WO2015005370A1 - 電解質膜、膜-電極接合体および固体高分子型燃料電池 - Google Patents

電解質膜、膜-電極接合体および固体高分子型燃料電池 Download PDF

Info

Publication number
WO2015005370A1
WO2015005370A1 PCT/JP2014/068267 JP2014068267W WO2015005370A1 WO 2015005370 A1 WO2015005370 A1 WO 2015005370A1 JP 2014068267 W JP2014068267 W JP 2014068267W WO 2015005370 A1 WO2015005370 A1 WO 2015005370A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
group
electrolyte membrane
structural unit
aromatic ring
Prior art date
Application number
PCT/JP2014/068267
Other languages
English (en)
French (fr)
Inventor
浩一 尾上
翔平 藤下
樋上 誠
宏文 後藤
尚亨 坂部
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to US14/903,685 priority Critical patent/US20160149250A1/en
Priority to EP14823755.5A priority patent/EP3021395A4/en
Priority to KR1020167002918A priority patent/KR20160030223A/ko
Priority to JP2015526368A priority patent/JPWO2015005370A1/ja
Publication of WO2015005370A1 publication Critical patent/WO2015005370A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4031(I) or (II) containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4056(I) or (II) containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1428Side-chains containing oxygen containing acyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/145Side-chains containing sulfur
    • C08G2261/1452Side-chains containing sulfur containing sulfonyl or sulfonate-groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/412Yamamoto reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/516Charge transport ion-conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrolyte membrane, a membrane-electrode assembly, and a polymer electrolyte fuel cell.
  • a fuel cell is a power generator that directly takes out electricity by electrochemically reacting hydrogen gas obtained by reforming various hydrocarbon fuels (natural gas, methane, etc.) and oxygen gas in the air. It is attracting attention as a pollution-free power generator that can directly convert chemical energy into electrical energy with high efficiency.
  • Such a fuel cell has a membrane-electrode junction comprising a pair of electrode catalyst layers (anode electrode and cathode electrode) carrying a catalyst and a proton conductive solid polymer electrolyte membrane sandwiched between the electrode catalyst layers.
  • anode electrode hydrogen ions and electrons are generated, and the hydrogen ions pass through the solid polymer electrolyte membrane and react with oxygen at the cathode electrode to generate water.
  • Patent Document 1 discloses, as the solid polymer electrolyte membrane, a block copolymer of a hydrophilic segment and a hydrophobic segment represented by the following formula, and an electrolyte comprising an aromatic polymer comprising the hydrophobic segment. A membrane is disclosed. Note that only this electrolyte membrane is specifically described in Patent Document 1.
  • the membrane-electrode assembly may be produced by previously providing an electrode catalyst layer on a substrate such as polyethylene terephthalate (PET) and thermally transferring the electrode catalyst layer to a solid polymer electrolyte membrane.
  • a substrate such as polyethylene terephthalate (PET)
  • PET polyethylene terephthalate
  • the solid polymer electrolyte membrane described in Patent Document 1 When a membrane-electrode assembly is produced by such a method, and the electrolyte membrane described in Patent Document 1 is used as the solid polymer electrolyte membrane, the solid polymer electrolyte membrane must be used unless thermal transfer is performed at a high temperature. Even if a membrane-electrode assembly can be manufactured, the solid polymer electrolyte membrane and the electrode catalyst layer can be separated under the operating conditions of the fuel cell (for example, hot water). There was a tendency that peeling of the film was likely to occur. Furthermore, when the electrolyte membrane described in Patent Document 1 is used in a fuel cell, flooding occurs, and the power generation performance of the fuel cell tends to decrease.
  • the fuel cell for example, hot water
  • the present invention has been made in view of the above problems, and can balance the power generation performance and water repellency that can produce a membrane-electrode assembly at a relatively low thermal transfer temperature, in which separation of the electrode catalyst layer in hot water does not easily occur.
  • the object is to provide an excellent electrolyte membrane.
  • Polymer (1) having a hydrophobic structural unit and a structural unit having a proton conductive group, and hydrophobic having no sulfonic acid group different from the hydrophobic structural unit of the polymer (1)
  • An electrolyte membrane comprising a polymer (2) having a structural unit.
  • the electrolyte membrane according to any one of [1] to [3], wherein the number average molecular weight of the polymer (2) is 1000 to 60000.
  • the glass transition temperature (Tg) determined by differential scanning calorimetry (DSC, heating rate 20 ° C./min) of the polymer (2) is 220 ° C. or lower, and any one of [1] to [4] The electrolyte membrane described.
  • a and D are each independently a direct bond, —O—, —S—, —CO—, —SO 2 —, —SO—, —CONH—, —COO—, — (CF 2 ) i — (i is 1 is an integer of 1 to 10), — (CH 2 ) j — (j is an integer of 1 to 10), —CR ′ 2 — (R ′ is an aliphatic hydrocarbon group, aromatic hydrocarbon group or halogen A hydrocarbon group)), a cyclohexylidene group or a fluorenylidene group, B independently represents —O— or —S—, R 1 to R 16 each independently represents a hydrogen atom, a halogen atom, a hydroxy group, a nitro group, a nitrile group or R 22 —E— (E is a direct bond, —O—, —S—, —CO—, — SO 2 —, —CONH—
  • the hydrophobic structural unit contained in the polymer (1) includes an aromatic ring and has two bonds. Both of the two bonds are bonded to one aromatic ring, or An aromatic ring (a) and an aromatic ring (b) connected to the aromatic ring (a) via a single bond or at least one aromatic ring, the aromatic ring (a) and the aromatic ring (b) Each has one bond joined,
  • the electrolyte membrane according to any one of [1] to [8], which is a structural unit.
  • a membrane-electrode assembly in which a gas diffusion layer, a catalyst layer, the electrolyte membrane according to any one of [1] to [9], a catalyst layer, and a gas diffusion layer are laminated in this order.
  • a polymer electrolyte fuel cell having the membrane-electrode assembly according to [10].
  • an electrolyte membrane excellent in balance between power generation performance and water repellency which can produce a membrane-electrode assembly in which the catalyst layer is hardly peeled off in hot water at a relatively low thermal transfer temperature and in a short time. Can do. For this reason, by using such an electrolyte membrane, it is possible to easily produce a membrane-electrode assembly having excellent power generation performance, durability and the like, in which the catalyst layer is not easily damaged during the production of the membrane-electrode assembly. it can.
  • an electrolyte membrane excellent in power generation performance, water repellency, electrode adhesion, and dimensional stability during a wet and dry cycle can be obtained, and further, such an electrolyte membrane can be used for a fuel cell.
  • flooding can be suppressed, and a fuel cell excellent in power generation performance and durability can be obtained.
  • FIG. 1 shows a transmission electron microscope (TEM) photograph of a cross section of the electrolyte membrane obtained in Example 6.
  • TEM transmission electron microscope
  • the electrolyte membrane of the present invention has a polymer (1) having a hydrophobic structural unit and a structural unit having a proton conductive group, and a sulfonic acid group different from the hydrophobic structural unit of the polymer (1).
  • the polymer (2) which has a hydrophobic structural unit which does not carry out is contained.
  • Such an electrolyte membrane is excellent in balance in power generation performance, water repellency, adhesion to an electrode, and dimensional stability during a dry and wet cycle. Further, by using such an electrolyte membrane, it is possible to produce a membrane-electrode assembly in which separation of the catalyst layer in hot water hardly occurs at a relatively low thermal transfer temperature.
  • the water contact angle of the electrolyte membrane (surface) of the present invention is preferably 50 to 120 °, more preferably 50 to 110 °, and further preferably 60 to 100 °.
  • the value of the water contact angle can be measured, for example, by the method described in the following examples.
  • the electrolyte membrane is excellent in water repellency and adhesion to the electrode.
  • the electrolyte membrane is used in a system in which water is generated during use, particularly in a fuel cell, flooding can be suppressed due to the water repellency of the surface, and adhesion to the electrode can be improved.
  • a fuel cell excellent in power generation performance and durability can be obtained.
  • the electrolyte membrane of the present invention has an ion exchange capacity measured by a method similar to the method described in Examples described later using the electrolyte membrane, preferably 0.5 to 5.0 meq / g, more preferably 1 .4 to 3.8 meq / g. It is preferable that the ion exchange capacity be in the above range because an electrolyte membrane having excellent proton conductivity and water resistance and high power generation performance can be obtained.
  • the electrolyte membrane of the present invention has a dry film thickness of preferably 5 to 200 ⁇ m, more preferably 10 to 150 ⁇ m. Even when the electrolyte membrane of the present invention is a laminated membrane or a reinforced electrolyte membrane, these thicknesses are preferably within this range.
  • the polymer (1) is not particularly limited as long as it has a hydrophobic structural unit and a structural unit having a proton conductive group, and may be a polymer or an oligomer.
  • the structural unit having a proton conductive group may be simply a proton conductive group, and examples of the proton conductive group include a sulfonic acid group, a phosphonic acid group, a carboxy group, and a bissulfonylimide group. And sulfonic acid groups are preferred.
  • the hydrophobic structural unit is not particularly limited.
  • a polyaromatic hydrocarbon-based, polyether-based, polyetheretherketone-based, polyethersulfone-based, polyphenylenesulfide-based, having an aromatic ring in the main chain skeleton examples thereof include a polyimide-based or polybenzazole-based structural unit.
  • the polymer (1) may be a known polymer, and is not particularly limited.
  • Nafion registered trademark, manufactured by DuPont
  • Aciplex registered trademark, manufactured by Asahi Kasei Kogyo Co., Ltd.
  • FLUION registered trademark, manufactured by Asahi Glass Co., Ltd.
  • a fluorinated carbon-based high molecular weight polymer having a sulfonic acid group polyaromatic hydrocarbon, polyether ether ketone, polyphenylene
  • a high molecular polymer having an aromatic ring such as sulfide, polyimide or polybenzazole in the main chain skeleton and having a sulfonic acid group can be used.
  • the number average molecular weight of the polymer (1) is preferably 10,000 to 1,000,000, more preferably 30,000 to 300,000, and the weight average molecular weight of the polymer (1) is preferably 10,000 to 1,000,000. More preferably, it is 50,000 to 400,000. It is preferable for the molecular weight to be in the above-mentioned range since the hot water resistance of the obtained electrolyte membrane tends to be improved.
  • the method for measuring the number average molecular weight and the weight average molecular weight is as described in the following examples.
  • the Tg of the polymer (1) by DSC is not particularly limited, but an electrolyte membrane excellent in stability in hot water can be obtained, and when operating at a high temperature of 80 ° C. or higher.
  • the temperature is preferably 100 to 250 ° C., more preferably 120 to 250 ° C. from the viewpoint that a fuel cell having excellent creep resistance can be obtained.
  • the ion exchange capacity of the polymer (1) is preferably 0.5 to 5.0 meq / g, more preferably 1.4 to 3.8 meq / g. When the ion exchange capacity is within the above range, an electrolyte membrane having excellent proton conductivity and power generation performance and sufficiently high water resistance can be obtained.
  • the measuring method of the ion exchange capacity is as described in the following examples.
  • the polymer (1) is a polymer composed of a hydrophilic segment (A1) including a structural unit having a proton conductive group and a hydrophobic segment (B1) including a hydrophobic structural unit.
  • the polymer is preferably a polymer comprising a hydrophilic segment (A1) composed of a structural unit having a proton conductive group and a hydrophobic segment (B1) composed of a hydrophobic structural unit.
  • the polymer (1) may be a block polymer or a random polymer, but an electrolyte membrane having more excellent power generation performance and dimensional stability during a dry / wet cycle can be obtained. From the viewpoint, a block copolymer of the hydrophilic segment (A1) and the hydrophobic segment (B1) is preferable.
  • the hydrophilic segment (A1) and the hydrophobic segment (B1) are directly bonded without using a bonding group.
  • a linking group exists between the hydrophilic segment (A1) and the hydrophobic segment (B1) and the linking group is an ether bond (—O—)
  • the radical resistance of the obtained electrolyte membrane is inferior, The film tends to be easily deteriorated.
  • the amount of each segment in the polymer (1) is determined according to desired properties such as the ion exchange capacity and number average molecular weight of the polymer.
  • the amount of the segment (A1) is preferably 15 to 95% by weight, more preferably 25 to 85% by weight, and particularly preferably 35%.
  • the amount of the segment (B1) is preferably 5 to 85% by weight, more preferably 15 to 75% by weight, and particularly preferably 25 to 65% by weight.
  • the segment means an oligomer unit or a polymer unit in which 3 or more structural units constituting the segment are linked, and preferably 5 or more structural units constituting the segment are linked. More preferably, 10 or more are connected.
  • the hydrophilic segment (A1) is not particularly limited as long as it has a proton conductive group and exhibits hydrophilicity.
  • the hydrophilic segment (A1) has an aromatic ring in the main chain and a proton conductive group such as a sulfonic acid group.
  • it preferably contains a sulfonic acid group and an aromatic ring, and has two bonds.
  • the segment has a structural unit (i) having a connected aromatic ring (b) and one bond bonded to each of the aromatic ring (a) and the aromatic ring (b).
  • the hydrophilic segment (A1) is such a segment, an electrolyte membrane having high continuity of the hydrophilic segment and high proton conductivity tends to be obtained as compared with the case where a conventional polymer is used.
  • the hydrophilic segment (A1) may consist of only one type of structural unit or may contain two or more types of structural units.
  • the number average molecular weight of the hydrophilic segment (A1) is preferably 1500 to 20000, more preferably 2500 to 10,000. Within the above range, an electrolyte membrane having high proton conductivity can be obtained, which is preferable.
  • the measuring method of a number average molecular weight is as having described in the following Example.
  • the structural unit (i) means, for example, a structural unit represented by the following formula (i).
  • Ar, Ar a and Ar b are each independently a proton conductive group, a halogen atom, a nitrile group or R 22 -E- (E and R 22 are each independently the following formula (1) the same meaning as E and R 22 in which may be substituted with.), an aromatic group having a benzene ring, a condensed aromatic ring or nitrogen-containing heterocyclic ring, w is 0 or a positive integer, v Represents 0 or 1. However, Formula (i) has at least one proton conductive group. ]
  • the divalent structural unit means a structural unit having two bonds.
  • the hydrophilic segment (A1) is a structural unit represented by the following formula (5) (hereinafter referred to as “structural unit (5) from the viewpoint of obtaining an electrolyte membrane having high continuity of the hydrophilic segment and high proton conductivity”. It is preferable that it is a segment including the structural unit (5).
  • Ar 11 , Ar 12 and Ar 13 are each independently a halogen atom, a nitrile group, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated carbon atom having 1 to 20 carbon atoms.
  • condensed aromatic ring examples include a naphthalene ring, a fluorene ring, a dibenzofuran ring and a dibenzothiophene ring.
  • nitrogen-containing heterocycle examples include 5-membered and 6-membered ring structures containing a nitrogen atom. Further, the number of nitrogen atoms in the heterocycle is not particularly limited as long as it is 1 or more, and the heterocycle may contain an oxygen atom or a sulfur atom in addition to nitrogen.
  • Ar 11 is preferably a benzene ring or biphenyl, and more preferably a benzene ring.
  • Y and Z are each independently a direct bond, —O—, —S—, —CO—, —SO 2 —, —SO—, — (CH 2 ) u —, — (CF 2 ) u — (u is Represents an integer of 1 to 10), —C (CH 3 ) 2 — or —C (CF 3 ) 2 —, among which a direct bond, —O—, —CO—, SO 2 — or -(CF 2 ) u -is preferred.
  • R 17 is independently a direct bond, —O (CH 2 ) p —, —O (CF 2 ) p —, — (CH 2 ) p — or — (CF 2 ) p — (p is an integer of 1 to 12 Among these, a direct bond, —O (CF 2 ) p —, and — (CF 2 ) p — are preferable in terms of proton conductivity.
  • p is preferably an integer of 1 to 6, and preferably an integer of 1 to 4.
  • R 18 and R 19 each independently represent a hydrogen atom or a protecting group. However, at least one of all R 18 and R 19 contained in the structural unit (5) is a hydrogen atom. Of these, R 18 and R 19 are preferably a hydrogen atom or a nitrogen-containing cation.
  • the protecting group refers to an ion, atom or atomic group used for the purpose of temporarily protecting a reactive group (—SO 3 — or —SO 3 ⁇ ).
  • a reactive group —SO 3 — or —SO 3 ⁇
  • Specific examples include an alkali metal atom, an aliphatic hydrocarbon group, an alicyclic group, an oxygen-containing heterocyclic group, and a nitrogen-containing cation.
  • x 1 independently represents an integer of 0 to 6, preferably an integer of 0 to 4, more preferably an integer of 0 to 2, and x 2 is an integer of 1 to 7, preferably an integer of 1 to 5, more preferably Represents an integer of 1 to 3, more preferably 1 or 2, a represents 0 or 1, b represents an integer of 0 to 20, preferably an integer of 0 to 3, more preferably 0 or 1, more preferably 0 is shown.
  • the hydrophilic segment (A1) includes, for example, a structural unit having a phosphonic acid group (5 ′) as a structural unit having a proton conductive group other than the sulfonic acid group.
  • aromatic structural units having a nitrogen-containing heterocycle described in JP 2011-089036 A and WO 2007/010731 described in JP 2011-089036 A and WO 2007/010731.
  • the hydrophobic segment (B1) is not particularly limited as long as it is a hydrophobic segment.
