WO2015010524A1 - 锂离子电池负极活性材料的制备方法 - Google Patents

锂离子电池负极活性材料的制备方法 Download PDF

Info

Publication number
WO2015010524A1
WO2015010524A1 PCT/CN2014/081526 CN2014081526W WO2015010524A1 WO 2015010524 A1 WO2015010524 A1 WO 2015010524A1 CN 2014081526 W CN2014081526 W CN 2014081526W WO 2015010524 A1 WO2015010524 A1 WO 2015010524A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
coupling agent
silane coupling
silicon particles
lithium ion
Prior art date
Application number
PCT/CN2014/081526
Other languages
English (en)
French (fr)
Inventor
崔清伟
李建军
何向明
曹江
王莉
戴仲葭
Original Assignee
江苏华东锂电技术研究院有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华东锂电技术研究院有限公司, 清华大学 filed Critical 江苏华东锂电技术研究院有限公司
Priority to US14/907,295 priority Critical patent/US9825288B2/en
Publication of WO2015010524A1 publication Critical patent/WO2015010524A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a preparation method of a lithium ion anode active material, in particular to a silicon carbon composite material as a preparation method of a lithium ion battery anode active material.
  • the commercial anode material is mainly graphite, which has a low theoretical specific capacity (372 mAh ⁇ g -1 ) and poor high-rate charge-discharge performance. It is impossible to fully meet the needs of lithium-ion battery development. High-energy power lithium The development of ion batteries urgently requires the search for high-capacity, long-life, safe and reliable new high-capacity anodes to replace graphite-based carbon anodes.
  • the silicon anode material has a high theoretical specific capacity and a low deintercalation lithium potential, and is a promising high-capacity anode material.
  • the reversible insertion amount of lithium in silicon can reach 4000 mAh/g.
  • the silicon material is accompanied by a large volume change in the process of deintercalating lithium (volume expansion is more than 300%), resulting in rapid capacity decay, poor cycle performance, low conductivity and low first coulomb efficiency, which restricts its use in lithium ion batteries. The actual application.
  • nano-sized silicon particles are used to reduce the volume change of the silicon negative electrode material in the process of deintercalating lithium, so as to improve the structural stability and cycle performance of the silicon negative electrode material, but the silicon nanoparticles are very easy to agglomerate between them. Unable to take advantage of nanoparticles.
  • the surface of the silicon material is coated with carbon to improve the electrical conductivity of the silicon negative electrode material.
  • the usual coating method has a weak bonding force between silicon and carbon.
  • silicon nanoparticles are easily agglomerated, and many silicon particles are still in direct contact after coating, resulting in coating generally uneven, thereby causing electricity of the silicon anode material. Chemical properties cannot be effectively improved.
  • a method for preparing a negative electrode active material for a lithium ion battery comprising the steps of: providing silicon particles and a silane coupling agent having a hydrolyzable functional group and an organic functional group; mixing the silicon particles in water and silane coupling Forming a first mixed liquid, the hydrolyzable functional group of the silane coupling agent is hydrolyzed and chemically grafted to the surface of the silicon particles; and a polymer monomer or oligomer is added to the first mixed liquid to form a second a mixed solution in which a polymer layer is coated on the surface of the silicon particles by in-situ polymerization to form a silicon polymer composite material, and the polymer monomer or oligomer is polymerized at the same time
  • the organic functional group of the silane coupling agent is reacted to chemically graft the formed polymer layer to the surface of the silicon particle; and the silicon polymer composite is heat-treated to carbonize the polymer layer to form a carbon layer coating
  • the present invention utilizes a silane coupling agent to bond inorganic silicon particles and an organic polymer together by chemical bonding, and then carbonizes the polymer to form a core-shell structured silicon-carbon composite material.
  • the silicon-carbon composite formed by carbonization after the polymer is bonded to the silicon particles by chemical bonding the carbon layer is uniformly and continuously coated on the surface of the silicon particles.
  • the conductivity of the silicon particles is improved, and on the other hand, the structural stability of the silicon particles is improved. Due to the uniform coating of the carbon layer, the silicon particles are in contact with each other through carbon, thereby avoiding adhesion between the silicon particles. .
  • the use of the silicon-carbon composite material as a lithium ion anode active material improves the cycle stability of the lithium ion battery.
  • FIG. 1 is a flow chart of a method for preparing a negative active material for a lithium ion battery according to an embodiment of the present invention.
  • FIG. 2 is a scanning electron micrograph of a raw material nano silicon powder for preparing a negative electrode active material of a lithium ion battery according to an embodiment of the present invention.
  • FIG. 3 is a scanning electron micrograph of a silicon-carbon composite material prepared in accordance with an embodiment of the present invention.
  • FIG. 4 is an XRD pattern of a silicon-carbon composite material prepared in accordance with an embodiment of the present invention.
  • Fig. 5 is a thermogravimetric analysis diagram for determining the carbon content of a silicon-carbon composite material according to an embodiment of the present invention.
  • FIG. 6 is a comparison diagram of charge and discharge curves of silicon carbon composite materials prepared according to an embodiment of the present invention at different cycle times.
  • Fig. 7 is a graph showing the cycle performance test of the silicon-carbon composite material prepared in the embodiment of the present invention.
  • Fig. 8 is a comparison chart of charge and discharge curves of the silicon carbon composite material prepared in Comparative Example 1 of the present invention at different cycle times.
  • an embodiment of the present invention provides a method for preparing a negative active material for a lithium ion battery, comprising the following steps:
  • S1 providing silicon particles and a silane coupling agent, the silane coupling agent having a hydrolyzable functional group and an organic functional group;
  • the shape of the silicon particles is not limited and may be powder, wire, rod or tube.
  • the particle size of the silicon particles may be on the order of micrometers or nanometers.
  • the silicon particles have a particle size ranging from 1 nm to 500 nm.
  • the silicon particles are in the form of powder and have a particle diameter of 100 nm.
  • the silane coupling agent can be used as a bridge for a polymer of silicon particles and an organic material to which an inorganic material is bonded.
  • the silane coupling agent has the hydrolyzable functional group and an organic functional group for connecting the silicon particles and the polymer, respectively.
  • the hydrolyzable functional group may undergo a hydrolysis reaction in water while being reactive with the surface of the silicon particles.
  • the hydrolyzable functional group includes at least one of an alkoxy group, an amino group, a thiol group, an aminooxy group, a carboxyl group, an alkenyloxy group, and a hydroxyl group.
  • the alkoxy group includes a methoxy group (-OCH 3 ) or an ethoxy group (-OCH 2 CH 3 ).
  • the aminooxy group may include -ON(CH 3 ) 2 .
  • the carboxyl group may include -OCOCH 3 .
  • the hydrolyzable functional group is an alkoxy group, an alkenyloxy group, a hydroxyl group, a diimide residue, a substituted or unsubstituted acetamide residue, a urea residue, a carbamate residue, and an aminosulfonate.
  • acid ester residues One of a variety of acid ester residues.
  • the organic functional group may be reacted with the polymer monomer, and may include an unsubstituted hydrocarbon group such as an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, and an aralkyl group, or a part or all of hydrogen atoms in the aforementioned hydrocarbon group.
  • Substituted group The groups usable for substitution include a halogen atom, a cyano group, an alkylene oxide, a polyoxyalkylene, a (meth)acrylic group, a (meth)acryloyloxy group, an acryloyl group, a methacryloyl group, an amide group, and a urea group.
  • Base and epoxy group is an unsubstituted hydrocarbon group such as an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, and an aralkyl group, or a part or all of hydrogen atom
  • the organic functional group has a carbon-carbon double bond.
  • the organic functional group may be ⁇ -glycidyloxypropyl, ⁇ -(3,4-epoxycyclohexyl)ethyl, ⁇ -aminopropyl, ⁇ -cyanopropyl, ⁇ -acryloyl.
  • the kind of the silane coupling agent is not limited as long as the silicon particles can be bonded to the polymer by a chemical bond.
  • the silane coupling agent having the above hydrolyzable functional group and the organic functional group may be selected from the group consisting of vinyltriethoxysilane, methyltrimethoxysilane, tetraethoxysilane, vinyltrimethoxysilane, and methylvinyldimethylene.
  • step S2 since the silane coupling agent has a hydrolyzable functional group, when the silane coupling agent and the silicon particles are placed in water, the hydrolyzable functional group of the silane coupling agent is hydrolyzed while The silicon particles are reacted to chemically graft the hydrolyzate of the silane coupling agent to the surface of the silicon particles.
  • the step S2 can process the silicon particles in the following manner:
  • the silicon particles may be uniformly dispersed in the water to form the dispersion.
  • the uniform dispersion facilitates uniform reaction of the surface of the silicon particles with the silane coupling agent.
  • the manner of dispersion may be by stirring or ultrasonic vibration.
  • an organic solvent may be further added to form the dispersion.
  • the organic solvent may be miscible with the silane coupling agent.
  • the silane coupling agent and the silicon particles in the first mixed liquid formed in the subsequent manner can be uniformly mixed and reacted.
  • the silicon particles are first dispersed in a certain amount of an organic solvent, and then water and a certain amount of an organic solvent are added to uniformly disperse the silicon particles.
  • the organic solvent may be one or more of ethanol, methanol, diethyl ether, isopropanol, and toluene.
  • the organic solvent is ethanol, and the water is deionized water.
  • the volume ratio of the water to the organic solvent may be from 1:2 to 1:10. Within this range, the silane coupling agent and the silicon particles can be well combined. If it is outside this range, the silane coupling agent tends to undergo polycondensation by itself without reacting with a hydroxyl group on the silicon surface.
  • the silicon particles may be further etched to increase the surface roughness of the silicon particles before step S22. Increasing the surface roughness of the silicon particles allows the silane coupling agent to better adhere and react to bond to the surface of the silicon particles.
  • an acid such as hydrofluoric acid is added to the dispersion to etch the silicon particles, and the etched silicon particles are further ultrasonically dispersed.
  • the volume-to-mass ratio between the amount of the hydrofluoric acid added and the mass of the silicon particles is from 0.9 ml/g to 2 ml/g.
  • the silane coupling agent may be directly added to the dispersion to form the first mixed liquid, or the silane coupling agent may be first dispersed in the organic solvent, and then added.
  • the first mixed liquid is formed into the dispersion.
