WO2015012353A1 - 結晶系シリコン太陽電池及びその製造方法 - Google Patents

結晶系シリコン太陽電池及びその製造方法 Download PDF

Info

Publication number
WO2015012353A1
WO2015012353A1 PCT/JP2014/069566 JP2014069566W WO2015012353A1 WO 2015012353 A1 WO2015012353 A1 WO 2015012353A1 JP 2014069566 W JP2014069566 W JP 2014069566W WO 2015012353 A1 WO2015012353 A1 WO 2015012353A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystalline silicon
solar cell
electrode
silicon solar
impurity diffusion
Prior art date
Application number
PCT/JP2014/069566
Other languages
English (en)
French (fr)
Inventor
高橋 哲
元希 齋藤
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to CN201480041740.8A priority Critical patent/CN105408267B/zh
Priority to JP2015528332A priority patent/JP6375298B2/ja
Priority to US14/906,438 priority patent/US20160155868A1/en
Publication of WO2015012353A1 publication Critical patent/WO2015012353A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a crystalline silicon solar cell using a substrate (crystalline silicon substrate) such as single crystal silicon or polycrystalline silicon.
  • the present invention also relates to a method for manufacturing a crystalline silicon solar cell.
  • Patent Document 1 describes a method for manufacturing a semiconductor device (solar cell device). Specifically, Patent Document 1 includes (a) providing one or more semiconductor substrates, one or more insulating films, and a thick film composition, wherein the thick film composition includes: A) conductive silver; b) one or more glass frits; and c) a Mg-containing additive, dispersed in an organic medium, and (b) the semiconductor substrate on the semiconductor substrate. Applying an insulating film; (c) applying the thick film composition onto the insulating film on the semiconductor substrate; and (d) firing the semiconductor, insulating film and thick film composition.
  • Patent Document 1 a method of manufacturing a solar cell device in which the organic vehicle is removed and the silver and glass frit are sintered during firing. Further, in Patent Document 1, the front electrode silver paste described in Patent Document 1 reacts with and penetrates the silicon nitride film (antireflection film) during firing, and is in electrical contact with the n-type layer ( It is described that it can fire through.
  • Non-Patent Document 1 describes a research result on a region of a composition capable of vitrification and an amorphous network of oxides contained in a ternary glass composed of molybdenum oxide, boron oxide and bismuth oxide.
  • a light incident side electrode also referred to as a surface electrode
  • an impurity diffusion layer also referred to as an emitter layer
  • Reducing the electrical resistance is an important issue.
  • an electrode pattern of a conductive paste containing silver powder is printed on an emitter layer on the surface of a crystalline silicon substrate and baked.
  • the type and composition of the oxide constituting the composite oxide such as glass frit. . This is because the type of the composite oxide added to the conductive paste for forming the light incident side electrode affects the solar cell characteristics.
  • the conductive paste for forming the light incident side electrode When firing the conductive paste for forming the light incident side electrode, the conductive paste fires through the antireflection film, for example, the antireflection film made of silicon nitride. As a result, the light incident side electrode comes into contact with the emitter layer formed on the surface of the crystalline silicon substrate.
  • the antireflection film for example, the antireflection film made of silicon nitride.
  • the complex oxide etches the antireflection film during firing.
  • the action of the composite oxide is not limited to the etching of the antireflection film, and may adversely affect the emitter layer formed on the surface of the crystalline silicon substrate.
  • an unexpected impurity in the composite oxide may diffuse into the impurity diffusion layer, thereby adversely affecting the pn junction of the solar cell.
  • an adverse effect appears as a decrease in open circuit voltage (Open Circuit Voltage: Voc) in the solar cell characteristics.
  • Voc Open Circuit Voltage
  • the emitter layer formed on the surface of the crystalline silicon substrate is passivated by forming an antireflection film, but the antireflection film is fired through by forming the light incident side electrode. Therefore, a large number of surface defects exist in that portion. For this reason, a loss of photovoltaic force occurs due to carrier recombination on the surface of the crystalline silicon substrate immediately below the light incident side electrode.
  • an object of the present invention is to obtain a high-performance crystalline silicon solar cell.
  • an object of the present invention is to obtain a high-performance crystalline silicon solar cell having an improved interface between an electrode and a crystalline silicon substrate.
  • the present invention has an adverse effect on solar cell characteristics when forming a light incident side electrode in a crystalline silicon solar cell having an antireflection film on its surface made of a silicon nitride thin film or the like.
  • An object is to obtain a crystalline silicon solar cell having such a light incident side electrode.
  • Another object of the present invention is to obtain a crystalline silicon solar cell having a back electrode that does not adversely affect solar cell characteristics when forming an electrode on the back surface of a crystalline silicon substrate.
  • Another object of the present invention is to obtain a method for producing a crystalline silicon solar cell, which can produce a high-performance crystalline silicon solar cell.
  • the present inventors have used an impurity diffusion layer (emitter) in which impurities are diffused by using a composite oxide such as a glass frit contained in a conductive paste for electrode formation of a crystalline silicon solar cell, having a predetermined composition. It has been found that an electrode having a low contact resistance can be formed with respect to the layer), and has led to the present invention. Further, the present inventor, for example, when an electrode is formed using a conductive paste for electrode formation containing a complex oxide having a predetermined composition, between the light incident side electrode and the crystalline silicon substrate, The present inventors have found that a buffer layer having a special structure is formed at least at a part immediately below the light incident side electrode. Furthermore, the present inventors have found that the performance of the crystalline silicon solar cell is improved by the presence of the buffer layer, and have reached the present invention.
  • the present invention made based on the above knowledge has the following configuration.
  • the present invention provides a crystalline silicon solar cell having the following constitutions 1 to 16 and a method for producing a crystalline silicon solar cell having the following constitutions 17 to 32.
  • Configuration 1 of the present invention includes a crystalline silicon substrate of a first conductivity type, an impurity diffusion layer formed on at least a part of at least one surface of the crystalline silicon substrate, and at least a part of the surface of the impurity diffusion layer
  • a crystalline silicon solar cell having a buffer layer formed on the surface of the buffer layer and an electrode formed on the surface of the buffer layer, wherein the electrode includes a conductive metal and a composite oxide, and the buffer layer includes silicon, oxygen, And a crystalline silicon solar cell which is a layer containing nitrogen. Since the crystalline silicon substrate has a predetermined buffer layer, a high-performance crystalline silicon solar cell can be obtained.
  • Configuration 2 of the present invention is the crystalline silicon solar cell according to Configuration 1, which is a layer containing a conductive metal element, silicon, oxygen, and nitrogen contained in the buffer layer.
  • Configuration 1 is a layer containing a conductive metal element, silicon, oxygen, and nitrogen contained in the buffer layer.
  • the crystalline silicon substrate has a buffer layer having a conductive metal element in addition to silicon, oxygen, and nitrogen, a preferable buffer layer for obtaining a high-performance crystalline silicon solar cell can be obtained.
  • Configuration 3 of the present invention is the crystalline silicon solar cell according to Configuration 2, wherein the conductive metal element contained in the buffer layer is silver. Since silver has a low electric resistivity, it can be preferably used as a conductive metal element contained in the buffer layer.
  • Configuration 4 of the present invention is a second conductivity type impurity diffusion layer in which the impurity diffusion layer is formed on the light incident side surface of the first conductivity type crystalline silicon substrate, and the electrode is crystalline silicon.
  • a light incident side electrode formed on the light incident side surface of the substrate, and having an antireflection film made of silicon nitride on at least a part of the surface of the impurity diffusion layer corresponding to a portion where the electrode is not formed, A crystalline silicon solar cell according to any one of configurations 1 to 3.
  • a higher performance crystalline silicon solar cell can be obtained when the predetermined buffer layer is formed directly under the light incident side electrode.
  • the buffer layer containing silicon, oxygen, and nitrogen can be reliably formed.
  • the light incident side electrode is in electrical contact with the finger electrode portion for making electrical contact with the impurity diffusion layer, the finger electrode portion and the conductive ribbon for taking out current to the outside.
  • the buffer layer is formed between at least part of the finger electrode portion and the crystalline silicon substrate and directly below the finger electrode portion.
  • This is a silicon solar cell.
  • the finger electrode portion plays a role of collecting current from the impurity diffusion layer. Therefore, it is possible to more surely obtain a high-performance crystalline silicon solar cell by the structure in which the buffer layer is formed immediately below the finger electrode portion.
  • Configuration 6 of the present invention is the crystalline silicon solar cell according to Configuration 4 or 5, which has a back electrode formed on the back surface opposite to the light incident side surface of the crystalline silicon substrate. Since the crystalline silicon solar cell has the back electrode, current can be taken out from the light incident side and the back electrode.
  • the impurity diffusion layer is formed on the back surface that is the surface opposite to the light incident side surface of the crystalline silicon substrate of the first conductivity type.
  • a conductive type impurity diffusion layer wherein the first conductive type and the second conductive type impurity diffusion layer are arranged so as to enter each other in a comb shape, and the buffer layer includes the first conductive type and the second conductive type;
  • the buffer layer is formed on at least a part of the surface of the impurity diffusion layer of the first conductivity type, and the electrode is formed on the surface of the buffer layer formed on at least a part of the surface of the impurity diffusion layer of the first conductivity type Any one of configurations 1 to 3, wherein the first electrode is formed on the surface of the buffer layer formed on at least a part of the surface of the impurity diffusion layer of the second conductivity type.
  • crystalline silicon solar cell described.
  • a back electrode type crystalline silicon solar cell in which both positive and negative electrodes are arranged on the back surface, a high performance crystalline silicon solar cell is obtained even when a predetermined buffer layer is formed directly under the back electrode. Can do.
  • Configuration 8 of the present invention has a silicon nitride film made of silicon nitride on at least a part of the back surface of the first conductivity type crystalline silicon substrate corresponding to the portion where no electrode is formed and the impurity diffusion layer.
  • This is a crystalline silicon solar cell according to Configuration 7.
  • Configuration 9 of the present invention is the crystal according to any one of configurations 1 to 7, wherein at least a part of the buffer layer includes a silicon oxynitride film and a silicon oxide film in this order from the crystalline silicon substrate toward the electrode.
  • This is a silicon solar cell. Since the crystalline silicon solar cell has a buffer layer having a predetermined structure, a high-performance crystalline silicon solar cell can be obtained with certainty.
  • Configuration 10 of the present invention is the crystalline silicon solar cell according to configuration 9, wherein the buffer layer includes conductive fine particles of a conductive metal element. Since the conductive fine particles have conductivity, the buffer layer contains the conductive fine particles, whereby a higher performance crystalline silicon solar cell can be obtained.
  • Configuration 11 of the present invention is the crystalline silicon solar cell according to Configuration 10, wherein the particle diameter of the conductive fine particles is 20 nm or less.
  • the conductive fine particles have a predetermined particle size, the conductive fine particles can be stably present in the buffer layer.
  • Configuration 12 of the present invention is the crystalline silicon solar cell according to Configuration 10 or 11, wherein the conductive fine particles are present only in the silicon oxide film of the buffer layer. It can be presumed that a higher performance crystalline silicon solar cell can be obtained when the conductive fine particles are present only in the silicon oxide film of the buffer layer.
  • a thirteenth aspect of the present invention is the crystalline silicon solar cell according to any one of the tenth to twelfth aspects, wherein the conductive fine particles are silver fine particles.
  • Silver powder has high electrical conductivity, and has been conventionally used as an electrode for many crystalline silicon solar cells, and has high reliability.
  • the conductive fine particles in the buffer layer become silver fine particles by using silver powder as the conductive powder. As a result, a highly reliable and high performance crystalline silicon solar cell can be obtained.
  • the area of the buffer layer disposed between the electrode and the impurity diffusion layer is 5% or more of the area immediately below the electrode. It is a silicon solar cell.
  • the area where the buffer layer is present immediately below the light incident side electrode is a predetermined ratio or more, it is possible to more reliably obtain a high-performance crystalline silicon solar cell.
  • a structure 15 of the present invention is the crystalline silicon solar cell according to any one of the structures 1 to 14, wherein the complex oxide included in the electrode includes molybdenum oxide, boron oxide, and bismuth oxide.
  • the composite oxide contains three components of molybdenum oxide, boron oxide, and bismuth oxide, the structure of the high-performance crystalline silicon solar cell of the present invention can be obtained with certainty.
  • the composite oxide includes molybdenum oxide, boron oxide and bismuth oxide as a total of 100 mol%, molybdenum oxide 25 to 65 mol%, boron oxide 5 to 45 mol%, and bismuth oxide 25 to 35 mol. It is a crystalline silicon solar cell of the structure 15 containing%.
  • Configuration 17 of the present invention includes a step of preparing a crystalline silicon substrate of a first conductivity type, a step of forming an impurity diffusion layer on at least a part of at least one surface of the crystalline silicon substrate, and an impurity diffusion layer Forming a silicon nitride film on the surface of the substrate, and printing and baking a conductive paste on the surface of the silicon nitride film formed on the surface of the impurity diffusion layer, thereby forming the electrode, the electrode, and the impurity diffusion layer
  • a method for manufacturing a crystalline silicon solar cell comprising: forming a buffer layer between the two, wherein the buffer layer is a layer containing silicon, oxygen, and nitrogen It is.
  • the electrode of the crystalline silicon solar cell is formed by firing the above-described conductive paste of the present invention, thereby producing the high-performance crystalline silicon solar cell of the present invention having a predetermined buffer layer. it can.
  • Configuration 18 of the present invention is the method for manufacturing a crystalline silicon solar cell according to Configuration 17, wherein the buffer layer is a layer containing a conductive metal element, silicon, oxygen, and nitrogen.
  • the buffer layer is a layer containing a conductive metal element, silicon, oxygen, and nitrogen.
  • Configuration 19 of the present invention is the method for manufacturing a crystalline silicon solar cell according to Configuration 18, wherein the conductive metal element contained in the buffer layer is silver. Since silver has a low electric resistivity, it can be preferably used as a conductive metal element contained in the buffer layer.
  • Configuration 20 of the present invention is a second conductivity type impurity diffusion layer in which the impurity diffusion layer is formed on the light incident side surface of the first conductivity type crystalline silicon substrate, and the electrode is crystalline silicon.
  • a higher performance crystalline silicon solar cell can be obtained when the predetermined buffer layer is formed directly under the light incident side electrode.
  • the buffer layer containing silicon, oxygen, and nitrogen can be reliably formed.
  • the light incident side electrode is in electrical contact with the finger electrode portion for making electrical contact with the impurity diffusion layer, and the finger electrode portion and the conductive ribbon for taking out current to the outside.
  • a buffer layer is formed between at least part of the finger electrode portion and the crystalline silicon substrate and directly below the finger electrode portion. It is a manufacturing method of a silicon solar cell.
  • the finger electrode portion plays a role of collecting current from the impurity diffusion layer. Therefore, it is possible to more reliably obtain a high-performance crystalline silicon solar cell by manufacturing the crystalline silicon solar cell so that the buffer layer is formed immediately below the finger electrode portion.
  • Configuration 22 of the present invention is the method for manufacturing a crystalline silicon solar cell according to Configuration 20 or 21, further comprising a step of forming a back electrode on the back surface opposite to the light incident side surface of the crystalline silicon substrate. .
  • a back electrode of the crystalline silicon solar cell By forming the back electrode of the crystalline silicon solar cell, current can be taken out from the light incident side and the back electrode.
  • the step of forming the impurity diffusion layer is performed on the back surface, which is the surface opposite to the light incident side surface of the first conductivity type crystalline silicon substrate, on the first conductivity type and second
  • the impurity diffusion layers of the first conductivity type and the second conductivity type are arranged so as to interleave each other in a comb shape
  • the buffer layer is A buffer layer formed on at least a part of the surface of the impurity diffusion layer of the conductivity type and the second conductivity type, and a buffer having an electrode formed on at least a part of the surface of the impurity diffusion layer of the first conductivity type
  • a method for producing a crystalline silicon solar cell according to item 19 In the manufacturing method of a back electrode type crystalline silicon solar cell in which both positive and negative electrodes are arranged on the back surface, even when a predetermined buffer layer is formed directly under the back electrode, a high performance crystalline silicon solar cell Can be obtained.
  • the step of forming the silicon nitride film includes forming silicon nitride on at least a part of the back surface and the impurity diffusion layer of the crystalline silicon substrate of the first conductivity type corresponding to the portion where the electrode is not formed.
  • a method for producing a crystalline silicon solar cell according to Configuration 23 comprising forming a silicon nitride film made of By forming the back electrode on the back surface on which the silicon nitride film made of silicon nitride is formed, a buffer layer containing silicon, oxygen, and nitrogen is reliably formed between the back electrode and the crystalline silicon substrate. be able to.
  • At least a part of the buffer layer includes a silicon oxynitride film and a silicon oxide film in this order from the crystalline silicon substrate toward the light incident side electrode. It is a manufacturing method of the crystalline silicon solar cell of description. By allowing the crystalline silicon solar cell to have a buffer layer having a predetermined structure, a high-performance crystalline silicon solar cell can be more reliably manufactured.
  • the step of forming an electrode includes firing the conductive paste at 400 to 850 ° C. is there.
  • the high-performance crystalline silicon solar cell of the present invention having a predetermined structure can be reliably manufactured.
  • the conductive paste includes a conductive powder, a composite oxide, and an organic vehicle, and the composite oxide includes molybdenum oxide, boron oxide, and bismuth oxide.
  • a method for producing a crystalline silicon solar cell according to claim 1. An electrode is formed on the surface of the crystalline silicon substrate using a conductive paste that includes conductive powder, a composite oxide, and an organic vehicle, and the composite oxide includes molybdenum oxide, boron oxide, and bismuth oxide.
  • the predetermined buffer layer can be reliably formed, and the contact resistance between the electrode of the predetermined crystalline silicon solar cell and the impurity diffusion layer can be reliably reduced.
  • the composite oxide includes 25 to 65 mol% molybdenum oxide, 5 to 45 mol% boron oxide, and 25 to 35 mol bismuth oxide, where the total of molybdenum oxide, boron oxide and bismuth oxide is 100 mol%. It is a manufacturing method of the crystalline silicon solar cell of the structure 27 containing%. Contact resistance between the electrode of the predetermined crystalline silicon solar cell and the impurity diffusion layer without adversely affecting the solar cell characteristics by making the composite oxide contained in the conductive paste into a predetermined composition And a solar cell capable of obtaining good electrical contact can be reliably manufactured.
  • the composite oxide includes molybdenum oxide, boron oxide and bismuth oxide as a total of 100 mol%, molybdenum oxide 15 to 40 mol%, boron oxide 25 to 45 mol%, and bismuth oxide 25 to 60 mol. It is a manufacturing method of the crystalline silicon solar cell of the structure 27 containing%.
  • Composition 30 of the present invention is the crystalline silicon according to any one of structures 27 to 29, wherein the composite oxide contains 90 mol% or more of the total of molybdenum oxide, boron oxide, and bismuth oxide in 100 mol% of the composite oxide. It is a manufacturing method of a solar cell. By setting the three components of molybdenum oxide, boron oxide and bismuth oxide to a predetermined ratio or more, without adversely affecting the solar cell characteristics, between the electrode of the predetermined crystalline silicon solar cell and the impurity diffusion layer A solar cell with low contact resistance and good electrical contact can be more reliably manufactured.
  • Composition 31 of the present invention is the production of a crystalline silicon solar cell according to any one of structures 27 to 30, wherein the composite oxide further comprises 0.1 to 6 mol% of titanium oxide in 100 wt% of the composite oxide. Is the method. When the composite oxide further contains a predetermined proportion of titanium oxide, better electrical contact can be obtained.
  • the structure 32 of the present invention is the production of a crystalline silicon solar cell according to any one of the structures 27 to 31, wherein the composite oxide further includes 0.1 to 3 mol% of zinc oxide in 100% by weight of the composite oxide. Is the method. When the composite oxide further contains a predetermined proportion of zinc oxide, better electrical contact can be obtained.
  • the structure 33 of the present invention is the crystalline silicon solar cell according to any one of the structures 27 to 32, wherein the conductive paste contains 0.1 to 10 parts by weight of the composite oxide with respect to 100 parts by weight of the conductive powder. It is a manufacturing method. By making content of a nonelectroconductive complex oxide into a predetermined range with respect to content of electroconductive powder, the raise of the electrical resistance of the electrode formed can be suppressed.
  • Configuration 34 of the present invention is the method for manufacturing a crystalline silicon solar cell according to any one of Configurations 27 to 33, wherein the conductive powder is silver powder.
  • Silver powder has high electrical conductivity, and has been conventionally used as an electrode for many crystalline silicon solar cells, and has high reliability.
  • a highly reliable and high performance crystalline silicon solar cell can be manufactured by using silver powder as the conductive powder.
  • a high-performance crystalline silicon solar cell can be obtained.
  • a high-performance crystalline silicon solar cell having an improved interface between an electrode and a crystalline silicon substrate can be obtained.
  • the solar cell characteristics are not adversely affected when the light incident side electrode is formed.
  • a crystalline silicon solar cell having a light incident side electrode can be obtained.
  • a crystalline silicon solar cell having a back electrode that does not adversely affect solar cell characteristics when an electrode is formed on the back surface of a crystalline silicon substrate can be obtained. .
  • a method for producing a crystalline silicon solar cell that can produce a high-performance crystalline silicon solar cell can be obtained.
  • FIG. 1 It is a cross-sectional schematic diagram of a crystalline silicon solar cell. It is explanatory drawing based on the ternary composition figure of the ternary glass which consists of molybdenum oxide, boron oxide, and bismuth oxide. It is a scanning electron microscope (SEM) photograph of the cross section of the crystalline silicon solar cell (single crystal silicon solar cell) of a prior art, Comprising: It is a photograph of the interface vicinity of a single crystal silicon substrate and a light-incidence side electrode. It is a scanning electron microscope (SEM) photograph of the cross section of the crystalline silicon solar cell (single crystal silicon solar cell) of the present invention, and is a photograph near the interface between the single crystal silicon substrate and the light incident side electrode.
  • SEM scanning electron microscope
  • FIG. 5 is a transmission electron microscope (TEM) photograph of the cross section of the crystalline silicon solar cell shown in FIG. 4, in which the vicinity of the interface between the single crystal silicon substrate and the light incident side electrode is enlarged.
  • TEM transmission electron microscope
  • FIG. 4 It is a schematic diagram for demonstrating the transmission electron micrograph of FIG.
  • FIG. 4 It is a plane schematic diagram which shows the pattern for contact resistance measurement used for the measurement of the contact resistance between an electrode and a crystalline silicon substrate.
  • J01 saturation current density
  • Voc open circuit voltage
  • crystalline silicon includes single crystal and polycrystalline silicon.
  • the “crystalline silicon substrate” refers to a material obtained by forming crystalline silicon into a shape suitable for element formation, such as a flat plate shape, for the formation of an electric element or an electronic element. Any method may be used for producing crystalline silicon. For example, the Czochralski method can be used for single crystal silicon, and the casting method can be used for polycrystalline silicon. In addition, other manufacturing methods such as a polycrystalline silicon ribbon produced by a ribbon pulling method, polycrystalline silicon formed on a different substrate such as glass, and the like can also be used as the crystalline silicon substrate. Further, the “crystalline silicon solar cell” refers to a solar cell manufactured using a crystalline silicon substrate.
  • FF curve factor obtained from measurement of current-voltage characteristics under light irradiation
  • a contact resistance which is an electric resistance between the electrode and the impurity diffusion layer of crystalline silicon can be used.
  • An impurity diffusion layer also referred to as an emitter layer is a layer in which p-type or n-type impurities are diffused, and the impurities are diffused so as to have a higher concentration than the impurity concentration in the base silicon substrate.
  • first conductivity type means p-type or n-type conductivity type
  • second conductivity type means a conductivity type different from “first conductivity type”.
  • first conductivity type crystalline silicon substrate is a p-type crystal silicon substrate
  • second conductivity type impurity diffusion layer is an n-type impurity diffusion layer (n-type emitter layer). It is.
  • FIG. 1 is a schematic cross-sectional view of the vicinity of a light incident side electrode 20 of a crystalline silicon solar cell having electrodes (light incident side electrode 20 and back surface electrode 15) on both the light incident side and the back surface side.
