the embodiment further provides a method for driving the driving circuit, comprising: the power supply unit provides a power signal for the driving circuit; and the driving unit 3 drives the light emitting element OLED to emit light under the control of the control line;
  • the line data provides a data signal to the data writing unit 5 under the control of the control line;
  • the lighting control unit 4 controls the light emitting element OLED to emit light under the control of the control line;
  • the data writing unit 5 writes the data signal under the control of the control line Storage unit 6; storage list
  • the element 6 stores the data signal voltage written by the data writing unit 5;
  • the compensation unit 1 performs threshold voltage compensation on the driving unit 3 under the control of the control line;
  • the aging relieving unit 2 controls the cathode of the light emitting element OLED under the control of the control line
  • the anode is shorted.
  • the control line includes a scan control line G(n), a compensation control line C(n), and an emission control line EM(n);
  • the power supply unit includes a first power supply terminal ELVDD and a second power supply terminal ELVSS; and the storage unit 6
  • the capacitor Cst is included;
  • the driving unit 3 includes a driving transistor DTFT; a first extreme drain of the driving transistor DTFT, and a second extreme source of the driving transistor DTFT.
  • FIG. 2 shows a driving timing chart of the driving method, which includes four driving stages.
  • the signal line data is written to the capacitor Cst through the data write unit 5 under the control of the scan control line G(n) to charge the capacitor Cst, while the aging mitigation unit 2 is on the scan control line.
  • the cathode and the anode of the light-emitting element OLED are short-circuited under the control of G(n).
  • the scan control line G(n) and the illumination control line EM(n) output a high level signal
  • the compensation control line C(n) outputs a low level signal.
  • the first switch tube T1, the second switch tube T2, the fourth switch tube T4, and the fifth switch tube T5 are turned on, and the third switch tube T3 is turned off.
  • the equivalent circuit of the driving circuit in FIG. 1 is shown in FIG. 3. Since the fourth switching transistor T4 is turned on, the voltage across the gate and the source of the driving transistor DTFT is the voltage difference across the capacitor Cst, and the fifth switching transistor T5 is turned on.
  • the data signal provided by the signal line data can be directly written into the first pole of the capacitor Cst connected to the gate of the driving transistor DTFT; the opening of the first switching transistor T1 and the second switching transistor T2 pulls the source of the driving transistor DTFT to the first
  • the potential of the second power supply terminal ELVSS ie, the second power supply voltage VSS
  • the cathode and the anode of the light emitting element OLED are short-circuited by the second switching transistor T2, thereby eliminating uncomposited carriers on the light emitting layer interface of the light emitting element OLED in the first stage.
  • the compensation unit 1 is produced under the control of the compensation control line C(n).
  • the threshold is compensated for while the aging mitigation unit 2 continues to short the cathode and anode of the OLED OLED under the control of the scan control line G(n).
  • the scan control line G(n) and the compensation control line C(n) output a high level signal
  • the illumination control line EM(n) outputs a low level signal.
  • the first switch tube T1 and the fourth switch tube T4 are turned off, and the second switch tube T2, the third switch tube T3, and the fifth switch tube T5 are turned on.
  • the equivalent circuit of the driving circuit in FIG. 1 is as shown in FIG. 4. Since the third switching transistor T3 is turned on, the fourth switching transistor T4 is turned off, and the driving transistor DTFT is connected in the form of a diode, and the potential of the gate and drain of the driving transistor DTFT is driven.
  • the source potential of the driving transistor DTFT is maintained at the second power supply voltage VSS of the previous stage, so the driving transistor DTFT is in a saturated state, and since the first switching transistor T1 is turned off, the current flowing through the driving transistor DTFT flows in.
  • the control signals of the scan control line G(n), the compensation control line C(n), and the illumination control signal EM(n) are all low, the compensation unit 1, the illumination control unit 4, and the data write Unit 5 and aging mitigation unit 2 are simultaneously turned off.
  • the scan control line G(n), the compensation control line C(n), and the illumination control line EM(n) both output a low level signal.
  • the first switch tube T1, the second switch tube T2, the third switch tube T3, the fourth switch tube T4, and the fifth switch tube T5 are all turned off.
  • the equivalent circuit of the driving circuit in Fig. 1 is shown in Fig. 5.
  • This phase acts as a buffer phase, which avoids the interference caused by the simultaneous jump of the control signals output by the scan control line G(n) and the compensation control line C(n) and the illumination control line EM(n), thereby making the signal of the entire drive circuit more stable.
  • the illumination control unit 4 is controlled by the illumination control line EM(n)
  • the lower control light emitting element OLED emits light.
  • both the scan control line G(n) and the compensation control line C(n) output a low level signal
  • the illumination control line EM(n) outputs a high level signal. Therefore, the first switch tube T1 and the fourth switch tube T4 are turned on, and the second switch tube T2, the third switch tube T3, and the fifth switch tube T5 are turned off.
  • the equivalent circuit of the driving circuit in FIG. 1 is as shown in FIG. 6.
  • the fourth switching transistor T4 is turned on, the capacitor Cst is connected between the gate and the source of the driving transistor DTFT, the first switching transistor T1 is turned on, and the OLED anode of the light emitting element is connected.
  • the first power supply voltage VDD is set to ensure that the voltage Vds between the drain and the source of the driving transistor DTFT satisfies Vds>Vgs ⁇ Vth, so that the driving transistor DTFT operates in a saturated state, and therefore, the light emitting current of the light emitting element OLED:
  • the data signal voltage Vdata is greater than the first power supply voltage VDD.
  • K is a constant related to process and design.
  • the light-emitting current of the light-emitting element OLED driven by the driving circuit provided by the embodiment is only related to the data signal voltage Vdata and the first power supply voltage VDD, and is independent of the threshold voltage Vth of the driving transistor DTFT, that is, It is said that the compensation of the threshold voltage of the driving transistor DTFT is realized by the driving circuit provided by the embodiment.
  • the luminescent material of the light-emitting element OLED is not eliminated by the composite carrier, thereby alleviating the aging of the luminescent material.
  • the driving circuit in the embodiment obtains the driving at the source of the driving transistor DTFT by using the diode connection mode of the first power supply terminal ELVDD and the driving transistor DTFT.
  • the threshold voltage of the DTFT is written to the capacitor Cst while the threshold voltage of the driving transistor DTFT is obtained, thereby completing the writing of the data signal voltage Vdata and the compensation of the threshold voltage of the driving transistor DTFT.
  • the short-circuit of the anode and the cathode of the light-emitting element OLED is used to eliminate the uncomposited carriers at the light-emitting interface, thereby alleviating the light-emitting material of the light-emitting element OLED. Aging to extend the life of the luminescent material.
  • the equivalent circuit of the driving circuit in FIG. 1 is as shown in FIG. 7 due to the compensation control line C. (n) outputting a low-level signal, so the second switching transistor T2 is turned off, that is, the second switching transistor T2 cannot short-circuit the anode and the cathode of the light-emitting element OLED. Therefore, in the first stage, the OLED light-emitting layer interface cannot be eliminated.
  • the composite carriers are unable to alleviate the aging of the luminescent material of the OLED of the light-emitting element.
  • the embodiment provides a driving circuit.
  • the control line includes a scanning control line G(n), a compensation control line C(n), and an emission control line EM(n), and the scanning control line G(n) is connected.
  • the compensation control line C(n) is connected to the compensation unit 1
  • the illumination control line EM(n) is connected to the illumination control unit 4.
  • the power supply unit includes a first power supply terminal ELVDD and a second power supply terminal ELVSS, the first power supply terminal ELVDD is connected to the compensation unit 1 and the driving unit 3, and the second power supply terminal ELVSS is connected to the aging mitigation unit 2 and the light-emitting element OLED.
  • the driving unit 3 includes a driving tube DTFT; the compensation unit 1 includes a fourth switching tube T4; the lighting control unit 4 includes a first switching tube T1 and a third switching tube T3; and the data writing unit 5 includes a second switch Tube T2; the memory unit 6 includes a capacitor Cst.
  • the gate of the first switch T1 is connected to the illumination control line EM(n), the first pole of the first switch T1 is connected to the first power terminal ELVDD, and the second pole of the first switch T1 is connected to the second pole of the capacitor Cst. Drive the first pole of the tube DTFT.
  • the gate of the second switch T2 is connected to the scan control line G(n), the first pole of the second switch T2 is connected to the signal line data, and the second pole of the second switch T2 is connected to the first pole of the capacitor Cst.
  • the gate of the third switch tube T3 is connected to the illumination control line EM(n), and the third switch tube T3
  • the first pole connects the first pole of the capacitor Cst and the second pole of the second switch transistor T2