  • the silane coupling agent may be added dropwise to the dispersion or added to the dispersion at a small flow rate to uniformly react the silane coupling agent with the surface of the silicon particles.
  • the silane coupling agent may be added at a rate of from 0.2 ml/min to 1 ml/min.
  • the silane coupling agent is added at a rate of from 0.3 ml/min to 0.5 ml/min.
  • the silane coupling agent is added dropwise to the dispersion, and further ultrasonically stirred to uniformly mix the silane coupling agent with the silicon particles to form the first mixed liquid.
  • the hydrolyzable functional group of the silane coupling agent hydrolyzes to form a hydroxyl group (SiOH) attached to the silicon atom, and the silicon particles are easy to have due to high surface energy.
  • the surface of the silicon reacts with water to form a hydroxyl group, and the hydroxyl group formed by the hydrolysis of the silane coupling agent is condensed with the hydroxyl group on the surface of the silicon particle, so that the hydrolyzed product of the silicon particle and the silane coupling agent passes through the Si.
  • the -O-Si bond is bonded to chemically graft the hydrolyzate of the silane coupling agent to the surface of the silicon particle.
  • the pH of the first mixed liquid may be further adjusted to maintain the first mixed liquid in an acidic environment, thereby controlling the rate of hydrolysis of the silane coupling agent and the acidic environment may be
  • the silane coupling agent which effectively inhibits hydrolysis spontaneously undergoes a condensation reaction without being graft-grafted with the surface of the silicon particles. This further facilitates the subsequent in-situ polymerization.
  • the pH ranges from 3 to 4.
  • the first mixture can be maintained in an acidic environment by adding an acid to the first mixture.
  • the acid may be one or more of nitric acid, hydrochloric acid, and acetic acid.
  • the mass percentage of the silane coupling agent in the first mixed liquid is from 0.5% by weight to 2% by weight.
  • the mass ratio of the silane coupling agent to the silicon particles is from 0.1 to 0.3.
  • the silicon particles and the silane coupling agent may be mixed as follows. Specifically, the silane coupling agent is first added to water to form a hydrolysis solution of the silane coupling agent; and then the silicon particles are added to the hydrolysis solution to react.
  • Forming the first mixed liquid in the manner of the steps S21-S22 can better chemically graft the hydrolysis product of the silane coupling agent to the surface of the silicon particle, and can better weaken the silane coupling The condensation reaction of the coupling itself.
  • the manner in which the polymer layer is coated in situ on the surface of the silicon particles after the silane coupling agent treatment may be in the form of a monomer polymerization or a method in which an oligomer polymerizes to form a high polymer.
  • the silane coupling agent-treated silicon particles may be added to a solution or oligomer solution of the polymer monomer to add an initiator reaction, thereby coating the polymer layer on the surface of the silicon particles.
  • the polymer monomer reacts with the organic functional group while in-situ polymerization occurs, thereby grafting the polymer layer through a chemical bond and
  • the silicon polymer composite is formed by uniformly coating the surface of the silicon particles.
  • the bonding force between the silicon particles and the polymer layer can be enhanced by chemical bonding.
  • the coating method may be: adding the polymer monomer in the first mixed liquid formed in the step S22 and uniformly mixing the initiator to form the second mixed liquid, the polymer monomer In-situ polymerization occurs on the surface of the silicon particles under the action of an initiator while reacting with the organic functional groups of the silane coupling agent to form a polymer layer chemically grafted to the surface of the silicon particles.
  • the organic functional group has a carbon-carbon double bond, so that the carbon-carbon double bond is easy to open during the in-situ polymerization reaction, and the free radical monomer is free to act through the initiator at the open double bond position.
  • the volume-to-mass ratio of the polymer monomer to the silicon particles may range from 3 ml/g to 10 ml/g.
  • the mass to volume ratio of the initiator to the polymer monomer may range from 0.01 g/ml to 0.03 g/ml.
  • the polymer monomer may be one or more of acrylonitrile, acrylic acid, and phenolic resin.
  • the initiator may be selected depending on the kind of the polymer monomer, and may be potassium persulfate, azobisisobutyronitrile, dibenzoyl peroxide or ammonium persulfate.
  • the in-situ polymerization reaction can be carried out at a constant heating temperature.
  • the heating temperature is set depending on the kind of the polymer.
  • the in-situ polymerization reaction described in the examples of the present invention is carried out under heating in a constant temperature oil bath.
  • the in situ polymerization is carried out in an oxygen-free environment.
  • the in situ polymerization described in the examples of the present invention is carried out in an inert atmosphere.
  • the silicon polymer composite is a core-shell structure, the silicon particles are cores, and the polymer layers are shells.
  • the polymer layer is uniformly continuous and joined to the silicon particles by chemical bonds. The dispersibility of the silicon particles can be further improved by coating the polymer layer.
  • the above step S3 may further comprise the step of separating and purifying the silicon polymer composite.
  • the silicon polymer composite may be separated from the solvent by filtration, centrifugation or distillation, and then further dried.
  • the heat treatment carbonization process may be carried out in two steps, first heating the silicon polymer composite at 100 ° C to 300 ° C, and then heat treating the silicon polymer at 600 ° C to 900 ° C.
  • the composite material carbonizes the polymer layer.
  • the carbon layer can be uniformly and continuously coated on the surface of the silicon particles to form the silicon carbon composite material.
  • the carbonization process can be carried out under an inert atmosphere.
  • the silicon carbon composite material is a core-shell structure.
  • the silicon particles are cores, and the carbon layer is uniformly and continuously coated on the surface of the silicon particles.
  • the coating of the carbon layer enhances the conductivity of the silicon particles on the one hand and the structural stability of the silicon particles on the other hand.
  • the carbon layer can also prevent oxidation and agglomeration of the silicon particles at high temperatures.
  • the obtained silicon carbon composite material has a particle diameter of 300 nm to 1 ⁇ m.
  • the carbon layer may have a thickness of 10 nm to 30 nm.
  • the carbon layer accounts for 10% by weight to 30% by weight of the silicon particles.
  • 1.2 g of the nano silicon powder was dispersed in 100 ml of ethanol solution, and then the silicon powder was etched by adding 1.5 ml of hydrofluoric acid for 2 hours. Then, 50 ml of deionized water and 50 ml of ethanol were further added to the ethanol powder-dispersed ethanol solution, and ultrasonication was carried out for 3 hours in an ultrasonic magnetic crusher to form the dispersion. To the dispersion, 1 ml of a vinyltriethoxysilane coupling agent was added dropwise and ultrasonic stirring was continued to form a first mixed solution.
  • the first mixture was then poured into a three-necked flask, and 1 ml of nitric acid was added to the first mixture to maintain the first mixture in an acidic environment.
  • nitric acid was added to the first mixed liquid to maintain the first mixture in an acidic environment.
  • 5 ml of acrylonitrile monomer and 0.05 g of benzoyl peroxide as an initiator were added to form a second mixed liquid.
  • the second mixture is heated in a constant temperature oil bath at 80 ° C to cause free radical in-situ polymerization of the acrylonitrile monomer.
  • a polyacrylonitrile layer is formed on the surface of the dispersed silicon powder to form silicon. Polyacrylonitrile composite. Nitrogen protection was applied throughout the reaction.
  • the solvent ethanol was removed by a rotary distillation method, and the silicon polyacrylonitrile composite material was dried at 80 ° C for 2 hours, and then ground, and the mass of the silicon polyacrylonitrile composite material obtained after drying was 3.46 g.
  • the dried silicon polyacrylonitrile composite material was first incubated at 250 ° C for 2 hours under nitrogen atmosphere protection, and then further heated to 750 ° C for 6 hours to carbonize the polyacrylonitrile layer to form an amorphous carbon.
  • the layer was uniformly coated on the surface of the silicon powder to obtain a silicon-carbon composite material, and the obtained silicon-carbon composite material had a mass of 1.41 g.
  • the obtained silicon carbon composite material is black.
  • the nano-silica powder particles as raw materials are sticky and the group is relatively serious.
  • the particles of the silicon-carbon composite material obtained by the method of the embodiment of the present invention have no adhesion and the particle size becomes large.
  • the XRD results show that the crystalline silicon and the amorphous phase are obtained in the silicon-carbon composite material, and the amorphous phase is an amorphous phase of graphite (25.323). It is indicated that the composition of the silicon carbon composite is silicon and carbon.
  • the carbon layer content of the nano silicon powder is 24 wt% as determined by the method of thermogravimetric analysis.
  • the charge and discharge voltage is 0.005 volts to 2 volts.
  • the lithium ion battery was subjected to constant current charge and discharge, and the current was 26 mA/g.
  • the lithium ion battery has an initial discharge capacity of 1100 mAh/g and a second discharge capacity of 700 mAh/g. Please refer to FIG. 7 together. It can be seen from the figure that the discharge capacity attenuation from the 2nd to the 20th is small, and the Coulomb efficiency can be maintained above 90%, indicating that the silicon-carbon composite material has a comparatively positive electrode active material. Good cycle stability. In addition, by further testing, the Coulomb efficiency was over 90% in the next 40 cycles, and the capacity retention rate in 30 times was 74.1%.
  • Comparative Example 1 a polymer layer was formed on the surface of the silicon particles by directly mixing the silicon particles with the polymer polyacrylonitrile by ball milling, and then further carbonized to form a silicon carbon composite material.
  • the content ratio of the silicon particles to the polymer and other experimental conditions were the same as those of the above examples.
  • the electrochemical performance test of the silicon-carbon composite material obtained in Comparative Example 1 was carried out. Please refer to FIG. 8. As can be seen from FIG. 8, the lithium-ion half-cell battery fabricated using the silicon-carbon composite material has the first capacity relative to the present. The first embodiment of the invention has a lower capacity. Moreover, after a number of cycles, the battery capacity decays quickly.
  • Comparative Example 2 The in-situ polymerization of the polymer monomer was carried out by directly mixing the silicon particles with the polymer monomer acrylonitrile and adding an initiator. Other experimental conditions were the same as in the examples. The experimental results show that the formed polymer and the silicon particles are severely layered. The polymer is more difficult to coat on the surface of the silicon particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)