  • the hydrophilic segment (B1) may be composed of only one type of structural unit or may include two or more types of structural units.
  • the number average molecular weight of the hydrophobic segment (B1) is preferably 1000 to 60000, more preferably 3000 to 40000. It is preferable for the number average molecular weight to be in the above-mentioned range since an electrolyte membrane having high hot water resistance and excellent mechanical strength can be obtained.
  • the measuring method of a number average molecular weight is as describing in an Example.
  • the hydrophobic segment (B1) preferably includes a hydrophobic segment having an aromatic ring in the main chain and not containing a proton conductive group such as a sulfonic acid group, and is more excellent in suppressing hot water swelling.
  • a structural unit represented by the following formula (1) hereinafter also referred to as “structural unit (1)”
  • a structural unit represented by the following formula (2) hereinafter referred to as “structural unit”.
  • the segment is composed of at least one structural unit selected from the group consisting of the structural unit (1) and the structural unit (2).
  • the polymer (1) contains any of the structural units (1) to (3 ′), in particular, the structural unit (1) or (2), the hydrophobicity of the polymer is remarkably improved. . Therefore, it is possible to obtain an electrolyte membrane having excellent hot water resistance while having proton conductivity similar to the conventional one. Moreover, when segment (B1) contains a nitrile group, an electrolyte membrane with high toughness and mechanical strength can be produced.
  • the hydrophobic segment (B1) is preferably a structural unit including an aromatic ring and having two bonds, from the viewpoint of obtaining an electrolyte membrane excellent in suppressing hot water swelling. Both of the two bonds are bonded or have one aromatic ring (a) and an aromatic ring (b) connected to the aromatic ring (a) through a single bond or at least one aromatic ring , A segment having a structural unit (i ′) in which one bond is bonded to each of the aromatic ring (a) and the aromatic ring (b).
  • the structural unit (i ′) means, for example, a structural unit represented by the following formula (i ′).
  • Ar ′, Ar a1 and Ar b1 are each independently a halogen atom, a hydroxy group, a nitro group, a nitrile group or R 22 -E- (E and R 22 are each independently (Same as E and R 22 in (1)), which may be substituted with an aromatic group having a benzene ring, a condensed aromatic ring or a nitrogen-containing heterocyclic ring, and w is 0 or a positive integer.
  • V represents 0 or 1.
  • the hydrophilic segment (A1) is a structure represented by the formula (i), particularly a segment composed of the structural unit (5), and the hydrophobic segment (B1) is represented by the formula (i ′).
  • a segment composed of the structure particularly the structural unit (1) and / or the structural unit (2)
  • an electrolyte membrane excellent in power generation performance and dimensional stability during a wet / dry cycle tends to be obtained.
  • the segment (B1) contains the structural unit (1)
  • the segment (B1) includes the polymer (1) obtained by increasing the rigidity and increasing the aromatic ring density.
  • the hot water resistance, radical resistance to peroxide, gas barrier properties, mechanical strength, dimensional stability, etc. of the electrolyte membrane can be improved.
  • the hydrophobic segment (B1) may include one type of structural unit (1), or may include two or more types of structural units (1).
  • At least one substitutable carbon atom constituting the aromatic ring may be replaced with a nitrogen atom, and R 21 is independently a halogen atom, a hydroxy group, a nitro group, a nitrile group or R 22 —.
  • E- is a direct bond, —O—, —S—, —CO—, —SO 2 —, —CONH—, —COO—, —CF 2 —, —CH 2 —, —C (CF 3 ) 2 -or -C (CH 3 ) 2- ;
  • R 22 represents an alkyl group, a halogenated alkyl group, an alkenyl group, an aryl group, a halogenated aryl group or a nitrogen-containing heterocyclic ring, and at least one of these groups one of the hydrogen atoms, further hydroxy group, a nitro group, may be substituted with at least one group selected from the group consisting of nitrile group, and R 22 -E-.
  • the plurality of E may be the same or different, and a plurality of R 22 (however, The structure of the portion excluding the structural difference caused by the substitution may be the same or different. Similarly, in the present invention, when there are a plurality of groups represented by the same symbol in one formula, these groups may be the same or different. However, when several R ⁇ 22> is contained in one formula, it is preferable that the upper limit is five.
  • the alkyl group, halogenated alkyl group, alkenyl group, aryl group and halogenated aryl group in R 22 are each an alkyl group having 1 to 20 carbon atoms and a halogenated alkyl group having 1 to 20 carbon atoms.
  • the ring structure formed by combining a plurality of R 21 is not particularly limited, but may be a halogen atom, a nitrile group, a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a monovalent halogenated carbon atom having 1 to 20 carbon atoms.
  • examples thereof include an aromatic group, a cycloalkyl group having 3 to 20 carbon atoms such as a cyclopentyl group and a cyclohexyl group, and an oxygen-containing heterocyclic group which may be substituted with a hydrogen group.
  • R 22 is preferably an aryl group.
  • E is preferably a carbonyl group because of high polymerization activity during polymerization.
  • c 1 and c 2 independently represent 0 or an integer of 1 or more, preferably 0 or 1, more preferably 0, and d represents an integer of 1 or more, preferably an integer of 1 to 300.
  • e independently represents an integer of 0 to (2c 1 + 2c 2 +4), and an integer of 1 or more is from the viewpoint of improving the solubility of the resulting polymer and improving the adhesion to the electrode by reducing the softening temperature. preferable.
  • the hydrophobic segment (B1) contains the structural unit (2) because radical resistance to peroxide and the like is improved and an electrolyte membrane excellent in power generation durability can be obtained. Moreover, when the hydrophobic segment (B1) contains the structural unit (2), an appropriate flexibility (flexibility) can be imparted to the segment (B1), and the electrolyte membrane containing the resulting polymer Toughness can be improved.
  • the hydrophobic segment (B1) may include one type of structural unit (2) or may include two or more types of structural units (2).
  • At least one substitutable carbon atom constituting the aromatic ring may be replaced with a nitrogen atom, and R 31 is independently a halogen atom, a hydroxy group, a nitro group, a nitrile group or R 22 —.
  • E- (E and R 22 are each independently synonymous with E and R 22 in the formula (1)), and a plurality of R 31 may be bonded to form a ring structure.
  • f represents 0 or an integer of 1 or more, preferably 0 or 1, more preferably 0, and g represents an integer of 0 to (2f + 4).
  • the structural unit represented by Formula (2) is a structural unit other than the structural unit represented by Formula (1).
  • the ring structure formed by combining a plurality of R 31 is not particularly limited, and examples thereof include structures similar to the ring structure formed by combining the plurality of R 21 .
  • R 31 is preferably a nitrile group because the polymerization activity during copolymerization is high and the toughness and mechanical strength of the resulting electrolyte membrane are high.
  • the segment (B1) is a segment containing the structural unit (1) and the structural unit (2)
  • the segment (B1) is obtained by block copolymerization of the structural unit (1) and the structural unit (2).
  • a structure may be used, but a structure in which the structural unit (1) and the structural unit (2) are randomly copolymerized is preferable in that the effects of the structural units (1) and (2) can be sufficiently obtained.
  • the segment (B1) is a segment including the structural unit (1) and the structural unit (2)
  • the total amount of the structural units (1) and (2) in the segment (B1) When the amount is 100 mol%, the amount of the structural unit (1) is preferably 50 to 99.9 mol%, more preferably 80 to 99.9 mol, from the viewpoint that the above-described effects become more remarkable. %, Particularly preferably 90 to 99.9 mol%, and the amount of the structural unit (2) is preferably 0.1 to 50 mol%, more preferably 0.1 to 20 mol%, particularly preferably 0. 1 to 10 mol%.
  • the segment (B1) is a segment including the structural unit (1) and the structural unit (2)
  • the total amount of the structural units (1) and (2) in the segment (B1) When the amount is 100% by weight, the amount of the structural unit (1) is preferably 33 to 99% by weight, more preferably 80 to 99% by weight, particularly preferably from the viewpoint that the above-described effects become more remarkable. Is 90 to 99% by weight, and the amount of the structural unit (2) is preferably 1 to 67% by weight, more preferably 1 to 20% by weight, and particularly preferably 1 to 10% by weight. Moreover, it is preferable that content of the said structural unit (1) exists in the said range also with respect to the said segment (B1) 100 weight%.
  • the hydrophobic segment (B1) may include one type of structural unit (3 ′), or may include two or more types of structural units (3 ′).
  • the segment (B1) is a segment including the structural unit (1) and the structural unit (3 ′)
  • the total amount of the structural units (1) and (3 ′) in the segment (B1) When the amount is 100 mol%, the amount of the structural unit (1) is preferably 0.1 to 99.9 mol%, more preferably 0.5 To 99.5 mol%, particularly preferably 1 to 99 mol%, and the amount of the structural unit (3 ′) is preferably 0.1 to 99.9 mol%, more preferably 0.5 to 99. 5 mol%, particularly preferably 1 to 99 mol%.
  • the segment (B1) is a segment including the structural unit (1) and the structural unit (3 ′)
  • the amount of the structural unit (1) is preferably 0.1 to 99.9% by weight, more preferably 0.5% from the viewpoint that the above-described effects become more remarkable.
  • the amount of the structural unit (3 ′) is preferably 0.1 to 99.9 wt%, more preferably 3 to 99.5 wt%, Particularly preferred is 10 to 99% by weight.
  • content of the said structural unit (1) exists in the said range also with respect to the said segment (B1) 100 weight%.
  • segment (B1) is a case where the segment (B1) is composed of only the structural unit (3 ').
  • a ′ and D ′ are each independently a direct bond, —O—, —S—, —CO—, —SO 2 —, —SO—, —CONH—, —COO—, — (CF 2 ) i — (i is an integer from 1 to 10), — (CH 2 ) j — (j is an integer from 1 to 10), —CR ′ 2 — (R ′ is an aliphatic hydrocarbon) Group, an aromatic hydrocarbon group or a halogenated hydrocarbon group), a cyclohexylidene group or a fluorenylidene group, and among these, a direct bond, —O—, —CO—, —SO 2 —, — CR ′ 2 —, a cyclohexylidene group and a fluorenylidene group are preferred.
  • R ′ an alkyl group and a perfluoroalkyl group are more preferable, and a methyl group and a trifluoromethyl group are more preferable.
  • B ′ independently represents an oxygen atom or a sulfur atom, preferably an oxygen atom.
  • R 1 ⁇ R 16 are each independently a hydrogen atom, a halogen atom, hydroxy group, nitro group, nitrile group or R 22 -E- (E and R 22 are each independently, E and R in formula (1) 22 And a plurality of groups of R 1 to R 16 may be bonded to form a ring structure.
  • R 1 to R 16 are preferably each independently a hydrogen atom, a nitrile group or a t-butyl group.
  • a ring structure formed by combining a plurality of groups of R 1 to R 16 is not particularly limited, but may be a halogen atom, a nitrile group, a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a 1 to 20 carbon atoms. And an aromatic group, a cycloalkyl group having 3 to 20 carbon atoms such as a cyclopentyl group and a cyclohexyl group, and an oxygen-containing heterocyclic group which may be substituted with a monovalent halogenated hydrocarbon group.
  • the benzene rings in formula (3 ′) may be bonded to each other through a direct bond, although not shown in the above examples.
  • S and t each independently represent an integer of 0 to 4, preferably an integer of 0 to 2, and r represents 0 or an integer of 1 or more, preferably 0 to 100, more preferably 0 to 80.
  • the polymer (1) can be synthesized by a conventionally known method, and is not particularly limited.
  • the polymer (1) is a catalyst containing a transition metal and a compound that becomes the structural unit (eg, a dihalide having the structural unit).
  • a sulfonic acid ester group or the like is converted to a sulfonic acid group, or a proton conductive group is introduced by a method such as sulfonation using a sulfonating agent. be able to.
  • the polymer (2) is not particularly limited as long as it is a polymer having a hydrophobic structural unit having no sulfonic acid group different from the hydrophobic structural unit of the polymer (1), and may be a polymer. It may be an oligomer. Moreover, it is particularly preferable that the polymer (1) and the polymer (2) are not compatible with each other.
  • the electrolyte membrane of the present invention contains the polymer (2) together with the polymer (1), the thermal transfer temperature when producing the membrane-electrode assembly is relatively low, and the transfer time is relatively low.
  • the polymer (2) may have the same structural unit as the hydrophobic structural unit contained in the polymer (1), but a polymer incompatible with the polymer (1) is obtained, and An electrolyte membrane with a good balance between aqueous, electrode adhesion and dimensional stability during a wet / dry cycle can be obtained, and a membrane-electrode assembly that does not easily cause separation of the catalyst layer in hot water at a relatively low thermal transfer temperature. It is preferable that the polymer (1) does not have the same segment as the hydrophobic segment because it can be produced. When such a polymer (2) is used, an electrolyte membrane having a large water contact angle tends to be obtained.
  • the incompatibility of the polymer (2) with the polymer (1) means that in the 2D or 3D-TEM image, the polymer (1) and the polymer (2) exist separately. Specifically, it can be confirmed from the presence of the polymer (2) separately in the polymer (1). Further, as a result of the incompatibility of the polymer (2) and the polymer (1), the polymer (2) tends to exist on both surfaces of the electrolyte membrane, and the water contact angle on the surface of the electrolyte membrane is increased. The polymer (2) is higher than the non-added film, and the film surface tends to be more hydrophobic. Therefore, it can be presumed that the polymers (1) and (2) are not compatible by measuring the water contact angle on the electrolyte membrane surface.
  • the number average molecular weight of the polymer (2) is preferably 1000 to 60000, more preferably 3000 to 40000. It is preferable for the number average molecular weight to be within the above range since the hot water resistance of the resulting electrolyte membrane is improved.
  • the measuring method of a number average molecular weight is as having described in the following Example.
  • the Tg of the polymer (2) by DSC is not particularly limited, but a membrane-electrode assembly in which separation of the catalyst layer in hot water is unlikely to occur at a relatively low thermal transfer temperature. From the standpoint of production, etc., it is preferably 220 ° C. or lower, more preferably 20 to 220 ° C., and particularly preferably 30 to 220 ° C.
  • the polymer (2) include aromatic polymers, fluorine-containing polymers, non-fluorine rubbers, etc., and there is a tendency that an electrolyte membrane having a large water contact angle can be obtained, and Aromatic polymers and fluorine-containing polymers are preferred from the standpoint that a membrane-electrode assembly in which the catalyst layer does not easily peel off in hot water can be produced at a relatively low thermal transfer temperature.
  • the aromatic polymer is preferably an aromatic polyether polymer from the viewpoint of chemical durability and the like, and particularly preferable from the viewpoint of obtaining an electrolyte membrane excellent in water repellency and adhesion to the electrode.
  • structural unit (3) a structural unit represented by the following formula (3) (hereinafter also referred to as “structural unit (3)”).
  • the polymer (2) may contain one type of structural unit (3) or may contain two or more types of structural units (3).
  • a and D are each independently a direct bond, —O—, —S—, —CO—, —SO 2 —, —SO—, —CONH—, —COO—, — (CF 2 I ⁇ (i is an integer of 1 to 10), — (CH 2 ) j — (j is an integer of 1 to 10), —CR ′ 2 — (R ′ is an aliphatic hydrocarbon group, aromatic Represents a hydrocarbon group or a halogenated hydrocarbon group), a cyclohexylidene group or a fluorenylidene group, and includes a direct bond, —O—, —CO—, —SO 2 —, —CR ′ 2 -, A cyclohexylidene group and a fluorenylidene group are preferred.
  • R ′ examples include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, hexyl, octyl, decyl, octadecyl, ethylhexyl, phenyl, tri Examples thereof include a fluoromethyl group, a substituent in which some or all of the hydrogen atoms in these groups are halogenated, and the like.
  • R ′ is more preferably an alkyl group or a perfluoroalkyl group, and further preferably a methyl group or a trifluoromethyl group.
  • B independently represents —O— or —S—, preferably —O—.
  • at least one of A, B and D is —O—, and when r is 0, s is an integer of 1 to 4.
  • the R 1 ⁇ R 16 are each independently a hydrogen atom, a halogen atom, hydroxy group, nitro group, nitrile group or R 22 -E- (E and R 22 are each independently, E and R in formula (1) 22
  • a plurality of groups of R 1 to R 16 may be bonded to form a ring structure.
  • a ring structure formed by combining a plurality of groups of R 1 to R 16 is not particularly limited, but may be a halogen atom, a nitrile group, a monovalent hydrocarbon group having 1 to 20 carbon atoms, or a 1 to 20 carbon atoms.
  • R 1 to R 16 are preferably a hydrogen atom, a nitrile group, and a t-butyl group, and are preferably a nitrile group from the viewpoint that an electrolyte membrane with high toughness and mechanical strength can be produced.
  • S and t each independently represent an integer of 0 to 4, preferably an integer of 0 to 2, and r represents 0 or an integer of 1 or more, preferably 0 to 100, more preferably 0 to 80.
  • the aromatic polyether polymer can be synthesized by a conventionally known method and is not particularly limited.
  • a compound that becomes the structural unit (3) eg, a part of the structural unit (3).
  • a dihalide having a structure or a dihydroxy compound can be synthesized by reacting in the presence of a catalyst or a solvent containing an alkali metal salt.
  • a solvent-soluble fluoropolymer is preferably used.
  • a fluorine-containing polymer is excellent in heat resistance, chemical resistance, mechanical properties, wear resistance, and the like, and has a feature of low gas permeability.