  • the second pole of the third switch transistor T3 connects the gate of the driving transistor DTFT.
  • the gate of the fourth switching transistor T4 is connected to the compensation control line C(n), the first pole of the fourth switching transistor T4 is connected to the gate of the driving transistor DTFT and the second pole of the third switching transistor T3, and the fourth switching transistor T4
  • the second pole is connected to the second pole of the driving transistor DTFT and the anode of the light emitting element OLED.
  • the cathode of the light emitting element OLED is connected to the second power supply terminal ELVSS.
  • the aging mitigation unit 2 includes a fifth switch tube T5.
  • the gate of the fifth switch tube T5 is connected to the scan control line G(n), and the first pole of the fifth switch tube T5 is connected to the anode of the OLED.
  • the second pole of the five switching tube T5 is connected to the cathode of the light emitting element OLED.
  • the gate of the fifth switch tube T5 may also be connected to the compensation control line C(n). Regardless of whether the gate of the fifth switching transistor T5 is connected to the scan control line G(n) or the compensation control line C(n), the fifth switching transistor T5 can short the cathode and the anode of the light emitting element OLED according to the control signal provided by the control line. In order to mitigate the aging of the luminescent material in the OLED.
  • the first switch tube T1, the second switch tube T2, the third switch tube T3, the fourth switch tube T4, the fifth switch tube T5, and the drive tube DTFT are all P-type thin film transistors.
  • the data signal voltage Vdata provided by the signal line data is smaller than the second power supply voltage VSS provided by the second power supply terminal ELVSS, and the first power supply voltage VDD provided by the first power supply terminal ELVDD is greater than that provided by the second power supply terminal ELVSS.
  • the embodiment further provides a method for driving the driving circuit. As shown in FIG. 9, the method includes four driving stages, wherein the first extreme source of the driving tube DTFT is driven. The second extreme drain of the DTFT.
  • the scan control line G(n) and the illumination control line EM(n) output a low level signal
  • the compensation control line C(n) outputs a high level signal.
  • the first switch tube T1, the second switch tube T2, the third switch tube T3 and the fifth switch tube T5 are turned on, and the fourth switch Close the T4 cutoff.
  • the equivalent circuit of the driving circuit in FIG. 8 is as shown in FIG. 10.
  • the third switching transistor T3 Since the third switching transistor T3 is turned on, the voltage between the gate and the source of the driving transistor DTFT is the voltage difference across the capacitor Cst, and the second switching transistor T2 Turning on the data signal (ie, the data signal voltage Vdata) provided by the signal line data can be directly written into the first pole of the capacitor Cst connected to the gate of the driving transistor DTFT; the opening of the first switching transistor T1 and the fifth switching transistor T5 will be The drain of the driving transistor DTFT is pulled to the potential of the second power supply terminal ELVSS (ie, the second power supply voltage VSS), and the anode and the cathode of the light emitting element OLED are short-circuited by the fifth switching transistor T5.
  • ELVSS ie, the second power supply voltage VSS
  • the first stage can eliminate the light emitting element OLED light emission.
  • the uncomposited carriers on the layer interface alleviate the aging of the OLED luminescent material.
  • the scan control line G(n) and the compensation control line C(n) output a low level signal
  • the illumination control line EM(n) outputs a high level signal.
  • the first switch tube T1 and the third switch tube T3 are turned off, and the second switch tube T2, the fourth switch tube T4, and the fifth switch tube T5 are turned on.
  • the equivalent circuit of the driving circuit in Fig. 8 is as shown in Fig. 11.
  • the driving transistor DTFT Since the third switching transistor T3 is turned off, the fourth switching transistor T4 is turned on, so the driving transistor DTFT is connected in the form of a diode, and the potentials of the gate and the drain of the driving transistor DTFT are both the second power supply voltage VSS; due to the driving transistor DTFT
  • the source potential maintains the first power supply voltage VDD of the previous stage, the first pole of the capacitor Cst is connected to the signal line data, and the second pole of the capacitor Cst is connected to the source of the driving transistor DTFT, at which time the source of the driving transistor DTFT has been
  • the first power supply terminal ELVDD is turned off, so the capacitor Cst is discharged through the driving transistor DTFT until the potential drop of the source of the driving transistor DTFT is VSS+
  • the anode and the cathode of the light-emitting element OLED are short-circuited, and the composite carrier of the light-emitting layer of the light-emitting element OLED is eliminated, so that the aging of the light-emitting material is further alleviated.
  • the control line EM(n) outputs a high level signal.
  • the first switch tube T1, the second switch tube T2, the third switch tube T3, the fourth switch tube T4, and the fifth switch tube T5 are all turned off.
  • the equivalent circuit of the driving circuit in Fig. 8 is as shown in Fig. 12.
  • This phase acts as a buffer phase, which avoids the interference caused by the simultaneous jump of the control signals output by the scan control line G(n) and the compensation control line C(n) and the illumination control line EM(n), thereby making the signal of the entire drive circuit more stable.
  • the scan control line G(n) and the compensation control line C(n) both output a high level signal, and the illumination control line EM(n) outputs a low level signal. Therefore, the first switch tube T1 and the third switch tube T3 are turned on, and the second switch tube T2, the fourth switch tube T4, and the fifth switch tube T5 are turned off.
  • the equivalent circuit of the driving circuit in Fig. 8 is as shown in Fig. 13.
  • the third switching transistor T3 is turned on, the capacitor Cst is connected between the gate and the source of the driving transistor DTFT, the anode of the light emitting element OLED is connected to the drain of the driving transistor DTFT, and the cathode is connected to the second power supply terminal ELVSS.
  • the capacitor Cst is connected between the gate and the source of the driving transistor DTFT, so the voltage Vsg between the source and the gate of the driving transistor DTFT is the voltage difference VCst across the capacitor Cst.
  • the driving transistor DTFT Since the second power supply voltage VSS is set to ensure that the drain-source voltage Vds of the driving transistor DTFT satisfies
  • the data signal voltage Vdata is smaller than the second power voltage VSS.
  • K is a constant related to process and design.
  • the illuminating current of the driving light-emitting element OLED driven by the driving circuit provided by the present embodiment is only related to the data signal voltage Vdata and the second power supply voltage VSS, and is independent of the threshold voltage Vth of the driving transistor DTFT, that is, The threshold voltage of the driving transistor DTFT is realized by the driving circuit provided by the embodiment Compensation.
  • the luminescent material of the light-emitting element OLED is not eliminated by the composite carrier, thereby alleviating the aging of the luminescent material.
  • the driving circuit in the second stage uses the diode connection mode of the second power supply terminal ELVSS and the driving transistor DTFT to obtain the threshold voltage of the driving transistor DTFT at the source of the driving transistor DTFT, and obtain the threshold voltage of the driving transistor DTFT.
  • the data signal voltage Vdata is written to the capacitor Cst, thereby completing the writing of the data signal voltage Vdata and the compensation of the threshold voltage of the driving transistor DTFT.
  • the short-circuit of the anode and the cathode of the light-emitting element OLED is used to eliminate the uncomposited carriers at the light-emitting interface, thereby alleviating the light-emitting material of the light-emitting element OLED. Aging to extend the life of the luminescent material.
  • the equivalent circuit of the driving circuit in the first stage in FIG. 8 is as shown in FIG. 14 due to the compensation control line C ( n)
  • the high level signal is output, so the fifth switching transistor T5 is turned off and the cathode and cathode of the light emitting element OLED cannot be short-circuited.
  • the uncomplexed carriers on the light-emitting element OLED light-emitting layer interface cannot be eliminated, and the aging of the light-emitting element OLED light-emitting material cannot be alleviated.
  • the driving circuit provided in Embodiment 1-2 can realize the threshold of the driving unit by setting the compensation unit, the aging mitigation unit, the driving unit, the illuminating control unit, the data writing unit, and the storage unit
  • the compensation of the voltage makes the driving current of the driving unit tend to be uniform, thereby ensuring the uniformity of the brightness of the light-emitting element; and, by short-circuiting the cathode and the anode of the light-emitting element, the internal interface of the light-emitting layer of the light-emitting element is eliminated.
  • the carrier is used to alleviate the aging of the luminescent material and prolong the service life of the luminescent material.
  • the present embodiment provides a display device including a light-emitting element, and further includes a driving circuit in any one of Embodiments 1-2, wherein the driving circuit is connected to the light-emitting element for driving the light-emitting element.
  • the light emitting element may be an organic electroluminescent diode.
  • the driving currents of the pixels in the display device can be made uniform during the driving process, thereby ensuring the uniformity of brightness of the display device during display; Can extend the life of the display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

