WO2023190282A1 - 導電性ペースト、太陽電池及び太陽電池の製造方法 - Google Patents

導電性ペースト、太陽電池及び太陽電池の製造方法 Download PDF

Info

Publication number
WO2023190282A1
WO2023190282A1 PCT/JP2023/012085 JP2023012085W WO2023190282A1 WO 2023190282 A1 WO2023190282 A1 WO 2023190282A1 JP 2023012085 W JP2023012085 W JP 2023012085W WO 2023190282 A1 WO2023190282 A1 WO 2023190282A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
electrode
solar cell
conductivity type
light incident
Prior art date
Application number
PCT/JP2023/012085
Other languages
English (en)
French (fr)
Inventor
聖也 今野
秀雄 田辺
元希 齋藤
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to TW112129981A priority Critical patent/TW202420608A/zh
Priority to PCT/JP2023/029078 priority patent/WO2024100947A1/ja
Publication of WO2023190282A1 publication Critical patent/WO2023190282A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Definitions

  • the present invention relates to a conductive paste used for forming electrodes of semiconductor devices and the like.
  • the present invention relates to a conductive paste for forming electrodes of solar cells.
  • the present invention also relates to a solar cell manufactured using the conductive paste for electrode formation, and a method for manufacturing a solar cell.
  • Semiconductor devices such as crystalline silicon solar cells that use crystalline silicon, which is formed by processing monocrystalline silicon or polycrystalline silicon into a flat plate shape, have electrodes on the surface of the silicon substrate for electrical contact with the outside of the device. It is common for electrodes to be formed using a conductive paste for formation. Among semiconductor devices in which electrodes are formed in this manner, the production volume of crystalline silicon solar cells has increased significantly in recent years. These solar cells have an impurity diffusion layer, an antireflection film, and a light incident side surface electrode on one surface of a crystalline silicon substrate, and a back surface electrode on the other surface. The power generated by the crystalline silicon solar cell can be extracted to the outside by the light incident side front surface electrode and the back surface electrode.
  • a conductive paste containing a conductive powder, a glass frit, an organic binder, a solvent, and other additives is used to form the electrodes of conventional crystalline silicon solar cells.
  • Silver particles are mainly used as the conductive powder.
  • Patent Document 1 describes a method for improving ohmic contact behavior between a contact grid and an emitter layer of a silicon solar cell. Specifically, the method described in Patent Document 1 describes the following. That is, a silicon solar cell (1) is first provided with the emitter layer, the contact grid (5) and the back contact (3). Said contact grid (5) is electrically connected to one pole of a voltage source. A contact device electrically connected to the other pole of the voltage source is connected to the back contact (3). The voltage source applies a voltage lower than the breakdown voltage in the opposite direction to the forward direction of the silicon solar cell (1). While this voltage is applied, a point light source (13) is induced across the sun-facing side of the silicon solar cell (1).
  • a subsection on the side facing the sun is point-irradiated to induce a current to flow in the subarea.
  • This current acts on the subsection for a period of 1 msec to 100 msec.
  • the current is reduced by a ratio of the area of the subsection to the area of the silicon solar cell (1) by 10 to 30 times the magnitude of the short circuit current of the silicon solar cell (1) measured under standard test conditions.
  • the size is equivalent to that of
  • Patent Document 2 describes a process for improving ohmic contact behavior between a contact grid and an emitter layer in a silicon solar cell. Specifically, as the process of Patent Document 2, a predetermined voltage is applied in the forward direction and the reverse direction of the silicon solar cell, and a point light source is guided to the solar side of the silicon solar cell, thereby It is described that irradiation is applied to a cross section of a subsection on the surface side.
  • Patent Document 3 describes a method for manufacturing a crystalline silicon solar cell using a conductive paste for forming an electrode of a crystalline silicon solar cell containing an inorganic material.
  • Patent Document 3 describes a conductive paste containing conductive particles and glass frit as an inorganic material. It is described that the glass frit contained in the conductive paste of Patent Document 3 contains 70 to 90% by weight of PbO based on 100% by weight of the glass frit, and does not contain Al 2 O 3 .
  • Patent Document 4 describes a conductive composition containing silver powder, glass powder containing PbO, and a vehicle made of an organic substance.
  • the conductive composition is a conductive composition for forming an electrode that penetrates a silicon nitride layer and is electrically connected to an n-type semiconductor layer formed under the silicon nitride layer.
  • the basicity of the glass powder contained in the conductive composition is 0.6 or more and 0.8 or less, and the transition point of the glass is 300°C to 450°C. There is.
  • FIG. 5 shows an example of a schematic cross-sectional view of a general crystalline silicon solar cell.
  • an impurity diffusion layer 4 is provided on the light incident side surface (light incident side surface) of a crystalline silicon substrate 1 (for example, an n-type crystalline silicon substrate 1).
  • a crystalline silicon substrate 1 for example, an n-type crystalline silicon substrate 1).
  • an antireflection film 2 is formed on the impurity diffusion layer 4. Since the antireflection film 2 also has a function as a passivation film, the antireflection film 2 is sometimes referred to as the passivation film 2.
  • an electrode pattern of the light incident side surface electrode 20 (surface electrode) is printed on the antireflection film 2 using a conductive paste using a screen printing method or the like, and the conductive paste is dried and baked at a predetermined temperature.
  • the light incident side surface electrode 20 is formed by this.
  • the conductive paste fires through the antireflection film 2 during firing at this predetermined temperature. This fire-through allows the light incident side surface electrode 20 to be formed in contact with the impurity diffusion layer 4 .
  • fire-through refers to etching the antireflection film 2, which is an insulating film, with a glass frit or the like contained in a conductive paste to make the light incident side surface electrode 20 and the impurity diffusion layer 4 electrically conductive.
  • the electrode pattern when the electrode pattern is fired, the electrode pattern fires through the anti-reflection film 2, so that the anti-reflection film 2 disappears and the light incident side surface electrode 20 and the impurity diffusion layer 4 are removed. are in contact with.
  • a pn junction is formed at the interface between the n-type crystalline silicon substrate 1 and the impurity diffusion layer 4.
  • Electrons and holes (carriers) are extracted to the outside as a current through these electrodes.
  • FIG. 2 shows an example of a schematic diagram of the light incident side surface of a crystalline silicon solar cell.
  • a bus bar electrode (light incident side bus bar electrode 20a) and a light incident side finger electrode 20b (simply referred to as "finger") as the light incident side surface electrode 20. (sometimes referred to as “electrode 20b") are arranged.
  • electrode 20b electrons of the electron-hole pairs generated by the incident light incident on the crystalline silicon solar cell are collected on the finger electrode 20b and further collected on the light incident side bus bar electrode 20a.
  • a metal ribbon for interconnection whose periphery is covered with solder is soldered to the light incident side bus bar electrode 20a, and current is taken out to the outside by this metal ribbon.
  • the contact resistance between the light incident side surface electrode 20 and the impurity diffusion layer 4 is required to be low.
  • the laser treatment process refers to forming the light incident side surface electrode 20, applying a predetermined voltage so that a current flows in the opposite direction to the forward direction of the crystalline silicon solar cell, and This refers to a technique for obtaining low contact resistance by irradiating the light incident side surface of a solar cell with light from a solar cell.
  • fill factor FF
  • Voc open circuit voltage
  • FIG. 1 shows an example of a schematic cross-sectional view showing a structure in which a light-incidence side surface electrode 20 is formed on the light-incidence side surface of a crystalline silicon solar cell using a laser treatment process. As shown in FIG. 1, when a laser treatment process is used, the antireflection film 2 is present in most of the area between the light incident side surface electrode 20 and the impurity diffusion layer 4.
  • the above-mentioned predetermined voltage is applied so that a current flows in the opposite direction to the forward direction in the pn junction, and light from a point light source is irradiated to generate carriers (electrons and holes).
  • a current flows in a small region between the light incident side surface electrode 20 and the impurity diffusion layer 4, and the region is locally heated. Due to the local heating, a minute portion where the impurity diffusion layer 4 does not exist is formed between the light incident side surface electrode 20 and the impurity diffusion layer 4 .
  • an AgSi alloy 30 (alloy of silver and silicon), which is a locally minute electrically conductive portion (locally conductive portion), is formed in the impurity diffusion layer 4 in contact with the light incident side surface electrode 20. is thought to be formed. Note that the AgSi alloy 30 is not shown in FIG. 1 because it is locally formed in a limited area. It is thought that this locally formed minute electrically conductive portion enables good electrical continuity between the light incident side surface electrode 20 and the impurity diffusion layer 4. Further, an antireflection film 2 (passivation film) is present in most of the area between the light incident side surface electrode 20 and the impurity diffusion layer 4 except for the part where the local conduction part is formed.
  • the fill factor (FF) of the solar cell can be improved without reducing the open circuit voltage (Voc). Therefore, the conductive paste used to form the light incident side surface electrode 20 by the laser treatment process may have different properties from conventional conductive paste (conductive paste that can fire through the antireflection film 2). is necessary.
  • the electrode pattern of the conductive paste is fired, which fires through the antireflection film 2 and creates an impurity diffusion layer. Contact 4. During this fire-through, there is a problem in that the impurity diffusion layer 4 is damaged and the performance of the crystalline silicon solar cell is degraded.
  • the antireflection film 2 is basically not fired through. Therefore, by using the laser treatment process, damage to the impurity diffusion layer 4 can be suppressed.
  • an object of the present invention is to provide a conductive paste suitable for forming electrodes by a laser treatment process for manufacturing crystalline silicon solar cells.
  • the present invention has the following configuration.
  • Configuration 1 is a conductive paste for forming electrodes of solar cells, (A) conductive particles; (B) an organic vehicle; (C) includes a glass frit; Basicity B of the glass frit (C) GF , and the unit weight part in the conductive paste when the content of the conductive particles (A) in the conductive paste is 100 parts by weight. (C) A conductive paste in which the product B (GF ⁇ G) of glass frit content G is in the range of 0.25 to 1.45.
  • Configuration 2 is the conductive paste of Configuration 1, wherein the conductive particles (A) include silver particles.
  • Structure 3 is the conductive paste of Structure 1 or 2, in which (B) the organic vehicle contains at least one selected from ethyl cellulose, rosin ester, acrylic, and an organic solvent.
  • Configuration 4 is such that the product of the PbO content C PbO in the (C) glass frit in units of mol% and the content G of the (C) glass frit is 20 to 139.
  • the conductive paste has any one of configurations 1 to 3 within the range.
  • Configuration 5 is the conductive paste according to any one of Configurations 1 to 4, wherein the content G of the glass frit (C) is 0.3 to 4.0 parts by weight.
  • Configuration 6 is the conductive paste according to any one of Configurations 1 to 4, wherein the content G of the glass frit (C) is 0.5 to 1.5 parts by weight.
  • Configuration 7 is the conductive paste of any of Configurations 1 to 6, wherein the glass transition point of the glass frit (C) is 300 to 600°C.
  • Configuration 8 is the conductive paste of any one of Configurations 1 to 7, in which the glass frit (C) contains at least one selected from ZnO, V 2 O 5 , WO 3 and Nb 2 O 3 .
  • Configuration 9 is the conductive paste of any of Configurations 1 to 8, wherein the conductive paste further contains (D) aluminum particles.
  • Configuration 10 is such that the content of the aluminum particles (D) in the conductive paste is 0.1 to 2 when the content of the conductive particles (A) in the conductive paste is 100 parts by weight. 0 parts by weight of the conductive paste of Configuration 9.
  • Structure 11 is a conductive paste for forming electrodes of solar cells,
  • the solar cell is a first conductivity type semiconductor substrate; a second conductivity type semiconductor layer disposed on one surface of the first conductivity type semiconductor substrate; a back electrode arranged to be electrically connected to the other surface of the first conductivity type semiconductor substrate; a passivation film disposed in contact with the surface of the second conductivity type semiconductor layer; a light incident side surface electrode disposed on at least a part of the surface of the passivation film, the light-incidence-side surface electrode is configured to have a back surface electrode such that a current flows in a direction opposite to the forward direction between the second conductivity type semiconductor layer and the first conductivity type semiconductor substrate;
  • the light incidence side surface electrode is treated to irradiate the light incidence side surface of the solar cell with light from a point light source while applying a voltage between the light incidence side surface electrode and the light incidence side surface electrode,
  • the conductive paste according to any one of configurations 1 to 10, wherein the conductive paste is a
  • Configuration 12 includes a first conductivity type semiconductor substrate; a second conductivity type semiconductor layer disposed on one surface of the first conductivity type semiconductor substrate; a back electrode arranged to be electrically connected to the other surface of the first conductivity type semiconductor substrate; a passivation film disposed in contact with the surface of the second conductivity type semiconductor layer; A solar cell comprising a light incident side surface electrode disposed on at least a part of the surface of the passivation film, the light-incidence-side surface electrode is configured to have a back surface electrode such that a current flows in a direction opposite to the forward direction between the second conductivity type semiconductor layer and the first conductivity type semiconductor substrate; The light incidence side surface electrode is treated to irradiate the light incidence side surface of the solar cell with light from a point light source while applying a voltage between the light incidence side surface electrode and the light incidence side surface electrode, The solar cell is a solar cell in which the light incident side surface electrode is a fired body of the conductive paste according to any one of Structures 1 to 10.
  • Configuration 13 is a first conductivity type crystalline silicon substrate; a second conductivity type silicon emitter layer disposed on one surface of the first conductivity type crystalline silicon substrate; a back electrode arranged to be electrically connected to the other surface of the first conductivity type crystalline silicon substrate; a passivation film disposed in contact with a surface of the second conductivity type silicon emitter layer; A solar cell comprising a light incident side surface electrode containing silver disposed on at least a part of the surface of the passivation film, the second conductivity type silicon emitter layer has a local conduction portion that is in direct contact with the light incident side surface electrode without a passivation film; the local conduction portion includes an alloy of silver and silicon,
  • the solar cell is a solar cell in which the light incident side surface electrode is a fired body of a conductive paste according to any one of Structures 1 to 10.
  • Configuration 14 is a method for manufacturing a solar cell, comprising: preparing a semiconductor substrate of a first conductivity type; forming a second conductivity type semiconductor layer on one surface of the first conductivity type semiconductor substrate; forming a back electrode so as to be electrically connected to the other surface of the first conductivity type semiconductor substrate; forming a passivation film in contact with a surface of the second conductivity type semiconductor layer; forming a light incident side surface electrode on at least a part of the surface of the passivation film; The back surface electrode and the light incident side surface electrode are arranged such that a current flows in a direction opposite to the forward direction between the second conductivity type semiconductor layer and the first conductivity type semiconductor substrate.
  • Configuration 14 is the use of the conductive paste of any of Configurations 1 to 11 to form an electrode of a solar cell.
  • the present invention it is possible to provide a method for manufacturing a high-performance crystalline silicon solar cell using a conductive paste suitable for forming electrodes by a laser treatment process. Further, according to the present invention, it is possible to provide a high-performance crystalline silicon solar cell manufactured by a manufacturing method including formation of electrodes by a laser treatment process.
  • 1 is an example of a schematic cross-sectional view showing a structure in which a light-incidence side surface electrode is formed on the light-incidence side surface of a crystalline silicon solar cell by a laser treatment process using the conductive paste of the present embodiment. It is an example of the schematic diagram of the light-incidence side surface of a crystalline silicon solar cell. It is an example of a schematic diagram of the back side of a crystalline silicon solar cell. 1 is an example of a schematic cross-sectional view of a double-sided crystalline silicon solar cell using the conductive paste of the present embodiment.
  • FIG. 3 is a schematic cross-sectional view showing a state in which the image disappears due to fire-through.
  • FIG. 3 is a schematic plan view showing a resistivity measurement pattern for an electrode formed using a conductive paste.
  • FIG. 2 is a schematic plan view showing a contact resistance measurement pattern for an electrode formed using a conductive paste.
  • FIG. 2 is a schematic plan view showing a measurement pattern of a photoluminescence imaging method (PL method) for an electrode formed using a conductive paste.
  • PL method photoluminescence imaging method
  • crystalline silicon includes single crystal and polycrystalline silicon.
  • crystalline silicon substrate refers to a material formed from crystalline silicon into a shape suitable for forming an element, such as a flat plate, for forming a semiconductor device such as an electric element or an electronic element. Any method may be used to produce crystalline silicon. For example, the Czochralski method can be used in the case of single crystal silicon, and the casting method can be used in the case of polycrystalline silicon. Further, polycrystalline silicon ribbons produced by other manufacturing methods, such as a ribbon pulling method, polycrystalline silicon formed on a different type of substrate such as glass, etc. can also be used as the crystalline silicon substrate. Moreover, a "crystalline silicon solar cell” refers to a solar cell produced using a crystalline silicon substrate.
  • glass frit is mainly composed of multiple types of oxides, such as metal oxides, and is generally used in the form of glass-like particles.
  • This embodiment is a conductive paste for forming electrodes of solar cells.
  • the conductive paste of this embodiment includes (A) conductive particles, (B) an organic vehicle, and (C) glass frit.
  • the conductive paste of this embodiment is characterized in that the basicity of the (C) glass frit and the content of the (C) glass frit in the conductive paste are appropriately controlled.
  • FF fill factor
  • Voc open circuit voltage
  • Jsc short circuit current
  • FF and Voc are in a trade-off relationship, and it is difficult to increase both FF and Voc at the same time.
  • Patent Documents 1 and 2 disclose that by employing a laser processing process when manufacturing a crystalline silicon solar cell, a grid-shaped electrode that is a light incident side surface electrode and an impurity diffusion layer (emitter layer) are formed. It is described that the contact resistance between the light incident side surface electrode and the impurity diffusion layer can be significantly lowered by improving the ohmic contact behavior between them. Therefore, by performing the laser treatment process, FF can be improved without reducing Voc.
  • the present inventors found that when a laser treatment process was applied to a solar cell in which a light incident side surface electrode was formed using a conventional conductive paste (for example, the conductive paste described in Patent Document 3), It has been found that this has an adverse effect on the antireflection film (passivation film) and the impurity diffusion layer (and substrate), resulting in a decrease in the conversion efficiency of the solar cell. Further, the present inventors have discovered that the cause is that the fire-through property (reactivity) of the conventional conductive paste to the antireflection film (passivation film) is too strong.
  • a conventional conductive paste for example, the conductive paste described in Patent Document 3
  • the present inventors have found that by adjusting the basicity and content of the glass frit to an appropriate range, the reactivity of the glass frit to an antireflection film (passivation film) can be made appropriate. . Having obtained the above knowledge, the present inventors have discovered a conductive paste that can be preferably used during the production of crystalline silicon using a laser treatment process, and have arrived at the present invention.
  • the conductive paste of this embodiment can be preferably used to form a light incident side surface electrode by a laser treatment process when manufacturing a crystalline silicon solar cell.
  • the antireflection film 2 is basically not fired through when forming the light incident side surface electrode 20. Furthermore, even if the light-incidence-side surface electrode 20 is subjected to a laser treatment process, most of the antireflection film 2 (passivation film) in contact with the light-incidence-side surface electrode 20 does not disappear. In other words, most of the area between the light incident side surface electrode 20 and the impurity diffusion layer 4 (for example, 90% or more of the area of the interface) is The antireflection film 2 (passivation film) is present in a portion (preferably a portion of 95% or more, more preferably a portion of 99% or more). Therefore, by using a laser treatment process when forming the light incident side surface electrode 20, damage to the impurity diffusion layer 4 can be suppressed.
  • a finger electrode 20b is arranged as a light-incidence side surface electrode 20 on the light-incidence side surface of the crystalline silicon solar cell.
  • the holes among the electron-hole pairs generated by the incident light incident on the crystalline silicon solar cell pass through the impurity diffusion layer 4 (for example, the p-type impurity diffusion layer 4), and then pass through the finger It is collected at the electrode 20b. Therefore, the contact resistance between the finger electrode 20b and the impurity diffusion layer 4 is required to be low.
  • the conductive paste of this embodiment can be preferably used for forming the finger electrodes 20b.
  • the light-incidence side surface electrode 20 and the back surface electrode 15, which are electrodes for extracting current from the crystalline silicon solar cell to the outside, may be collectively referred to as “electrodes.”
  • One type of crystalline silicon solar cell is a double-sided power generation type crystalline silicon solar cell that generates power by inputting light from two surfaces (first and second light incident side surfaces).
  • electrodes formed on the first and second light incident side surfaces can be preferably used using the conductive paste of this embodiment.
  • the conductive paste of this embodiment is preferable for forming the light incident side surface electrode 20 formed on the surface (light incident side surface) of the antireflection film 2 (passivation film) formed on the impurity diffusion layer.
  • the back electrode 15 may be formed on the surface (back surface) opposite to the light incident side surface using the conductive paste of this embodiment.
  • a passivation film is formed on the back surface of a crystalline silicon solar cell, and a back electrode 15 may be formed on the passivation film.
  • the conductive paste of this embodiment is used to connect the back electrode 15 and the crystalline silicon substrate 1 of the solar cell through the passivation film on the back surface. electrical contact can be made to the
  • the impurity diffusion layer 4 formed on the light incident side surface is a p-type impurity diffusion layer 4.
  • the impurity diffusion layer 4 in the case of a solar cell using the crystalline silicon substrate 1 is sometimes referred to as a "silicon emitter layer.”
  • an antireflection film 2 is formed on the surface of the p-type impurity diffusion layer 4.
  • the passivation film can be a single layer or a multilayer film.
  • the passivation film is a single layer, it is preferably a thin film made of silicon nitride (SiN) (SiN film) because it can effectively passivate the surface of the silicon substrate.
  • the passivation film has multiple layers, it can be a laminated film (SiN/SiO x film) of a thin film made of silicon nitride and a thin film made of silicon oxide.
  • the SiN/SiO x film is a passivation film, the SiN / SiO It is preferable to form.
  • the SiO x film may be a natural oxide film of a silicon substrate.
  • a crystalline silicon solar cell can have a light incident side bus bar electrode 20a and/or a back TAB electrode 15a.
  • the light incident side bus bar electrode 20a has the function of electrically connecting the finger electrode 20b for collecting current generated by the solar cell and the metal ribbon for interconnection.
  • the back TAB electrode 15a has the function of electrically connecting the back surface entire surface electrode 15b for collecting current generated by the solar cell and the metal ribbon for interconnect. If the finger electrode 20b comes into contact with the crystalline silicon substrate 1, the surface defect density of the surface (interface) of the crystalline silicon substrate 1 in the portion in contact with the finger electrode 20b will increase, and the solar cell performance will deteriorate. .
  • the conductive paste of the present invention especially as a conductive paste for the finger electrode 20b, has low fire-through property (reactivity) with respect to the anti-reflection film 2, and thus does not completely fire-through the anti-reflection film 2. Therefore, when the finger electrode 20b is formed using the conductive paste of the present invention, the passivation film in the portion in contact with the crystalline silicon substrate 1 can be maintained as it is, and this can prevent recombination of carriers. This can prevent an increase in surface defect density. Therefore, the conductive paste of this embodiment described above can be suitably used as a conductive paste for forming the finger electrodes 20b of a crystalline silicon solar cell. The conductive paste of this embodiment can also be suitably used as a back electrode 15 (back finger electrode 15c) of a double-sided crystalline silicon solar cell, as shown in FIG. Further, the entire electrode 20 can be formed using the conductive paste of this embodiment.
