WO2017020360A1 - Amoled像素驱动电路及像素驱动方法 - Google Patents

Amoled像素驱动电路及像素驱动方法 Download PDF

Info

Publication number
WO2017020360A1
WO2017020360A1 PCT/CN2015/087909 CN2015087909W WO2017020360A1 WO 2017020360 A1 WO2017020360 A1 WO 2017020360A1 CN 2015087909 W CN2015087909 W CN 2015087909W WO 2017020360 A1 WO2017020360 A1 WO 2017020360A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film transistor
signal voltage
node
electrically connected
Prior art date
Application number
PCT/CN2015/087909
Other languages
English (en)
French (fr)
Inventor
蔡玉莹
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/778,615 priority Critical patent/US20170140704A1/en
Publication of WO2017020360A1 publication Critical patent/WO2017020360A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an AMOLED pixel driving circuit and a pixel driving method.
  • OLED Organic Light Emitting Display
  • OLED Organic Light Emitting Display
  • the OLED display device can be divided into two types: passive matrix OLED (PMOLED) and active matrix OLED (AMOLED), namely direct addressing and thin film transistor (Thin Film Transistor, according to the driving method). TFT) matrix addressing two types.
  • the AMOLED has pixels arranged in an array, belongs to an active display type, has high luminous efficiency, and is generally used as a high-definition large-sized display device.
  • the AMOLED is a current driving device. When a current flows through the organic light emitting diode, the organic light emitting diode emits light, and the luminance of the light is determined by the current flowing through the organic light emitting diode itself.
  • Most existing integrated circuits (ICs) only transmit voltage signals, so the pixel driving circuit of AMOLED needs to complete the task of converting a voltage signal into a current signal.
  • the conventional AMOLED pixel driving circuit is usually 2T1C, that is, two thin film transistors plus one capacitor structure, which converts the voltage into current, but the conventional 2T1C pixel driving circuit generally has no compensation function.
  • a conventional 2T1C pixel driving circuit for AMOLED and having a compensation function includes a first thin film transistor T10, a second thin film transistor T20, and a capacitor Cs, the first thin film transistor.
  • T10 is a driving thin film transistor
  • the second thin film transistor T20 is a switching thin film transistor
  • the capacitor Cs is a storage capacitor.
  • the gate of the second thin film transistor T20 is electrically connected to the scan signal voltage Vsel
  • the source is electrically connected to the data signal voltage VData
  • the drain and the gate of the first thin film transistor T10 and one end of the capacitor Cs are electrically connected.
  • the source of the first thin film transistor T10 is electrically connected to the power supply voltage Vdd, the drain is electrically connected to the anode of the organic light emitting diode D; the cathode of the organic light emitting diode D is electrically connected to the ground; the capacitance Cs One end is electrically connected to the drain of the second thin film transistor T20, and the other end is electrically connected to the source of the first thin film transistor T10.
  • FIG. 2 is a potential diagram of each working phase and key nodes corresponding to the circuit of FIG. It can be seen from FIG. 2 that the operation process of the 2T1C pixel driving circuit shown in FIG. 1 is divided into four stages, as follows: 1.
  • the reset stage S10 the scanning signal voltage Vsel provides a high potential, and the second thin film transistor T20 is controlled to be turned on.
  • Threshold voltage detection phase S20 the scan signal voltage Vsel provides a high potential, controls the second thin film transistor T20 to be turned on, and the data signal voltage VData passes.
  • the power supply voltage Vdd provides a high potential
  • Vth is the first thin film transistor T10.
  • Threshold voltage; third, threshold voltage compensation stage S30 the scan signal voltage Vsel provides a high potential, control the second thin film transistor T20 to open, the data signal voltage VData through the second thin film transistor T20 to the gate of the first thin film transistor T10 and
  • the scan signal voltage Vsel provides a low potential
  • the threshold voltage of the thin film transistor is compensated.
  • the 2T1C pixel driving circuit shown in FIG. 1 has a disadvantage that the AC power supply voltage Vdd signal is complicated.
  • An object of the present invention is to provide an AMOLED pixel driving circuit capable of effectively compensating for a threshold voltage variation of a driving thin film transistor and reducing the complexity of a power supply voltage signal.
  • Another object of the present invention is to provide an AMOLED pixel driving method capable of effectively compensating for a threshold voltage variation of a driving thin film transistor and solving the problem of complicated power supply voltage signals.
  • an AMOLED pixel driving circuit including: a first thin film transistor, a second thin film transistor, a third thin film crystal, a storage capacitor, and an organic light emitting diode;
  • the gate of the first thin film transistor is electrically connected to the first node, the source is electrically connected to the second node, and the drain is electrically connected to the power supply voltage;
  • the gate of the second thin film transistor is electrically connected to the first scan signal voltage, the source is electrically connected to the data signal voltage, and the drain is electrically connected to the first node;
  • the gate of the third thin film transistor is electrically connected to the second scan signal voltage, the source is electrically connected to the data signal voltage, and the drain is electrically connected to the second node;
  • One end of the storage capacitor is electrically connected to the first node, and the other end is electrically connected to the second node;
  • the anode of the organic light emitting diode is electrically connected to the second node, and the cathode is electrically connected to the ground end;
  • the first thin film transistor is a driving thin film transistor
  • the power supply voltage Vdd is a constant high voltage.
  • the first thin film transistor, the second thin film transistor, and the third thin film transistor are all low temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, or amorphous silicon thin film transistors.
  • the first scan signal voltage, the second scan signal voltage, and the data signal voltage are all generated by an external timing controller.
  • the combination of the first scan signal voltage, the second scan signal voltage, and the data signal voltage sequentially corresponds to a reset phase, a threshold voltage detection phase, a threshold voltage compensation phase, and an illumination phase.
  • the first scan signal voltage V and the second scan signal voltage are at a high potential, and the data signal voltage is an initial low potential;
  • the first scan signal voltage is a high potential
  • the second scan signal voltage is a low potential
  • the data signal voltage is a reference high potential
  • the first scan signal voltage is a high potential
  • the second scan signal voltage is a low potential
  • the data signal voltage is a display data signal high potential
  • the first scan signal voltage and the second scan signal voltage are at a low potential, and the data signal voltage is a reference high potential.
  • the display data signal has a high potential higher than a reference high potential.
  • the invention also provides an AMOLED pixel driving method, comprising the following steps:
  • Step 1 providing an AMOLED pixel driving circuit, comprising: a first thin film transistor, a second thin film transistor, a third thin film transistor, a storage capacitor, and an organic light emitting diode;
  • the gate of the first thin film transistor is electrically connected to the first node, the source is electrically connected to the second node, and the drain is electrically connected to the power supply voltage;
  • the gate of the second thin film transistor is electrically connected to the first scan signal voltage, and the source is electrically Connected to the data signal voltage, the drain is electrically connected to the first node;
  • the gate of the third thin film transistor is electrically connected to the second scan signal voltage, the source is electrically connected to the data signal voltage, and the drain is electrically connected to the second node;
  • One end of the storage capacitor is electrically connected to the first node, and the other end is electrically connected to the second node;
  • the anode of the organic light emitting diode is electrically connected to the second node, and the cathode is electrically connected to the ground end;
  • the first thin film transistor is a driving thin film transistor
  • the power supply voltage is a constant high voltage
  • Step 2 enter the reset phase
  • the first scan signal voltage and the second scan signal voltage provide a high potential, the second and third thin film transistors are turned on, the data signal voltage provides an initial low potential, and is written first through the second and third thin film transistors, respectively.
  • the node is the gate of the first thin film transistor and the second node, that is, the source of the first thin film transistor, and the first thin film transistor is turned off;
  • Step 3 Enter a threshold voltage detection phase
  • the first scan signal voltage provides a high potential
  • the second scan signal voltage provides a low potential
  • the second thin film transistor is turned on