  • the crystalline silicon solar cell shown in FIG. 1 includes a light incident side electrode 20 formed on the light incident side, an antireflection film 2, an impurity diffusion layer 4 (for example, an n-type impurity diffusion layer 4), and a crystalline silicon substrate 1 ( For example, a p-type crystalline silicon substrate 1) and a back electrode 15 are provided.
  • the inventors of the present invention are not between the light incident side electrode 20 and the crystalline silicon substrate 1.
  • the performance of the crystalline silicon solar cell is improved by forming the buffer layer 30 having a special structure at least at a part immediately below the light incident side electrode 20.
  • FIG. 4 A scanning electron micrograph of the cross section of the crystalline silicon solar cell of the present invention is shown in FIG. 4
  • a scanning electron micrograph of a cross section of a crystalline silicon solar cell having a conventional structure manufactured using a conventional conductive paste for forming a solar cell electrode is shown in FIG.
  • FIG. 4 in the case of the crystalline silicon solar cell of the present invention, the portion where the silver 22 in the light incident side electrode 20 is in contact with the p-type crystalline silicon substrate 1 is shown in FIG. It is clear that the number is much higher than in the case of the crystalline silicon solar cell of the comparative example shown. It can be said that the structure of the crystalline silicon solar cell of the present invention is different from that of the conventional crystalline silicon solar cell.
  • the present inventors further use a transmission electron microscope (TEM) to describe in detail the structure near the interface between the crystalline silicon substrate 1 and the light incident side electrode 20 of the crystalline silicon solar cell of the present invention. Observed.
  • FIG. 5 the transmission electron microscope (TEM) photograph of the cross section of the crystalline silicon solar cell of this invention is shown.
  • FIG. 6 is an explanatory diagram of the TEM photograph of FIG.
  • the buffer layer 30 is formed at least at a part immediately below the light incident side electrode 20.
  • the structure of the crystalline silicon solar cell of the present invention will be specifically described.
  • the crystalline silicon solar cell of the present invention includes a crystalline silicon substrate 1 of the first conductivity type, an impurity diffusion layer 4 formed on at least a part of at least one surface of the crystalline silicon substrate 1, and an impurity diffusion layer 4 includes a buffer layer 30 formed on at least a part of the surface of 4, and an electrode formed on the surface of the buffer layer 30.
  • the electrode of the crystalline silicon solar cell of the present invention includes a conductive metal and a composite oxide 24.
  • the buffer layer 30 formed on at least a part of the surface of the impurity diffusion layer 4 is a layer containing silicon, oxygen, and nitrogen. Since the crystalline silicon substrate 1 has the predetermined buffer layer 30, a high-performance crystalline silicon solar cell can be obtained.
  • the buffer layer 30 of the crystalline silicon solar cell of the present invention is preferably a layer containing a conductive metal element, silicon, oxygen, and nitrogen.
  • the crystalline silicon substrate 1 has a buffer layer 30 having a conductive metal element in addition to silicon, oxygen, and nitrogen, thereby obtaining a preferable buffer layer 30 for obtaining a high-performance crystalline silicon solar cell. Can do.
  • the conductive metal element contained in the buffer layer 30 is preferably silver. Since silver has a low electrical resistivity, it can be preferably used as a conductive metal element contained in the buffer layer 30.
  • the crystalline silicon solar cell of the present invention includes a buffer layer 30 at least at a part immediately below the electrode.
  • the buffer layer 30 preferably includes a silicon oxynitride film 32 and a silicon oxide film 34 in this order from the crystalline silicon substrate 1 toward the light incident side electrode 20.
  • the “buffer layer 30 immediately below the light incident side electrode 20” means that the crystal of the light incident side electrode 20 is seen when the light incident side electrode 20 is viewed as the upper side and the crystalline silicon substrate 1 is viewed as the lower side as shown in FIG. It means that the buffer layer 30 exists in the direction of the silicon substrate 1 (lower side) so as to be in contact with the light incident side electrode 20.
  • the crystalline silicon substrate 1 has the predetermined buffer layer 30, a high-performance crystalline silicon solar cell can be obtained.
  • the buffer layer 30 is formed only directly under the light incident side electrode 20 and is not formed in a portion where the light incident side electrode 20 does not exist.
  • Silicon oxynitride film 32 in the buffer layer 30 is specifically a SiO x N y film.
  • the film thicknesses of the silicon oxynitride film 32 and the silicon oxide film 34 can be 20 to 80 nm, preferably 30 to 70 nm, more preferably 40 to 60 nm, and specifically about 50 nm, respectively.
  • the thickness of the buffer layer 30 including the silicon oxynitride film 32 and the silicon oxide film 34 is 40 to 160 nm, preferably 60 to 140 nm, more preferably 80 to 120 nm, still more preferably 90 to 110 nm, specifically It can be about 100 nm.
  • the buffer layer 30 is formed by printing and baking the pattern of the light incident side electrode 20 on the crystalline silicon substrate 1 using a conductive paste containing a composite oxide containing molybdenum oxide, boron oxide and bismuth oxide. Can be formed. At this time, the pattern of the light incident side electrode 20 is formed on the surface of the crystalline silicon substrate 1 using a conductive paste containing a composite oxide containing molybdenum oxide, boron oxide and bismuth oxide.
  • the buffer layer 30 can be reliably formed by printing on the surface of the antireflection film made of the material and baking.
  • the reason why a high-performance crystalline silicon solar cell can be obtained by including the buffer layer 30 in at least a part immediately below the light incident side electrode 20 is as follows. Note that this estimation does not limit the present invention. That is, although the silicon oxynitride film 32 and the silicon oxide film 34 are insulating films, they are considered to contribute to electrical contact between the single crystal silicon substrate 1 and the light incident side electrode 20 in some form. It is done.
  • the buffer layer 30 prevents the components or impurities in the conductive paste (components or impurities that adversely affect solar cell performance) from diffusing into the impurity diffusion layer 4 when the conductive paste is baked. It is thought that it plays a role to do.
  • the buffer layer 30 can prevent adverse effects on the solar cell characteristics during firing for electrode formation. Therefore, the crystalline silicon solar cell includes a silicon oxynitride film 32 and a silicon oxide film on at least part of the light incident side electrode 20 between the light incident side electrode 20 and the crystalline silicon substrate 1. It can be presumed that a high-performance crystalline silicon solar cell characteristic can be obtained by the structure having the buffer layer 30 containing 34 in this order.
  • the buffer layer 30 is considered to play a role of preventing components or impurities in the conductive paste (impurities that adversely affect solar cell performance) from diffusing into the impurity diffusion layer 4. . Therefore, when the type of metal constituting the conductive powder in the conductive paste is a type of metal that adversely affects the solar cell characteristics by diffusing into the impurity diffusion layer 4, due to the presence of the buffer layer 30, An adverse effect on the solar cell characteristics can be prevented. For example, copper has a greater tendency to adversely affect solar cell characteristics by diffusing into the impurity diffusion layer 4 than silver. Therefore, when using relatively inexpensive copper as the conductive powder of the conductive paste, the effect of preventing the adverse effect on the solar cell characteristics due to the presence of the buffer layer 30 becomes particularly significant.
  • the impurity diffusion layer 4 is the second conductivity type impurity diffusion layer 4 formed on the light incident side surface of the first conductivity type crystalline silicon substrate 1.
  • the electrode of the crystalline silicon solar cell of the present invention is the light incident side electrode 20 formed on the light incident side surface of the crystalline silicon substrate 1, and the impurity diffusion layer 4 corresponding to the portion where no electrode is formed. It is preferable to have an antireflection film 2 made of silicon nitride on at least a part of the surface.
  • the predetermined buffer layer 30 when the predetermined buffer layer 30 is formed directly below the light incident side electrode 20, a higher performance crystalline silicon solar cell can be obtained. Further, by forming the light incident side electrode 20 on the surface on which the antireflection film 2 made of silicon nitride is formed, the buffer layer 30 containing silicon, oxygen, and nitrogen can be reliably formed.
  • the crystalline silicon solar cell of the present invention includes a finger electrode portion for the light incident side electrode 20 to be in electrical contact with the impurity diffusion layer 4, and a conductive ribbon for taking out current to the finger electrode portion and the outside.
  • a buffer layer 30 is formed between at least a part of the finger electrode portion and the crystalline silicon substrate 1 directly below the finger electrode portion. It is preferred that The finger electrode portion plays a role of collecting current from the impurity diffusion layer 4. Therefore, by having a structure in which the buffer layer 30 is formed immediately below the finger electrode portion, it is possible to more reliably obtain a high-performance crystalline silicon solar cell.
  • a bus-bar electrode part plays the role which flows the electric current collected by the finger electrode part with respect to a conductive ribbon.
  • the bus bar electrode portion needs to have good electrical contact between the finger electrode portion and the conductive ribbon, but the buffer layer 30 immediately below the bus bar electrode portion is not necessarily required.
  • the crystalline silicon solar cell of the present invention preferably has a back electrode 15 formed on the back surface opposite to the light incident side surface of the crystalline silicon substrate 1. Since the crystalline silicon solar cell has the back electrode 15, current can be taken out from the light incident side electrode 20 and the back electrode 15.
  • the crystalline silicon solar cell of the present invention can be a back electrode type crystalline silicon solar cell in which both positive and negative electrodes are arranged on the back surface.
  • the predetermined buffer layer 30 is formed immediately below the back electrode 15.
  • the impurity diffusion layer 4 is formed on the back surface, which is the surface opposite to the light incident side surface of the first conductivity type crystalline silicon substrate 1.
  • the impurity diffusion layer may be of the first conductivity type and the second conductivity type.
  • the impurity diffusion layers of the first conductivity type and the second conductivity type are arranged so as to enter each other in a comb shape.
  • the buffer layer 30 is the buffer layer 30 formed on at least a part of the surface of the impurity diffusion layer of the first conductivity type and the second conductivity type.
  • the electrodes are a first electrode formed on the surface of the buffer layer 30 formed on at least a part of the surface of the impurity diffusion layer of the first conductivity type, and an impurity of the second conductivity type.
  • a second electrode formed on the surface of the buffer layer 30 formed on at least a part of the surface of the diffusion layer is preferable.
  • the first electrode is a positive electrode or a negative electrode
  • the second electrode is an electrode having a polarity different from that of the first electrode.
  • silicon nitride is applied to at least a part of the back surface of the first conductivity type crystalline silicon substrate 1 corresponding to a portion where no electrode is formed and the impurity diffusion layer. It is preferable to have a silicon nitride film as a material.
  • the buffer layer 30 containing silicon, oxygen, and nitrogen is formed between the back electrode 15 and the crystalline silicon substrate 1. It can be reliably formed.
  • the buffer layer 30 preferably contains conductive fine particles of a conductive metal element. Since the conductive fine particles have conductivity, the contact resistance between the electrode and the crystalline silicon impurity diffusion layer 4 can be further reduced by including the conductive fine particles in the buffer layer 30. Therefore, a high performance crystalline silicon solar cell can be obtained.
  • the particle size of the conductive fine particles contained in the buffer layer 30 of the crystalline silicon solar cell of the present invention is preferably 20 nm or less, more preferably 15 nm or less, and even more preferably 10 nm or less. Since the conductive fine particles contained in the buffer layer 30 have a predetermined particle size, the conductive fine particles can be stably present in the buffer layer 30, and the light incident side electrode 20 and the crystalline silicon substrate 1 The contact resistance with the impurity diffusion layer 4 can be further reduced.
  • the conductive fine particles are preferably present only in the silicon oxide film 34 of the buffer layer 30. It can be presumed that a higher performance crystalline silicon solar cell can be obtained when the conductive fine particles are present only in the silicon oxide film 34 of the buffer layer 30. Therefore, the conductive fine particles are preferably not present in the silicon oxynitride film 32 but only in the silicon oxide film 34.
  • the conductive fine particles contained in the buffer layer 30 of the crystalline silicon solar cell of the present invention are preferably silver fine particles 36.
  • silver powder is used as the conductive powder during the production of the crystalline silicon solar cell, the conductive fine particles in the buffer layer 30 become the silver fine particles 36. As a result, a highly reliable and high performance crystalline silicon solar cell can be obtained.
  • the area of the buffer layer 30 of the crystalline silicon solar cell of the present invention is 5% or more, preferably 10% or more of the area immediately below the crystalline silicon substrate 1. As described above, it is possible to reliably obtain a high-performance crystalline silicon solar cell by including the buffer layer 30 in at least part of the crystalline silicon solar cell immediately below the light incident side electrode 20. When the area where the buffer layer 30 exists immediately below the light incident side electrode 20 is a predetermined ratio or more, it is possible to more reliably obtain a high-performance crystalline silicon solar cell.
  • the electrode (light incident side electrode 20 and / or back electrode 15) of the crystalline silicon solar cell of the present invention contains silver 22 and composite oxide 24.
  • the composite oxide 24 preferably contains molybdenum oxide, boron oxide, and bismuth oxide.
  • the electrode of the crystalline silicon solar cell of the present invention can be obtained by firing a conductive paste containing a composite oxide containing molybdenum oxide, boron oxide and bismuth oxide.
  • the composite oxide 24 includes three components of molybdenum oxide, boron oxide, and bismuth oxide, the structure of the high-performance crystalline silicon solar cell of the present invention can be reliably obtained.
  • the composite oxide 24 contained in the electrode of the crystalline silicon solar cell of the present invention comprises molybdenum oxide, boron oxide and bismuth oxide as a total of 100 mol%, molybdenum oxide 25 to 65 mol%, boron oxide 5 to 45 mol%. And 25 to 35 mol% of bismuth oxide.
  • the p-type crystalline silicon substrate 1 is used as the crystalline silicon substrate 1 is mainly described. It is also possible to use an n-type crystalline silicon substrate 1. In that case, a p-type impurity diffusion layer 4 is disposed as the impurity diffusion layer 4 instead of the n-type impurity diffusion layer 4. If the conductive paste of the present invention is used, an electrode having a low contact resistance can be formed in both the p-type impurity diffusion layer 4 and the n-type impurity diffusion layer 4.
  • the present invention can also be applied to the formation of electrodes of devices other than solar cells.
  • the above-described conductive paste of the present invention can be used as a conductive paste for forming electrodes of a device using a general crystalline silicon substrate 1 other than a solar battery.
  • the present invention is a method for producing a crystalline silicon solar cell using the conductive paste described above. Hereinafter, the manufacturing method of the crystalline silicon solar cell of this invention is demonstrated.
  • FIG. 1 is a schematic cross-sectional view of the vicinity of a light incident side electrode 20 of a crystalline silicon solar cell having electrodes (light incident side electrode 20 and back surface electrode 15) on both the light incident side and the back surface side.
  • the method for producing a crystalline silicon solar cell of the present invention will be described taking the crystalline silicon solar cell having the structure shown in FIG. 1 as an example.
  • the method for manufacturing a crystalline silicon solar cell according to the present invention includes a step of preparing a crystalline silicon substrate 1 of the first conductivity type, and an impurity diffusion layer 4 on at least a part of at least one surface of the crystalline silicon substrate 1. Forming a silicon nitride film on the surface of the impurity diffusion layer 4, and printing and baking a conductive paste on the surface of the silicon nitride film formed on the surface of the impurity diffusion layer 4. Forming a buffer layer 30 between the electrode and the impurity diffusion layer 4 at the same time.
  • the buffer layer 30 is a layer containing silicon, oxygen, and nitrogen.
  • the impurity diffusion layer 4 is formed on the light incident side surface of the first conductivity type crystalline silicon substrate 1, and the second conductivity type impurity diffusion is formed. It is the layer 4 and the electrode is the light incident side electrode 20 formed on the light incident side surface of the crystalline silicon substrate 1.
  • the manufacturing method of the present invention can be preferably used for manufacturing a crystalline silicon solar cell having the structure shown in FIG.
  • the predetermined buffer layer 30 is formed immediately below the light incident side electrode 20, a higher performance crystalline silicon solar cell can be obtained.
  • the buffer layer 30 containing silicon, oxygen, and nitrogen can be reliably formed.
  • the light incident side electrode 20 has a finger electrode portion for making electrical contact with the impurity diffusion layer 4, and a conductivity for extracting a current to the finger electrode portion and the outside. And a bus bar electrode part for making electrical contact with the ribbon.
  • the buffer layer 30 is formed between the finger electrode part and the crystalline silicon substrate 1 and at least at a part immediately below the finger electrode part.
  • the finger electrode portion plays a role of collecting current from the impurity diffusion layer 4. Therefore, by having a structure in which the buffer layer 30 is formed immediately below the finger electrode portion, it is possible to more reliably obtain a high-performance crystalline silicon solar cell.
  • a bus-bar electrode part plays the role which flows the electric current collected by the finger electrode part with respect to a conductive ribbon.
  • the bus bar electrode portion needs to have good electrical contact between the finger electrode portion and the conductive ribbon, but the buffer layer 30 immediately below the bus bar electrode portion is not necessarily required.
  • the method for producing a crystalline silicon solar cell of the present invention includes a step of preparing a crystalline silicon substrate 1 of the first conductivity type.
  • a crystalline silicon substrate 1 for example, a B (boron) -doped p-type single crystal silicon substrate can be used.
  • the surface on the light incident side of the crystalline silicon substrate 1 preferably has a pyramidal texture structure.
  • the method for manufacturing a crystalline silicon solar cell according to the present invention includes a step of forming an impurity diffusion layer 4 on at least a part of at least one surface of the crystalline silicon substrate 1 prepared in the above-described step.
  • the n-type impurity diffusion layer 4 can be formed as the impurity diffusion layer 4.
  • the impurity diffusion layer 4 can be formed so that the sheet resistance is 60 to 140 ⁇ / ⁇ , preferably 80 to 120 ⁇ / ⁇ .
  • the buffer layer 30 is formed in a later step. Due to the presence of the buffer layer 30, when the conductive paste is baked, components or impurities in the conductive paste (components or impurities that adversely affect solar cell performance) diffuse into the impurity diffusion layer 4. Can be prevented.
  • the depth at which the impurity diffusion layer 4 is formed can be 150 nm to 300 nm.
  • the depth of the impurity diffusion layer 4 refers to the depth from the surface of the impurity diffusion layer 4 to the pn junction.
  • the depth of the pn junction can be a depth from the surface of the impurity diffusion layer 4 until the impurity concentration in the impurity diffusion layer 4 becomes 10 16 cm ⁇ 3 .
  • the method for manufacturing a crystalline silicon solar cell according to the present invention includes a step of forming a silicon nitride film on the surface of the impurity diffusion layer 4.
  • a silicon nitride film (SiN film) can be formed.
  • the silicon nitride film also has a function as a surface passivation film. Therefore, when a silicon nitride film is used as the antireflection film 2, a high-performance crystalline silicon solar cell can be obtained.
  • the silicon nitride film can be formed by PECVD (Plasma Enhanced Chemical Vapor Deposition) method or the like.
  • the conductive paste is printed on the surface of the silicon nitride film formed on the surface of the impurity diffusion layer 4 and baked, whereby an electrode and an electrode And a step of forming a buffer layer 30 between the impurity diffusion layers 4.
  • the conductive paste which can be preferably used in the manufacturing method of the crystalline silicon solar cell of this invention, it mentions later.
  • an electrode pattern printed using the conductive paste of the present invention is dried at a temperature of about 100 to 150 ° C. for several minutes (for example, 0.5 to 5 minutes).
  • a predetermined conductive paste for the back electrode 15 is printed on almost the entire back surface of the crystalline silicon substrate 1 opposite to the light incident side surface. It is preferable to dry.
  • the dried conductive paste is fired in the atmosphere using a firing furnace such as a tubular furnace under the same conditions as the above firing conditions.
  • the firing temperature is preferably 400 to 850 ° C., more preferably 450 to 820 ° C.
  • the buffer layer 30 is formed.
  • the silicon nitride film and the conductive paste react to form the buffer layer 30 containing silicon, oxygen, and nitrogen.
  • the buffer layer 30 is preferably a layer containing a conductive metal element in addition to silicon, oxygen, and nitrogen. By forming the buffer layer 30 containing a conductive metal element, a high-performance crystalline silicon solar cell can be manufactured.
  • the conductive metal element contained in the buffer layer 30 is preferably silver. Since silver has a low electrical resistivity, it can be preferably used as a conductive metal element contained in the buffer layer 30.
  • the crystalline silicon solar cell of the present invention having the predetermined buffer layer 30 can be manufactured by the manufacturing method as described above. According to the method for manufacturing a crystalline silicon solar cell of the present invention, particularly for the impurity diffusion layer 4 (n-type impurity diffusion layer 4) in which an n-type impurity is diffused without adversely affecting the solar cell characteristics, An electrode having a low contact resistance (light incident side electrode 20) can be obtained.
  • the contact resistance of the electrode 350m ⁇ ⁇ cm 2 or less, preferably 100 m [Omega ⁇ cm or less, more preferably 25m ⁇ ⁇ cm 2
  • the contact resistance of the electrode is 100 m ⁇ ⁇ cm 2 or less, it can be used as an electrode of a single crystal silicon solar cell.
  • the contact resistance of the electrode is 350 m ⁇ ⁇ cm 2 or less, there is a possibility that it can be used as an electrode of a crystalline silicon solar cell.
  • the crystalline silicon solar cell including the buffer layer 30 in at least a part directly below the light incident side electrode 20 as in the crystalline silicon solar cell shown in FIG. 1 has been described as an example. It is not limited to this.
  • the method for producing a crystalline silicon solar cell according to the present invention is used when producing a crystalline silicon solar cell in which both positive and negative electrodes are formed on the back surface of the crystalline silicon solar cell (back electrode type crystalline silicon solar cell). Can also be applied.
  • a crystalline silicon substrate 1 of one conductivity type is prepared.
  • an impurity diffusion layer of the first conductivity type and the second conductivity type is formed on the back surface which is the surface opposite to the light incident side surface of the first conductivity type crystalline silicon substrate 1.
  • the impurity diffusion layers of the first conductivity type and the second conductivity type are arranged so as to enter each other in a comb shape.
  • a silicon nitride film is formed on the front surface (that is, the back surface) of the impurity diffusion layer.
  • the conductive paste is printed on at least a part of the surface of the antireflection film 2 corresponding to the region where the impurity diffusion layers of the first conductivity type and the second conductivity type are formed, and baked.
  • a second electrode formed on the surface of the buffer layer 30 formed in part can be formed.
  • the back electrode 15 when forming the silicon nitride film, the back surface of the first conductive type crystalline silicon substrate 1 corresponding to the portion where no electrode is formed. It is preferable to form a silicon nitride film made of silicon nitride on at least a part of the impurity diffusion layer.
  • the buffer layer 30 containing silicon, oxygen, and nitrogen is formed between the back electrode 15 and the crystalline silicon substrate 1. It can be reliably formed.
  • the buffer layer 30 is directed from the crystalline silicon substrate 1 toward the light incident side electrode 20 and the silicon oxynitride film 32 and the silicon oxide film.
  • a structure including 34 in this order can be obtained.
  • the conductive paste of the present invention a conductive paste that can be preferably used in the method for producing a crystalline silicon solar cell of the present invention (hereinafter also referred to as “the conductive paste of the present invention”) will be described.
  • the conductive paste of the present invention is a conductive paste for forming an electrode of a crystalline silicon solar cell containing a conductive powder, a composite oxide, and an organic vehicle.
  • the composite oxide of the conductive paste of the present invention contains molybdenum oxide, boron oxide and bismuth oxide.
  • the conductive paste of the present invention contains a conductive powder.
  • a conductive powder any single element or alloy metal powder can be used.
  • a metal powder containing at least one selected from the group consisting of silver, copper, nickel, aluminum, zinc, and tin can be used.
  • a single element metal powder or an alloy powder of these metals can be used.
  • a conductive powder contained in the conductive paste of the present invention a conductive powder containing at least one selected from silver, copper and alloys thereof is preferably used. Among them, it is more preferable to use a conductive powder containing silver. Copper powder is preferable as an electrode material because it is relatively inexpensive and has high electrical conductivity. Moreover, silver powder has high electrical conductivity, and has been conventionally used as an electrode for many crystalline silicon solar cells, and has high reliability. Also in the case of the conductive paste of the present invention, a highly reliable and high performance crystalline silicon solar cell can be manufactured by using silver powder as the conductive powder. Therefore, it is preferable to use silver powder as the main component of the conductive powder.
  • the conductive paste of the present invention can contain metal powder other than silver or alloy powder with silver as long as the performance of the solar cell electrode is not impaired.
  • the conductive powder preferably contains 80% by weight or more, more preferably 90% by weight or more of the silver powder, more preferably 90% by weight or more. Is more preferably made of silver powder.
  • the particle shape and particle size of the conductive powder such as silver powder are not particularly limited.
  • As the particle shape for example, a spherical shape or a flake shape can be used.
  • the particle size refers to the size of the longest length part of one particle.
  • the particle size of the conductive powder is preferably 0.05 to 20 ⁇ m and more preferably 0.1 to 5 ⁇ m from the viewpoint of workability.