  • the conductive paste of this embodiment is formed by applying the above-mentioned predetermined voltage and irradiating it with light from a point light source, thereby forming the conductive paste between the light incident side surface electrode 20 and the impurity diffusion layer 4 (silicon emitter layer). ), current flows through the small area between the two, causing local heating.
  • an AgSi alloy 30, which is a local electrically conductive portion (locally conductive portion), is formed in the impurity diffusion layer 4 (silicon emitter layer) in contact with the light incident side surface electrode 20. .
  • the conductive paste used to form the light incident side surface electrode by the laser treatment process needs to have properties different from conventional conductive pastes (conductive pastes that can fire through the anti-reflection film 2). It is.
  • the conductive paste of this embodiment includes (A) conductive particles.
  • metal particles or alloy particles can be used as the conductive particles.
  • the metal contained in the metal particles or alloy particles include silver, gold, copper, nickel, zinc, and tin.
  • Silver particles (Ag particles) can be used as the metal particles.
  • the conductive paste of this embodiment can contain metals other than silver, such as gold, copper, nickel, zinc, and tin. From the viewpoint of obtaining low electrical resistance and high reliability, the conductive particles are preferably silver particles made of silver. Note that the silver particles made of silver can contain other metal elements as unavoidable impurities. Further, a large number of silver particles (Ag particles) may be referred to as silver powder (Ag powder). The same applies to other particles.
  • the particle shape and particle size (also referred to as particle diameter or particle size) of the conductive particles are not particularly limited.
  • the particle shape may be, for example, spherical or scale-like.
  • the particle size of the conductive particles can be defined by the particle size of 50% of the integrated value of all particles (D50).
  • D50 is also referred to as average particle diameter. Note that the average particle diameter (D50) can be determined from the results of particle size distribution measurement by a microtrack method (laser diffraction scattering method).
  • the average particle diameter (D50) of the conductive particles is preferably 0.5 to 2.5 ⁇ m, more preferably 0.8 to 2.2 ⁇ m.
  • the average particle diameter (D50) of the conductive particles is within a predetermined range, the reactivity of the conductive paste with respect to the passivation film can be suppressed during firing of the conductive paste. Note that if the average particle diameter (D50) is larger than the above range, problems such as clogging may occur during screen printing.
  • the size of the silver particles can be expressed as a BET specific surface area (also simply referred to as "specific surface area").
  • the BET specific surface area of the silver particles is preferably 0.1 to 1.5 m 2 /g, more preferably 0.2 to 1.2 m 2 /g.
  • the BET specific surface area can be measured using, for example, a fully automatic specific surface area measuring device Macsoeb (manufactured by MOUNTEC).
  • the conductive paste of this embodiment includes (B) an organic vehicle.
  • the organic vehicle can include an organic binder and a solvent.
  • the organic binder and the solvent play a role such as adjusting the viscosity of the conductive paste, and neither is particularly limited. It is also possible to use an organic binder dissolved in a solvent.
  • the organic vehicle contains at least one selected from ethyl cellulose, rosin ester, acrylic, and an organic solvent.
  • screen printing of the conductive paste can be suitably performed, and the shape of the printed pattern can be appropriately controlled. It can be made into a shape.
  • the organic binder can be selected from cellulose resins (for example, ethyl cellulose, nitrocellulose, etc.) and (meth)acrylic resins (for example, polymethyl acrylate, polymethyl methacrylate, etc.). It is preferable that the organic vehicle contained in the conductive paste of this embodiment contains at least one selected from ethyl cellulose, rosin ester, butyral, acrylic, and an organic solvent.
  • the amount of the organic binder added is usually 0.1 to 30 parts by weight, preferably 0.2 to 5 parts by weight, per 100 parts by weight of silver particles.
  • organic solvents examples include alcohols (for example, terpineol, ⁇ -terpineol, ⁇ -terpineol, etc.), esters (for example, esters containing a hydroxyl group, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate,
  • alcohols for example, terpineol, ⁇ -terpineol, ⁇ -terpineol, etc.
  • esters for example, esters containing a hydroxyl group, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate
  • One or more types can be selected and used from diethylene glycol monobutyl ether acetate (butyl carbitol acetate, etc.).
  • the amount of the solvent added is usually 0.5 to 30 parts by weight, preferably 2 to 25 parts by weight, per 100 parts by weight of silver particles.
  • a specific example of the organic solvent is diethylene glycol monobutyl ether
  • the conductive paste of this embodiment includes (C) glass frit.
  • the conductive paste of the present embodiment has (C) the basicity B GF of the glass frit, and the content of (A) conductive particles in the conductive paste in parts by weight based on 100 parts by weight.
  • the product B GF ⁇ G with the content G of the glass frit (C) in units of 0.25 to 1.45, preferably 0.3 to 1.4, and 0.4 to A range of 1.2 is more preferred.
  • Basicity B of glass frit Product B of GF and content G By adjusting GF ⁇ G to an appropriate range, the reactivity of glass frit to antireflection film 2 (passivation film) can be made appropriate. . Therefore, the conductive paste of the embodiment can be preferably used when manufacturing crystalline silicon using a laser treatment process.
  • the basicity of the glass frit can be calculated by the method described in Patent Document 4 (Japanese Unexamined Patent Publication No. 2009-231826). That is, "basicity” defines the basicity of glass powder using the formula shown in "K. Morinaga, H. Yoshida And H. Takebe: J. AmCerm. Soc., 77, 3113 (1994)". be able to. Specifically, it is as follows.
  • the bonding force between M i and O of the oxide M i O is given by the following equation as the cation-oxygen ion attractive force Ai.
  • the ionic radius r i of oxygen ions is 1.40 nm.
  • the basicity (B GF ) defined in this way represents the oxygen donating ability as described above, and the larger the value, the easier it is to donate oxygen, and the easier it is for oxygen to be exchanged with other metal oxides. That is, "basicity" can be said to represent the degree of dissolution into a glass melt.
  • the basicity (B GF ) of the glass frit of this embodiment is preferably from 0.30 to less than 0.80, more preferably from 0.35 to 0.75, and from 0.40 to 0.70. It is more preferable that When the basicity (B GF ) is within this range, the reactivity of the glass frit to the passivation film can be made appropriate by adjusting the amount of glass frit added in the conductive paste. .
  • the content G of glass frit in the conductive paste of this embodiment is preferably 0.3 to 4.0 parts by weight, and 0.4 to 3.0 parts by weight, based on 100 parts by weight of the conductive particles. parts by weight, even more preferably from 0.5 to 2.0 parts by weight, and particularly preferably from 0.5 to 1.5 parts by weight.
  • the glass frit included in the conductive paste of this embodiment is one or more selected from PbO, SiO 2 , Al 2 O 3 , B 2 O 3 , ZnO, V 2 O 5 , WO 3 and Nb 2 O 3 It is preferable to include.
  • the glass frit included in the conductive paste of this embodiment more preferably contains PbO, SiO 2 , Al 2 O 3 , B 2 O 3 and ZnO.
  • the glass frit (C) preferably contains at least one selected from ZnO, V 2 O 5 , WO 3 and Nb 2 O 3 .
  • the basicity of the glass frit can be adjusted to an appropriate range.
  • the glass frit contains PbO.
  • the content of PbO in the glass frit (100 mol%) is preferably 25 to 60 mol%, more preferably 30 to 55 mol%, and even more preferably 40 to 55 mol%.
  • the glass frit contains SiO2 .
  • the content of SiO 2 in the glass frit (100 mol%) is preferably 20 to 65 mol%, more preferably 25 to 60 mol%.
  • SiO 2 in the glass frit By including SiO 2 in the glass frit, reactivity to the passivation film can be suppressed.
  • the glass frit contains Al 2 O 3 .
  • the content of Al 2 O 3 in the glass frit (100 mol%) is preferably 3.0 to 6.8 mol%, more preferably 3.5 to 6 mol%.
  • the glass frit contains B2O3 .
  • the content of B 2 O 3 in the glass frit (100 mol%) is preferably 3.0 to 15 mol%, more preferably 3.5 to 12 mol%.
  • the glass frit contains ZnO.
  • the content of ZnO in the glass frit (100 mol%) is preferably 5 to 20 mol%, more preferably 8 to 15 mol%.
  • the basicity of the glass frit can be adjusted to an appropriate range.
  • the conductive paste of the present embodiment has a product of (C) PbO content C PbO in mol% in the glass frit and (C) content G of the glass frit C PbO ⁇ G of 20 to 139. It is preferably in the range of , more preferably in the range of 22 to 130, even more preferably in the range of 26 to 105. If the product C PbO.G exceeds 139, the reactivity between the glass frit and the passivation film becomes too high. Further, if the product C PbO.G is less than 20, the contact resistance between the obtained electrode and the impurity diffusion layer becomes too high.
  • the glass transition point (Tg) of the glass frit (C) is preferably 300 to 600°C, more preferably 320 to 500°C, and more preferably 350 to 450°C. is even more preferable.
  • (C) Reactivity to the passivation film can be suppressed by setting the glass transition point (Tg) of the glass frit to 300° C. or higher. Further, by setting the glass transition point (Tg) to 600° C. or lower, the contact resistance between the obtained electrode and the impurity diffusion layer can be reduced.
  • the glass transition point (Tg) can be measured as follows. That is, using a differential thermal balance (TG-DTA2000S manufactured by Mac Science Co., Ltd.), the sample glass powder and the reference material were set on the differential thermal balance, and the temperature was raised at a heating rate of 10°C/min as the measurement conditions. The temperature is raised from room temperature to 900° C. to obtain a curve (DTA curve) in which the temperature difference between the sample glass powder and the reference material is plotted against temperature. The first inflection point of the DTA curve obtained in this way can be set as the glass transition point Tg.
  • TG-DTA2000S manufactured by Mac Science Co., Ltd.
  • the shape of the glass frit particles is not particularly limited, and for example, spherical, irregular shapes, etc. can be used. Further, the particle size is not particularly limited either. From the viewpoint of workability, etc., the average particle diameter (D50) of the particles is preferably in the range of 0.1 to 10 ⁇ m, more preferably in the range of 0.5 to 5 ⁇ m.
  • the glass frit particles one type of particles each containing a predetermined amount of a plurality of necessary oxides can be used. Furthermore, particles made of a single oxide can be used as different particles for each of a plurality of required oxides. Further, it is also possible to use a combination of plural types of particles having different compositions of the plurality of required oxides.
  • the conductive paste may further include (D) aluminum particles.
  • (D) Aluminum particles can be included as particles separate from (A) conductive particles.
  • aluminum has properties as a p-type impurity.
  • the conductive paste printed on the crystalline silicon is fired, aluminum in the conductive paste diffuses into the crystalline silicon and becomes a p-type impurity. Therefore, when forming an electrode on the surface of a p-type impurity diffusion layer of a crystalline silicon substrate, the conductive paste contains aluminum particles to maintain low contact resistance between the electrode and the p-type impurity diffusion layer. Obtainable. Therefore, when forming an electrode on the surface of a p-type impurity diffusion layer of a crystalline silicon substrate, it is preferable that the conductive paste contains aluminum particles.
  • the conductive paste of the present embodiment contains (D) aluminum particles
  • the content of particles is preferably 0.1 to 2.0 parts by weight, more preferably 0.5 to 2.0 parts by weight.
  • the conductive paste contains a predetermined amount of aluminum particles, low contact resistance can be obtained between the electrode and the p-type impurity diffusion layer.
  • the conductive paste of this embodiment should (D) not contain aluminum particles (( D) The content of aluminum particles is zero) is preferred.
  • the aluminum particles mainly contain the element aluminum.
  • the purity of aluminum in the aluminum particles is, for example, preferably 99.7% or more, more preferably 99.9% or more.
  • the aluminum particles can contain impurities other than aluminum, for example, other metal elements that are inevitably included. Further, the aluminum particles can include alloys of aluminum and other metal elements, oxides of aluminum, and the like.
  • the shape of the aluminum particles is exemplified by spherical or ellipsoidal shapes, but is not limited to these. From the viewpoint of good printability and good reaction with the semiconductor substrate, the shape of the aluminum particles is preferably spherical.
  • the average particle diameter (D50) of the aluminum particles is also not particularly limited. It is preferable that the average particle diameter (D50) of the aluminum particles is 1 ⁇ m or more and 20 ⁇ m or less because the printability of the paste composition is improved and the reactivity with the semiconductor substrate is also improved. More preferably, the average particle diameter (D50) of the aluminum particles is 2 to 4 ⁇ m.
  • the conductive paste of this embodiment can contain additives and additives other than those described above, within a range that does not adversely affect the solar cell characteristics of the resulting solar cell.
  • the conductive paste of this embodiment may further contain additives selected from plasticizers, antifoaming agents, dispersants, leveling agents, stabilizers, adhesion promoters, etc. as necessary. .
  • additives selected from plasticizers, antifoaming agents, dispersants, leveling agents, stabilizers, adhesion promoters, etc.
  • plasticizers at least one selected from phthalic acid esters, glycolic acid esters, phosphoric acid esters, sebacic acid esters, adipic acid esters, citric acid esters, etc.
  • phthalic acid esters glycolic acid esters
  • phosphoric acid esters phosphoric acid esters
  • sebacic acid esters phosphoric acid esters
  • adipic acid esters citric acid esters, etc.
  • the conductive paste of the present embodiment can contain additives other than those described above, as long as they do not adversely affect the solar cell characteristics of the resulting solar cell.
  • the conductive paste of the present embodiment further includes at least one additive selected from titanium resinate, titanium oxide, cobalt oxide, cerium oxide, silicon nitride, copper manganese tin, aluminosilicate, and aluminum silicate. I can do it.
  • these additives can be in the form of particles (additive particles).
  • the amount of additive added to 100 parts by weight of silver particles is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 2 parts by weight.
  • the additive is preferably copper manganese tin, aluminosilicate or aluminum silicate.
  • Additives can include both aluminosilicates and aluminum silicates.
  • the conductive paste of this embodiment is manufactured by adding silver particles, glass frit, and other additives and/or additives as necessary to an organic binder and a solvent, mixing them, and dispersing them. be able to.
  • Mixing can be performed, for example, with a planetary mixer. Dispersion can also be carried out using a three-roll mill. Mixing and dispersion are not limited to these methods, and various known methods can be used.
  • This embodiment is a solar cell in which at least a part of the electrode is formed using the above-mentioned conductive paste.
  • 1 and 4 show schematic cross-sectional views of crystalline silicon solar cells.
  • crystalline silicon, silicon carbide, germanium, gallium arsenide, etc. can be used as the material for the semiconductor substrate.
  • the material of the semiconductor substrate is preferably crystalline silicon (monocrystalline silicon, polycrystalline silicon, etc.).
  • the solar cell of this embodiment includes a semiconductor substrate of a first conductivity type, a semiconductor layer of a second conductivity type disposed on one surface of the semiconductor substrate of the first conductivity type, and a semiconductor layer of a second conductivity type disposed on one surface of the semiconductor substrate of the first conductivity type. It includes a passivation film (antireflection film 2) disposed in contact with the surface of the semiconductor layer, and a light incident side surface electrode 20 disposed on at least a portion of the surface of the passivation film. Moreover, the solar cell of this embodiment can include the back electrode 15 arranged so as to be electrically connected to the other surface of the semiconductor substrate of the first conductivity type.
  • the first conductivity type semiconductor substrate is a crystalline silicon substrate 1
  • the second conductivity type semiconductor layer is an impurity diffusion layer 4
  • the passivation film is an antireflection film 2.
  • the first conductivity type semiconductor substrate is an n-type semiconductor substrate or a p-type semiconductor substrate.
  • the second conductivity type semiconductor layer is a p-type semiconductor layer or an n-type semiconductor layer.
  • a p-type semiconductor layer (p-type impurity diffusion layer 4) is arranged on one surface of the semiconductor substrate.
  • an n-type semiconductor layer is arranged on one surface of the semiconductor substrate.
  • the material of the semiconductor substrate is preferably silicon. Therefore, the semiconductor substrate is preferably a crystalline silicon substrate.
  • the passivation film can be an antireflection film 2.
  • the passivation film is preferably a thin film made of silicon nitride.
  • the light incident side surface electrode 20 of the solar cell of this embodiment can be a fired body of the conductive paste of this embodiment.
  • the conductive paste of this embodiment can be used to manufacture a solar cell having this structure.
  • the conductive paste of this embodiment can be preferably used to form the light incident side surface electrode 20 of a crystalline silicon solar cell using a laser treatment process.
  • the laser treatment process means that a back electrode 15 is formed between the second conductivity type semiconductor layer and the first conductivity type semiconductor substrate so that a current flows in the opposite direction to the forward direction in the pn junction.
  • This refers to a process in which light from a point light source is applied to the light incident side surface of the solar cell while applying a voltage to the light incident side surface electrode 20.
  • the light from the point light source generates carriers (electron-hole pairs) inside the semiconductor substrate, and application of a voltage makes it possible to move the carriers, that is, to cause current to flow.
  • the voltage is applied so that the direction of current flow in the pn junction is opposite to the forward direction. Therefore, when the semiconductor substrate is an n-type semiconductor substrate and the semiconductor layer is a p-type semiconductor layer, the back electrode 15 and the light incident side surface are A voltage is applied to the electrode 20. Further, when the semiconductor substrate is a p-type semiconductor substrate and the semiconductor layer is an n-type semiconductor layer, the back electrode 15 and the light incident side surface are arranged so that the current flows from the n-type semiconductor layer to the p-type semiconductor substrate. A voltage is applied to the electrode 20.
  • the first conductivity type semiconductor substrate of the solar cell of this embodiment is preferably an n-type semiconductor substrate, and more preferably an n-type crystalline silicon substrate.
  • the second conductivity type semiconductor layer of the solar cell of this embodiment is preferably a p-type semiconductor layer, and more preferably a p-type impurity diffusion layer 4 made of crystalline silicon.
  • the mobility of electrons, which are carriers, in an n-type crystalline silicon substrate is higher than the mobility of holes, which are carriers, in a p-type crystalline silicon substrate. Therefore, in order to obtain a solar cell with high conversion efficiency, it is advantageous to use an n-type crystalline silicon substrate.
  • the first conductivity type semiconductor substrate is an n-type crystalline silicon substrate 1
  • the second conductivity type semiconductor layer is a p-type impurity diffusion layer 4 (sometimes simply referred to as "impurity diffusion layer 4"). This will be explained using a solar cell as an example.
  • an antireflection film 2 (passivation film) exists in most of the space between the light incident side surface electrode 20 and the impurity diffusion layer 4.
  • the above-mentioned predetermined voltage is applied so that a current flows in the opposite direction to the forward direction in the pn junction, and light from a point light source (for example, laser light) is irradiated on the light incident side.
  • a current flows through a small region between the surface electrode 20 and the impurity diffusion layer 4, and the region is locally heated.
  • an AgSi alloy 30 (alloy of silver and silicon) which is a locally electrically conductive part (locally conductive part) is formed between the light incident side surface electrode 20 and the impurity diffusion layer 4. is formed. That is, the local conduction portion includes an alloy of silver and silicon. Further, in the local conduction section, the impurity diffusion layer 4 (second conductivity type silicon emitter layer) is in direct contact with the light incident side surface electrode without interposing the antireflection film 2 (passivation film). This locally formed electrically conductive portion (locally conductive portion) enables good electrical conduction between the light incident side surface electrode 20 and the impurity diffusion layer 4.
  • the conductive paste of this embodiment has lower reactivity with the antireflection film 2 than conventional conductive pastes, and has a reactivity with the antireflection film 2 (passivation film) suitable for the laser treatment process. Therefore, the conductive paste of this embodiment can be preferably used to form the light incident side surface electrode 20 of a crystalline silicon solar cell using a laser treatment process.
  • the crystalline silicon solar cell shown in FIG. 1 can have a back electrode 15 having the structure shown in FIG. 3.
  • the back electrode 15 is arranged so as to be electrically connected to the other surface of the first conductivity type semiconductor substrate.
  • the back electrode 15 can generally include a back full surface electrode 15b and a back TAB electrode 15a electrically connected to the back full surface electrode 15b.
  • FIG. 4 shows an example of a cross-sectional schematic diagram of a bifacial type crystalline silicon solar cell.
  • the double-sided crystalline silicon solar cell shown in FIG. 4 includes an impurity diffusion layer 4, an antireflection film 2, and a back passivation film 14.
  • the method of this embodiment is used.
  • a conductive paste it is possible to form an electrically conductive part (local conductive part) in the passivation film (antireflection film 2) on the light incident side surface and the back surface passivation film 14 using a laser treatment process. .
  • the conductive paste of this embodiment described above can be suitably used as a conductive paste for forming the finger electrodes 20b of a crystalline silicon solar cell. Further, the conductive paste of this embodiment can also be used as a conductive paste for forming the back electrode 15 of a double-sided crystalline solar cell.
  • the busbar electrode of the crystalline silicon solar cell shown in FIG. 1 includes a light incident side busbar electrode 20a shown in FIG. 2 and a back TAB electrode 15a as shown in FIG.
  • a metal ribbon for interconnection whose periphery is covered with solder is soldered to the light incident side bus bar electrode 20a and the back surface TAB electrode 15a.
  • This metal ribbon allows the current generated by the solar cell to be extracted to the outside of the crystalline silicon solar cell.
  • the double-sided crystalline solar cell shown in FIG. 4 can also have a light incident side bus bar electrode 20a and a back TAB electrode having the same shape as the light incident side bus bar electrode 20a.
  • the width of the busbar electrode (the light incident side busbar electrode 20a and the back TAB electrode 15a) can be approximately the same width as the metal ribbon for interconnect. In order for the busbar electrode to have low electrical resistance, it is preferable that the width be wide. On the other hand, in order to increase the light incident area on the light incident side surface, it is better that the width of the light incident side bus bar electrode 20a is narrower. Therefore, the busbar electrode width can be set to 0.05 to 5 mm, preferably 0.08 to 3 mm, more preferably 0.1 to 2 mm, and still more preferably 0.15 to 1 mm. Furthermore, the number of busbar electrodes can be determined depending on the size of the crystalline silicon solar cell. The number of busbar electrodes is arbitrary.
  • the number of busbar electrodes can be three, four, or more.
  • the optimal number of busbar electrodes can be determined by simulating solar cell operation so as to maximize the conversion efficiency of the crystalline silicon solar cell. Note that since the crystalline silicon solar cells are connected in series with each other by the interconnect metal ribbon, it is preferable that the numbers of the light incident side bus bar electrodes 20a and the back surface TAB electrodes 15a are the same. For the same reason, it is preferable that the widths of the light incident side bus bar electrode 20a and the back surface TAB electrode 15a are the same.
  • the area occupied by the light incident side surface electrode 20 on the light incident side surface is preferably as small as possible. Therefore, it is preferable that the finger electrodes 20b on the light incident side surface have a width as narrow as possible and a small number of finger electrodes. On the other hand, from the viewpoint of reducing electrical loss (ohmic loss), it is preferable that the finger electrodes 20b have a wide width and a large number of finger electrodes 20b. Further, from the viewpoint of reducing the contact resistance between the finger electrode 20b and the crystalline silicon substrate 1 (impurity diffusion layer 4), it is preferable that the width of the finger electrode 20b is wide.
  • the number of busbar electrodes can be determined depending on the size of the crystalline silicon solar cell and the width of the busbar electrode.
  • the optimum width and number of finger electrodes 20b can be determined by simulation of solar cell operation so as to maximize the conversion efficiency of the crystalline silicon solar cell.
  • the width and number of back finger electrodes 15c of the back electrode 15 of the double-sided crystalline silicon solar cell shown in FIG. 4 can be similarly determined.
  • the solar cell can be a crystalline silicon solar cell.
  • the solar cell is a crystalline silicon solar cell.
  • the method for manufacturing a solar cell of this embodiment includes printing the above-mentioned conductive paste on the surface of the antireflection film 2 on the second conductivity type semiconductor layer (impurity diffusion layer 4), drying it, and baking it. This includes the step of forming an electrode (light incident side surface electrode) by doing this.
  • an electrode light incident side surface electrode
  • the method for manufacturing a solar cell of this embodiment includes the step of preparing a first conductivity type (p-type or n-type) semiconductor substrate (for example, crystalline silicon substrate 1).
  • a first conductivity type semiconductor substrate for example, crystalline silicon substrate 1.
  • a case where a crystalline silicon solar cell is manufactured using an n-type crystalline silicon substrate 1 will be described as an example.
  • the surface of the crystalline silicon substrate 1 on the light incident side has a pyramid-shaped texture structure.