  • the third thin film transistor is turned off
  • the data signal voltage passes through the second thin film transistor to the first node, that is, the first
  • the gate of the thin film transistor provides a reference high potential
  • the first thin film transistor is turned on
  • the potential of the second node that is, the source of the first thin film transistor is raised to Vref-Vth, where Vth is the threshold voltage of the first thin film transistor;
  • Step 4 Enter a threshold voltage compensation phase
  • the first scan signal voltage provides a high potential
  • the second scan signal voltage provides a low potential
  • the second thin film transistor is turned on
  • the third thin film transistor is turned off
  • the data signal voltage passes through the second thin film transistor to the first node, that is, the first
  • the gate of the thin film transistor and the storage capacitor provide a high potential of the display data signal
  • the first thin film transistor is turned on
  • the potential of the second node that is, the source of the first thin film transistor is changed to Vref-Vth+ ⁇ V
  • ⁇ V is a high potential pair of the display data signal.
  • Step 5 entering a driving illumination phase; the data signal voltage provides a reference high potential, the first scan signal voltage and the second scan signal voltage provide a low potential, and the second and third thin film transistors are turned off due to the storage capacitor
  • the storage function, the first node, that is, the gate potential of the first thin film transistor can still remain at the display data signal high potential, so that the first thin film transistor is in an open state; the potential of the second node is the first thin film transistor
  • the source potential is still Vref-Vth+ ⁇ V;
  • the organic light emitting diode emits light, and the current flowing through the organic light emitting diode is first
  • the threshold voltage of the thin film transistor is independent.
  • the first thin film transistor, the second thin film transistor, and the third thin film transistor are all low temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, or amorphous silicon thin film transistors.
  • the first scan signal voltage, the second scan signal voltage, and the data signal voltage are all generated by an external timing controller.
  • the display data signal has a high potential higher than a reference high potential.
  • the invention also provides an AMOLED pixel driving method, comprising the following steps:
  • Step 1 providing an AMOLED pixel driving circuit, comprising: a first thin film transistor, a second thin film transistor, a third thin film transistor, a storage capacitor, and an organic light emitting diode;
  • the gate of the first thin film transistor is electrically connected to the first node, the source is electrically connected to the second node, and the drain is electrically connected to the power supply voltage;
  • the gate of the second thin film transistor is electrically connected to the first scan signal voltage, the source is electrically connected to the data signal voltage, and the drain is electrically connected to the first node;
  • the gate of the third thin film transistor is electrically connected to the second scan signal voltage, the source is electrically connected to the data signal voltage, and the drain is electrically connected to the second node;
  • One end of the storage capacitor is electrically connected to the first node, and the other end is electrically connected to the second node;
  • the anode of the organic light emitting diode is electrically connected to the second node, and the cathode is electrically connected to the ground end;
  • the first thin film transistor is a driving thin film transistor
  • the power supply voltage is a constant high voltage
  • Step 2 enter the reset phase
  • the first scan signal voltage and the second scan signal voltage provide a high potential, the second and third thin film transistors are turned on, the data signal voltage provides an initial low potential, and is written first through the second and third thin film transistors, respectively.
  • the node is the gate of the first thin film transistor and the second node, that is, the source of the first thin film transistor, and the first thin film transistor is turned off;
  • Step 3 Enter a threshold voltage detection phase
  • the first scan signal voltage provides a high potential
  • the second scan signal voltage provides a low potential
  • the second thin film transistor is turned on
  • the third thin film transistor is turned off
  • the data signal voltage passes through the second thin film transistor to the first node, that is, the first
  • the gate of the thin film transistor provides a reference high potential
  • the first thin film transistor is turned on
  • the potential of the second node that is, the source of the first thin film transistor is raised to Vref-Vth, where Vth is the threshold voltage of the first thin film transistor;
  • Step 4 Enter a threshold voltage compensation phase
  • the first scan signal voltage provides a high potential
  • the second scan signal voltage provides a low potential
  • the second thin film transistor is turned on
  • the third thin film transistor is turned off
  • the data signal voltage is supplied to the first node, that is, the gate of the first thin film transistor and the storage capacitor, to provide a display data signal high potential through the second thin film transistor, and the first thin film transistor is turned on.
  • the second node that is, the potential of the source of the first thin film transistor becomes Vref-Vth+ ⁇ V, and ⁇ V is the influence of the display data signal high potential on the source potential of the first thin film transistor, that is, the potential of the second node. ;
  • Step 5 entering a driving illumination phase; the data signal voltage provides a reference high potential, the first scan signal voltage and the second scan signal voltage provide a low potential, and the second and third thin film transistors are turned off due to the storage capacitor
  • the storage function, the first node, that is, the gate potential of the first thin film transistor can still remain at the display data signal high potential, so that the first thin film transistor is in an open state; the potential of the second node is the first thin film transistor
  • the source potential is still Vref-Vth+ ⁇ V;
  • the organic light emitting diode emits light, and a current flowing through the organic light emitting diode is independent of a threshold voltage of the first thin film transistor;
  • the first thin film transistor, the second thin film transistor, and the third thin film transistor are low temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, or amorphous silicon thin film transistors;
  • the first scan signal voltage, the second scan signal voltage, and the data signal voltage are all generated by an external timing controller
  • the display data signal high potential is higher than the reference high potential.
  • An AMOLED pixel driving circuit and a pixel driving method provided by the present invention use a pixel driving circuit of a 3T1C structure to compensate a threshold voltage of a driving thin film transistor in each pixel, which can effectively compensate for driving in each pixel.
  • the threshold voltage of the thin film transistor is changed to make the display brightness of the AMOLED uniform, and the display quality is improved.
  • the third thin film transistor provides the initial low potential of the data signal voltage to the source of the driving thin film transistor in the reset phase. The complexity of the power supply voltage signal can be reduced.
  • FIG. 1 is a circuit diagram of a conventional 2T1C pixel driving circuit for an AMOLED
  • FIG. 2 is a potential diagram corresponding to each working phase and key node of the 2T1C pixel driving circuit for AMOLED shown in FIG. 1;
  • FIG. 3 is a circuit diagram of an AMOLED pixel driving circuit of the present invention.
  • FIG. 4 is a timing diagram of an AMOLED pixel driving circuit of the present invention.
  • FIG. 5 is a potential diagram of each working phase and key nodes of the AMOLED pixel driving circuit of the present invention.
  • FIG. 6 is a schematic diagram of step 2 of the AMOLED pixel driving method of the present invention.
  • step 3 of the AMOLED pixel driving method of the present invention is a schematic diagram of step 3 of the AMOLED pixel driving method of the present invention.
  • FIG. 8 is a schematic diagram of step 4 of the AMOLED pixel driving method of the present invention.
  • step 5 of the AMOLED pixel driving method of the present invention is a schematic diagram of step 5 of the AMOLED pixel driving method of the present invention.
  • FIG. 10 is a current simulation data diagram of a corresponding OLED flowing through a OLED when a threshold voltage of a driving thin film transistor is shifted in a conventional uncompensated 2T1C pixel driving circuit;
  • FIG. 11 is a diagram showing current simulation data flowing through the OLED when the threshold voltage of the driving thin film transistor is shifted according to the present invention.
  • the present invention first provides an AMOLED pixel driving circuit, comprising: a first thin film transistor T1, a second thin film transistor T2, a third thin film transistor T3, a storage capacitor Cs, and an organic light emitting diode OLED.
  • the gate of the first thin film transistor T1 is electrically connected to the first node a, the source is electrically connected to the second node b, and the drain is electrically connected to the power supply voltage Vdd;