  • the particle size of a large number of fine particles has a uniform distribution, it is not necessary for all the particles to have the above-mentioned particle size, and the particle size of 50% of all particles (average particle size: D50). Is preferably in the above particle size range. The same applies to the dimensions of the particles other than the conductive powder described in this specification.
  • the average particle size can be determined by performing particle size distribution measurement by the microtrack method (laser diffraction scattering method) and obtaining a D50 value from the result of particle size distribution measurement.
  • size of electroconductive powder such as silver powder
  • the BET value of the conductive powder is preferably 0.1 to 5 m 2 / g, more preferably 0.2 to 2 m 2 / g.
  • the conductive paste of the present invention contains a composite oxide containing molybdenum oxide, boron oxide and bismuth oxide.
  • the composite oxide contained in the conductive paste of the present invention can be in the form of particulate composite oxide, that is, glass frit.
  • FIG. 2 shows three examples of molybdenum oxide, boron oxide and bismuth oxide described in Non-Patent Document 1 (R. Iordanova, novaet al., Journal of Non-Crystalline Solids, 357 (2011) pp. 2663-2668). Explanatory drawing based on the ternary composition diagram of ternary glass is shown.
  • the composition capable of vitrifying glass composed of molybdenum oxide, boron oxide, and bismuth oxide is a composition region colored in gray, which is shown as “vitrifiable region” in FIG. In the composition of the composition region shown as “non-vitrification region” in FIG. 2, vitrification cannot be performed, and thus a composite oxide having such a composition cannot exist as glass.
  • the composite oxide containing molybdenum oxide, boron oxide, and bismuth oxide that can be used for the conductive paste of the present invention is a composite oxide having a composition in the “vitrifiable region” shown in FIG.
  • a composite oxide containing boron oxide and bismuth oxide has a glass transition point of about 380 to 420 ° C. and a melting point of about 420 to 540 ° C., depending on the composition.
  • the composite oxide contained in the conductive paste of the present invention comprises molybdenum oxide, boron oxide and bismuth oxide as a total of 100 mol%, molybdenum oxide 25 to 65 mol%, boron oxide 5 to 45 mol%, and bismuth oxide 25 to 25 mol%.
  • a composition range containing 35 mol% is preferred. In FIG. 2, this composition range is shown as the composition range of the region 1.
  • molybdenum oxide in the composite oxide is more in the composition range of region 1 in FIG. Preferably, it can be 35 to 65 mol%, more preferably 40 to 60 mol%.
  • bismuth oxide in the composite oxide can be more preferably 28 to 32 mol% in the composition range of region 1 in FIG.
  • the composite oxide contained in the conductive paste of the present invention comprises molybdenum oxide, boron oxide and bismuth oxide as a total of 100 mol%, molybdenum oxide 15 to 40 mol%, boron oxide 25 to 45 mol% and bismuth oxide 25 to 25 mol%.
  • a composition range including 60 mol% is preferable. In FIG. 2, this composition range is shown as the composition range of the region 2.
  • the molybdenum oxide in the composite oxide has a composition of region 2 in FIG. In the range, it can be preferably 20 to 40 mol%.
  • boron oxide in the composite oxide can be preferably 20 to 40 mol% in the composition range of region 2 in FIG.
  • the composite oxide contained in the conductive paste of the present invention preferably contains 90 mol% or more, preferably 95 mol% or more of the total of molybdenum oxide, boron oxide and bismuth oxide in 100 mol% of the composite oxide.
  • the composite oxide contained in the conductive paste of the present invention preferably further contains 0.1 to 6 mol%, preferably 0.1 to 5 mol% of titanium oxide in 100 wt% of the composite oxide.
  • the composite oxide further contains a predetermined proportion of titanium oxide, better electrical contact can be obtained.
  • the composite oxide contained in the conductive paste of the present invention preferably further contains 0.1 to 3 mol%, preferably 0.1 to 2.5 mol% of zinc oxide in 100 wt% of the composite oxide. .
  • the composite oxide further contains a predetermined proportion of zinc oxide, better electrical contact can be obtained.
  • the conductive paste of the present invention can contain 0.1 to 10 parts by weight, more preferably 0.5 to 8 parts by weight of the composite oxide with respect to 100 parts by weight of the conductive powder. If a large amount of non-conductive complex oxide is present in the electrode, the electrical resistance of the electrode will increase. When the composite oxide of the conductive paste of the present invention is in a predetermined range, an increase in electrical resistance of the formed electrode can be suppressed.
  • the composite oxide of the conductive paste of the present invention can contain any oxide other than the above oxides as long as the predetermined performance of the composite oxide is not lost.
  • the composite oxide of the conductive paste of the present invention includes Al 2 O 3 , P 2 O 5 , CaO, MgO, ZrO 2 , Li 2 O 3 , Na 2 O 3 , CeO 2 , SnO 2 and SrO.
  • the selected oxide can be included as appropriate.
  • the shape of the composite oxide particles is not particularly limited, and for example, spherical or indefinite shapes can be used.
  • the particle size is not particularly limited, but from the viewpoint of workability, the average particle size (D50) is preferably in the range of 0.1 to 10 ⁇ m, and more preferably in the range of 0.5 to 5 ⁇ m.
  • the composite oxide that can be included in the conductive paste of the present invention can be produced, for example, by the following method.
  • a composite oxide having an average particle size of 149 ⁇ m (median diameter, D50) can be obtained.
  • the size of the composite oxide is not limited to the above example, and a composite oxide having a larger average particle size or a smaller average particle size can be obtained depending on the size of the sieve mesh. .
  • a composite oxide having a predetermined average particle diameter (D50) can be obtained.
  • the conductive paste of the present invention contains an organic vehicle.
  • the organic vehicle contained in the conductive paste of the present invention can contain an organic binder and a solvent.
  • the organic binder and the solvent play a role of adjusting the viscosity of the conductive paste and are not particularly limited. It is also possible to use an organic binder dissolved in a solvent.
  • a cellulose resin for example, ethyl cellulose, nitrocellulose and the like
  • a (meth) acrylic resin for example, polymethyl acrylate and polymethyl methacrylate
  • the addition amount of the organic binder is usually 0.2 to 30 parts by weight, preferably 0.4 to 5 parts by weight with respect to 100 parts by weight of the conductive powder.
  • Solvents include alcohols (eg terpineol, ⁇ -terpineol, ⁇ -terpineol etc.), esters (eg hydroxy group-containing esters, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, butyl 1 type or 2 types or more can be selected and used from carbitol acetate etc.).
  • the amount of the solvent added is usually 0.5 to 30 parts by weight, preferably 5 to 25 parts by weight with respect to 100 parts by weight of the conductive powder.
  • additives selected from plasticizers, antifoaming agents, dispersants, leveling agents, stabilizers, adhesion promoters, and the like can be further blended as necessary.
  • plasticizers those selected from phthalic acid esters, glycolic acid esters, phosphoric acid esters, sebacic acid esters, adipic acid esters, and citric acid esters can be used.
  • the method for producing a conductive paste of the present invention includes a step of mixing a conductive powder, a composite oxide, and an organic vehicle.
  • the conductive paste of the present invention is produced by adding, mixing, and dispersing a conductive powder, the above-described composite oxide, and optionally other additives and additive particles to an organic binder and a solvent. can do.
  • Mixing can be performed with a planetary mixer, for example. Further, the dispersion can be performed by a three roll mill. Mixing and dispersion are not limited to these methods, and various known methods can be used.
  • a single crystal silicon solar cell was prototyped using a conductive paste that can be used for the single crystal silicon solar cell of the present invention (the conductive paste of the present invention), and the solar cell characteristics were measured. Further, as Experiment 2, a contact resistance measurement electrode was prepared using the conductive paste of the present invention, and the contact resistance between the formed electrode and the impurity diffusion layer 4 of the single crystal silicon substrate was measured, Whether or not the conductive paste of the present invention can be used was determined. Further, as Experiment 3, the cross-sectional shape of the prototype single crystal silicon solar cell was observed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM), whereby the structure of the crystalline silicon solar cell of the present invention was measured. Was revealed. Furthermore, the electric characteristics of the single crystal silicon solar cell manufactured using the conductive paste of the present invention were evaluated by Experiments 4 to 6.
  • ⁇ Material and preparation ratio of conductive paste> The composition of the conductive paste used for the trial production of the single crystal silicon solar cell of Experiment 1 and the production of the contact resistance measurement electrode of Experiment 2 is as follows.
  • -Conductive powder Ag (100 weight part).
  • Organic binder Ethyl cellulose (2 parts by weight) having an ethoxy content of 48 to 49.5% by weight was used.
  • -Plasticizer Oleic acid (0.2 parts by weight) was used.
  • Solvent Butyl carbitol (5 parts by weight) was used.
  • Composite oxides Table 1 shows the types (A1, A2, B1, B2) of composite oxides (glass frit) used in the production of the single crystal silicon solar cells of Examples 1, 2 and Comparative Examples 1-6. , C1, C2, D1 and D2).
  • Table 2 shows specific compositions of the composite oxides (glass frit) A1, A2, D1, and D2.
  • the weight ratio of the composite oxide in the conductive paste was 2 parts by weight.
  • a composite oxide having a glass frit shape was used.
  • the average particle diameter D50 of the glass frit was 2 ⁇ m.
  • the composite oxide is also referred to as glass frit.
  • the method for producing the composite oxide is as follows.
  • the oxide powder (glass frit component) as a raw material shown in Table 1 was weighed, mixed, and put into a crucible.
  • Table 2 illustrates specific blending ratios of the composite oxides (glass frit) A1, A2, D1, and D2.
  • the crucible was placed in a heated oven and the temperature of the crucible was raised to the melting temperature (Melt ⁇ temperature) and maintained until the raw material was sufficiently melted at the melting temperature. Next, the crucible was taken out from the oven, the molten contents were uniformly stirred, and the contents of the crucible were quenched at room temperature using two stainless steel rolls to obtain a plate-like glass.
  • a plate-like glass was uniformly dispersed while being pulverized in a mortar, and sieved with a mesh sieve to obtain a composite oxide having a desired particle size.
  • a composite oxide having an average particle diameter of 149 ⁇ m (median diameter, D50) could be obtained by passing through a 100 mesh sieve and sieving what remains on the 200 mesh sieve. Further, the composite oxide was further pulverized to obtain a composite oxide having an average particle diameter D50 of 2 ⁇ m.
  • a conductive paste was prepared using the above-described materials such as conductive powder and composite oxide. Specifically, a conductive paste was prepared by mixing the materials of the above-mentioned predetermined preparation ratio with a planetary mixer, further dispersing with a three-roll mill, and forming a paste.
  • the substrate used was a B (boron) -doped p-type single crystal silicon substrate (substrate thickness 200 ⁇ m).
  • the substrate surface was removed by etching with a mixed solution of hydrogen fluoride, pure water and ammonium fluoride. Furthermore, heavy metal cleaning was performed with an aqueous solution containing hydrochloric acid and hydrogen peroxide.
  • a texture (uneven shape) was formed on the surface of the substrate by wet etching. Specifically, a pyramidal texture structure was formed on one side (surface on the light incident side) by a wet etching method (sodium hydroxide aqueous solution). Thereafter, it was washed with an aqueous solution containing hydrochloric acid and hydrogen peroxide.
  • phosphorus oxychloride (POCl 3 ) is used on the surface having the texture structure of the substrate, and phosphorus is diffused at a temperature of 810 ° C. for 30 minutes by a diffusion method.
  • the n-type impurity diffusion layer 4 was formed so as to have a depth.
  • the sheet resistance of the n-type impurity diffusion layer 4 was 100 ⁇ / ⁇ .
  • a silicon nitride thin film (antireflection film 2) having a thickness of about 60 nm was formed on the surface of the substrate on which the n-type impurity diffusion layer 4 was formed by using a silane gas and an ammonia gas by a plasma CVD method.
  • the single crystal silicon solar cell substrate thus obtained was cut into a 15 mm ⁇ 15 mm square and used.
  • the conductive paste for the light incident side (surface) electrode was printed by a screen printing method.
  • printing is performed with a pattern composed of a bus bar electrode portion having a width of 2 mm and six finger electrode portions having a length of 14 mm and a width of 100 ⁇ m so that the film thickness is about 20 ⁇ m. And dried at 150 ° C. for about 60 seconds.
  • the conductive paste for the back electrode 15 was printed by a screen printing method.
  • a conductive paste mainly composed of aluminum particles, composite oxide, ethyl cellulose, and a solvent was printed on the back surface of the above-mentioned substrate at 14 mm square and dried at 150 ° C. for about 60 seconds.
  • the film thickness of the conductive paste for the back electrode 15 after drying was about 20 ⁇ m.
  • a substrate on which the conductive paste is printed on the front and back surfaces is subjected to predetermined conditions in the atmosphere using a near-infrared baking furnace (DESPATCH high-speed baking furnace for solar cells) using a halogen lamp as a heating source.
  • the firing conditions were a peak temperature of 800 ° C., and both sides were fired simultaneously in the atmosphere in and out of the firing furnace for 60 seconds.
  • a single-crystal silicon solar cell was prototyped as described above.
  • the measurement of the electrical characteristics of the solar battery cell was performed as follows. That is, the current-voltage characteristics of the prototype single crystal silicon solar cell were measured under irradiation of solar simulator light (AM1.5, energy density 100 mW / cm 2 ), and the fill factor (FF), open-circuit voltage ( Voc), short circuit current density (Jsc), and conversion efficiency ⁇ (%) were calculated. Two samples having the same conditions were prepared, and the measured value was obtained as an average value of the two samples.
  • the characteristics of the single crystal silicon solar cells of Comparative Examples 1 to 6 were lower than those of the single crystal silicon solar cells of Example 1 and Example 2.
  • the fill factor (FF) was particularly high. This suggests that in the single crystal silicon solar cells of Example 1 and Example 2, the contact resistance between the light incident side electrode 20 and the impurity diffusion layer 4 of the single crystal silicon substrate was low.
  • the open circuit voltage (Voc) was higher than those of Comparative Examples 1 to 6. This suggests that the surface recombination rate of the carriers is lower in the single crystal silicon solar cells of Example 1 and Example 2 than in Comparative Examples 1-6.
  • the recombination current J02 was lower than those of Comparative Examples 1-6. This suggests that the recombination rate of carriers in the depletion layer of the pn junction inside the single crystal silicon solar cells of Example 1 and Example 2 is low. That is, in the single crystal silicon solar cells of Example 1 and Example 2, compared with Comparative Examples 1 to 6, the recombination level density caused by diffusion of impurities contained in the conductive paste in the vicinity of the pn junction. Is suggested to be low.
  • the light incident side electrode 20 is formed on the single crystal silicon solar cell having the antireflection film 2 made of a silicon nitride thin film or the like on the surface. At this time, it was found that the contact resistance between the light incident side electrode 20 and the emitter layer is low, and good electrical contact can be obtained. This means that when the conductive paste of the present invention is used, an electrode having good electrical contact can be formed when forming an electrode on the surface of a general crystalline silicon substrate 1. Is suggested.
  • Example 2 Preparation of electrode for contact resistance measurement>
  • an electrode was formed on the surface of the crystalline silicon substrate 1 having the impurity diffusion layer 4 using a conductive paste containing composite oxides having different compositions, and contact resistance was measured. did.
  • a contact resistance measurement pattern using the conductive paste of the present invention is screen-printed on a single crystal silicon substrate having a predetermined impurity diffusion layer 4, dried, and baked to measure contact resistance.
  • An electrode was obtained.
  • Table 4 shows the compositions of the composite oxide (glass frit) in the conductive paste used in Experiment 2 as samples a to g.
  • the compositions corresponding to the composite oxides (glass frit) of the samples a to g are shown.
  • the method for producing the contact resistance measuring electrode is as follows.
  • the substrate is a p-type single crystal silicon substrate (substrate thickness 200 ⁇ m) doped with B (boron), the substrate surface is removed, and heavy metal cleaning is performed. went.
  • a texture (uneven shape) was formed on the surface of the substrate by wet etching. Specifically, a pyramidal texture structure was formed on one side (surface on the light incident side) by a wet etching method (sodium hydroxide aqueous solution). Thereafter, it was washed with an aqueous solution containing hydrochloric acid and hydrogen peroxide.
  • phosphorus oxychloride (POCl 3 ) was used on the surface of the substrate, and phosphorus was diffused at a temperature of 810 ° C. for 30 minutes by a diffusion method.
  • the n-type impurity diffusion layer 4 was formed so as to have a sheet resistance of 100 ⁇ / ⁇ .
  • the contact resistance measurement substrate thus obtained was used for the production of a contact resistance measurement electrode.
  • the conductive paste was printed on the contact resistance measurement substrate by a screen printing method.
  • a contact resistance measurement pattern was printed on the substrate so that the film thickness was about 20 ⁇ m, and then dried at 150 ° C. for about 60 seconds.
  • the contact resistance measurement pattern is a pattern in which five rectangular electrode patterns having a width of 0.5 mm and a length of 13.5 mm are arranged so that the intervals are 1, 2, 3, and 4 mm, respectively. Was used.
  • the substrate printed with the contact resistance measurement pattern with the conductive paste on the surface as described above is used in the atmosphere. And calcining under predetermined conditions.
  • the firing conditions were the same as in the trial production of the single crystal silicon solar cell in Experiment 1, with a peak temperature of 800 ° C., and firing was performed in the firing furnace in-out for 60 seconds in the atmosphere.
  • a contact resistance measuring electrode was prototyped. Three samples having the same conditions were prepared, and the measured values were obtained as an average value of the three samples.
  • the contact resistance was measured using the electrode pattern shown in FIG. 7 as described above.
  • the contact resistance was determined by measuring the electrical resistance between the predetermined rectangular electrode patterns shown in FIG. 7 and separating the contact resistance component and the sheet resistance component.
  • the contact resistance is 100 m ⁇ ⁇ cm 2 or less, it can be used as an electrode of a single crystal silicon solar cell.
  • the contact resistance is 25 m ⁇ ⁇ cm 2 or less, it can be preferably used as an electrode of a crystalline silicon solar cell.
  • the contact resistance is 10 m ⁇ ⁇ cm 2 or less, it can be more preferably used as an electrode of a crystalline silicon solar cell.
  • the contact resistance is 350 m ⁇ ⁇ cm 2 or less, there is a possibility that it can be used as an electrode of a crystalline silicon solar cell.
  • the contact resistance exceeds 350 m ⁇ ⁇ cm 2 , it is difficult to use as an electrode of a crystalline silicon solar cell.
  • FIG. 2 shows regions including the composition range of the composite oxide (glass frit) of samples b to f as region 1 and region 2.
  • the composition range of region 1 in FIG. 2 is a composition in the range of 35 to 65 mol% molybdenum oxide, 5 to 45 mol% boron oxide, and 25 to 35 mol% bismuth oxide, where the total of boron oxide and bismuth oxide is 100 mol%. It is an area.
  • Example 3 Structure of crystalline silicon solar cell> A cross section of a single crystal silicon solar cell prototyped using the conductive paste containing the composite oxide (glass frit) shown in Table 4 in the same manner as in Example 1 except for the composition of the composite oxide The structure of the crystalline silicon solar cell of the present invention was clarified by observing the shape using a scanning electron microscope (SEM) and a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • FIG. 4 is a scanning electron microscope (SEM) of the cross section of the crystalline silicon solar cell of the present invention, and shows a scanning electron micrograph near the interface between the single crystal silicon substrate and the light incident side electrode 20.
  • FIG. 3 shows a scanning electron microscope of a cross section of a crystalline silicon solar cell prototyped by the same method as in Comparative Example 5, in the vicinity of the interface between the single crystal silicon substrate and the light incident side electrode 20.
  • a scanning electron micrograph is shown.
  • FIG. 5 is a transmission electron microscope (TEM) photograph of a cross section of the crystalline silicon solar cell shown in FIG. 4, showing an enlarged photograph of the vicinity of the interface between the single crystal silicon substrate and the light incident side electrode 20.
  • FIG. 6 is a schematic diagram for explaining the transmission electron micrograph of FIG.
  • the area of the portion where the silver 22 in the light incident side electrode 20 is in contact with the p-type crystalline silicon substrate 1 Is estimated to be 5% or more, or approximately 10% or more, of the area immediately below the light incident side electrode 20 between the light incident side electrode 20 and the single crystal silicon substrate. .
  • FIG. 5 shows this TEM photograph.
  • FIG. 6 is a schematic diagram for explaining the structure of the TEM photograph of FIG.
  • the buffer layer 30 including the silicon oxynitride film 32 and the silicon oxide film 34 exists between the single crystal silicon substrate 1 and the light incident side electrode 20.
  • the portion where the silver 22 in the incident side electrode 20 and the p-type crystalline silicon substrate 1 seem to be in contact is observed in detail using a TEM.
  • the silicon oxynitride film 32 and the silicon oxide film 34 are insulating films, they contribute to electrical contact between the single crystal silicon substrate 1 and the light incident side electrode 20 in some form. It is thought that.
  • the buffer layer 30 has a negative effect on the solar cell characteristics by diffusing components or impurities in the conductive paste into the p-type or n-type impurity diffusion layer 4 when firing the conductive paste. It is thought to play a role to prevent. Therefore, the structure having the buffer layer 30 including the silicon oxynitride film 32 and the silicon oxide film 34 in this order at least at a part immediately below the light incident side electrode 20 of the crystalline silicon solar cell provides high performance. It can be assumed that crystalline silicon solar cell characteristics can be obtained. Furthermore, it can be assumed that the silver fine particles 36 contained in the buffer layer 30 further contribute to the electrical contact between the single crystal silicon substrate 1 and the light incident side electrode 20.
  • n-type Impurity Diffusion Layer 4 As an example of Experiment 4, when forming the n-type impurity diffusion layer 4 (emitter layer), the n-type impurity concentration is 8 ⁇ 10 19 cm ⁇ 3 (junction depth 250 to 300 nm, sheet resistance: 130 ⁇ / ⁇ ).
  • a single crystal silicon solar cell of Example 3 was made in the same manner as Example 1 except that the firing temperature (peak temperature) of the conductive paste for electrode formation was 750 ° C. That is, the composite oxide (glass frit) in the conductive paste used in Example 3 was A1 shown in Table 2.
  • a single crystal silicon solar cell of Example 4 was made in the same manner as Example 3 except that the firing temperature (peak temperature) of the conductive paste was 775 ° C. Three solar cells having the same conditions were produced, and the measured values were obtained as an average value of the three.
  • a single crystal silicon solar cell of Comparative Example 7 was used in the same manner as in Example 3 except that D1 shown in Table 2 was used as the composite oxide (glass frit) in the conductive paste. Prototyped.
  • a single-crystal silicon solar cell of Comparative Example 8 was prototyped in the same manner as Comparative Example 7 except that the firing temperature (peak temperature) of the conductive paste was 775 ° C. Three solar cells having the same conditions were produced, and the measured values were obtained as an average value of the three.
  • the impurity concentration of the emitter layer of the single crystal silicon solar cell is 2 to 3 ⁇ 10 20 cm ⁇ 3 (sheet resistance: 90 ⁇ / ⁇ ). Therefore, the impurity concentration of the emitter layer of the single crystal silicon solar cells of Example 3, Example 4, Comparative Example 7 and Comparative Example 8 is 1/3 to 1 compared with the impurity concentration of the emitter layer of a normal solar cell.
  • the impurity concentration is as low as / 4. Generally, when the impurity concentration of the emitter layer is low, the contact resistance between the electrode and the crystalline silicon substrate 1 becomes high, and it becomes difficult to obtain a crystalline silicon solar cell with good performance.
  • Table 5 shows the solar cell characteristics of the single crystal silicon solar cells of Example 3, Example 4, Comparative Example 7, and Comparative Example 8. As shown in Table 5, the fill factors of Comparative Example 7 and Comparative Example 8 were low values of 0.534 and 0.717. On the other hand, the fill factor of Example 3 and Example 4 exceeded 0.76. Moreover, the conversion efficiency of the single crystal silicon solar cells of Example 3 and Example 4 was as high as 18.9% or more. Therefore, it can be said that the single crystal silicon solar cell of the present invention can obtain a high performance crystalline silicon solar cell even when the impurity concentration of the emitter layer is low.
  • Example 5 Impurity concentration of n-type impurity diffusion layer 4 and saturation current density of emitter directly under electrode>
  • single crystal silicon solar cells of Examples 5 to 7 were made in the same manner as Example 1 except that the impurity concentration of the emitter layer was changed. That is, A1 in Table 2 was used as the composite oxide (glass frit) in the conductive paste for Examples 5 to 7.
  • single crystal silicon solar cells of Comparative Examples 9 to 11 were made in the same manner as in Examples 5 to 7 except that D1 in Table 2 was used as the composite oxide (glass frit) in the conductive paste.
  • the saturation current density (J 01 ) of the emitter layer directly under the light incident side electrode 20 of the solar cell obtained as Experiment 5 was measured.
  • ⁇ Experiment 6 Relationship between the area of the dummy electrode portion, the open circuit voltage, and the saturation current density of the emitter>
  • a monocrystalline silicon solar cell was manufactured by changing the area of the dummy electrode portion on the emitter layer, and the open-circuit voltage, which is one of the solar cell characteristics, and the saturation current density of the emitter were measured.
  • the dummy electrode part is an electrode that is not electrically connected to the bus bar electrode part (not connected to the bus bar electrode part). The surface recombination of carriers at the dummy electrode portion increases in proportion to the area of the dummy electrode portion.
  • FIGS. 11, 12, and 13 are schematic diagrams of electrode shapes in which the dummy finger electrode portions 54 between the connection finger electrode portions 52 are one, two, and three. In the actual electrode shape, 64 connection finger electrode portions 52 (width 100 ⁇ m, length 140 mm) are orthogonal to each other with respect to one bus bar electrode portion 50 (width 2 mm, length 140 mm).
  • the bus-bar electrode part 50 and the connection finger electrode part 52 were arrange
  • the center interval between the connecting finger electrode portions 52 was 2.443 mm.
  • the dummy finger electrode portion 54 was formed in a dashed line shape having a length of 5 mm and a width of 100 ⁇ m continuously arranged at an interval of 1 mm.
  • the broken-line dummy finger electrode portions 54 are arranged between the connection finger electrode portions 52 at a predetermined number and at equal intervals.
  • the bus bar electrode part 50 and the connecting finger electrode part 52 are connected so that current can be taken out to the outside and can measure solar cell measurement.
  • the dummy finger electrode portion 54 is not connected to the bus bar electrode portion 50 and is isolated.