一种驱动电路及其驱动方法和显示装置。该驱动电路包括信号线(data)、控制线(G(n), C(n), EM(n))、驱动单元(3)、电源单元(ELVDD, ELVSS)、补偿单元(1)、发光控制单元(4)、数据写入单元(5)、存储单元(6)和老化缓解单元(2);驱动单元(3)用于对发光元件(OLED)进行驱动;发光控制单元(4)用于控制发光元件(OLED)发光;数据写入单元(5)用于将数据信号(Vdata)写入存储单元(6);补偿单元(1)用于对驱动单元(3)进行阈值电压(Vth)补偿;老化缓解单元(2)用于对发光元件(OLED)的阴极和阳极进行短接。该驱动电路不仅能够实现对驱动单元(3)阈值电压(Vth)的补偿,使各驱动单元(3)的驱动电流趋于一致,保证发光元件(OLED)亮度的均匀性;同时还能通过对发光元件(OLED)的阴极和阳极的短接来消除发光层界面未复合的载流子,从而缓解发光材料的老化,延长发光材料的使用寿命。

Description

一种驱动电路及其驱动方法和显示装置 技术领域
本发明涉及显示技术领域,具体地,涉及一种驱动电路及其驱动方法和显示装置。
背景技术
有机电致发光二极管显示器OLED(organic light emitting diode)是电流驱动发光的器件,即,由驱动管TFT在饱和状态时产生的电流驱动其发光。
不管是低温多晶硅晶体管LTPS-TFT还是氧化物晶体管Oxide-TFT,由于在制备过程中工艺的不均匀性,都会导致不同位置的晶体管出现阈值电压的差异,这对于电流驱动器件(如OLED发光元件)的驱动一致性来说是很致命的,因为如果在输入相同的灰阶电压的情况下不同驱动管的阈值电压不同,则不同的阈值电压会产生不同的驱动电流,从而造成驱动电流的不一致性。因此,传统的OLED驱动电路都需要对驱动管的阈值电压进行补偿,以使驱动电流不再受驱动管阈值电压不一致的影响。
此外,随着OLED发光元件使用时间的提高,在OLED发光元件的发光层的内部界面会积累很多未复合的载流子,载流子的积累会使得OLED发光元件内部形成内建电场,导致OLED发光元件的阈值电压升高,这会直接导致其发光材料老化,缩短其使用寿命。
目前,传统的OLED驱动电路中要同时实现驱动管阈值电压的补偿并缓解OLED发光材料的老化至少需要七个晶体管,这使得OLED显示器的分辨率受到了一定的限制。
发明内容
本发明针对现有技术中存在的上述技术问题,提供一种驱动 电路及其驱动方法和显示装置。该驱动电路不仅能够实现对驱动单元阈值电压的补偿,使各驱动单元的驱动电流趋于一致,从而保证了发光元件亮度的均匀性;同时还能够通过对发光元件的阴极和阳极的短接,消除发光元件的发光层内部界面未复合的载流子,从而缓解发光元件中的发光材料的老化,延长发光材料的使用寿命。
本发明提供一种驱动电路,用于对发光元件进行驱动。驱动电路包括:信号线、控制线、驱动单元、电源单元、补偿单元、发光控制单元、数据写入单元、存储单元和老化缓解单元。所述电源单元用于为所述驱动电路提供电源信号。所述驱动单元用于对所述发光元件进行驱动。所述信号线用于为所述数据写入单元提供数据信号。所述控制线用于为所述补偿单元、所述发光控制单元、所述数据写入单元和所述老化缓解单元提供控制信号。所述发光控制单元用于控制所述发光元件发光。所述数据写入单元用于将所述数据信号写入存储单元。所述存储单元用于存储所述数据写入单元写入的数据信号电压。所述补偿单元用于根据所述数据信号和所述控制信号对所述驱动单元进行阈值电压补偿。所述老化缓解单元用于根据所述控制信号对所述发光元件的阴极和阳极进行短接。
优选地,所述控制线包括扫描控制线、补偿控制线和发光控制线,所述扫描控制线连接至所述数据写入单元,所述补偿控制线连接至所述补偿单元,所述发光控制线连接至所述发光控制单元。所述电源单元包括第一电源端和第二电源端,所述第一电源端连接至所述补偿单元和所述驱动单元,所述第二电源端连接至所述老化缓解单元和所述发光元件。
根据本发明的一个实施例,所述驱动单元包括驱动管,所述补偿单元包括第三开关管,所述发光控制单元包括第一开关管和第四开关管,所述数据写入单元包括第五开关管,所述存储单元包括电容。所述第一开关管的栅极连接所述发光控制线,所述第一开关管的第一极连接所述电容的第二极和所述驱动管的第二 极,所述第一开关管的第二极连接所述发光元件的阳极。所述第三开关管的栅极连接所述补偿控制线,所述第三开关管的第一极连接所述第一电源端和所述驱动管的第一极,所述第三开关管的第二极连接所述驱动管的栅极。所述第四开关管的栅极连接所述发光控制线,所述第四开关管的第一极连接所述驱动管的栅极和所述第三开关管的第二极,所述第四开关管的第二极连接所述电容的第一极。所述第五开关管的栅极连接所述扫描控制线,所述第五开关管的第一极连接所述信号线,所述第五开关管的第二极连接所述电容的第一极和所述第四开关管的第二极。所述第二电源端连接所述发光元件的阴极。
优选地,所述老化缓解单元包括第二开关管,所述第二开关管的栅极连接所述扫描控制线或所述补偿控制线,所述第二开关管的第一极连接所述发光元件的阳极,所述第二开关管的第二极连接所述发光元件的阴极。
优选地,所述第一开关管、所述第二开关管、所述第三开关管、所述第四开关管、所述第五开关管和所述驱动管均为N型薄膜晶体管。
优选地,所述信号线提供的数据信号电压大于所述第一电源端提供的第一电源电压。
根据本发明的另一实施例,所述驱动单元包括驱动管,所述补偿单元包括第四开关管,所述发光控制单元包括第一开关管和第三开关管,所述数据写入单元包括第二开关管,所述存储单元包括电容。所述第一开关管的栅极连接所述发光控制线,所述第一开关管的第一极连接所述第一电源端,所述第一开关管的第二极连接所述电容的第二极和所述驱动管的第一极。所述第二开关管的栅极连接所述扫描控制线,所述第二开关管的第一极连接所述信号线,所述第二开关管的第二极连接所述电容的第一极。所述第三开关管的栅极连接所述发光控制线,所述第三开关管的第一极连接所述电容的第一极和所述第二开关管的第二极,所述第三开关管的第二极连接所述驱动管的栅极。所述第四开关管的栅 极连接所述补偿控制线,所述第四开关管的第一极连接所述驱动管的栅极和所述第三开关管的第二极,所述第四开关管的第二极连接所述驱动管的第二极和所述发光元件的阳极。所述发光元件的阴极连接所述第二电源端。
优选地,所述老化缓解单元包括第五开关管,所述第五开关管的栅极连接所述补偿控制线或所述扫描控制线,所述第五开关管的第一极连接所述发光元件的阳极,所述第五开关管的第二极连接所述发光元件的阴极。
优选地,所述第一开关管、所述第二开关管、所述第三开关管、所述第四开关管、所述第五开关管和所述驱动管均为P型薄膜晶体管。
优选地,所述信号线提供的数据信号电压小于所述第二电源端提供的第二电源电压。
优选地,所述第一电源端提供的第一电源电压大于所述第二电源端提供的第二电源电压。
本发明还提供一种显示装置,包括发光元件以及上述驱动电路,所述驱动电路与所述发光元件连接,用于对所述发光元件进行驱动。
本发明还提供一种驱动上述驱动电路的方法,所述方法包括步骤:电源单元为所述驱动电路提供电源信号;驱动单元在控制线的控制下驱动发光元件发光;信号线在控制线的控制下为数据写入单元提供数据信号;发光控制单元在所述控制线的控制下控制所述发光元件发光;所述数据写入单元在所述控制线的控制下将所述数据信号写入存储单元;所述存储单元存储所述数据写入单元写入的数据信号电压;所述补偿单元在所述控制线的控制下对所述驱动单元进行阈值电压补偿;以及,老化缓解单元在所述控制线的控制下对所述发光元件的阴极和阳极进行短接。