  • the gate of the second thin film transistor T2 is electrically connected to the first scan signal voltage Vsel1, the source is electrically connected to the data signal voltage VData, and the drain is electrically connected to the first node a;
  • the gate of the third thin film transistor T3 is electrically connected to the second scan signal voltage Vsel2, the source is electrically connected to the data signal voltage VData, and the drain is electrically connected to the second node b;
  • One end of the storage capacitor Cs is electrically connected to the first node a, and the other end is electrically connected to the second node b;
  • the anode of the OLED is electrically connected to the second node b, and the cathode is electrically connected to the ground.
  • the first thin film transistor T1 is a driving thin film transistor.
  • the first thin film transistor T1, the second thin film transistor T2, and the third thin film transistor T3 are low temperature polysilicon thin film transistors, oxide semiconductor thin film transistors, or amorphous silicon. Thin film transistor.
  • the first scan signal voltage Vsel1, the second scan signal voltage Vsel2, and the data signal voltage VData are all generated by an external timing controller.
  • the power supply voltage Vdd is a constant high voltage
  • the first scan signal voltage Vsel1, the second scan signal voltage Vsel2, and the data signal voltage VData are sequentially combined with the reset phase.
  • S1 a threshold voltage detection phase S2, a threshold voltage compensation phase S3, and an emission phase S4.
  • the first scan signal voltage Vsel1 and the second scan signal voltage Vsel2 are at a high potential, and the data signal voltage VData is at an initial low potential Vini.
  • the first scan signal voltage Vsel1 is at a high potential
  • the second scan signal voltage Vsel2 is at a low potential
  • the data signal voltage VData is a reference high potential Vref.
  • the first scan signal voltage Vsel1 is at a high potential
  • the second scan signal voltage Vsel2 is at a low potential
  • the data signal voltage VData is a display data signal high potential Vdata.
  • the first scan signal voltage Vsel1 and the second scan signal voltage Vsel2 are at a low potential, and the data signal voltage VData is a reference high potential Vref.
  • the first scan signal voltage Vsel1 is used to control the opening and closing of the second thin film transistor T2; the storage capacitor Cs is used to store the data signal voltage VData; and the second scan signal voltage Vsel2 is used to control the third
  • the opening and closing of the thin film transistor T3 realizes providing the initial low voltage Vini to the source of the second node b, that is, the first thin film transistor T1, in the reset phase S1.
  • the display data signal high potential Vdata is higher than the reference high potential Vref.
  • the AMOLED pixel driving circuit can reduce the complexity of the power voltage signal, effectively compensate the threshold voltage variation of the first thin film transistor T1, that is, the driving thin film transistor in each pixel, so that the display brightness of the AMOLED is relatively uniform, and the display quality is improved.
  • the present invention further provides an AMOLED pixel driving method, comprising the following steps:
  • Step 1 An AMOLED pixel driving circuit using the 3T1C structure as shown in FIG. 3 is provided, wherein the power supply voltage Vdd is always a constant high voltage.
  • Step 2 Referring to FIG. 6, and referring to FIG. 4 and FIG. 5, the reset phase S1 is first entered.
  • the first scan signal voltage Vsel1 and the second scan signal voltage Vsel2 provide a high potential
  • the second and third thin film transistors T2 and T3 are turned on
  • the data signal voltage VData provides an initial low potential Vini and passes through the second and the second respectively.
  • the three thin film transistors T2 and T3 are written to the first node a, that is, the gate of the first thin film transistor T1 and the second node b, that is, the source of the first thin film transistor T1.
  • the first thin film transistor T1 is turned off.
  • Vg represents the gate potential of the first thin film transistor T1
  • Va represents the potential of the first node a
  • Vs represents the source potential of the first thin film transistor T1
  • Vb represents the potential of the second node b.
  • the organic light emitting diode OLED does not emit light.
  • Step 3 please refer to FIG. 7, and in conjunction with FIG. 4 and FIG. 5, enter the threshold voltage detecting phase S2.
  • the first scan signal voltage Vsel1 provides a high potential
  • the second scan signal voltage Vsel2 provides a low potential
  • the second thin film transistor T2 is turned on
  • the third thin film transistor T3 is turned off
  • the data signal voltage VData is passed through the second thin film transistor T2.
  • the first node a that is, the gate of the first thin film transistor T1
  • the first thin film transistor T1 is turned on
  • the potential of the second node b that is, the source of the first thin film transistor T1 is raised to Vref-Vth, wherein Vth is the threshold voltage of the first thin film transistor T1.
  • Step 4 please refer to FIG. 8, and in conjunction with FIG. 4 and FIG. 5, enter the threshold voltage compensation phase S3.
  • the first scan signal voltage Vsel1 provides a high potential
  • the second scan signal voltage Vsel2 provides a low potential
  • the second thin film transistor T2 is turned on
  • the third thin film transistor T3 is turned off
  • the data signal voltage VData is passed through the second thin film transistor T2.
  • the first node a that is, the gate of the first thin film transistor T1 and the storage capacitor Cs provide the display data signal high potential Vdata
  • the first thin film transistor T1 is turned on
  • the potential of the second node b that is, the source of the first thin film transistor T1 becomes Vref - Vth + ⁇ V
  • ⁇ V is an influence of the display data signal high potential Vdata on the source potential of the first thin film transistor T1, that is, the potential of the second node b.
  • Step 5 Referring to FIG. 9, and in conjunction with FIG. 4 and FIG. 5, the driving illumination phase S4 is entered.
  • the data signal voltage VData provides a reference high potential Vref
  • the first scan signal voltage Vsel1 and the second scan signal voltage Vsel2 provide a low potential
  • the second and third thin film transistors T2, T3 are turned off due to the storage capacitor Cs
  • the storage function, the first thin film transistor T1 is in an open state, and the gate potential of the first node a, that is, the first thin film transistor T1, can still remain at:
  • the potential of the second node b, that is, the source potential of the first thin film transistor T1 is still:
  • I OLED 1/2Cox( ⁇ W/L)(Vgs-Vth) 2 (1)
  • I OLED is the current of the organic light emitting diode OLED
  • is the carrier mobility of the driving thin film transistor
  • W and L are the width and length of the channel of the driving thin film transistor, respectively
  • Vgs is the gate and source of the driving thin film transistor.
  • the voltage between them and Vth is the threshold voltage of the driving thin film transistor.
  • the threshold voltage Vth of the driving thin film transistor is the threshold voltage Vth of the first thin film transistor T1
  • Vgs is the difference between the gate voltage Vg of the first thin film transistor T1 and the source voltage Vs.
  • I OLED 1/2Cox( ⁇ W/L)(Vdata-Vref+Vth- ⁇ V-Vth) 2
  • the current I OLED flowing through the organic light emitting diode OLED is independent of the threshold voltage of the first thin film transistor T1, and the compensation function is realized.
  • the organic light emitting diode OLED emits light, and the current I OLED flowing through the organic light emitting diode OLED is independent of the threshold voltage of the first thin film transistor T1.
  • the power supply voltage Vdd is always a constant high voltage, the power supply voltage signal is simplified and the complexity is greatly reduced compared with the prior art.
  • the threshold voltages of the driving thin film transistor that is, the first thin film transistor T1 are respectively shifted by 0V, +0.5V, and - in the circuit of the conventional uncompensated 2T1C pixel driving circuit and the circuit of the present invention.
  • the current simulation data of the organic light-emitting diode is compared.
  • the current flowing through the organic light-emitting diode in the circuit of the present invention is significantly smaller than that of the conventional uncompensated 2T1C pixel driving circuit flowing through the organic light-emitting diode.
  • the present invention effectively compensates for the threshold voltage of the driving thin film transistor, ensures the light-emitting stability of the organic light-emitting diode OLED, and can make the display brightness of the AMOLED uniform and improve the display quality.
  • the AMOLED pixel driving circuit and the pixel driving method of the present invention use the pixel driving circuit of the 3T1C structure to compensate the threshold voltage of the driving thin film transistor in each pixel, which can effectively compensate the threshold of the driving thin film transistor in each pixel.
  • the voltage change makes the display brightness of the AMOLED more uniform and improves the display quality;
  • the third thin film transistor provides the data signal to the source of the driving thin film transistor in the reset phase by introducing the second scan signal voltage.
  • the initial low voltage of the voltage can reduce the complexity of the power supply voltage signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