Abstract

一种锂离子电池负极活性材料的制备方法,包括以下步骤:提供硅颗粒以及硅烷偶联剂,所述硅烷偶联剂具有可水解官能团以及有机官能团;在水中混合所述硅颗粒以及硅烷偶联剂形成一第一混合液,所述硅烷偶联剂的可水解官能团水解并化学接枝到所述硅颗粒表面;在该第一混合液中加入聚合物单体或低聚物形成一第二混合液,利用原位聚合的方法在所述硅颗粒表面包覆一聚合物层,从而形成一硅聚合物复合材料,所述聚合物单体或低聚物在发生聚合反应的同时,与所述硅烷偶联剂的有机官能团反应,从而使生成的聚合物层化学接枝到所述硅颗粒表面;以及热处理所述硅聚合物复合材料,使所述聚合物层碳化形成一碳层包覆在所述硅颗粒表面,从而形成一硅碳复合材料。

Description

锂离子电池负极活性材料的制备方法 技术领域
本发明涉及一种锂离子负极活性材料的制备方法,尤其涉及一种硅碳复合材料作为锂离子电池负极活性材料的制备方法。
背景技术
目前商业化的负极材料主要是石墨,其具有理论比容量较低(372 mAh·g-1),高倍率充放电性能差等缺点已不可能完全满足锂离子电池发展的需求,高能动力型锂离子电池的发展迫切需要寻求高容量、长寿命、安全可靠的新型高容量负极来替代石墨类碳负极。
硅负极材料有较高的理论比容量,低的脱嵌锂电位,是一种非常有发展前景的高容量负极材料。锂在硅中的可逆插入量可达4000mAh/g。但是硅材料在脱嵌锂过程中伴有较大的体积变化(体积膨胀大于300%),导致容量迅速衰减,循环性能差;电导率低和首次库仑效率低等缺点制约了它在锂离子电池中的实际应用。
现有技术中采用纳米尺寸的硅粒子来减小硅负极材料在脱嵌锂过程中的体积变化,以提高硅负极材料的结构稳定性和循环性能,但是硅纳米粒子之间非常容易团聚,从而无法发挥纳米粒子的优点。此外,现有技术中采用在硅材料表面涂覆碳的方式来提高硅负极材料电导率。但通常的涂覆方式硅与碳之间的结合力较弱,此外,硅纳米颗粒容易团聚,涂覆后仍有很多硅颗粒直接接触,导致涂覆通常不均匀,从而造成硅负极材料的电化学性能无法有效地提高。
发明内容
有鉴于此,确有必要提供一种可以改善硅负极材料循环性能的负极活性材料的制备方法。
一种锂离子电池负极活性材料的制备方法,包括以下步骤:提供硅颗粒以及硅烷偶联剂,所述硅烷偶联剂具有可水解官能团以及有机官能团;在水中混合所述硅颗粒以及硅烷偶联剂形成一第一混合液,所述硅烷偶联剂的可水解官能团水解并化学接枝到所述硅颗粒表面;在该第一混合液中加入聚合物单体或低聚物形成一第二混合液,利用原位聚合的方法在所述硅颗粒表面包覆一聚合物层,从而形成一硅聚合物复合材料,所述聚合物单体或低聚物在发生聚合反应的同时,与所述硅烷偶联剂的有机官能团反应,从而使生成的聚合物层化学接枝到所述硅颗粒表面;以及热处理所述硅聚合物复合材料,使所述聚合物层碳化形成一碳层包覆在所述硅颗粒表面,从而形成一硅碳复合材料。
相对于现有技术,本发明利用硅烷偶联剂将无机的硅颗粒与有机的聚合物通过化学键连接在一起,然后将聚合物碳化后形成核壳结构的硅碳复合材料。由于聚合物与硅颗粒之间通过化学键连接,从而碳化后形成的硅碳复合材料中,碳层均匀连续且紧密地包覆在硅颗粒表面。从而一方面提高了硅颗粒的导电性,另一方面提高了硅颗粒的结构稳定性,由于碳层的均匀包覆,硅颗粒之间通过碳来相互接触,避免了硅颗粒之间的黏连。利用该硅碳复合材料作为锂离子负极活性材料,提高了锂离子电池的循环稳定性。
附图说明
图1是本发明实施例的锂离子电池负极活性材料制备方法流程图。
图2是本发明实施例的制备锂离子电池负极活性材料的原料纳米硅粉的扫描电镜照片。
图3是本发明实施例制备的硅碳复合材料的扫描电镜照片。
图4是本发明实施例制备的硅碳复合材料的XRD图谱。
图5是本发明实施例对硅碳复合材料碳含量测定的热重分析图。
图6是本发明实施例制备的硅碳复合材料的不同循环次数下的充放电曲线对比图。
图7是本发明实施例制备的硅碳复合材料的循环性能测试曲线。
图8为本发明对比例1制备的硅碳复合材料的不同循环次数下的充放电曲线对比图。
具体实施方式
以下将结合附图详细说明本发明实施例锂离子电池负极活性材料的制备方法。
请参阅图1,本发明实施例提供一种锂离子电池负极活性材料的制备方法,包括以下步骤:
S1,提供硅颗粒以及硅烷偶联剂,所述硅烷偶联剂具有可水解官能团以及有机官能团;
S2,在水中混合所述硅颗粒以及硅烷偶联剂形成一第一混合液,所述硅烷偶联剂的可水解官能团水解并化学接枝到所述硅颗粒表面;
S3,在该第一混合液中加入聚合物单体或低聚物形成一第二混合液,利用原位聚合的方法在所述硅颗粒表面包覆一聚合物层,从而形成一硅聚合物复合材料,所述聚合物单体或低聚物在发生聚合反应的同时,与所述硅烷偶联剂的有机官能团反应,从而使生成的聚合物层化学接枝到所述硅颗粒表面;以及
S4,热处理所述硅聚合物复合材料,使所述聚合物层碳化形成一碳层包覆在所述硅颗粒表面,从而形成一硅碳复合材料。
在上述步骤S1中,所述硅颗粒的形状不限,可以是粉末状、线状、棒状或管状。所述硅颗粒的粒径可以为微米级或纳米级。优选地,所述硅颗粒的粒径范围为1纳米至500纳米。本发明实施例中所述硅颗粒为粉末状,粒径为100纳米。
所述硅烷偶联剂可用于作为连接无机材料的硅颗粒和有机材料的聚合物的桥梁。所述硅烷偶联剂具有所述可水解官能团和有机官能团,分别用来连接所述硅颗粒和聚合物。所述可水解官能团在水中可以发生水解反应,同时可以与所述硅颗粒表面反应。所述可水解官能团包括烷氧基、氨基、肟基、氨氧基、羧基、链烯氧基以及羟基中的至少一种。所述烷氧基包括甲氧基(-OCH3)或乙氧基(-OCH2CH3)。所述氨基包括-NH2、-NH-、-N=以及-N(CH3)2。所述肟基可为-ON=C(CH3)CH2CH3。所述氨氧基可包括-ON(CH3)2。所述羧基可包括-OCOCH3。优选地,所述可水解官能团为烷氧基、链烯氧基、羟基、二酰亚胺残基、取代或未取代的乙酰胺残基、脲残基、氨基甲酸酯残基以及氨基磺酸酯残基中的一种多种。