优选地,在所述方法中,所述控制线包括扫描控制线、补偿控制线和发光控制线,所述电源单元包括第一电源端和第二电源端。所述方法包括四个阶段。在第一阶段,所述信号线在所述扫 描控制线的控制下通过所述数据写入单元将所述数据信号写入所述存储单元,同时,所述老化缓解单元在所述扫描控制线的控制下将所述发光元件的阴极和阳极短接。在第二阶段,所述补偿单元在所述补偿控制线的控制下进行阈值补偿电压,同时,所述老化缓解单元在所述扫描控制线的控制下继续将所述发光元件的阴极和阳极短接。在第三阶段,所述扫描控制线和所述补偿控制线的控制信号同时跳变,所述补偿单元、所述发光控制单元、所述数据写入单元和所述老化缓解单元同时关闭。在第四阶段,所述发光控制单元在所述发光控制线的控制下控制所述发光元件发光。
优选地,在第一阶段,所述发光控制线和所述扫描控制线输出第一电平,所述补偿控制线输出第二电平;在第二阶段,所述发光控制线输出第二电平,所述扫描控制线和所述补偿控制线输出第一电平;在第三阶段,所述发光控制线、所述扫描控制线和所述补偿控制线输出第二电平;在第四阶段,所述发光控制线输出第一电平,所述扫描控制线和所述补偿控制线输出第二电平。所述第一电平和所述第二电平分别为高电平和低电平中的一个。
本发明的有益效果:本发明所提供的驱动电路,通过设置补偿单元、老化缓解单元、驱动单元、发光控制单元、数据写入单元和存储单元,能够实现对驱动单元阈值电压的补偿以使各驱动单元的驱动电流趋于一致,从而保证了发光元件亮度的均匀性;并且,还能够通过对发光元件的阴极和阳极的短接,消除发光元件的发光层内部界面未复合的载流子,从而缓解了发光材料的老化,延长了发光材料的使用寿命。
本发明所提供的显示装置,通过采用上述驱动电路而使该显示装置中的各像素在驱动过程中的驱动电流趋于一致,从而保证了该显示装置显示时亮度的均匀性,并且还能延长该显示装置的使用寿命。
附图说明
图1为本发明实施例1中驱动电路的电路图;
图2为图1中驱动电路的驱动时序图;
图3为图1中的驱动电路在第一阶段的等效电路图;
图4为图1中的驱动电路在第二阶段的等效电路图;
图5为图1中的驱动电路在第三阶段的等效电路图;
图6为图1中的驱动电路在第四阶段的等效电路图;
图7为在图1中的第二开关管的栅极连接补偿控制线的情况下图1中的驱动电路在第一阶段的等效电路图;
图8为本发明实施例2中驱动电路的电路图;
图9为图8中驱动电路的驱动时序图;
图10为图8中的驱动电路在第一阶段的等效电路图;
图11为图8中的驱动电路在第二阶段的等效电路图;
图12为图8中的驱动电路在第三阶段的等效电路图;
图13为图8中的驱动电路在第四阶段的等效电路图;
图14为在图8中的第五开关管的栅极连接补偿控制线的情况下图8中的驱动电路在第一阶段的等效电路图。
附图标记说明:
1.补偿单元;2.老化缓解单元;3.驱动单元;4.发光控制单元;5.数据写入单元;6.存储单元。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明所提供的一种驱动电路及其驱动方法和显示装置作进一步详细描述。
实施例1:
本实施例提供一种驱动电路,如图1所示,用于对发光元件OLED进行驱动,包括:信号线data、控制线、驱动单元3、电源单元、补偿单元1、发光控制单元4、数据写入单元5、存储单元6和老化缓解单元2。电源单元用于为驱动电路提供电源信 号,驱动单元3用于对发光元件OLED进行驱动;信号线data用于为数据写入单元5提供数据信号;控制线用于为补偿单元1、发光控制单元4、数据写入单元5和老化缓解单元2提供控制信号;发光控制单元4用于控制发光元件OLED发光;数据写入单元5用于将数据信号写入存储单元6;存储单元6用于存储数据写入单元5写入的数据信号电压;补偿单元1用于根据控制信号对驱动单元3进行阈值电压补偿;老化缓解单元2用于根据控制信号将发光元件OLED的阴极和阳极进行短接。
通过设置补偿单元1、驱动单元3、发光控制单元4、数据写入单元5和存储单元6,本实施例所提供的驱动电路能够实现对驱动单元阈值电压的补偿,使各个驱动单元的驱动电流趋于一致,从而保证了发光元件OLED亮度的均匀性;此外,通过设置老化缓解单元2以对发光元件OLED的阴极和阳极进行短接,本实施例所提供的驱动电路还能够消除发光元件OLED的发光层内部界面未复合的载流子,从而缓解了发光材料的老化,延长了发光材料的使用寿命。
本实施例中,所述控制线包括扫描控制线G(n)、补偿控制线C(n)和发光控制线EM(n),扫描控制线G(n)连接至数据写入单元5,补偿控制线C(n)连接至补偿单元1,发光控制线EM(n)连接至发光控制单元4。电源单元包括第一电源端ELVDD和第二电源端ELVSS,第一电源端ELVDD连接至补偿单元1和驱动单元3,第二电源端ELVSS连接至老化缓解单元2和发光元件OLED。
本实施例中,驱动单元3包括驱动管DTFT;补偿单元1包括第三开关管T3;发光控制单元4包括第一开关管T1和第四开关管T4;数据写入单元5包括第五开关管T5;存储单元6包括电容Cst。第一开关管T1的栅极连接发光控制线EM(n),第一开关管T1的第一极连接电容Cst的第二极和驱动管DTFT的第二极,第一开关管T1的第二极连接发光元件OLED的阳极。第三开关管T3的栅极连接补偿控制线C(n),第三开关管T3的第一极连接第一电源端ELVDD和驱动管DTFT的第一极,第三开关管T3 的第二极连接驱动管DTFT的栅极。第四开关管T4的栅极连接发光控制线EM(n),第四开关管T4的第一极连接驱动管DTFT的栅极和第三开关管T3的第二极,第四开关管T4的第二极连接电容Cst的第一极。第五开关管T5的栅极连接扫描控制线G(n),第五开关管T5的第一极连接信号线data,第五开关管T5的第二极连接电容Cst的第一极和第四开关管T4的第二极。第二电源端ELVSS连接发光元件OLED的阴极。
本实施例中,老化缓解单元2包括第二开关管T2,第二开关管T2的栅极连接扫描控制线G(n),第二开关管T2的第一极连接发光元件OLED的阳极,第二开关管T2的第二极连接发光元件OLED的阴极。
需要说明的是,第二开关管T2的栅极也可以连接补偿控制线C(n)。无论第二开关管T2的栅极连接扫描控制线G(n)还是补偿控制线C(n),第二开关管T2都能根据控制线提供的控制信号对发光元件OLED的阴极和阳极进行短接,从而消除发光元件OLED中未复合的载流子,起到缓解发光元件OLED中的发光材料老化的作用。
本实施例中,第一开关管T1、第二开关管T2、第三开关管T3、第四开关管T4、第五开关管T5和驱动管DTFT均为N型薄膜晶体管。
本实施例中,信号线data提供的数据信号电压Vdata大于第一电源端ELVDD提供的第一电源电压VDD。第一电源端ELVDD提供的第一电源电压VDD大于第二电源端ELVSS提供的第二电源电压VSS。
基于上述驱动电路的结构,本实施例还提供一种用于驱动该驱动电路的方法,包括:电源单元为驱动电路提供电源信号;驱动单元3在控制线的控制下驱动发光元件OLED发光;信号线data在控制线的控制下为数据写入单元5提供数据信号;发光控制单元4在控制线的控制下控制发光元件OLED发光;数据写入单元5在控制线的控制下将数据信号写入存储单元6;存储单 元6存储数据写入单元5写入的数据信号电压;补偿单元1在控制线的控制下对驱动单元3进行阈值电压补偿;老化缓解单元2在控制线的控制下对发光元件OLED的阴极和阳极进行短接。
本实施例中,控制线包括扫描控制线G(n)、补偿控制线C(n)和发光控制线EM(n);电源单元包括第一电源端ELVDD和第二电源端ELVSS;存储单元6包括电容Cst;驱动单元3包括驱动管DTFT;驱动管DTFT的第一极为漏极,驱动管DTFT的第二极为源极。图2示出了该驱动方法的驱动时序图,该驱动方法包括四个驱动阶段。