一种AMOLED像素驱动电路及像素驱动方法。该AMOLED像素驱动电路采用3T1C结构,包括:第一薄膜晶体管(T1)、第二薄膜晶体管(T2)、第三薄膜晶体管(T3)、存储电容(Cs)、及有机发光二极管(OLED),并引入第二扫描信号电压(Vsel2),通过第三薄膜晶体管(T3)在复位阶段(S1)向第一薄膜晶体管(T1)即驱动薄膜晶体管(T1)的源极提供数据信号电压(VData)的初始低电位(Vini),能够有效补偿驱动薄膜晶体管(T1)的阈值电压(Vth)变化,减小电源电压信号的复杂度。

Description

AMOLED像素驱动电路及像素驱动方法 技术领域
本发明涉及显示技术领域,尤其涉及一种AMOLED像素驱动电路及像素驱动方法。
背景技术
有机发光二极管(Organic Light Emitting Display,OLED)显示装置具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高、近180°视角、使用温度范围宽,可实现柔性显示与大面积全色显示等诸多优点,被业界公认为是最有发展潜力的显示装置。
OLED显示装置按照驱动方式可以分为无源矩阵型OLED(Passive Matrix OLED,PMOLED)和有源矩阵型OLED(Active Matrix OLED,AMOLED)两大类,即直接寻址和薄膜晶体管(Thin Film Transistor,TFT)矩阵寻址两类。其中,AMOLED具有呈阵列式排布的像素,属于主动显示类型,发光效能高,通常用作高清晰度的大尺寸显示装置。
AMOLED是电流驱动器件,当有电流流过有机发光二极管时,有机发光二极管发光,且发光亮度由流过有机发光二极管自身的电流决定。大部分已有的集成电路(Integrated Circuit,IC)都只传输电压信号,故AMOLED的像素驱动电路需要完成将电压信号转变为电流信号的任务。传统的AMOLED像素驱动电路通常为2T1C,即两个薄膜晶体管加一个电容的结构,将电压变换为电流,但传统2T1C像素驱动电路一般无补偿功能。
如图1所述,一种现有的用于AMOLED并具有补偿功能的2T1C像素驱动电路,包括一第一薄膜晶体管T10、一第二薄膜晶体管T20、及一电容Cs,所述第一薄膜晶体管T10为驱动薄膜晶体管,所述第二薄膜晶体管T20为开关薄膜晶体管,所述电容Cs为存储电容。具体地,所述第二薄膜晶体管T20的栅极电性连接扫描信号电压Vsel,源极电性连接数据信号电压VData,漏极与第一薄膜晶体管T10的栅极、及电容Cs的一端电性连接;所述第一薄膜晶体管T10的源极电性连接电源电压Vdd,漏极电性连接有机发光二级管D的阳极;有机发光二级管D的阴极电性连接接地端;电容Cs的一端电性连接第二薄膜晶体管T20的漏极,另一端电性连接第一薄膜晶体管T10的源极。
请参阅图2,图2为图1电路对应的各工作阶段及关键节点的电位图, 由图2可知,图1所示的2T1C像素驱动电路的工作过程分为四个阶段,具体如下:一、复位阶段S10:所述扫描信号电压Vsel提供高电位,控制第二薄膜晶体管T20打开,数据信号电压VData经过第二薄膜晶体管T20向第一薄膜晶体管T10的栅极提供第一参考电压Vref1,即第一薄膜晶体管T10的栅极电压Va=Vref1,第一薄膜晶体管T10打开,交流电源电压Vdd提供低电位Vdl,则第一薄膜晶体管的源极电压Vb=Vdl;二、阈值电压检测阶段S20:所述扫描信号电压Vsel提供高电位,控制第二薄膜晶体管T20打开,数据信号电压VData经过第二薄膜晶体管T20向第一薄膜晶体管T10的栅极提供第二参考电压Vref2,且Vref2<Vref1,即第一薄膜晶体管T10的栅极电压Va=Vref2,第一栅极薄膜晶体管T10打开,交流电源电压Vdd提供高电位,第一薄膜晶体管的源极电压Vb提升至Vb=Vref2-Vth,Vth为第一薄膜晶体管T10的阈值电压;三、阈值电压补偿阶段S30:所述扫描信号电压Vsel提供高电位,控制第二薄膜晶体管T20打开,数据信号电压VData经过第二薄膜晶体管T20向第一薄膜晶体管T10的栅极及电容Cs提供显示数据信号电压Vdata,即第一薄膜晶体管T10的栅极电压Va=Vdata,第一栅极薄膜晶体管T10打开,交流电源电压Vdd提供高电位,第一薄膜晶体管的源极电压Vb改变至Vb=Vref2-Vth+ΔV,ΔV为数据信号电压Vdata对所述第一薄膜晶体管T10的源极电压所产生的影响;四、发光阶段S40,所述扫描信号电压Vsel提供低电位,第二薄膜晶体管T20关断,由于电容Cs的存储作用,第二薄膜晶体管T20的栅极电压仍可继续保持数据信号电压Va=Vdata,使得第一薄膜晶体管T10处于导通状态,第一薄膜晶体管T10的源极电压为Vb=Vref2-Vth+ΔV,第一薄膜晶体管T10的栅源极电压Vgs=Va-Vb=Vdata-Vref2+Vth-ΔV,即可补偿驱动薄膜晶体管的阈值电压。然而,如图1所示的2T1C像素驱动电路存在交流电源电压Vdd信号复杂的缺点。
发明内容
本发明的目的在于提供一种AMOLED像素驱动电路,能够有效补偿驱动薄膜晶体管的阈值电压变化,减小电源电压信号的复杂度。
本发明的目的还在于提供一种AMOLED像素驱动方法,能够有效补偿驱动薄膜晶体管的阈值电压变化,解决电源电压信号复杂的问题。
为实现上述目的,本发明提供了一种AMOLED像素驱动电路,包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶、存储电容、及有机发光二极管;
所述第一薄膜晶体管的栅极电性连接于第一节点,源极电性连接于第二节点,漏极电性连接于电源电压;
所述第二薄膜晶体管的栅极电性连接于第一扫描信号电压,源极电性连接于数据信号电压,漏极电性连接于第一节点;
所述第三薄膜晶体管的栅极电性连接于第二扫描信号电压,源极电性连接于数据信号电压,漏极电性连接于第二节点;
所述存储电容的一端电性连接于第一节点,另一端电性连接于第二节点;
所述有机发光二极管的阳极电性连接于第二节点,阴极电性连接于接地端;
所述第一薄膜晶体管为驱动薄膜晶体管;
所述电源电压Vdd为一恒定高电压。
所述第一薄膜晶体管、第二薄膜晶体管、及第三薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
所述第一扫描信号电压、第二扫描信号电压、及数据信号电压均通过外部时序控制器产生。
所述第一扫描信号电压、第二扫描信号电压、与数据信号电压相组合先后对应于复位阶段、阈值电压检测阶段、阈值电压补偿阶段、及发光阶段。
在所述复位阶段,所述第一扫描信号电压V、与第二扫描信号电压为高电位,数据信号电压为初始低电位;
在所述阈值电压检测阶段,所述第一扫描信号电压为高电位,第二扫描信号电压为低电位,数据信号电压为参考高电位;
在所述阈值电压补偿阶段,所述第一扫描信号电压为高电位,第二扫描信号电压为低电位,数据信号电压为显示数据信号高电位;
在所述驱动发光阶段,所述第一扫描信号电压、与第二扫描信号电压为低电位,数据信号电压为参考高电位。所述显示数据信号高电位高于参考高电位。
本发明还提供一种AMOLED像素驱动方法,包括如下步骤:
步骤1、提供一AMOLED像素驱动电路,包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、存储电容、及有机发光二极管;
所述第一薄膜晶体管的栅极电性连接于第一节点,源极电性连接于第二节点,漏极电性连接于电源电压;