  • the method for manufacturing a solar cell of this embodiment includes a step of forming a second conductivity type semiconductor layer on one surface of the first conductivity type semiconductor substrate.
  • the method for manufacturing a crystalline silicon solar cell according to the present embodiment includes a step of forming a second conductivity type semiconductor layer (impurity diffusion layer 4) on one surface of the crystalline silicon substrate 1 prepared in the above-mentioned step.
  • a second conductivity type semiconductor layer impurity diffusion layer 4
  • a p-type impurity diffusion layer 4 in which a p-type impurity such as B (boron) is diffused is formed as the impurity diffusion layer 4.
  • a p-type impurity diffusion layer 4 in which an n-type impurity such as B (boron) is diffused is formed as the impurity diffusion layer 4.
  • a p-type impurity diffusion layer 4 in which an n-type impurity such as P (phosphorus) is diffused is formed as an impurity diffusion layer.
  • the impurity diffusion layer 4 When forming the impurity diffusion layer 4, it can be formed so that the sheet resistance of the impurity diffusion layer 4 is 40 to 150 ⁇ /square, preferably 45 to 120 ⁇ /square.
  • the depth at which the impurity diffusion layer 4 is formed can be 0.3 ⁇ m to 1.0 ⁇ m.
  • the depth of the impurity diffusion layer 4 refers to the depth from the surface of the impurity diffusion layer 4 to the pn junction.
  • the depth of the pn junction can be set to a depth from the surface of the impurity diffusion layer 4 until the impurity concentration in the impurity diffusion layer 4 becomes the impurity concentration of the substrate.
  • the method for manufacturing a solar cell according to the present embodiment includes a step of forming a back electrode 15 so as to be electrically connected to the other surface of the first conductivity type semiconductor substrate (n-type crystalline silicon substrate).
  • the back electrode 15 can be formed either before or after the light incident side surface electrode 20 is formed.
  • the firing for forming the back electrode 15 can be performed simultaneously with or separately from the firing for forming the light incident side front electrode 20.
  • the method for manufacturing a crystalline silicon solar cell according to the present embodiment includes printing a conductive paste on the other surface (back surface) of the crystalline silicon substrate 1 and baking it to form the back electrode 15. do.
  • the second impurity diffusion layer 16 can be formed.
  • the back electrode 15 using the conductive paste (conductive composition) of this embodiment and performing a laser treatment process, a low resistance is created between the back electrode 15 and the crystalline silicon substrate 1. A conductive portion can be formed. Therefore, in the case of a double-sided crystal solar cell, it is preferable to form the back electrode 15 using the conductive paste of this embodiment. In this case, the back electrode 15 is a fired body of the conductive paste of this embodiment.
  • the method for manufacturing a solar cell of this embodiment includes forming a passivation film in contact with the surface of the second conductivity type semiconductor layer (impurity diffusion layer 4).
  • the passivation film can be an anti-reflection film 2.
  • an antireflection film 2 that also functions as a passivation film is formed on the surface of the impurity diffusion layer 4 formed in the above steps.
  • a silicon nitride film SiN film
  • the silicon nitride film layer also functions as a passivation film on the light incident side surface. Therefore, when a silicon nitride film is used as the antireflection film 2, a high-performance crystalline silicon solar cell can be obtained.
  • the antireflection film 2 is a silicon nitride film, it can exhibit an antireflection function against incident light.
  • the silicon nitride film can be formed by a PECVD (Plasma Enhanced Chemical Vapor Deposition) method or the like.
  • the method for manufacturing a solar cell of this embodiment includes a step of forming a light incident side surface electrode 20 on at least a portion of the surface of the passivation film (antireflection film 2).
  • the above-mentioned conductive paste is used to form the light incident side surface electrode 20. Therefore, the light incident side surface electrode 20 is a fired body of the above-mentioned conductive paste.
  • the light incident side surface electrode 20 is formed by printing a conductive paste on the surface of the antireflection film 2 and baking it. Note that during the firing for forming the light-incident-side front surface electrode 20, the firing for forming the back surface electrode 15 can be performed at the same time.
  • the pattern of the light incident side surface electrode 20 printed using the conductive paste of this embodiment is dried at a temperature of about 100 to 150° C. for several minutes (for example, 0.5 to 5 minutes). .
  • the light incident side bus bar electrode 20a and the light incident side finger electrode 20b of the light incident side surface electrode 20 can be formed using the conductive paste of this embodiment.
  • a conductive paste for forming the back surface electrode 15 is printed and dried.
  • the conductive paste of the present embodiment can be preferably used to form electrodes (the light incident side surface electrode 20 and, depending on the case, the back surface electrode 15) of a solar cell such as a crystalline silicon solar cell.
  • the printed conductive paste is dried and fired under predetermined firing conditions in the atmosphere using a firing furnace such as a tubular furnace.
  • the firing atmosphere is air
  • the firing temperature is 500 to 1000°C, more preferably 600 to 1000°C, still more preferably 500 to 900°C, particularly preferably 700 to 900°C.
  • the firing is preferably carried out in a short time, and the temperature profile (temperature-time curve) during the firing is preferably peak-like.
  • the in-out time of the firing furnace is preferably 10 to 100 seconds, more preferably 20 to 80 seconds, and even more preferably 40 to 60 seconds. .
  • the method for manufacturing a solar cell of this embodiment includes performing the above-described laser treatment process. That is, the method for manufacturing a solar cell according to the present embodiment includes a method of manufacturing a semiconductor layer of a second conductivity type (p-type impurity diffusion layer 4) and a semiconductor substrate of a first conductivity type (n-type crystalline silicon substrate 1). While applying a voltage between the back surface electrode 15 and the light incident side surface electrode 20 so that a current flows in the opposite direction to the forward direction between them, light from a point light source (for example, laser light) is applied to the solar cell. This includes irradiating the light incident side surface. The laser treatment process enables good electrical continuity between the light incident side surface electrode 20 and the impurity diffusion layer 4.
  • the crystalline silicon solar cell of this embodiment can be manufactured.
  • the crystalline silicon solar cell of this embodiment obtained as described above is electrically connected with a metal ribbon for interconnection, and laminated with a glass plate, a sealing material, a protective sheet, etc., thereby forming a solar cell module.
  • a metal ribbon for interconnect a metal ribbon (for example, a ribbon made of copper) whose periphery is covered with solder can be used.
  • solder commercially available solders can be used, such as those whose main component is tin, specifically, leaded solder containing lead and lead-free solder.
  • a high-performance crystalline silicon solar cell can be obtained by forming predetermined electrodes of the solar cell using the conductive paste of this embodiment and performing a laser treatment process. I can do it.
  • a measurement substrate simulating a single-crystal silicon solar cell was used to evaluate the degree of deterioration of the passivation film by the photoluminescence imaging method (PL method), as well as the contact resistance and specific resistance of the formed electrodes. By doing so, the performance of the conductive pastes of the examples of this embodiment and the comparative examples was evaluated.
  • PL method photoluminescence imaging method
  • Tables 1 to 3 show the compositions of the conductive pastes of Examples 1 to 14 and Comparative Examples 1 to 4.
  • the compositions shown in Tables 1 to 3 and the compositions of each component below are shown as parts by weight of each component based on 100 parts by weight of (A) silver particles.
  • Each component contained in the conductive paste is as follows.
  • (A) Silver particles Table 4 shows the product number, manufacturer, shape, average particle diameter (D50), TAP density, and BET specific surface area of silver particles A1 and A2 used in the conductive pastes of Examples and Comparative Examples. .
  • Tables 1 to 3 show the amounts of silver particles A1 and A2 in the conductive pastes of Examples and Comparative Examples.
  • the average particle diameter (D50) was determined by measuring the particle size distribution using the microtrack method (laser diffraction scattering method) and obtaining the value of the median diameter (D50) from the result of the particle size distribution measurement. The same applies to the average particle diameter (D50) of other components.
  • a fully automatic specific surface area measuring device Macsoeb manufactured by MOUNTEC was used to measure the BET specific surface area.
  • the BET specific surface area was measured by the BET one-point method using nitrogen gas adsorption after preliminary drying at 100° C. and flowing nitrogen gas for 10 minutes.
  • (B) Organic Vehicle An organic binder and a solvent were used as the organic vehicle. Ethylcellulose (0.4 parts by weight) with an ethoxy content of 48 to 49.5% by weight was used as an organic binder. Diethylene glycol monobutyl ether acetate (butyl carbitol acetate) (3 parts by weight) was used as a solvent.
  • Glass Frit Table 5 shows the composition, basicity, and glass transition point of glass frits A to G used in the conductive pastes of Examples and Comparative Examples. Note that the average particle diameter (D50) of glass frits A to G was 2 ⁇ m. Tables 1 to 3 show the type (any of A to G) of glass frit (C) and content G (parts by weight) of the conductive pastes of Examples and Comparative Examples.
  • the glass transition points of glass frits A to G were measured. Table 5 shows the measured values of the glass transition points of glass frits A to G.
  • the glass transition point of the glass frit was measured as follows. That is, approximately 50 mg of glass frits A to G were placed as samples in a platinum cell, and alumina powder was used as a standard sample in an atmospheric atmosphere using a differential thermal analyzer (manufactured by Rigaku Co., Ltd., TG-8120) to heat the samples from room temperature to 800 mg. DTA curves were obtained at a heating rate of 20°C/min to 0°C. The starting point (extrapolation point) of the first endotherm of the DTA curve was defined as the glass transition point.
  • Glass frits A to G were manufactured as follows. That is, first, oxide powder serving as a raw material was weighed, mixed, and placed in a crucible. The crucible was placed in a heated oven, and the contents of the crucible were heated to the melt temperature and maintained at the melt temperature until the raw materials were sufficiently melted. The crucible was then removed from the oven and the molten contents were stirred evenly. Next, the contents of the crucible were rapidly cooled at room temperature using two stainless steel rolls to obtain a glass plate. Finally, glass frit with the desired particle size could be obtained by pulverizing the plate glass in a mortar to uniformly disperse it and sieving it through a mesh sieve.
  • a glass frit having an average particle diameter (D50) of 149 ⁇ m can be obtained by sieving the material through a 100 mesh sieve and remaining on a 200 mesh sieve. By further pulverizing this glass frit, a glass frit having an average particle diameter (D50) of 2 ⁇ m could be obtained.
  • Table 6 shows the product number, manufacturer, shape, and average particle diameter (D50) of aluminum particles D1 and D2 used in the conductive pastes of Examples and Comparative Examples.
  • Tables 1 to 3 show the amounts (parts by weight) of aluminum particles D1 and D2 in the conductive pastes of Examples and Comparative Examples.
  • conductive pastes of Examples and Comparative Examples were prepared by mixing the materials in the weight proportions shown in Tables 1 to 3 using a planetary mixer, and further dispersing them using a three-roll mill to form a paste.
  • the reactivity of the conductive paste with respect to the passivation film was evaluated using a photoluminescence imaging method (referred to as "PL method").
  • the PL method can evaluate the reactivity of a conductive paste to a passivation film in a non-destructive, non-contact manner and in a short time.
  • the PL method is a method in which a sample is irradiated with light with an energy greater than the forbidden band width to cause it to emit light, and the state of defects in the crystal and surface/interface defects is evaluated from the state of the light emission. be.
  • the defects act as recombination centers for electron-hole pairs generated by light irradiation, and correspondingly, the band formation due to photoluminescence occurs.
  • Edge emission intensity decreases.
  • the passivation film is eroded by the printed/fired electrode and a surface defect is formed at the interface between the passivation film and the single-crystal silicon substrate (i.e., the surface of the single-crystal silicon substrate), a surface defect is formed.
  • the photoluminescence intensity of the portion that is, the portion of the electrode formed on the sample
  • the reactivity of the prototype conductive paste with passivation can be evaluated based on the intensity of this photoluminescence.
  • the method for prototyping a substrate for evaluation by the PL method is as follows.
  • the substrate used was an n-type single crystal silicon substrate (substrate thickness 200 ⁇ m).
  • a silicon oxide layer of about 20 ⁇ m thick was formed on the above substrate by dry oxidation, and then etched with a solution containing hydrogen fluoride, pure water, and ammonium fluoride to remove damage on the substrate surface. Furthermore, heavy metals were washed with an aqueous solution containing hydrochloric acid and hydrogen peroxide.
  • a texture structure (uneven shape) was formed on both sides of this substrate by wet etching. Specifically, a pyramid-shaped texture structure was formed on both surfaces (the light incident side surface and the back surface) by wet etching (sodium hydroxide aqueous solution). Thereafter, it was washed with an aqueous solution containing hydrochloric acid and hydrogen peroxide. Next, boron was implanted into one surface (light incident side surface) of the substrate having a textured structure to form a p-type diffusion layer to a depth of about 0.5 ⁇ m. The sheet resistance of the p-type diffusion layer was 60 ⁇ / ⁇ .
  • phosphorus was implanted into the other surface (back surface) having the textured structure of the substrate to form an n-type diffusion layer to a depth of about 0.5 ⁇ m.
  • the sheet resistance of the n-type diffusion layer was 20 ⁇ / ⁇ . Boron and phosphorus were simultaneously implanted by thermal diffusion.
  • a substrate 1 was prepared by cutting the substrate thus obtained into a square of 25 mm x 25 mm.
  • a 13 mm x 13 mm square electrode pattern 22 was printed on the surface of the substrate 1 using a conductive paste for electrode formation, and dried.
  • the substrate 1 with the electrode pattern 22 printed on its surface using conductive paste as described above was heated using a belt furnace (firing furnace) CDF7210 manufactured by Despatch Industries, Inc. at a peak temperature of 720°C and a firing furnace in-out time. was fired for 50 seconds.
  • a belt furnace firing furnace
  • Measurement by the PL method was performed using a Photoluminescence Imaging System device (model number LIS-R2) manufactured by BT Imaging.
  • Light from an excitation light source (wavelength 650 nm, output 3 mW) is irradiated onto the back surface of the substrate (the surface on which the electrode pattern of the light incident side surface electrode 20 is not formed) to obtain an image of the emission intensity of photoluminescence.
  • an excitation light source (wavelength 650 nm, output 3 mW) is irradiated onto the back surface of the substrate (the surface on which the electrode pattern of the light incident side surface electrode 20 is not formed) to obtain an image of the emission intensity of photoluminescence.
  • Figures 9 and 10 show images of photoluminescence intensity measured by the PL method.
  • FIG. 9 shows an image of the photoluminescence intensity measured by the PL method of a sample in which the electrode pattern 22 was formed using the conductive paste of Example 4.
  • the image of the portion where the electrode pattern 22 is formed is brighter than in FIG. 10, which will be described later. This indicates that the reduction in the photoluminescence intensity of the portion of the light incident side surface electrode 20 where the electrode pattern was formed was suppressed. Therefore, in the case of the sample shown in FIG. 9, it can be said that the passivation function of the passivation film was maintained by forming the electrode pattern of the light incident side surface electrode 20. Therefore, in the case of the sample using the conductive paste of Example 4 shown in FIG. 9, it can be said that the surface defect density on the surface of single crystal silicon substrate 1 did not increase.
  • the conductive paste of Comparative Example 1 was used to form the light incident side surface electrode 20.
  • the image of the portion of the light incident side surface electrode 20 where the electrode pattern is formed is darker. This indicates that the photoluminescence intensity of the portion of the light incident side surface electrode 20 where the electrode pattern was formed was reduced. Therefore, in the case of the sample using the conductive paste of Comparative Example 1 shown in FIG. 10, by forming the electrode pattern of the light incident side surface electrode 20, the passivation function of the passivation film is impaired, It can be said that the surface defect density on the surface of the substrate 1 has increased.
  • Tables 1 to 3 show the measured values (PL values) of the photoluminescence intensity of Examples and Comparative Examples.
  • the PL value is the average value of the emission intensity of photoluminescence near the electrode.
  • the PL value is a numerical value that varies depending on the spectrum and intensity of the irradiation light from the excitation light source, the optical system for measurement, etc., and is a value in an arbitrary unit.
  • the magnitude of the PL value of each sample can be compared. It can be said that the degree of carrier recombination (degree of deterioration of passivation function) can be evaluated. It can be said that the higher the PL value, the better the passivation function of the passivation film.
  • FIG. 11 shows a cross-sectional SEM photograph (magnification: :20,000 times).
  • FIG. 12 shows a cross-sectional SEM photograph ( Magnification: 20,000 times).
  • the antireflection film 2 in the case of a sample with a high PL value, the antireflection film 2 (passivation film) maintains almost the same shape even after the formation of the light incident side surface electrode 20, and the antireflection film 2 (passivation film) maintains almost the same shape. Film 2 (passivation film) is not eroded by the glass frit.
  • FIG. 11 shows a cross-sectional SEM photograph (magnification: :20,000 times).
  • the antireflection film 2 (passivation film) is eroded by the glass frit, and most of the antireflection film 2 (passivation film) has disappeared. . That is, it can be said that the conductive paste of Comparative Example 1 is a conductive paste that can fire through the passivation film. Note that the portion labeled "Glass" in FIG. 12 is a glass component resulting from the glass frit contained in the conductive paste. From the above, it is clear that the presence or absence of reactivity of the conductive paste with respect to the antireflection film 2 (passivation film) can be evaluated by measuring the PL value using the above-mentioned PL method.
  • the PL values of the samples obtained using the conductive pastes (conductive compositions) of Examples 1 to 14 of the present embodiment were 5522 (Example 2) or higher.
  • the PL value of Comparative Example 1 was 4900
  • the PL value of Comparative Example 2 was as low as 4800. Therefore, it can be said that in Comparative Examples 1 and 2, the passivation function of the passivation film is lower than in the example of the present embodiment, so that the performance of the solar cell is degraded.
  • the PL value did not change significantly before and after the laser treatment process. This is believed to be because the laser processing process is a process for locally forming minute electrically conductive parts and does not affect most of the antireflection film 2 (passivation film).
  • a p-type impurity diffusion layer was formed on one surface of an n-type crystalline silicon substrate (substrate thickness 200 ⁇ m), and a film was further formed on the p-type impurity diffusion layer.
  • a silicon nitride film an antireflection film 2 which is a passivation film having a thickness of about 60 nm was formed to obtain a substrate for measuring contact resistance.
  • the conductive pastes shown in Tables 1 to 3 were used to form electrodes on the surface of the substrate (light incident side surface) on which the p-type diffusion layer was formed in the single-crystal silicon solar cells of Examples and Comparative Examples.
  • Printing of the conductive paste was performed by screen printing method.
  • a pattern consisting of a 1.5 mm wide light incident side bus bar electrode 20a and a 60 ⁇ m wide light incident side finger electrode 20b is printed so that the film thickness is about 20 ⁇ m, Thereafter, it was dried at 150° C. for about 1 minute.
  • the back electrode 15 (the electrode on the front surface on which the n-type diffusion layer was formed), a commercially available Ag paste was printed by a screen printing method. Note that the electrode pattern of the back electrode 15 has the same electrode pattern shape as the light incident side electrode 20. Thereafter, it was dried at 150° C. for about 60 seconds. The film thickness of the conductive paste for the back electrode 15 after drying was about 20 ⁇ m. Thereafter, both sides were simultaneously fired using a belt furnace (firing furnace) CDF7210 manufactured by Despatch Industries, Inc. at a peak temperature of 720° C. and a firing furnace in-out time of 50 seconds. A single-crystal silicon solar cell was produced in the manner described above.
  • the solar cell thus obtained was cut into a 15 mm x 15 mm square, as shown in FIG. 7, to obtain a sample for contact resistance measurement.
  • light-incidence-side finger electrodes 20b each having a width of 60 ⁇ m and a length of 15.0 mm are arranged at intervals of 1.5 mm on the light-incidence side surface of the cut solar cell (sample for contact resistance measurement). It will be placed in This light incident side finger electrode 20b was used as a pattern for contact resistance measurement.
  • the contact resistance of the contact resistance measurement patterns of Examples and Comparative Examples before the laser treatment process was determined by the TLM method (Transfer length Method) using GP 4 TEST Pro manufactured by GP Solar.
  • the solar cell thus obtained was cut into squares of 15 mm x 15 mm as shown in Figure 7, and the contact resistance after the laser treatment process was determined using the same method as the contact resistance measurement before the laser treatment process. Ta.
  • the contact resistance value before the laser treatment process is 450 m ⁇ cm 2 or less, it can be used as an electrode for a solar cell by performing the laser treatment process. Similarly, if the contact resistance is 300 ⁇ cm 2 or less, it can be more preferably used as an electrode for a solar cell by performing a laser treatment process.
  • the contact resistance value after the laser treatment process is 20 m ⁇ cm 2 or less, it can be preferably used as the electrode 20 of a solar cell. Similarly, if the contact resistance is 9 m ⁇ cm 2 or less, it can be more preferably used as an electrode for a solar cell.
  • the contact resistance of the samples obtained using the conductive pastes (conductive compositions) of Examples 1 to 14 of the present embodiment before the laser treatment process was 440 m ⁇ cm 2 (Example 1) It was as follows. On the other hand, the contact resistance of Comparative Example 3 was 640 m ⁇ cm 2 , and the contact resistance of Comparative Example 4 was as high as 804 m ⁇ cm 2 . Further, the contact resistance of the samples obtained using the conductive pastes (conductive compositions) of Examples 1 to 14 of the present embodiment after the laser treatment process was 18 m ⁇ cm 2 (Example 1) or less. .
  • Comparative Example 3 was 21 m ⁇ cm 2
  • the contact resistance of Comparative Example 4 was as high as 32 m ⁇ cm 2 . Therefore, it can be said that in Comparative Examples 3 and 4, the contact resistance is higher than in the example of the present embodiment, so that the performance of the solar cell is deteriorated. That is, it can be said that Comparative Examples 3 and 4 cannot be preferably used as electrodes for solar cells.
  • Examples and Comparative Examples The specific resistance of Examples and Comparative Examples was measured using the following procedure. That is, a silicon substrate with a width of 15 mm, a length of 15 mm, and a thickness of 180 ⁇ m was prepared. On this substrate, a pattern made of conductive paste as shown in FIG. 6 was printed using a 325 mesh stainless steel screen.
  • a silicon substrate with the patterns of Examples and Comparative Examples coated on the substrate printed on the surface was heated in a belt furnace (firing furnace) CDF7210 manufactured by Despatch Industries, Inc. at a peak temperature of 720°C. Both sides were fired simultaneously with an in-out time of 50 seconds.
  • a sample for resistivity measurement was prepared in the manner described above.
  • the specific resistance of the conductive film pattern of the sample for resistivity measurement which was obtained by firing the conductive pastes of Examples and Comparative Examples, was measured.
  • the resistance value was measured using a 4-terminal method using a multimeter model 2001 manufactured by Toyo Technica.
  • the cross-sectional area of the conductive film pattern was measured using a confocal microscope OPTELICS H1200 manufactured by Lasertec and a surface roughness profile measuring device 1500SD2. Measurements were taken at 50 locations within a 1.6 mm range, and the average value was determined. Specific resistance was calculated using the cross-sectional area and the measured resistance value.
  • the specific resistance of the conductive films obtained using the conductive pastes (conductive compositions) of Examples 1 to 14 of the present embodiment and Comparative Examples 1 to 4 was 8 ⁇ cm (Examples 11 and 18) or less.
  • a specific resistance of 15 ⁇ cm or less can be suitably used as an electrode. Therefore, it can be said that by using the conductive paste of this embodiment, an electrode with a preferable specific resistance can be obtained.
  • the PL value is sufficiently high, the contact resistance is low, and the specific resistance is also low. Therefore, it can be said that by using the conductive paste of this embodiment, a high-performance crystalline silicon solar cell can be obtained.
  • the contact resistance was lowered by performing the laser treatment process. If the contact resistance is low, the fill factor (FF) increases.
  • the survival rate of the antireflection film 2 (passivation film) between the electrode 20 and the impurity diffusion layer 4 is high. Therefore, recombination of carriers can be suppressed to a low level. Therefore, when the conductive paste of this embodiment is used, it can be said that there is a low possibility that the open circuit voltage (Voc) will decrease. From the above, when an electrode is formed using the conductive paste of this embodiment, a solar cell having the characteristic that the fill factor (FF) can be improved without reducing the open circuit voltage (Voc). It can be said that batteries can be obtained.
  • FIG. 13 shows an SEM photograph (magnification: 20,000 times) of a cross section of a solar cell produced under the same conditions as in Example 5, observed after the laser treatment process using a high-magnification scanning electron microscope (SEM).
  • SEM scanning electron microscope