在第一阶段①,信号线data在扫描控制线G(n)的控制下通过数据写入单元5将数据信号写入电容Cst,以对电容Cst充电,同时,老化缓解单元2在扫描控制线G(n)的控制下将发光元件OLED的阴极和阳极短接。
在该阶段中,扫描控制线G(n)和发光控制线EM(n)输出高电平信号,补偿控制线C(n)输出低电平信号。第一开关管T1、第二开关管T2、第四开关管T4和第五开关管T5开启,第三开关管T3截止。图1中驱动电路的等效电路如图3所示,由于第四开关管T4开启,因此驱动管DTFT栅极和源极两端的电压为电容Cst两端的电压差,第五开关管T5的开启使得信号线data提供的数据信号可以直接写入电容Cst与驱动管DTFT的栅极相连的第一极;第一开关管T1和第二开关管T2的开启将驱动管DTFT的源极拉到了第二电源端ELVSS的电位(即第二电源电压VSS),同时发光元件OLED的阴极和阳极被第二开关管T2短路,从而在第一阶段消除发光元件OLED发光层界面上未复合的载流子,缓解发光元件OLED发光材料的老化。同时,电容Cst会被充电,充电结束后电容Cst两端的电压差为VCst=Vdata-VSS。由于该阶段驱动管DTFT有较大的栅源电压,因此流过驱动管DTFT的电流较大,对电容Cst的充电速度较快,从而可以使第一阶段的时间比较短。
在第二阶段②,补偿单元1在补偿控制线C(n)的控制下产 生阈值补偿电压,同时,老化缓解单元2在扫描控制线G(n)的控制下继续将发光元件OLED的阴极和阳极短接。
在该阶段中,扫描控制线G(n)、补偿控制线C(n)输出高电平信号,发光控制线EM(n)输出低电平信号。第一开关管T1和第四开关管T4截止,第二开关管T2、第三开关管T3和第五开关管T5开启。图1中驱动电路的等效电路如图4所示,由于第三开关管T3开启,第四开关管T4截止,驱动管DTFT被连接为二极管的形式,驱动管DTFT栅极和漏极的电位均为第一电源电压VDD,驱动管DTFT源极电位保持上一阶段的第二电源电压VSS,因此驱动管DTFT处于饱和状态,由于第一开关管T1截止,因此流过驱动管DTFT的电流流入电容Cst与驱动管DTFT源极相连的第二极来对电容Cst充电,直到电容Cst的与驱动管DTFT源极相连的第二极的电位上升到VDD-Vth(Vth为驱动管DTFT的阈值电压,VDD为第一电源电压),此时驱动管DTFT截止,并且由于第五开关管T5仍然开启,电容Cst的第一极并不是悬空的,而是一直保持数据信号电压Vdata的电位,因此在驱动管DTFT截止后电容Cst两端的电压差为VCst=Vdata-(VDD-Vth)。在该阶段中,第二开关管T2保持开启以使发光元件OLED阴阳极短路,发光材料的老化进一步缓解。
在第三阶段③,扫描控制线G(n)、补偿控制线C(n)和发光控制信号EM(n)的控制信号都为低电平,补偿单元1、发光控制单元4、数据写入单元5和老化缓解单元2同时关闭。
在该阶段中,扫描控制线G(n)、补偿控制线C(n)和发光控制线EM(n)都输出低电平信号。第一开关管T1、第二开关管T2、第三开关管T3、第四开关管T4、第五开关管T5都截止。图1中驱动电路的等效电路如图5所示。该阶段充当缓冲阶段,其避免扫描控制线G(n)和补偿控制线C(n)以及发光控制线EM(n)输出的控制信号同时跳变导致的干扰,从而使整个驱动电路的信号更加稳定。
在第四阶段④,发光控制单元4在发光控制线EM(n)的控制 下控制发光元件OLED发光。
在该阶段中,扫描控制线G(n)和补偿控制线C(n)都输出低电平信号,发光控制线EM(n)输出高电平信号。因此第一开关管T1和第四开关管T4开启,第二开关管T2、第三开关管T3和第五开关管T5截止。图1中驱动电路的等效电路如图6所示,第四开关管T4开启,电容Cst连接于驱动管DTFT的栅极和源极之间,第一开关管T1开启,发光元件OLED阳极连接到驱动管DTFT的源极,阴极连接到第二电源端ELVSS。由于与电容Cst连接的驱动管DTFT的栅极处于悬空状态,因此电容Cst两端的电压保持之前的电压,即VCst=Vdata-(VDD-Vth),并且由于电容Cst连接在驱动管DTFT的栅极和源极之间,因此驱动管DTFT的栅极和源极之间的电压Vgs即为电容Cst两端的电压差VCst。设置第一电源电压VDD以使其保证驱动管DTFT漏极与源极之间的电压Vds满足Vds>Vgs-Vth,从而使驱动管DTFT工作在饱和状态,因此,发光元件OLED的发光电流:
Ioled=K(Vgs-Vth)2
=K(VCst-Vth)2
=K(Vdata-(VDD-Vth)-Vth)2
=K(Vdata-VDD)2
需要说明的是,本实施例中数据信号电压Vdata大于第一电源电压VDD。K为与工艺和设计有关的常数。
由上式可以知道,通过本实施例所提供的驱动电路驱动的发光元件OLED的发光电流只与数据信号电压Vdata和第一电源电压VDD有关,而与驱动管DTFT的阈值电压Vth无关,也就是说,通过本实施例所提供的驱动电路实现了对驱动管DTFT阈值电压的补偿。在驱动管DTFT阈值电压补偿的同时,发光元件OLED的发光材料未复合载流子得到了消除,从而缓解了发光材料的老化。
本实施例中的驱动电路在第二阶段利用第一电源端ELVDD和驱动管DTFT的二极管连接方式在驱动管DTFT的源极获取驱动 管DTFT的阈值电压,在获取驱动管DTFT阈值电压的同时将数据信号电压Vdata写入电容Cst,由此完成数据信号电压Vdata的写入和驱动管DTFT阈值电压的补偿。在电路的阈值电压补偿进行的同时(如第一阶段和第二阶段),利用发光元件OLED阴阳极的短接,消除发光界面未复合的载流子,从而缓解了发光元件OLED的发光材料的老化,延长发光材料的使用寿命。
另外需要说明的是,当第二开关管T2的栅极连接补偿控制线C(n)时,在第一阶段,图1中驱动电路的等效电路如图7所示,由于补偿控制线C(n)输出低电平信号,所以第二开关管T2截止,即第二开关管T2无法将发光元件OLED的阴阳两极短路,因此,在第一阶段,无法消除发光元件OLED发光层界面上未复合的载流子,从而无法缓解发光元件OLED发光材料的老化。
实施例2:
本实施例提供一种驱动电路,如图8所示,控制线包括扫描控制线G(n)、补偿控制线C(n)和发光控制线EM(n),扫描控制线G(n)连接至数据写入单元5,补偿控制线C(n)连接至补偿单元1,发光控制线EM(n)连接至发光控制单元4。电源单元包括第一电源端ELVDD和第二电源端ELVSS,第一电源端ELVDD连接至补偿单元1和驱动单元3,第二电源端ELVSS连接至老化缓解单元2和发光元件OLED。
在本实施例中,驱动单元3包括驱动管DTFT;补偿单元1包括第四开关管T4;发光控制单元4包括第一开关管T1和第三开关管T3;数据写入单元5包括第二开关管T2;存储单元6包括电容Cst。第一开关管T1的栅极连接发光控制线EM(n),第一开关管T1的第一极连接第一电源端ELVDD,第一开关管T1的第二极连接电容Cst的第二极和驱动管DTFT的第一极。第二开关管T2的栅极连接扫描控制线G(n),第二开关管T2的第一极连接信号线data,第二开关管T2的第二极连接电容Cst的第一极。第三开关管T3的栅极连接发光控制线EM(n),第三开关管T3的 第一极连接电容Cst的第一极和第二开关管T2的第二极,第三开关管T3的第二极连接驱动管DTFT的栅极。第四开关管T4的栅极连接补偿控制线C(n),第四开关管T4的第一极连接驱动管DTFT的栅极和第三开关管T3的第二极,第四开关管T4的第二极连接驱动管DTFT的第二极和发光元件OLED的阳极。发光元件OLED的阴极连接第二电源端ELVSS。