  • an electrolyte membrane having a continuous phase composed of the polymer (1) and a dispersed phase composed of the fluoropolymer can be easily produced. Yes.
  • a fluorine-containing polymer may be used individually by 1 type, and may use 2 or more types together.
  • Such a solvent-soluble fluorine-containing polymer is not particularly limited, and examples thereof include vinylidene fluoride homo (co) polymers, fluoroolefin / hydrocarbon olefin copolymers, and fluoroacrylate copolymers. , Fluoroepoxy compounds and the like can be used.
  • (1) vinylidene fluoride homo (co) polymer and (2) fluoroolefin / hydrocarbon olefin polymer are preferable from the viewpoint of use in combination with the polymer (1).
  • the (2) fluoroolefin / hydrocarbon olefin polymer is a polymer different from the (1) vinylidene fluoride homo (co) polymer.
  • the vinylidene fluoride homo (co) polymer is not particularly limited, but is preferably polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, vinylidene fluoride and tetrafluoroethylene, And terpolymers of vinylidene fluoride, hexafluoropropylene, and tetrafluoroethylene, and alternating copolymers of tetrafluoroethylene, propylene, and vinylidene fluoride.
  • Such a polyvinylidene fluoride homo (co) polymer is particularly excellent in impact resistance over a wide temperature range, and also in high temperature mechanical properties such as a high thermal deformation temperature, and almost all processing methods can be applied. It is preferable because of its characteristics.
  • the fluoroolefin / hydrocarbon olefin copolymer is not particularly limited.
  • an alternating copolymer of tetrafluoroethylene and propylene an alternating copolymer of chlorotrifluoroethylene and propylene, tetrafluoro Copolymers of ethylene and chlorotrifluoroethylene with ethyl vinyl ether, chloroethyl vinyl ether, isobutyl vinyl ether or hydroxyalkyl vinyl ether, copolymers of fluoroolefin and acrylate ester, copolymers of fluoroolefin and methacrylate ester A copolymer of fluoroolefin and carboxylic acid vinyl ester is preferred.
  • the use of such a fluoroolefin / hydrocarbon olefin copolymer is desirable in that the toughness of the obtained electrolyte membrane can be improved.
  • the polystyrene equivalent weight average molecular weight of the fluoropolymer by gel permeation chromatography is preferably 5,000 to 10,000,000, more preferably 50,000 to 1,000,000. If the molecular weight is too small, the excellent properties of the fluorine-containing polymer tend not to be exhibited. If the molecular weight is too large, the production of the electrolyte membrane tends to be difficult.
  • the electrolyte membrane of the present invention may contain a metal compound or a metal ion in addition to the polymers (1) and (2).
  • metal compounds or metal ions include aluminum (Al), manganese (Mn), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), iron (Fe), ruthenium ( Ru), nickel (Ni), tin (Sn), palladium (Pd), platinum (Pt), silver (Ag), cerium (Ce), vanadium (V), neodymium (Nd), praseodymium (Pr), samarium ( Examples thereof include metal compounds containing metal atoms such as Sm), cobalt (Co), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), and erbium (Er), or metal ions thereof. These may be used alone or in combination of
  • the electrolyte membrane of the present invention is obtained by mixing a composition obtained by mixing the polymer (1), the polymer (2), an organic solvent, and the like with a die coat, spray coat, knife coat, roll coat, spin coat. It can be manufactured by including a step of coating on a substrate by a known method such as gravure coating. Specifically, after the composition is applied onto a substrate, the applied composition is dried, and if necessary, the obtained film is peeled from the substrate to obtain an electrolyte membrane.
  • the amount of the polymer (1) used is such that, with respect to 100% by weight of the electrolyte membrane, a membrane-electrode assembly in which the catalyst layer does not easily peel off in hot water can be produced at a relatively low thermal transfer temperature.
  • the amount is preferably 50 to 99.9% by weight, more preferably 80 to 99.5% by weight, and particularly preferably 90 to 99% by weight from the viewpoint that an electrolyte membrane excellent in water balance can be obtained.
  • the amount of the polymer (2) used is preferably 0.1 to 50% by weight, more preferably 0.5 to 20% by weight, and particularly preferably based on 100% by weight of the electrolyte membrane for the same reason.
  • the preferred range of the amount used is the same for 100% by weight of the polymer (1).
  • the polymers (1) and (2) may be used singly or in combination of two or more.
  • the substrate is not particularly limited as long as it is a substrate used when a normal composition is applied.
  • a substrate made of resin, metal, glass or the like is used, and preferably a thermoplastic such as a PET film.
  • a substrate made of resin is used.
  • the organic solvent is preferably a solvent that dissolves or swells the polymers (1) and (2).
  • a solvent that dissolves or swells the polymers (1) and (2).
  • the composition of the mixture is preferably 95 to 25% by weight of an aprotic polar solvent, more preferably 90 to 25% by weight. %, And the other solvent is preferably 5 to 75% by weight, more preferably 10 to 75% by weight (however, the total is 100% by weight).
  • the blending amount of the other solvent is within the above range, the effect of lowering the viscosity of the resulting composition is excellent.
  • NMP is preferable as the aprotic polar solvent
  • methanol having an effect of lowering the viscosity of the composition in a wide composition range is preferable as the other solvent.
  • the drying is preferably performed by holding at a temperature of 50 to 200 ° C. for 0.1 to 10 hours.
  • the drying may be performed in one step, or may be performed in two or more steps, that is, after the preliminary drying in advance and then the main drying.
  • the drying may be performed under an inert gas atmosphere such as a nitrogen atmosphere or under reduced pressure as necessary.
  • the electrolyte membrane of the present invention may be a single layer film or a multilayered film.
  • the thickness of each layer is arbitrary. For example, one layer may be thick and the other layer may be thin.
  • each layer may be the same or different.
  • the reinforced electrolyte membrane can also be manufactured by using a porous base material or a sheet-like fibrous substance.
  • the membrane-electrode assembly of the present invention is a membrane-electrode assembly in which a gas diffusion layer, a catalyst layer, an electrolyte membrane of the present invention, a catalyst layer, and a gas diffusion layer are laminated in this order.
  • a catalyst layer for the cathode electrode is provided on one surface of the electrolyte membrane of the present invention
  • a catalyst layer for the anode electrode is provided on the other surface
  • each of the catalyst layers for the cathode electrode and the anode electrode is further provided. It is preferable that a gas diffusion layer is provided on each of the cathode electrode side and the anode electrode side in contact with the side opposite to the electrolyte membrane.
  • the membrane-electrode assembly of the present invention has the electrolyte membrane of the present invention, even if a catalyst layer is provided on the electrolyte membrane by thermal transfer at the time of manufacturing the membrane-electrode assembly, it can be obtained at a low temperature in a short time. In this case, the catalyst layer is not easily damaged, and the power generation performance and durability are excellent.
  • Such a membrane-electrode assembly of the present invention can be produced by a conventionally known method. Specifically, a composition to be a catalyst layer is formed on both surfaces of the electrolyte membrane of the present invention by a conventionally known method. The catalyst layer may be applied to form a catalyst layer, and a gas diffusion layer may be provided on the catalyst layer. Alternatively, the catalyst layer may be formed on a substrate such as a PET film in advance. You may manufacture by thermally transferring on both surfaces of the electrolyte membrane of invention, and providing a gas diffusion layer on the catalyst layer.
  • the electrolyte membrane of the present invention it is possible to obtain a membrane-electrode assembly excellent in desired properties even when the temperature during thermal transfer is lowered, and even when a catalyst layer is formed by coating, Even when the catalyst layer is formed by the above, a membrane-electrode assembly in which the catalyst layer is hardly peeled off in hot water (for example, 70 to 100 ° C.) can be obtained.
  • the gas diffusion layer examples include a porous substrate or a laminated structure of a porous substrate and a microporous layer.
  • the gas diffusion layer is composed of a laminated structure of a porous base material and a microporous layer, the microporous layer is preferably in contact with the catalyst layer.
  • the gas diffusion layer preferably contains a fluoropolymer in order to impart water repellency.
  • the catalyst layer is preferably composed of a catalyst, an ion exchange resin, or the like.
  • the catalyst include metal catalysts such as platinum, palladium, gold, ruthenium, iridium, cobalt and iron, and noble metal catalysts such as platinum, palladium, gold, ruthenium and iridium are preferably used.
  • the metal catalyst may contain two or more elements such as an alloy or a mixture. As such a metal catalyst, a catalyst supported on carbon particles having a high specific surface area can be used.
  • the ion exchange resin serves as a binder component for binding the catalyst, and efficiently supplies ions generated by a reaction on the catalyst to the electrolyte membrane at the anode electrode, and is supplied from the electrolyte membrane at the cathode electrode.
  • a substance that efficiently supplies ions to the catalyst is preferable.
  • the ion exchange resin is preferably a polymer having a proton exchange group in order to improve proton conductivity in the catalyst layer.
  • Proton exchange groups contained in such polymers include sulfonic acid groups, carboxylic acid groups, and phosphoric acid groups, but are not particularly limited.
  • the ion exchange resin known ones can be used without particular limitation, and examples thereof include Nafion
  • the polymer (1) may be used as an ion exchange resin, and further a fluorine having a proton exchange group. It may be a polymer containing atoms, another polymer obtained from ethylene or styrene, a copolymer or a blend thereof.
  • the catalyst layer may further contain additives such as carbon fiber and a resin not having an ion exchange group, if necessary.
  • This additive is preferably a component having high water repellency, and examples thereof include a fluorine-containing copolymer, a silane coupling agent, a silicone resin, a wax, and polyphosphazene. It is a coalescence.
  • the polymer electrolyte fuel cell of the present invention includes the membrane-electrode assembly. For this reason, the polymer electrolyte hydrogen fuel cell according to the present invention is particularly excellent in power generation performance, durability, etc. because flooding is suppressed.
  • the polymer electrolyte fuel cell according to the present invention includes at least one electricity generating unit including a separator and located on both outer sides of at least one membrane-electrode assembly and its gas diffusion layer; It is preferable that the polymer electrolyte fuel cell includes a fuel supply unit that supplies an electricity generation unit; and an oxidant supply unit that supplies an oxidant to the electricity generation unit.
  • separator those used in ordinary solid polymer fuel cells can be used. Specifically, a carbon type separator, a metal type separator, or the like can be used.
  • the polymer electrolyte fuel cell of the present invention may be a single cell or a stack cell in which a plurality of single cells are connected in series.
  • a known method can be used as the stacking method. Specifically, it may be planar stacking in which single cells are arranged in a plane, or bipolar in which single cells are stacked via separators each having a fuel or oxidant flow path formed on the back surface of the separator. Stacking may be used.
  • a sample film was prepared from the polymer obtained in the following synthesis example, and the sample film was immersed in deionized water to completely remove the acid remaining in the film, and then 2 mL per 1 mg of the polymer.
  • An aqueous hydrochloric acid solution was prepared by immersing in 2N saline solution and performing ion exchange. This hydrochloric acid aqueous solution was neutralized with a standard aqueous solution of 0.001N sodium hydroxide using phenolphthalein as an indicator.
  • the sample membrane after ion exchange was washed with deionized water and vacuum dried at 110 ° C. for 2 hours, and the dry weight of the membrane was measured.
  • Ion exchange capacity titration amount of sodium hydroxide (mmol) / dry weight of membrane (g)
  • the polymer (oligomer) obtained in the following synthesis example was dissolved in an NMP buffer solution.
  • NMP buffer solution Using the NMP buffer solution as an eluent, TOSOH HLC-8220 (manufactured by Tosoh Corporation) was used as an apparatus, and TSKgel ⁇ -M (column was used as a column).
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) in terms of polystyrene were determined by GPC using Tosoh Corporation.
  • the NMP buffer solution was prepared at a ratio of NMP (3 L) / phosphoric acid (3.3 mL) / lithium bromide (7.83 g).
  • ⁇ Glass-transition temperature ⁇ DSC Using a differential calorimeter, the temperature at which the heat capacity of the polymer (oligomer) obtained in the following synthesis example changes under nitrogen at a rate of temperature increase of 20 ° C./min was defined as the glass transition temperature.
  • the AC resistance was obtained from the AC impedance measurement between the platinum wires. Specifically, the impedance at an alternating current of 10 kHz was measured in an environment of 70 ° C. and a relative humidity of 30%.
  • a chemical impedance measurement system manufactured by NF Circuit Design Block Co., Ltd. was used as the resistance measurement device, and JW241 manufactured by Yamato Scientific Co., Ltd. was used as the constant temperature and humidity device. Five platinum wires were pressed at intervals of 5 mm.
  • cathode electrode catalyst layer paste 80 g of zirconia balls (YTZ balls) with a diameter of 5 mm are put into a 200 mL plastic bottle, and platinum-supported carbon particles (“TEC10E50E” manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., Pt: 45.6% by mass) 1.25 g, distilled 3.64 g of water, 11.91 g of n-propyl alcohol and Nafion D2020 (4.40 g) were added, and the mixture was stirred for 60 minutes with a paint shaker. Then, it filtered with a 100 mesh nylon mesh, the cathode electrode catalyst layer paste was obtained by removing a zirconia ball
  • platinum-supported carbon particles (“TEC10E50E” manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., Pt: 45.6% by mass) 1.25 g, distilled 3.64 g of water, 11.91 g of n-propyl alcohol and Nafion D2020 (4.
  • Electrode catalyst layer sheet On a polytetrafluoroethylene (PTFE) sheet (manufactured by Nichias Corp., product name: Naflon tape TOMBO9001, thickness: 80 ⁇ m), a mask having a predetermined thickness and having an opening of 5 cm ⁇ 5 cm is disposed.
  • the anode electrode catalyst layer paste obtained in (1) was applied with a doctor blade, and then dried at 120 ° C. for 60 minutes to prepare an anode catalyst layer sheet having a Pt catalyst application amount of 0.50 mg / cm 2 . Further, a cathode catalyst layer sheet having a Pt catalyst coating amount of 0.50 mg / cm 2 was prepared in the same manner using the cathode electrode catalyst layer paste.
  • Electrolyst layer transferability evaluation Each 20 ⁇ m-thick electrolyte membrane obtained in Examples and Comparative Examples described later was peeled off from the PET film of the substrate and cut into a predetermined size, and then the obtained electrolyte membrane was prepared as 5 cm ⁇ 5 cm.
  • Each of the electrode catalyst layer sheets for anode and cathode is sandwiched so that the catalyst layer side of each electrode catalyst layer sheet is on the electrolyte membrane side, heated with a precision hot press machine, and each electrode catalyst layer on the electrolyte membrane was thermally transferred.
  • the pressure during the heating press is 30 kg / cm 2
  • the pressing time is fixed at 5 minutes
  • the heating temperature is changed to 110 ° C., 120 ° C., 130 ° C., 140 ° C., 150 ° C., 160 ° C., 170 ° C., 180 ° C.
  • the minimum required temperature (temperature at which bonding is possible) at which both electrode catalyst layers could be transferred was comparatively investigated.
  • GDL24BC manufactured by SGL CARBON was used as the gas diffusion layer.
  • Air was supplied to the cathode electrode side of the obtained fuel cell for evaluation at a back pressure of 120 kPa and a utilization factor of 40%, pure hydrogen was supplied to the anode electrode side at a back pressure of 120 kPa and a utilization factor of 70%, and the cell temperature was 90 ° C.
  • the cell voltage at a current density of 1.0 A / cm 2 was measured at a cathode electrode side relative humidity of 30% and an anode electrode side relative humidity of 30%.
  • the stirred flask was placed in a 150 ° C. oil bath, and the reaction solution was heated to reflux at 150 ° C. Water produced by the reaction was trapped in a Dean-Stark tube. After 3 hours, when almost no water was observed, toluene was removed from the Dean-Stark tube out of the system. The reaction temperature was gradually raised to 200 ° C., and stirring was continued at that temperature for 3 hours. Then, 9.2 g (53 mmol) of 2,6-dichlorobenzonitrile was added, and the reaction was further continued for 5 hours.
  • the reaction solution was allowed to cool, and diluted with 100 mL of toluene. Inorganic salts insoluble in the reaction solution were removed by filtration, and the filtrate was poured into 2 L of methanol to precipitate the product. The precipitated product was filtered and dried, then dissolved in 250 mL of tetrahydrofuran, and poured into 2 L of methanol for reprecipitation. The precipitated white powder was filtered and dried to obtain 109 g of the desired product. The Mn measured by GPC was 9,500. It was confirmed that the obtained compound was an oligomer represented by the following formula (11).
  • the obtained filtrate was put into a 2 L three-necked flask equipped with a stirrer, a thermometer, and a nitrogen introduction tube, and then heated and stirred at 115 ° C., and 44 g (506 mmol) of lithium bromide was added. After stirring for 7 hours, the resulting liquid was poured into 5 L of acetone to precipitate the product. Next, the precipitate was washed with a 1N aqueous hydrochloric acid solution, washed with pure water, and dried to obtain 122 g of the target polymer. Mn of the obtained polymer was 54,000 and Mw was 135,000.
  • the obtained polymer is presumed to be a polymer having a sulfonic acid group represented by the following formula (12). The ion exchange capacity of this polymer was 2.3 meq / g, and Tg was 190 ° C.
  • m and k are values calculated from the charged amounts of raw materials forming the structural unit.