Abstract

 本発明は、高性能の結晶系シリコン太陽電池を得ることを目的とする。 本発明は、第一の導電型の結晶系シリコン基板と、結晶系シリコン基板の少なくとも一つの表面の少なくとも一部に形成された不純物拡散層と、不純物拡散層の表面の少なくとも一部に形成された緩衝層と、緩衝層の表面に形成された電極とを有する結晶系シリコン太陽電池であって、電極が、導電性金属及び複合酸化物を含み、緩衝層が、ケイ素、酸素、及び窒素を含む層である、結晶系シリコン太陽電池である。

Description

結晶系シリコン太陽電池及びその製造方法
 本発明は、単結晶シリコン又は多結晶シリコン等の基板(結晶系シリコン基板)を用いた結晶系シリコン太陽電池に関する。また、本発明は、結晶系シリコン太陽電池の製造方法に関する。
 単結晶シリコン又は多結晶シリコンを平板状に加工した結晶系シリコンを基板に用いた結晶系シリコン太陽電池は、近年、その生産量が大幅に増加している。これらの太陽電池は、発電した電力を取り出すための電極を有する。従来、結晶系シリコン太陽電池の電極形成には、導電性粉末、ガラスフリット、有機バインダ、溶剤及びその他の添加剤を含む導電性ペーストが用いられている。この導電性ペーストに含まれるガラスフリットとしては、例えば、酸化鉛を含有するホウケイ酸鉛ガラスフリットが用いられている。
 太陽電池の製造方法として、例えば、特許文献1には、半導体デバイス(太陽電池デバイス)の製造方法が記載されている。具体的には、特許文献1には、(a)1つ又は複数の半導体基材、1つ又は複数の絶縁膜、及び厚膜組成物を提供するステップであって、前記厚膜組成物が、a)導電性銀と、b)1つ又は複数のガラスフリットと、c)Mg含有添加剤とを、d)有機媒体に分散させて含むステップと、(b)前記半導体基材上に前記絶縁膜を適用するステップと、(c)前記半導体基材上の前記絶縁膜上に前記厚膜組成物を適用するステップと、(d)前記半導体、絶縁膜及び厚膜組成物を焼成するステップとを含み、焼成の際に、前記有機ビヒクルが除去され、前記銀とガラスフリットとが焼結される太陽電池デバイスの製造方法が記載されている。さらに、特許文献1には、特許文献1に記載の前面電極銀ペーストは、焼成中に窒化ケイ素膜(反射防止膜)と反応してこれに浸透して、n型層と電気的に接触(ファイアースルー)することができることが記載されている。
 一方、非特許文献1には、酸化モリブデン、酸化ホウ素及び酸化ビスマスからなる三元系ガラスについて、ガラス化が可能な組成の領域及び含まれる酸化物のアモルファスネットワークに関する研究成果が記載されている。
特表2011-503772号公報
R. Iordanova, et al., Journal of Non-Crystalline Solids, 357 (2011) pp.2663-2668
 高い変換効率の結晶系シリコン太陽電池を得るために、光入射側電極(表面電極ともいう。)と、結晶系シリコン基板の表面に形成された不純物拡散層(エミッタ層ともいう。)との間の電気抵抗(接触抵抗)を低減することは、重要な課題である。一般に、結晶系シリコン太陽電池の光入射側電極を形成する際には、銀粉末が含まれる導電性ペーストの電極パターンを、結晶系シリコン基板の表面のエミッタ層に印刷し、焼成する。光入射側電極と、結晶系シリコン基板のエミッタ層との間の接触抵抗を低減するために、ガラスフリットのような複合酸化物を構成する酸化物の種類及び組成を選択することが必要である。光入射側電極を形成するための導電性ペーストに添加される複合酸化物の種類が、太陽電池特性に影響を及ぼすためである。
 光入射側電極を形成するための導電性ペーストを焼成する際に、導電性ペーストが、反射防止膜、例えば窒化ケイ素を材料とする反射防止膜をファイアースルーする。この結果、光入射側電極は、結晶系シリコン基板の表面に形成されたエミッタ層に接触する。従来の導電性ペーストにおいて、反射防止膜をファイアースルーするためには、焼成の際に、複合酸化物が反射防止膜をエッチングすることが必要である。しかしながら、複合酸化物の作用は、反射防止膜のエッチングに留まらず、結晶系シリコン基板の表面に形成されたエミッタ層に対しても悪影響を及ぼすことがある。このような悪影響としては、例えば、複合酸化物中の予期せぬ不純物が不純物拡散層に拡散することにより、太陽電池のpn接合に悪影響を与えることがある。このような悪影響は、具体的には、太陽電池特性においては、開放電圧(Open Circuit Voltage:Voc)の低下となって現れる。また、結晶系シリコン基板の表面に形成されたエミッタ層は、光反射防止膜を形成することによって不動態化(パッシベーション)されているものの、光入射側電極の形成により反射防止膜がファイアースルーされるので、その部分には、多数の表面欠陥が存在することとなる。そのため、光入射側電極の直下の結晶系シリコン基板の表面において、キャリアの再結合による光起電力の損失が生じることとなる。これらの問題は、裏面に正負両電極を配置した裏面電極型の結晶系シリコン太陽電池においても、同様である。
 そこで、本発明は、高性能の結晶系シリコン太陽電池を得ることを目的とする。特に、本発明は、電極と、結晶系シリコン基板との間の、改善された界面を有する高性能の結晶系シリコン太陽電池を得ることを目的とする。具体的には、本発明は、窒化ケイ素薄膜等を材料とする反射防止膜を表面に有する結晶系シリコン太陽電池において、光入射側電極を形成する際に、太陽電池特性に対して悪影響を及ぼさないような光入射側電極を有する結晶系シリコン太陽電池を得ることを目的とする。また、本発明は、結晶系シリコン基板において、その裏面に対して電極を形成する際に、太陽電池特性に対して悪影響を及ぼさないような裏面電極を有する結晶系シリコン太陽電池を得ることを目的とする。
 また、本発明は、高性能の結晶系シリコン太陽電池を製造することのできる、結晶系シリコン太陽電池の製造方法を得ることを目的とする。
 本発明者らは、結晶系シリコン太陽電池の電極形成用導電性ペーストに含まれるガラスフリットのような複合酸化物として、所定の組成のものを用いることにより、不純物を拡散した不純物拡散層(エミッタ層)に対して低接触抵抗の電極を形成することができることを見出し、本発明に至った。また、本発明者は、例えば所定の組成の複合酸化物を含む電極形成用導電性ペーストを用いて電極を形成したような場合、光入射側電極と、結晶系シリコン基板との間であって、光入射側電極の直下の少なくとも一部に、特殊な構造の緩衝層が形成されることを見出した。さらに、本発明者は、緩衝層の存在により、結晶系シリコン太陽電池の性能が向上することを見出し、本発明に至った。
 上記の知見に基づいてなされた本発明は、次の構成を有する。本発明は、下記の構成1~16であることを特徴とする結晶系シリコン太陽電池、及び下記の構成17~32であることを特徴とする結晶系シリコン太陽電池の製造方法である。
(構成1)
 本発明の構成1は、第一の導電型の結晶系シリコン基板と、結晶系シリコン基板の少なくとも一つの表面の少なくとも一部に形成された不純物拡散層と、不純物拡散層の表面の少なくとも一部に形成された緩衝層と、緩衝層の表面に形成された電極とを有する結晶系シリコン太陽電池であって、電極が、導電性金属及び複合酸化物を含み、緩衝層が、ケイ素、酸素、及び窒素を含む層である、結晶系シリコン太陽電池である。結晶系シリコン基板が、所定の緩衝層を有することにより、高性能の結晶系シリコン太陽電池を得ることができる。
(構成2)
 本発明の構成2は、緩衝層に含まれる導電性金属元素、ケイ素、酸素、及び窒素を含む層である、構成1に記載の結晶系シリコン太陽電池である。結晶系シリコン基板が、ケイ素、酸素、及び窒素に加えて導電性金属元素を有する緩衝層を有することにより、高性能の結晶系シリコン太陽電池を得るための、好ましい緩衝層を得ることができる。
(構成3)
 本発明の構成3は、緩衝層に含まれる導電性金属元素が銀である、構成2に記載の結晶系シリコン太陽電池である。銀は電気抵抗率が低いので、緩衝層に含まれる導電性金属元素として好ましく用いることができる。
(構成4)
 本発明の構成4は、不純物拡散層が、第一の導電型の結晶系シリコン基板の光入射側表面に形成された、第二の導電型の不純物拡散層であり、電極が、結晶系シリコン基板の光入射側表面に形成された光入射側電極であり、電極が形成されていない部分に対応する不純物拡散層の表面の少なくとも一部に、窒化ケイ素を材料とする反射防止膜を有する、構成1~3のいずれかに記載の結晶系シリコン太陽電池である。結晶系シリコン太陽電池において、所定の緩衝層が、光入射側電極の直下に形成される場合に、より高性能の結晶系シリコン太陽電池を得ることができる。また、窒化ケイ素を材料とする反射防止膜が形成された表面に光入射側電極を形成することにより、ケイ素、酸素、及び窒素を含む緩衝層を確実に形成することができる。
(構成5)
 本発明の構成5は、光入射側電極が、不純物拡散層と電気的接触をするためのフィンガー電極部と、フィンガー電極部及び外部へ電流を取り出すための導電性リボンに対して電気的接触をするためのバスバー電極部とを含み、緩衝層が、フィンガー電極部と、結晶系シリコン基板との間であって、フィンガー電極部の直下の少なくとも一部に形成される、構成4に記載の結晶系シリコン太陽電池である。フィンガー電極部は不純物拡散層からの電流を集電する役割を担う。そのため、緩衝層が、フィンガー電極部の直下に形成される構造であることにより、高性能の結晶系シリコン太陽電池を得ることを、より確実にできる。
(構成6)
 本発明の構成6は、結晶系シリコン基板の光入射側表面とは反対側の裏面に形成された裏面電極を有する、構成4又は5に記載の結晶系シリコン太陽電池である。結晶系シリコン太陽電池が裏面電極を有することにより、光入射側と裏面電極とから、電流を外部に取り出すことができる。
(構成7)
 本発明の構成7は、不純物拡散層が、第一の導電型の結晶系シリコン基板の光入射側表面とは反対側の表面である裏面に形成された、第一の導電型及び第二の導電型の不純物拡散層であり、第一の導電型及び第二の導電型の不純物拡散層が、それぞれ櫛状に、互いに入り込むように配置され、緩衝層が、第一の導電型及び第二の導電型の不純物拡散層の表面の少なくとも一部に形成された緩衝層であり、電極が、第一の導電型の不純物拡散層の表面の少なくとも一部に形成された緩衝層の表面に形成された第一の電極、及び第二の導電型の不純物拡散層の表面の少なくとも一部に形成された緩衝層の表面に形成された第二の電極である、構成1~3のいずれかに記載の結晶系シリコン太陽電池である。正負の両電極が裏面に配置される裏面電極型の結晶系シリコン太陽電池において、所定の緩衝層が、裏面電極の直下に形成される場合にも、高性能の結晶系シリコン太陽電池を得ることができる。
(構成8)
 本発明の構成8は、電極が形成されていない部分に対応する第一の導電型の結晶系シリコン基板の裏面及び不純物拡散層の少なくとも一部に、窒化ケイ素を材料とする窒化ケイ素膜を有する、構成7に記載の結晶系シリコン太陽電池である。窒化ケイ素を材料とする窒化ケイ素膜が形成された裏面に裏面電極を形成することにより、裏面電極と、結晶系シリコン基板との間にケイ素、酸素、及び窒素を含む緩衝層を確実に形成することができる。
(構成9)
 本発明の構成9は、緩衝層の少なくとも一部が、結晶系シリコン基板から電極に向かって、酸窒化ケイ素膜及び酸化ケイ素膜をこの順で含む、構成1~7のいずれかに記載の結晶系シリコン太陽電池である。結晶系シリコン太陽電池が、所定の構造の緩衝層を有することにより、高性能の結晶系シリコン太陽電池を確実に得ることができる。
(構成10)
 本発明の構成10は、緩衝層が、導電性金属元素の導電性微粒子を含む、構成9に記載の結晶系シリコン太陽電池である。導電性微粒子は導電性を有するため、緩衝層が導電性微粒子を含むことにより、さらに高性能の結晶系シリコン太陽電池を得ることができる。
(構成11)
 本発明の構成11は、導電性微粒子の粒径が、20nm以下である、構成10に記載の結晶系シリコン太陽電池である。導電性微粒子が所定の粒径であることにより、導電性微粒子を緩衝層内に安定して存在させることができる。
(構成12)
 本発明の構成12は、導電性微粒子が、緩衝層の酸化ケイ素膜中のみに存在する、構成10又は11に記載の結晶系シリコン太陽電池である。導電性微粒子が、緩衝層の酸化ケイ素膜中のみに存在することにより、より高性能の結晶系シリコン太陽電池を得ることができるものと推測できる。
(構成13)
 本発明の構成13は、導電性微粒子が、銀微粒子である、構成10~12のいずれかに記載の結晶系シリコン太陽電池である。銀粉末は、導電率が高く、従来から多くの結晶系シリコン太陽電池用の電極として用いられており、信頼性が高い。結晶系シリコン太陽電池の製造の際に、導電性粉末として銀粉末を用いることにより、緩衝層内の導電性微粒子が銀微粒子となる。この結果、信頼性が高く、高性能の結晶系シリコン太陽電池を得ることができる。
(構成14)
 本発明の構成14は、電極と、不純物拡散層との間に配置される緩衝層の面積が、電極の直下の面積の5%以上である、構成1~13のいずれかに記載の結晶系シリコン太陽電池である。光入射側電極の直下に緩衝層が存在する面積が所定割合以上の場合には、高性能の結晶系シリコン太陽電池を得ることを、より確実にできる。
(構成15)
 本発明の構成15は、電極に含まれる複合酸化物が、酸化モリブデン、酸化ホウ素及び酸化ビスマスを含む、構成1~14のいずれかに記載の結晶系シリコン太陽電池である。複合酸化物が、酸化モリブデン、酸化ホウ素及び酸化ビスマスの3成分を含むことにより、本発明の高性能の結晶系シリコン太陽電池の構造を確実に得ることができる。
(構成16)
 本発明の構成16は、複合酸化物が、酸化モリブデン、酸化ホウ素及び酸化ビスマスの合計を100モル%として、酸化モリブデン25~65モル%、酸化ホウ素5~45モル%及び酸化ビスマス25~35モル%を含む、構成15に記載の結晶系シリコン太陽電池である。複合酸化物を所定の組成にすることにより、太陽電池特性に対して悪影響を及ぼさずに、所定の結晶系シリコン太陽電池の光入射側電極と、不純物拡散層との間の接触抵抗が低く、良好な電気的接触を得ることを確実にできる。
(構成17)
 本発明の構成17は、第一の導電型の結晶系シリコン基板を用意する工程と、結晶系シリコン基板の少なくとも一つの表面の少なくとも一部に、不純物拡散層を形成する工程と、不純物拡散層の表面に、窒化ケイ素膜を形成する工程と、導電性ペーストを、不純物拡散層の表面に形成された窒化ケイ素膜の表面に印刷し、及び焼成することによって、電極と、電極及び不純物拡散層の間の緩衝層とを形成する工程とを含む、結晶系シリコン太陽電池の製造方法であって、緩衝層が、ケイ素、酸素、及び窒素を含む層である、結晶系シリコン太陽電池の製造方法である。結晶系シリコン太陽電池の電極が、上述の本発明の導電性ペーストを焼成することにより形成されることにより、所定の緩衝層を有する本発明の高性能の結晶系シリコン太陽電池を製造することができる。
(構成18)
 本発明の構成18は、緩衝層が、導電性金属元素、ケイ素、酸素、及び窒素を含む層である、構成17に記載の結晶系シリコン太陽電池の製造方法である。結晶系シリコン基板が、ケイ素、酸素、及び窒素に加えて導電性金属元素を有する緩衝層を有することにより、高性能の結晶系シリコン太陽電池を得るための、好ましい緩衝層を形成することができる。
(構成19)
 本発明の構成19は、緩衝層に含まれる導電性金属元素が銀である、構成18に記載の結晶系シリコン太陽電池の製造方法である。銀は電気抵抗率が低いので、緩衝層に含まれる導電性金属元素として好ましく用いることができる。
(構成20)
 本発明の構成20は、不純物拡散層が、第一の導電型の結晶系シリコン基板の光入射側表面に形成された、第二の導電型の不純物拡散層であり、電極が、結晶系シリコン基板の光入射側表面に形成された光入射側電極である、構成17~19に記載の結晶系シリコン太陽電池の製造方法である。結晶系シリコン太陽電池において、所定の緩衝層が、光入射側電極の直下に形成される場合に、より高性能の結晶系シリコン太陽電池を得ることができる。また、窒化ケイ素を材料とする反射防止膜が形成された表面に光入射側電極を形成することにより、ケイ素、酸素、及び窒素を含む緩衝層を確実に形成することができる。
(構成21)
 本発明の構成21は、光入射側電極が、不純物拡散層と電気的接触をするためのフィンガー電極部と、フィンガー電極部及び外部へ電流を取り出すための導電性リボンに対して電気的接触をするためのバスバー電極部とを含み、緩衝層が、フィンガー電極部と、結晶系シリコン基板との間であって、フィンガー電極部の直下の少なくとも一部に形成される、構成20に記載の結晶系シリコン太陽電池の製造方法である。フィンガー電極部は不純物拡散層からの電流を集電する役割を担う。そのため、緩衝層が、フィンガー電極部の直下に形成されるように結晶系シリコン太陽電池を製造することにより、高性能の結晶系シリコン太陽電池を得ることを、より確実にできる。
(構成22)
 本発明の構成22は、結晶系シリコン基板の光入射側表面とは反対側の裏面に裏面電極を形成する工程をさらに含む、構成20又は21に記載の結晶系シリコン太陽電池の製造方法である。結晶系シリコン太陽電池の裏面電極を形成することにより、光入射側と裏面電極とから、電流を外部に取り出すことができる。
(構成23)
 本発明の構成23は、不純物拡散層を形成する工程が、第一の導電型の結晶系シリコン基板の光入射側表面とは反対側の表面である裏面に、第一の導電型及び第二の導電型の不純物拡散層を形成することを含み、第一の導電型及び第二の導電型の不純物拡散層が、それぞれ櫛状に、互いに入り込むように配置され、緩衝層が、第一の導電型及び第二の導電型の不純物拡散層の表面の少なくとも一部に形成された緩衝層であり、電極が、第一の導電型の不純物拡散層の表面の少なくとも一部に形成された緩衝層の表面に形成された第一の電極、及び第二の導電型の不純物拡散層の表面の少なくとも一部に形成された緩衝層の表面に形成された第二の電極である、構成17~19に記載の結晶系シリコン太陽電池の製造方法である。正負の両電極が裏面に配置される裏面電極型の結晶系シリコン太陽電池の製造方法において、所定の緩衝層が、裏面電極の直下に形成される場合にも、高性能の結晶系シリコン太陽電池を得ることができる。
(構成24)
 本発明の構成24は、窒化ケイ素膜を形成する工程が、電極が形成されていない部分に対応する第一の導電型の結晶系シリコン基板の裏面及び不純物拡散層の少なくとも一部に、窒化ケイ素を材料とする窒化ケイ素膜を形成することを含む、構成23に記載の結晶系シリコン太陽電池の製造方法である。窒化ケイ素を材料とする窒化ケイ素膜が形成された裏面に裏面電極を形成することにより、裏面電極と、結晶系シリコン基板との間にケイ素、酸素、及び窒素を含む緩衝層を確実に形成することができる。
(構成25)
 本発明の構成25は、緩衝層の少なくとも一部が、結晶系シリコン基板から光入射側電極に向かって、酸窒化ケイ素膜及び酸化ケイ素膜をこの順で含む、構成17~24のいずれかに記載の結晶系シリコン太陽電池の製造方法である。結晶系シリコン太陽電池が、所定の構造の緩衝層を有するようにすることにより、高性能の結晶系シリコン太陽電池をより確実に製造することができる。
(構成26)
 本発明の構成26は、電極を形成する工程が、導電性ペーストを、400~850℃で焼成することを含む、構成17~25のいずれかにに記載の結晶系シリコン太陽電池の製造方法である。導電性ペーストを所定の温度範囲で焼成することにより、所定の構造の本発明の高性能の結晶系シリコン太陽電池を確実に製造することができる。
(構成27)
 本発明の構成27は、導電性ペーストが、導電性粉末と、複合酸化物と、有機ビヒクルとを含み、複合酸化物が、酸化モリブデン、酸化ホウ素及び酸化ビスマスを含む、構成17~26のいずれかに記載の結晶系シリコン太陽電池の製造方法である。導電性粉末と、複合酸化物と、有機ビヒクルとを含み、複合酸化物が、酸化モリブデン、酸化ホウ素及び酸化ビスマスを含む導電性ペーストを用いて結晶系シリコン基板の表面に対して電極を形成することにより、所定の緩衝層を確実に形成することができるので、所定の結晶系シリコン太陽電池の電極と、不純物拡散層との間の接触抵抗を確実に低くすることができる。
(構成28)
 本発明の構成28は、複合酸化物が、酸化モリブデン、酸化ホウ素及び酸化ビスマスの合計を100モル%として、酸化モリブデン25~65モル%、酸化ホウ素5~45モル%及び酸化ビスマス25~35モル%を含む、構成27に記載の結晶系シリコン太陽電池の製造方法である。導電性ペーストに含まれる複合酸化物を所定の組成にすることにより、太陽電池特性に対して悪影響を及ぼさずに、所定の結晶系シリコン太陽電池の電極と、不純物拡散層との間の接触抵抗が低く、良好な電気的接触を得ることのできる太陽電池を確実に製造することができる。
(構成29)
 本発明の構成29は、複合酸化物が、酸化モリブデン、酸化ホウ素及び酸化ビスマスの合計を100モル%として、酸化モリブデン15~40モル%、酸化ホウ素25~45モル%及び酸化ビスマス25~60モル%を含む、構成27に記載の結晶系シリコン太陽電池の製造方法である。複合酸化物を所定の組成にすることにより、太陽電池特性に対して悪影響を及ぼさずに、所定の結晶系シリコン太陽電池の電極と、不純物拡散層との間の接触抵抗が低く、良好な電気的接触を得ることのできる太陽電池をより確実に製造することができる。
(構成30)
 本発明の構成30は、複合酸化物が、複合酸化物100モル%中、酸化モリブデン、酸化ホウ素及び酸化ビスマスの合計を90モル%以上含む、構成27~29のいずれかに記載の結晶系シリコン太陽電池の製造方法である。酸化モリブデン、酸化ホウ素及び酸化ビスマスの3成分を所定割合以上にすることにより、太陽電池特性に対して悪影響を及ぼさずに、所定の結晶系シリコン太陽電池の電極と、不純物拡散層との間の接触抵抗が低く、良好な電気的接触を得ることのできる太陽電池をさらに確実に製造することができる。
(構成31)
 本発明の構成31は、複合酸化物が、複合酸化物100重量%中、酸化チタン0.1~6モル%をさらに含む、構成27~30のいずれかに記載の結晶系シリコン太陽電池の製造方法である。複合酸化物が所定の割合の酸化チタンをさらに含むことにより、より良好な電気的接触を得ることができる。
(構成32)
 本発明の構成32は、複合酸化物が、複合酸化物100重量%中、酸化亜鉛0.1~3モル%をさらに含む、構成27~31のいずれかに記載の結晶系シリコン太陽電池の製造方法である。複合酸化物が所定の割合の酸化亜鉛をさらに含むことにより、さらに良好な電気的接触を得ることができる。
(構成33)
 本発明の構成33は、導電性ペーストが、導電性粉末100重量部に対し、複合酸化物を0.1~10重量部含む、構成27~32のいずれかに記載の結晶系シリコン太陽電池の製造方法である。非導電性の複合酸化物の含有量を、導電性粉末の含有量に対して所定の範囲とすることにより、形成される電極の電気抵抗の上昇を抑制することができる。