本实施例中,老化缓解单元2包括第五开关管T5,第五开关管T5的栅极连接扫描控制线G(n),第五开关管T5的第一极连接发光元件OLED的阳极,第五开关管T5的第二极连接发光元件OLED的阴极。
需要说明的是,第五开关管T5的栅极也可以连接补偿控制线C(n)。无论第五开关管T5的栅极连接扫描控制线G(n)还是补偿控制线C(n),第五开关管T5都能根据控制线提供的控制信号对发光元件OLED的阴极和阳极进行短接,从而起到缓解发光元件OLED中的发光材料老化的作用。
本实施例中,第一开关管T1、第二开关管T2、第三开关管T3、第四开关管T4、第五开关管T5和驱动管DTFT均为P型薄膜晶体管。
本实施例中,信号线data提供的数据信号电压Vdata小于第二电源端ELVSS提供的第二电源电压VSS,并且第一电源端ELVDD提供的第一电源电压VDD大于第二电源端ELVSS提供的第二电源电压VSS。
本实施例中的驱动电路的其他结构与实施例1中相同,此处不再赘述。
基于上述驱动电路的结构,本实施例还提供一种用于驱动该驱动电路的方法,如图9所示,该方法包括四个驱动阶段,其中,驱动管DTFT的第一极为源极,驱动管DTFT的第二极为漏极。
在第一阶段①,扫描控制线G(n)和发光控制线EM(n)输出低电平信号,补偿控制线C(n)输出高电平信号。第一开关管T1、第二开关管T2、第三开关管T3和第五开关管T5开启,第四开 关管T4截止。图8中驱动电路的等效电路如图10所示,由于第三开关管T3开启,因此驱动管DTFT栅极与源极之间的电压为电容Cst两端的电压差,第二开关管T2的开启使得信号线data提供的数据信号(即数据信号电压Vdata)可以直接写入电容Cst的与驱动管DTFT的栅极相连的第一极;第一开关管T1和第五开关管T5的开启将驱动管DTFT的漏极拉到了第二电源端ELVSS的电位(即第二电源电压VSS),同时发光元件OLED的阴阳两极被第五开关管T5短路,因此,第一阶段可以消除发光元件OLED发光层界面上未复合的载流子,缓解发光元件OLED发光材料的老化。同时,电容Cst会被充电,充电结束后电容Cst两端的电压差为VCst=VDD-Vdata;由于该阶段驱动管DTFT有较大的栅源电压,因此流过驱动管DTFT的电流较大,对电容Cst的充电速度较快,从而使第一阶段的时间较短。
在第二阶段②,扫描控制线G(n)和补偿控制线C(n)输出低电平信号,发光控制线EM(n)输出高电平信号。第一开关管T1和第三开关管T3截止,第二开关管T2、第四开关管T4和第五开关管T5开启。在该阶段中,图8中驱动电路的等效电路如图11所示。由于第三开关管T3截止,第四开关管T4开启,因此驱动管DTFT被连接为二极管的形式,并且驱动管DTFT的栅极和漏极的电位均为第二电源电压VSS;由于驱动管DTFT源极电位保持上一阶段的第一电源电压VDD,电容Cst的第一极连接信号线data,电容Cst的第二极连接到驱动管DTFT的源极,此时驱动管DTFT的源极已经和第一电源端ELVDD断开,因此电容Cst通过驱动管DTFT放电,直到驱动管DTFT源极的电位降为VSS+|Vth|(其中,Vth为驱动管DTFT的阈值电压,VSS为第二电源电压),此时驱动管DTFT截止,电容Cst两端的电压差为VCst=VSS+|Vth|-Vdata。此外,在该阶段中,发光元件OLED阴阳两极被短接,发光元件OLED发光层的发光界面未复合载流子得到了消除,从而使发光材料的老化进一步得以缓解。
在第三阶段③,扫描控制线G(n)、补偿控制线C(n)和发光 控制线EM(n)都输出高电平信号。第一开关管T1、第二开关管T2、第三开关管T3、第四开关管T4和第五开关管T5都截止。图8中驱动电路的等效电路如图12所示。该阶段充当缓冲阶段,其避免扫描控制线G(n)和补偿控制线C(n)以及发光控制线EM(n)输出的控制信号同时跳变导致的干扰,从而使整个驱动电路的信号更加稳定。
在第四阶段④,扫描控制线G(n)和补偿控制线C(n)都输出高电平信号,发光控制线EM(n)输出低电平信号。因此第一开关管T1和第三开关管T3开启,第二开关管T2、第四开关管T4和第五开关管T5截止。图8中驱动电路的等效电路如图13所示。第三开关管T3开启,电容Cst连接于驱动管DTFT的栅极和源极之间,发光元件OLED阳极连接到驱动管DTFT的漏极,阴极连接到第二电源端ELVSS。由于与电容Cst连接的驱动管DTFT的栅极处于悬空状态,因此电容Cst两端的电压仍然为之前的电压,即VCst=VSS+|Vth|-Vdata。电容Cst连接在驱动管DTFT的栅极和源极之间,因此驱动管DTFT的源极和栅极之间的电压Vsg即为电容Cst两端的电压差VCst。由于第二电源电压VSS设置为保证驱动管DTFT漏源电压Vds满足|Vds|>Vsg-Vth,因此驱动管DTFT工作在饱和状态,从而得到下式所表示的发光元件OLED的发光电流:
Ioled=K(Vsg-|Vth|)2
=K(VCst-|Vth|)2
=K(VSS+|Vth|-Vdata-|Vth|)2
=K(VSS-Vdata)2
需要说明的是,本实施例中数据信号电压Vdata小于第二电源电压VSS。K为与工艺和设计有关的常数。
由上式可以知道,通过本实施例所提供的驱动电路驱动发光元件OLED的发光电流只与数据信号电压Vdata和第二电源电压VSS有关,而与驱动管DTFT的阈值电压Vth无关,也就是说,通过本实施例所提供的驱动电路实现了对驱动管DTFT阈值电压 的补偿。在驱动管DTFT阈值电压补偿的同时,发光元件OLED的发光材料未复合载流子得到了消除,从而缓解了发光材料的老化。
本实施例中的驱动电路在第二阶段利用第二电源端ELVSS和驱动管DTFT的二极管连接方式在驱动管DTFT的源极获取驱动管DTFT的阈值电压,在获取驱动管DTFT阈值电压的同时将数据信号电压Vdata写入电容Cst,由此完成数据信号电压Vdata的写入和驱动管DTFT阈值电压的补偿。在电路的阈值电压补偿进行的同时(如第一阶段和第二阶段),利用发光元件OLED阴阳极的短接,消除发光界面未复合的载流子,从而缓解了发光元件OLED的发光材料的老化,延长发光材料的使用寿命。
另外需要说明的是,当第五开关管T5的栅极连接补偿控制线C(n)时,图8中驱动电路在第一阶段的等效电路如图14所示,由于补偿控制线C(n)输出高电平信号,所以第五开关管T5截止并且无法将发光元件OLED的阴阳两极短路。这种情况下,在第一阶段无法消除发光元件OLED发光层界面上未复合的载流子,也无法缓解发光元件OLED发光材料的老化。
实施例1-2的有益效果:实施例1-2所提供的驱动电路,通过设置补偿单元、老化缓解单元、驱动单元、发光控制单元、数据写入单元和存储单元,能够实现对驱动单元阈值电压的补偿,使驱动单元的驱动电流趋于一致,从而保证了发光元件亮度的均匀性;并且,还能够通过对发光元件的阴极和阳极的短接,消除发光元件的发光层内部界面未复合的载流子,从而缓解发光材料的老化,延长发光材料的使用寿命。
实施例3:
本实施例提供一种显示装置,包括发光元件,还包括实施例1-2任意一个中的驱动电路,驱动电路与发光元件连接,用于对发光元件进行驱动。
其中,发光元件可以是有机电致发光二极管。
通过采用实施例1-2任意一个中的驱动电路,可以使该显示装置中的各像素在驱动过程中的驱动电流趋于一致,从而保证了该显示装置显示时亮度的均匀性;同时,还能延长该显示装置的使用寿命。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (15)