  • the stirred flask was placed in a 150 ° C. oil bath, and the reaction solution was heated to reflux at 150 ° C. Water produced by the reaction was trapped in a Dean-stark tube. After 3 hours, when almost no water was observed, toluene was removed from the Dean-stark tube out of the system. The reaction temperature was gradually raised to 180 to 190 ° C., and stirring was continued at that temperature for 3 hours. Then, 24.6 g (0.14 mol) of 2,6-dichlorobenzonitrile was added, and the reaction was further continued for 5 hours.
  • the reaction solution was allowed to cool and then added to 2401 mL of a methanol / 4 wt% sulfuric acid aqueous solution (5/1 (volume ratio)) to obtain a precipitate.
  • the precipitated product was filtered and the filtrate was placed in 2401 mL of water and stirred at 55 ° C. for 1 hour.
  • the liquid after stirring was filtered, and the residue was again put in 2401 mL of water, stirred at 55 ° C. for 1 hour, and then filtered.
  • the filtrate was put into 2401 mL of methanol and stirred at 55 ° C. for 1 hour and then filtered.
  • the filtrate was again put into 2401 mL of methanol and stirred at 55 ° C. for 1 hour and filtered.
  • the filtrate was air-dried and then vacuum-dried at 80 ° C. to obtain 125 g (yield 90%) of the target product.
  • Mn measured by GPC was 7,000. It was confirmed that the obtained compound was an oligomer represented by the formula (14).
  • the obtained polymer was a polymer including a structure represented by the following formula (15).
  • m and k are values calculated from the charged amounts of raw materials forming the structural unit.
  • Addition system solution 1 was added to the obtained reaction system under nitrogen and heated to 60 ° C. with stirring, and then 8.78 g (134.4 mmol) of zinc and 1.47 g of bis (triphenylphosphine) nickel dichloride (2. 24 mmol) was added to further accelerate the polymerization, and the mixture was stirred at 80 ° C. for 3 hours. An exotherm and an increase in viscosity were observed with the reaction.
  • the obtained solution was diluted with 498 mL of DMAc, and filtered using Celite as a filter aid.
  • 25.93 g (298.56 mmol) of lithium bromide was added and reacted at 100 ° C. for 7 hours.
  • the reaction solution was cooled to room temperature and poured into 3.3 L of water to obtain a liquid containing a coagulated product.
  • the coagulated product was added to acetone and washed and filtered four times with stirring.
  • the filtrate was added to 1N aqueous sulfuric acid solution, washed with stirring, and then filtered. This washing and filtration was repeated 7 times.
  • the filtered material after filtration seven times was washed with deionized water until the pH of the washing solution reached 5 or higher and filtered.
  • the obtained filtrate was dried at 75 ° C. for 24 hours to obtain a brown polymer powder.
  • the molecular weight in terms of polystyrene measured by GPC of the polymer having a sulfonic acid group was 51,000 for Mn and 114,000 for Mw.
  • the ion exchange capacity of this polymer was 2.24 meq / g, and Tg was 170 ° C.
  • p is a value calculated from the charged amount of the raw material forming the structural unit.
  • the precipitate obtained by filtering the coagulation liquid was washed with a small amount of methanol. 4. Add the resulting precipitate to The operation of adding 0 L of methanol and stirring and washing was repeated three times. The obtained product was dried to obtain 347 g (yield 88%) of the desired product (compound represented by the following formula (17)).
  • the Mn in terms of polystyrene determined by GPC of the obtained target product was 4100, and Mw was 6600.
  • x and y are values calculated from the charged amounts of raw materials forming the structural unit.
  • the reaction solution was allowed to cool and then added to 3800 mL of a methanol / 4 wt% sulfuric acid aqueous solution (5/1 (volume ratio)) to obtain a precipitate.
  • the precipitated product was filtered and the filtrate was placed in 2400 mL of water and stirred at 55 ° C. for 1 hour.
  • the liquid after stirring was filtered, and the residue was again put in 3400 mL of water, stirred at 55 ° C. for 1 hour, and then filtered.
  • the filtrate was put into 3400 mL of methanol, stirred for 1 hour at 55 ° C. and filtered, and the filtrate was again put into 3400 mL of methanol and stirred and filtered at 55 ° C. for 1 hour.
  • the filtrate was air-dried and then vacuum-dried at 80 ° C. to obtain 318 g (yield 90%) of the target product.
  • Mn measured by GPC of the obtained target product was 6,400. It was confirmed that the obtained compound was an oligomer represented by the following formula (18).
  • the reaction solution was allowed to cool and then added to 2400 mL of a methanol / 4 wt% sulfuric acid aqueous solution (5/1 (volume ratio)) to obtain a precipitate.
  • the precipitated product was filtered and the filtrate was placed in 2400 mL of water and stirred at 55 ° C. for 1 hour.
  • the liquid after stirring was filtered, and the residue was again put in 2400 mL of water, stirred at 55 ° C. for 1 hour, and then filtered.
  • the filtrate was put into 2401 mL of methanol and stirred at 55 ° C. for 1 hour and then filtered.
  • the filtrate was again put into 2400 mL of methanol and stirred at 55 ° C. for 1 hour and filtered.
  • the filtrate was air-dried and then vacuum-dried at 80 ° C. to obtain 187.6 g (yield 80%) of the target product.
  • Mn measured by GPC of the obtained object was 8,500. It was confirmed that the obtained compound was an oligomer represented by the following formula (19).
  • the obtained polymer was a polymer including a structure represented by the following formula (20).
  • Addition system solution 2 was added to the obtained reaction system under nitrogen and heated to 60 ° C. with stirring, and then 6.60 g (101.0 mmol) of zinc and 1.10 g of bis (triphenylphosphine) nickel dichloride (1. 68 mmol) was added to further accelerate the polymerization, and the mixture was stirred at 80 ° C. for 3 hours. An exotherm and an increase in viscosity were observed with the reaction.
  • the resulting solution was diluted with 320 mL of DMAc and filtered using Celite as a filter aid. 19.20 g (221.04 mmol) of lithium bromide was added to the filtrate, and the mixture was reacted at 100 ° C. for 7 hours.
  • the reaction liquid was cooled to room temperature and poured into 2.4 L of water to obtain a liquid containing a coagulated product.
  • the coagulum was added to acetone, washed with stirring, and then filtered. This washing and filtration was repeated 4 times.
  • the filtrate after filtration four times was added to 1N aqueous sulfuric acid solution, washed with stirring, and then filtered. This washing and filtration was repeated 7 times.
  • the filtered material after filtration seven times was washed with deionized water until the pH of the washing solution reached 5 or higher and filtered.
  • the obtained filtrate was dried at 75 ° C. for 24 hours to obtain a brown polymer powder.
  • the Mn in terms of polystyrene measured by GPC of the polymer having a sulfonic acid group was 71000, and Mw was 160000.
  • the ion exchange capacity of this polymer was 2.35 meq / g, and Tg was 150 ° C.
  • the film was cast on a die coater, preliminarily dried at 80 ° C. for 5 minutes, and then dried at 160 ° C. for 20 minutes.
  • the dried PET film with a coating film was immersed in a large amount of distilled water overnight, the remaining NMP in the coating film was removed, and then air-dried.
  • the polymer obtained in Synthesis Example 3 and Synthesis Example 9 were obtained.
  • a PET film with an electrolyte membrane was obtained in which the polymer was contained at a mass ratio of 95/5 and the thickness of the electrolyte membrane was 20 ⁇ m.
  • a film was formed in the same manner as in Example 1 except that a solution dissolved in 51 g of the solvent was used, and the polymer obtained in Synthesis Example 3 and the fluoropolymer were contained at a mass ratio of 95/5, and the thickness of the electrolyte membrane A PET film with an electrolyte membrane having a thickness of 20 ⁇ m was obtained.
  • FIG. 1 shows a transmission electron micrograph of a cross section of the obtained electrolyte membrane.
  • the black and white part spreading in the background is the polymer obtained in Synthesis Example 7 (polymer (1)), and the white, independent large mass part is the polymer obtained in Synthesis Example 9 (heavy polymer Combined (2)).
  • the polymer obtained in Synthesis Example 7 and the polymer obtained in Synthesis Example 9 are not compatible with each other, and the polymer obtained in Synthesis Example 7 contains It was confirmed that the obtained polymer was dispersed. Other embodiments are likely to have this result.