(構成34)
 本発明の構成34は、導電性粉末が、銀粉末である、構成27~33のいずれかに記載の結晶系シリコン太陽電池の製造方法である。銀粉末は導電率が高く、従来から多くの結晶系シリコン太陽電池用の電極として用いられており、信頼性が高い。本発明の導電性ペーストの場合も、導電性粉末として銀粉末を用いることにより、信頼性が高く、高性能の結晶系シリコン太陽電池を製造することができる。
 本発明によれば、高性能の結晶系シリコン太陽電池を得ることができる。具体的には、本発明により、電極と、結晶系シリコン基板との間の、改善された界面を有する高性能の結晶系シリコン太陽電池を得ることができる。
 本発明によれば、窒化ケイ素薄膜等を材料とする反射防止膜を表面に有する結晶系シリコン太陽電池において、光入射側電極を形成する際に、太陽電池特性に対して悪影響を及ぼさないような光入射側電極を有する結晶系シリコン太陽電池を得ることができる。また、本発明により、結晶系シリコン基板において、その裏面に対して電極を形成する際に、太陽電池特性に対して悪影響を及ぼさないような裏面電極を有する結晶系シリコン太陽電池を得ることができる。
 また、本発明によれば、高性能の結晶系シリコン太陽電池を製造することのできる、結晶系シリコン太陽電池の製造方法を得ることができる。
結晶系シリコン太陽電池の断面模式図である。 酸化モリブデン、酸化ホウ素及び酸化ビスマスからなる三元系ガラスの三元組成図に基づく説明図である。 従来技術の結晶系シリコン太陽電池(単結晶シリコン太陽電池)の断面の走査型電子顕微鏡(SEM)写真であって、単結晶シリコン基板と、光入射側電極との界面付近の写真である。 本発明の結晶系シリコン太陽電池(単結晶シリコン太陽電池)の断面の走査型電子顕微鏡(SEM)写真であって、単結晶シリコン基板と、光入射側電極との界面付近の写真である。 図4に示す結晶系シリコン太陽電池の断面の透過型電子顕微鏡(TEM)写真であって、単結晶シリコン基板と、光入射側電極との界面付近を拡大した写真である。 図5の透過型電子顕微鏡写真を説明するための模式図である。 電極と、結晶系シリコン基板との間の接触抵抗の測定に用いた接触抵抗測定用パターンを示す平面模式図である。 実験5の単結晶シリコン太陽電池の、光入射側電極の直下のエミッタ層の飽和電流密度(J01)の測定結果を示す図である。 実験6の単結晶シリコン太陽電池の開放電圧(Voc)の測定結果を示す図である。 実験6の単結晶シリコン太陽電池の飽和電流密度(J01)の測定結果を示す図である。 実験6の単結晶シリコン太陽電池の光入射側電極において、接続フィンガー電極部の間のダミーフィンガー電極部が、1本である電極形状の模式図である。 実験6の単結晶シリコン太陽電池の光入射側電極において、接続フィンガー電極部の間のダミーフィンガー電極部が、2本である電極形状の模式図である。 実験6の単結晶シリコン太陽電池の光入射側電極において、接続フィンガー電極部の間のダミーフィンガー電極部が、2本である電極形状の模式図である。
 本明細書では、「結晶系シリコン」は単結晶及び多結晶シリコンを包含する。また、「結晶系シリコン基板」とは、電気素子又は電子素子の形成のために、結晶系シリコンを平板状など、素子形成に適した形状に成形した材料のことをいう。結晶系シリコンの製造方法は、どのような方法を用いても良い。例えば、単結晶シリコンの場合にはチョクラルスキー法、多結晶シリコンの場合にはキャスティング法を用いることができる。また、その他の製造方法、例えばリボン引き上げ法により作製された多結晶シリコンリボン、ガラス等の異種基板上に形成された多結晶シリコンなども結晶系シリコン基板として用いることができる。また、「結晶系シリコン太陽電池」とは、結晶系シリコン基板を用いて作製された太陽電池のことをいう。
 太陽電池特性を表す指標として、光照射下での電流-電圧特性の測定から得られる変換効率(η)、開放電圧(Voc:Open Circuit Voltage)、短絡電流(Isc:Short Circuit Current)及び曲線因子(フィルファクター、以下、「FF」ともいう)を用いることが一般的である。また、特に電極の性能を評価する際には、電極と、結晶系シリコンの不純物拡散層との間の電気抵抗である接触抵抗を用いることができる。不純物拡散層(エミッタ層ともいう。)とは、p型又はn型の不純物を拡散した層であって、ベースとなるシリコン基板中の不純物濃度よりも高濃度となるように不純物を拡散させた層である。本明細書において、「第一の導電型」とはp型又はn型の導電型を意味し、「第二の導電型」とは、「第一の導電型」とは異なる導電型を意味する。例えば、「第一の導電型の結晶系シリコン基板」がp型結晶系シリコン基板である場合には、「第二の導電型の不純物拡散層」はn型不純物拡散層(n型エミッタ層)である。
 まず、本発明の結晶系シリコン太陽電池の構造について説明する。
 図1は、光入射側及び裏面側の両方に電極(光入射側電極20及び裏面電極15)を有する結晶系シリコン太陽電池の、光入射側電極20付近の断面模式図を示す。図1に示す結晶系シリコン太陽電池は、光入射側に形成された光入射側電極20、反射防止膜2、不純物拡散層4(例えば、n型不純物拡散層4)、結晶系シリコン基板1(例えばp型結晶系シリコン基板1)及び裏面電極15を有する。
 本発明者らは、所定の組成の複合酸化物24を含む本発明の導電性ペーストを用いて電極を形成した場合には、光入射側電極20と、結晶系シリコン基板1との間であって、光入射側電極20の直下の少なくとも一部に、特殊な構造の緩衝層30が形成されることによって結晶系シリコン太陽電池の性能が向上することを見出した。
 具体的には、本発明者らは、試作した本発明の結晶系シリコン太陽電池の断面を、走査型電子顕微鏡(SEM)によって詳細に観察した。本発明の結晶系シリコン太陽電池の断面の走査型電子顕微鏡写真を図4に示す。比較のため、従来の太陽電池電極形成用の導電性ペーストを用いて製造した、従来の構造の結晶系シリコン太陽電池の断面の走査型電子顕微鏡写真を図3に示す。図4に示すように、本発明の結晶系シリコン太陽電池の場合には、光入射側電極20中の銀22と、p型結晶系シリコン基板1とが接触している部分が、図3に示す比較例の結晶系シリコン太陽電池の場合よりはるかに多いことは明らかである。本発明の結晶系シリコン太陽電池の構造は、従来の構造の結晶系シリコン太陽電池と比べて異なる構造を有するものであるといえる。
 本発明者らは、さらに、本発明の結晶系シリコン太陽電池の、結晶系シリコン基板1と、光入射側電極20との界面付近の構造を、透過型電子顕微鏡(TEM)を用いて詳細に観察した。図5に、本発明の結晶系シリコン太陽電池の断面の透過型電子顕微鏡(TEM)写真を示す。また、図6に、図5のTEM写真の説明図を示す。図5及び図6を参照すると、本発明の結晶系シリコン太陽電池の場合、光入射側電極20の直下の少なくとも一部に緩衝層30が形成されている。以下、本発明の結晶系シリコン太陽電池の構造について、具体的に説明する。
 次に、本発明の結晶系シリコン太陽電池について説明する。
 本発明の結晶系シリコン太陽電池は、第一の導電型の結晶系シリコン基板1と、結晶系シリコン基板1の少なくとも一つの表面の少なくとも一部に形成された不純物拡散層4と、不純物拡散層4の表面の少なくとも一部に形成された緩衝層30と、緩衝層30の表面に形成された電極とを有する。本発明の結晶系シリコン太陽電池の電極は、導電性金属及び複合酸化物24を含む。不純物拡散層4の表面の少なくとも一部に形成された緩衝層30は、ケイ素、酸素、及び窒素を含む層である。結晶系シリコン基板1が、所定の緩衝層30を有することにより、高性能の結晶系シリコン太陽電池を得ることができる。
 本発明の結晶系シリコン太陽電池の緩衝層30は、導電性金属元素、ケイ素、酸素、及び窒素を含む層であることが好ましい。結晶系シリコン基板1が、ケイ素、酸素、及び窒素に加えて導電性金属元素を有する緩衝層30を有することにより、高性能の結晶系シリコン太陽電池を得るための、好ましい緩衝層30を得ることができる。
 本発明の結晶系シリコン太陽電池は、緩衝層30に含まれる導電性金属元素が銀であることが好ましい。銀は電気抵抗率が低いので、緩衝層30に含まれる導電性金属元素として好ましく用いることができる。
 本発明の結晶系シリコン太陽電池は、電極の直下の少なくとも一部に緩衝層30を含む。緩衝層30は、結晶系シリコン基板1から光入射側電極20に向かって、酸窒化ケイ素膜32及び酸化ケイ素膜34をこの順で含むことが好ましい。「光入射側電極20の直下の緩衝層30」とは、図1のように光入射側電極20を上側、結晶系シリコン基板1を下側と見たときに、光入射側電極20の結晶系シリコン基板1(下側)方向に、光入射側電極20と接するように緩衝層30が存在していることを意味する。結晶系シリコン基板1が所定の緩衝層30を有することにより、高性能の結晶系シリコン太陽電池を得ることができる。なお、本発明の結晶系シリコン太陽電池において、緩衝層30は、光入射側電極20の直下のみに形成され、光入射側電極20が存在しない部分には形成されていない。
 緩衝層30中の酸窒化ケイ素膜32は、具体的にはSiO膜である。緩衝層30中の酸化ケイ素膜34は、具体的にはSiO膜(一般的にz=1~2)である。また、酸窒化ケイ素膜32及び酸化ケイ素膜34の膜厚は、それぞれ、20~80nm、好ましくは30~70nm、より好ましくは40~60nm、具体的には約50nmであることができる。また、酸窒化ケイ素膜32及び酸化ケイ素膜34を含む緩衝層30の厚さは、40~160nm、好ましくは60~140nm、より好ましくは80~120nm、さらに好ましくは90~110nm、具体的には約100nmであることができる。酸窒化ケイ素膜32及び酸化ケイ素膜34、並びにそれらを含む緩衝層30が、上述の組成及び厚さの範囲であることにより、高性能の結晶系シリコン太陽電池を得ることが確実にできる。
 緩衝層30を形成するための、非限定的であるが、確実な形成方法の一例として、次の方法がある。すなわち、緩衝層30は、酸化モリブデン、酸化ホウ素及び酸化ビスマスを含む複合酸化物を含む導電性ペーストを用いて光入射側電極20のパターンを結晶系シリコン基板1上に印刷し、焼成することにより形成することができる。なお、この際に、酸化モリブデン、酸化ホウ素及び酸化ビスマスを含む複合酸化物を含む導電性ペーストを用いて、光入射側電極20のパターンを、結晶系シリコン基板1の表面に形成された窒化ケイ素を材料とする反射防止膜の表面に印刷し、焼成することにより、緩衝層30を確実に形成することができる。
 光入射側電極20の直下の少なくとも一部に緩衝層30を含むことによって、高性能な結晶系シリコン太陽電池を得ることができる理由を推測するならば、次の通りである。なお、本推測は、本発明を限定するものではない。すなわち、酸窒化ケイ素膜32及び酸化ケイ素膜34は絶縁膜であるものの、何らかの形で、単結晶シリコン基板1と、光入射側電極20との間の電気的接触に寄与しているものと考えられる。また、緩衝層30は、導電性ペーストを焼成する際に、導電性ペースト中の成分又は不純物(太陽電池性能に対して悪影響を及ぼす成分又は不純物)が、不純物拡散層4へ拡散することを防止する役割を担うものであると考えられる。すなわち、緩衝層30は、電極形成のための焼成の際に、太陽電池特性に対して悪影響を及ぼすことを防止することができるものと考えられる。したがって、結晶系シリコン太陽電池が、光入射側電極20と、結晶系シリコン基板1との間であって、光入射側電極20の直下の少なくとも一部に、酸窒化ケイ素膜32及び酸化ケイ素膜34をこの順で含む緩衝層30を有する構造であることにより、高い性能の結晶系シリコン太陽電池特性を得ることができるものと推測できる。
 上述のように、緩衝層30は、導電性ペースト中の成分又は不純物(太陽電池性能に対して悪影響を及ぼす不純物)が、不純物拡散層4へ拡散することを防止する役割を担うものと考えられる。したがって、導電性ペースト中の導電性粉末を構成する金属の種類が、不純物拡散層4へ拡散することによって太陽電池特性に悪影響を及ぼす金属の種類である場合には、緩衝層30の存在によって、太陽電池特性に対する悪影響を防止することができる。例えば、銀より銅の方が、不純物拡散層4へ拡散することによって太陽電池特性に悪影響を及ぼす傾向が大きい。したがって、導電性ペーストの導電性粉末として、比較的安価な銅を使用する場合には、緩衝層30の存在による太陽電池特性に対する悪影響を防止するという効果が、特に顕著となる。
 本発明の結晶系シリコン太陽電池は、不純物拡散層4が、第一の導電型の結晶系シリコン基板1の光入射側表面に形成された、第二の導電型の不純物拡散層4であることが好ましい。また、本発明の結晶系シリコン太陽電池の電極は、結晶系シリコン基板1の光入射側表面に形成された光入射側電極20であり、電極が形成されていない部分に対応する不純物拡散層4の表面の少なくとも一部に、窒化ケイ素を材料とする反射防止膜2を有することが好ましい。
 結晶系シリコン太陽電池において、所定の緩衝層30が、光入射側電極20の直下に形成される場合に、より高性能の結晶系シリコン太陽電池を得ることができる。また、窒化ケイ素を材料とする反射防止膜2が形成された表面に光入射側電極20を形成することにより、ケイ素、酸素、及び窒素を含む緩衝層30を確実に形成することができる。
 また、本発明の結晶系シリコン太陽電池は、光入射側電極20が、不純物拡散層4と電気的接触をするためのフィンガー電極部と、フィンガー電極部及び外部へ電流を取り出すための導電性リボンに対して電気的接触をするためのバスバー電極部とを含み、緩衝層30が、フィンガー電極部と、結晶系シリコン基板1との間であって、フィンガー電極部の直下の少なくとも一部に形成されることが好ましい。フィンガー電極部は、不純物拡散層4からの電流を集電する役割を担う。そのため、緩衝層30がフィンガー電極部の直下に形成される構造を有することにより、高性能の結晶系シリコン太陽電池を得ることを、より確実にできる。バスバー電極部は、フィンガー電極部に集電された電流を導電性リボンに対して流す役割を担う。バスバー電極部は、フィンガー電極部と、導電性リボンとの良好な電気的接触を有することが必要であるが、バスバー電極部の直下の緩衝層30は必ずしも必要とはされない。
 本発明の結晶系シリコン太陽電池は、結晶系シリコン基板1の光入射側表面とは反対側の裏面に形成された裏面電極15を有することが好ましい。結晶系シリコン太陽電池が裏面電極15を有することにより、光入射側電極20と裏面電極15とから、電流を外部に取り出すことができる。
 本発明の結晶系シリコン太陽電池は、正負の両電極が裏面に配置される裏面電極型の結晶系シリコン太陽電池であることができる。この場合には、所定の緩衝層30が、裏面電極15の直下に形成される。すなわち、本発明の裏面電極型の結晶系シリコン太陽電池では、不純物拡散層4が、第一の導電型の結晶系シリコン基板1の光入射側表面とは反対側の表面である裏面に形成された、第一の導電型及び第二の導電型の不純物拡散層であることができる。第一の導電型及び第二の導電型の不純物拡散層が、それぞれ櫛状に、互いに入り込むように配置される。緩衝層30は、第一の導電型及び第二の導電型の不純物拡散層の表面の少なくとも一部に形成された緩衝層30である。電極(正負の両電極)は、第一の導電型の不純物拡散層の表面の少なくとも一部に形成された緩衝層30の表面に形成された第一の電極、及び第二の導電型の不純物拡散層の表面の少なくとも一部に形成された緩衝層30の表面に形成された第二の電極であることが好ましい。第一の電極は、正電極又は負電極であり、第二の電極は、第一の電極とは異なった極性の電極である。
 本発明の裏面電極型の結晶系シリコン太陽電池は、電極が形成されていない部分に対応する第一の導電型の結晶系シリコン基板1の裏面及び不純物拡散層の少なくとも一部に、窒化ケイ素を材料とする窒化ケイ素膜を有することが好ましい。
 窒化ケイ素を材料とする窒化ケイ素膜が形成された裏面に裏面電極15を形成することにより、裏面電極15と、結晶系シリコン基板1との間にケイ素、酸素、及び窒素を含む緩衝層30を確実に形成することができる。
 本発明の結晶系シリコン太陽電池は、緩衝層30が、導電性金属元素の導電性微粒子を含むことが好ましい。導電性微粒子は導電性を有するため、緩衝層30が導電性微粒子を含むことにより、電極と、結晶系シリコンの不純物拡散層4との間の接触抵抗を、より低減することができる。そのため、高性能の結晶系シリコン太陽電池を得ることができる。
 本発明の結晶系シリコン太陽電池の緩衝層30に含まれる導電性微粒子の粒径は、好ましくは20nm以下、より好ましくは15nm以下、さらに好ましくは10nm以下であることができる。緩衝層30に含まれる導電性微粒子が所定の粒径であることにより、導電性微粒子を緩衝層30内に安定して存在させることができ、光入射側電極20と、結晶系シリコン基板1の不純物拡散層4との間の接触抵抗を、より低減することができる。
 本発明の結晶系シリコン太陽電池は、導電性微粒子が、緩衝層30の酸化ケイ素膜34中のみに存在することが好ましい。導電性微粒子が、緩衝層30の酸化ケイ素膜34中のみに存在することにより、より高性能の結晶系シリコン太陽電池を得ることができるものと推測できる。したがって、導電性微粒子は、酸窒化ケイ素膜32中には存在せず、酸化ケイ素膜34中のみに存在することが好ましい。
 本発明の結晶系シリコン太陽電池の緩衝層30に含まれる導電性微粒子は、銀微粒子36であることが好ましい。結晶系シリコン太陽電池の製造の際に、導電性粉末として銀粉末を用いる場合には、緩衝層30内の導電性微粒子が銀微粒子36となる。この結果、信頼性が高く、高性能の結晶系シリコン太陽電池を得ることができる。
 本発明の結晶系シリコン太陽電池の緩衝層30の面積は、結晶系シリコン基板1の直下の面積の5%以上、好ましくは10%以上であることが好ましい。上述のように、結晶系シリコン太陽電池の光入射側電極20の直下の少なくとも一部に緩衝層30を含むことにより、高性能の結晶系シリコン太陽電池を得ることを確実にできる。光入射側電極20の直下に緩衝層30が存在する面積が所定割合以上の場合には、高性能の結晶系シリコン太陽電池を得ることをより確実にできる。
 本発明の結晶系シリコン太陽電池の電極(光入射側電極20及び又は裏面電極15)は、銀22及び複合酸化物24を含む。複合酸化物24は、酸化モリブデン、酸化ホウ素及び酸化ビスマスを含むことが好ましい。本発明の結晶系シリコン太陽電池の電極は、酸化モリブデン、酸化ホウ素及び酸化ビスマスを含む複合酸化物を含む導電性ペーストを焼成することにより得ることができる。複合酸化物24が、酸化モリブデン、酸化ホウ素及び酸化ビスマスの3成分を含むことにより、本発明の高性能の結晶系シリコン太陽電池の構造を確実に得ることができる。
 本発明の結晶系シリコン太陽電池の電極に含まれる複合酸化物24は、酸化モリブデン、酸化ホウ素及び酸化ビスマスの合計を100モル%として、酸化モリブデン25~65モル%、酸化ホウ素5~45モル%及び酸化ビスマス25~35モル%を含むことが好ましい。
 複合酸化物24を所定の組成にすることにより、太陽電池特性に対して悪影響を及ぼさずに、所定の結晶系シリコン太陽電池の光入射側電極20と、不純物拡散層4との間の接触抵抗が低く、良好な電気的接触を得ることを確実にできる。
 以上の説明では、図1に示す結晶系シリコン太陽電池の場合にはp型結晶系シリコン基板1を結晶系シリコン基板1として用いた例について主に説明したが、結晶系シリコン太陽電池用基板としてn型結晶系シリコン基板1を用いることも可能である。その場合には、不純物拡散層4として、n型不純物拡散層4の代わりに、p型不純物拡散層4を配置する。本発明の導電性ペーストを用いるならば、p型不純物拡散層4及びn型不純物拡散層4のいずれにも、低い接触抵抗の電極を形成することができる。
 以上の説明では結晶系シリコン太陽電池を製造する場合を例に説明したが、本発明は、太陽電池以外のデバイスの電極形成の場合にも応用可能である。例えば、上述の本発明の導電性ペーストは、太陽電池以外の、一般的な結晶系シリコン基板1を用いたデバイスの電極形成用導電性ペーストとして用いることができる。
 本発明は、上述の導電性ペーストを用いる、結晶系シリコン太陽電池の製造方法である。以下、本発明の結晶系シリコン太陽電池の製造方法について説明する。
 図1は、光入射側及び裏面側の両方に電極(光入射側電極20及び裏面電極15)を有する結晶系シリコン太陽電池の、光入射側電極20付近の断面模式図を示す。図1に示す構造の結晶系シリコン太陽電池を例に、本発明の結晶系シリコン太陽電池の製造方法について、説明する。
 本発明の結晶系シリコン太陽電池の製造方法は、第一の導電型の結晶系シリコン基板1を用意する工程と、結晶系シリコン基板1の少なくとも一つの表面の少なくとも一部に、不純物拡散層4を形成する工程と、不純物拡散層4の表面に、窒化ケイ素膜を形成する工程と、導電性ペーストを、不純物拡散層4の表面に形成された窒化ケイ素膜の表面に印刷し、及び焼成することによって、電極を形成し、同時に電極及び不純物拡散層4の間の緩衝層30を形成する工程とを含む。緩衝層30は、ケイ素、酸素、及び窒素を含む層となる。
 なお、図1に示す結晶系シリコン太陽電池の例では、不純物拡散層4が、第一の導電型の結晶系シリコン基板1の光入射側表面に形成された、第二の導電型の不純物拡散層4であり、電極が、結晶系シリコン基板1の光入射側表面に形成された光入射側電極20である。本発明の製造方法は、図1に示す構造の結晶系シリコン太陽電池の製造のために好ましく用いることができる。結晶系シリコン太陽電池において、所定の緩衝層30が、光入射側電極20の直下に形成される場合に、より高性能の結晶系シリコン太陽電池を得ることができる。また、窒化ケイ素を材料とする反射防止膜2が形成された表面に光入射側電極20を形成することにより、ケイ素、酸素、及び窒素を含む緩衝層30を確実に形成することができる。
 本発明の結晶系シリコン太陽電池の製造方法では、光入射側電極20が、不純物拡散層4と電気的接触をするためのフィンガー電極部と、フィンガー電極部及び外部へ電流を取り出すための導電性リボンに対して電気的接触をするためのバスバー電極部とを含むことが好ましい。また、緩衝層30が、フィンガー電極部と、結晶系シリコン基板1との間であって、フィンガー電極部の直下の少なくとも一部に形成されることが好ましい。フィンガー電極部は、不純物拡散層4からの電流を集電する役割を担う。そのため、緩衝層30がフィンガー電極部の直下に形成される構造を有することにより、高性能の結晶系シリコン太陽電池を得ることを、より確実にできる。バスバー電極部は、フィンガー電極部に集電された電流を導電性リボンに対して流す役割を担う。バスバー電極部は、フィンガー電極部と、導電性リボンとの良好な電気的接触を有することが必要であるが、バスバー電極部の直下の緩衝層30は必ずしも必要とはされない。
 本発明の結晶系シリコン太陽電池の製造方法は、第一の導電型の結晶系シリコン基板1を用意する工程を含む。結晶系シリコン基板1としては、例えば、B(ボロン)ドープのp型単結晶シリコン基板を用いることができる。