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

結晶系シリコン太陽電池の製造のために、レーザー処理プロセスによる電極の形成に適した導電性ペーストを提供する。太陽電池の電極形成用の導電性ペーストであって、(A)導電性粒子と、(B)有機ビヒクルと、(C)ガラスフリットを含み、前記(C)ガラスフリットの塩基度BGFと、前記導電性ペースト中の前記(A)導電性粒子の含有量を100重量部としたときの前記導電性ペースト中の重量部を単位とした前記(C)ガラスフリットの含有量Gとの積BGF・Gが0.25~1.45の範囲である、導電性ペーストである。

Description

導電性ペースト、太陽電池及び太陽電池の製造方法
 本発明は、半導体デバイス等の電極形成に用いられる導電性ペーストに関する。特に、本発明は、太陽電池の電極形成用の導電性ペーストに関する。また、本発明は、その電極形成用の導電性ペーストを用いて製造される太陽電池、及び太陽電池の製造方法に関する。
 単結晶シリコン又は多結晶シリコンを平板状に加工した結晶系シリコンを基板に用いた結晶系シリコン太陽電池等の半導体デバイスは、デバイスの外部との電気的接触のために、シリコン基板表面に、電極形成用の導電性ペーストを用いて電極が形成されることが一般的である。そのようにして電極が形成される半導体デバイスの中で、結晶系シリコン太陽電池は、近年、その生産量が大幅に増加している。これらの太陽電池は、結晶系シリコン基板の一方の表面に、不純物拡散層、反射防止膜及び光入射側表面電極を有し、他方の表面に裏面電極を有する。光入射側表面電極及び裏面電極によって、結晶系シリコン太陽電池により発電した電力を外部に取り出すことができる。
 従来の結晶系シリコン太陽電池の電極形成には、導電性粉末、ガラスフリット、有機バインダ、溶剤及びその他の添加物を含む導電性ペーストが用いられている。導電性粉末としては、主に銀粒子(銀粉末)が用いられている。
 特許文献1には、シリコン太陽電池のコンタクトグリッドとエミッタ層との間のオーミックコンタクト挙動を改善するための方法が記載されている。具体的には、特許文献1に記載の方法は、次のことが記載されている。すなわち、シリコン太陽電池(1)に前記エミッタ層、前記コンタクトグリッド(5)及び裏面コンタクト(3)が最初に設けられる。前記コンタクトグリッド(5)は、電圧源の一方の極へ電気的に接続される。前記電圧源の他方の極へ電気的に接続された接触デバイスは、前記裏面コンタクト(3)へ接続される。前記電圧源によって、降伏電圧より低い前記シリコン太陽電池(1)の順方向とは反対方向の電圧が印加される。この電圧が印加される間に、前記シリコン太陽電池(1)の太陽に面する側にわたって点光源(13)が誘導される。太陽に面する側の小区分が点照射されて、部分的領域に流れる電流を誘起する。この電流が前記小区分に1m秒~100m秒間にわたって作用する。前記電流は、標準試験条件下で測定された前記シリコン太陽電池(1)の短絡電流の大きさの10~30倍を前記小区分の面積対前記シリコン太陽電池(1)の面積の比で削減したのに相当する大きさである。
 特許文献2には、シリコンソーラセルにおけるコンタクトグリッドと、エミッタレイヤとの間のオーミックコンタクト挙動を改善するプロセスが記載されている。具体的には、特許文献2のプロセスとして、所定の電圧を、シリコンソーラセルの順方向と逆向きに印加し、点光源を、シリコンソーラセルの太陽面側にガイドして、それにより前記太陽面側のサブセクションの断面に照射することが記載されている。
 特許文献3には、無機材料を含む結晶系シリコン太陽電池の電極形成用導電性ペーストを用いる結晶系シリコン太陽電池の製造方法が記載されている。特許文献3には、無機材料として、導電性粒子とガラスフリットとを含む導電性ペーストが記載されている。特許文献3の導電性ペーストに含まれるガラスフリットが、ガラスフリット100重量%中、PbOを70~90重量%含み、Alを含まないことが記載されている。
 特許文献4には、銀粉末とPbOを含有するガラス粉末と有機物からなるビヒクルとを含む導電性組成物が記載されている。特許文献4には、導電性組成物が、窒化ケイ素層を貫通して前記窒化ケイ素層の下に形成されたn型半導体層と導通する電極を形成するための導電性組成物であることが記載されている。また、特許文献4には、導電性組成物に含まれるガラス粉末の塩基度が0.6以上0.8以下であって、ガラスの転移点が300℃~450℃であることが記載されている。
特表2019-525471号公報 特表2021-513218号公報 特開2011-86754号公報 特開2009-231826号公報
 図5に、一般的な結晶系シリコン太陽電池の断面模式図の一例を示す。図5に示すように、結晶系シリコン太陽電池では、一般に、結晶系シリコン基板1(例えばn型結晶系シリコン基板1)の光入射側である表面(光入射側表面)に、不純物拡散層4(例えばp型不純物を拡散したp型不純物拡散層)を形成する。不純物拡散層4の上には、反射防止膜2を形成する。反射防止膜2は、パッシベーション膜としての機能も有するので、反射防止膜2のことをパッシベーション膜2という場合がある。更に、スクリーン印刷法などによって導電性ペーストを用いて光入射側表面電極20(表面電極)の電極パターンを反射防止膜2上に印刷し、導電性ペーストを乾燥し、所定の温度で焼成することによって光入射側表面電極20が形成される。一般的な結晶系シリコン太陽電池では、この所定の温度での焼成の際、導電性ペーストが反射防止膜2をファイアースルーする。このファイアースルーによって、光入射側表面電極20を、不純物拡散層4に接触するように形成することができる。なお、ファイアースルーとは、絶縁膜である反射防止膜2を導電性ペーストに含まれるガラスフリット等でエッチングし、光入射側表面電極20と不純物拡散層4とを導通させることである。図5に示す例では、電極パターンの焼成の際に、電極パターンが反射防止膜2をファイアースルーしたことにより、反射防止膜2が消失して、光入射側表面電極20と、不純物拡散層4とが接している。n型結晶系シリコン基板1と不純物拡散層4との界面にはpn接合が形成されている。結晶系シリコン太陽電池に入射した入射光の大部分は、反射防止膜2及び不純物拡散層4を透過して、n型結晶系シリコン基板1に入射する。この過程でn型結晶系シリコン基板1において光が吸収され、電子-正孔対が発生する。これらの電子-正孔対は、pn接合による電界によって、電子はn型結晶系シリコン基板1から裏面電極15へ、正孔はp型不純物拡散層4から光入射側表面電極20へと分離される。電子及び正孔(キャリア)は、これらの電極を介して、電流として外部に取り出される。
 図2に、結晶系シリコン太陽電池の光入射側表面の模式図の一例を示す。図2に示すように、結晶系シリコン太陽電池の光入射側表面には、光入射側表面電極20として、バスバー電極(光入射側バスバー電極20a)及び光入射側フィンガー電極20b(単に、「フィンガー電極20b」という場合がある。)が配置されている。図5及び図2に示す例では、結晶系シリコン太陽電池に入射した入射光によって発生した電子-正孔対のうち電子はフィンガー電極20bに集められ、更に光入射側バスバー電極20aに集められる。光入射側バスバー電極20aには、はんだにより周囲を覆われたインターコネクト用の金属リボンがはんだ付けされ、この金属リボンにより電流は外部に取り出される。
 高い変換効率の結晶系太陽電池を得るために、光入射側表面電極20と不純物拡散層4との間の接触抵抗は、低いことが求められる。
 光入射側表面電極20と不純物拡散層4との間の低い接触抵抗を得るために、レーザー処理プロセスを用いた太陽電池の製造方法が提案されている。特許文献1及び2には、レーザー処理プロセスの具体例が記載されている。本明細書において、レーザー処理プロセスとは、光入射側表面電極20を形成した後、所定の電圧を、結晶系シリコン太陽電池の順方向とは逆向きの電流が流れるように印加し、点光源からの光を、太陽電池の光入射側表面に照射することにより、低い接触抵抗を得る技術を意味する。一般的に、レーザー処理プロセスを行うことにより、太陽電池特性の特性である開放電圧(Open Circuit Voltage:Voc)を低下させることなく、曲線因子(Fill Factor:FF)を向上させることができる。なお、レーザー処理プロセスでは、導電性ペーストの電極パターンを所定の温度で焼成する際に、電極パターンと接する反射防止膜2の大部分において、導電性ペーストが反射防止膜2をファイアースルーしないことが好ましい。図1に、結晶系シリコン太陽電池の光入射側表面に、レーザー処理プロセスを用いて光入射側表面電極20を形成した構造を示す断面模式図の一例を示す。図1に示すように、レーザー処理プロセスを用いた場合、光入射側表面電極20と、不純物拡散層4との間の大部分に、反射防止膜2が存在する。レーザー処理プロセスでは、上述の所定の電圧をpn接合において順方向とは逆向きの電流が流れるように印加して、点光源からの光を照射してキャリア(電子及び正孔)を発生させることにより、光入射側表面電極20と不純物拡散層4との間のわずかな領域に電流が流れ、局所的に加熱される。局所的な加熱により、光入射側表面電極20と不純物拡散層4との間には、局所的に不純物拡散層4が存在しない微小な部分ができる。この結果、図13に示すように、光入射側表面電極20に接する不純物拡散層4に、局所的に微小な電気的導通部分(局所導通部)であるAgSi合金30(銀及びシリコンの合金)が形成されると考えられる。なお、AgSi合金30は限られた部分に局所的に形成されるので、図1では図示を省略している。この局所的に形成された微小な電気的導通部分により、光入射側表面電極20と不純物拡散層4との間の良好な電気的導通が可能になると考えられる。また、局所導通部が形成された部分以外の光入射側表面電極20と不純物拡散層4との間の大部分には、反射防止膜2(パッシベーション膜)が存在する。この結果、太陽電池の性能として、開放電圧(Voc)を低下させることなく、曲線因子(FF)を向上させることができる。したがって、レーザー処理プロセスによる光入射側表面電極20の形成に用いる導電性ペーストは、従来の導電性ペースト(反射防止膜2をファイアースルーすることのできる導電性ペースト)とは異なる性質を有することが必要である。
 また、従来の結晶系シリコン太陽電池の場合、光入射側表面電極20を形成する際に、導電性ペーストの電極パターンが焼成されることにより、反射防止膜2をファイアースルーして、不純物拡散層4に接触する。このファイアースルーの際に、不純物拡散層4にダメージが生じ、結晶系シリコン太陽電池の性能が低下するという問題がある。これに対して、レーザー処理プロセスでは、光入射側表面電極20を形成する際に、反射防止膜2を基本的にファイアースルーしない。そのため、レーザー処理プロセスを用いることにより、不純物拡散層4にダメージが生じることを抑制することができる。
 そこで、本発明は、結晶系シリコン太陽電池の製造のために、レーザー処理プロセスによる電極の形成に適した導電性ペーストを提供することを目的とする。
 また、本発明は、レーザー処理プロセスによる電極の形成に適した導電性ペーストを用いた、高い性能の結晶系シリコン太陽電池の製造方法を提供することを目的とする。また、本発明は、レーザー処理プロセスによる電極の形成を含む製造方法で製造された、高い性能の結晶系シリコン太陽電池を提供することを目的とする。
 上記課題を解決するため、本発明は以下の構成を有する。
(構成1)
 構成1は、太陽電池の電極形成用の導電性ペーストであって、
 (A)導電性粒子と、
 (B)有機ビヒクルと、
 (C)ガラスフリットを含み、
 前記(C)ガラスフリットの塩基度BGFと、前記導電性ペースト中の前記(A)導電性粒子の含有量を100重量部としたときの前記導電性ペースト中の重量部を単位とした前記(C)ガラスフリットの含有量Gとの積BGF・Gが、0.25~1.45の範囲である、導電性ペーストである。
(構成2)
 構成2は、前記(A)導電性粒子が、銀粒子を含む、構成1の導電性ペーストである。
(構成3)
 構成3は、(B)有機ビヒクルが、エチルセルロース、ロジンエステル、アクリル及び有機溶剤から選択される少なくとも1つを含む、構成1又は2の導電性ペーストである。
(構成4)
 構成4は、前記(C)ガラスフリット中のmol%を単位としたPbOの含有量CPbOと、前記(C)ガラスフリットの前記含有量Gとの積CPbO・Gが、20~139の範囲である、構成1~3のいずれかの導電性ペーストである。
(構成5)
 構成5は、前記(C)ガラスフリットの前記含有量Gが0.3~4.0重量部である、構成1~4のいずれかの導電性ペーストである。
(構成6)
 構成6は、前記(C)ガラスフリットの前記含有量Gが0.5~1.5重量部である、構成1~4のいずれかの導電性ペーストである。
(構成7)
 構成7は、前記(C)ガラスフリットのガラス転移点が300~600℃である、構成1~6のいずれかの導電性ペーストである。
(構成8)
 構成8は、前記(C)ガラスフリットが、ZnO、V、WO及びNbから選択される少なくとも1つを含む、構成1~7のいずれかの導電性ペーストである。
(構成9)
 構成9は、導電性ペーストが(D)アルミニウム粒子を更に含む、構成1~8のいずれかの導電性ペーストである。
(構成10)
 構成10は、前記導電性ペースト中の前記(A)導電性粒子の含有量を100重量部としたときの前記導電性ペースト中の前記(D)アルミニウム粒子の含有量が、0.1~2.0重量部である、構成9の導電性ペーストである。
(構成11)
 構成11は、太陽電池の電極形成用の導電性ペーストであって、
 太陽電池が、
 第1の導電型の半導体基板と、
 前記第1の導電型の半導体基板の一方の表面に配置された第2の導電型の半導体層と、
 前記第1の導電型の半導体基板の他方の表面に対して電気的に接続するように配置された裏面電極と、
 前記第2の導電型の半導体層の表面に接して配置されたパッシベーション膜と、
 前記パッシベーション膜の表面の少なくとも一部に配置される光入射側表面電極と
を含み、
 前記光入射側表面電極が、前記第2の導電型の半導体層と、前記第1の導電型の半導体基板との間で順方向とは逆向きの電流が流れるように、前記裏面電極と、前記光入射側表面電極との間に電圧を印加しながら、点光源からの光を前記太陽電池の光入射側表面に照射する処理をした前記光入射側表面電極であり、
 前期導電性ペーストが、前記光入射側表面電極を形成するための導電性ペーストである、構成1~10のいずれかに記載の導電性ペーストである。
(構成12)
 構成12は、第1の導電型の半導体基板と、
 前記第1の導電型の半導体基板の一方の表面に配置された第2の導電型の半導体層と、
 前記第1の導電型の半導体基板の他方の表面に対して電気的に接続するように配置された裏面電極と、
 前記第2の導電型の半導体層の表面に接して配置されたパッシベーション膜と、
 前記パッシベーション膜の表面の少なくとも一部に配置された光入射側表面電極と
を含む太陽電池であって、
 前記光入射側表面電極が、前記第2の導電型の半導体層と、前記第1の導電型の半導体基板との間で順方向とは逆向きの電流が流れるように、前記裏面電極と、前記光入射側表面電極との間に電圧を印加しながら、点光源からの光を前記太陽電池の光入射側表面に照射する処理をした前記光入射側表面電極であり、
 前記光入射側表面電極が、構成1~10のいずれか1項に記載の導電性ペーストの焼成体である、太陽電池である。
(構成13)
 構成13は、
 第1の導電型の結晶系シリコン基板と、
 前記第1の導電型の結晶系シリコン基板の一方の表面に配置された第2の導電型のシリコンエミッタ層と、
 前記第1の導電型の結晶系シリコン基板の他方の表面に対して電気的に接続するように配置された裏面電極と、
 前記第2の導電型のシリコンエミッタ層の表面に接して配置されたパッシベーション膜と、
 前記パッシベーション膜の表面の少なくとも一部に配置された銀を含む光入射側表面電極と
を含む太陽電池であって、
 前記第2の導電型のシリコンエミッタ層が、パッシベーション膜を介さずに前記光入射側表面電極と直接に接する局所導通部を有し、
 局所導通部が、銀及びシリコンの合金を含み、
 前記光入射側表面電極が、構成1~10のいずれかの導電性ペーストの焼成体である、太陽電池である。
(構成14)
 構成14は、太陽電池の製造方法であって、
 第1の導電型の半導体基板を用意することと、
 前記第1の導電型の半導体基板の一方の表面に第2の導電型の半導体層を形成することと、
 前記第1の導電型の半導体基板の他方の表面に対して電気的に接続するように裏面電極を形成することと、
 前記第2の導電型の半導体層の表面に接するようにパッシベーション膜を形成することと、
 前記パッシベーション膜の表面の少なくとも一部に光入射側表面電極を形成することと、
 前記第2の導電型の半導体層と、前記第1の導電型の半導体基板との間で順方向とは逆向きの電流が流れるように、前記裏面電極と、前記光入射側表面電極との間に電圧を印加しながら、点光源からの光を前記太陽電池の光入射側表面に照射することと、を含み、
 前記光入射側表面電極が、構成1~10のいずれかに記載の導電性ペーストの焼成体である、太陽電池の製造方法である。
(構成15)
 構成14は、太陽電池の電極を形成するための構成1~11のいずれかの導電性ペーストの使用である。
 本発明によれば、結晶系シリコン太陽電池の製造のために、レーザー処理プロセスによる電極の形成に適した導電性ペーストを提供することができる。
 また、本発明によれば、レーザー処理プロセスによる電極の形成に適した導電性ペーストを用いた、高い性能の結晶系シリコン太陽電池の製造方法を提供することができる。また、本発明によれば、レーザー処理プロセスによる電極の形成を含む製造方法で製造された、高い性能の結晶系シリコン太陽電池を提供することができる。
本実施形態の導電性ペーストを用いて、レーザー処理プロセスにより、結晶系シリコン太陽電池の光入射側表面に、光入射側表面電極を形成した構造を示す断面模式図の一例である。 結晶系シリコン太陽電池の光入射側表面の模式図の一例である。 結晶系シリコン太陽電池の裏面の模式図の一例である。 本実施形態の導電性ペーストを用いて、両面受光型の結晶系シリコン太陽電池の断面模式図の一例である。 一般的な結晶系シリコン太陽電池の、光入射側表面電極(フィンガー電極)が存在する近傍の断面模式図の一例であり、電極と、不純物拡散層との間の反射防止膜(パッシベーション膜)がファイアースルーにより、消失している状態を示す断面模式図である。 導電性ペーストを用いて形成した電極のための比抵抗測定用パターンを示す平面模式図である。 導電性ペーストを用いて形成した電極のための接触抵抗測定用パターンを示す平面模式図である。 導電性ペーストを用いて形成した電極のためのフォトルミネッセンスイメージング法(PL法)の測定用のパターンを示す平面模式図である。 実施例4の試料の、フォトルミネッセンスイメージング法(PL法)にて測定したフォトルミネッセンスの発光強度のイメージである。 比較例1の、フォトルミネッセンスイメージング法(PL法)にて測定したフォトルミネッセンスの発光強度のイメージである。 図9に示される試料と同じ導電性ペーストを用いて光入射側表面電極20を形成した試料の、光入射側表面のパッシベーション膜の近傍の断面SEM写真(倍率:2万倍)である。 図10に示される試料と同じ導電性ペーストを用いて光入射側表面電極20を形成した試料の、光入射側表面のパッシベーション膜の近傍の断面SEM写真(倍率:2万倍)である。 実施例5と同じ条件で作製した試料の光入射側表面電極と接する不純物拡散層に、局所的に微小な電気的導通部分(局所導通部)であるAgSi合金が形成されることを示す断面SEM写真(倍率2万倍)である。
 以下、本発明の実施形態について、具体的に説明する。なお、以下の実施形態は、本発明を具体化する際の形態であって、本発明をその範囲内に限定するものではない。
 本明細書では、「結晶系シリコン」は単結晶及び多結晶シリコンを包含する。また、「結晶系シリコン基板」は、電気素子又は電子素子等の半導体デバイスの形成のために、結晶系シリコンを平板状など、素子形成に適した形状に成形した材料のことをいう。結晶系シリコンの製造方法は、どのような方法を用いても良い。例えば、単結晶シリコンの場合にはチョクラルスキー法、多結晶シリコンの場合にはキャスティング法を用いることができる。また、その他の製造方法、例えばリボン引き上げ法により作製された多結晶シリコンリボン、ガラス等の異種基板上に形成された多結晶シリコンなども結晶系シリコン基板として用いることができる。また、「結晶系シリコン太陽電池」とは、結晶系シリコン基板を用いて作製された太陽電池のことをいう。
 本明細書において、ガラスフリットとは、複数種類の酸化物、例えば金属酸化物を主材料とするものであり、一般的にガラス状の粒子の形態で用いるものである。
 本実施形態は、太陽電池の電極形成用の導電性ペーストである。本実施形態の導電性ペーストは、(A)導電性粒子と、(B)有機ビヒクルと、(C)ガラスフリットを含む。本実施形態の導電性ペーストは、(C)ガラスフリットの塩基度及び導電性ペースト中の(C)ガラスフリットの含有量を適切に制御することを特徴とする。
 太陽電池の光-電気変換効率(単に「変換効率」という場合がある。)は、曲線因子(Fill Factor:FF)、開放電圧(Open Circuit Voltage:Voc)、及び短絡電流(Short Circuit Current:Jsc)の積で表される。基本的にFFとVocはトレードオフの関係になっており、FFとVocの両方を同時に高くすることは困難である。例えば、特許文献1及び2には、結晶系シリコン太陽電池の製造の際にレーザー処理プロセスを採用することにより、光入射側表面電極であるグリッド形状の電極と、不純物拡散層(エミッタ層)との間のオーミックコンタクト挙動を改善し、光入射側表面電極と、不純物拡散層との間の接触抵抗を大幅に低くすることができることが記載されている。そのため、レーザー処理プロセスを行うことにより、Vocを低下させることなく、FFを向上させることができる。