所述有机官能团可与所述聚合物单体反应,可包括未被取代的烃基如烷基、环烷基、链烯基、芳基和芳烷基,或前述烃基中的部分或全部氢原子被取代的基团。所述可用于取代的基团包括卤素原子、氰基、氧化烯、聚氧化烯、(甲基)丙烯酸基、(甲基)丙烯酰氧基、丙烯酰基、甲基丙烯酰基、酰胺基、脲基以及环氧基。优选地,所述有机官能团具有碳碳双键。优选地,所述有机官能团可为γ-缩水甘油基氧丙基、β-(3,4-环氧环己基)乙基、γ-氨丙基、γ-氰基丙基、γ-丙烯酰氧基丙基、γ-甲基丙烯酰氧基丙基以及γ-脲基丙基中的一种或多种。
所述硅烷偶联剂的种类不限,只要能通过化学键将所述硅颗粒与聚合物连接即可。具有上述可水解官能团以及有机官能团的硅烷偶联剂可选择为乙烯基三乙氧基硅烷、甲基三甲氧基硅烷、四乙氧基硅烷、乙烯基三甲氧基硅烷、甲基乙烯基二甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)、甲基丙烯酰氧基丙基甲基二甲氧基硅烷(KH571)、γ-氨基丙基三乙氧基硅烷、γ-巯基丙基三甲氧基硅烷、γ-氰基丙基三甲氧基硅烷、γ-缩水甘油基氧丙基三甲氧基硅烷、β-(3,4-环氧环己基)乙基三甲氧基硅烷以及γ-脲基丙基三甲氧基硅烷中的一种或多种。
在上述步骤S2中,由于所述硅烷偶联剂具有可水解官能团,因此,当将所述硅烷偶联剂以及硅颗粒置入水中时,所述硅烷偶联剂的可水解官能团水解,同时与所述硅颗粒反应,从而将所述硅烷偶联剂的水解产物化学接枝到所述硅颗粒表面。
所述步骤S2可采用如下方式来处理所述硅颗粒:
S21,将所述硅颗粒加入到水中形成一分散液;以及
S22,将所述硅烷偶联剂加入到所述分散液中反应形成所述第一混合液。
在上述步骤S21中,可将所述硅颗粒加入所述水中均匀分散形成所述分散液。均匀分散利于所述硅颗粒表面与所述硅烷偶联剂均匀发生反应。所述分散的方式可以是搅拌或超声振荡等方式。
上述步骤S21中可进一步加入有机溶剂形成所述分散液。所述有机溶剂可与所述硅烷偶联剂互溶。以使后续形成的第一混合液中所述硅烷偶联剂与硅颗粒能均匀混合以及反应。本发明实施例中,首先将所述硅颗粒加入到一定量的有机溶剂中分散,然后再加入水和一定量的有机溶剂使所述硅颗粒均匀分散。所述有机溶剂可为乙醇、甲醇、乙醚、异丙醇以及甲苯中的一种或多种。本发明实施例中所述有机溶剂为乙醇,水选取去离子水。所述水和所述有机溶剂的体积比可以为1:2至1:10。在该范围内,所述硅烷偶联剂与所述硅颗粒可以较好地结合。如果超出该范围,硅烷偶联剂倾向于自身发生缩聚而不会和硅表面的羟基基团反应。
此外,在步骤S22前,可进一步刻蚀所述硅颗粒以增大所述硅颗粒的表面粗糙度。增大所述硅颗粒的表面粗糙度可使所述硅烷偶联剂更好地附着并发生反应结合到所述硅颗粒表面。本发明实施例中在所述分散液中加入酸,如氢氟酸,来刻蚀所述硅颗粒,并进一步超声分散该刻蚀后的硅颗粒。所述氢氟酸的加入量与该硅颗粒质量之间的体积质量比为0.9ml/g至2ml/g。
在上述步骤S22中,所述硅烷偶联剂可直接加入到所述分散液中形成所述第一混合液,也可以将所述硅烷偶联剂首先分散于所述有机溶剂中,然后再加入到所述分散液中形成所述第一混合液。
所述硅烷偶联剂可以滴加到所述分散液中,或以一个较小的流速加入到所述分散液中,使所述硅烷偶联剂与所述硅颗粒表面均匀反应。所述硅烷偶联剂加入的速率可为0.2毫升/分钟至1毫升/分钟。优选地,所述硅烷偶联剂加入的速率为0.3毫升/分钟至0.5毫升/分钟。本发明实施例中将所述硅烷偶联剂逐滴滴加到所述分散液中,并进一步超声搅拌使所述硅烷偶联剂与所述硅颗粒均匀混合形成所述第一混合液。由于所述第一混合液中有水的存在,所述硅烷偶联剂的可水解官能团水解,形成与硅原子相连的羟基基团(SiOH),而硅颗粒由于具有较高的表面能,容易在硅的表面与水反应生成羟基基团,该硅烷偶联剂水解后形成的羟基基团与硅颗粒表面的氢氧基团发生缩合反应,使硅颗粒与硅烷偶联剂的水解产物通过Si-O-Si键相连,从而使硅烷偶联剂的水解产物化学接枝到所述硅颗粒表面。
在上述步骤S22中,可进一步调节所述第一混合液的pH值,使所述第一混合液保持在一酸性环境下,从而可控制所述硅烷偶联剂水解的速率且该酸性环境可有效地抑制水解的硅烷偶联剂自身发生缩合反应而不与硅颗粒表面反应接枝。进而利于后续的原位聚合反应的进行。所述pH值的范围3至4。可通过在所述第一混合液中加入酸来保持所述第一混合液保持在酸性环境下。所述酸可以是硝酸、盐酸以及醋酸中的一种或几种。
所述硅烷偶联剂在所述第一混合液中的质量百分比为0.5wt%至2wt%。所述硅烷偶联剂与所述硅颗粒的质量比为0.1至0.3。
此外,在所述步骤S2中,也可以如下方式来混合所述硅颗粒与硅烷偶联剂。具体地,首先将所述硅烷偶联剂加入到水中形成所述硅烷偶联剂的水解溶液;然后再在该水解溶液加入所述硅颗粒反应。
采用所述步骤S21-S22的方式形成所述第一混合液可以更好地使所述硅烷偶联剂的水解产物化学接枝到所述硅颗粒表面,并且可以较好地减弱所述硅烷偶联剂自身的缩合反应。
在上述步骤S3中,在所述硅烷偶联剂处理后的硅颗粒表面原位包覆聚合物层的方式可以为单体聚合的方式或低聚物聚合形成高聚物的方式。具体地,可将所述硅烷偶联剂处理后的硅颗粒加入到聚合物单体的溶液或低聚物溶液中加入引发剂反应,从而在所述硅颗粒表面包覆所述聚合物层。由于所述硅颗粒表面经过所述硅烷偶联剂处理,因此,所述聚合物单体在发生原位聚合反应的同时,与所述有机官能团反应,从而使聚合物层通过化学键接枝到并且均匀地包覆在所述硅颗粒表面形成所述硅聚合物复合材料。通过化学键结合可增强所述硅颗粒与聚合物层之间的结合力。