 なお、高い変換効率を得るという観点から、結晶系シリコン基板1の光入射側の表面は、ピラミッド状のテクスチャ構造を有することが好ましい。
 次に、本発明の結晶系シリコン太陽電池の製造方法は、上述の工程で用意した結晶系シリコン基板1の少なくとも一つの表面の少なくとも一部に、不純物拡散層4を形成する工程を含む。
 例えば結晶系シリコン基板1として、p型単結晶シリコン基板を用いる場合には、不純物拡散層4としてn型不純物拡散層4を形成することができる。不純物拡散層4は、シート抵抗が60~140Ω/□、好ましくは80~120Ω/□となるように形成することができる。本発明の結晶系シリコン太陽電池の製造方法では、後の工程で緩衝層30を形成する。緩衝層30が存在することにより、導電性ペーストを焼成する際に、導電性ペースト中の成分又は不純物(太陽電池性能に対して悪影響を及ぼす成分又は不純物)が、不純物拡散層4へ拡散することを防止することができると考えられる。したがって、本発明の結晶系シリコン太陽電池では、従来の不純物拡散層4より浅い(シート抵抗の高い)不純物拡散層4である場合であっても、太陽電池特性に対して悪影響を及ぼさずに、結晶系シリコン基板1に対して低接触抵抗の電極を形成することができる。具体的には、本発明の結晶系シリコン太陽電池の製造方法において、不純物拡散層4を形成する深さは、150nm~300nmとすることができる。なお、不純物拡散層4の深さとは、不純物拡散層4の表面からpn接合までの深さをいう。pn接合の深さは、不純物拡散層4の表面から、不純物拡散層4中の不純物濃度が1016cm-3となるまでの深さとすることができる。
 次に、本発明の結晶系シリコン太陽電池の製造方法は、不純物拡散層4の表面に、窒化ケイ素膜を形成する工程を含む。
 反射防止膜2としては、シリコン窒化膜(SiN膜)を形成することができる。シリコン窒化膜を反射防止膜2として用いる場合には、シリコン窒化膜が表面パッシベーション膜としての機能も有する。そのため、シリコン窒化膜を反射防止膜2として用いる場合には、高性能能の結晶系シリコン太陽電池を得ることができる。シリコン窒化膜は、PECVD(Plasma Enhanced Chemical Vapor Deposition)法などにより、成膜することができる。
 次に、本発明の結晶系シリコン太陽電池の製造方法は、導電性ペーストを、不純物拡散層4の表面に形成された窒化ケイ素膜の表面に印刷し、及び焼成することによって、電極と、電極及び不純物拡散層4の間の緩衝層30とを形成する工程を含む。なお、本発明の結晶系シリコン太陽電池の製造方法において、好ましく用いることのできる導電性ペーストについては、後述する。
 具体的には、まず、本発明の導電性ペーストを用いて印刷した電極パターンを、100~150℃程度の温度で数分間(例えば0.5~5分間)乾燥する。なお、このとき、裏面電極15の形成のため、結晶系シリコン基板1の光入射側表面とは反対側の裏面に対しても所定の裏面電極15用の導電性ペーストをほぼ全面に印刷し、乾燥することが好ましい。
 その後、導電性ペーストを乾燥したものを、管状炉などの焼成炉を用いて大気中で、上述の焼成条件と同様の条件で焼成する。この場合にも、焼成温度は、400~850℃、好ましくは450~820℃であることが好ましい。焼成の際は、光入射側電極20及び裏面電極15を形成するための導電性ペーストを同時に焼成し、両電極を同時に形成することが好ましい。
 不純物拡散層4の表面に形成された窒化ケイ素膜の表面に印刷された導電性ペーストを焼成する際に、緩衝層30が形成される。導電性ペーストを焼成する際には、窒化ケイ素膜と、導電性ペーストとが反応することにより、ケイ素、酸素、及び窒素を含む緩衝層30が形成される。
 緩衝層30は、ケイ素、酸素、及び窒素に加えて、導電性金属元素を含む層であることが好ましい。導電性金属元素を含む緩衝層30を形成することにより、高性能の結晶系シリコン太陽電池を製造することができる。
 緩衝層30に含まれる導電性金属元素が銀であることが好ましい。銀は電気抵抗率が低いので、緩衝層30に含まれる導電性金属元素として好ましく用いることができる。
 上述のような製造方法によって、所定の緩衝層30を有する本発明の結晶系シリコン太陽電池を製造することができる。本発明の結晶系シリコン太陽電池の製造方法によれば、太陽電池特性に対して悪影響を及ぼさずに、特にn型不純物を拡散した不純物拡散層4(n型不純物拡散層4)に対して、低い接触抵抗の電極(光入射側電極20)を得ることができる。
 具体的には、上述の本発明の導電性ペーストを用いる結晶系シリコン太陽電池の製造方法によって、電極の接触抵抗が350mΩ・cm以下、好ましくは100mΩ・cm以下、より好ましくは25mΩ・cm以下、さらに好ましくは10mΩ・cm以下である結晶系シリコン太陽電池を得ることができる。なお、一般的に、電極の接触抵抗が100mΩ・cm以下である場合には、単結晶シリコン太陽電池の電極として使用可能である。また、電極の接触抵抗が350mΩ・cm以下である場合には、結晶系シリコン太陽電池の電極として使用できる可能性がある。しかしながら、接触抵抗が350mΩ・cm超である場合には、結晶系シリコン太陽電池の電極として使用することは困難である。本発明の導電性ペーストを用いて電極を形成することにより、良好な性能の結晶系シリコン太陽電池を得ることができる。
 以上の説明では、図1に示す結晶系シリコン太陽電池のように、光入射側電極20の直下の少なくとも一部に緩衝層30を含む結晶系シリコン太陽電池を例に説明したが、本発明はこれに限られない。本発明の結晶系シリコン太陽電池の製造方法は、結晶系シリコン太陽電池の裏面に、正負両電極が形成される結晶系シリコン太陽電池(裏面電極型の結晶系シリコン太陽電池)を製造する場合にも、適用することができる。
 本発明の裏面電極型の結晶系シリコン太陽電池の製造方法では、初めに、一の導電型の結晶系シリコン基板1を用意する。次に、第一の導電型の結晶系シリコン基板1の光入射側表面とは反対側の表面である裏面に、第一の導電型及び第二の導電型の不純物拡散層を形成する。このとき、第一の導電型及び第二の導電型の不純物拡散層が、それぞれ櫛状に、互いに入り込むように配置される。次に、不純物拡散層の表面(すなわち裏面)に、窒化シリコン膜を形成する。次に、導電性ペーストを、第一の導電型及び第二の導電型の不純物拡散層が形成された領域に対応する反射防止膜2の表面の少なくとも一部に印刷し、及び焼成する。この結果、第一の導電型の不純物拡散層の表面の少なくとも一部に形成された緩衝層30の表面に形成された第一の電極、及び第二の導電型の不純物拡散層の表面の少なくとも一部に形成された緩衝層30の表面に形成された第二の電極を形成することができる。以上の工程により、裏面電極型の結晶系シリコン太陽電池を製造することができる。導電性ペーストの焼成は、光入射側電極20の直下の少なくとも一部に緩衝層30を含む結晶系シリコン太陽電池の製造方法と同様の条件で行うことができる。
 なお、上述の裏面電極型の結晶系シリコン太陽電池の製造方法において、窒化ケイ素膜を形成する際に、電極が形成されていない部分に対応する第一の導電型の結晶系シリコン基板1の裏面及び不純物拡散層の少なくとも一部に、窒化ケイ素を材料とする窒化ケイ素膜を形成することが好ましい。窒化ケイ素を材料とする窒化ケイ素膜が形成された裏面に裏面電極15を形成することにより、裏面電極15と、結晶系シリコン基板1との間にケイ素、酸素、及び窒素を含む緩衝層30を確実に形成することができる。
 上述の本発明の結晶系シリコン太陽電池の製造方法によれば、緩衝層30の少なくとも一部が、結晶系シリコン基板1から光入射側電極20に向かって、酸窒化ケイ素膜32及び酸化ケイ素膜34をこの順で含むような構造を得ることができる。結晶系シリコン太陽電池が、所定の構造の緩衝層30を有するようにすることにより、高性能の結晶系シリコン太陽電池をより確実に製造することができる。
 次に、本発明の結晶系シリコン太陽電池の製造方法において、好ましく用いることのできる導電性ペースト(以下、「本発明の導電性ペースト」ともいう。)について説明する。
 本発明の導電性ペーストは、導電性粉末と、複合酸化物と、有機ビヒクルとを含む結晶系シリコン太陽電池の電極形成用導電性ペーストである。本発明の導電性ペーストの複合酸化物は、酸化モリブデン、酸化ホウ素及び酸化ビスマスを含む。本発明の導電性ペーストを半導体デバイス、例えば結晶系シリコン太陽電池の電極形成に用いることにより、太陽電池特性に対して悪影響を及ぼさずに、結晶系シリコン基板に対して低接触抵抗の電極を形成することができる。
 本発明の導電性ペーストは、導電性粉末を含む。導電性粉末としては、任意の単元素又は合金の金属粉末を用いることができる。金属粉末としては、例えば、銀、銅、ニッケル、アルミニウム、亜鉛及びスズからなる群より選択される1種以上を含む金属粉末を用いることができる。金属粉末としては、単一元素の金属粉末又はこれらの金属の合金粉末等を用いることができる。
 本発明の導電性ペーストに含まれる導電性粉末としては、銀、銅及びそれらの合金から選択される1種以上を含む導電性粉末を用いることが好ましい。その中でも特に、銀を含む導電性粉末を用いることがより好ましい。銅粉末は、比較的低価格であり、高い導電率を有するため、電極材料として好ましい。また、銀粉末は、導電率が高く、多くの結晶系シリコン太陽電池用の電極として、従来から用いられており、信頼性が高い。本発明の導電性ペーストの場合も、導電性粉末として、特に銀粉末を用いることにより、信頼性が高く、高性能の結晶系シリコン太陽電池を製造することができる。そのため、銀粉末を、導電性粉末の主要成分として用いることが好ましい。なお、本発明の導電性ペーストには、太陽電池電極の性能が損なわれない範囲で、銀以外の他の金属粉末又は銀との合金粉末を含むことができる。しかしながら、低い電気抵抗及び高い信頼性を得る点から、導電性粉末は銀粉末を導電性粉末全体に対して80重量%以上含むことが好ましく、90重量%以上含むことがより好ましく、導電性粉末は銀粉末からなることがさらに好ましい。
 銀粉末等の導電性粉末の粒子形状及び粒子寸法は、特に限定されない。粒子形状としては、例えば、球状及びリン片状等のものを用いることができる。粒子寸法は、一粒子の最長の長さ部分の寸法をいう。導電性粉末の粒子寸法は、作業性の点等から、0.05~20μmであることが好ましく、0.1~5μmであることがさらに好ましい。
 一般的に、多数の微小な粒子の寸法は一定の分布を有するので、すべての粒子が上記の粒子寸法である必要はなく、全粒子の積算値50%の粒子寸法(平均粒径:D50)が上記の粒子寸法の範囲であることが好ましい。本明細書に記載されている導電性粉末以外の粒子の寸法についても同様である。なお、平均粒径は、マイクロトラック法(レーザー回折散乱法)によって粒度分布測定を行い、粒度分布測定の結果からD50値を得ることにより求めることができる。
 また、銀粉末等の導電性粉末の大きさを、BET値(BET比表面積)として表すことができる。導電性粉末のBET値は、好ましくは0.1~5m/g、より好ましくは0.2~2m/gである。
 本発明の導電性ペーストは、酸化モリブデン、酸化ホウ素及び酸化ビスマスを含む複合酸化物を含む。本発明の導電性ペーストに含まれる複合酸化物は、粒子状の複合酸化物の形態、すなわちガラスフリットの形態とすることができる。
 図2に、非特許文献1(R. Iordanova, et al., Journal of Non-Crystalline Solids, 357 (2011) pp. 2663-2668)に記載されている酸化モリブデン、酸化ホウ素及び酸化ビスマスからなる三元系ガラスの三元組成図に基づく説明図を示す。酸化モリブデン、酸化ホウ素及び酸化ビスマスからなるガラスのガラス化が可能な組成は、図2に「ガラス化可能領域」として示す灰色に着色された組成領域である。図2の「ガラス化不可領域」として示す組成領域の組成では、ガラス化することができないため、このような組成の複合酸化物はガラスとして存在できない。したがって、本発明の導電性ペーストに用いることができる酸化モリブデン、酸化ホウ素及び酸化ビスマスを含む複合酸化物は、図2に示す「ガラス化可能領域」内の組成の複合酸化物である。酸化ホウ素及び酸化ビスマスを含む複合酸化物は、組成にもよるが、ガラス転移点が380~420℃、融点が420~540℃程度である。
 本発明の導電性ペーストに含まれる複合酸化物は、酸化モリブデン、酸化ホウ素及び酸化ビスマスの合計を100モル%として、酸化モリブデン25~65モル%、酸化ホウ素5~45モル%及び酸化ビスマス25~35モル%を含む組成範囲とすることが好ましい。図2では、この組成範囲を、領域1の組成範囲として示している。酸化モリブデン、酸化ホウ素及び酸化ビスマスの組成範囲を領域1の組成範囲とすることにより、太陽電池特性に対して悪影響を及ぼさずに、所定の結晶系シリコン太陽電池の光入射側電極と、不純物拡散層との間の接触抵抗が低く、良好な電気的接触を得ることを確実にできる。
 所定の結晶系シリコン太陽電池の光入射側電極と、不純物拡散層との間の接触抵抗をより低くするために、複合酸化物中の酸化モリブデンは、図2の領域1の組成範囲において、より好ましくは35~65モル%、さらに好ましくは40~60モル%であることができる。また、同様の理由から、複合酸化物中の酸化ビスマスは、図2の領域1の組成範囲において、より好ましくは28~32モル%であることができる。
 本発明の導電性ペーストに含まれる複合酸化物は、酸化モリブデン、酸化ホウ素及び酸化ビスマスの合計を100モル%として、酸化モリブデン15~40モル%、酸化ホウ素25~45モル%及び酸化ビスマス25~60モル%を含む組成範囲とすることが好ましい。図2では、この組成範囲を、領域2の組成範囲として示している。酸化モリブデン、酸化ホウ素及び酸化ビスマスの組成範囲を領域2の組成範囲とすることにより、太陽電池特性に対して悪影響を及ぼさずに、所定の結晶系シリコン太陽電池の光入射側電極と、不純物拡散層との間の接触抵抗が低く、良好な電気的接触を得ることを確実にできる。
 所定の結晶系シリコン太陽電池の光入射側電極と、不純物拡散層との間の接触抵抗を低くすることを確実にするために、複合酸化物中の酸化モリブデンは、図2の領域2の組成範囲において、好ましくは20~40モル%であることができる。また、同様の理由から、複合酸化物中の酸化ホウ素は、図2の領域2の組成範囲において、好ましくは20~40モル%であることができる。
 本発明の導電性ペーストに含まれる複合酸化物は、複合酸化物100モル%中、酸化モリブデン、酸化ホウ素及び酸化ビスマスの合計を90モル%以上、好ましくは95モル%以上含むことが好ましい。酸化モリブデン、酸化ホウ素及び酸化ビスマスの3成分を所定割合以上にすることにより、所定の結晶系シリコン太陽電池の光入射側電極と、不純物拡散層との間の接触抵抗が低く、良好な電気的接触を得ることを、より確実にできる。
 本発明の導電性ペーストに含まれる複合酸化物は、複合酸化物100重量%中、酸化チタン0.1~6モル%、好ましくは、0.1~5モル%をさらに含むことが好ましい。複合酸化物が所定の割合の酸化チタンをさらに含むことにより、より良好な電気的接触を得ることができる。
 本発明の導電性ペーストに含まれる複合酸化物は、複合酸化物100重量%中、酸化亜鉛0.1~3モル%、好ましくは、0.1~2.5モル%をさらに含むことが好ましい。複合酸化物が所定の割合の酸化亜鉛をさらに含むことにより、さらに良好な電気的接触を得ることができる。
 本発明の導電性ペーストは、導電性粉末100重量部に対し、複合酸化物を好ましくは0.1~10重量部、より好ましくは0.5~8重量部含むことができる。非導電性の複合酸化物が電極中に多く存在する場合には、電極の電気抵抗が上昇することになる。本発明の導電性ペーストの複合酸化物が所定の範囲の添加量であることにより、形成される電極の電気抵抗の上昇を抑制することができる。
 本発明の導電性ペーストの複合酸化物は、上述の酸化物以外にも、複合酸化物の所定の性能を失わない範囲において、任意の酸化物を含むことができる。例えば、本発明の導電性ペーストの複合酸化物は、Al、P、CaO、MgO、ZrO、Li、Na、CeO、SnO及びSrO等から選択される酸化物を適宜含むことができる。
 複合酸化物の粒子の形状は特に限定されず、例えば球状、不定形等のものを用いることができる。また、粒子寸法も特に限定されないが、作業性の点等から、粒子寸法の平均値(D50)は0.1~10μmの範囲が好ましく、0.5~5μmの範囲がさらに好ましい。
 本発明の導電性ペーストに含まれることができる複合酸化物は、例えば以下の方法により製造することができる。
 まず、原料となる酸化物の粉末を計量し、混合して、るつぼに投入する。このるつぼを、加熱したオーブンに入れ、(るつぼの内容物を)溶融温度(Melt temperature)まで昇温し、溶融温度で原料が充分に溶融するまで維持する。次に、るつぼをオーブンから取り出し、溶融した内容物を均一に撹拌し、るつぼの内容物をステンレス製の2本ロールを用いて室温で急冷して、板状のガラスを得る。最後に板状のガラスを乳鉢で粉砕しながら均一に分散し、メッシュのふるいでふるい分けることによって所望の粒子寸法を持った複合酸化物を得ることができる。100メッシュのふるいを通過し200メッシュのふるい上に残るものにふるい分けることによって、平均粒径149μm(メジアン径、D50)の複合酸化物を得ることができる。なお、複合酸化物の大きさは、上記の例に限定されるものではなく、ふるいのメッシュの大きさによって、より大きな平均粒径又はより小さな平均粒径を有する複合酸化物を得ることができる。この複合酸化物をさらに粉砕することにより、所定の平均粒径(D50)の複合酸化物を得ることができる。
 本発明の導電性ペーストは、有機ビヒクルを含む。
 本発明の導電性ペーストに含まれる有機ビヒクルとしては、有機バインダ及び溶剤を含むことができる。有機バインダ及び溶剤は、導電性ペーストの粘度調整等の役割を担うものであり、いずれも特に限定されない。有機バインダを溶剤に溶解させて使用することもできる。
 有機バインダとしては、セルロース系樹脂(例えばエチルセルロース、ニトロセルロース等)、(メタ)アクリル系樹脂(例えばポリメチルアクリレート、ポリメチルメタクリレート等)から選択して用いることができる。有機バインダの添加量は、導電性粉末100重量部に対し、通常0.2~30重量部であり、好ましくは0.4~5重量部である。
 溶剤としては、アルコール類(例えばターピネオール、α-ターピネオール、β-ターピネオール等)、エステル類(例えばヒドロキシ基含有エステル類、2,2,4―トリメチル-1,3-ペンタンジオールモノイソブチラート、ブチルカルビトールアセテート等)から1種又は2種以上を選択して使用することができる。溶剤の添加量は、導電性粉末100重量部に対し、通常0.5~30重量部であり、好ましくは5~25重量部である。
 本発明の導電性ペーストには、添加剤として、可塑剤、消泡剤、分散剤、レベリング剤、安定剤及び密着促進剤などから選択したものを、必要に応じてさらに配合することができる。これらのうち、可塑剤としては、フタル酸エステル類、グリコール酸エステル類、リン酸エステル類、セバチン酸エステル類、アジピン酸エステル類及びクエン酸エステル類などから選択したものを用いることができる。
 次に、本発明の導電性ペーストの製造方法について説明する。
 本発明の導電性ペーストの製造方法は、導電性粉末と、複合酸化物と、有機ビヒクルとを混合する工程を有する。本発明の導電性ペーストは、有機バインダ及び溶剤に対して、導電性粉末、上述の複合酸化物、並びに、場合によりその他の添加剤及び添加粒子を、添加し、混合し、分散することにより製造することができる。
 混合は、例えばプラネタリーミキサーで行うことができる。また、分散は、三本ロールミルによって行うことができる。混合及び分散は、これらの方法に限定されるものではなく、公知の様々な方法を使用することができる。
 以下、実施例により、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 実験1として、本発明の単結晶シリコン太陽電池に用いることのできる導電性ペースト(本発明の導電性ペースト)を用いて単結晶シリコン太陽電池を試作し、太陽電池特性を測定した。また、実験2として、本発明の導電性ペーストを用いて接触抵抗測定用電極の作製し、形成した電極と、単結晶シリコン基板の不純物拡散層4との間の接触抵抗を測定することにより、本発明の導電性ペーストの使用の可否を判定した。また、実験3として、試作した単結晶シリコン太陽電池の断面形状を走査型電子顕微鏡(SEM)及び透過型電子顕微鏡(TEM)を用いて観察することによって、本発明の結晶系シリコン太陽電池の構造を明らかにした。さらに実験4~実験6により、本発明の導電性ペーストを用いて製造した単結晶シリコン太陽電池の電気的特性について評価した。
<導電性ペーストの材料及び調製割合>
 実験1の単結晶シリコン太陽電池の試作、及び実験2の接触抵抗測定用電極の作製に用いた導電性ペーストの組成は、下記の通りである。
 ・導電性粉末: Ag(100重量部)。球状、BET値が1.0m/g、平均粒径D50が1.4μmのものを用いた。
 ・有機バインダ: エチルセルロース(2重量部)、エトキシ含有量48~49.5重量%のものを用いた。
 ・可塑剤: オレイン酸(0.2重量部)を用いた。
 ・溶剤: ブチルカルビトール(5重量部)を用いた。
 ・複合酸化物: 表1に、実施例1、実施例2及び比較例1~6の単結晶シリコン太陽電池の製造に用いた複合酸化物(ガラスフリット)の種類(A1、A2、B1、B2、C1、C2、D1及びD2)を示す。表2に、複合酸化物(ガラスフリット)A1、A2、D1及びD2の具体的な組成を示す。なお、導電性ペースト中の複合酸化物の重量割合は、2重量部とした。また、複合酸化物として、ガラスフリットの形状のものを用いた。ガラスフリットの平均粒径D50は2μmとした。本実施例では、複合酸化物をガラスフリットともいう。
 複合酸化物の製造方法は、以下の通りである。
 表1に示す原料となる酸化物の粉末(ガラスフリット成分)を計量し、混合して、るつぼに投入した。なお、表2に複合酸化物(ガラスフリット)A1、A2、D1及びD2の具体的な配合割合を例示する。このるつぼを、加熱したオーブンに入れ、(るつぼの内容物を)溶融温度(Melt temperature)まで昇温し、溶融温度で原料が充分に溶融するまで維持した。次に、るつぼをオーブンから取り出し、溶融した内容物を均一に撹拌し、るつぼの内容物をステンレス製の2本ロールを用いて室温で急冷して、板状のガラスを得た。最後に板状のガラスを乳鉢で粉砕しながら均一に分散し、メッシュのふるいでふるい分けることによって所望の粒子寸法を持った複合酸化物を得ることができた。100メッシュのふるいを通過し200メッシュのふるい上に残るものにふるい分けることによって、平均粒径149μm(メジアン径、D50)の複合酸化物を得ることができた。さらに、この複合酸化物をさらに粉砕することにより、平均粒径D50が2μmの複合酸化物を得ることができた。