 本発明者らは、従来の導電性ペースト(例えば、特許文献3に記載されている導電性ペースト)を用いて光入射側表面電極を形成した太陽電池に対してレーザー処理プロセスに適用した場合、反射防止膜(パッシベーション膜)及び不純物拡散層(及び基板)へ悪影響を及ぼし、太陽電池の変換効率が低下してしまうことを見出した。また、本発明者らは、その原因は、従来の導電性ペーストの反射防止膜(パッシベーション膜)に対するファイアースルー性(反応性)が強すぎるためであることを見出した。更に、本発明者らは、ガラスフリットの塩基度及び含有量を適切な範囲にすることにより、ガラスフリットの反射防止膜(パッシベーション膜)に対する反応性を適切なものとすることができることを見出した。上述の知見を得た本発明者らは、レーザー処理プロセスを用いた結晶系シリコンの製造の際に、好ましく用いることのできる導電性ペーストを見出し、本発明に至った。
 本実施形態の導電性ペーストを用いて結晶系シリコン太陽電池の電極を形成し、レーザー処理プロセスを行うことにより、反射防止膜のパッシベーション膜としての機能を損なわずに、電極と、太陽電池の不純物拡散層との間に、低い接触抵抗を得ることができる。そのため、本実施形態の導電性ペーストを用いてレーザー処理プロセスを行うことにより、高い変換効率の結晶系シリコン太陽電池を得ることができる。本実施形態の導電性ペーストは、結晶系シリコン太陽電池を製造する際に、レーザー処理プロセスによって光入射側表面電極を形成するために、好ましく用いることができる。
 本実施形態の導電性ペーストを用いたレーザー処理プロセスでは、光入射側表面電極20を形成する際に、反射防止膜2(パッシベーション膜)を基本的にファイアースルーしない。また、光入射側表面電極20に対してレーザー処理プロセスを行っても、光入射側表面電極20と接する反射防止膜2(パッシベーション膜)の大部分は消失しない。すなわち、局所的に微小な電気的導通部分(局所導通部)が形成された部分以外の光入射側表面電極20と不純物拡散層4との間の大部分(例えば界面の面積の90%以上の部分、好ましくは95%以上の部分、更に好ましくは99%以上の部分)には、反射防止膜2(パッシベーション膜)が存在する。そのため、光入射側表面電極20を形成する際にレーザー処理プロセスを用いることにより、不純物拡散層4にダメージが生じることを抑制することができる。
 図1に示すように、結晶系シリコン太陽電池の光入射側表面には、光入射側表面電極20として、フィンガー電極20bが配置されている。図1に示す例では、結晶系シリコン太陽電池に入射した入射光によって発生した電子-正孔対のうち正孔は、不純物拡散層4(例えば、p型の不純物拡散層4)を経て、フィンガー電極20bに集められる。したがって、フィンガー電極20bと、不純物拡散層4との間の接触抵抗は、低いことが求められる。本実施形態の導電性ペーストは、フィンガー電極20bの形成のために好ましく用いることができる。
 なお、本明細書において、結晶系シリコン太陽電池から電流を外部に取り出すための電極である光入射側表面電極20及び裏面電極15を合わせて、単に「電極」という場合がある。
 結晶系シリコン太陽電池の1種には、2つの表面(第1及び第2の光入射側表面)から光を入射して発電をするという両面発電型結晶系シリコン太陽電池がある。この場合、本実施形態の導電性ペーストを用いて、第1及び第2の光入射側表面に形成される電極を好ましく用いることができる。
 本実施形態の導電性ペーストは、不純物拡散層の上に形成された反射防止膜2(パッシベーション膜)の表面(光入射側表面)に形成される光入射側表面電極20を形成するために好ましく用いることができるが、それに限定されない。例えば、本実施形態の導電性ペーストを用いて、光入射側表面とは反対側の表面(裏面)に、裏面電極15を形成しても良い。結晶系シリコン太陽電池の裏面には、パッシベーション膜が形成され、パッシベーション膜の上に裏面電極15を形成する場合がある。その構造の太陽電池の場合、上述の説明と同様に、本実施形態の導電性ペーストを用いて、裏面のパッシベーション膜を介して、裏面電極15と、太陽電池の結晶系シリコン基板1との間に、電気的な接触を形成することができる。
 以下、本発明の導電性ペーストを、n型の結晶系シリコン基板1を用いた結晶系シリコン太陽電池の、光入射側電極20(表面電極)を形成する場合を例に説明する。この結晶系シリコン太陽電池の場合には、光入射側表面に形成される不純物拡散層4は、p型不純物拡散層4である。なお、本明細書では、結晶系シリコン基板1を用いた太陽電池の場合の不純物拡散層4のことを「シリコンエミッタ層」という場合がある。また、p型不純物拡散層4の表面には、反射防止膜2が形成される。
 パッシベーション膜(反射防止膜2)は、単層又は複数層からなる膜であることができる。パッシベーション膜が単層の場合には、シリコン基板の表面のパッシベーションを効果的に行うことができる点から、窒化ケイ素(SiN)を材料とする薄膜(SiN膜)であることが好ましい。また、パッシベーション膜が複数層の場合には、窒化ケイ素を材料とする薄膜及び酸化シリコンを材料とする薄膜の積層膜(SiN/SiO膜)であることができる。なお、SiN/SiO膜がパッシベーション膜の場合には、シリコン基板の表面のパッシベーションをより効果的に行うことができる点から、シリコン基板1にSiO膜が接するようにSiN/SiO膜を形成することが好ましい。SiO膜は、シリコン基板の自然酸化膜であることができる。
 結晶系シリコン太陽電池は、光入射側バスバー電極20a及び/又は裏面TAB電極15aを有することができる。光入射側バスバー電極20aは、太陽電池により発電された電流を集めるためのフィンガー電極20bと、インターコネクト用の金属リボンとを、電気的に接続するという機能を有する。同様に、裏面TAB電極15aは、太陽電池により発電された電流を集めるための裏面全面電極15bと、インターコネクト用の金属リボンとを、電気的に接続するという機能を有する。フィンガー電極20bが結晶系シリコン基板1に接してしまうと、フィンガー電極20bが接する部分の結晶系シリコン基板1の表面(界面)の表面欠陥密度が増加してしまい、太陽電池性能が低下してしまう。本発明の導電性ペーストは、特にフィンガー電極20b向けの導電性ペーストとして、反射防止膜2に対するファイアースルー性(反応性)が低いため、反射防止膜2を完全にファイアースルーしない。そのため、本発明の導電性ペーストを用いてフィンガー電極20bを形成した場合には、結晶系シリコン基板1に接する部分のパッシベーション膜は、そのままの状態を保つことができ、キャリアの再結合の原因となる表面欠陥密度の増加を防止することができる。したがって、上述の本実施形態の導電性ペーストは、結晶系シリコン太陽電池のフィンガー電極20bの形成用の導電性ペーストとして、好適に用いることができる。なお、本実施形態の導電性ペーストは、図4のように、両面受光型の結晶系シリコン太陽電池の裏面電極15(裏面フィンガー電極15c)としても好適に用いることができる。また、本実施形態の導電性ペーストを用いて、電極20の全体を形成することができる。
 本実施形態の導電性ペーストは、レーザー処理プロセスでは、上述の所定の電圧を印加して、点光源からの光を照射することにより、光入射側表面電極20と不純物拡散層4(シリコンエミッタ層)との間のわずかな領域に電流が流れ、局所的に加熱される。この結果、図13に示すように、光入射側表面電極20に接する不純物拡散層4(シリコンエミッタ層)に、局所的な電気的導通部分(局所導通部)であるAgSi合金30が形成される。この局所的に形成された電気的導通部分により、光入射側表面電極20と不純物拡散層4(シリコンエミッタ層)との間の良好な電気的導通が可能になると考えられる。したがって、レーザー処理プロセスによる光入射側表面電極の形成に用いる導電性ペーストは、従来の導電性ペースト(反射防止膜2をファイアースルーすることのできる導電性ペースト)とは異なる性質を有することが必要である。
 本実施形態の導電性ペーストについて、具体的に説明する。
<(A)導電性粒子>
 本実施形態の導電性ペーストは、(A)導電性粒子を含む。
 本実施形態の導電性ペーストでは、導電性粒子としては、金属粒子又は合金粒子を用いることができる。金属粒子又は合金粒子に含まれる金属としては、銀、金、銅、ニッケル、亜鉛及びスズ等を挙げることができる。金属粒子として、銀粒子(Ag粒子)を用いることができる。なお、本実施形態の導電性ペーストには、銀以外の他の金属、例えば金、銅、ニッケル、亜鉛及びスズ等を含むことができる。低い電気抵抗及び高い信頼性を得る点から、導電性粒子は銀からなる銀粒子であることが好ましい。なお、銀からなる銀粒子には、不可避的に含まれる不純物としての他の金属元素を含有することができる。また、多数の銀粒子(Ag粒子)のことを銀粉末(Ag粉末)という場合がある。他の粒子についても同様である。
 導電性粒子の粒子形状及び粒子寸法(粒径又は粒子径ともいう)は、特に限定されない。粒子形状としては、例えば、球状及びリン片状等のものを用いることができる。導電性粒子の粒子寸法は、全粒子の積算値50%の粒子寸法(D50)により規定することができる。本明細書では、D50のことを平均粒子径ともいう。なお、平均粒子径(D50)は、マイクロトラック法(レーザー回折散乱法)にて粒度分布測定を行い、粒度分布測定の結果から求めることができる。
 導電性粒子の平均粒子径(D50)は、0.5~2.5μmであることが好ましく、0.8~2.2μmであることがより好ましい。導電性粒子の平均粒子径(D50)が所定の範囲であることにより、導電性ペーストの焼成中、パッシベーション膜に対する導電性ペーストの反応性を抑制することができる。なお、平均粒子径(D50)が上記範囲より大きい場合には、スクリーン印刷の際に目詰まり等の問題が生じることがある。
 また、銀粒子の大きさを、BET比表面積(単に「比表面積」ともいう。)として表すことができる。銀粒子のBET比表面積は、好ましくは0.1~1.5m/g、より好ましくは0.2~1.2m/gである。BET比表面積は、例えば全自動比表面積測定装置Macsoeb(MOUNTEC社製)を用いて測定することができる。
<(B)有機ビヒクル>
 本実施形態の導電性ペーストは、(B)有機ビヒクルを含む。
 有機ビヒクルとしては、有機バインダ及び溶剤を含むことができる。有機バインダ及び溶剤は、導電性ペーストの粘度調整等の役割を担うものであり、いずれも特に限定されない。有機バインダを溶剤に溶解させて使用することもできる。
 本実施形態の導電性ペーストは、(B)有機ビヒクルが、エチルセルロース、ロジンエステル、アクリル及び有機溶剤から選択される少なくとも1つを含むことが好ましい。(B)有機ビヒクルが、エチルセルロース、ロジンエステル、アクリル及び有機溶剤から選択される少なくとも1つを含むことにより、導電性ペーストのスクリーン印刷を好適に行うことができ、印刷されるパターンの形状を適切な形状とすることができる。
 有機バインダとしては、セルロース系樹脂(例えばエチルセルロース、ニトロセルロース等)、(メタ)アクリル系樹脂(例えばポリメチルアクリレート、ポリメチルメタクリレート等)から選択して用いることができる。本実施形態の導電性ペーストに含まれる有機ビヒクルが、エチルセルロース、ロジンエステル、ブチラール、アクリル及び有機溶剤から選択される少なくとも1つを含むことが好ましい。有機バインダの添加量は、銀粒子100重量部に対し、通常0.1~30重量部であり、好ましくは0.2~5重量部である。
 有機溶剤としては、アルコール類(例えばターピネオール、α-ターピネオール、β-ターピネオール等)、エステル類(例えばヒドロキシ基含有エステル類、2,2,4―トリメチル-1,3-ペンタンジオールモノイソブチラート、ジエチレングリコールモノブチルエーテルアセテート(ブチルカルビトールアセテート)等)から1種又は2種以上を選択して使用することができる。溶剤の添加量は、銀粒子100重量部に対し、通常0.5~30重量部であり、好ましくは2~25重量部である。有機溶剤の具体例としては、ジエチレングリコールモノブチルエーテルアセテート(ブチルカルビトールアセテート)を挙げることができる。
<(C)ガラスフリット>
 本実施形態の導電性ペーストは、(C)ガラスフリットを含む。
 本実施形態の導電性ペーストは、(C)ガラスフリットの塩基度BGFと、導電性ペースト中の(A)導電性粒子の含有量を100重量部としたときの導電性ペースト中の重量部を単位とした(C)ガラスフリットの含有量Gとの積BGF・Gが、0.25~1.45の範囲であり、0.3~1.4の範囲が好ましく、0.4~1.2の範囲がより好ましい。ガラスフリットの塩基度BGFと含有量Gとの積BGF・Gを適切な範囲にすることにより、ガラスフリットの反射防止膜2(パッシベーション膜)に対する反応性を適切なものとすることができる。そのため、レーザー処理プロセスを用いた結晶系シリコンの製造の際に、実施形態の導電性ペーストを好ましく用いることができる。
 ガラスフリットの塩基度は、特許文献4(特開2009-231826号公報)に記載されている方法により、算出することができる。すなわち、「塩基度」は、「K.Morinaga, H.Yoshida And H.Takebe: J.AmCerm.Soc., 77, 3113 (1994)」に示される式を用いてガラス粉末の塩基度を規定することができる。具体的には、以下の通りである。
 酸化物MOのM-O間の結合力は、陽イオン-酸素イオン間引力Aiとして次式で与えられる。
 A=Z・Z02-/(r+r02-=Zi・2/(r+1.40)
  Z:陽イオンの価数、酸素イオンは2
  r:陽イオンのイオン半径(Å)
 酸素イオンのイオン半径rは1.40nmである。上記式のAの逆数B(=1/A)を単成分酸化物MOの酸素供与能力とする。
  B≡1/A
 このBをBCaO=1、BSiO=0と規格化すると、各単成分酸化物のB-指標が与えられる。この各成分のB-指標を陽イオン分率により多成分系へ拡張すると、任意の組成のガラス酸化物(ガラスフリット)の融体の塩基度(=BGF)を算出することができる。
  BGF=Σn・B
  n:陽イオン分率
 このようにして規定された塩基度(BGF)は、上記のように酸素供与能力を表し、値が大きいほど酸素を供与し易く、他の金属酸化物との酸素の授受が起こり易い。すなわち、「塩基度」とはガラス融体中への溶解の程度を表すものということができる。
 (C)ガラスフリットの含有量Gは、(A)導電性粒子の含有量に対する比なので、無次元の数である。また、上述のように、Bは、BCaO=1、BSiO=0と規格化した値なので、(C)ガラスフリットの塩基度BGF(=Σn・B)は、無次元の数である。したがって、(C)ガラスフリットの塩基度BGFと含有量Gとの積BGF・Gも無次元の数である。
 本実施形態のガラスフリットの塩基度(BGF)は、0.30~0.80未満であることが好ましく、0.35~0.75であることがより好ましく、0.40~0.70であることが更に好ましい。塩基度(BGF)がこのような範囲である場合には、導電性ペースト中のガラスフリットの添加量を調節することにより、ガラスフリットによるパッシベーション膜に対する反応性を適当なものにすることができる。
 本実施形態の導電性ペースト中のガラスフリットの含有量Gは、導電性粒子100重量部に対して、0.3~4.0重量部であることが好ましく、0.4~3.0重量部であることがより好ましく、0.5~2.0重量部であることが更に好ましく、0.5~1.5重量部であることが特に好ましい。導電性ペースト中のガラスフリットの含有量Gを、塩基度(BGF)と共に、適切に調節することにより、ガラスフリットによるパッシベーション膜に対する反応性を適切なものにすることができる。
 本実施形態の導電性ペーストに含まれるガラスフリットは、PbO、SiO、Al、B、ZnO、V、WO及びNbから選択される1種以上を含むことが好ましい。本実施形態の導電性ペーストに含まれるガラスフリットは、PbO、SiO、Al、B及びZnOを含むことがより好ましい。
 本実施形態の導電性ペーストは、(C)ガラスフリットが、ZnO、V、WO及びNbから選択される少なくとも1つを含むことが好ましい。ガラスフリットがこれらの酸化物の少なくとも1つを含むことにより、ガラスフリットの塩基度を適切な範囲に調整することができる。
 ガラスフリットは、PbOを含むことが好ましい。ガラスフリット(100mol%)中のPbOの含有量は、25~60mol%であることが好ましく、30~55mol%であることがより好ましく、40~55mol%であることが更に好ましい。ガラスフリットがPbOを含むことにより、パッシベーション膜への反応性を抑制するとともに、接触抵抗を低減することができる。
 ガラスフリットは、SiOを含むことが好ましい。ガラスフリット(100mol%)中のSiOの含有量は、20~65mol%であることが好ましく、25~60mol%であることがより好ましい。ガラスフリットがSiOを含むことにより、パッシベーション膜への反応性を抑制することができる。
 ガラスフリットは、Alを含むことが好ましい。ガラスフリット(100mol%)中のAlの含有量は、3.0~6.8mol%であることが好ましく、3.5~6mol%であることがより好ましい。ガラスフリットがAlを含むことにより、パッシベーション膜への反応性を抑制することができる。
 ガラスフリットは、Bを含むことが好ましい。ガラスフリット(100mol%)中のBの含有量は、3.0~15mol%であることが好ましく、3.5~12mol%であることがより好ましい。
 ガラスフリットは、ZnOを含むことが好ましい。ガラスフリット(100mol%)中のZnOの含有量は、5~20mol%であることが好ましく、8~15mol%であることがより好ましい。ガラスフリットがZnOを含むことにより、ガラスフリットの塩基度を適切な範囲に調整することができる。
 本実施形態の導電性ペーストは、(C)ガラスフリット中のmol%を単位としたPbOの含有量CPbOと、(C)ガラスフリットの含有量Gとの積CPbO・Gが20~139の範囲であることが好ましく、22~130の範囲であることがより好ましく、26~105の範囲であることが更に好ましい。積CPbO・Gが139を超える場合には、ガラスフリットと、パッシベーション膜との反応性が高くなりすぎる。また、積CPbO・Gが20未満の場合には、得られる電極と、不純物拡散層との間の接触抵抗が高くなりすぎる。
 本実施形態の導電性ペーストは、(C)ガラスフリットのガラス転移点(Tg)が300~600℃であることが好ましく、320~500℃であることがより好ましく、350~450℃であることが更に好ましい。(C)ガラスフリットのガラス転移点(Tg)を300℃以上にすることによりパッシベーション膜に対する反応性を抑制することができる。また、ガラス転移点(Tg)を600℃以下にすることにより、得られる電極と、不純物拡散層との間の接触抵抗を低減することができる。
 ガラス転移点(Tg)は、次のように測定することができる。すなわち、示差熱天秤(株式会社マックサイエンス社製 TG-DTA2000S)を用いて、この示差熱天秤に、試料となるガラス粉末と基準物質とをセットし、測定条件として昇温速度10℃/分にて室温から900℃まで昇温させ、試料であるガラス粉末と基準物質の温度差を温度に対してプロットした曲線(DTA曲線)を得る。このようにして得られたDTA曲線のを第1の変曲点をガラス転移点Tgとすることができる。
 ガラスフリットの粒子の形状は特に限定されず、例えば球状、不定形等のものを用いることができる。また、粒子寸法も特に限定されない。作業性の点等から、粒子の平均粒子径(D50)は0.1~10μmの範囲が好ましく、0.5~5μmの範囲が更に好ましい。
 ガラスフリットの粒子は、必要な複数の酸化物をそれぞれ所定量含む1種類の粒子を用いることができる。また、単一の酸化物からなる粒子を、必要な複数の酸化物ごとに異なった粒子として用いることもできる。また、必要な複数の酸化物の組成が異なる複数種類の粒子を組み合わせて用いることもできる。
<アルミニウム粒子>
 本実施形態の導電性ペーストは、導電性ペーストが(D)アルミニウム粒子を更に含むことができる。(D)アルミニウム粒子は、(A)導電性粒子とは別の粒子として含むことができる。
 結晶系シリコン基板の中で、アルミニウムは、p型の不純物としての性質を有する。結晶系シリコンの上に印刷された導電性ペーストを焼成したときに、導電性ペースト中のアルミニウムは、結晶系シリコン中に拡散し、p型の不純物となる。したがって、結晶系シリコン基板のp型不純物拡散層の表面に電極を形成する場合には、導電性ペーストがアルミニウム粒子を含むことにより、電極と、p型不純物拡散層との間に低い接触抵抗を得ることができる。したがって、結晶系シリコン基板のp型不純物拡散層の表面に電極を形成する場合には、導電性ペーストがアルミニウム粒子を含むことが好ましい。
 本実施形態の導電性ペーストが(D)アルミニウム粒子を含む場合には、導電性ペースト中の(A)導電性粒子の含有量を100重量部としたときの導電性ペースト中の(D)アルミニウム粒子の含有量が、0.1~2.0重量部であることが好ましく、0.5~2.0重量部であることがより好ましい。導電性ペーストがアルミニウム粒子を所定量含むことにより、電極と、p型不純物拡散層との間に低い接触抵抗を得ることができる。
 一方、結晶系シリコン基板のn型不純物拡散層又はn型結晶系シリコン基板の表面に電極を形成する場合には、導電性ペースト中のアルミニウムがn型不純物拡散層等へ拡散することにより、太陽電池特性に対して悪影響を及ぼす。したがって、結晶系シリコン基板のn型不純物拡散層又はn型結晶系シリコン基板の表面に電極を形成する場合には、本実施形態の導電性ペーストは、(D)アルミニウム粒子を含まないこと((D)アルミニウム粒子の含有量がゼロであること)が好ましい。