本发明实施例中该包覆方式可为:在所述步骤S22形成的第一混合液中加入所述聚合物单体以及引发剂均匀混合形成所述第二混合液,所述聚合物单体在引发剂的作用下在所述硅颗粒表面发生原位聚合反应,同时与所述硅烷偶联剂的有机官能团反应从而形成一聚合物层化学接枝到所述硅颗粒表面。本发明实施例中所述有机官能团具有碳碳双键,从而在原位聚合反应的过程中,该碳碳双键易于打开,自由基单体在打开的双键位置通过引发剂的作用发生自由基原位聚合反应,这样通过化学键接枝的方法使得硅颗粒表面包覆一层聚合物。形成的聚合物层通过所述碳碳双键接枝到所述硅颗粒表面。所述聚合物单体与所述硅颗粒的体积质量比可为3ml/g至10ml/g。所述引发剂与所述聚合物单体的质量体积比可为0.01g/ml至0.03g/ml。
所述聚合物单体可为丙烯腈、丙烯酸以及酚醛树脂中的一种或几种。所述引发剂可根据所述聚合物单体的种类来选择,可以为过硫酸钾、偶氮二异丁腈、过氧化二苯甲酰或过硫酸铵。
在上述步骤S3中,所述原位聚合反应可以在一恒定加热温度下进行。所述加热温度根据聚合物的种类进行设定。本发明实施例中所述原位聚合反应在恒温油浴加热下进行。
进一步地,所述原位聚合反应在一无氧环境行进行。本发明实施例中所述原位聚合反应在一惰性气氛中进行。
所述硅聚合物复合材料为一核壳结构,所述硅颗粒为核,所述聚合物层为壳。该聚合物层均匀连续且通过化学键与所述硅颗粒连接。通过包覆所述聚合物层,可进一步改善所述硅颗粒的分散性。
上述步骤S3可进一步包括分离提纯所述硅聚合物复合材料的步骤。具体地,可采用过滤、离心或蒸馏的方式将所述硅聚合物复合材料从溶剂中分离,然后进一步干燥获得。
在上述步骤S4中,所述热处理碳化的过程可分两步进行,首先在100℃至300℃下加热所述硅聚合物复合材料,然后再在600℃至900℃下热处理所述硅聚合物复合材料使所述聚合物层碳化。通过上述两步法加热,可使碳层均匀连续且紧密地包覆在所述硅颗粒表面,形成所述硅碳复合材料。该碳化的过程可在一惰性气氛下进行。
所述硅碳复合材料为核壳结构。所述硅颗粒为核,所述碳层均匀且连续的包覆在所述硅颗粒的表面。通过碳层包覆一方面提高了硅颗粒的导电性,另一方面可以有效地保护该硅颗粒的结构稳定性。此外,该碳层还可以防止所述硅颗粒在高温下的氧化和团聚。
该获得的硅碳复合材料的粒径为300纳米至1微米。所述碳层的厚度可为10纳米至30纳米。所述碳层占该硅颗粒的质量百分比为10wt%至30wt%。
实施例
将1.2g的纳米硅粉分散在100ml乙醇溶液中,然后加入1.5ml的氢氟酸对所述硅粉进行蚀刻2小时。然后在该分散有硅粉的乙醇溶液中再加入50ml的去离子水和50ml的乙醇中,并在超声磁力破碎机中超声3小时形成所述分散液。在该分散液中逐滴加入1ml乙烯基三乙氧基硅烷偶联剂并继续超声搅拌形成第一混合液。然后将该第一混合液倒入一三口烧瓶中,并在该第一混合液中加入1ml硝酸使该第一混合液保持在酸性环境下。在该第一混合液中加入5ml丙烯腈单体,以及0.05g作为引发剂的过氧化苯甲酰形成第二混合液。将该第二混合液在80℃恒温油浴下加热,使所述丙烯腈单体发生自由基原位聚合反应,反应12小时候生成聚丙烯腈层包覆在分散的硅粉表面,从而形成硅聚丙烯腈复合材料。在该反应的整个过程中通入氮气保护。采用旋转蒸馏法除去溶剂乙醇,并将所述硅聚丙烯腈复合材料在80℃下干燥2小时,然后经过研磨,干燥后获得的硅聚丙烯腈复合材料的质量为3.46g。在氮气气氛保护下,将该干燥后的硅聚丙烯腈复合材料首先在250℃下保温2小时,然后进一步升温到750℃下保温6小时,将所述聚丙烯腈层碳化形成一无定形碳层均匀包覆在所述硅粉表面,从而获得硅碳复合材料,获得的硅碳复合材料的质量为1.41g。该获得硅碳复合材料呈黑色。
请参阅图2,从图中可以看出,作为原料的纳米硅粉颗粒之间发生黏粘,团较为严重。请进一步参阅图3,从图中可以看出,利用本发明实施例方法获得的硅碳复合材料的颗粒之间没有黏连,粒径变大。
请参阅图4,XRD结果显示,获得硅碳复合材料中具有明显的晶体硅和非晶相,通过对非晶相分析得出,所述非晶相为石墨的非晶相(25.323)。表明该硅碳复合材料的成分为硅和碳。
请参阅图5,本发明实施例进一步采用热重分析的方法测得所述碳层含量占该纳米硅粉的质量百分比为24wt%。
本发明实施例进一步采用该硅碳复合材料作为负极活性材料制成锂离子半电池,锂片作为对电极,其中,活性物质:乙炔黑:粘结剂=7:2:1,并进行电化学性能测试。其中,充放电电压为0.005伏至2伏。对该锂离子电池进行恒流充放电,电流为26mA/g。
请参阅图6,从图中可以看出,该锂离子电池的首次放电容量可达1100mAh/g,第2次放电容量700多mAh/g。请一并参阅图7,从图中可以看出,从第2次到第20次的放电容量衰减较小,库仑效率可保持在90%以上,表明该硅碳复合材料作为负极活性材料具有较好的循环稳定性。此外,通过进一步测试,在接下来的40次循环内库仑效率在90%以上,30次的容量保持率为74.1%。
对比例1
在对比例1中,将硅颗粒与聚合物聚丙烯腈通过直接混合球磨的方式,在硅颗粒表面形成聚合物层,然后进一步碳化形成硅碳复合材料。在该对比例中,所述硅颗粒与聚合物的含量比例以及其他实验条件与所述实施例相同。
进一步对对比例1获得的硅碳复合材料进行电化学性能测试,请参阅图8,从图8中可以看出,采用该硅碳复合材料的制成的锂离子半电池电池首次容量相对于本发明实施例首次容量较低。而且循环多次以后,电池容量衰减很快。
对比例2
对比例2与将硅颗粒与聚合物单体丙烯腈直接混合,并加入引发剂使所述聚合物单体原位聚合。其他实验条件与所述实施例相同。实验结果发现,形成的聚合物与硅颗粒分层严重。聚合物较难包覆在所述硅颗粒表面。
另外,本领域技术人员还可在本发明精神内作其它变化,当然这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。