所述第二薄膜晶体管的栅极电性连接于第一扫描信号电压,源极电性 连接于数据信号电压,漏极电性连接于第一节点;
所述第三薄膜晶体管的栅极电性连接于第二扫描信号电压,源极电性连接于数据信号电压,漏极电性连接于第二节点;
所述存储电容的一端电性连接于第一节点,另一端电性连接于第二节点;
所述有机发光二极管的阳极电性连接于第二节点,阴极电性连接于接地端;
所述第一薄膜晶体管为驱动薄膜晶体管;
所述电源电压为一恒定高电压;
步骤2、进入复位阶段,
所述第一扫描信号电压、与第二扫描信号电压提供高电位,所述第二、第三薄膜晶体管打开,数据信号电压提供初始低电位并分别通过第二、第三薄膜晶体管写入第一节点即第一薄膜晶体管的栅极与第二节点即第一薄膜晶体管的源极,第一薄膜晶体管关断;
步骤3、进入阈值电压检测阶段;
所述第一扫描信号电压提供高电位,第二扫描信号电压提供低电位,所述第二薄膜晶体管打开,第三薄膜晶体管关断,数据信号电压经过第二薄膜晶体管向第一节点即第一薄膜晶体管的栅极提供参考高电位,所述第一薄膜晶体管打开,第二节点即第一薄膜晶体管的源极的电位提升至Vref-Vth,其中Vth为第一薄膜晶体管的阈值电压;
步骤4、进入阈值电压补偿阶段;
所述第一扫描信号电压提供高电位,第二扫描信号电压提供低电位,所述第二薄膜晶体管打开,第三薄膜晶体管关断,数据信号电压经过第二薄膜晶体管向第一节点即第一薄膜晶体管的栅极以及存储电容提供显示数据信号高电位,第一薄膜晶体管打开,第二节点即第一薄膜晶体管的源极的电位变为Vref-Vth+ΔV,ΔV为显示数据信号高电位对所述第一薄膜晶体管的源极电位即第二节点的电位所产生的影响;
步骤5、进入驱动发光阶段;所述数据信号电压提供参考高电位,所述第一扫描信号电压、与第二扫描信号电压提供低电位,所述第二、第三薄膜晶体管关闭,由于存储电容的存储作用,第一节点即第一薄膜晶体管的栅极电位仍可继续保持在显示数据信号高电位,使得第一薄膜晶体管处于打开状态;所述第二节点的电位即所述第一薄膜晶体管的源极电位仍为Vref-Vth+ΔV;
所述有机发光二极管发光,且流经所述有机发光二极管的电流与第一 薄膜晶体管的阈值电压无关。
所述第一薄膜晶体管、第二薄膜晶体管、及第三薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
所述第一扫描信号电压、第二扫描信号电压、及数据信号电压均通过外部时序控制器产生。
所述显示数据信号高电位高于参考高电位。
本发明还提供一种AMOLED像素驱动方法,包括如下步骤:
步骤1、提供一AMOLED像素驱动电路,包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、存储电容、及有机发光二极管;
所述第一薄膜晶体管的栅极电性连接于第一节点,源极电性连接于第二节点,漏极电性连接于电源电压;
所述第二薄膜晶体管的栅极电性连接于第一扫描信号电压,源极电性连接于数据信号电压,漏极电性连接于第一节点;
所述第三薄膜晶体管的栅极电性连接于第二扫描信号电压,源极电性连接于数据信号电压,漏极电性连接于第二节点;
所述存储电容的一端电性连接于第一节点,另一端电性连接于第二节点;
所述有机发光二极管的阳极电性连接于第二节点,阴极电性连接于接地端;
所述第一薄膜晶体管为驱动薄膜晶体管;
所述电源电压为一恒定高电压;
步骤2、进入复位阶段,
所述第一扫描信号电压、与第二扫描信号电压提供高电位,所述第二、第三薄膜晶体管打开,数据信号电压提供初始低电位并分别通过第二、第三薄膜晶体管写入第一节点即第一薄膜晶体管的栅极与第二节点即第一薄膜晶体管的源极,第一薄膜晶体管关断;
步骤3、进入阈值电压检测阶段;
所述第一扫描信号电压提供高电位,第二扫描信号电压提供低电位,所述第二薄膜晶体管打开,第三薄膜晶体管关断,数据信号电压经过第二薄膜晶体管向第一节点即第一薄膜晶体管的栅极提供参考高电位,所述第一薄膜晶体管打开,第二节点即第一薄膜晶体管的源极的电位提升至Vref-Vth,其中Vth为第一薄膜晶体管的阈值电压;
步骤4、进入阈值电压补偿阶段;
所述第一扫描信号电压提供高电位,第二扫描信号电压提供低电位, 所述第二薄膜晶体管打开,第三薄膜晶体管关断,数据信号电压经过第二薄膜晶体管向第一节点即第一薄膜晶体管的栅极以及存储电容提供显示数据信号高电位,第一薄膜晶体管打开,第二节点即第一薄膜晶体管的源极的电位变为Vref-Vth+ΔV,ΔV为显示数据信号高电位对所述第一薄膜晶体管的源极电位即第二节点的电位所产生的影响;
步骤5、进入驱动发光阶段;所述数据信号电压提供参考高电位,所述第一扫描信号电压、与第二扫描信号电压提供低电位,所述第二、第三薄膜晶体管关闭,由于存储电容的存储作用,第一节点即第一薄膜晶体管的栅极电位仍可继续保持在显示数据信号高电位,使得第一薄膜晶体管处于打开状态;所述第二节点的电位即所述第一薄膜晶体管的源极电位仍为Vref-Vth+ΔV;
所述有机发光二极管发光,且流经所述有机发光二极管的电流与第一薄膜晶体管的阈值电压无关;
其中,所述第一薄膜晶体管、第二薄膜晶体管、及第三薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管;
其中,所述第一扫描信号电压、第二扫描信号电压、及数据信号电压均通过外部时序控制器产生;
其中,所述显示数据信号高电位高于参考高电位。
本发明的有益效果:本发明供的一种AMOLED像素驱动电路及像素驱动方法,采用3T1C结构的像素驱动电路对每一像素中驱动薄膜晶体管的阈值电压进行补偿,能够有效补偿每一像素中驱动薄膜晶体管的阈值电压变化,使AMOLED的显示亮度较均匀,提升显示品质;通过引入第二扫描信号电压使得第三薄膜晶体管在复位阶段向驱动薄膜晶体管的源极提供数据信号电压的初始低电位,能够减小电源电压信号的复杂度。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为一种现有的用于AMOLED的2T1C像素驱动电路的电路图;
图2为对应图1所示用于AMOLED的2T1C像素驱动电路的各工作阶段及关键节点的电位图;
图3为本发明的AMOLED像素驱动电路的电路图;
图4为本发明的AMOLED像素驱动电路的时序图;
图5为本发明的AMOLED像素驱动电路的各工作阶段及关键节点的电位图;
图6为本发明的AMOLED像素驱动方法的步骤2的示意图;
图7为本发明的AMOLED像素驱动方法的步骤3的示意图;
图8为本发明的AMOLED像素驱动方法的步骤4的示意图;
图9为本发明的AMOLED像素驱动方法的步骤5的示意图;
图10为传统无补偿2T1C像素驱动电路中驱动薄膜晶体管的阈值电压漂移时对应的流经OLED的电流模拟数据图;
图11为本发明中驱动薄膜晶体管的阈值电压漂移时对应的流经OLED的电流模拟数据图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图3,本发明首先提供一种AMOLED像素驱动电路,包括:第一薄膜晶体管T1、第二薄膜晶体管T2、第三薄膜晶体管T3、存储电容Cs、及有机发光二极管OLED。
所述第一薄膜晶体管T1的栅极电性连接于第一节点a,源极电性连接于第二节点b,漏极电性连接于电源电压Vdd;
所述第二薄膜晶体管T2的栅极电性连接于第一扫描信号电压Vsel1,源极电性连接于数据信号电压VData,漏极电性连接于第一节点a;
所述第三薄膜晶体管T3的栅极电性连接于第二扫描信号电压Vsel2,源极电性连接于数据信号电压VData,漏极电性连接于第二节点b;