 次に、上述の、導電性粉末及び複合酸化物等の材料を用いて、導電性ペーストを調製した。具体的には、上述の所定の調製割合の材料を、プラネタリーミキサーで混合し、さらに三本ロールミルで分散し、ペースト化することによって導電性ペーストを調製した。
<実験1:単結晶シリコン太陽電池の試作>
 実験1として、調製した導電性ペーストを用いて単結晶シリコン太陽電池を試作し、その特性を測定することによって、本発明の導電性ペーストの評価を行った。単結晶シリコン太陽電池の試作方法は次の通りである。
 基板は、B(ボロン)ドープのp型単結晶シリコン基板(基板厚み200μm)を用いた。
 まず、上記基板に酸化ケイ素層約20μmをドライ酸化で形成後、フッ化水素、純水及びフッ化アンモニウムを混合した溶液でエッチングし、基板表面のダメージを除去した。さらに、塩酸及び過酸化水素を含む水溶液で重金属洗浄を行った。
 次に、この基板表面にウェットエッチングによってテクスチャ(凸凹形状)を形成した。具体的にはウェットエッチング法(水酸化ナトリウム水溶液)によってピラミッド状のテクスチャ構造を片面(光入射側の表面)に形成した。その後、塩酸及び過酸化水素を含む水溶液で洗浄した。
 次に、上記基板のテクスチャ構造を有する表面に、オキシ塩化リン(POCl)を用い、拡散法によって、リンを温度810℃で30分間拡散させ、n型不純物拡散層4が約0.28μmの深さになるようにn型不純物拡散層4を形成した。n型不純物拡散層4のシート抵抗は、100Ω/□だった。
 次に、n型不純物拡散層4を形成した基板の表面に、プラズマCVD法によってシランガス及びアンモニアガスを用いて窒化ケイ素薄膜(反射防止膜2)を約60nmの厚みに形成した。具体的には、NH/SiH=0.5の混合ガス1Torr(133Pa)をグロー放電分解することにより、プラズマCVD法によって膜厚約60nmの窒化ケイ素薄膜(反射防止膜2)を形成した。
 このようにして得られた単結晶シリコン太陽電池用基板を、15mm×15mmの正方形に切断して使用した。
 光入射側(表面)電極用の導電性ペーストの印刷は、スクリーン印刷法によって行った。上述の基板の反射防止膜2上に、膜厚が約20μmになるように2mm幅のバスバー電極部と、6本の長さ14mm、幅100μmのフィンガー電極部とからなるパターンで印刷し、その後、150℃で約60秒間乾燥した。
 次に、裏面電極15用の導電性ペーストの印刷を、スクリーン印刷法によって行った。上述の基板の裏面に、アルミニウム粒子、複合酸化物、エチルセルロース及び溶剤を主成分とする導電性ペーストを14mm角で印刷し、150℃で約60秒間乾燥した。乾燥後の裏面電極15用の導電性ペーストの膜厚は約20μmであった。
 上述のように導電性ペーストを表面及び裏面に印刷した基板を、ハロゲンランプを加熱源とする近赤外焼成炉(DESPATCH社製 太陽電池用高速焼成炉)を用いて、大気中で所定の条件により焼成した。焼成条件は、800℃のピーク温度とし、大気中、焼成炉のイン-アウト60秒で両面同時焼成した。以上のようにして、単結晶シリコン太陽電池を試作した。
<太陽電池特性の測定>
 太陽電池セルの電気的特性の測定は、次のように行った。すなわち、試作した単結晶シリコン太陽電池の電流-電圧特性を、ソーラーシミュレータ光(AM1.5、エネルギー密度100mW/cm)の照射下で測定し、測定結果から曲線因子(FF)、開放電圧(Voc)、短絡電流密度(Jsc)及び変換効率η(%)を算出した。なお、試料は同じ条件のものを2個作製し、測定値は2個の平均値として求めた。
<実験1の太陽電池特性の測定結果>
 表1及び表2に示す複合酸化物(ガラスフリット)を用いた実施例1及び2、並びに比較例1~6の導電性ペーストを製造した。それらの導電性ペーストを単結晶シリコン太陽電池の光入射側電極20の形成のために用いて、上述のような方法で、実験1の単結晶シリコン太陽電池を試作した。表3に、これらの単結晶シリコン太陽電池の特性である曲線因子(FF)、開放電圧(Voc)、短絡電流密度(Jsc)及び変換効率η(%)の測定結果を示す。なお、これらの単結晶シリコン太陽電池に対してさらに、Suns-Vocの測定を行い、再結合電流(J02)を測定した。Suns-Vocの測定の測定方法及び測定結果から再結合電流J02を算出する方法は公知である。
 表3から明らかなように、比較例1~6の単結晶シリコン太陽電池の特性は、実施例1及び実施例2の単結晶シリコン太陽電池と比べて低かった。実施例1及び実施例2の単結晶シリコン太陽電池では、特に曲線因子(FF)が高かった。このことは、実施例1及び実施例2の単結晶シリコン太陽電池では、光入射側電極20と、単結晶シリコン基板の不純物拡散層4との間の接触抵抗が低かったことが示唆される。また、実施例1及び実施例2の単結晶シリコン太陽電池では、比較例1~6と比べて、開放電圧(Voc)が高かった。このことは、実施例1及び実施例2の単結晶シリコン太陽電池では、比較例1~6と比べて、キャリアの表面再結合速度が低いことが示唆される。また、実施例1及び実施例2の単結晶シリコン太陽電池では、比較例1~6と比べて、再結合電流J02が低かった。このことは、実施例1及び実施例2の単結晶シリコン太陽電池内部のpn接合の空乏層でのキャリアの再結合速度が低いことが示唆される。すなわち、実施例1及び実施例2の単結晶シリコン太陽電池では、比較例1~6と比べて、pn接合近傍において、導電性ペースト中に含まれる不純物等の拡散に起因する再結合準位密度が低いことが示唆される。
 以上のことから、本発明の導電性ペーストを用いた場合には、窒化ケイ素薄膜等を材料とする反射防止膜2を表面に有する単結晶シリコン太陽電池に対して光入射側電極20を形成する際に、光入射側電極20と、エミッタ層との間の接触抵抗が低く、良好な電気的接触を得ることができることが明らかとなった。このことは、本発明の導電性ペーストを用いた場合には、一般的な結晶系シリコン基板1の表面に対して電極を形成する際に、良好な電気的接触の電極を形成することのできることが示唆される。
<実験2:接触抵抗測定用電極の作製>
 実験2では、本発明の導電性ペーストにおいて、組成の異なる複合酸化物を含む導電性ペーストを用いて、不純物拡散層4を有する結晶系シリコン基板1の表面に電極を形成し、接触抵抗を測定した。具体的には、本発明の導電性ペーストを用いた接触抵抗測定用パターンを、所定の不純物拡散層4を有する単結晶シリコン基板にスクリーン印刷し、乾燥し、焼成することにより、接触抵抗測定用電極を得た。表4に、実験2で用いた導電性ペースト中の複合酸化物(ガラスフリット)の組成を、試料a~gとして示す。また、図2の3種類の酸化物の三元組成図上に、試料a~gの複合酸化物(ガラスフリット)に対応する組成を示す。接触抵抗測定用電極の作製方法は次の通りである。
 実験1の単結晶シリコン太陽電池の試作の場合と同様に、基板は、B(ボロン)ドープのp型単結晶シリコン基板(基板厚み200μm)を用い、基板表面のダメージを除去し、重金属洗浄を行った。
 次に、この基板表面にウェットエッチングによってテクスチャ(凸凹形状)を形成した。具体的にはウェットエッチング法(水酸化ナトリウム水溶液)によってピラミッド状のテクスチャ構造を片面(光入射側の表面)に形成した。その後、塩酸及び過酸化水素を含む水溶液で洗浄した。
 次に、実験1の単結晶シリコン太陽電池の試作の場合と同様に、上記基板の表面に、オキシ塩化リン(POCl)を用い、拡散法によって、リンを温度810℃で30分間拡散させ、100Ω/□のシート抵抗になるようにn型不純物拡散層4を形成した。このようにして得られた接触抵抗測定用基板を、接触抵抗測定用電極の作製のために使用した。
 接触抵抗測定用基板への導電性ペーストの印刷は、スクリーン印刷法によって行った。上述の基板上に、膜厚が約20μmになるように接触抵抗測定用パターンを印刷し、その後、150℃で約60秒間乾燥した。接触抵抗測定用パターンは、図7に示すように、幅0.5mm、長さ13.5mmの5つの長方形の電極パターンを、間隔がそれぞれ1、2、3及び4mmになるように配置したパターンを用いた。
 上述のように導電性ペーストによる接触抵抗測定用パターンを表面に印刷した基板を、ハロゲンランプを加熱源とする近赤外焼成炉(DESPATCH社製 太陽電池用高速焼成炉)を用いて、大気中で所定の条件により焼成した。焼成条件は、実験1の単結晶シリコン太陽電池の試作の場合と同様に、800℃のピーク温度とし、大気中、焼成炉のイン-アウト60秒で焼成した。以上のようにして、接触抵抗測定用電極を試作した。なお、試料は同じ条件のものを3個作製し、測定値は3個の平均値として求めた。
 接触抵抗の測定は、上述のように図7に示す電極パターンを用いて行った。接触抵抗は、図7に示す所定の長方形の電極パターン間の電気抵抗を測定し、接触抵抗成分と、シート抵抗成分とを分離することにより求めた。接触抵抗が100mΩ・cm以下である場合には、単結晶シリコン太陽電池の電極として使用可能である。接触抵抗が25mΩ・cm以下である場合には、結晶系シリコン太陽電池の電極として好ましく使用することができる。接触抵抗が10mΩ・cm以下である場合には、結晶系シリコン太陽電池の電極としてより好ましく使用することができる。また、接触抵抗が350mΩ・cm以下である場合には、結晶系シリコン太陽電池の電極として使用できる可能性がある。しかしながら、接触抵抗が350mΩ・cm超である場合には、結晶系シリコン太陽電池の電極として使用することは困難である。
 表4から明らかなように、試料b~fの複合酸化物(ガラスフリット)を含む本発明の導電性ペーストを用いた場合には、20.1mΩ・cm以下の接触抵抗を得ることができる。図2に、試料b~fの複合酸化物(ガラスフリット)の組成範囲を含む領域を、領域1及び領域2として示す。図2の領域1の組成範囲は、酸化ホウ素及び酸化ビスマスの合計を100モル%として、酸化モリブデン35~65モル%、酸化ホウ素5~45モル%及び酸化ビスマス25~35モル%の範囲の組成領域である。また、図2の領域2の組成範囲は、酸化ホウ素及び酸化ビスマスの合計を100モル%として、酸化モリブデン15~40モル%、酸化ホウ素25~45モル%及び酸化ビスマス25~60モル%の範囲の組成領域である。
 表4から明らかなように、試料c、d及びeの複合酸化物(ガラスフリット)を含む本発明の導電性ペーストを用いた場合には、7.3mΩ・cm以下というより低い接触抵抗を得ることができる。すなわち、図2の領域1の組成範囲うち、酸化ホウ素及び酸化ビスマスの合計を100モル%として、酸化モリブデン35~65モル%、酸化ホウ素5~35モル%及び酸化ビスマス25~35モル%の範囲の組成領域の複合酸化物(ガラスフリット)を用いる場合には、より低い接触抵抗を得ることができるといえる。
<実験3:結晶系シリコン太陽電池の構造>
 表4に示す試料dの複合酸化物(ガラスフリット)を含む導電性ペーストを用いて、複合酸化物の組成以外は、上述の実施例1と同様の方法で試作した単結晶シリコン太陽電池の断面形状を走査型電子顕微鏡(SEM)及び透過型電子顕微鏡(TEM)を用いて観察することによって、本発明の結晶系シリコン太陽電池の構造を明らかにした。
 図4に、本発明の結晶系シリコン太陽電池の断面の走査型電子顕微鏡(SEM)であって、単結晶シリコン基板と、光入射側電極20との界面付近の走査型電子顕微鏡写真を示す。比較のため、図3に、比較例5と同様の方法で試作した結晶系シリコン太陽電池の断面の走査型電子顕微鏡であって、単結晶シリコン基板と、光入射側電極20との界面付近の走査型電子顕微鏡写真を示す。図5には、図4に示す結晶系シリコン太陽電池の断面の透過型電子顕微鏡(TEM)写真であって、単結晶シリコン基板と、光入射側電極20との界面付近を拡大した写真を示す。なお、図6に、図5の透過型電子顕微鏡写真を説明するための模式図を示す。
 図3から明らかなように、比較例5の単結晶シリコン太陽電池の場合には、光入射側電極20中の銀22と、p型結晶系シリコン基板1との間の多くに複合酸化物24が存在している。銀22と、p型結晶系シリコン基板1とが接している部分は極くわずかであり、多く見積もったとしても、光入射側電極20と、単結晶シリコン基板との間であって、光入射側電極20の直下の面積の5%未満であることが見て取れる。これに対して、本発明の実施例である図4に示す単結晶シリコン太陽電池の場合には、光入射側電極20中の銀22と、p型結晶系シリコン基板1とが接触している部分が、図3に示す比較例の単結晶シリコン太陽電池の場合よりはるかに多いことは明らかである。図3から、本発明の実施例である図4に示す単結晶シリコン太陽電池の場合、光入射側電極20中の銀22と、p型結晶系シリコン基板1とが接触している部分の面積は、少なく見積もったとしても、光入射側電極20と、単結晶シリコン基板との間であって、光入射側電極20の直下の面積の5%以上、概ね10%程度以上であることが見て取れる。
 さらに、詳細に光入射側電極20と、単結晶シリコン基板との間の構造を観察するために、図4に示す結晶系シリコン太陽電池の断面の透過型電子顕微鏡(TEM)写真を撮影した。図5に、このTEM写真を示す。また、図6に、図5のTEM写真の構造を説明するための模式図を示す。図5及び図6から明らかなように、単結晶シリコン基板1と、光入射側電極20との間には、酸窒化ケイ素膜32及び酸化ケイ素膜34を含む緩衝層30が存在していることが見て取れる。すなわち、図4で示す走査型電子顕微鏡において、入射側電極20中の銀22と、p型結晶系シリコン基板1とが接触していると思われた部分には、詳細にTEMを用いて観察するならば、緩衝層30が存在することが明らかとなった。また、酸化ケイ素膜34中には、20nm以下の銀微粒子36(導電性微粒子)が多く存在することが見て取れる。なお、TEM観察の際の組成分析は、電子エネルギー損失分光法(Electron Energy-Loss Spectroscopy、EELS)によって行った。
非限定的な推測によると、酸窒化ケイ素膜32及び酸化ケイ素膜34は絶縁膜であるものの、何らかの形で、単結晶シリコン基板1と、光入射側電極20との間の電気的接触に寄与しているものと考えられる。また、緩衝層30は、導電性ペーストを焼成する際に、導電性ペースト中の成分又は不純物が、p型又はn型不純物拡散層4へ拡散し、太陽電池特性に対して悪影響を及ぼすことを防止する役割を担うものであると考えられる。したがって、結晶系シリコン太陽電池の光入射側電極20の直下の少なくとも一部に、酸窒化ケイ素膜32及び酸化ケイ素膜34をこの順で含む緩衝層30を有する構造であることにより、高い性能の結晶系シリコン太陽電池特性を得ることができるものと推測できる。さらに、緩衝層30に含まれる銀微粒子36が、単結晶シリコン基板1と、光入射側電極20との間の電気的接触に、さらに寄与しているものと推測できる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
<実験4:低不純物濃度のn型不純物拡散層4を用いた単結晶シリコン太陽電池の試作>
 実験4の実施例として、n型不純物拡散層4(エミッタ層)を形成する際に、n型不純物濃度を8×1019cm-3(接合深さ250~300nm、シート抵抗:130Ω/□)とし、電極形成のための導電性ペーストの焼成温度(ピーク温度)を750℃とした以外は、実施例1と同様にして、実施例3の単結晶シリコン太陽電池を試作した。すなわち、実施例3で用いた導電性ペースト中の複合酸化物(ガラスフリット)は、表2に記載のA1だった。また、導電性ペーストの焼成温度(ピーク温度)を775℃とした以外は、実施例3と同様にして、実施例4の単結晶シリコン太陽電池を試作した。なお、太陽電池は同じ条件のものを3個作製し、測定値は3個の平均値として求めた。
 実験4の比較例として、導電性ペースト中の複合酸化物(ガラスフリット)として、表2に記載のD1を用いた以外は、実施例3と同様にして、比較例7の単結晶シリコン太陽電池を試作した。また、導電性ペーストの焼成温度(ピーク温度)を775℃とした以外は、比較例7と同様にして、比較例8の単結晶シリコン太陽電池を試作した。なお、太陽電池は同じ条件のものを3個作製し、測定値は3個の平均値として求めた。
 なお、通常、単結晶シリコン太陽電池のエミッタ層の不純物濃度は2~3×1020cm-3(シート抵抗:90Ω/□)である。したがって、実施例3、実施例4、比較例7及び比較例8の単結晶シリコン太陽電池のエミッタ層の不純物濃度は、通常の太陽電池のエミッタ層の不純物濃度と比較すると、1/3~1/4程度という低い不純物濃度である。一般に、エミッタ層の不純物濃度が低い場合には、電極と結晶系シリコン基板1との間の接触抵抗が高くなるため、良好な性能の結晶系シリコン太陽電池を得ることが困難になる。
 表5に、実施例3、実施例4、比較例7及び比較例8の単結晶シリコン太陽電池の太陽電池特性を示す。表5に示すように、比較例7及び比較例8のフィルファクターは、0.534及び0.717という低い値だった。これに対して実施例3及び実施例4のフィルファクターは、0.76を超えていた。また、実施例3及び実施例4の単結晶シリコン太陽電池の変換効率は、18.9%以上と非常に高かった。したがって、本発明の単結晶シリコン太陽電池は、エミッタ層の不純物濃度が低い場合でも、高い性能の結晶系シリコン太陽電池を得ることができるといえる。
Figure JPOXMLDOC01-appb-T000005
<実験5:n型不純物拡散層4の不純物濃度と、電極直下でのエミッタの飽和電流密度>
 実験5として、エミッタ層の不純物濃度を変化させた以外は実施例1と同様に、実施例5~7の単結晶シリコン太陽電池を試作した。すなわち、実施例5~7のための導電性ペースト中の複合酸化物(ガラスフリット)は、表2のA1を用いた。また、導電性ペースト中の複合酸化物(ガラスフリット)として表2のD1を用いた以外は実施例5~7と同様に、比較例9~11の単結晶シリコン太陽電池を試作した。実験5として得られた太陽電池の、光入射側電極20の直下のエミッタ層の飽和電流密度(J01)を測定した。なお、太陽電池は同じ条件のものを3個作製し、測定値は3個の平均値として求めた。その測定結果を図8に示す。なお、光入射側電極20の直下のエミッタ層の飽和電流密度(J01)が低いということは、光入射側電極20の直下でのキャリアの表面再結合速度が小さいことを示している。表面再結合速度が小さい場合には、光入射により発生したキャリアの再結合が小さくなるため、高い性能の太陽電池を得ることができる。
 図8に示すように、実験5の実施例5~7の単結晶シリコン太陽電池の場合には、比較例9~11と比べて、光入射側電極20の直下のエミッタ層の飽和電流密度(J01)が低かった。このことは、本発明の結晶系シリコン太陽電池の場合には、光入射側電極20の直下でのキャリアの表面再結合速度が小さいことを示しているといえる。したがって、本発明の結晶系シリコン太陽電池の場合には、光入射により発生したキャリアの再結合が小さくなるため、高い性能の太陽電池を得ることができるといえる。
Figure JPOXMLDOC01-appb-T000006
<実験6:ダミー電極部の面積と、開放電圧及びエミッタの飽和電流密度との関係>
 実験6として、エミッタ層上のダミー電極部の面積を変化させて、単結晶シリコン太陽電池を試作し、太陽電池特性の一つである開放電圧、及びエミッタの飽和電流密度を測定した。なお、ダミー電極部とは、バスバー電極部に電気的に接続していない(バスバー電極部に接続していない)電極である。ダミー電極部の面積に比例して、ダミー電極部でのキャリアの表面再結合が増加することになる。したがって、ダミー電極部の面積の増加と、開放電圧及びエミッタの飽和電流密度との関係を知ることにより、光入射側電極20の直下のエミッタ層表面での、キャリアの表面再結合に起因する太陽電池性能の低下の様子を明らかにすることができる。
 ダミー電極部の面積を変化させるために、光入射側電極20として、バスバー電極部50及びそれに接続するフィンガー電極部(接続フィンガー電極部52)に加え、接続フィンガー電極部52の間のダミーフィンガー電極部54の数を0~3本と変化させて、所定の太陽電池を作製した。参考のため、図11、図12及び図13に、接続フィンガー電極部52の間のダミーフィンガー電極部54を1本、2本及び3本とした電極形状の模式図を示す。なお、実際に用いた電極形状では、1本のバスバー電極部50(幅2mm、長さ140mm)に対して、64本の接続フィンガー電極部52(幅100μm、長さ140mm)が中心で直交するように、バスバー電極部50及び接続フィンガー電極部52を配置した。接続フィンガー電極部52の中心間隔は2.443mmとした。ダミーフィンガー電極部54としては、長さ5mm、幅100μmのものを、間隔1mmで連続的に配置した破線状の形状とした。この破線状のダミーフィンガー電極部54を、各接続フィンガー電極部52の間に所定本数、等間隔で配置した。バスバー電極部50及び接続フィンガー電極部52は、外部へ電流の取り出しが可能なように接続されており、太陽電池測定を測定することができる。ダミーフィンガー電極部54は、バスバー電極部50には接続されておらず、孤立している。
 表7に示すように、実験6-1、実験6-2、及び実験6-3では、バスバー電極部50及び接続フィンガー電極部52、並びにダミーフィンガー電極部54に対して所定の導電性ペーストを用いて単結晶シリコン太陽電池を試作した。なお、太陽電池の製造条件は、導電性ペースト中のガラスフリットとして表7に示すものを用いた以外は、実施例1と同様である。各条件について、それぞれ3つの太陽電池を作製し、その平均値を所定のデータの値とした。その結果を、表7に示す。また、実験6の開放電圧(Voc)の測定結果を図9に図示する。実験6の飽和電流密度(J01)の測定結果を図10に示す。
 表7から明らかなように、本発明の実施例であるA1の複合酸化物(ガラスフリット)を含む導電性ペーストを用いてダミーフィンガー電極部54を作製した実験6-1の太陽電池の場合には、従来の導電性ペーストであるD1の複合酸化物(ガラスフリット)を含む導電性ペーストを用いた実験6-2及び実験6-3に比べて、高い開放電圧(Voc)及び低い飽和電流密度(J01)を得ることができることが明らかになった。このことは、本発明の導電性ペーストを用いて太陽電池の電極を形成することにより、電極直下でのキャリアの表面再結合速度を低くすることができたためであると推測される。
Figure JPOXMLDOC01-appb-T000007
[符号の説明]
 1 結晶系シリコン基板(p型結晶系シリコン基板)
 2 反射防止膜
 4 不純物拡散層(n型不純物拡散層)
 15 裏面電極
 20 光入射側電極(表面電極)
 22 銀
 24 複合酸化物
 30 緩衝層
 32 酸窒化ケイ素膜
 34 酸化ケイ素膜
 36 銀微粒子
 50 バスバー電極部
 52 接続フィンガー電極部
 54 ダミーフィンガー電極部