Claims (10)

  1. 一种锂离子电池负极活性材料的制备方法,包括以下步骤:
    提供硅颗粒以及硅烷偶联剂,所述硅烷偶联剂具有可水解官能团以及有机官能团;
    在水中混合所述硅颗粒以及硅烷偶联剂形成一第一混合液,所述硅烷偶联剂的可水解官能团水解并化学接枝到所述硅颗粒表面;
    在该第一混合液中加入聚合物单体或低聚物形成一第二混合液,利用原位聚合的方法在所述硅颗粒表面包覆一聚合物层,从而形成一硅聚合物复合材料,所述聚合物单体或低聚物在发生聚合反应的同时,与所述硅烷偶联剂的有机官能团反应,从而使生成的聚合物层化学接枝到所述硅颗粒表面;以及
    热处理所述硅聚合物复合材料,使所述聚合物层碳化形成一碳层包覆在所述硅颗粒表面,从而形成一硅碳复合材料。
  2. 如权利要求1所述的锂离子电池负极活性材料的制备方法,其特征在于,所述在水中混合所述硅烷偶联剂以及硅颗粒的过程具体包括以下步骤:
    将所述硅颗粒加入到水中分散形成一分散液;以及
    将所述硅烷偶联剂加入到该分散液中反应形成所述第一混合液。
  3. 如权利要求2所述的锂离子电池负极活性材料的制备方法,其特征在于,进一步在所述分散液中加入有机溶剂形成所述分散液,所述有机溶剂与所述硅烷偶联剂互溶,所述有机溶剂与所述水的体积比为1:2至1:10。
  4. 如权利要求2所述的锂离子电池负极活性材料的制备方法,其特征在于,在将所述硅烷偶联剂加入到所述分散液之前,进一步采用氢氟酸刻蚀所述硅颗粒。
  5. 如权利要求2所述的锂离子电池负极活性材料的制备方法,其特征在于,所述硅烷偶联剂滴加到所述分散液中使所述硅烷偶联剂与所述硅颗粒均匀混合,所述硅烷偶联剂加入的速率为0.2毫升/分钟至1毫升/分钟。
  6. 如权利要求2所述的锂离子电池负极活性材料的制备方法,其特征在于,进一步加入酸来调节所述第一混合液的pH值使所述第一混合液保持在酸性环境下,该pH值的范围为3至4。
  7. 如权利要求1所述的锂离子电池负极活性材料的制备方法,其特征在于,所述硅烷偶联剂与所述硅颗粒的质量比为0.1-0.3。
  8. 如权利要求1所述的锂离子电池负极活性材料的制备方法,其特征在于,所述硅烷偶联剂包括乙烯基三乙氧基硅烷、甲基三甲氧基硅烷、四乙氧基硅烷、乙烯基三甲氧基硅烷、甲基乙烯基二甲氧基硅烷、γ-甲基丙烯酰氧基丙基三甲氧基硅烷、甲基丙烯酰氧基丙基甲基二甲氧基硅烷、γ-氨基丙基三乙氧基硅烷、γ-巯基丙基三甲氧基硅烷、γ-氰基丙基三甲氧基硅烷、γ-缩水甘油基氧丙基三甲氧基硅烷、β-(3,4-环氧环己基)乙基三甲氧基硅烷以及γ-脲基丙基三甲氧基硅烷中的一种或多种。
  9. 如权利要求1所述的锂离子电池负极活性材料的制备方法,其特征在于,所述聚合物单体的材料包括丙烯腈、酚醛树脂的单体以及丙烯酸中的一种或多种。
  10. 如权利要求1所述的锂离子电池负极活性材料的制备方法,其特征在于,所述碳层在所述硅颗粒表面均匀连续。
PCT/CN2014/081526 2013-07-23 2014-07-02 锂离子电池负极活性材料的制备方法 WO2015010524A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/907,295 US9825288B2 (en) 2013-07-23 2014-07-02 Method for making lithium ion battery anode active material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310310948.2 2013-07-23
CN201310310948.2A CN103474666B (zh) 2013-07-23 2013-07-23 锂离子电池负极活性材料的制备方法

Publications (1)

Publication Number Publication Date
WO2015010524A1 true WO2015010524A1 (zh) 2015-01-29

Family

ID=49799421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081526 WO2015010524A1 (zh) 2013-07-23 2014-07-02 锂离子电池负极活性材料的制备方法

Country Status (3)

Country Link
US (1) US9825288B2 (zh)
CN (1) CN103474666B (zh)
WO (1) WO2015010524A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017127922A1 (en) * 2016-01-25 2017-08-03 HYDRO-QUéBEC Core-shell electrode material particles and their use in electrochemical cells
CN113387343A (zh) * 2021-06-15 2021-09-14 中南大学 利用退役光伏组件制备锂离子电池硅碳负极的方法