  • a film was formed in the same manner as in Example 1 except that the solution dissolved in 51 g of the solvent was used, and the polymer obtained in Synthesis Example 7 and the fluoropolymer were contained at a mass ratio of 95/5, and the thickness of the electrolyte membrane A PET film with an electrolyte membrane having a thickness of 20 ⁇ m was obtained.
  • Example 1 and Example 2 are compared with Comparative Example 2, the polymer (1) and the polymer (2) having no hydrophobic structural unit different from the hydrophobic structural unit of the polymer (1) are shown. It has been found that a sufficient effect cannot be obtained when using and.

Abstract

 本発明は、電解質膜、膜-電極接合体および固体高分子型燃料電池に関し、前記電解質膜は、疎水性構造単位とプロトン伝導性基を有する構造単位とを有する重合体(1)、および、該重合体(1)の疎水性構造単位とは異なるスルホン酸基を有さない疎水性構造単位を有する重合体(2)を含有する。

Description

電解質膜、膜-電極接合体および固体高分子型燃料電池
 本発明は、電解質膜、膜-電極接合体および固体高分子型燃料電池に関する。
 燃料電池は、各種の炭化水素系燃料(天然ガス、メタンなど)を改質して得られる水素ガスと、空気中の酸素ガスとを電気化学的に反応させて直接電気を取り出す発電装置であり、化学エネルギーを電気エネルギーに高効率で直接変換できる無公害な発電装置として注目を集めている。
 このような燃料電池は、触媒を担持した一対の電極触媒層(アノード極とカソード極)と該電極触媒層に挟持されたプロトン伝導性の固体高分子電解質膜とから構成される膜-電極接合体を含み、アノード極では、水素イオンと電子が生じ、水素イオンは固体高分子電解質膜を通って、カソード極で酸素と反応して水が生じる。
 特許文献1には、前記固体高分子電解質膜として、親水性セグメントと、下記式で表される疎水性セグメントとのブロック共重合体、および、該疎水性セグメントからなる芳香族高分子からなる電解質膜が開示されている。
 なお、特許文献1に具体的に記載されているのは、この電解質膜のみである。
Figure JPOXMLDOC01-appb-C000002
特開2007-56147号公報
 前記膜-電極接合体は、予め、ポリエチレンテレフタレート(PET)などの基板上に電極触媒層を設けておき、該電極触媒層を固体高分子電解質膜に熱転写することで製造されることがある。
 このような方法で膜-電極接合体を製造する場合であって、固体高分子電解質膜として、前記特許文献1に記載の電解質膜を用いる場合、高温で熱転写しなければ、固体高分子電解質膜と電極触媒層との剥離が生じやすく、また、膜-電極接合体を製造できたとしても、燃料電池の作動条件下(例えば、熱水中)で、固体高分子電解質膜と電極触媒層との剥離が生じやすい傾向にあった。
 さらに、前記特許文献1に記載の電解質膜を燃料電池に用いた場合、フラッディングが生じ、燃料電池の発電性能が低下する傾向にあった。
 本発明は、前記問題に鑑みてなされたものであり、熱水中での電極触媒層の剥離が生じにくい膜-電極接合体を比較的低い熱転写温度で製造できる、発電性能および撥水性にバランスよく優れる電解質膜を提供することにある。
 本発明者らは、前記課題を解決すべく鋭意研究した。その結果、特定の少なくとも2種類の重合体を含む電解質膜によれば、前記課題を解決できることを見出し、本発明を完成するに至った。
 本発明の態様は、以下[1]~[11]に示すことができる。
 [1] 疎水性構造単位とプロトン伝導性基を有する構造単位とを有する重合体(1)、および、該重合体(1)の疎水性構造単位とは異なるスルホン酸基を有さない疎水性構造単位を有する重合体(2)を含有する、電解質膜。
 [2] 前記重合体(2)が芳香族ポリエーテル系重合体または含フッ素ポリマーである、[1]に記載の電解質膜。
 [3] 前記重合体(1)と前記重合体(2)の含有量の合計を100重量%とした際、前記重合体(1)の含有量が50~99.9重量%である、[1]または[2]に記載の電解質膜。
 [4] 前記重合体(2)の数平均分子量が1000~60000である、[1]~[3]のいずれかに記載の電解質膜。
 [5] 前記重合体(2)の示差走査熱量測定(DSC、昇温速度20℃/分)によるガラス転移温度(Tg)が220℃以下である、[1]~[4]のいずれかに記載の電解質膜。
 [6] 水接触角が50~120°である、[1]~[5]のいずれかに記載の電解質膜。
 [7]前記重合体(2)は前記重合体(1)と相溶しない、[1]~[6]のいずれかに記載の電解質膜。
 [8] 前記重合体(2)が、下記式(3)で表される構造単位を含む芳香族ポリエーテル系重合体である、[1]~[7]のいずれかに記載の電解質膜。
Figure JPOXMLDOC01-appb-C000003
[式(3)中、
AおよびDはそれぞれ独立に、直接結合、-O-、-S-、-CO-、-SO2-、-SO-、-CONH-、-COO-、-(CF2i-(iは1~10の整数である)、-(CH2j-(jは1~10の整数である)、-CR'2-(R'は脂肪族炭化水素基、芳香族炭化水素基またはハロゲン化炭化水素基を示す。)、シクロヘキシリデン基またはフルオレニリデン基を示し、
Bは独立に、-O-または-S-を示し、
1~R16はそれぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、ニトロ基、ニトリル基またはR22-E-(Eは、直接結合、-O-、-S-、-CO-、-SO2-、-CONH-、-COO-、-CF2-、-CH2-、-C(CF32-または-C(CH32-を示し;R22は、アルキル基、ハロゲン化アルキル基、アルケニル基、アリール基、ハロゲン化アリール基または含窒素複素環を示し、これらの基の少なくとも1つの水素原子は、ヒドロキシ基、ニトロ基、ニトリル基およびR22-E-からなる群より選ばれる少なくとも1種の基で置換されていてもよい。)を示し、
1~R16のうちの複数が結合して環構造を形成してもよく、
sおよびtはそれぞれ独立に、0~4の整数を示し、rは0または1以上の整数を示す。
但し、式(3)において、A、BおよびDのうち少なくとも1つは-O-であり、rが0の場合sは1~4の整数である。]
 [9] 前記重合体(1)に含まれる疎水性構造単位が、芳香環を含み、2つの結合手を有する構造であり、
 1つの芳香環に前記2つの結合手の両方が結合した、または、
 1つの芳香環(a)、および、該芳香環(a)と単結合もしくは少なくとも1つの芳香環を介してつながった芳香環(b)を有し、芳香環(a)と芳香環(b)それぞれに結合手が1つずつ結合した、
構造単位である、[1]~[8]のいずれかに記載の電解質膜。
 [10] ガス拡散層、触媒層、[1]~[9]のいずれかに記載の電解質膜、触媒層およびガス拡散層がこの順で積層された膜-電極接合体。
 [11] [10]に記載の膜-電極接合体を有する固体高分子型燃料電池。
 本発明によれば、熱水中での触媒層の剥離が生じにくい膜-電極接合体を比較的低い熱転写温度および短時間で製造できる、発電性能および撥水性にバランスよく優れる電解質膜を得ることができる。このため、このような電解質膜を用いることで、膜-電極接合体の製造時に、触媒層がダメージを受けにくく、発電性能および耐久性等に優れる膜-電極接合体を容易に製造することができる。
 また、本発明によれば、発電性能、撥水性、電極との密着性および乾湿サイクル時の寸法安定性に優れる電解質膜を得ることができ、さらに、このような電解質膜を燃料電池に用いることで、フラッディングを抑制することができ、発電性能および耐久性等に優れる燃料電池を得ることができる。
図1は、実施例6で得られた電解質膜の断面の透過型電子顕微鏡(TEM)写真を示す。
 ≪電解質膜≫
 本発明の電解質膜は、疎水性構造単位とプロトン伝導性基を有する構造単位とを有する重合体(1)、および、該重合体(1)の疎水性構造単位とは異なるスルホン酸基を有さない疎水性構造単位を有する重合体(2)を含有する。
 このような電解質膜は、発電性能、撥水性、電極との密着性および乾湿サイクル時の寸法安定性にバランスよく優れる。また、このような電解質膜を用いることで、比較的低い熱転写温度で、熱水中での触媒層の剥離が生じにくい膜-電極接合体を製造することができる。
 本発明の電解質膜(表面)の水接触角は、好ましくは50~120°であり、より好ましくは50~110°であり、さらに好ましくは60~100°である。
 前記水接触角の値は、例えば、下記実施例に記載の方法で測定することができる。
 電解質膜の水接触角の値が前記範囲にあると、撥水性および電極との密着性に優れる電解質膜となる。
 このような電解質膜を、使用時に水が生成するような系、特に、燃料電池に用いる場合には、その表面の撥水性により、フラッディングを抑制することができ、また、電極との密着性に優れることにより、例えば、発電性能および耐久性等に優れる燃料電池を得ることができる。
 本発明の電解質膜は、該電解質膜を用いて、後述する実施例に記載の方法と同様の方法で測定したイオン交換容量が、好ましくは0.5~5.0meq/g、より好ましくは1.4~3.8meq/gである。イオン交換容量が前記範囲にあると、プロトン伝導性および耐水性に優れ、かつ発電性能の高い電解質膜を得ることができるため好ましい。
 本発明の電解質膜は、その乾燥膜厚が、好ましくは5~200μm、より好ましくは10~150μmである。本発明の電解質膜が積層膜や補強された電解質膜である場合でも、これらの厚みは、この範囲にあることが好ましい。
 <重合体(1)>
 前記重合体(1)は、疎水性構造単位とプロトン伝導性基を有する構造単位とを有すれば特に制限されず、ポリマーであってもよいし、オリゴマーであってもよい。
 本発明において、プロトン伝導性基を有する構造単位は、単にプロトン伝導性基であってもよく、プロトン伝導性基としては、スルホン酸基、ホスホン酸基、カルボキシ基、ビススルホニルイミド基などが挙げられ、スルホン酸基が好ましい。
 前記疎水性構造単位としては、特に制限されないが、例えば、芳香環を主鎖骨格に有する、ポリ芳香族炭化水素系、ポリエーテル系、ポリエーテルエーテルケトン系、ポリエーテルスルホン系、ポリフェニレンスルフィド系、ポリイミド系またはポリベンザゾール系構造単位が挙げられる。
 前記重合体(1)としては、公知の重合体を用いることができ、特に限定されないが、例えば、Nafion(登録商標、デュポン(株)製)、アシプレックス(登録商標、旭化成工業(株)製)、フレミオン(登録商標、旭硝子(株)製)の商品名で市販されているスルホン酸基を有する全フッ化炭素系高分子重合体;ポリ芳香族炭化水素系、ポリエーテルエーテルケトン系、ポリフェニレンスルフィド系、ポリイミド系またはポリベンザゾール系などの芳香族環を主鎖骨格に有し、スルホン酸基を有する高分子重合体;等を使用することができる。
 前記重合体(1)の数平均分子量は、好ましくは1万~100万、より好ましくは3万~30万であり、前記重合体(1)の重量平均分子量は、好ましくは1万~100万、より好ましくは5万~40万である。分子量が前記範囲内であると、得られる電解質膜の熱水耐性が向上する傾向にあるため好ましい。なお、数平均分子量および重量平均分子量の測定方法は下記実施例に記載の通りである。
 前記重合体(1)のDSC(昇温速度20℃/分)によるTgは、特に制限されないが、熱水中での安定性に優れる電解質膜が得られ、また、80℃以上の高温作動時のクリープ耐性に優れる燃料電池が得られる等の点から、好ましくは100~250℃であり、より好ましくは120~250℃である。
 前記重合体(1)のイオン交換容量は、好ましくは0.5~5.0meq/g、より好ましくは1.4~3.8meq/gである。イオン交換容量が前記範囲内にあると、プロトン伝導性および発電性能に優れ、かつ、充分に高い耐水性を有する電解質膜を得ることができる。なお、イオン交換容量の測定方法は下記実施例に記載の通りである。
 前記重合体(1)は、具体的には、プロトン伝導性基を有する構造単位を含む親水性セグメント(A1)と、疎水性構造単位を含む疎水性セグメント(B1)とからなる重合体であることが好ましく、プロトン伝導性基を有する構造単位からなる親水性セグメント(A1)と、疎水性構造単位からなる疎水性セグメント(B1)とからなる重合体であることが好ましい。この場合、該重合体(1)は、ブロック重合体であってもよく、ランダム重合体であってもよいが、より発電性能および乾湿サイクル時の寸法安定性に優れる電解質膜が得られる等の点から、親水性セグメント(A1)と疎水性セグメント(B1)とのブロック共重合体が好ましい。
 前記親水性セグメント(A1)と疎水性セグメント(B1)とは結合基を介さずに直接結合していることが好ましい。例えば、親水性セグメント(A1)と疎水性セグメント(B1)との間に結合基が存在し、該結合基がエーテル結合(-O-)であると、得られる電解質膜のラジカル耐性が劣り、該膜の劣化が起こりやすくなる傾向がある。
 前記重合体(1)における各セグメントの量は、該重合体のイオン交換容量および数平均分子量などの所望の性状に応じて決定される。
 前記セグメント(A1)および(B1)の合計量を100重量%とした場合、前記セグメント(A1)の量が、好ましくは15~95重量%、より好ましくは25~85重量%、特に好ましくは35~75重量%であり、前記セグメント(B1)の量が、好ましくは5~85重量%、より好ましくは15~75重量%、特に好ましくは25~65重量%である。
 セグメント(A1)および(B1)となる原料化合物の使用量を調整することで、各セグメントの量が前記範囲にある重合体を得ることができ、これら原料化合物の使用量から、重合体(1)中の各セグメントの量を確認できる。
 本発明において、セグメントとは、当該セグメントを構成する構造単位が3個以上連結しているオリゴマーユニットまたはポリマーユニットを意味し、当該セグメントを構成する構造単位が5個以上連結していることが好ましく、10個以上連結していることがより好ましい。
 〈親水性セグメント(A1)〉
 親水性セグメント(A1)としては、プロトン伝導性基を有し、親水性を示すセグメントであれば特に制限されないが、例えば、主鎖に芳香環を有し、スルホン酸基などのプロトン伝導性基を含有する親水性セグメントが挙げられ、発電性能および乾湿サイクル時の寸法安定性に優れる電解質膜が得られる等の点から、好ましくは、スルホン酸基および芳香環を含み、2つの結合手を有する構造単位であり、1つの芳香環に当該2つの結合手の両方が結合した、または、1つの芳香環(a)、および、該芳香環(a)と単結合もしくは少なくとも1つの芳香環を介してつながった芳香環(b)を有し、芳香環(a)と芳香環(b)それぞれに結合手が1つずつ結合した、構造単位(i)を有するセグメントである。
 親水性セグメント(A1)が、このようなセグメントであると、従来の重合体を用いた場合に比べ、親水性セグメントの連続性が高く、プロトン伝導度の高い電解質膜が得られる傾向にある。
 親水性セグメント(A1)は、1種類の構造単位のみからなってもよく、2種類以上の構造単位を含んでもよい。
 前記親水性セグメント(A1)の数平均分子量は、好ましくは1500~20000、より好ましくは2500~10000である。前記範囲内であるとプロトン伝導度の高い電解質膜が得られるため好ましい。なお、数平均分子量の測定方法は下記実施例に記載の通りである。
 前記構造単位(i)とは、例えば、下記式(i)で表される構造単位のことを意味する。
Figure JPOXMLDOC01-appb-C000004
[式(i)中、Ar、AraおよびArbはそれぞれ独立に、プロトン伝導性基、ハロゲン原子、ニトリル基またはR22-E-(EおよびR22はそれぞれ独立に、下記式(1)中のEおよびR22と同義である。)で置換されていてもよい、ベンゼン環、縮合芳香環または含窒素複素環を有する芳香族基を示し、wは0または正の整数を示し、vは0または1を示す。ただし、式(i)は少なくとも1つのプロトン伝導性基を有する。]
 前記式(i)中、構造単位の端部における単線のうち、一方に置換基が表示されていないもの(本発明において、「結合手」ともいう。)は隣り合う構造単位との接続部位を示す。本明細書中、同様の記載は同様の意味を有する。つまり、2価の構造単位とは、結合手を2つ有する構造単位のことをいう。
 親水性セグメント(A1)は、親水性セグメントの連続性が高く、プロトン伝導度が高い電解質膜が得られるなどの点から、下記式(5)で表される構造単位(以下「構造単位(5)」ともいう。)を含むセグメントであることが好ましく、構造単位(5)からなるセグメントであることがより好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(5)中、Ar11、Ar12およびAr13はそれぞれ独立に、ハロゲン原子、ニトリル基、炭素数1~20の1価の炭化水素基もしくは炭素数1~20の1価のハロゲン化炭化水素基で置換されていてもよい、ベンゼン環、縮合芳香環または含窒素複素環を有する芳香族基を示す。
 前記縮合芳香環としては、ナフタレン環、フルオレン環、ジベンゾフラン環およびジベンゾチオフェン環などが挙げられる。
 前記含窒素複素環としては、窒素原子を含む5員環、6員環構造が挙げられる。また、複素環内の窒素原子の数は、1個以上あれば特に制限されず、複素環内には、窒素以外に、酸素原子や硫黄原子を含んでいてもよい。
 Ar11は、ベンゼン環またはビフェニルであることが好ましく、ベンゼン環であることがより好ましい。
 YおよびZはそれぞれ独立に、直接結合、-O-、-S-、-CO-、-SO2-、-SO-、-(CH2u-、-(CF2u-(uは1~10の整数である。)、-C(CH32-または-C(CF32-を示し、これらの中では、直接結合、-O-、-CO-、SO2-または-(CF2u-が好ましい。
 R17は独立に、直接結合、-O(CH2p-、-O(CF2p-、-(CH2p-または-(CF2p-(pは1~12の整数を示す。)を示し、これらの中では、直接結合、-O(CF2p-、-(CF2p-が、プロトン伝導性の点で好ましい。pは、1~6の整数が好ましく、1~4の整数が好ましい。
 R18およびR19はそれぞれ独立に、水素原子または保護基を示す。ただし、前記構造単位(5)中に含まれる全てのR18およびR19のうち少なくとも1個は水素原子である。
 R18およびR19としては、これらの中では、水素原子または含窒素カチオンが好ましい。
 前記保護基とは、反応性の基(-SO3-または-SO3 -)を一時的に保護する目的で使用されるイオン、原子または原子団等のことをいう。具体的には、アルカリ金属原子、脂肪族炭化水素基、脂環基、含酸素複素環基および含窒素カチオンなどが挙げられる。
 x1は独立に、0~6の整数、好ましくは0~4の整数、より好ましくは0~2の整数を示し、x2は1~7の整数、好ましくは1~5の整数、より好ましくは1~3の整数、さらに好ましくは1または2を示し、aは0または1を示し、bは0~20の整数、好ましくは0~3の整数、より好ましくは0または1、さらに好ましくは0を示す。
 親水性セグメント(A1)は、スルホン酸基を有する前記構造単位(5)以外にも、スルホン酸基以外のプロトン伝導性基を有する構造単位として、例えば、ホスホン酸基を有する構造単位(5')や、特開2011-089036号公報および国際公開第2007/010731号等に記載の含窒素複素環を有する芳香族系構造単位などを含んでもよい。