 アルミニウム粒子は、主にアルミニウムの元素を含む。アルミニウム粒子におけるアルミニウムの純度は、例えば、99.7%以上であることが好ましく、99.9%以上であることがより好ましい。アルミニウム粒子には、アルミニウム以外の不純物、例えば、不可避的に含まれる他の金属元素を含有することができる。また、アルミニウム粒子には、アルミニウムと他の金属元素との合金、及びアルミニウムの酸化物等を含むことができる。
 アルミニウム粒子の形状は、球状又は楕円球状が例示されるが、これらに限定されるわけではない。印刷性が良く、半導体基板との反応が良いという観点からは、アルミニウム粒子の形状は球状であることが好ましい。
 アルミニウム粒子の平均粒子径(D50)も特に限定的ではない。アルミニウム粒子の平均粒子径(D50)が1μm以上、20μm以下であれば、ペースト組成物の印刷性が向上し、半導体基板との反応性も向上するという点で好ましい。より好ましいアルミニウム粒子の平均粒子径(D50)は2~4μmである。
<その他の成分>
 本実施形態の導電性ペーストは、得られる太陽電池の太陽電池特性に対して悪影響を与えない範囲で、上述したもの以外の添加剤及び添加物を含むことができる。
 本実施形態の導電性ペーストには、添加剤として、可塑剤、消泡剤、分散剤、レベリング剤、安定剤及び密着促進剤などから選択したものを、必要に応じて更に配合することができる。これらのうち、可塑剤としては、フタル酸エステル類、グリコール酸エステル類、リン酸エステル類、セバチン酸エステル類、アジピン酸エステル類及びクエン酸エステル類などから選択した少なくとも1つを用いることができる。
 本実施形態の導電性ペーストは、得られる太陽電池の太陽電池特性に対して悪影響を与えない範囲で、上述したもの以外の添加物を含むことができる。例えば、本実施形態の導電性ペーストは、チタンレジネート、酸化チタン、酸化コバルト、酸化セリウム、窒化ケイ素、銅マンガン錫、アルミノケイ酸塩及びケイ酸アルミニウムから選択される少なくとも1つの添加物を更に含むことができる。これらの添加物を含むことにより、電極のパッシベーション膜に対する接着強度を向上させることができる。これらの添加物は、粒子の形態(添加物粒子)であることができる。銀粒子100重量部に対する添加物の添加量は、好ましくは0.01~5重量部であり、より好ましくは0.05~2重量部である。より高い接着強度を得るために、添加物は、銅マンガン錫、アルミノケイ酸塩又はケイ酸アルミニウムであることが好ましい。添加物は、アルミノケイ酸塩及びケイ酸アルミニウムの両方を含むことができる。
<導電性ペーストの製造方法>
 次に、本実施形態の導電性ペーストの製造方法について説明する。本実施形態の導電性ペーストは、有機バインダ及び溶剤に対して、銀粒子、ガラスフリット、並びに必要に応じてその他の添加剤及び/又は添加物を添加し、混合し、分散することにより製造することができる。
 混合は、例えばプラネタリーミキサーで行うことができる。また、分散は、三本ロールミルによって行うことができる。混合及び分散は、これらの方法に限定されるものではなく、公知の様々な方法を使用することができる。
<太陽電池>
 次に、本実施形態の太陽電池について説明する。本実施形態は、上述の導電性ペーストを用いて、少なくとも電極の一部が形成された太陽電池である。図1及び図4に、結晶系シリコン太陽電池の断面模式図を示す。
 本実施形態の太陽電池では、半導体基板の材料として、結晶系シリコン、炭化シリコン、ゲルマニウム、ガリウムヒ素などを用いることができる。太陽電池としての安全性及びコストの点から、半導体基板の材料は、結晶系シリコン(単結晶シリコン及び多結晶シリコン等)であることが好ましい。
 本実施形態の太陽電池は、第1の導電型の半導体基板と、第1の導電型の半導体基板の一方の表面に配置された第2の導電型の半導体層と、第2の導電型の半導体層の表面に接して配置されたパッシベーション膜(反射防止膜2)と、パッシベーション膜の表面の少なくとも一部に配置される光入射側表面電極20とを含む。また、本実施形態の太陽電池は、第1の導電型の半導体基板の他方の表面に電気的に接続するように配置された裏面電極15を含むことができる。図1の例では、第1の導電型の半導体基板は結晶系シリコン基板1であり、第2の導電型の半導体層は不純物拡散層4であり、パッシベーション膜は反射防止膜2である。
 第1の導電型の半導体基板とは、n型半導体基板又はp型半導体基板である。第2の導電型の半導体層とは、p型半導体層又はn型半導体層である。半導体基板がn型半導体基板である場合には、半導体基板の一方の表面にp型半導体層(p型の不純物拡散層4)が配置される。半導体基板がp型半導体基板である場合には、半導体基板の一方の表面にn型半導体層(n型の不純物拡散層4)が配置される。半導体基板の材料は、シリコンであることが好ましい。したがって、半導体基板は、結晶系シリコン基板であることが好ましい。
 パッシベーション膜は、反射防止膜2であることができる。パッシベーション膜は、窒化ケイ素を材料とした薄膜であることが好ましい。
 本実施形態の太陽電池の光入射側表面電極20は、本実施形態の導電性ペーストの焼成体であることができる。本実施形態の導電性ペーストは、この構造の太陽電池を製造するために用いることができる。
 本実施形態の導電性ペーストは、レーザー処理プロセスを用いて結晶系シリコン太陽電池の光入射側表面電極20を形成するために、好ましく用いることができる。レーザー処理プロセスとは、前記第2の導電型の半導体層と、前記第1の導電型の半導体基板との間で、pn接合において順方向とは逆向きの電流が流れるように、裏面電極15及び光入射側表面電極20に電圧を印加しながら、点光源からの光を太陽電池の光入射側表面に照射する処理のことをいう。点光源からの光により、半導体基板の内部には、キャリア(電子-正孔対)が生じ、電圧の印加によりキャリアの移動、すなわち電流を流すことが可能になる。電圧は、pn接合において電流の流れる方向が順方向とは逆向きになるように印加する。したがって、半導体基板がn型半導体基板であり、半導体層がp型半導体層である場合には、電流が、n型半導体基板からp型半導体層へ流れるように、裏面電極15及び光入射側表面電極20に電圧を印加する。また、半導体基板がp型半導体基板であり、半導体層がn型半導体層である場合には、電流が、n型半導体層からp型半導体基板へ流れるように、裏面電極15及び光入射側表面電極20に電圧を印加する。
 本実施形態の太陽電池の第1の導電型の半導体基板は、n型半導体基板であることが好ましく、n型結晶系シリコン基板であることがより好ましい。また、本実施形態の太陽電池の第2の導電型の半導体層は、p型半導体層であることが好ましく、結晶系シリコンを材料としたp型不純物拡散層4であることがより好ましい。一般的に、n型結晶系シリコン基板中のキャリアである電子の移動度は、p型結晶系シリコン基板中のキャリアである正孔の移動度よりも高い。そのため、高い変換効率の太陽電池を得るためには、n型結晶系シリコン基板を用いた方が有利である。
 以下の説明では、第1の導電型の半導体基板がn型結晶系シリコン基板1であり、第2の導電型の半導体層がp型不純物拡散層4(単に「不純物拡散層4」という場合がある。)である太陽電池を例にして説明する。
 図1に示すように、レーザー処理プロセスを用いた場合、光入射側表面電極20と、不純物拡散層4との間の大部分に、反射防止膜2(パッシベーション膜)が存在する。レーザー処理プロセスでは、上述の所定の電圧を、pn接合において順方向とは逆向きの電流が流れるように印加して、点光源からの光(例えばレーザー光)を照射することにより、光入射側表面電極20と不純物拡散層4との間のわずかな領域に電流が流れ、局所的に加熱される。この結果、図13に示すように、光入射側表面電極20と不純物拡散層4との間に、局所的に電気的導通部分(局所導通部)であるAgSi合金30(銀及びシリコンの合金)が形成される。すなわち、局所導通部は、銀及びシリコンの合金を含む。また、局所導通部では、不純物拡散層4(第2の導電型のシリコンエミッタ層)が、反射防止膜2(パッシベーション膜)を介さずに前記光入射側表面電極と直接、接している。この局所的に形成された電気的導通部分(局所導通部)により、光入射側表面電極20と不純物拡散層4との間の良好な電気的導通が可能になる。本実施形態の導電性ペーストは、従来の導電性ペーストと比べて反射防止膜2に対する反応性が低く、レーザー処理プロセスのために適切な反射防止膜2(パッシベーション膜)との反応性を有する。そのため、本実施形態の導電性ペーストは、レーザー処理プロセスを用いて結晶系シリコン太陽電池の光入射側表面電極20を形成するために、好ましく用いることができる。
 図1に示す結晶系シリコン太陽電池は、図3に示す構造の裏面電極15を有することができる。裏面電極15は、第1の導電型の半導体基板の他方の表面に対して電気的に接続するように配置される。図3に示すように、裏面電極15は、一般的に、裏面全面電極15bと、裏面全面電極15bに対して電気的に接続する裏面TAB電極15aとを含むことができる。
 図4に、両面受光型の結晶系シリコン太陽電池の断面模式図の一例を示す。図4に示す両面受光型の結晶系シリコン太陽電池は、不純物拡散層4、反射防止膜2及び裏面パッシベーション膜14を有している。両面受光型の結晶系シリコン太陽電池では、光入射側表面の光入射側表面電極20(特に、フィンガー電極20b)、及び裏面電極15(裏面フィンガー電極15c)を形成するために、本実施形態の導電性ペーストを用いることにより、レーザー処理プロセスを用いて光入射側表面のパッシベーション膜(反射防止膜2)及び裏面パッシベーション膜14に電気的に導通する部分(局所導通部)を形成することができる。
 したがって、上述の本実施形態の導電性ペーストは、結晶系シリコン太陽電池のフィンガー電極20bの形成用の導電性ペーストとして、好適に用いることができる。また、本実施形態の導電性ペーストは、両面受光型の結晶系太陽電池の裏面電極15の形成用の導電性ペーストとしても用いることができる。
 図1に示す結晶系シリコン太陽電池のバスバー電極は、図2に示す光入射側バスバー電極20a及び図3に示すよう裏面TAB電極15aを含む。光入射側バスバー電極20a及び裏面TAB電極15aには、はんだにより周囲を覆われたインターコネクト用の金属リボンがはんだ付けされる。この金属リボンにより、太陽電池により発電された電流は、結晶系シリコン太陽電池セルの外部に取り出される。図4に示す両面受光型の結晶系太陽電池も、光入射側バスバー電極20a、及び光入射側バスバー電極20aと同様の形状の裏面TAB電極を有することができる。
 バスバー電極(光入射側バスバー電極20a及び裏面TAB電極15a)の幅は、インターコネクト用の金属リボンと同程度の幅であることができる。バスバー電極が低い電気抵抗であるためには、幅は広い方が好ましい。一方、光入射側表面に対する光の入射面積を大きくするために、光入射側バスバー電極20aの幅は狭い方が良い。そのため、バスバー電極幅は、0.05~5mm、好ましくは0.08~3mm、より好ましくは0.1~2mm、更に好ましくは、0.15~1mmとすることができる。また、バスバー電極の本数は、結晶系シリコン太陽電池の大きさに応じて決めることができる。バスバー電極の本数は任意である。具体的には、バスバー電極の本数は、3本又は4本、又はそれ以上とすることができる。最適なバスバー電極の本数は、太陽電池動作のシミュレーションによって、結晶系シリコン太陽電池の変換効率を最大にするように決定することができる。なお、インターコネクト用の金属リボンによって、結晶系シリコン太陽電池を相互に直列に接続することから、光入射側バスバー電極20a及び裏面TAB電極15aの本数は、同一であることが好ましい。同様の理由により、光入射側バスバー電極20a及び裏面TAB電極15aの幅は、同一であることが好ましい。
 結晶系シリコン太陽電池に対する光の入射面積を大きくするために、光入射側表面において光入射側表面電極20の占める面積は、なるべく小さい方が良い。そのため、光入射側表面のフィンガー電極20bはなるべく細い幅であり、少ない本数であることが好ましい。一方、電気的損失(オーミックロス)を低減する点から、フィンガー電極20bの幅は広く、本数は多い方が好ましい。また、フィンガー電極20bと、結晶系シリコン基板1(不純物拡散層4)との間の接触抵抗を小さくする点からもフィンガー電極20bの幅は広い方が好ましい。以上のことから、また、バスバー電極の本数は、結晶系シリコン太陽電池の大きさ、及びバスバー電極の幅に応じて決めることができる。最適なフィンガー電極20bの幅及び本数(フィンガー電極20bの間隔)は、太陽電池動作のシミュレーションによって、結晶系シリコン太陽電池の変換効率を最大にするように決定することができる。なお、図4に示す両面受光型の結晶系シリコン太陽電池の裏面電極15の裏面フィンガー電極15cの幅及び本数についても、同様に決定することができる。
<太陽電池の製造方法>
 次に、本実施形態の太陽電池の製造方法について説明する。太陽電池は、結晶系シリコン太陽電池であることができる。以下の説明では、太陽電池が結晶系シリコン太陽電池である例について説明する。
 本実施形態の太陽電池の製造方法は、上述の導電性ペーストを、第2の導電型の半導体層(不純物拡散層4)の上の反射防止膜2の表面に印刷し、乾燥し、及び焼成することによって電極(光入射側表面電極)を形成する工程を含む。以下、本実施形態の太陽電池の製造方法について、更に詳しく説明する。
 本実施形態の太陽電池の製造方法は、第1の導電型(p型又はn型)の半導体基板(例えば、結晶系シリコン基板1)を用意する工程を含む。第1の導電型の半導体基板としては、n型結晶系シリコン基板1を用いることが好ましい。以下では、n型結晶系シリコン基板1を用いて結晶系シリコン太陽電池を製造する場合を例に説明する。
 なお、高い変換効率を得るという観点から、結晶系シリコン基板1の光入射側の表面は、ピラミッド状のテクスチャ構造を有することが好ましい。
 次に、本実施形態の太陽電池の製造方法は、第1の導電型の半導体基板の一方の表面に第2の導電型の半導体層を形成する工程を含む。
 本実施形態の結晶系シリコン太陽電池の製造方法は、上述の工程で用意した結晶系シリコン基板1の一方の表面に、第2の導電型の半導体層(不純物拡散層4)を形成する工程を含む。結晶系シリコン基板1として、n型結晶系シリコン基板1を用いる場合には、不純物拡散層4として、例えばp型不純物であるB(ホウ素)などを拡散したp型不純物拡散層4を形成することができる。なお、p型結晶系シリコン基板を用いて結晶系シリコン太陽電池の製造することも可能である。その場合、不純物拡散層として、n型不純物であるP(リン)などを拡散したn型不純物拡散層4を形成する。
 不純物拡散層4を形成する際には、不純物拡散層4のシート抵抗が40~150Ω/□(square)、好ましくは45~120Ω/□となるように形成することができる。
 また、本実施形態の結晶系シリコン太陽電池の製造方法において、不純物拡散層4を形成する深さは、0.3μm~1.0μmとすることができる。なお、不純物拡散層4の深さとは、不純物拡散層4の表面からpn接合までの深さをいう。pn接合の深さは、不純物拡散層4の表面から、不純物拡散層4中の不純物濃度が基板の不純物濃度となるまでの深さとすることができる。
 本実施形態の太陽電池の製造方法は、第1の導電型の半導体基板(n型結晶系シリコン基板)の他方の表面に対して電気的に接続するように裏面電極15を形成する工程を含む。なお、裏面電極15は、光入射側表面電極20を形成する前、又は形成した後のいずれかであることができる。また、裏面電極15を形成するための焼成は、光入射側表面電極20を形成するための焼成と、同時に、又は別々に行うことができる。
 具体的には、本実施形態の結晶系シリコン太陽電池の製造方法は、結晶系シリコン基板1の他方の表面(裏面)に、導電性ペーストを印刷し、及び焼成することによって裏面電極15を形成する。
 なお、図4に示すような両面受光型の結晶系の太陽電池を製造する場合には、第2の不純物拡散層16を形成することができる。一方、本実施形態の導電性ペースト(導電性組成物)を用いて裏面電極15を形成し、レーザー処理プロセスを行うことにより、裏面電極15と、結晶系シリコン基板1との間に、低抵抗の導通部を形成することができる。したがって、両面受光型の結晶系の太陽電池の場合には、本実施形態の導電性ペーストを用いて裏面電極15を形成することが好ましい。この場合、裏面電極15は、本実施形態の導電性ペーストの焼成体である。
 次に、本実施形態の太陽電池の製造方法は、第2の導電型の半導体層(不純物拡散層4)の表面に接するようにパッシベーション膜を形成することを含む。パッシベーション膜は、反射防止膜2であることができる。
 具体的には、本実施形態の結晶系シリコン太陽電池の製造方法は、上述の工程で形成した不純物拡散層4の表面に、パッシベーション膜としての機能を兼ねる反射防止膜2を形成する。反射防止膜2としては、窒化ケイ素膜(SiN膜)を形成することができる。窒化ケイ素膜を反射防止膜2として用いる場合には、窒化ケイ素膜の層が光入射側表面のパッシベーション膜としての機能も有する。そのため、窒化ケイ素膜を反射防止膜2として用いる場合には、高性能の結晶系シリコン太陽電池を得ることができる。また、反射防止膜2が窒化ケイ素膜であることにより、入射した光に対して反射防止機能を発揮することができる。窒化ケイ素膜は、PECVD(Plasma Enhanced Chemical Vapor Deposition)法などにより、成膜することができる。
 本実施形態の太陽電池の製造方法は、パッシベーション膜(反射防止膜2)の表面の少なくとも一部に光入射側表面電極20を形成する工程を含む。本実施形態の製造方法では、光入射側表面電極20の形成のために、上述の導電性ペーストを用いる。したがって、光入射側表面電極20は、上述の導電性ペーストの焼成体である。
 本実施形態の結晶系シリコン太陽電池の製造方法では、導電性ペーストを、反射防止膜2の表面に印刷し、及び焼成することによって光入射側表面電極20を形成する。なお、光入射側表面電極20を形成するための焼成の際に、裏面電極15を形成するための焼成を同時に行うことができる。
 具体的には、まず、本実施形態の導電性ペーストを用いて印刷した光入射側表面電極20のパターンを、100~150℃程度の温度で数分間(例えば0.5~5分間)乾燥する。なおこのときに、光入射側表面電極20の光入射側バスバー電極20a及び光入射側フィンガー電極20bを本実施形態の導電性ペーストを用いて形成することができる。
 光入射側表面電極20のパターンの印刷・乾燥に続いて、裏面電極15の形成のための導電性ペーストを印刷し、乾燥する。本実施形態の導電性ペーストは、結晶系のシリコン太陽電池などの太陽電池の電極(光入射側表面電極20、及び場合によっては裏面電極15)を形成するために、好ましく使用することができる。
 その後、印刷した導電性ペーストを乾燥したものを、管状炉などの焼成炉を用いて大気中で、所定の焼成条件で焼成する。焼成条件として、焼成雰囲気は大気中、焼成温度は、500~1000℃、より好ましくは600~1000℃、更に好ましくは500~900℃、特に好ましくは700~900℃である。焼成は短時間で行うことが好ましく、焼成の際の温度プロファイル(温度-時間曲線)は、ピーク状であることが好ましい。例えば、前記温度をピーク温度として、焼成炉のイン-アウト時間を10~100秒であることが好ましく、20~80秒で焼成することがより好ましく、40~60秒で焼成することが更に好ましい。
 焼成の際は、光入射側表面電極20及び裏面電極15を形成するための導電性ペーストを同時に焼成し、両電極を同時に形成することが好ましい。このように、所定の導電性ペーストを光入射側表面及び裏面に印刷し、同時に焼成することにより、電極形成のための焼成を1回のみにすることができる。そのため、結晶系シリコン太陽電池を、より低コストで製造することができる。
 本実施形態の太陽電池の製造方法は、上述のレーザー処理プロセスを行うことを含む。すなわち、本実施形態の太陽電池の製造方法は、第2の導電型の半導体層(p型不純物拡散層4)と、第1の導電型の半導体基板(n型結晶系シリコン基板1)との間で順方向とは逆向きの電流が流れるように、裏面電極15と、光入射側表面電極20との間に電圧を印加しながら、点光源からの光(例えばレーザー光)を太陽電池の光入射側表面に照射することを含む。レーザー処理プロセスにより、光入射側表面電極20と不純物拡散層4との間の良好な電気的導通が可能になる。
 上述のようにして、本実施形態の結晶系シリコン太陽電池を製造することができる。
 上述のようにして得られた本実施形態の結晶系シリコン太陽電池を、インターコネクト用の金属リボンによって電気的に接続し、ガラス板、封止材及び保護シート等によりラミネートすることで、太陽電池モジュールを得ることができる。インターコネクト用の金属リボンとしては、はんだにより周囲を覆われた金属リボン(例えば、銅を材料とするリボン)を用いることができる。はんだとして、スズを主成分とするもの、具体的には鉛入りの有鉛はんだ及び鉛フリーはんだなど、市場で入手可能なはんだを用いることができる。
 本実施形態の結晶系シリコン太陽電池では、本実施形態の導電性ペーストを用いて太陽電池の所定の電極を形成し、レーザー処理プロセスを行うことによって、高性能の結晶系シリコン太陽電池を得ることができる。
 以下、実施例により、本実施形態を具体的に説明するが、本発明はこれらに限定されるものではない。
 実施例及び比較例では、単結晶シリコン太陽電池を模擬した測定用基板を用いて、フォトルミネッセンスイメージング法(PL法)によるパッシベーション膜の劣化の程度、並びに形成した電極の接触抵抗及び比抵抗を評価することにより、本実施形態の実施例及び比較例の導電性ペーストの性能を評価した。
<導電性ペーストの材料及び調製割合>
 表1~3に、実施例1~14及び比較例1~4の導電性ペーストの組成を示す。表1~3に示す組成、及び下記の各成分の組成は、(A)銀粒子を100重量部としたときの各成分の重量部として示す。導電性ペーストに含まれる各成分は、下記の通りである。
(A)銀粒子