所述存储电容Cs的一端电性连接于第一节点a,另一端电性连接于第二节点b;
所述有机发光二极管OLED的阳极电性连接于第二节点b,阴极电性连接于接地端。
所述第一薄膜晶体管T1为驱动薄膜晶体管。
具体地,所述第一薄膜晶体管T1、第二薄膜晶体管T2、及第三薄膜晶体管T3均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅 薄膜晶体管。
所述第一扫描信号电压Vsel1、第二扫描信号电压Vsel2、及数据信号电压VData均通过外部时序控制器产生。
进一步地,请参阅图4与图5,所述电源电压Vdd为一恒定高电压,所述第一扫描信号电压Vsel1、第二扫描信号电压Vsel2、与数据信号电压VData相组合先后对应于复位阶段S1、阈值电压检测阶段S2、阈值电压补偿阶段S3、及发光阶段S4。
在所述复位阶段S1,所述第一扫描信号电压Vsel1、与第二扫描信号电压Vsel2为高电位,数据信号电压VData为初始低电位Vini。
在所述阈值电压检测阶段S2,所述第一扫描信号电压Vsel1为高电位,第二扫描信号电压Vsel2为低电位,数据信号电压VData为参考高电位Vref。
在所述阈值电压补偿阶段S3,所述第一扫描信号电压Vsel1为高电位,第二扫描信号电压Vsel2为低电位,数据信号电压VData为显示数据信号高电位Vdata。
在所述驱动发光阶段S4,所述第一扫描信号电压Vsel1、与第二扫描信号电压Vsel2为低电位,数据信号电压VData为参考高电位Vref。
其中,所述第一扫描信号电压Vsel1用于控制第二薄膜晶体管T2的打开与关断;所述存储电容Cs用于存储数据信号电压VData;所述第二扫描信号电压Vsel2用于控制第三薄膜晶体管T3的打开与关断,实现在复位阶段S1向第二节点b即第一薄膜晶体管T1的源极提供初始低电压Vini。所述显示数据信号高电位Vdata高于参考高电位Vref。
该AMOLED像素驱动电路能够减小电源电压信号的复杂度,有效补偿每一像素中第一薄膜晶体管T1即驱动薄膜晶体管的阈值电压变化,使AMOLED的显示亮度较均匀,提升显示品质。
请参阅图6至图9,结合图4与图5,在上述AMOLED像素驱动电路的基础上,本发明还提供一种AMOLED像素驱动方法,包括如下步骤:
步骤1、提供一上述如图3所示的采用3T1C结构的AMOLED像素驱动电路,其中电源电压Vdd始终为一恒定高电压。
此处不再对该电路进行重复描述。
步骤2、请参阅图6,并结合图4与图5,首先进入复位阶段S1。
所述第一扫描信号电压Vsel1、与第二扫描信号电压Vsel2提供高电位,所述第二、第三薄膜晶体管T2、T3打开,数据信号电压VData提供初始低电位Vini并分别通过第二、第三薄膜晶体管T2、T3写入第一节点a即第一薄膜晶体管T1的栅极与第二节点b即第一薄膜晶体管T1的源极, 第一薄膜晶体管T1关断。
在该复位阶段S1中:
Vg=Va=Vini
Vs=Vb=Vini
其中,Vg表示第一薄膜晶体管T1的栅极电位,Va表示第一节点a的电位,Vs表示第一薄膜晶体管T1的源极电位,Vb表示第二节点b的电位。
有机发光二极管OLED不发光。
步骤3、请参阅图7,并结合图4与图5,进入阈值电压检测阶段S2。
所述第一扫描信号电压Vsel1提供高电位,第二扫描信号电压Vsel2提供低电位,所述第二薄膜晶体管T2打开,第三薄膜晶体管T3关断,数据信号电压VData经过第二薄膜晶体管T2向第一节点a即第一薄膜晶体管T1的栅极提供参考高电位Vref,所述第一薄膜晶体管T1打开,第二节点b即第一薄膜晶体管T1的源极的电位提升至Vref-Vth,其中Vth为第一薄膜晶体管T1的阈值电压。
在该阈值电压检测阶段S2中:
Vg=Va=Vref
Vs=Vb=Vref-Vth
步骤4、请参阅图8,并结合图4与图5,进入阈值电压补偿阶段S3。
所述第一扫描信号电压Vsel1提供高电位,第二扫描信号电压Vsel2提供低电位,所述第二薄膜晶体管T2打开,第三薄膜晶体管T3关断,数据信号电压VData经过第二薄膜晶体管T2向第一节点a即第一薄膜晶体管T1的栅极以及存储电容Cs提供显示数据信号高电位Vdata,第一薄膜晶体管T1打开,第二节点b即第一薄膜晶体管T1的源极的电位变为Vref-Vth+ΔV,ΔV为显示数据信号高电位Vdata对所述第一薄膜晶体管T1的源极电位即第二节点b的电位所产生的影响。
在该阈值电压补偿阶段S3中:
Vg=Va=Vdata
Vs=Vb=Vref-Vth+ΔV
步骤5、请参阅图9、并结合图4与图5,进入驱动发光阶段S4。
所述数据信号电压VData提供参考高电位Vref,所述第一扫描信号电压Vsel1、与第二扫描信号电压Vsel2提供低电位,所述第二、第三薄膜晶体管T2、T3关闭,由于存储电容Cs的存储作用,第一薄膜晶体管T1处于打开状态,第一节点a即第一薄膜晶体管T1的栅极电位仍可继续保持在:
Vg=Va=Vdata;
所述第二节点b的电位即所述第一薄膜晶体管T1的源极电位仍为:
Vs=Vb=Vref-Vth+ΔV;
进一步地,已知计算流经有机发光二极管OLED的电流的公式为:
IOLED=1/2Cox(μW/L)(Vgs-Vth)2  (1)
其中IOLED为有机发光二极管OLED的电流、μ为驱动薄膜晶体管的载流子迁移率、W和L分别为驱动薄膜晶体管的沟道的宽度和长度、Vgs为驱动薄膜晶体管的栅极与源极之间的电压、Vth为驱动薄膜晶体管的阈值电压。在本发明中,驱动薄膜晶体管的阈值电压Vth即为所述第一薄膜晶体管T1的阈值电压Vth;Vgs为所述第一薄膜晶体管T1的栅极电压Vg与源极电压Vs之间的差值,即有:
Vgs=Vg-Vs=Vdata-(Vref-Vth+ΔV)=Vdata-Vref+Vth-ΔV  (2)
将(2)式代入(1)式得:
IOLED=1/2Cox(μW/L)(Vdata-Vref+Vth-ΔV-Vth)2
=1/2Cox(μW/L)(Vdata-Vref-ΔV)2
由此可见,流经所述有机发光二极管OLED的电流IOLED与所述第一薄膜晶体管T1的阈值电压无关,实现了补偿功能。所述有机发光二极管OLED发光,且流经所述有机发光二极管OLED的电流IOLED与第一薄膜晶体管T1的阈值电压无关。
在本发明的AMOLED像素驱动方法中,由于电源电压Vdd始终为一恒定高电压,相比与现有技术,电源电压信号得以简化,复杂度大大降低。
请参阅图10、图11,图10、图11分别为传统无补偿2T1C像素驱动电路与本发明的电路中当驱动薄膜晶体管即第一薄膜晶体管T1的阈值电压分别漂移0V、+0.5V、-0.5V时,流经有机发光二极管的电流模拟数据图,对比两图可见,本发明的电路中流经有机发光二极管的电流变化量明显小于传统无补偿2T1C像素驱动电路中的流经有机发光二极管的电流变化量,因此本发明有效补偿了驱动薄膜晶体管的阈值电压,保证了有机发光二极管OLED的发光稳定性,能够使AMOLED的显示亮度较均匀,提升显示品质。
综上所述,本发明的AMOLED像素驱动电路及像素驱动方法,采用3T1C结构的像素驱动电路对每一像素中驱动薄膜晶体管的阈值电压进行补偿,能够有效补偿每一像素中驱动薄膜晶体管的阈值电压变化,使AMOLED的显示亮度较均匀,提升显示品质;通过引入第二扫描信号电压使得第三薄膜晶体管在复位阶段向驱动薄膜晶体管的源极提供数据信号电 压的初始低电位,能够减小电源电压信号的复杂度。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (10)