 〈疎水性セグメント(B1)〉
 疎水性セグメント(B1)としては、疎水性を示すセグメントであれば特に制限されない。
 親水性セグメント(B1)は、1種類の構造単位のみからなってもよく、2種類以上の構造単位を含んでもよい。
 前記疎水性セグメント(B1)の数平均分子量は、好ましくは1000~60000、より好ましくは3000~40000である。数平均分子量が前記範囲内であると熱水耐性が高く、機械的強度に優れる電解質膜が得られるため好ましい。なお、数平均分子量の測定方法は実施例に記載の通りである。
 また、疎水性セグメント(B1)としては、好ましくは、主鎖に芳香環を有し、スルホン酸基などのプロトン伝導性基を含有しない疎水性セグメントが挙げられ、より熱水膨潤抑制に優れる電解質膜が得られるなどの点から、下記式(1)で表される構造単位(以下「構造単位(1)」ともいう。)、下記式(2)で表される構造単位(以下「構造単位(2)」ともいう。)および下記式(3')で表される構造単位(以下「構造単位(3')」ともいう。)からなる群より選ばれる少なくとも1種の構造単位を含むセグメントであることが好ましく、構造単位(1)および構造単位(2)からなる群より選ばれる少なくとも1種の構造単位からなるセグメントであることがより好ましい。
 前記重合体(1)が、構造単位(1)~(3')のいずれか、特には、構造単位(1)または(2)を含有することにより、該重合体の疎水性が著しく向上する。このため、従来と同様のプロトン伝導性を具備しながら、優れた熱水耐性を有する電解質膜を得ることができる。また、セグメント(B1)がニトリル基を含む場合は、靭性および機械的強度の高い電解質膜を製造できる。
 前記疎水性セグメント(B1)は、熱水膨潤抑制に優れる電解質膜が得られる等の点から、好ましくは、芳香環を含み、2つの結合手を有する構造単位であり、1つの芳香環に当該2つの結合手の両方が結合した、または、1つの芳香環(a)、および、該芳香環(a)と単結合もしくは少なくとも1つの芳香環を介してつながった芳香環(b)を有し、芳香環(a)と芳香環(b)それぞれに結合手が1つずつ結合した、構造単位(i')を有するセグメントである。
 前記構造単位(i')とは、例えば、下記式(i')で表される構造単位のことを意味する。
Figure JPOXMLDOC01-appb-C000006
[式(i')中、Ar'、Ara1およびArb1はそれぞれ独立に、ハロゲン原子、ヒドロキシ基、ニトロ基、ニトリル基またはR22-E-(EおよびR22はそれぞれ独立に、下記式(1)中のEおよびR22と同義である。)で置換されていてもよい、ベンゼン環、縮合芳香環または含窒素複素環を有する芳香族基を示し、wは0または正の整数を示し、vは0または1を示す。]
 親水性セグメント(A1)が前記式(i)で表される構造、特には、前記構造単位(5)からなるセグメントであり、疎水性セグメント(B1)が前記式(i')で表される構造、特には、構造単位(1)および/または構造単位(2)からなるセグメントである場合、発電性能および乾湿サイクル時の寸法安定性に優れる電解質膜が得られる傾向にあり、重合体(2)と併用することによる効果がより発揮されるため好ましい。
・構造単位(1)
 疎水性セグメント(B1)が、構造単位(1)を含有することにより、該セグメント(B1)の剛直性が高くなり、かつ芳香環密度が高くなることで、得られる重合体(1)を含む電解質膜の熱水耐性、過酸化物に対するラジカル耐性、ガスバリア性、機械的強度および寸法安定性等を向上させることができる。
 疎水性セグメント(B1)は、1種類の構造単位(1)を含んでもよく、2種類以上の構造単位(1)を含んでもよい。
Figure JPOXMLDOC01-appb-C000007
 式(1)中、芳香環を構成する少なくとも1つの置換可能な炭素原子は窒素原子に置き換えられてもよく、R21は独立に、ハロゲン原子、ヒドロキシ基、ニトロ基、ニトリル基またはR22-E-(Eは、直接結合、-O-、-S-、-CO-、-SO2-、-CONH-、-COO-、-CF2-、-CH2-、-C(CF32-または-C(CH32-を示し;R22は、アルキル基、ハロゲン化アルキル基、アルケニル基、アリール基、ハロゲン化アリール基または含窒素複素環を示し、これらの基の少なくとも1つの水素原子は、さらにヒドロキシ基、ニトロ基、ニトリル基およびR22-E-からなる群より選ばれる少なくとも1種の基で置換されていてもよい。)を示し、複数のR21が結合して環構造を形成してもよい。
 なお、R21がR22-E-であり、かつ、該R22がさらにR22-E-で置換される場合、複数のEは同一でも異なっていてもよく、複数のR22(ただし、置換によって生じる構造の差異を除く部分の構造)も同一でも異なっていてもよい。同様に、本発明において、一つの式中に同一の符号で表される基が複数存在する場合には、これらの基は、同一でも異なっていてもよい。ただし、一つの式中に複数のR22が含まれる場合、その上限は5個であることが好ましい。
 前記R22における、アルキル基、ハロゲン化アルキル基、アルケニル基、アリール基およびハロゲン化アリール基としては、ぞれぞれ、炭素数1~20のアルキル基、炭素数1~20のハロゲン化アルキル基、炭素数2~20のアルケニル基、炭素数6~20の芳香族炭化水素基、および、炭素数6~20のハロゲン化芳香族炭化水素基が挙げられる。
 複数のR21が結合して形成する環構造としては特に制限されないが、ハロゲン原子、ニトリル基、炭素数1~20の1価の炭化水素基もしくは炭素数1~20の1価のハロゲン化炭化水素基で置換されていてもよい、芳香族基、シクロペンチル基およびシクロヘキシル基などの炭素数3~20のシクロアルキル基、および、含酸素複素環基などが挙げられる。
 前記R22としては、アリール基が好ましい。
 Eとしては、重合時の重合活性が高いことなどからカルボニル基が好ましい。
 c1およびc2は独立に0または1以上の整数、好ましくは0または1、より好ましくは0を示し、dは1以上の整数を示し、好ましくは1~300の整数である。
 eは独立に、0~(2c1+2c2+4)の整数を示し、得られる重合体の溶解性の向上や軟化温度の低減による電極等との密着性の向上の点で1以上の整数が好ましい。
・構造単位(2)
 前記疎水性セグメント(B1)が構造単位(2)を含むと、過酸化物などに対するラジカル耐性が向上し、発電耐久性に優れる電解質膜が得られると考えられるため好ましい。
 また、前記疎水性セグメント(B1)が構造単位(2)を含有することにより、該セグメント(B1)に適度な屈曲性(柔軟性)を付与することができ、得られる重合体を含む電解質膜の靭性を向上させることができる。
 疎水性セグメント(B1)は、1種類の構造単位(2)を含んでもよく、2種類以上の構造単位(2)を含んでもよい。
Figure JPOXMLDOC01-appb-C000008
 式(2)中、芳香環を構成する少なくとも1つの置換可能な炭素原子は窒素原子に置き換えられてもよく、R31は独立に、ハロゲン原子、ヒドロキシ基、ニトロ基、ニトリル基またはR22-E-(EおよびR22はそれぞれ独立に、前記式(1)中のEおよびR22と同義である。)を示し、複数のR31が結合して環構造を形成してもよい。
 fは0または1以上の整数、好ましくは0または1、より好ましくは0を示し、gは0~(2f+4)の整数を示す。ただし、式(2)で表される構造単位は、式(1)で表される構造単位以外の構造単位である。
 なお、複数のR31が結合して形成する環構造としては特に制限されないが、前記複数のR21が結合して形成する環構造と同様の構造等が挙げられる。
 R31は、共重合時の重合活性が高いこと、得られる電解質膜の靭性および機械的強度が高くなることからニトリル基が好ましい。
 前記セグメント(B1)が構造単位(1)と前記構造単位(2)とを含むセグメントである場合、該セグメント(B1)は、構造単位(1)と構造単位(2)とがブロック共重合した構造でもよいが、構造単位(1)と構造単位(2)とがランダム共重合した構造であることが、前記構造単位(1)および(2)による効果が十分に得られる点で好ましい。
 前記セグメント(B1)が構造単位(1)と前記構造単位(2)とを含むセグメントである場合であって、前記セグメント(B1)において、前記構造単位(1)および(2)の合計量を100モル%とした場合、上述した効果がより顕著になること等の点から、前記構造単位(1)の量が、好ましくは50~99.9モル%、より好ましくは80~99.9モル%、特に好ましくは90~99.9モル%であり、前記構造単位(2)の量が、好ましくは0.1~50モル%、より好ましくは0.1~20モル%、特に好ましくは0.1~10モル%である。
 前記セグメント(B1)が構造単位(1)と前記構造単位(2)とを含むセグメントである場合であって、前記セグメント(B1)において、前記構造単位(1)および(2)の合計量を100重量%とした場合、上述した効果がより顕著になること等の点から、前記構造単位(1)の量が、好ましくは33~99重量%、より好ましくは80~99重量%、特に好ましくは90~99重量%であり、前記構造単位(2)の量が、好ましくは1~67重量%、より好ましくは1~20重量%、特に好ましくは1~10重量%である。
 また、前記構造単位(1)の含有量は、前記セグメント(B1)100重量%に対しても、前記範囲にあることが好ましい。
・構造単位(3')
 前記疎水性セグメント(B1)が構造単位(3')を含有することにより、該セグメント(B1)に適度な屈曲性(柔軟性)を付与することができ、得られる重合体を含む電解質膜の靭性を向上させることができる。
 疎水性セグメント(B1)は、1種類の構造単位(3')を含んでもよく、2種類以上の構造単位(3')を含んでもよい。
 前記セグメント(B1)が構造単位(1)と構造単位(3')とを含むセグメントである場合であって、前記セグメント(B1)において、前記構造単位(1)および(3')の合計量を100モル%とした場合、上述した効果がより顕著になること等の点から、前記構造単位(1)の量が、好ましくは0.1~99.9モル%、より好ましくは0.5~99.5モル%、特に好ましくは1~99モル%であり、前記構造単位(3')の量が、好ましくは0.1~99.9モル%、より好ましくは0.5~99.5モル%、特に好ましくは1~99モル%である。
前記セグメント(B1)が構造単位(1)と構造単位(3’)とを含むセグメントである場合であって、前記セグメント(B1)において、前記構造単位(1)および(3’)の合計量を100重量%とした場合、上述した効果がより顕著になること等の点から、前記構造単位(1)の量が、好ましくは0.1~99.9重量%、より好ましくは0.5~97重量%、特に好ましくは1~90重量%であり、前記構造単位(3’)の量が、好ましくは0.1~99.9重量%、より好ましくは3~99.5重量%、特に好ましくは10~99重量%である。
 また、前記構造単位(1)の含有量は、前記セグメント(B1)100重量%に対しても、前記範囲にあることが好ましい。
 また、前記セグメント(B1)の好適な一例として、構造単位(3’)のみからなっている場合も挙げられる。
Figure JPOXMLDOC01-appb-C000009
 式(3')中、A'およびD'はそれぞれ独立に、直接結合、-O-、-S-、-CO-、-SO2-、-SO-、-CONH-、-COO-、-(CF2i-(iは1~10の整数である)、-(CH2j-(jは1~10の整数である)、-CR'2-(R'は脂肪族炭化水素基、芳香族炭化水素基またはハロゲン化炭化水素基を示す。)、シクロヘキシリデン基またはフルオレニリデン基を示し、これらの中では、直接結合、-O-、-CO-、-SO2-、-CR'2-、シクロヘキシリデン基およびフルオレニリデン基が好ましい。
 前記R'としては、アルキル基およびパーフルオロアルキル基がより好ましく、メチル基およびトリフルオロメチル基がさらに好ましい。
 B'は独立に、酸素原子または硫黄原子を示し、酸素原子が好ましい。
 R1~R16はそれぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、ニトロ基、ニトリル基またはR22-E-(EおよびR22はそれぞれ独立に、式(1)中のEおよびR22と同義である。)を示し、R1~R16のうちの複数の基が結合して環構造を形成してもよい。
 前記R1~R16はそれぞれ独立に、水素原子、ニトリル基およびt-ブチル基が好ましい。
 R1~R16のうちの複数の基が結合して形成する環構造としては特に制限されないが、ハロゲン原子、ニトリル基、炭素数1~20の1価の炭化水素基もしくは炭素数1~20の1価のハロゲン化炭化水素基で置換されていてもよい、芳香族基、シクロペンチル基およびシクロヘキシル基などの炭素数3~20のシクロアルキル基、および、含酸素複素環基などが挙げられる。また、環構造を形成する場合には、前記の例示にはないが、直接結合を介して式(3')におけるベンゼン環同士を結合していてもよい。
 sおよびtはそれぞれ独立に、0~4の整数、好ましくは0~2の整数を示し、rは0または1以上の整数を示し、好ましくは0~100、より好ましくは0~80である。
 〈重合体(1)の合成方法〉
 前記重合体(1)は、従来公知の方法で合成することができ、特に制限されないが、例えば、前記構造単位となる化合物(例:前記構造単位を有するジハロゲン化物)を、遷移金属を含む触媒や溶媒の存在下で反応させ、必要によりスルホン酸エステル基などをスルホン酸基に変換する、または、スルホン化剤を用いてスルホン化する等の方法でプロトン伝導性基を導入することにより合成することができる。
 <重合体(2)>
 重合体(2)は、該重合体(1)の疎水性構造単位とは異なるスルホン酸基を有さない疎水性構造単位を有する重合体であれば特に制限されず、ポリマーであってもよいし、オリゴマーであってもよい。また、前記重合体(1)と重合体(2)とは相溶しないことが特に好ましい。
 本発明の電解質膜が、前記重合体(1)とともに、この重合体(2)を含むことで、特に、膜-電極接合体を製造する際の熱転写温度を比較的低く、転写時間を比較的短くすることができ、このような低温、短時間で膜-電極接合体を製造しても、熱水中での使用の際に、触媒層が電解質膜から剥離し難い膜-電極接合体を得ることができる。
 さらに、水接触角が前記範囲にある電解質膜を得ることができ、撥水性に優れる電解質膜を得ることができるため、このような電解質膜を燃料電池に用いることで、フラッディングを抑制することができ、発電性能および耐久性等に優れる燃料電池を得ることができる。
 前記重合体(2)は、前記重合体(1)に含まれる疎水性構造単位と同じ構造単位を有していてもよいが、重合体(1)と相溶しない重合体が得られ、撥水性、電極との密着性および乾湿サイクル時の寸法安定性にバランスよく優れる電解質膜が得られ、比較的低い熱転写温度で、熱水中での触媒層の剥離が生じにくい膜-電極接合体を製造することができる等の点から、前記重合体(1)の疎水性セグメントと同じセグメントを有さないことが好ましい。このような重合体(2)を用いると、水接触角が大きい電解質膜を得ることができる傾向にある。
 前記重合体(2)が重合体(1)と相溶しないことは、2Dまたは3D-TEM画像において、前記重合体(1)と重合体(2)とが分離して存在していること、具体的には、前記重合体(1)中に、重合体(2)が分離して存在していることから確認することができる。
 また、前記重合体(2)と前記重合体(1)とが、相溶しない結果、電解質膜の両表面に、前記重合体(2)が存在しやすくなり、電解質膜表面の水接触角が、重合体(2)未添加膜に比べ上昇し、膜表面がより疎水性に変化する傾向にある。従って、電解質膜表面の水接触角を測定することで、重合体(1)と(2)とが相溶していないことが推測できる。
 前記重合体(2)の数平均分子量は、好ましくは1000~60000、より好ましくは3000~40000である。数平均分子量が前記範囲内であると、得られる電解質膜の熱水耐性が向上するため好ましい。なお、数平均分子量の測定方法は下記実施例に記載の通りである。
 前記重合体(2)のDSC(昇温速度20℃/分)によるTgは、特に制限されないが、熱水中での触媒層の剥離が生じにくい膜-電極接合体を比較的低い熱転写温度で製造できる等の点から、好ましくは220℃以下であり、より好ましくは20~220℃であり、特に好ましくは30~220℃である。
 前記重合体(2)としては、具体的には、芳香族系重合体、含フッ素ポリマー、非フッ素ゴムなどが挙げられ、水接触角が大きい電解質膜を得ることができる傾向にあり、かつ、熱水中での触媒層の剥離が生じにくい膜-電極接合体を比較的低い熱転写温度で製造できる等の点から、好ましくは芳香族系重合体および含フッ素ポリマーである。芳香族系重合体としては、化学耐久性等の点から、好ましくは芳香族ポリエーテル系重合体であり、撥水性および電極との密着性により優れる電解質膜が得られる等の点から、特に好ましくは芳香環をエーテル基で結合した疎水性構造単位を有する重合体であり、さらに好ましくは下記式(3)で表される構造単位(以下「構造単位(3)」ともいう。)を含む芳香族ポリエーテル系重合体である。
 重合体(2)は、1種類の構造単位(3)を含んでもよく、2種類以上の構造単位(3)を含んでもよい。
Figure JPOXMLDOC01-appb-C000010
 式(3)中、AおよびDはそれぞれ独立に、直接結合、-O-、-S-、-CO-、-SO2-、-SO-、-CONH-、-COO-、-(CF2i-(iは1~10の整数である)、-(CH2j-(jは1~10の整数である)、-CR'2-(R'は脂肪族炭化水素基、芳香族炭化水素基またはハロゲン化炭化水素基を示す。)、シクロヘキシリデン基またはフルオレニリデン基を示し、これらの中では、直接結合、-O-、-CO-、-SO2-、-CR'2-、シクロヘキシリデン基およびフルオレニリデン基が好ましい。
 前記R'としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、オクタデシル基、エチルヘキシル基、フェニル基、トリフルオロメチル基、これらの基中の水素原子の一部もしくはすべてがハロゲン化された置換基などが挙げられる。
 前記R'としては、アルキル基またはパーフルオロアルキル基がより好ましく、メチル基またはトリフルオロメチル基がさらに好ましい。
 Bは独立に、-O-または-S-を示し、-O-が好ましい。
 なお、式(3)において、A、BおよびDのうち少なくとも1つは-O-であり、rが0の場合sは1~4の整数である。
 R1~R16はそれぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、ニトロ基、ニトリル基またはR22-E-(EおよびR22はそれぞれ独立に、式(1)中のEおよびR22と同義である。)を示し、R1~R16のうちの複数の基が結合して環構造を形成してもよい。
 R1~R16のうちの複数の基が結合して形成する環構造としては特に制限されないが、ハロゲン原子、ニトリル基、炭素数1~20の1価の炭化水素基もしくは炭素数1~20の1価のハロゲン化炭化水素基で置換されていてもよい、芳香族基、シクロペンチル基およびシクロヘキシル基などの炭素数3~20のシクロアルキル基、および、含酸素複素環基などが挙げられる。また、環構造を形成する場合には、前記の例示にはないが、直接結合を介して式(3)におけるベンゼン環同士を結合していてもよい。
 R1~R16としては、水素原子、ニトリル基およびt-ブチル基が好ましく、靭性および機械的強度の高い電解質膜を製造できる等の点から、ニトリル基であることが好ましい。
 sおよびtはそれぞれ独立に、0~4の整数、好ましくは0~2の整数を示し、rは0または1以上の整数を示し、好ましくは0~100、より好ましくは0~80である。
 〈芳香族ポリエーテル系重合体の合成方法〉
 前記芳香族ポリエーテル系重合体は、従来公知の方法で合成することができ、特に制限されないが、例えば、前記構造単位(3)となる化合物(例:前記構造単位(3)の一部の構造を有するジハロゲン化物やジヒドロキシ化合物)を、アルカリ金属塩を含む触媒や溶媒の存在下で反応させることにより合成することができる。