 表4に、実施例及び比較例の導電性ペーストに用いた銀粒子A1及びA2の品番、製造会社、形状、平均粒子径(D50)、TAP密度、及びBET比表面積を示す。表1~3に、実施例及び比較例の導電性ペーストの銀粒子A1及びA2の配合量を示す。なお、平均粒子径(D50)は、マイクロトラック法(レーザー回折散乱法)にて粒度分布測定を行い、粒度分布測定の結果からメジアン径(D50)の値を得ることにより求めた。他の成分の平均粒子径(D50)についても同様である。また、BET比表面積の測定には、全自動比表面積測定装置Macsoeb(MOUNTEC社製)を用いた。BET比表面積は、100℃で予備乾燥し、10分間窒素ガスを流したのち、窒素ガス吸着によるBET1点法により測定した。
(B)有機ビヒクル
 有機ビヒクルとして、有機バインダ及び溶剤を用いた。有機バインダとして、エトキシ含有量48~49.5重量%のエチルセルロース(0.4重量部)を用いた。溶剤として、ジエチレングリコールモノブチルエーテルアセテート(ブチルカルビトールアセテート)(3重量部)を用いた。
(C)ガラスフリット
 表5に、実施例及び比較例の導電性ペーストに用いたガラスフリットA~Gの組成、塩基度及びガラス転移点を示す。なお、ガラスフリットA~Gの平均粒径(D50)は2μmとした。表1~3に、実施例及び比較例の導電性ペーストの(C)ガラスフリットの種類(A~Gのいずれか)及び含有量G(重量部)を示す。
 ガラスフリットA~Gのガラス転移点を測定した。表5にガラスフリットA~Gのガラス転移点の測定値を示す。ガラスフリットのガラス転移点の測定は、次のようにして行った。すなわち、約50mgのガラスフリットA~Gを試料として白金セルに入れ、アルミナ粉末を標準試料として、大気雰囲気下に、示差熱分析装置(株式会社リガク製、TG-8120)を用いて室温から800℃まで20℃/分の昇温速度でDTA曲線を得た。DTA曲線の第1の吸熱の開始点(外挿点)をガラス転移点とした。
 ガラスフリットA~Gは、次のようにして製造した。すなわち、まず、原料となる酸化物の粉末を計量し、混合して、るつぼに投入した。このるつぼを、加熱したオーブンに入れ、るつぼの内容物を溶融温度(Melt temperature)まで昇温し、溶融温度で原料が充分に溶融するまで維持した。次に、るつぼをオーブンから取り出し、溶融した内容物を均一に撹拌した。次に、るつぼの内容物をステンレス製の2本ロールを用いて室温で急冷して、板状のガラスを得た。最後に板状のガラスを乳鉢で粉砕しながら均一に分散し、メッシュのふるいでふるい分けることによって所望の粒度を持ったガラスフリットを得ることができた。100メッシュのふるいを通過し200メッシュのふるい上に残るものにふるい分けることによって、平均粒子径(D50)が149μmのガラスフリットを得ることができる。このガラスフリットを更に粉砕することにより、平均粒子径(D50)が2μmのガラスフリットを得ることができた。
(D)アルミニウム粒子
 表6に、実施例及び比較例の導電性ペーストに用いたアルミニウム粒子D1及びD2の品番、製造会社、形状及び平均粒子径(D50)を示す。表1~3に、実施例及び比較例の導電性ペーストのアルミニウム粒子D1及びD2の配合量(重量部)を示す。
 次に、表1~3に示す重量割合の材料を、プラネタリーミキサーで混合し、更に三本ロールミルで分散し、ペースト化することによって、実施例及び比較例の導電性ペーストを調製した。
<PL法による導電性ペーストのパッシベーション膜に対する反応性の評価>
 導電性ペーストのパッシベーション膜に対する反応性の評価を、フォトルミネッセンスイメージング法(「PL法」という。)により行った。PL法は、非破壊・非接触かつ、短時間で、導電性ペーストのパッシベーション膜に対する反応性を評価することが可能である。具体的には、PL法は、試料に対して禁制帯幅より大きいエネルギーの光を照射して発光させ、その発光の状況から、結晶中の欠陥及び表面・界面欠陥の様子を評価する方法である。試料が単結晶シリコン基板中の欠陥及び表面・界面欠陥を有する場合には、欠陥が、光を照射により発生した電子-正孔対の再結合中心として働き、これと対応してフォトルミネッセンスによるバンド端発光強度が低下する。つまり、印刷/焼成された電極によりパッシベーション膜が侵食され、パッシベーション膜と単結晶シリコン基板との界面(すなわち、単結晶シリコン基板の表面)に表面欠陥が形成された場合、表面欠陥が形成された部分(すなわち、試料に形成された電極の部分)のフォトルミネッセンスの発光強度が低下する。このフォトルミネッセンスの発光強度の強弱により、試作した導電性ペーストのパッシベーションとの反応性を評価することができる。
 PL法による評価のための基板の試作方法は次の通りである。
 基板は、n型単結晶シリコン基板(基板厚み200μm)を用いた。
 まず、上記基板に酸化ケイ素層約20μmをドライ酸化で形成後、フッ化水素、純水及びフッ化アンモニウムを混合した溶液でエッチングし、基板表面のダメージを除去した。更に、塩酸と過酸化水素を含む水溶液で重金属洗浄を行った。
 次に、この基板の両面にウェットエッチングによってテクスチャ構造(凸凹形状)を形成した。具体的にはウェットエッチング法(水酸化ナトリウム水溶液)によってピラミッド状のテクスチャ構造を両面(光入射側表面及び裏面)に形成した。その後、塩酸及び過酸化水素を含む水溶液で洗浄した。次に、上記基板のテクスチャ構造を有する一方の表面(光入射側表面)にホウ素を注入して、p型拡散層を約0.5μmの深さに形成した。p型拡散層のシート抵抗は、60Ω/□だった。また、上記基板のテクスチャ構造を有する他方の表面(裏面)に、リンを注入して、n型拡散層を約0.5μmの深さに形成した。n型拡散層のシート抵抗は、20Ω/□だった。ホウ素及びリンの注入は同時に熱拡散法によって行った。
 次に、p型拡散層を形成した基板の表面(光入射側表面)、及びn型拡散層を形成した基板の表面(裏面)に、1~2nmの薄い酸化膜層を形成した後、プラズマCVD法によってシランガス及びアンモニアガスを用いて窒化ケイ素膜を約60nmの厚みに形成した。具体的には、NH/SiH=0.5の混合ガス1Torr(133Pa)をグロー放電分解することにより、プラズマCVD法によって膜厚約70nmの窒化ケイ素膜(反射防止膜2)を形成した。
 このようにして得られた基板を、25mm×25mmの正方形に切断した基板1を用意した。
 次に、図8に示すように、電極形成用の導電性ペーストを用いて、基板1の表面に13mm×13mmの正方形の電極パターン22を印刷し、乾燥した。
 上述のように導電性ペーストにより電極パターン22を表面に印刷した基板1を、Despatch Industries, Inc.製のベルト炉(焼成炉)CDF7210を用いて、ピーク温度720℃、焼成炉のイン-アウト時間を50秒で焼成した。
 以上のようにして、PL法測定用の基板(試料)を作製した。
 PL法による測定は、BT Imaging社製Photoluminescence Imaging System装置(型番LIS-R2)を用いて行った。励起用の光源(波長650nm、出力3mW)からの光を基板の裏面(光入射側表面電極20の電極パターンが形成されていない方の表面)に照射し、フォトルミネッセンスの発光強度のイメージを得た。
 図9及び図10にPL法にて測定したフォトルミネッセンスの発光強度のイメージを示す。
 図9には、実施例4の導電性ペーストを用いて電極パターン22を形成した試料のPL法にて測定したフォトルミネッセンスの発光強度のイメージを示す。図9から明らかなように、電極パターン22が形成された部分のイメージは、後述する図10と比べて明るくなっている。このことは、光入射側表面電極20の電極パターンが形成された部分のフォトルミネッセンスの発光強度の低下が抑制されたことを示している。したがって、図9に示す試料の場合には、光入射側表面電極20の電極パターンを形成したことにより、パッシベーション膜によるパッシベーションの機能が保たれたといえる。したがって、図9に示す実施例4の導電性ペーストを用いた試料の場合には、単結晶シリコン基板1の表面の表面欠陥密度が増大しなかったといえる。
 一方、図10に示す試料の作製には、光入射側表面電極20を形成するために比較例1の導電性ペーストを用いた。図10から明らかなように、図9に示す試料と比べて、光入射側表面電極20の電極パターンが形成された部分のイメージは暗くなっている。このことは、光入射側表面電極20の電極パターンが形成された部分のフォトルミネッセンスの発光強度が低下したことを示している。したがって、図10に示す比較例1の導電性ペーストを用いた試料の場合には、光入射側表面電極20の電極パターンを形成したことにより、パッシベーション膜によるパッシベーションの機能が損なわれ、単結晶シリコン基板1の表面の表面欠陥密度が増大したといえる。
 表1~表3に、実施例及び比較例のフォトルミネッセンスの発光強度の測定値(PL値)を示す。PL値は、電極近傍のフォトルミネッセンスの発光強度の平均値である。なお、PL値は、励起用の光源からの照射光のスペクトル及び強度、並びに測定のための光学系などにより異なる数値であり、任意の単位の値である。照射光のスペクトル及び強度、並びに測定のための光学系などのPL値を測定するための条件を同じにした場合には、各々の試料のPL値の大きさを比較することにより、各々の試料におけるキャリアの再結合の程度(パッシベーション機能の劣化の程度)を評価することができるといえる。PL値が高いほど、パッシベーション膜によるパッシベーションの機能が優れているといえる。
 なお、確認のため、図9及び図10に示す試料の断面を走査型電子顕微鏡(SEM)によって観察した。図11に、図9に示される試料と同じ導電性ペーストを用いて同じ条件で光入射側表面電極20を形成した試料(実施例4に相当)の、パッシベーション膜の近傍の断面SEM写真(倍率:2万倍)を示す。また、図12に、図10に示される試料と同じ導電性ペーストを用いて条件で光入射側表面電極20を形成した試料(比較例1に相当)の、パッシベーション膜の近傍の断面SEM写真(倍率:2万倍)を示す。図11から明らかなように、PL値が高い試料の場合には、光入射側表面電極20の形成後も、反射防止膜2(パッシベーション膜)がほぼそのままの形状を維持しており、反射防止膜2(パッシベーション膜)はガラスフリットにより侵食されていない。一方、図12から明らかなように、PL値が低い試料の場合には、反射防止膜2(パッシベーション膜)がガラスフリットにより侵食され、反射防止膜2(パッシベーション膜)のほとんどが消失している。すなわち、比較例1の導電性ペーストは、パッシベーション膜をファイアースルーすることが可能な導電性ペーストであるといえる。なお、図12に「Glass」と記載した部分は、導電性ペーストに含まれるガラスフリットに起因したガラス成分である。以上のことから、上述のPL法によるPL値の測定により、導電性ペーストの反射防止膜2(パッシベーション膜)に対する反応性の有無を評価できることは明らかである。
 表1~3から明らかなように、本実施形態の実施例1~14の導電性ペースト(導電性組成物)を用いて得られた試料のPL値は、5522(実施例2)以上だった。これに対して、比較例1のPL値は4900であり、比較例2のPL値は4800という低い値だった。したがって、比較例1及び2では、本実施形態の実施例と比べて、パッシベーション膜によるパッシベーションの機能が低いため、太陽電池の性能が低下してしまうといえる。また、このことから、比較例1及び2の導電性ペーストを用いて電極を形成した場合には、太陽電池特性のうち、開放電圧(Voc)が低下することを示唆している。
 なお、PL値が4800の比較例2の試料の、電極とシリコン基板との界面付近の断面をSEM観察したところ、PL値が4900の比較例1と同様に(図12参照)、比較例2の試料では、反射防止膜2(パッシベーション膜)が残っていないことを確認した。一方、PL値が5522の実施例2の試料の、電極とシリコン基板との界面付近の断面をSEM観察したところ、実施例4と同様に(図11参照)、実施例2の試料では、電極とシリコン基板との間に、反射防止膜2(パッシベーション膜)が残っていたことを確認した。したがって、実施例1~14及び比較例1~4の評価に用いたフォトルミネッセンスイメージング法(PL法)による評価結果から、PL値が5000以上である場合、好ましくはPL値が5500以上である場合には、電極とシリコン基板との間に、反射防止膜2(パッシベーション膜)が残り、高い性能(特に、高いVoc)の太陽電池を得ることを期待できることが明らかになった。
 なお、レーザー処理プロセス前後において、PL値は大きく変化しないことを確認した。レーザー処理プロセスによる処理は、局所的に微小な電気的導通部分を形成するための処理であり、反射防止膜2(パッシベーション膜)の大部分には影響を与えないためであると考えられる。
<レーザー処理プロセス前の接触抵抗の測定>
 PL法による測定のための試料と同様に、n型結晶系シリコン基板(基板厚み200μm)の一方の表面に、p型不純物拡散層を形成し、更に、p型不純物拡散層の上に、膜厚約60nmの窒化ケイ素膜(パッシベーション膜である反射防止膜2)を形成して、接触抵抗の測定用の基板を得た。
 実施例及び比較例の単結晶シリコン太陽電池の、p型拡散層を形成した基板の表面(光入射側表面)の電極形成用の導電性ペーストは、表1~3に示すものを用いた。
 導電性ペーストの印刷は、スクリーン印刷法によって行った。上述の基板の反射防止膜2上に、膜厚が約20μmになるように、1.5mm幅の光入射側バスバー電極20aと、60μm幅の光入射側フィンガー電極20bからなるパターンで印刷し、その後、150℃で約1分間乾燥した。
 裏面電極15(n型拡散層を形成した表面の電極)として、市販のAgペーストをスクリーン印刷法によって印刷した。なお、裏面電極15の電極パターンは、光入射側電極20と同様の電極パターン形状である。その後、150℃で約60秒間乾燥した。乾燥後の裏面電極15用の導電性ペーストの膜厚は約20μmであった。その後、Despatch Industries, Inc.製のベルト炉(焼成炉)CDF7210を用いて、ピーク温度720℃、焼成炉のイン-アウト時間を50秒で両面同時焼成した。以上のようにして、単結晶シリコン太陽電池を作製した。
 このようにして得られた太陽電池セルを、図7に示すように、15mm×15mmの正方形に切断して、接触抵抗測定用試料を得た。図7に示すように、この切断した太陽電池セル(接触抵抗測定用試料)の光入射側表面には、幅60μm、長さ15.0mmの光入射側フィンガー電極20bが、1.5mmの間隔で配置される。この光入射側フィンガー電極20bを、接触抵抗測定用パターンとして用いた。実施例及び比較例の接触抵抗測定用パターンの、レーザー処理プロセス前の接触抵抗をGP Solar社製GP 4 TEST Proを用い、TLM法(Transfer length Method)により求めた。
 接触抵抗測定用試料として、同じ条件のものを3個作製し、測定値は3個の平均値として求めた。
<レーザー処理プロセス後の接触抵抗の測定>
 上述のレーザー処理プロセス前の接触抵抗の測定と同様に、単結晶シリコン太陽電池を作製し、この太陽電池セルの光入射側表面に対してレーザー処理プロセスを行った。すなわち、太陽電池セルのp型不純物拡散層4と、n型結晶系シリコン基板1との間で順方向とは逆向きの電流が流れるように、裏面電極15にマイナス、光入射側表面に形成された図2に示すパターンの光入射側電極20の各々にプラスの電圧を印加しながら、レーザー光を太陽電池の光入射側表面に照射した。レーザー処理プロセスの際の印加電圧は20Vであり、照射したレーザー光強度は100W/cmであり、電圧の印加及びレーザー光の照射時間は、2秒間とした。
 このようにして得られた太陽電池セルを、図7に示すように、15mm×15mmの正方形に切断し、レーザー処理プロセス前の接触抵抗測定と同じ方法で、レーザー処理プロセス後の接触抵抗を求めた。
 まず、レーザー処理プロセス前の接触抵抗の値は、450mΩ・cm以下である場合には、レーザー処理プロセス処理することで太陽電池の電極として使用可能である。同じく、接触抵抗が300Ω・cm以下である場合には、レーザー処理プロセス処理することで、太陽電池の電極としてより好ましく使用することができる。
 次に、レーザー処理プロセス後の接触抵抗の値は、20mΩ・cm以下であることにより、太陽電池の電極20として好ましく用いることができる。同じく、接触抵抗が9mΩ・cm以下であることが、太陽電池の電極としてより好ましく使用することができる。
 表1~3から明らかなように、本実施形態の実施例1~14の導電性ペースト(導電性組成物)を用いて得られた試料のレーザー処理プロセス前の接触抵抗は、440mΩ・cm(実施例1)以下だった。これに対して、比較例3の接触抵抗は640mΩ・cmであり、比較例4の接触抵抗は804mΩ・cmという高い値だった。また、本実施形態の実施例1~14の導電性ペースト(導電性組成物)を用いて得られた試料のレーザー処理プロセス後の接触抵抗は、18mΩ・cm(実施例1)以下だった。これに対して、比較例3の接触抵抗は21mΩ・cmであり、比較例4の接触抵抗は32mΩ・cmという高い値だった。したがって、比較例3及び4では、本実施形態の実施例と比べて、接触抵抗が高いため、太陽電池の性能が低下してしまうといえる。すなわち、比較例3及び4の場合には、太陽電池の電極として好ましく用いることができないといえる。
[比抵抗の測定]
 実施例及び比較例の導電性ペーストを焼成して得られた比抵抗測定用の導電膜パターンの比抵抗を測定した。
 実施例及び比較例の比抵抗は、以下の手順で測定した。すなわち、幅15mm、長さ15mm、厚さ180μmのシリコン基板を準備した。この基板上に、325メッシュのステンレス製スクリーンを用いて、図6に示すような導電性ペーストからなるパターンを印刷した。
 次に、基板上に塗布した実施例及び比較例のパターンを表面に印刷したシリコン基板を、Despatch Industries, Inc.製のベルト炉(焼成炉)CDF7210を用いて、ピーク温度720℃、焼成炉のイン-アウト時間を50秒で両面同時焼成した。以上のようにして、比抵抗測定用の試料を作製した。
 実施例及び比較例の導電性ペーストを焼成して得られた、比抵抗測定用の試料の導電膜パターンの比抵抗を測定した。まず、東陽テクニカ社製マルチメーター2001型を用いて、4端子法で抵抗値を測定した。導電膜パターンの断面積は、レーザーテック社製コンフォーカル顕微鏡OPTELICS H1200及び表面粗さ形状測定機1500SD2を用いて行った。1.6mmの範囲を50カ所測定し、平均値を求めた。断面積と測定した抵抗値を用いて比抵抗を算出した。
 なお、比抵抗測定用の試料として、同じ条件のものを4個作製し、測定値は4個の平均値として求めた。測定結果を表1~3に示す。
 表1~3から明らかなように、本実施形態の実施例1~14及び比較例1~4の導電性ペースト(導電性組成物)を用いて得られた導電膜の比抵抗は、8μΩ・cm(実施例11及び18)以下だった。一般的に、15μΩ・cm以下の比抵抗であれば、電極として好適に使用できるといえる。したがって、本実施形態の導電性ペーストを用いることにより、好ましい比抵抗の電極を得ることができるといえる。
 なお、上述のように、比較例1及び2の導電性ペーストを用いた場合には、PL値が低いという問題がある。また、比較例3及び4の導電性ペーストを用いた場合には、電極と、不純物拡散層との間の接触抵抗が高いという問題がある。したがって、比較例1~4の導電性ペーストを用いた場合には、高性能の太陽電池を製造することができないことは明らかである。
 これに対して、本実施形態の導電性ペーストを用いて形成した電極の場合には、PL値が十分高く、接触抵抗が低く、比抵抗も低い。したがって、本実施形態の導電性ペーストを用いることにより、高い性能の結晶系シリコン太陽電池を得ることができるといえる。
 上述のように、本実施形態の導電性ペーストを用いて形成した電極の場合には、レーザー処理プロセスを行うことにより、接触抵抗が低くなることを確認した。接触抵抗が低い場合には、曲線因子(FF)が増加する。また、上述のPL法による評価の結果から、本実施形態の導電性ペーストを用いた場合には、電極20と不純物拡散層4との間の反射防止膜2(パッシベーション膜)の残存率が高いので、キャリアの再結合が低く抑えられる。そのため、本実施形態の導電性ペーストを用いた場合には、開放電圧(Voc)の低下の恐れは低いといえる。以上のことから、本実施形態の導電性ペーストを用いて電極を形成した場合には、開放電圧(Voc)を低下させることなく、曲線因子(FF)を向上させることができるという特性を有する太陽電池を得ることができるといえる。
 図13に、実施例5と同じ条件で作製した太陽電池の、レーザー処理プロセス後の断面を高倍率の走査型電子顕微鏡(SEM)によって観察したSEM写真(倍率:2万倍)を示す。図13に示すように、実施例5と同じ条件で作製した太陽電池の光入射側表面電極と接する不純物拡散層4(シリコンエミッタ層)に、局所的に微小な電気的導通部分(局所導通部)であるAgSi合金30(局所導通部)が形成されることが理解できる。本実施形態の太陽電池では、電極(光入射側表面電極20)を形成するために、本実施形態の導電性ペーストを用いたので、不純物拡散層4に局所導通部を形成することができたといえる。そのため、本実施形態の導電性ペーストを用いて電極(光入射側表面電極20)を形成することにより、電極と、太陽電池の不純物拡散層4との間に、低い接触抵抗を得ることができたといえる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 1 結晶系シリコン基板
 2 反射防止膜(パッシベーション膜)
 4 不純物拡散層
 14 裏面パッシベーション膜
 15 裏面電極
 15a 裏面TAB電極(裏面バスバー電極)
 15b 裏面電極(裏面全面電極)
 15c 裏面フィンガー電極
 16 第2の不純物拡散層
 20 光入射側表面電極(表面電極)
 20a 光入射側バスバー電極
 20b 光入射側フィンガー電極
 22 電極パターン
 30 AgSi合金(局所導通部)