  1. 一种AMOLED像素驱动电路,包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、存储电容、及有机发光二极管;
    所述第一薄膜晶体管的栅极电性连接于第一节点,源极电性连接于第二节点,漏极电性连接于电源电压;
    所述第二薄膜晶体管的栅极电性连接于第一扫描信号电压,源极电性连接于数据信号电压,漏极电性连接于第一节点;
    所述第三薄膜晶体管的栅极电性连接于第二扫描信号电压,源极电性连接于数据信号电压,漏极电性连接于第二节点;
    所述存储电容的一端电性连接于第一节点,另一端电性连接于第二节点;
    所述有机发光二极管的阳极电性连接于第二节点,阴极电性连接于接地端;
    所述第一薄膜晶体管为驱动薄膜晶体管;
    所述电源电压为一恒定高电压。
  2. 如权利要求1所述的AMOLED像素驱动电路,其中,所述第一薄膜晶体管、第二薄膜晶体管、及第三薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
  3. 如权利要求1所述的AMOLED像素驱动电路,其中,所述第一扫描信号电压、第二扫描信号电压、及数据信号电压均通过外部时序控制器产生。
  4. 如权利要求1所述的AMOLED像素驱动电路,其中,所述第一扫描信号电压、第二扫描信号电压、与数据信号电压、相组合先后对应于复位阶段、阈值电压检测阶段、阈值电压补偿阶段、及发光阶段;
    在所述复位阶段,所述第一扫描信号电压、与第二扫描信号电压为高电位,数据信号电压为初始低电位;
    在所述阈值电压检测阶段,所述第一扫描信号电压为高电位,第二扫描信号电压为低电位,数据信号电压为参考高电位;
    在所述阈值电压补偿阶段,所述第一扫描信号电压为高电位,第二扫描信号电压为低电位,数据信号电压为显示数据信号高电位;
    在所述驱动发光阶段,所述第一扫描信号电压、与第二扫描信号电压为低电位,数据信号电压为参考高电位。
  5. 如权利要求4所述的AMOLED像素驱动电路,其中,所述显示数据信号高电位高于参考高电位。
  6. 一种AMOLED像素驱动方法,包括如下步骤:
    步骤1、提供一AMOLED像素驱动电路,包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、存储电容、及有机发光二极管;
    所述第一薄膜晶体管的栅极电性连接于第一节点,源极电性连接于第二节点,漏极电性连接于电源电压;
    所述第二薄膜晶体管的栅极电性连接于第一扫描信号电压,源极电性连接于数据信号电压,漏极电性连接于第一节点;
    所述第三薄膜晶体管的栅极电性连接于第二扫描信号电压,源极电性连接于数据信号电压,漏极电性连接于第二节点;
    所述存储电容的一端电性连接于第一节点,另一端电性连接于第二节点;
    所述有机发光二极管的阳极电性连接于第二节点,阴极电性连接于接地端;
    所述第一薄膜晶体管为驱动薄膜晶体管;
    所述电源电压为一恒定高电压;
    步骤2、进入复位阶段,
    所述第一扫描信号电压、与第二扫描信号电压提供高电位,所述第二、第三薄膜晶体管打开,数据信号电压提供初始低电位并分别通过第二、第三薄膜晶体管写入第一节点即第一薄膜晶体管的栅极与第二节点即第一薄膜晶体管的源极,第一薄膜晶体管关断;
    步骤3、进入阈值电压检测阶段;
    所述第一扫描信号电压提供高电位,第二扫描信号电压提供低电位,所述第二薄膜晶体管打开,第三薄膜晶体管关断,数据信号电压经过第二薄膜晶体管向第一节点即第一薄膜晶体管的栅极提供参考高电位,所述第一薄膜晶体管打开,第二节点即第一薄膜晶体管的源极的电位提升至Vref-Vth,其中Vth为第一薄膜晶体管的阈值电压;
    步骤4、进入阈值电压补偿阶段;
    所述第一扫描信号电压提供高电位,第二扫描信号电压提供低电位,所述第二薄膜晶体管打开,第三薄膜晶体管关断,数据信号电压经过第二薄膜晶体管向第一节点即第一薄膜晶体管的栅极以及存储电容提供显示数据信号高电位,第一薄膜晶体管打开,第二节点即第一薄膜晶体管的源极的电位变为Vref-Vth+ΔV,ΔV为显示数据信号高电位对所述第一薄膜晶体 管的源极电位即第二节点的电位所产生的影响;
    步骤5、进入驱动发光阶段;所述数据信号电压提供参考高电位,所述第一扫描信号电压、与第二扫描信号电压提供低电位,所述第二、第三薄膜晶体管关闭,由于存储电容的存储作用,第一节点即第一薄膜晶体管的栅极电位仍可继续保持在显示数据信号高电位,使得第一薄膜晶体管处于打开状态;所述第二节点的电位即所述第一薄膜晶体管的源极电位仍为Vref-Vth+ΔV;
    所述有机发光二极管发光,且流经所述有机发光二极管的电流与第一薄膜晶体管的阈值电压无关。
  7. 如权利要求6所述的AMOLED像素驱动方法,其中,所述第一薄膜晶体管、第二薄膜晶体管、及第三薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管。
  8. 如权利要求6所述的AMOLED像素驱动方法,其中,所述第一扫描信号电压、第二扫描信号电压、及数据信号电压均通过外部时序控制器产生。
  9. 如权利要求6所述的AMOLED像素驱动方法,其中,所述显示数据信号高电位高于参考高电位。
  10. 一种AMOLED像素驱动方法,包括如下步骤:
    步骤1、提供一AMOLED像素驱动电路,包括:第一薄膜晶体管、第二薄膜晶体管、第三薄膜晶体管、存储电容、及有机发光二极管;
    所述第一薄膜晶体管的栅极电性连接于第一节点,源极电性连接于第二节点,漏极电性连接于电源电压;
    所述第二薄膜晶体管的栅极电性连接于第一扫描信号电压,源极电性连接于数据信号电压,漏极电性连接于第一节点;
    所述第三薄膜晶体管的栅极电性连接于第二扫描信号电压,源极电性连接于数据信号电压,漏极电性连接于第二节点;
    所述存储电容的一端电性连接于第一节点,另一端电性连接于第二节点;
    所述有机发光二极管的阳极电性连接于第二节点,阴极电性连接于接地端;
    所述第一薄膜晶体管为驱动薄膜晶体管;
    所述电源电压为一恒定高电压;
    步骤2、进入复位阶段,
    所述第一扫描信号电压、与第二扫描信号电压提供高电位,所述第二、 第三薄膜晶体管打开,数据信号电压提供初始低电位并分别通过第二、第三薄膜晶体管写入第一节点即第一薄膜晶体管的栅极与第二节点即第一薄膜晶体管的源极,第一薄膜晶体管关断;
    步骤3、进入阈值电压检测阶段;
    所述第一扫描信号电压提供高电位,第二扫描信号电压提供低电位,所述第二薄膜晶体管打开,第三薄膜晶体管关断,数据信号电压经过第二薄膜晶体管向第一节点即第一薄膜晶体管的栅极提供参考高电位,所述第一薄膜晶体管打开,第二节点即第一薄膜晶体管的源极的电位提升至Vref-Vth,其中Vth为第一薄膜晶体管的阈值电压;
    步骤4、进入阈值电压补偿阶段;
    所述第一扫描信号电压提供高电位,第二扫描信号电压提供低电位,所述第二薄膜晶体管打开,第三薄膜晶体管关断,数据信号电压经过第二薄膜晶体管向第一节点即第一薄膜晶体管的栅极以及存储电容提供显示数据信号高电位,第一薄膜晶体管打开,第二节点即第一薄膜晶体管的源极的电位变为Vref-Vth+ΔV,ΔV为显示数据信号高电位对所述第一薄膜晶体管的源极电位即第二节点的电位所产生的影响;
    步骤5、进入驱动发光阶段;所述数据信号电压提供参考高电位,所述第一扫描信号电压、与第二扫描信号电压提供低电位,所述第二、第三薄膜晶体管关闭,由于存储电容的存储作用,第一节点即第一薄膜晶体管的栅极电位仍可继续保持在显示数据信号高电位,使得第一薄膜晶体管处于打开状态;所述第二节点的电位即所述第一薄膜晶体管的源极电位仍为Vref-Vth+ΔV;
    所述有机发光二极管发光,且流经所述有机发光二极管的电流与第一薄膜晶体管的阈值电压无关;
    其中,所述第一薄膜晶体管、第二薄膜晶体管、及第三薄膜晶体管均为低温多晶硅薄膜晶体管、氧化物半导体薄膜晶体管、或非晶硅薄膜晶体管;
    其中,所述第一扫描信号电压、第二扫描信号电压、及数据信号电压均通过外部时序控制器产生;
    其中,所述显示数据信号高电位高于参考高电位。
PCT/CN2015/087909 2015-08-03 2015-08-24 Amoled像素驱动电路及像素驱动方法 WO2017020360A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/778,615 US20170140704A1 (en) 2015-08-03 2015-08-24 Amoled pixel driving circuit and pixel driving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510484324.1 2015-08-03
CN201510484324.1A CN105185300B (zh) 2015-08-03 2015-08-03 Amoled像素驱动电路及像素驱动方法