 〈含フッ素ポリマー〉
 前記含フッ素ポリマーとしては、溶剤可溶性の含フッ素ポリマーを使用することが好ましい。このような含フッ素ポリマーは、耐熱性、耐薬品性、機械的特性、耐摩耗性などに優れ、ガス透過性が小さいという特徴を有する。
 さらに、溶剤可溶性の含フッ素ポリマーを使用することにより、重合体(1)からなる連続相と含フッ素ポリマーからなる分散相とを有する電解質膜を容易に製造することができるという性質を有している。
 含フッ素ポリマーは、1種単独で用いてもよく、2種以上を併用してもよい。
 このような溶剤可溶性の含フッ素ポリマーとしては、特に制限されるものではないが、例えば、フッ化ビニリデン系単独(共)重合体、フルオロオレフィン/炭化水素系オレフィン共重合体、フルオロアクリレート共重合体、フルオロエポキシ化合物などを使用することができる。
 これらの中でも、前記重合体(1)と組み合わせて用いるという観点から、(1)フッ化ビニリデン系単独(共)重合体、および(2)フルオロオレフィン/炭化水素系オレフィン重合体が好ましい。なお、(2)フルオロオレフィン/炭化水素系オレフィン重合体は、前記(1)フッ化ビニリデン系単独(共)重合体とは異なる重合体である。
 フッ化ビニリデン系単独(共)重合体としては、特に制限されるものではないが、好ましくは、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、フッ化ビニリデンとテトラフルオロエチレンとの共重合体、フッ化ビニリデンと、ヘキサフルオロプロピレンと、テトラフルオロエチレンとの三元共重合体、および、テトラフルオロエチレンとプロピレンとフッ化ビニリデンとの交互共重合体を挙げることができる。
 このようなポリフッ化ビニリデン系単独(共)重合体は、特に、広い温度範囲にわたって、耐衝撃性に優れ、さらに熱変形温度が高いなど高温力学特性にも優れ、ほとんどあらゆる加工方法が適用できるという特徴を有するため好ましい。
 フルオロオレフィン/炭化水素系オレフィン共重合体としては、特に制限されるものではないが、例えば、テトラフルオロエチレンとプロピレンの交互共重合体、クロロトリフルオロエチレンとプロピレンとの交互共重合体、テトラフルオロエチレンやクロロトリフルオロエチレンと、エチルビニルエーテル、クロロエチルビニルエーテル、イソブチルビニルエーテルまたはヒドロキシアルキルビニルエーテルとの共重合体、フルオロオレフィンとアクリル酸エステルとの共重合体、フルオロオレフィンとメタクリル酸エステルとの共重合体、フルオロオレフィンとカルボン酸ビニルエステルとの共重合体などが好ましい。
 特に、このようなフルオロオレフィン/炭化水素系オレフィン共重合体を用いると、得られる電解質膜の靭性を向上させることができる等の点で望ましい。
 前記含フッ素ポリマーの、ゲルパーミエションクロマトグラフィ(GPC)によるポリスチレン換算の重量平均分子量は、好ましくは5000~10000000、より好ましくは50000~1000000である。分子量が小さすぎると、含フッ素ポリマーの有する優れた性質を発揮できない傾向にあり、また、分子量が大きすぎると、電解質膜の製造が困難になる傾向にある。
 <他の成分>
 本発明の電解質膜は、重合体(1)および(2)の他に、金属化合物または金属イオンを含んでもよい。金属化合物または金属イオンとしては、アルミニウム(Al)、マンガン(Mn)、ニオブ(Nb)、タンタル(Ta)、クロム(Cr)、モリブデン(Mo)、タングステン(W) 、鉄(Fe)、ルテニウム(Ru)、ニッケル(Ni)、スズ(Sn)、パラジウム(Pd)、白金(Pt)、銀(Ag)、セリウム(Ce)、バナジウム(V)、ネオジウム(Nd)、プラセオジウム(Pr)、サマリウム(Sm)、コバルト(Co)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)およびエルビウム(Er)等の金属原子を含む金属化合物またはこれらの金属イオンが挙げられる。
 これらは、1種単独で用いてもよく、2種以上を併用してもよい。
 <電解質膜の製造方法>
 本発明の電解質膜は、例えば、前記重合体(1)と、重合体(2)と、有機溶剤などとを混合して得られる組成物をダイコート、スプレーコート、ナイフコート、ロールコート、スピンコート、グラビアコートなどの公知の方法により基体上に塗布する工程を含むことにより製造することができる。具体的には、前記組成物を基体上に塗布した後、塗布した組成物を乾燥させ、必要により、得られる膜を基体から剥離することで、電解質膜を得ることができる。
 前記重合体(1)の使用量は、電解質膜100重量%に対し、熱水中での触媒層の剥離が生じにくい膜-電極接合体を比較的低い熱転写温度で製造できる、発電性能および撥水性にバランスよく優れる電解質膜を得ることができる等の点から、好ましくは50~99.9重量%、より好ましくは80~99.5重量%、特に好ましくは90~99重量%である。
 また、前記重合体(2)の使用量は、電解質膜100重量%に対し、同様の理由から、好ましくは0.1~50重量%、より好ましくは0.5~20重量%、特に好ましくは1~10重量%であり、これら使用量の好ましい範囲は、重合体(1)100重量%に対しても同様である。
 本発明の電解質膜を製造する際には、前記重合体(1)および(2)は、それぞれ、1種単独で用いてもよく、2種以上を併用してもよい。
 前記基体としては、通常の組成物を塗布する際に用いられる基体であれば特に限定されず、たとえば樹脂製、金属製、ガラス製などの基体が用いられ、好ましくは、PETフィルムなどの熱可塑性樹脂からなる基体が用いられる。
 前記有機溶剤としては、前記重合体(1)および(2)を溶解または膨潤させる溶媒であることが好ましく、たとえば、NMP、N,N-ジメチルホルムアミド、γ-ブチロラクトン、DMAc、DMSO、ジメチル尿素、ジメチルイミダゾリジノン、アセトニトリルなどの非プロトン系極性溶剤、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン等の塩素系溶剤、メタノール、エタノール、プロパノール、iso-プロピルアルコール、sec-ブチルアルコール、tert-ブチルアルコール等のアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテル類、アセトン、メチルエチルケトン、シクロヘキサノン、γ-ブチルラクトン等のケトン類、THF、1,3-ジオキサン等のエーテル類が挙げられる。
 これらの溶剤は、1種単独で、または2種以上を組み合わせて用いることができる。特に、得られる組成物の粘度の面から、NMPが好ましい。
 また、前記有機溶剤として、非プロトン系極性溶剤と他の溶剤との混合物を用いる場合、該混合物の組成は、非プロトン系極性溶剤が好ましくは95~25重量%、より好ましくは90~25重量%、他の溶剤が、好ましくは5~75重量%、より好ましくは10~75重量%(但し、合計は100重量%)である。他の溶剤の配合量が前記範囲内にあると、得られる組成物の粘度を下げる効果に優れる。この場合の非プロトン系極性溶剤と他の溶剤との組み合わせとしては、非プロトン系極性溶剤としてNMP、他の溶剤として幅広い組成範囲で組成物の粘度を下げる効果があるメタノールが好ましい。
 前記乾燥は、50~200℃の温度で、0.1~10時間保持することにより行うことが好ましい。
 なお、前記乾燥は、1段階で行ってもよく、2段階以上、つまり、予め予備乾燥した後、本乾燥してもよい。また、前記乾燥は、必要に応じて、窒素雰囲気下等の不活性ガス雰囲気下、もしくは減圧下にて乾燥を行ってもよい。
 本発明の電解質膜は、単層の膜であってもよく、多層の積層膜であってもよい。
 なお、積層膜の場合、各層の厚さは任意であり、例えば一方の層を厚く、他方の層を薄くしてもよい。また、各層は同一であっても、異なっていてもよい。
 また、電解質膜を製造する際に、多孔質基材やシート状の繊維質物質を用いることで、補強された電解質膜を製造することもできる。
 ≪膜-電極接合体≫
 本発明の膜-電極接合体は、ガス拡散層、触媒層、本発明の電解質膜、触媒層およびガス拡散層がこの順で積層された膜-電極接合体である。具体的には、本発明の電解質膜の一方の面にはカソード電極用の触媒層、他方の面にはアノード電極用の触媒層を設け、さらにカソード電極用およびアノード電極用の各触媒層の電解質膜と反対側に接して、カソード電極側およびアノード電極側にそれぞれガス拡散層を設けたものであることが好ましい。
 本発明の膜-電極接合体は、前記本発明の電解質膜を有するため、膜-電極接合体の製造時に、熱転写により電解質膜上に触媒層を設けたとしても、低温、短時間で、所望の膜-電極接合体が得られるため、その際に触媒層がダメージを受けにくく、発電性能および耐久性等に優れる。
 ガス拡散層、触媒層としては、公知のものを特に制限なく使用可能である。
 このような本発明の膜-電極接合体は、従来公知の方法で製造することができるが、具体的には、本発明の電解質膜の両面に、触媒層となる組成物を従来公知の方法で塗布して触媒層を形成し、その触媒層の上にガス拡散層を設けることで製造してもよいし、予め、PETフィルムなどの基板上に触媒層を形成し、該触媒層を本発明の電解質膜の両面に熱転写し、その触媒層の上にガス拡散層を設けることで製造してもよい。
 本発明の電解質膜を用いることで、熱転写の際の温度を低くしても、所望の特性に優れる膜-電極接合体を得ることができ、塗布により触媒層を形成しても、また、熱転写により触媒層を形成しても、熱水中(例えば、70~100℃)での触媒層の剥離が生じにくい膜-電極接合体を得ることができる。
 前記ガス拡散層としては、多孔性基材または多孔性基材と微多孔層との積層構造体などが挙げられる。ガス拡散層が多孔性基材と微多孔層の積層構造体からなる場合には、微多孔層が触媒層に接することが好ましい。また、前記ガス拡散層は、撥水性を付与するために含フッ素重合体を含んでいることが好ましい。
 前記触媒層は、好ましくは、触媒、イオン交換樹脂などから構成される。
 触媒としては、白金、パラジウム、金、ルテニウム、イリジウム、コバルト、鉄などの金属触媒が挙げられ、白金、パラジウム、金、ルテニウム、イリジウムなどの貴金属触媒が好ましく用いられる。また、金属触媒は、合金や混合物などのように、2種以上の元素を含むものであってもよい。このような金属触媒は、通常、高比表面積カーボン微粒子に担持したものを用いることができる。
 前記イオン交換樹脂は、前記触媒を結着させるバインダー成分として働くとともに、アノード極では触媒上の反応によって発生したイオンを電解質膜へ効率的に供給し、また、カソード極では電解質膜から供給されたイオンを触媒へ効率的に供給する物質であることが好ましい。
 前記イオン交換樹脂としては、触媒層内のプロトン伝導性を向上させるためにプロトン交換基を有するポリマーが好ましい。
 このようなポリマーに含まれるプロトン交換基としては、スルホン酸基、カルボン酸基、リン酸基などがあるが特に限定されるものではない。
 前記イオン交換樹脂は、公知のものを特に制限なく使用可能であり、例えば、Nafionが挙げられ、前記重合体(1)をイオン交換樹脂として使用してもよく、さらにプロトン交換基を有する、フッ素原子を含むポリマー、エチレンやスチレンなどから得られる他のポリマー、これらの共重合体やブレンドであっても構わない。
 前記触媒層は、必要に応じてさらに、炭素繊維、イオン交換基を有しない樹脂等の添加剤を含んでもよい。この添加剤としては撥水性の高い成分であることが好ましく、例えば、含フッ素共重合体、シランカップリング剤、シリコーン樹脂、ワックス、ポリホスファゼンなどを挙げることができるが、好ましくは含フッ素共重合体である。
 ≪固体高分子型燃料電池≫
 本発明の固体高分子型燃料電池は、前記膜-電極接合体を含む。このため、本発明に係る固体高分子型水素燃料電池は、特に、フラッディングが抑制され、発電性能および耐久性等に優れる。
 本発明に係る固体高分子型燃料電池は、具体的には、少なくとも一つの膜-電極接合体およびそのガス拡散層の両外側に位置する、セパレータを含む少なくとも一つの電気発生部;燃料を前記電気発生部に供給する燃料供給部;および酸化剤を前記電気発生部に供給する酸化剤供給部を含む固体高分子型燃料電池であることが好ましい。
 前記セパレータとしては、通常の固体高分子型燃料電池に使用されるものを用いることができる。具体的にはカーボンタイプのセパレータ、金属タイプのセパレータなどを用いることができる。
 また、固体高分子型燃料電池を構成する部材としては、公知のものを特に制限なく使用することが可能である。本発明の固体高分子型燃料電池は単セルであってもよいし、複数の単セルを直列に繋いだスタックセルであってもよい。スタックの方法としては公知の方法を用いることができる。具体的には単セルを平面状に並べた平面スタッキングであってもよいし、燃料または酸化剤の流路が、セパレータの裏表面にそれぞれ形成されているセパレータを介して単セルを積み重ねるバイポーラースタッキングであってもよい。
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
 〔スルホン酸基を有する重合体のイオン交換容量〕
 下記合成例で得られた重合体から試料膜を作成し、該試料膜を脱イオン水に浸漬することで、該膜中に残存している酸を完全に除去した後、重合体1mg当たり2mLの2N食塩水に浸漬してイオン交換させることにより塩酸水溶液を調製した。この塩酸水溶液を、フェノールフタレインを指示薬として、0.001N水酸化ナトリウムの標準水溶液にて中和滴定した。イオン交換後の試料膜を脱イオン水で洗浄し、110℃で2時間真空乾燥させて膜の乾燥重量を測定した。下記式に示すように、水酸化ナトリウムの滴定量と膜の乾燥重量とから、スルホン酸基の当量(以下「イオン交換容量」という。)を求めた。
 イオン交換容量(meq/g)=水酸化ナトリウムの滴定量(mmol)/膜の乾燥重量(g)
 〔数平均および重量平均分子量の測定〕
 下記合成例で得られた重合体(オリゴマー)をNMP緩衝溶液に溶解し、NMP緩衝溶液を溶離液として、装置としてTOSOH HLC-8220(東ソー(株)製)を、カラムとしてTSKgel α-M(東ソー(株)製)を用いたGPCによって、ポリスチレン換算の数平均分子量(Mn)と重量平均分子量(Mw)とを求めた。
 NMP緩衝溶液は、NMP(3L)/リン酸(3.3mL)/臭化リチウム(7.83g)の比率で調製した。
〔ガラス転移温度〕
 DSC:示差熱量計を用い、窒素下、20℃/分の昇温速度により、下記合成例で得られた重合体(オリゴマー)の熱容量が変化する温度をガラス転移温度とした。
 [評価方法]
 下記実施例および比較例で得られた電解質膜を用いて下記評価を実施した。結果を表1に示す。
 〔水接触角の評価〕
 下記実施例および比較例で得られた電解質膜の水接触角は協和界面科学(株)製CA-X接触角計を用い評価した。温度23±2℃、相対湿度50±5%の条件下で、電解質膜表面に水をシリンジで0.7mL滴下し、形成した液滴のなす角度、接触角θを測定した。電解質膜の両面10点ずつを測定し平均値を算出した。
 〔TEM観察〕
 下記実施例で得られた電解質膜の状態を、透過型電子顕微鏡を用いて観察した。実施例で得られた電解質膜の超薄切片を切り出し、該切片を硝酸鉛で染色した後、(株)日立製作所製HF-100FA透過型電子顕微鏡(2D-TEM)で観察することにより行った。
 〔プロトン伝導性評価〕
 下記実施例および比較例で得られた電解質膜を5mm幅の短冊状にカットすることで得られた試料膜の表面に、白金線(Φ=0.5mm)を押し当て、恒温恒湿装置中で保持し、白金線間の交流インピーダンス測定から交流抵抗を求めた。具体的には、70℃、相対湿度30%の環境下で交流10kHzにおけるインピーダンスを測定した。抵抗測定装置として、(株)NF回路設計ブロック製のケミカルインピーダンス測定システムを用い、恒温恒湿装置には、(株)ヤマト科学製のJW241を使用した。白金線は、5mm間隔に5本押し当てた。その後、線間距離を5~20mmに変化させ、交流抵抗を測定した。線間距離と抵抗との関係を示す曲線の勾配から、試料膜の比抵抗を下記式から算出した。この比抵抗の逆数がプロトン伝導度に相当する。
 比抵抗R(Ω・cm)=0.5(cm)×膜厚(cm)×抵抗線間勾配(Ω/cm)
 〔アノード電極触媒層ペーストの調製〕
 200mLのポリボトルに直径5mmのジルコニアボール((株)ニッカトー製「YTZボール」)80gを入れ、白金ルテニウム担持カーボン粒子(田中貴金属工業(株)製「TEC61E54」、Pt:29.8質量%担持、Ru:23.2質量%担持)1.28g、蒸留水3.60g、n-プロピルアルコール12.02gおよびNafion D2020(DuPont社製、ポリマー濃度21%分散液、イオン交換容量1.08meq/g)3.90gを加え、ペイントシェーカーで60分間攪拌した。その後、100メッシュのナイロンメッシュでろ過し、ジルコニアボールを除去することで、アノード電極触媒層ペーストを得た。
 〔カソード電極触媒層ペーストの調製〕
 次に、200mLのポリボトルに直径5mmのジルコニアボール(YTZボール)80gを入れ、白金担持カーボン粒子(田中貴金属工業(株)製「TEC10E50E」、Pt:45.6質量%担持)1.25g、蒸留水3.64g、n-プロピルアルコール11.91gおよびNafion D2020(4.40g)を加え、ペイントシェーカーで60分間攪拌した。その後、100メッシュのナイロンメッシュでろ過し、ジルコニアボールを除去することで、カソード電極触媒層ペーストを得た。
 〔電極触媒層シートの作製〕
 ポリテトラフルオロエチレン(PTFE)シート(ニチアス(株)製、製品名:ナフロンテープ TOMBO9001、厚み:80μm)上に、所定の厚さを有し、5cm×5cmの開口を有するマスクを配置し、上記で得られたアノード電極触媒層ペーストをドクターブレードにて塗布した後、120℃で60分間乾燥することで、Pt触媒塗布量が0.50mg/cm2のアノード触媒層シートを調製した。また、カソード電極触媒層ペーストを用い、同様の方法で、Pt触媒塗布量が0.50mg/cm2のカソード触媒層シートを調製した。
 〔電極触媒層転写性評価〕
 後述の実施例および比較例で得られた各20μm厚の電解質膜を、基材のPETフィルムから剥離し、所定のサイズにカットした後、得られた電解質膜を、先に調製した5cm×5cmのアノード用、カソード用の各電極触媒層シートで、各電極触媒層シートの触媒層側が電解質膜側になるように挟み、精密ホットプレス機にて加熱プレスし、電解質膜上に各電極触媒層を熱転写した。加熱プレスの際の圧力を30kg/cm2、プレス時間を5分で一定とし、加熱温度を110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃に変温し、両電極触媒層が転写できた最低必要温度(接合可能温度)を比較調査した。
 〔電極触媒層の密着性評価〕
 後述の実施例および比較例で得られた電解質膜と、前記最低必要温度で熱転写した各電極触媒層との密着性を比較評価した。前記と同様の方法により作製した、電解質膜の両面に電極触媒層が形成された積層体を1000mLのガラス瓶に入れ、そこに約900mLの脱イオン水を加え、恒温乾燥器(アズワン(株)製、SONW-450)を用いて、95℃で24時間加温した。試験終了後、前記積層体を熱水中から取り出し、各電極触媒層(An:アノード、Ca:カソード)の剥離の有無を目視にて観察した。判定基準は以下のとおりである。
 ○:転写面5cm×5cmすべてにおいて剥離が生じていない
 △:転写面5cm×5cmの一部(2cm2未満)で剥離が見られる
 ×:転写面5cm×5cmの2cm2~25cm2で剥離が見られる
 〔ガス拡散層〕
 ガス拡散層としてSGL CARBON社製のGDL24BCを用いた。
 〔固体高分子型燃料電池の作製〕
 前記と同様の方法で、電解質膜に各触媒層を最低必要温度で熱転写した後、得られた積層体からPTFEシートを剥離し、得られた積層体を2枚のガス拡散層で挟み、圧力60kg/cm2下、160℃で20分間ホットプレスし、膜-電極接合体を作製した。得られた膜-電極接合体のガス拡散層上にガス流路を兼ねるセパレータを積層し、これを2枚のチタン製の集電体で挟み、さらにその外側にヒーターを配置し、有効面積25cm2の評価用燃料電池を作製した。