Claims (15)

  1.  太陽電池の電極形成用の導電性ペーストであって、
     (A)導電性粒子と、
     (B)有機ビヒクルと、
     (C)ガラスフリットを含み、
     前記(C)ガラスフリットの塩基度BGFと、前記導電性ペースト中の前記(A)導電性粒子の含有量を100重量部としたときの前記導電性ペースト中の重量部を単位とした前記(C)ガラスフリットの含有量Gとの積BGF・Gが、0.25~1.45の範囲である、導電性ペースト。
  2.  前記(A)導電性粒子が、銀粒子を含む、請求項1に記載の導電性ペースト。
  3.  (B)有機ビヒクルが、エチルセルロース、ロジンエステル、アクリル及び有機溶剤から選択される少なくとも1つを含む、請求項1又は2に記載の導電性ペースト。
  4.  前記(C)ガラスフリット中のmol%を単位としたPbOの含有量CPbOと、前記(C)ガラスフリットの前記含有量Gとの積CPbO・Gが、20~139の範囲である、請求項1~3のいずれか1項に記載の導電性ペースト。
  5.  前記(C)ガラスフリットの前記含有量Gが0.3~4.0重量部である、請求項1~4のいずれか1項に記載の導電性ペースト。
  6.  前記(C)ガラスフリットの前記含有量Gが0.5~1.5重量部である、請求項1~4のいずれか1項に記載の導電性ペースト。
  7.  前記(C)ガラスフリットのガラス転移点が300~600℃である、請求項1~6のいずれか1項に記載の導電性ペースト。
  8.  前記(C)ガラスフリットが、ZnO、V、WO及びNbから選択される少なくとも1つを含む、請求項1~7のいずれか1項に記載の導電性ペースト。
  9.  導電性ペーストが(D)アルミニウム粒子を更に含む、請求項1~8のいずれか1項に記載の導電性ペースト。
  10.  前記導電性ペースト中の前記(A)導電性粒子の含有量を100重量部としたときの前記導電性ペースト中の前記(D)アルミニウム粒子の含有量が、0.1~2.0重量部である、請求項9に記載の導電性ペースト。
  11.  太陽電池の電極形成用の導電性ペーストであって、
     太陽電池が、
     第1の導電型の半導体基板と、
     前記第1の導電型の半導体基板の一方の表面に配置された第2の導電型の半導体層と、
     前記第1の導電型の半導体基板の他方の表面に対して電気的に接続するように配置された裏面電極と、
     前記第2の導電型の半導体層の表面に接して配置されたパッシベーション膜と、
     前記パッシベーション膜の表面の少なくとも一部に配置される光入射側表面電極と
    を含み、
     前記光入射側表面電極が、前記第2の導電型の半導体層と、前記第1の導電型の半導体基板との間で順方向とは逆向きへ電流が流れるように、前記裏面電極と、前記光入射側表面電極との間に電圧を印加しながら、点光源からの光を前記太陽電池の光入射側表面に照射する処理をした前記光入射側表面電極であり、
     前期導電性ペーストが、前記光入射側表面電極を形成するための導電性ペーストである、請求項1~10のいずれか1項に記載の導電性ペースト。
  12.  第1の導電型の半導体基板と、
     前記第1の導電型の半導体基板の一方の表面に配置された第2の導電型の半導体層と、
     前記第1の導電型の半導体基板の他方の表面に対して電気的に接続するように配置された裏面電極と、
     前記第2の導電型の半導体層の表面に接して配置されたパッシベーション膜と、
     前記パッシベーション膜の表面の少なくとも一部に配置された光入射側表面電極と
    を含む太陽電池であって、
     前記光入射側表面電極が、前記第2の導電型の半導体層と、前記第1の導電型の半導体基板との間で順方向とは逆向きの電流が流れるように、前記裏面電極と、前記光入射側表面電極との間に電圧を印加しながら、点光源からの光を前記太陽電池の光入射側表面に照射する処理をした前記光入射側表面電極であり、
     前記光入射側表面電極が、請求項1~10のいずれか1項に記載の導電性ペーストの焼成体である、太陽電池。
  13.  第1の導電型の結晶系シリコン基板と、
     前記第1の導電型の結晶系シリコン基板の一方の表面に配置された第2の導電型のシリコンエミッタ層と、
     前記第1の導電型の結晶系シリコン基板の他方の表面に対して電気的に接続するように配置された裏面電極と、
     前記第2の導電型のシリコンエミッタ層の表面に接して配置されたパッシベーション膜と、
     前記パッシベーション膜の表面の少なくとも一部に配置された銀を含む光入射側表面電極と
    を含む太陽電池であって、
     前記第2の導電型のシリコンエミッタ層が、パッシベーション膜を介さずに前記光入射側表面電極と直接、接する局所導通部を有し、
     局所導通部が、銀及びシリコンの合金を含み、
     前記光入射側表面電極が、請求項1~10のいずれか1項に記載の導電性ペーストの焼成体である、太陽電池。
  14.  太陽電池の製造方法であって、
     第1の導電型の半導体基板を用意することと、
     前記第1の導電型の半導体基板の一方の表面に第2の導電型の半導体層を形成することと、
     前記第1の導電型の半導体基板の他方の表面に対して電気的に接続するように裏面電極を形成することと、
     前記第2の導電型の半導体層の表面に接するようにパッシベーション膜を形成することと、
     前記パッシベーション膜の表面の少なくとも一部に光入射側表面電極を形成することと、
     前記第2の導電型の半導体層と、前記第1の導電型の半導体基板との間で順方向とは逆向きの電流が流れるように、前記裏面電極と、前記光入射側表面電極との間に電圧を印加しながら、点光源からの光を前記太陽電池の光入射側表面に照射することと、を含み、
     前記光入射側表面電極が、請求項1~10のいずれか1項に記載の導電性ペーストの焼成体である、太陽電池の製造方法。
  15.  太陽電池の電極を形成するための請求項1~11のいずれか1項に記載の導電性ペーストの使用。
PCT/JP2023/012085 2022-03-28 2023-03-27 導電性ペースト、太陽電池及び太陽電池の製造方法 WO2023190282A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW112129981A TW202420608A (zh) 2022-11-07 2023-08-09 太陽電池
PCT/JP2023/029078 WO2024100947A1 (ja) 2022-11-07 2023-08-09 太陽電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022051760 2022-03-28
JP2022-051760 2022-03-28
JP2022178203 2022-11-07
JP2022-178203 2022-11-07

Publications (1)

Publication Number Publication Date
WO2023190282A1 true WO2023190282A1 (ja) 2023-10-05

Family

ID=88201701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012085 WO2023190282A1 (ja) 2022-03-28 2023-03-27 導電性ペースト、太陽電池及び太陽電池の製造方法

Country Status (2)

Country Link
TW (1) TW202411362A (ja)
WO (1) WO2023190282A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273256A (ja) * 2006-03-31 2007-10-18 Murata Mfg Co Ltd 導電性ペースト及びセラミック電子部品
JP2009231827A (ja) * 2008-02-26 2009-10-08 Mitsubishi Materials Corp 導電性組成物及びそれを用いた太陽電池セルとその製造方法並びに該太陽電池セルを用いて形成された太陽電池モジュール
JP2009231826A (ja) * 2008-02-26 2009-10-08 Mitsubishi Materials Corp 導電性組成物及びそれを用いた太陽電池セルとその製造方法並びに該太陽電池セルを用いて形成された太陽電池モジュール
JP2011129884A (ja) * 2009-11-17 2011-06-30 Murata Mfg Co Ltd セラミック電子部品の製造方法、及びセラミック電子部品
WO2013046903A1 (ja) * 2011-09-29 2013-04-04 株式会社ノリタケカンパニーリミテド 太陽電池用無鉛導電性ペースト組成物
JP2014150015A (ja) * 2013-02-04 2014-08-21 Namics Corp 太陽電池の電極形成用導電性ペースト
US20160284892A1 (en) * 2013-11-12 2016-09-29 Lg Electronics Inc. Glass frit composition, paste composition for solar cell electrodes including the same and solar cell module
JP2017162636A (ja) * 2016-03-09 2017-09-14 ナミックス株式会社 導電性ペースト及び太陽電池
JP2019525471A (ja) * 2016-08-02 2019-09-05 アーイーツェー ヘルマン ゲーエムベーハー ウント コンパニー カーゲー シリコン太陽電池のコンタクトグリッドとエミッタ層との間のオーミックコンタクト挙動を改善するための方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273256A (ja) * 2006-03-31 2007-10-18 Murata Mfg Co Ltd 導電性ペースト及びセラミック電子部品
JP2009231827A (ja) * 2008-02-26 2009-10-08 Mitsubishi Materials Corp 導電性組成物及びそれを用いた太陽電池セルとその製造方法並びに該太陽電池セルを用いて形成された太陽電池モジュール
JP2009231826A (ja) * 2008-02-26 2009-10-08 Mitsubishi Materials Corp 導電性組成物及びそれを用いた太陽電池セルとその製造方法並びに該太陽電池セルを用いて形成された太陽電池モジュール
JP2011129884A (ja) * 2009-11-17 2011-06-30 Murata Mfg Co Ltd セラミック電子部品の製造方法、及びセラミック電子部品
WO2013046903A1 (ja) * 2011-09-29 2013-04-04 株式会社ノリタケカンパニーリミテド 太陽電池用無鉛導電性ペースト組成物
JP2014150015A (ja) * 2013-02-04 2014-08-21 Namics Corp 太陽電池の電極形成用導電性ペースト
US20160284892A1 (en) * 2013-11-12 2016-09-29 Lg Electronics Inc. Glass frit composition, paste composition for solar cell electrodes including the same and solar cell module
JP2017162636A (ja) * 2016-03-09 2017-09-14 ナミックス株式会社 導電性ペースト及び太陽電池
JP2019525471A (ja) * 2016-08-02 2019-09-05 アーイーツェー ヘルマン ゲーエムベーハー ウント コンパニー カーゲー シリコン太陽電池のコンタクトグリッドとエミッタ層との間のオーミックコンタクト挙動を改善するための方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KENJI MORINGA, HIDEKI YOSHIDA, HIROMICHI TAKEBE: "Compositional Dependence of Absorption Spectra of Ti3+ in Silicate, Borate, and Phosphate Glasses", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, ¬AMERICAN CERAMIC SOCIETY|, vol. 77, no. 12, 1 December 1994 (1994-12-01), pages 3113 - 3118, XP055192935, ISSN: 00027820, DOI: 10.1111/j.1151-2916.1994.tb04557.x *

Also Published As

Publication number Publication date
TW202411362A (zh) 2024-03-16

Similar Documents

Publication Publication Date Title
JP5349738B2 (ja) 半導体デバイスの製造方法、およびそこで使用される導電性組成物
JP5395995B2 (ja) 半導体デバイスの製造に使用される導電性組成物および方法
CN109564945B (zh) 导电性糊剂和太阳能电池
JP2011502330A (ja) 鉛フリーの伝導性組成物、および半導体デバイスの製造における使用方法:Mg含有添加剤
JP6375298B2 (ja) 結晶系シリコン太陽電池及びその製造方法
JP2011519111A (ja) 伝導性組成物、および半導体デバイスの製造における使用方法
JP2006302891A (ja) 半導体デバイスの製造方法、およびそこで使用される導電性組成物
JP2011503772A (ja) 伝導性組成物、および半導体デバイスの製造における使用方法:Mg含有添加剤
JP2011501866A (ja) 鉛フリーの伝導性組成物、および半導体デバイスの製造における使用方法:フラックス材料
JP2011519112A (ja) 伝導性組成物、および半導体デバイスの製造における使用方法:フラックス材料
JP2011502345A (ja) 伝導性組成物、および半導体デバイスの製造における使用方法:複数の母線
TWI725035B (zh) 導電性膠、太陽能電池及太陽能電池的製造方法
TWI770032B (zh) 導電性膏及太陽電池
WO2017154612A1 (ja) 導電性ペースト及び太陽電池
JP2009194121A (ja) 結晶系シリコン太陽電池電極形成用導電性ペースト
JP6137852B2 (ja) 太陽電池の電極形成用導電性ペースト
JP2010251645A (ja) 太陽電池及びその電極形成用導電性ペースト
WO2023190282A1 (ja) 導電性ペースト、太陽電池及び太陽電池の製造方法
WO2024101223A1 (ja) 導電性ペースト、太陽電池及び太陽電池の製造方法
WO2024100947A1 (ja) 太陽電池
JP6200128B2 (ja) 太陽電池の電極形成用導電性ペースト
TW202437277A (zh) 導電性膏、太陽能電池及太陽能電池的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024512427

Country of ref document: JP

Kind code of ref document: A