Publications (1)

Publication Number Publication Date
WO2017020360A1 true WO2017020360A1 (zh) 2017-02-09

Family

ID=54907335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087909 WO2017020360A1 (zh) 2015-08-03 2015-08-24 Amoled像素驱动电路及像素驱动方法

Country Status (3)

Country Link
US (1) US20170140704A1 (zh)
CN (1) CN105185300B (zh)
WO (1) WO2017020360A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10332446B2 (en) * 2015-12-03 2019-06-25 Innolux Corporation Driving circuit of active-matrix organic light-emitting diode with hybrid transistors
CN105489168B (zh) 2016-01-04 2018-08-07 京东方科技集团股份有限公司 像素驱动电路、像素驱动方法和显示装置
CN105654901B (zh) 2016-03-15 2018-05-25 深圳市华星光电技术有限公司 液晶显示装置及其有机发光二极管的补偿电路
JP6738041B2 (ja) * 2016-04-22 2020-08-12 天馬微電子有限公司 表示装置及び表示方法
CN106205495A (zh) * 2016-09-09 2016-12-07 深圳市华星光电技术有限公司 Amoled像素驱动电路及像素驱动方法
CN109036284B (zh) * 2017-06-12 2020-09-01 上海和辉光电有限公司 像素补偿电路及显示装置
CN107301843A (zh) * 2017-08-28 2017-10-27 深圳市华星光电半导体显示技术有限公司 顶发射amoled面板的电源配置结构及配置方法
CN107833559B (zh) * 2017-12-08 2023-11-28 合肥京东方光电科技有限公司 像素驱动电路、有机发光显示面板及像素驱动方法
CN108172171B (zh) * 2017-12-20 2020-01-17 武汉华星光电半导体显示技术有限公司 像素驱动电路及有机发光二极管显示器
CN109300436B (zh) * 2018-09-27 2020-04-03 深圳市华星光电半导体显示技术有限公司 Amoled像素驱动电路及驱动方法
CN209571217U (zh) * 2018-10-08 2019-11-01 惠科股份有限公司 一种显示面板的像素驱动电路和显示装置
TWI682381B (zh) * 2018-10-17 2020-01-11 友達光電股份有限公司 畫素電路、顯示裝置及畫素電路驅動方法
CN109584801A (zh) * 2018-12-14 2019-04-05 云谷(固安)科技有限公司 像素电路、显示面板、显示装置及驱动方法
CN109523953A (zh) * 2018-12-21 2019-03-26 深圳市华星光电半导体显示技术有限公司 有源矩阵有机发光二极管像素驱动电路
CN109887465B (zh) * 2019-03-07 2020-05-12 深圳市华星光电半导体显示技术有限公司 像素驱动电路及显示面板
CN109979383B (zh) * 2019-04-24 2021-04-02 深圳市华星光电半导体显示技术有限公司 像素驱动电路以及显示面板
CN110349538B (zh) * 2019-06-20 2022-04-05 深圳市华星光电半导体显示技术有限公司 像素驱动电路及显示面板
US11062658B1 (en) 2020-03-31 2021-07-13 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Pixel driving circuit and display panel
CN111312160B (zh) * 2020-03-31 2021-06-01 深圳市华星光电半导体显示技术有限公司 像素驱动电路及显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030081919A (ko) * 2002-04-15 2003-10-22 한국과학기술원 화소 회로 및 이를 이용한 유기 발광 다이오드 표시장치
CN101079233A (zh) * 2006-05-26 2007-11-28 Lg.菲利浦Lcd株式会社 有机发光二极管显示器及其驱动方法
CN102034429A (zh) * 2009-09-30 2011-04-27 卡西欧计算机株式会社 发光装置及其驱动控制方法、以及电子设备
CN103700347A (zh) * 2014-01-10 2014-04-02 深圳市华星光电技术有限公司 有机发光二极管的驱动电路
CN104715702A (zh) * 2013-12-13 2015-06-17 乐金显示有限公司 显示装置和显示面板

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW493282B (en) * 2000-04-17 2002-07-01 Semiconductor Energy Lab Self-luminous device and electric machine using the same
JP2003027973A (ja) * 2001-07-12 2003-01-29 Hitachi Unisia Automotive Ltd 可変動弁機構の制御装置
CN1595477A (zh) * 2003-09-08 2005-03-16 三洋电机株式会社 显示装置
US7088318B2 (en) * 2004-10-22 2006-08-08 Advantech Global, Ltd. System and method for compensation of active element variations in an active-matrix organic light-emitting diode (OLED) flat-panel display
US20060092183A1 (en) * 2004-10-22 2006-05-04 Amedeo Corporation System and method for setting brightness uniformity in an active-matrix organic light-emitting diode (OLED) flat-panel display
TWI277920B (en) * 2005-09-15 2007-04-01 Chunghwa Picture Tubes Ltd Method for applying detecting pixel circuits of active-matrix organic light emitting diode status of system hardware
JP5141363B2 (ja) * 2008-05-03 2013-02-13 ソニー株式会社 半導体デバイス、表示パネル及び電子機器
TWI456553B (zh) * 2011-06-01 2014-10-11 Wintek Corp 有機發光二極體像素電路
CN102930822B (zh) * 2012-11-12 2014-12-24 京东方科技集团股份有限公司 像素电路、显示装置和像素电路的驱动方法
TWI483233B (zh) * 2013-02-08 2015-05-01 Au Optronics Corp 像素結構及其驅動方法
KR20140123219A (ko) * 2013-04-12 2014-10-22 삼성디스플레이 주식회사 유기전계발광 표시장치 및 그의 구동방법
CN103295525B (zh) * 2013-05-31 2015-09-30 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
CN103400548B (zh) * 2013-07-31 2016-03-16 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示装置
CN104575394B (zh) * 2015-02-03 2017-02-22 深圳市华星光电技术有限公司 Amoled像素驱动电路及像素驱动方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030081919A (ko) * 2002-04-15 2003-10-22 한국과학기술원 화소 회로 및 이를 이용한 유기 발광 다이오드 표시장치
CN101079233A (zh) * 2006-05-26 2007-11-28 Lg.菲利浦Lcd株式会社 有机发光二极管显示器及其驱动方法
CN102034429A (zh) * 2009-09-30 2011-04-27 卡西欧计算机株式会社 发光装置及其驱动控制方法、以及电子设备
CN104715702A (zh) * 2013-12-13 2015-06-17 乐金显示有限公司 显示装置和显示面板
CN103700347A (zh) * 2014-01-10 2014-04-02 深圳市华星光电技术有限公司 有机发光二极管的驱动电路

Also Published As

Publication number Publication date
US20170140704A1 (en) 2017-05-18
CN105185300A (zh) 2015-12-23
CN105185300B (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
WO2018045660A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2017020360A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2018045659A1 (zh) Amoled像素驱动电路及像素驱动方法
JP6799166B2 (ja) Amoled画素駆動回路および駆動方法
WO2016155087A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2018045667A1 (zh) Amoled像素驱动电路及驱动方法
WO2016119304A1 (zh) Amoled像素驱动电路及像素驱动方法
US10593260B1 (en) Pixel driving circuit for OLED display device and OLED display device
WO2018068393A1 (zh) Oled像素混合补偿电路及混合补偿方法
WO2016155053A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2016145693A1 (zh) Amoled像素驱动电路及像素驱动方法
US10056037B1 (en) AMOLED pixel driver circuit and pixel driving method
WO2019037300A1 (zh) Amoled像素驱动电路
WO2017156826A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2016145692A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2019033487A1 (zh) 用于oled显示设备的像素驱动电路及oled显示设备
WO2017177501A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2018068392A1 (zh) Amoled像素驱动电路及驱动方法
WO2016123855A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2018072298A1 (zh) Amoled像素驱动电路及驱动方法
WO2018149008A1 (zh) Amoled像素驱动电路及amoled像素驱动方法
WO2016119305A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2019242147A1 (zh) Amoled像素驱动电路及驱动方法
WO2019033516A1 (zh) 用于oled显示设备的像素驱动电路、oled显示设备
WO2018166037A1 (zh) 一种像素驱动电路及oled显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14778615

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900134

Country of ref document: EP

Kind code of ref document: A1