  1. 一种驱动电路,用于对发光元件进行驱动,所述驱动电路包括:信号线、控制线、驱动单元、电源单元、补偿单元、发光控制单元、数据写入单元、存储单元和老化缓解单元;
    所述电源单元用于为所述驱动电路提供电源信号;
    所述驱动单元用于对所述发光元件进行驱动;
    所述信号线用于为所述数据写入单元提供数据信号;
    所述控制线用于为所述补偿单元、所述发光控制单元、所述数据写入单元和所述老化缓解单元提供控制信号;
    所述发光控制单元用于控制所述发光元件发光;
    所述数据写入单元用于将所述数据信号写入存储单元;
    所述存储单元用于存储所述数据写入单元写入的数据信号电压;
    所述补偿单元用于根据所述控制信号对所述驱动单元进行阈值电压补偿;
    所述老化缓解单元用于根据所述控制信号对所述发光元件的阴极和阳极进行短接。
  2. 根据权利要求1所述的驱动电路,其中,所述控制线包括扫描控制线、补偿控制线和发光控制线,所述扫描控制线连接至所述数据写入单元,所述补偿控制线连接至所述补偿单元,所述发光控制线连接至所述发光控制单元;并且
    所述电源单元包括第一电源端和第二电源端,所述第一电源端连接至所述补偿单元和所述驱动单元,所述第二电源端连接至所述老化缓解单元和所述发光元件。
  3. 根据权利要求2所述的驱动电路,其中,所述驱动单元包括驱动管,所述补偿单元包括第三开关管,所述发光控制单元包括第一开关管和第四开关管,所述数据写入单元包括第五开关 管,所述存储单元包括电容;
    所述第一开关管的栅极连接所述发光控制线,所述第一开关管的第一极连接所述电容的第二极和所述驱动管的第二极,所述第一开关管的第二极连接所述发光元件的阳极;
    所述第三开关管的栅极连接所述补偿控制线,所述第三开关管的第一极连接所述第一电源端和所述驱动管的第一极,所述第三开关管的第二极连接所述驱动管的栅极;
    所述第四开关管的栅极连接所述发光控制线,所述第四开关管的第一极连接所述驱动管的栅极和所述第三开关管的第二极,所述第四开关管的第二极连接所述电容的第一极;
    所述第五开关管的栅极连接所述扫描控制线,所述第五开关管的第一极连接所述信号线,所述第五开关管的第二极连接所述电容的第一极和所述第四开关管的第二极;以及
    所述第二电源端连接所述发光元件的阴极。
  4. 根据权利要求3所述的驱动电路,其中,所述老化缓解单元包括第二开关管,所述第二开关管的栅极连接所述扫描控制线或所述补偿控制线,所述第二开关管的第一极连接所述发光元件的阳极,所述第二开关管的第二极连接所述发光元件的阴极。
  5. 根据权利要求4所述的驱动电路,其中,所述第一开关管、所述第二开关管、所述第三开关管、所述第四开关管、所述第五开关管和所述驱动管均为N型薄膜晶体管。
  6. 根据权利要求5所述的驱动电路,其中,所述信号线提供的数据信号电压大于所述第一电源端提供的第一电源电压。
  7. 根据权利要求2所述的驱动电路,其中,所述驱动单元包括驱动管;所述补偿单元包括第四开关管;所述发光控制单元包括第一开关管和第三开关管;所述数据写入单元包括第二开关 管;所述存储单元包括电容;
    所述第一开关管的栅极连接所述发光控制线,所述第一开关管的第一极连接所述第一电源端,所述第一开关管的第二极连接所述电容的第二极和所述驱动管的第一极;
    所述第二开关管的栅极连接所述扫描控制线,所述第二开关管的第一极连接所述信号线,所述第二开关管的第二极连接所述电容的第一极;
    所述第三开关管的栅极连接所述发光控制线,所述第三开关管的第一极连接所述电容的第一极和所述第二开关管的第二极,所述第三开关管的第二极连接所述驱动管的栅极;
    所述第四开关管的栅极连接所述补偿控制线,所述第四开关管的第一极连接所述驱动管的栅极和所述第三开关管的第二极,所述第四开关管的第二极连接所述驱动管的第二极和所述发光元件的阳极;以及
    所述发光元件的阴极连接所述第二电源端。
  8. 根据权利要求7所述的驱动电路,其中,所述老化缓解单元包括第五开关管,所述第五开关管的栅极连接所述补偿控制线或所述扫描控制线,所述第五开关管的第一极连接所述发光元件的阳极,所述第五开关管的第二极连接所述发光元件的阴极。
  9. 根据权利要求8所述的驱动电路,其中,所述第一开关管、所述第二开关管、所述第三开关管、所述第四开关管、所述第五开关管和所述驱动管均为P型薄膜晶体管。
  10. 根据权利要求9所述的驱动电路,其中,所述信号线提供的数据信号电压小于所述第二电源端提供的第二电源电压。
  11. 根据权利要求6或10所述的驱动电路,其中,所述第一电源端提供的第一电源电压大于所述第二电源端提供的第二 电源电压。
  12. 一种显示装置,包括发光元件,其中,还包括权利要求1-11任意一项所述的驱动电路,所述驱动电路与所述发光元件连接,用于对所述发光元件进行驱动。
  13. 一种用于驱动如权利要求1-11任意一项所述的驱动电路的方法,所述方法包括步骤:
    电源单元为所述驱动电路提供电源信号;
    驱动单元在控制线的控制下驱动发光元件发光;
    信号线在控制线的控制下为数据写入单元提供数据信号;
    发光控制单元在所述控制线的控制下控制所述发光元件发光;
    所述数据写入单元在所述控制线的控制下将所述数据信号写入存储单元;
    所述存储单元存储所述数据写入单元写入的数据信号电压;
    所述补偿单元在所述控制线的控制下对所述驱动单元进行阈值电压补偿;以及
    老化缓解单元在所述控制线的控制下对所述发光元件的阴极和阳极进行短接。
  14. 根据权利要求12所述的方法,其中,所述控制线包括扫描控制线、补偿控制线和发光控制线,所述电源单元包括第一电源端和第二电源端,所述方法包括四个阶段:
    在第一阶段,所述信号线在所述扫描控制线的控制下通过所述数据写入单元将所述数据信号写入所述存储单元,同时,所述老化缓解单元在所述扫描控制线的控制下将所述发光元件的阴极和阳极短接;
    在第二阶段,所述补偿单元在所述补偿控制线的控制下进行阈值补偿电压,同时,所述老化缓解单元在所述扫描控制线的控 制下继续将所述发光元件的阴极和阳极短接;
    在第三阶段,所述扫描控制线和所述补偿控制线的控制信号同时跳变,所述补偿单元、所述发光控制单元、所述数据写入单元和所述老化缓解单元同时关闭;以及
    在第四阶段,所述发光控制单元在所述发光控制线的控制下控制所述发光元件发光。
  15. 根据权利要求14所述的方法,其中
    在第一阶段,所述发光控制线和所述扫描控制线输出第一电平,所述补偿控制线输出第二电平;
    在第二阶段,所述发光控制线输出第二电平,所述扫描控制线和所述补偿控制线输出第一电平;
    在第三阶段,所述发光控制线、所述扫描控制线和所述补偿控制线输出第二电平;以及
    在第四阶段,所述发光控制线输出第一电平,所述扫描控制线和所述补偿控制线输出第二电平,
    其中,所述第一电平和所述第二电平分别为高电平和低电平中的一个。
PCT/CN2016/073842 2015-09-23 2016-02-16 一种驱动电路及其驱动方法和显示装置 WO2017049849A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/513,080 US10403202B2 (en) 2015-09-23 2016-02-16 Driving circuit and driving method thereof, and display device
US16/433,699 US10621916B2 (en) 2015-09-23 2019-06-06 Driving circuit and driving method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510612395.5A CN105070250A (zh) 2015-09-23 2015-09-23 一种像素驱动电路及其驱动方法和显示装置
CN201510612395.5 2015-09-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/513,080 A-371-Of-International US10403202B2 (en) 2015-09-23 2016-02-16 Driving circuit and driving method thereof, and display device
US16/433,699 Division US10621916B2 (en) 2015-09-23 2019-06-06 Driving circuit and driving method thereof, and display device