Claims (34)

  1.  第一の導電型の結晶系シリコン基板と、
     結晶系シリコン基板の少なくとも一つの表面の少なくとも一部に形成された不純物拡散層と、
     不純物拡散層の表面の少なくとも一部に形成された緩衝層と、
     緩衝層の表面に形成された電極と
    を有する結晶系シリコン太陽電池であって、
     電極が、導電性金属及び複合酸化物を含み、
     緩衝層が、ケイ素、酸素、及び窒素を含む層である、結晶系シリコン太陽電池。
  2.  緩衝層が、導電性金属元素、ケイ素、酸素、及び窒素を含む層である、請求項1に記載の結晶系シリコン太陽電池。
  3.  緩衝層に含まれる導電性金属元素が銀である、請求項2に記載の結晶系シリコン太陽電池。
  4.  不純物拡散層が、第一の導電型の結晶系シリコン基板の光入射側表面に形成された、第二の導電型の不純物拡散層であり、
     電極が、結晶系シリコン基板の光入射側表面に形成された光入射側電極であり、
     電極が形成されていない部分に対応する不純物拡散層の表面の少なくとも一部に、窒化ケイ素を材料とする反射防止膜を有する、請求項1~3のいずれか1項に記載の結晶系シリコン太陽電池。
  5.  光入射側電極が、不純物拡散層と電気的接触をするためのフィンガー電極部と、フィンガー電極部及び外部へ電流を取り出すための導電性リボンに対して電気的接触をするためのバスバー電極部とを含み、緩衝層が、フィンガー電極部と、結晶系シリコン基板との間であって、フィンガー電極部の直下の少なくとも一部に形成される、請求項4に記載の結晶系シリコン太陽電池。
  6.  結晶系シリコン基板の光入射側表面とは反対側の裏面に形成された裏面電極を有する、請求項4又は5に記載の結晶系シリコン太陽電池。
  7.  不純物拡散層が、第一の導電型の結晶系シリコン基板の光入射側表面とは反対側の表面である裏面に形成された、第一の導電型及び第二の導電型の不純物拡散層であり、
     第一の導電型及び第二の導電型の不純物拡散層が、それぞれ櫛状に、互いに入り込むように配置され、
     緩衝層が、第一の導電型及び第二の導電型の不純物拡散層の表面の少なくとも一部に形成された緩衝層であり、
     電極が、第一の導電型の不純物拡散層の表面の少なくとも一部に形成された緩衝層の表面に形成された第一の電極、及び第二の導電型の不純物拡散層の表面の少なくとも一部に形成された緩衝層の表面に形成された第二の電極である、請求項1~3のいずれか1項に記載の結晶系シリコン太陽電池。
  8.  電極が形成されていない部分に対応する第一の導電型の結晶系シリコン基板の裏面及び不純物拡散層の少なくとも一部に、窒化ケイ素を材料とする窒化ケイ素膜を有する、請求項7に記載の結晶系シリコン太陽電池。
  9.  緩衝層の少なくとも一部が、結晶系シリコン基板から電極に向かって、酸窒化ケイ素膜及び酸化ケイ素膜をこの順で含む、請求項1~7のいずれか1項に記載の結晶系シリコン太陽電池。
  10.  緩衝層が、導電性微粒子を含む、請求項9に記載の結晶系シリコン太陽電池。
  11.  導電性微粒子の粒径が、20nm以下である、請求項10に記載の結晶系シリコン太陽電池。
  12.  導電性微粒子が、緩衝層の酸化ケイ素膜中のみに存在する、請求項10又は11に記載の結晶系シリコン太陽電池。
  13.  導電性微粒子が、銀微粒子である、請求項10~12のいずれか1項に記載の結晶系シリコン太陽電池。
  14.  電極と、不純物拡散層との間に配置される緩衝層の面積が、電極の直下の面積の5%以上である、請求項1~13のいずれか1項に記載の結晶系シリコン太陽電池。
  15.  電極に含まれる複合酸化物が、酸化モリブデン、酸化ホウ素及び酸化ビスマスを含む、請求項1~14のいずれか1項に記載の結晶系シリコン太陽電池。
  16.  複合酸化物が、酸化モリブデン、酸化ホウ素及び酸化ビスマスの合計を100モル%として、酸化モリブデン25~65モル%、酸化ホウ素5~45モル%及び酸化ビスマス25~35モル%を含む、請求項15に記載の結晶系シリコン太陽電池。
  17.  第一の導電型の結晶系シリコン基板を用意する工程と、
     結晶系シリコン基板の少なくとも一つの表面の少なくとも一部に、不純物拡散層を形成する工程と、
     不純物拡散層の表面に、窒化ケイ素膜を形成する工程と、
     導電性ペーストを、不純物拡散層の表面に形成された窒化ケイ素膜の表面に印刷し、及び焼成することによって、電極と、電極及び不純物拡散層の間の緩衝層とを形成する工程とを含む、結晶系シリコン太陽電池の製造方法であって、
     緩衝層が、ケイ素、酸素、及び窒素を有する層である、結晶系シリコン太陽電池の製造方法。
  18.  緩衝層が、導電性金属元素、ケイ素、酸素、及び窒素を含む層である、請求項17に記載の結晶系シリコン太陽電池の製造方法。
  19.  緩衝層に含まれる導電性金属元素が銀である、請求項18に記載の結晶系シリコン太陽電池の製造方法。
  20.  不純物拡散層が、第一の導電型の結晶系シリコン基板の光入射側表面に形成された、第二の導電型の不純物拡散層であり、
     電極が、結晶系シリコン基板の光入射側表面に形成された光入射側電極である、
    請求項17~19に記載の結晶系シリコン太陽電池の製造方法。
  21.  光入射側電極が、不純物拡散層と電気的接触をするためのフィンガー電極部と、フィンガー電極部及び外部へ電流を取り出すための導電性リボンに対して電気的接触をするためのバスバー電極部とを含み、緩衝層が、フィンガー電極部と、結晶系シリコン基板との間であって、フィンガー電極部の直下の少なくとも一部に形成される、請求項20に記載の結晶系シリコン太陽電池の製造方法。
  22.  結晶系シリコン基板の光入射側表面とは反対側の裏面に裏面電極を形成する工程をさらに含む、請求項20又は21に記載の結晶系シリコン太陽電池の製造方法。
  23.  不純物拡散層を形成する工程が、第一の導電型の結晶系シリコン基板の光入射側表面とは反対側の表面である裏面に、第一の導電型及び第二の導電型の不純物拡散層を形成することを含み、
     第一の導電型及び第二の導電型の不純物拡散層が、それぞれ櫛状に、互いに入り込むように配置され、
     緩衝層が、第一の導電型及び第二の導電型の不純物拡散層の表面の少なくとも一部に形成された緩衝層であり、
     電極が、第一の導電型の不純物拡散層の表面の少なくとも一部に形成された緩衝層の表面に形成された第一の電極、及び第二の導電型の不純物拡散層の表面の少なくとも一部に形成された緩衝層の表面に形成された第二の電極である、請求項17~19に記載の結晶系シリコン太陽電池の製造方法。
  24.  窒化ケイ素膜を形成する工程が、電極が形成されていない部分に対応する第一の導電型の結晶系シリコン基板の裏面及び不純物拡散層の少なくとも一部に、窒化ケイ素を材料とする窒化ケイ素膜を形成することを含む、請求項23に記載の結晶系シリコン太陽電池の製造方法。
  25.  緩衝層の少なくとも一部が、結晶系シリコン基板から光入射側電極に向かって、酸窒化ケイ素膜及び酸化ケイ素膜をこの順で含む、請求項17~24のいずれか1項に記載の結晶系シリコン太陽電池の製造方法。
  26.  電極を形成する工程が、導電性ペーストを、400~850℃で焼成することを含む、請求項17~25のいずれか1項にに記載の結晶系シリコン太陽電池の製造方法。
  27.  導電性ペーストが、導電性粉末と、複合酸化物と、有機ビヒクルとを含み、
     複合酸化物が、酸化モリブデン、酸化ホウ素及び酸化ビスマスを含む、請求項17~26のいずれか1項に記載の結晶系シリコン太陽電池の製造方法。
  28.  複合酸化物が、酸化モリブデン、酸化ホウ素及び酸化ビスマスの合計を100モル%として、酸化モリブデン25~65モル%、酸化ホウ素5~45モル%及び酸化ビスマス25~35モル%を含む、請求項27に記載の結晶系シリコン太陽電池の製造方法。
  29.  複合酸化物が、酸化モリブデン、酸化ホウ素及び酸化ビスマスの合計を100モル%として、酸化モリブデン15~40モル%、酸化ホウ素25~45モル%及び酸化ビスマス25~60モル%を含む、請求項27に記載の結晶系シリコン太陽電池の製造方法。
  30.  複合酸化物が、複合酸化物100モル%中、酸化モリブデン、酸化ホウ素及び酸化ビスマスの合計を90モル%以上含む、請求項27~29のいずれか1項に記載の結晶系シリコン太陽電池の製造方法。
  31.  複合酸化物が、複合酸化物100重量%中、酸化チタン0.1~6モル%をさらに含む、請求項27~30のいずれか1項に記載の結晶系シリコン太陽電池の製造方法。
  32.  複合酸化物が、複合酸化物100重量%中、酸化亜鉛0.1~3モル%をさらに含む、請求項27~31のいずれか1項に記載の結晶系シリコン太陽電池の製造方法。
  33.  導電性ペーストが、導電性粉末100重量部に対し、複合酸化物を0.1~10重量部含む、請求項27~32のいずれか1項に記載の結晶系シリコン太陽電池の製造方法。
  34.  導電性粉末が、銀粉末である、請求項27~33のいずれか1項に記載の結晶系シリコン太陽電池の製造方法。
PCT/JP2014/069566 2013-07-25 2014-07-24 結晶系シリコン太陽電池及びその製造方法 WO2015012353A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480041740.8A CN105408267B (zh) 2013-07-25 2014-07-24 结晶系硅太阳能电池及其制造方法
JP2015528332A JP6375298B2 (ja) 2013-07-25 2014-07-24 結晶系シリコン太陽電池及びその製造方法
US14/906,438 US20160155868A1 (en) 2013-07-25 2014-07-24 Crystalline silicon solar cell and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013154582 2013-07-25
JP2013-154582 2013-07-25

Publications (1)

Publication Number Publication Date
WO2015012353A1 true WO2015012353A1 (ja) 2015-01-29

Family

ID=52393386

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/069565 WO2015012352A1 (ja) 2013-07-25 2014-07-24 導電性ペースト及び結晶系シリコン太陽電池の製造方法
PCT/JP2014/069566 WO2015012353A1 (ja) 2013-07-25 2014-07-24 結晶系シリコン太陽電池及びその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069565 WO2015012352A1 (ja) 2013-07-25 2014-07-24 導電性ペースト及び結晶系シリコン太陽電池の製造方法

Country Status (6)

Country Link
US (1) US20160155868A1 (ja)
JP (2) JP6375298B2 (ja)
KR (1) KR102175305B1 (ja)
CN (2) CN105408267B (ja)
TW (2) TWI628804B (ja)
WO (2) WO2015012352A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3125303A1 (en) * 2015-07-31 2017-02-01 Lg Electronics Inc. Solar cell and method for manufacturing the same
JP2019031409A (ja) * 2017-08-07 2019-02-28 Agc株式会社 ガラス組成物およびガラス粉末
JP2019085307A (ja) * 2017-11-08 2019-06-06 Agc株式会社 ガラス組成物、ガラス粉末、導電ペーストおよび太陽電池

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8969122B2 (en) * 2011-06-14 2015-03-03 International Business Machines Corporation Processes for uniform metal semiconductor alloy formation for front side contact metallization and photovoltaic device formed therefrom
CN107408418A (zh) * 2015-03-27 2017-11-28 贺利氏德国有限责任两合公司 包含氧化物添加剂的导电浆料
EP3282453B1 (en) 2016-08-11 2023-07-12 Henkel AG & Co. KGaA Improved processing of polymer based inks and pastes
JP6714275B2 (ja) * 2016-08-23 2020-06-24 ナミックス株式会社 導電性ペースト及び太陽電池
JP6677678B2 (ja) * 2017-06-23 2020-04-08 信越化学工業株式会社 高効率太陽電池の製造方法
KR20190068351A (ko) * 2017-12-08 2019-06-18 삼성에스디아이 주식회사 태양전지 셀
JP7161738B2 (ja) * 2018-02-08 2022-10-27 ナミックス株式会社 導電性ペースト、硬化物、導電性パターン、衣服及びストレッチャブルペースト

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214045A (ja) * 1990-12-11 1992-08-05 Hoya Corp 低融点ガラス
JPH05217421A (ja) * 1992-02-07 1993-08-27 Nippon Steel Corp メタライズ用組成物
JP2001172046A (ja) * 1999-12-20 2001-06-26 Asahi Glass Co Ltd 隔壁形成用低融点ガラス
JP2003152207A (ja) * 2001-11-13 2003-05-23 Toyota Motor Corp 光電変換素子及びその製造方法
JP2012079550A (ja) * 2010-10-01 2012-04-19 Nippon Electric Glass Co Ltd 電気素子パッケージ
JP2012523365A (ja) * 2009-04-09 2012-10-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 光起電力セル用の導体中に使用されるガラス組成物
JP2014060260A (ja) * 2012-09-18 2014-04-03 Murata Mfg Co Ltd 導電性ペースト及び太陽電池

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151793A (ja) * 2004-10-29 2006-06-15 Okamoto Glass Co Ltd 電子伝導性ガラス及びこれを用いた電子線励起型ディスプレイ用スペーサ
US8637340B2 (en) * 2004-11-30 2014-01-28 Solexel, Inc. Patterning of silicon oxide layers using pulsed laser ablation
JP5409007B2 (ja) * 2005-11-08 2014-02-05 エルジー・エレクトロニクス・インコーポレーテッド 高効率の太陽電池及びその調製方法
NL2000033C1 (nl) * 2006-03-20 2007-09-21 Univ Eindhoven Tech Inrichting voor het omzetten van elektromagnetische stralingsenergie in elektrische energie en werkwijze ter vervaardiging van een dergelijke inrichting.
JP5528653B2 (ja) * 2006-08-09 2014-06-25 信越半導体株式会社 半導体基板並びに電極の形成方法及び太陽電池の製造方法
US8236598B2 (en) * 2007-08-31 2012-08-07 Ferro Corporation Layered contact structure for solar cells
CN201112399Y (zh) * 2007-09-27 2008-09-10 江苏林洋新能源有限公司 具有浓硼浓磷扩散结构的太阳能电池
JP2011503772A (ja) 2007-10-18 2011-01-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 伝導性組成物、および半導体デバイスの製造における使用方法:Mg含有添加剤
KR101269710B1 (ko) * 2009-03-27 2013-05-30 가부시키가이샤 히타치세이사쿠쇼 도전성 페이스트 및 그것을 사용한 전극 배선을 구비하는 전자 부품
CN102460715B (zh) * 2009-04-21 2015-07-22 泰特拉桑有限公司 高效率太阳能电池结构及制造方法
CN101555388B (zh) * 2009-05-19 2012-09-05 无锡市儒兴科技开发有限公司 硅太阳能电池铝浆用无机粘合剂及其制备方法
JP5559509B2 (ja) * 2009-10-28 2014-07-23 昭栄化学工業株式会社 太陽電池電極形成用導電性ペースト
JP5559510B2 (ja) * 2009-10-28 2014-07-23 昭栄化学工業株式会社 太陽電池素子及びその製造方法
US8252204B2 (en) * 2009-12-18 2012-08-28 E I Du Pont De Nemours And Company Glass compositions used in conductors for photovoltaic cells
US8697476B2 (en) * 2010-04-30 2014-04-15 E I Du Pont De Nemours And Company Processes and compositions for forming photovoltaic devices with base metal buss bars
US9249319B2 (en) * 2010-06-29 2016-02-02 Korea University Research And Business Foundation Liquid additive for etching silicon nitride and silicon oxide layers, metal ink containing the same, and method of manufacturing silicon solar cell electrodes
KR101741683B1 (ko) * 2010-08-05 2017-05-31 삼성전자주식회사 도전성 페이스트, 상기 도전성 페이스트를 사용하여 형성된 전극을 포함하는 전자 소자 및 태양 전지
KR101960465B1 (ko) * 2010-10-27 2019-03-21 삼성전자주식회사 도전성 페이스트 및 태양 전지
TWI433341B (zh) * 2010-12-29 2014-04-01 Au Optronics Corp 太陽電池的製造方法
EP2579320A2 (en) * 2011-10-06 2013-04-10 Samsung SDI Co., Ltd. Photovoltaic device
CN103151094A (zh) * 2011-10-25 2013-06-12 赫劳斯贵金属北美康舍霍肯有限责任公司 含有金属纳米颗粒的导电性浆料成分
TWI432551B (zh) * 2011-11-11 2014-04-01 Eternal Chemical Co Ltd 太陽能電池用之導電膠組成物及其應用
WO2013148047A1 (en) * 2012-03-30 2013-10-03 Applied Materials, Inc. Doped ai paste for local alloyed junction formation with low contact resistance
US8652873B1 (en) * 2012-08-03 2014-02-18 E I Du Pont De Nemours And Company Thick-film paste containing lead-vanadium-based oxide and its use in the manufacture of semiconductor devices
US8912071B2 (en) * 2012-12-06 2014-12-16 International Business Machines Corporation Selective emitter photovoltaic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214045A (ja) * 1990-12-11 1992-08-05 Hoya Corp 低融点ガラス
JPH05217421A (ja) * 1992-02-07 1993-08-27 Nippon Steel Corp メタライズ用組成物
JP2001172046A (ja) * 1999-12-20 2001-06-26 Asahi Glass Co Ltd 隔壁形成用低融点ガラス
JP2003152207A (ja) * 2001-11-13 2003-05-23 Toyota Motor Corp 光電変換素子及びその製造方法
JP2012523365A (ja) * 2009-04-09 2012-10-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 光起電力セル用の導体中に使用されるガラス組成物
JP2012079550A (ja) * 2010-10-01 2012-04-19 Nippon Electric Glass Co Ltd 電気素子パッケージ
JP2014060260A (ja) * 2012-09-18 2014-04-03 Murata Mfg Co Ltd 導電性ペースト及び太陽電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3125303A1 (en) * 2015-07-31 2017-02-01 Lg Electronics Inc. Solar cell and method for manufacturing the same
US10290765B2 (en) 2015-07-31 2019-05-14 Lg Electronics Inc. Solar cell and method for manufacturing the same
US10615303B2 (en) 2015-07-31 2020-04-07 Lg Electronics Inc. Solar cell and method for manufacturing the same
JP2019031409A (ja) * 2017-08-07 2019-02-28 Agc株式会社 ガラス組成物およびガラス粉末
JP7027719B2 (ja) 2017-08-07 2022-03-02 Agc株式会社 ガラス組成物およびガラス粉末
JP2019085307A (ja) * 2017-11-08 2019-06-06 Agc株式会社 ガラス組成物、ガラス粉末、導電ペーストおよび太陽電池
US10407340B2 (en) 2017-11-08 2019-09-10 AGC Inc. Glass composition, glass powder, conductive paste, and solar cell

Also Published As

Publication number Publication date
KR102175305B1 (ko) 2020-11-06
JP6375298B2 (ja) 2018-08-15
WO2015012352A1 (ja) 2015-01-29
JPWO2015012353A1 (ja) 2017-03-02
CN105408267B (zh) 2020-01-14
CN105408267A (zh) 2016-03-16
TWI628805B (zh) 2018-07-01
TW201519452A (zh) 2015-05-16
JPWO2015012352A1 (ja) 2017-03-02
TW201523896A (zh) 2015-06-16
TWI628804B (zh) 2018-07-01
KR20160034957A (ko) 2016-03-30
CN105409009A (zh) 2016-03-16
JP6487842B2 (ja) 2019-03-20
US20160155868A1 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
JP6375298B2 (ja) 結晶系シリコン太陽電池及びその製造方法
JP5349738B2 (ja) 半導体デバイスの製造方法、およびそこで使用される導電性組成物
JP6220862B2 (ja) 電極形成用導電性ペースト、太陽電池の製造方法及び太陽電池
JP2006302891A (ja) 半導体デバイスの製造方法、およびそこで使用される導電性組成物
US11049983B2 (en) Conductive paste and solar cell
TWI498398B (zh) A conductive paste for forming a solar cell and its electrode
JPWO2008078375A1 (ja) 結晶系シリコン基板の電極形成用導電性ペースト
US10770601B2 (en) Electro-conductive paste, solar cell and method for producing solar cell
WO2017154612A1 (ja) 導電性ペースト及び太陽電池
JP2009194121A (ja) 結晶系シリコン太陽電池電極形成用導電性ペースト
US20190194059A1 (en) Conductive paste and solar cell
JP2010251645A (ja) 太陽電池及びその電極形成用導電性ペースト
JP2007294678A (ja) 太陽電池電極用導電性ペースト
JP6137852B2 (ja) 太陽電池の電極形成用導電性ペースト
JP6200128B2 (ja) 太陽電池の電極形成用導電性ペースト
JP6176783B2 (ja) 結晶系シリコン太陽電池及びその製造方法
JP2013243279A (ja) 太陽電池の電極形成用導電性ペースト
JP6266079B2 (ja) 太陽電池の電極形成用導電性ペースト及び太陽電池の製造方法
JP5550881B2 (ja) 太陽電池及びその製造方法
WO2023190282A1 (ja) 導電性ペースト、太陽電池及び太陽電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480041740.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015528332

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14906438

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14829372

Country of ref document: EP

Kind code of ref document: A1