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107507968A (zh) 2012-08-21 2017-12-22 克雷多斯公司 Iva族官能化粒子及其使用方法
CN103474666B (zh) * 2013-07-23 2016-03-02 江苏华东锂电技术研究院有限公司 锂离子电池负极活性材料的制备方法
DE102014201627A1 (de) * 2014-01-30 2015-08-13 Robert Bosch Gmbh Kondensiertes Silicium-Kohlenstoff-Komposit
CN103794769B (zh) * 2014-02-18 2016-05-04 江苏华东锂电技术研究院有限公司 锂离子电池负极材料的制备方法
CN106463707A (zh) * 2014-02-21 2017-02-22 克雷多斯公司 官能化iv a族颗粒框架的纳米硅材料制备
CN105098188B (zh) * 2014-04-28 2017-09-01 比亚迪股份有限公司 一种锂离子电池正极材料添加剂及其制备方法、含有该添加剂的正极材料和锂离子电池
CN103985876B (zh) * 2014-05-15 2017-02-22 中国科学院化学研究所 利用酚醛树脂对锂离子电池电极材料进行原位可控包覆的方法
CN105098163B (zh) * 2014-05-16 2017-09-29 微宏动力系统(湖州)有限公司 一种包覆型电极材料的制备方法
CN103996834B (zh) * 2014-06-14 2016-08-24 哈尔滨工业大学 一种具有硅烷偶联剂和导电聚合物双层包覆结构的硅基负极材料及其制备方法与应用
CN104934606B (zh) * 2015-05-18 2018-05-22 宁德新能源科技有限公司 一种硅基复合材料、其制备方法及应用
CN105206818B (zh) * 2015-10-22 2017-12-01 中国科学院宁波材料技术与工程研究所 一种硅/金属纳米复合材料的制备方法及其应用
GB2544495B (en) 2015-11-17 2018-12-05 Nexeon Ltd Surface modified electrochemically active material
CN108432004B (zh) * 2015-12-23 2021-08-03 罗伯特·博世有限公司 负极组合物、制备负极的方法及锂离子电池
JP6762319B2 (ja) * 2015-12-25 2020-09-30 富士フイルム株式会社 全固体二次電池、全固体二次電池用粒子、全固体二次電池用固体電解質組成物および全固体二次電池用電極シートならびにこれらの製造方法
CN105609732A (zh) * 2016-01-11 2016-05-25 华南师范大学 一种碳包覆铁酸锌电极材料及其制备方法与应用
CN106469814B (zh) * 2016-04-14 2019-11-29 山东圣泉新能源科技有限公司 一种包覆剂、负极材料、锂离子电池及其制备方法
DE112016006857T5 (de) * 2016-06-15 2019-04-11 Robert Bosch Gmbh Anodenzusammensetzung, Verfahren zur Herstellung einer Anode und Lithium-Ionen-Batterie
CA3029067A1 (en) * 2016-06-30 2018-01-04 Hydro-Quebec Electrode materials and processes for their preparation
US10193145B2 (en) * 2016-06-30 2019-01-29 Hydro-Quebec Carbon-coated active particles and processes for their preparation
WO2018009484A1 (en) 2016-07-05 2018-01-11 Kratos LLC Passivated pre-lithiated micron and sub-micron group iva particles and methods of preparation thereof
DE102016224039A1 (de) * 2016-12-02 2018-06-07 Robert Bosch Gmbh Anodenaktivmaterialpartikel mit künstlicher SEI-Schicht mittels graft-to-Polymerisation
DE102016224032A1 (de) * 2016-12-02 2018-06-07 Robert Bosch Gmbh Anodenaktivmaterialpartikel mit künstlicher SEI-Schicht mittels graft-from-Polymerisation
US20180159182A1 (en) * 2016-12-07 2018-06-07 Robert Bosch Gmbh Linker-functionalized cathodes for solid state batteries
EP3580793B1 (de) 2017-02-09 2020-04-29 Wacker Chemie AG Mit polymeren gepfropfte siliciumpartikel
WO2018145747A1 (de) * 2017-02-09 2018-08-16 Wacker Chemie Ag Redispergierbare partikel basierend auf siliciumpartikeln und polymeren
US11749798B2 (en) 2017-03-03 2023-09-05 Hydro-Quebec Nanoparticles comprising a core covered with a passivation layer, process for manufacture and uses thereof
US11637280B2 (en) 2017-03-31 2023-04-25 Kratos LLC Precharged negative electrode material for secondary battery
CN107069010A (zh) * 2017-04-24 2017-08-18 广东烛光新能源科技有限公司 一种硅碳负极材料及其制备方法
US11394058B2 (en) 2017-06-02 2022-07-19 Global Graphene Group, Inc. Method of producing shape-conformable alkali metal-sulfur battery
US11335946B2 (en) 2017-06-02 2022-05-17 Global Graphene Group, Inc. Shape-conformable alkali metal-sulfur battery
CN107230766B (zh) * 2017-06-13 2019-10-18 深圳市星源材质科技股份有限公司 一种多核-单壳结构凝胶聚合物涂覆隔膜及其制备方法
US10454141B2 (en) 2017-06-30 2019-10-22 Global Graphene Group, Inc. Method of producing shape-conformable alkali metal-sulfur battery having a deformable and conductive quasi-solid electrode
CN109423053A (zh) * 2017-09-05 2019-03-05 南京科矽新材料科技有限公司 一种有机硅导热绝缘复合材料及其制备方法
US10873083B2 (en) 2017-11-30 2020-12-22 Global Graphene Group, Inc. Anode particulates or cathode particulates and alkali metal batteries
US10797313B2 (en) 2017-12-05 2020-10-06 Global Graphene Group, Inc. Method of producing anode or cathode particulates for alkali metal batteries
US10637043B2 (en) 2017-11-30 2020-04-28 Global Graphene Group, Inc. Anode particulates or cathode particulates and alkali metal batteries containing same
CN108232140A (zh) * 2017-12-20 2018-06-29 上海蓄熙新能源材料检测有限公司 一种改性硅基材料的制备方法、及其锂离子电池
WO2019135827A1 (en) * 2018-01-02 2019-07-11 Nanotek Instruments, Inc. Anode particulates or cathode particulates for alkali metal batteries
EP3740982A4 (en) * 2018-01-16 2021-10-06 Illinois Institute Of Technology SILICON MICRO-REACTORS FOR RECHARGEABLE LITHIUM BATTERIES
CN108232173A (zh) * 2018-01-31 2018-06-29 金山电池国际有限公司 锂离子电池负极材料、其制备方法、其负极和锂离子电池
JP7048839B2 (ja) * 2018-02-09 2022-04-06 エルジー エナジー ソリューション リミテッド 固体高分子電解質およびそれを含むリチウム二次電池
US11652205B2 (en) * 2018-04-18 2023-05-16 Enwair Enerji Teknolojileri A.S. Modification of silicon with acrylic or methacrylic derivatives used as an anode active material in the lithium ion battery technology
CN110504441B (zh) * 2018-05-17 2021-06-01 华为技术有限公司 一种改性硅基负极材料及其制备方法和锂离子电池
CN108682824A (zh) * 2018-05-31 2018-10-19 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用复合负极材料、其制备方法及在锂离子电池中的用途
CN109346696A (zh) * 2018-10-11 2019-02-15 桑德集团有限公司 硅碳负极材料及其制备方法
US11028242B2 (en) * 2019-06-03 2021-06-08 Enevate Corporation Modified silicon particles for silicon-carbon composite electrodes
CN111312996B (zh) * 2018-12-12 2022-01-28 上海杉杉科技有限公司 硅碳复合材料、锂离子电池及制备方法和应用
JP7395919B2 (ja) * 2019-03-18 2023-12-12 東ソー株式会社 ポリマー被覆シリコン粒子
CN110581271A (zh) * 2019-10-15 2019-12-17 浙江锂宸新材料科技有限公司 一种锂离子电池用改性硅负极材料及其制备方法和应用
CN110707316B (zh) * 2019-10-16 2021-05-25 北京卫蓝新能源科技有限公司 一种硅基锂离子电池负极材料及其制备方法
CN111029547A (zh) * 2019-12-13 2020-04-17 成都爱敏特新能源技术有限公司 一种多孔硅碳复合材料的制备方法
CN112289984A (zh) * 2020-09-22 2021-01-29 合肥国轩高科动力能源有限公司 一种改性硅负极材料及其制备方法、应用
CN111933916B (zh) * 2020-10-12 2021-02-19 长沙矿冶研究院有限责任公司 一种负极活性材料及其制备方法
CN112331819B (zh) * 2020-10-26 2022-02-25 清华大学深圳国际研究生院 改性硅碳负极及其制备方法、锂离子电池
CN112467098A (zh) * 2020-10-30 2021-03-09 合肥国轩高科动力能源有限公司 一种高容量稳定性好的硅碳负极材料及其制备方法
CN114249326B (zh) * 2021-12-25 2022-07-22 盐城工学院 一种液相法制备亚纳米硅碳复合材料的方法
CN114597377B (zh) * 2022-03-23 2023-10-13 蜂巢能源科技股份有限公司 一种硅碳复合负极材料、负极和锂二次电池
KR20240079688A (ko) * 2022-11-29 2024-06-05 주식회사 한솔케미칼 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20240079774A (ko) * 2022-11-29 2024-06-05 주식회사 한솔케미칼 음극 활물질, 그의 제조방법 및 이를 포함하는 리튬 이차 전지
CN115799474A (zh) * 2022-12-13 2023-03-14 大连理工大学 一种氟化硅碳负极材料的制备方法及应用
CN116023147A (zh) * 2022-12-14 2023-04-28 先进能源科学与技术广东省实验室 聚碳硅烷与硅组合物及其应用、SiC陶瓷、SiC陶瓷基复合材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101202341A (zh) * 2007-12-13 2008-06-18 复旦大学 锂离子电池用碳包覆合金纳米粒子电极材料及其制备方法
CN101847714A (zh) * 2010-05-20 2010-09-29 复旦大学 锂离子电池用碳包覆核壳结构纳米合金负极材料的制备方法
US20120121977A1 (en) * 2011-12-27 2012-05-17 Electrochemical Materials, LLC Surface-modified silicon anode active material, method of preparing the same, and anode and lithium battery employing the same
CN103474666A (zh) * 2013-07-23 2013-12-25 江苏华东锂电技术研究院有限公司 锂离子电池负极活性材料的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700616A (en) * 1995-02-01 1997-12-23 Canon Kabushiki Kaisha Developer for developing an electrostatic image and image forming method
JP4025995B2 (ja) * 2002-11-26 2007-12-26 信越化学工業株式会社 非水電解質二次電池負極材及びその製造方法並びにリチウムイオン二次電池
CN101850959B (zh) * 2010-05-31 2012-03-28 奇瑞汽车股份有限公司 一种锂离子电池硅碳负极材料的制备方法
JP2013031794A (ja) * 2011-08-01 2013-02-14 Fujifilm Corp 機能性フィルムの製造方法および機能性フィルム
CN102376944B (zh) * 2011-11-24 2013-04-24 深圳市贝特瑞新能源材料股份有限公司 制备锂离子电池用硅碳合金负极材料的方法
CN104247096A (zh) * 2012-03-30 2014-12-24 户田工业株式会社 非水电解质二次电池用负极活性物质颗粒粉末及其制造方法以及非水电解质二次电池
KR101473968B1 (ko) * 2012-08-14 2014-12-18 국립대학법인 울산과학기술대학교 산학협력단 리튬 이차 전지용 음극 활물질, 리튬 이차 전지용 음극 활물질의 제조 방법 및 이를 포함하는 리튬 이차 전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101202341A (zh) * 2007-12-13 2008-06-18 复旦大学 锂离子电池用碳包覆合金纳米粒子电极材料及其制备方法
CN101847714A (zh) * 2010-05-20 2010-09-29 复旦大学 锂离子电池用碳包覆核壳结构纳米合金负极材料的制备方法
US20120121977A1 (en) * 2011-12-27 2012-05-17 Electrochemical Materials, LLC Surface-modified silicon anode active material, method of preparing the same, and anode and lithium battery employing the same
CN103474666A (zh) * 2013-07-23 2013-12-25 江苏华东锂电技术研究院有限公司 锂离子电池负极活性材料的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017127922A1 (en) * 2016-01-25 2017-08-03 HYDRO-QUéBEC Core-shell electrode material particles and their use in electrochemical cells
US11271198B2 (en) 2016-01-25 2022-03-08 HYDRO-QUéBEC Core-shell electrode material particles and their use in electrochemical cells
CN113387343A (zh) * 2021-06-15 2021-09-14 中南大学 利用退役光伏组件制备锂离子电池硅碳负极的方法