Publications (1)

Publication Number Publication Date
WO2017049849A1 true WO2017049849A1 (zh) 2017-03-30

Family

ID=54499603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073842 WO2017049849A1 (zh) 2015-09-23 2016-02-16 一种驱动电路及其驱动方法和显示装置

Country Status (3)

Country Link
US (2) US10403202B2 (zh)
CN (1) CN105070250A (zh)
WO (1) WO2017049849A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070250A (zh) 2015-09-23 2015-11-18 京东方科技集团股份有限公司 一种像素驱动电路及其驱动方法和显示装置
CN106448564B (zh) * 2016-12-20 2019-06-25 京东方科技集团股份有限公司 一种oled像素电路及其驱动方法、显示装置
CN106847175B (zh) * 2017-03-01 2018-12-28 京东方科技集团股份有限公司 电致发光显示屏及其亮度均匀性补偿方法、系统
CN107146579B (zh) * 2017-07-06 2018-01-16 深圳市华星光电半导体显示技术有限公司 一种amoled像素驱动电路及像素驱动方法
KR102473216B1 (ko) * 2017-07-17 2022-12-01 엘지디스플레이 주식회사 전계 발광 표시장치 및 이의 구동방법
CN108399894A (zh) 2018-03-28 2018-08-14 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN111402782B (zh) * 2018-12-14 2021-09-03 成都辰显光电有限公司 一种数字驱动像素电路及数字驱动像素的方法
CN110619851A (zh) * 2019-09-24 2019-12-27 京东方科技集团股份有限公司 像素电路、驱动方法及显示装置
CN110689840B (zh) * 2019-11-15 2021-01-26 京东方科技集团股份有限公司 一种像素电路、短路检测方法和显示面板
CN113593472B (zh) * 2021-08-04 2022-12-06 深圳市华星光电半导体显示技术有限公司 像素电路及其驱动方法、显示装置
CN114373427B (zh) * 2022-01-26 2022-12-06 深圳市华星光电半导体显示技术有限公司 Oled驱动电路、显示面板、制备方法及显示设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1102234A2 (en) * 1999-11-18 2001-05-23 Sony Corporation Active matrix type display apparatus and drive circuit thereof
CN102651198A (zh) * 2012-03-19 2012-08-29 京东方科技集团股份有限公司 Amoled驱动电路、方法和amoled显示装置
CN102682704A (zh) * 2012-05-31 2012-09-19 广州新视界光电科技有限公司 有源有机电致发光显示器的像素驱动电路及其驱动方法
CN104157238A (zh) * 2014-07-21 2014-11-19 京东方科技集团股份有限公司 像素电路、像素电路的驱动方法和显示装置
CN104167168A (zh) * 2014-06-23 2014-11-26 京东方科技集团股份有限公司 像素电路及其驱动方法和显示装置
CN104318899A (zh) * 2014-11-17 2015-01-28 京东方科技集团股份有限公司 像素单元驱动电路和方法、像素单元和显示装置
CN104616621A (zh) * 2015-02-05 2015-05-13 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN105070250A (zh) * 2015-09-23 2015-11-18 京东方科技集团股份有限公司 一种像素驱动电路及其驱动方法和显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100592636B1 (ko) * 2004-10-08 2006-06-26 삼성에스디아이 주식회사 발광표시장치
CN101986378A (zh) * 2010-11-09 2011-03-16 华南理工大学 有源有机发光二极管显示器像素驱动电路及其驱动方法
CN102651194B (zh) * 2011-09-06 2014-02-19 京东方科技集团股份有限公司 电压驱动像素电路及其驱动方法、显示面板
CN203858847U (zh) * 2014-05-29 2014-10-01 京东方科技集团股份有限公司 像素单元驱动电路、像素驱动电路和amoled显示装置
KR102339646B1 (ko) * 2015-08-31 2021-12-15 엘지디스플레이 주식회사 표시장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1102234A2 (en) * 1999-11-18 2001-05-23 Sony Corporation Active matrix type display apparatus and drive circuit thereof
CN102651198A (zh) * 2012-03-19 2012-08-29 京东方科技集团股份有限公司 Amoled驱动电路、方法和amoled显示装置
CN102682704A (zh) * 2012-05-31 2012-09-19 广州新视界光电科技有限公司 有源有机电致发光显示器的像素驱动电路及其驱动方法
CN104167168A (zh) * 2014-06-23 2014-11-26 京东方科技集团股份有限公司 像素电路及其驱动方法和显示装置
CN104157238A (zh) * 2014-07-21 2014-11-19 京东方科技集团股份有限公司 像素电路、像素电路的驱动方法和显示装置
CN104318899A (zh) * 2014-11-17 2015-01-28 京东方科技集团股份有限公司 像素单元驱动电路和方法、像素单元和显示装置
CN104616621A (zh) * 2015-02-05 2015-05-13 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN105070250A (zh) * 2015-09-23 2015-11-18 京东方科技集团股份有限公司 一种像素驱动电路及其驱动方法和显示装置

Also Published As

Publication number Publication date
US20170301290A1 (en) 2017-10-19
US10621916B2 (en) 2020-04-14
US10403202B2 (en) 2019-09-03
CN105070250A (zh) 2015-11-18
US20190287461A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
WO2017049849A1 (zh) 一种驱动电路及其驱动方法和显示装置
KR102176454B1 (ko) Amoled 픽셀 구동 회로 및 구동 방법
WO2018045667A1 (zh) Amoled像素驱动电路及驱动方法
WO2016119304A1 (zh) Amoled像素驱动电路及像素驱动方法
US10262593B2 (en) Light emitting drive circuit and organic light emitting display
WO2019037300A1 (zh) Amoled像素驱动电路
WO2018068392A1 (zh) Amoled像素驱动电路及驱动方法
US20170294162A1 (en) Pixel circuit and driving method therefor, and organic light-emitting display
KR101794648B1 (ko) 유기발광다이오드 표시장치
WO2017156826A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2018228202A1 (zh) 像素电路、像素驱动方法和显示装置
WO2016086626A1 (zh) 一种像素驱动电路、像素驱动方法和显示装置
WO2016161896A1 (zh) 像素驱动电路、显示装置和像素驱动方法
WO2021103408A1 (zh) 一种像素内补偿电路及自发光显示装置
WO2020143234A1 (zh) 像素驱动电路、像素驱动方法和显示装置
WO2016086627A1 (zh) 一种像素驱动电路、像素驱动方法和显示装置
WO2015180352A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
CN108777131B (zh) Amoled像素驱动电路及驱动方法
WO2015192399A1 (zh) 有机发光二极管的像素驱动电路及像素驱动方法
WO2016119305A1 (zh) Amoled像素驱动电路及像素驱动方法
US10714012B2 (en) Display device, array substrate, pixel circuit and drive method thereof
TW201437992A (zh) 畫素電路及其驅動方法與顯示面板
WO2013127188A1 (zh) 像素单元驱动电路、像素单元驱动方法及像素单元
KR20180075054A (ko) 유기발광소자표시장치
CN106935201A (zh) 像素电路及其驱动方法和有源矩阵有机发光显示器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15513080

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16847740

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23/08/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16847740

Country of ref document: EP

Kind code of ref document: A1