Also Published As

Publication number Publication date
US20160164081A1 (en) 2016-06-09
CN103474666B (zh) 2016-03-02
CN103474666A (zh) 2013-12-25
US9825288B2 (en) 2017-11-21

Similar Documents

Publication Publication Date Title
WO2015010524A1 (zh) 锂离子电池负极活性材料的制备方法
KR102173104B1 (ko) 리튬이온 전지용 바인더 수용액, 리튬이온 전지전극용 슬러리 및 그 제조방법, 리튬이온 전지전극 및 리튬이온 전지
US10978695B2 (en) Anode active material and anode for lithium-ion battery, method for preparing the anode active material, and lithium-ion battery
KR102195163B1 (ko) 리튬이온 전지용 바인더 수용액, 리튬이온 전지용 슬러리 및 그 제조방법, 리튬이온 전지용 전극, 리튬이온 전지용 세퍼레이터, 리튬이온 전지용 세퍼레이터/전극적층체, 및 리튬이온 전지
EP4033580A1 (en) Gel polymer electrolyte with core-shell structure, preparation method therefor, and application thereof
WO2015024479A1 (zh) 复合隔膜及其制备方法,以及锂离子电池
CN112094372B (zh) 锂离子电池用粘合剂水溶液、负极用浆料、负极、负极用材料以及锂离子电池及其制造方法
KR102260940B1 (ko) 리튬이온전지용 도전성 탄소재료 분산제, 리튬이온전지 전극용 슬러리, 리튬이온전지용 전극 및 리튬이온전지
WO2016082658A1 (zh) 复合粘结剂、应用该复合粘结剂的锂二次电池正极及其制备方法
WO2013010346A1 (zh) 锂离子电池负极用硅碳复合材料及其制备方法
JPWO2014188724A1 (ja) 二次電池用バインダー組成物、二次電池電極用スラリー組成物、二次電池用負極、および、二次電池
KR102336602B1 (ko) 리튬이온전지용 열가교성 바인더 수용액, 리튬이온전지용 전극 열가교성 슬러리 및 그 제조방법, 리튬이온전지용 전극 및 리튬이온전지
KR102301238B1 (ko) 리튬이온전지용 열가교성 바인더 수용액, 리튬이온전지 부극용 열가교성 슬러리, 리튬이온전지용 부극 및 리튬이온전지
TW201810775A (zh) 含有矽奈米粒子之氫聚矽倍半氧烷、其燒製物及其等之製造方法
CN113193195A (zh) 氮含量可调的氮掺杂碳包覆纳米硅复合材料及其制备方法
CN114824238A (zh) 一种基于聚乙烯亚胺与聚多巴胺共聚物功能化的高比容量硅碳负极材料的制备方法和应用
JP2019110002A (ja) リチウムイオン電池用バインダー水溶液、リチウムイオン電池用電極スラリー及びその製造方法、リチウムイオン電池用電極、並びにリチウムイオン電池
KR101470022B1 (ko) 규소-고분자 복합체 입자, 그의 제조 방법 및 이를 포함하는 리튬이온 이차전지 음극
KR102336695B1 (ko) 리튬이온전지용 바인더 수용액, 리튬이온전지용 부극 슬러리, 리튬이온전지용 부극 및 리튬이온전지
CN114497516A (zh) 一种卵黄-壳型碳包覆硅复合负极材料及制备方法
TWI711209B (zh) 一種矽碳負極材料及其應用
CN112736246A (zh) 一种导电助剂及其在锂离子电池硅负极中的应用
CN114597377B (zh) 一种硅碳复合负极材料、负极和锂二次电池
TWI832294B (zh) 鋰離子電池陽極
KR102636775B1 (ko) 이차전지용 도전재 분산액 및 이를 포함하는 이차전지 전극용 슬러리 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14907295

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14829026

Country of ref document: EP

Kind code of ref document: A1