 〔出力電圧測定〕
 得られた評価用燃料電池のカソード電極側に背圧120kPa、利用率40%で空気を供給し、アノード電極側に背圧120kPa、利用率70%で純水素を供給し、セル温度を90℃、カソード電極側相対湿度を30%、アノード電極側相対湿度を30%として、電流密度1.0A/cm2でのセル電圧を測定した。
 〔合成例1〕
 撹拌機および冷却管を備えた3Lの三つ口フラスコに、クロロスルホン酸(233.0g、2mol)を加え、続いて2,5-ジクロロベンゾフェノン(100.4g、400mmol)を加え、100℃のオイルバスで8時間反応させた。8時間後、反応液を砕氷(1000g)にゆっくりと注ぎ、酢酸エチルで抽出した。有機層を食塩水で洗浄し、次いで、硫酸マグネシウムで乾燥後、酢酸エチルを留去し、淡黄色の粗結晶(3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸クロリド)を得た。粗結晶は精製することなく、そのまま次工程に用いた。
 2,2-ジメチル-1-プロパノール(ネオペンチルアルコール)(38.8g、440mmol)をピリジン300mLに加え、約10℃に冷却した。ここに前記で得られた粗結晶を約30分かけて徐々に加えた。全量添加後、さらに30分撹拌し、反応させた。反応後、反応液を塩酸水1000mL中に注ぎ、析出した固体を回収した。得られた固体を酢酸エチルに溶解させ、炭酸水素ナトリウム水溶液および食塩水で順次洗浄した後、硫酸マグネシウムで乾燥し、次いで、酢酸エチルを留去することで粗結晶を得た。これをメタノールで再結晶し、目的物である3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル(下記式(10)で表される化合物)の白色結晶を得た。
Figure JPOXMLDOC01-appb-C000011
 〔合成例2〕
 攪拌機、温度計、Dean-Stark管、窒素導入管および冷却管をとりつけた1Lの三つ口フラスコに、2,6-ジクロロベンゾニトリル48.8g(284mmol)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン89.5g(266mmol)および炭酸カリウム47.8g(346mmol)を量り取った。フラスコを窒素置換後、該フラスコにスルホラン346mLおよびトルエン173mLを加えて攪拌した。攪拌後のフラスコを150℃のオイルバスにつけ、反応液を150℃で加熱還流させた。反応によって生成する水はDean-Stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-Stark管から系外に除去した。反応温度を200℃まで徐々に上げ、その温度で3時間攪拌を続けた後、2,6-ジクロロベンゾニトリル9.2g(53mmol)を加え、さらに5時間反応した。
 反応液を放冷後、トルエン100mLを加えて希釈した。反応液に不溶の無機塩を濾過により除去し、濾液をメタノール2Lに注いで生成物を沈殿させた。沈殿した生成物を濾過、乾燥後、テトラヒドロフラン250mLに溶解し、これをメタノール2Lに注いで再沈殿させた。沈殿した白色粉末を濾過、乾燥し、目的物109gを得た。GPCで測定したMnは9,500であった。
 得られた化合物は、下記式(11)で表されるオリゴマーであることを確認した。
Figure JPOXMLDOC01-appb-C000012
 〔合成例3〕
 攪拌機、温度計および窒素導入管をとりつけた1Lの三つ口フラスコに、合成例1で得られた化合物135.2g(337mmol)、合成例2で得られたオリゴマー48.7g(5.1mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド6.71g(10.3mmol)、ヨウ化ナトリウム1.54g(10.3mmol)、トリフェニルホスフィン35.9g(137mmol)および亜鉛53.7g(821mmol)を量り取った後、フラスコを乾燥窒素で置換した。ここにN,N-ジメチルアセトアミド(DMAc)430mLを加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc730mLを加えて希釈し、不溶物を濾過により除去した。
 得られた濾液を、攪拌機、温度計および窒素導入管を取り付けた2Lの三つ口フラスコに入れた後、115℃で加熱攪拌し、臭化リチウム44g(506mmol)を加えた。7時間攪拌後、得られた液をアセトン5Lに注いで生成物を沈殿させた。次いで、沈殿物を1N塩酸水溶液で洗浄した後、純水で洗浄し、乾燥させることで目的の重合体122gを得た。得られた重合体のMnは54,000であり、Mwは135,000であった。得られた重合体は下記式(12)で表されるスルホン酸基を有するポリマーと推定される。このポリマーのイオン交換容量は2.3meq/gであり、Tgは190℃であった。
Figure JPOXMLDOC01-appb-C000013
(式中、mおよびkは、その構造単位を形成する原料の仕込み量から算出される値である。)
 〔合成例4〕
 3,5-ジクロロベンゼンスルホニルクロライド(114.65g、467mmol)を、ネオペンチルアルコール(45.30g、514mmol)のピリジン(300mL)溶液に、少量ずつ撹拌しながら15分かけて添加した。この間、反応温度は18~20℃に保った。反応混合物を冷却しながら、さらに30分撹拌した後、氷冷した10wt%HCl水溶液(1600mL)を添加した。水に不溶の成分を700mLの酢酸エチルで抽出し、1NのHCl水溶液で2回(各700mL)洗浄し、次いで、5wt%NaHCO3水溶液で2回(各700mL)洗浄し、MgSO4で乾燥させた。回転乾燥機を用いて溶媒を除去し、残渣を500mLのメタノールから再結晶させた。その結果、下記式(13)で表される3,5-ジクロロベンゼンスルホン酸ネオペンチルを、光沢のある無色の結晶(1H-NMRで99%を超える純度)として得た。収量105.98g、収率76%であった。
Figure JPOXMLDOC01-appb-C000014
 〔合成例5〕
 攪拌機、温度計、Dean-stark管、窒素導入管および冷却管をとりつけた1Lの三つ口フラスコに、2,6-ジクロロベンゾニトリル90.1g(0.52mol)、2,5-ジ-tert-ブチルハイドロキノン26.6g(0.12mol)、2-tert-ブチルハイドロキノン59.4g(0.36mol)および炭酸カリウム85.6g(0.62mol)を量り取った。フラスコを窒素置換後、該フラスコにスルホラン600mLおよびトルエン300mLを加えて攪拌した。攪拌後のフラスコを150℃のオイルバスにつけ、反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。反応温度を180~190℃まで徐々に上げ、その温度で3時間攪拌を続けた後、2,6-ジクロロベンゾニトリル24.6g(0.14mol)を加え、さらに5時間反応させた。
 反応液を放冷後、メタノール/4wt%硫酸水溶液(5/1(体積比))2401mL中に加え沈殿物を得た。沈殿した生成物を濾過し、濾物を水2401mL中に入れ、55℃で1時間攪拌した。攪拌後の液を濾過し、濾物を再度水2401mL中に入れ、55℃で1時間攪拌した後濾過した。次いで、濾物をメタノール2401mL中に入れ、55℃で1時間攪拌した後濾過し、再度、濾物をメタノール2401mL中に入れ、55℃で1時間攪拌し濾過した。濾物を風乾後、80℃で真空乾燥し、目的物125g(収率90%)を得た。GPCで測定したMnは7,000であった。得られた化合物は式(14)で表されるオリゴマーであることを確認した。
Figure JPOXMLDOC01-appb-C000015
(式中、sおよびtは、その構造単位を形成する原料の仕込み量から算出される値である。)
 〔合成例6〕
 合成例4で得られた化合物28.73g(96.7mmol)と、合成例5で得られたオリゴマー23.29g(3.33mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド2.62g(4.0mmol)、トリフェニルホスフィン3.15g(12.0mmol)および亜鉛15.69g(240mmol)の混合物中に、乾燥したDMAc166mLを窒素下で加えた。
 得られた混合物を撹拌下に加熱し(最終的には79℃まで加温)、3時間反応させた。反応途中で系中の粘度上昇が観察された。反応後の溶液をDMAc200mLで希釈した後、30分撹拌し、セライトを濾過助剤に用い、濾過した。
 濾液に臭化リチウム37.78g(435mmol)を加え、内温120℃で7時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、反応液を水5.0Lに注ぎ、凝固物を得た。凝固物をアセトンに浸漬した後、濾過し、洗浄した。洗浄物を1N硫酸水溶液6500gに加え、攪拌しながら洗浄した。洗浄後の液を濾過した後、濾物を、洗浄液のpHが5以上になるまで、イオン交換水で洗浄した。洗浄した固形物を、80℃の熱風乾燥機で乾燥し、目的のポリマー36.0g(収率94.0%)を得た。得られたポリマーのMwは、GPCで測定した結果112,000であり、イオン交換容量は2.38meq/gであり、Tgは210℃であった。得られたポリマーは、下記式(15)で表される構造を含むポリマーであった。
Figure JPOXMLDOC01-appb-C000016
(式中、mおよびkは、その構造単位を形成する原料の仕込み量から算出される値である。)
 〔合成例7〕
 合成例4で得られた化合物22.54g(75.83mmol)と、トリフェニルホスフィン1.19g(4.55mmol)との混合物中に、脱水したDMAc55mLを窒素下で加えて添加系溶液1を調製した。
 2,5-ジクロロベンゾフェノン18.07g(71.95mmol)、2,6-ジクロロベンゾニトリル0.83g(2.23mmol)、トリフェニルホスフィン1.46g(5.56mmol)および亜鉛11.64g(178.02mmol)の混合物中に、脱水したDMAc53mLを窒素下で加えた。この反応系を撹拌下に60℃まで加熱した後、ビス(トリフェニルホスフィン)ニッケルジクロリド1.23g(1.88mmol)を加えて重合を開始し、80℃で20分間撹拌した。反応に伴い発熱や粘度上昇が観察された。
 得られたオリゴマーの分子量を測定するために、反応系溶液を少量サンプリングした。得られたオリゴマーのGPCで測定したポリスチレン換算のMnは5500であった。
 得られた反応系に添加系溶液1を窒素下で加え、撹拌下に60℃まで加熱した後、亜鉛8.78g(134.4mmol)およびビス(トリフェニルホスフィン)ニッケルジクロリド1.47g(2.24mmol)を加えてさらに重合を促進させ、80℃で3時間撹拌した。反応に伴い発熱や粘度上昇が観察された。
 得られた溶液をDMAc498mLで希釈し、セライトを濾過助剤として用いて濾過した。濾液に臭化リチウム25.93g(298.56mmol)を加え、100℃で7時間反応させた。反応後、反応液を室温まで冷却し、水3.3Lに投入して凝固物を含む液を得た。凝固物をアセトンに加え、撹拌しながら4回洗浄・濾過を行った。濾物を1N硫酸水溶液に加え、撹拌しながら洗浄し、その後濾過を行った。この洗浄、濾過を7回繰り返した。7回濾過後の濾物を洗浄液のpHが5以上になるまで脱イオン水で洗浄し、濾過を行った。得られた濾物を75℃で24時間乾燥させることにより褐色重合体粉末を得た。
 得られた重合体は、下記式(16)で表される構造(q1:q2=97:3)を有することが推定される。このスルホン酸基を有する重合体のGPCで測定したポリスチレン換算の分子量は、Mnが51000であり、Mwが114000であった。この重合体のイオン交換容量は2.24meq/gであり、Tgは170℃であった。
Figure JPOXMLDOC01-appb-C000017
(式中、pは、その構造単位を形成する原料の仕込み量から算出される値である。)
 〔合成例8〕
 撹拌羽根、温度計、窒素導入管、Dean-stark管および冷却管を取り付けた3Lのセパラブル4つ口フラスコに、9,9-ビス(4-ヒドロキシフェニル)フルオレン92.8g(265mmol)、レゾルシノール87.4g(794mmol)、4,4’-ジフルオロベンゾフェノン205.4g(941mmol)、4-クロロ-4'-フルオロベンゾフェノン52.5g(224mmol)および炭酸カリウム175.6g(1271mmol)を加えた。次いで、DMAc1250mLおよびトルエン500mLを加えた。その後、155℃まで昇温し、反応によって生成する水をトルエンとの共沸により、Dean-stark管から取り除いた。水の生成が認められなくなるまで3時間反応した後、トルエンを系外に取り除きながら165℃まで昇温し、その後、160~165℃で5時間撹拌した。次に、4-クロロ-4’-フルオロベンゾフェノン30.4g(129mmol)を加え、再度、160~165℃で3時間撹拌した。
 反応溶液をメタノール5.0Lに少量ずつ注ぎ、反応物を凝固させ、1時間攪拌した。凝固液をろ過して得られた沈殿物を、少量のメタノールで洗浄した。得られた沈殿物に5. 0Lのメタノールを加えて攪拌洗浄する操作を3回繰り返した。得られた生成物を乾燥し、347g( 収率88%)の目的物(下記式(17)で表される化合物)を得た。
 得られた目的物のGPCで求めたポリスチレン換算のMnは4100、Mwは6600であった。
Figure JPOXMLDOC01-appb-C000018
(式中、xおよびyは、その構造単位を形成する原料の仕込み量から算出される値である。)
 〔合成例9〕
 攪拌機、温度計、Dean-stark管、窒素導入管および冷却管をとりつけた1Lの三つ口フラスコに、2,6-ジクロロベンゾニトリル143.1g(832mmol)、4,4’-(1,3-フェニレンジイソプロピリデン)ビスフェノール266.1g(768mmol)および炭酸カリウム127.4g(922mmol)を量り取った。フラスコを窒素置換後、該フラスコにスルホラン960mLおよびトルエン480mLを加えて攪拌した。攪拌後のフラスコを150℃のオイルバスにつけ、反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。反応温度を180℃まで徐々に上げ、その温度で3時間攪拌を続けた後、2,6-ジクロロベンゾニトリル33.0g(192mmol)を加え、さらに5時間反応させた。
 反応液を放冷後、メタノール/4wt%硫酸水溶液(5/1(体積比))3800mL中に加え、沈殿を得た。沈殿した生成物を濾過し、濾物を水2400mL中に入れ、55℃で1時間攪拌した。攪拌後の液を濾過し、濾物を再度水3400mL中に入れ、55℃で1時間攪拌した後濾過した。次いで、濾物をメタノール3400mL中に入れ、55℃で1時間攪拌した後濾過し、再度、濾物をメタノール3400mL中に入れ、55℃で1時間攪拌し濾過した。濾物を風乾後、80℃で真空乾燥し、目的物318g(収率90%)を得た。
 得られた目的物のGPCで測定したMnは6,400であった。得られた化合物は下記式(18)で表されるオリゴマーであることを確認した。
Figure JPOXMLDOC01-appb-C000019
 〔合成例10〕
 攪拌機、温度計、Dean-stark管、窒素導入管および冷却管をとりつけた1Lの三つ口フラスコに、ビス(4-クロロフェニル)スルホン149.3g(0.52mol)、ビス(4-ヒドロキシフェニル)スルホン120.1g(0.48mol)および炭酸カリウム85.6g(0.62mol)を量り取った。フラスコを窒素置換後、該フラスコにスルホラン700mLおよびトルエン350mLを加えて攪拌した。攪拌後のフラスコを150℃のオイルバスにつけ、反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。反応温度を180~190℃まで徐々に上げ、3時間攪拌を続けた後、ビス(4-クロロフェニル)スルホン40.2g(0.14mol)を加え、さらに5時間反応させた。
 反応液を放冷後、メタノール/4wt%硫酸水溶液(5/1(体積比))2400mL中に加え、沈殿を得た。沈殿した生成物を濾過し、濾物を水2400mL中に入れ、55℃で1時間攪拌した。攪拌後の液を濾過し、濾物を再度水2400mL中に入れ、55℃で1時間攪拌した後濾過した。次いで、濾物をメタノール2401mL中に入れ、55℃で1時間攪拌した後濾過し、濾物を再度メタノール2400mL中に入れ、55℃で1時間攪拌し濾過した。濾物を風乾後、80℃で真空乾燥し、目的物187.6g(収率80%)を得た。
 得られた目的物のGPCで測定したMnは8,500であった。得られた化合物は下記式(19)で表されるオリゴマーであることを確認した。
Figure JPOXMLDOC01-appb-C000020
 〔合成例11〕
 合成例4で得られた化合物28.40g(96.2mmol)、合成例9で得られたオリゴマー24.07g(3.76mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド2.62g(4.0mmol)、トリフェニルホスフィン2.10g(8.0mmol)および亜鉛15.69g(240mmol)の混合物中に、乾燥したDMAc168mLを窒素下で加えた。
 反応系を撹拌下に加熱し(最終的には79℃まで加温)、3時間反応させた。反応途中で系中の粘度上昇が観察された。反応後の溶液をDMAc200mLで希釈し、30分撹拌した後、セライトを濾過助剤に用い、濾過した。
 濾液に臭化リチウム33.43g(385mmol)を加え、内温120℃で7時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、反応液を水5.0Lに注ぎ、凝固物を得た。凝固物をアセトンに浸漬した後、濾過し、洗浄した。洗浄物を1N硫酸水溶液6500gに加え、攪拌しながら洗浄した。洗浄後の液を濾過した後、濾物を、洗浄液のpHが5以上になるまで、イオン交換水で洗浄した。洗浄した固形物を、80℃の熱風乾燥機で乾燥し、目的のポリマー36.5g(収率94.0%)を得た。得られたポリマーのGPCで測定したMnは47,300であり、Mwは123,000であり、イオン交換容量は2.33meq/gであり、Tgは160℃であった。得られたポリマーは、下記式(20)で表される構造を含むポリマーであった。
Figure JPOXMLDOC01-appb-C000021
(式中、pおよびrは、その構造単位を形成する原料の仕込み量から算出される値である。)
 〔合成例12〕
 合成例4で得られた化合物16.42g(55.26mmol)、合成例9で得られたオリゴマー5.33g(0.83mmol)およびトリフェニルホスフィン0.88g(3.37mmol)の混合物中に、脱水したDMAc53mLを窒素下で加えて添加系溶液2を調製した。
 2,5-ジクロロベンゾフェノン11.03g(43.91mmol)、トリフェニルホスフィン0.86g(3.29mmol)および亜鉛6.89g(105.4mmol)の混合物中に、脱水したDMAc32mLを窒素下で加えた。この反応系を撹拌下に60℃まで加熱した後、ビス(トリフェニルホスフィン)ニッケルジクロリド0.72g(1.10mmol)を加えて重合を開始し、80℃で20分間撹拌した。反応に伴い発熱や粘度上昇が観察された。
 得られたオリゴマーの分子量を測定するために、反応系溶液を少量サンプリングした。得られたオリゴマーのGPCで測定したポリスチレン換算のMnは7000であった。
 得られた反応系に添加系溶液2を窒素下で加え、撹拌下に60℃まで加熱した後、亜鉛6.60g(101.0mmol)およびビス(トリフェニルホスフィン)ニッケルジクロリド1.10g(1.68mmol)を加えてさらに重合を促進させ、80℃で3時間撹拌した。反応に伴い発熱や粘度上昇が観察された。
 得られた溶液をDMAc320mLで希釈し、セライトを濾過助剤として用いて濾過した。濾液に臭化リチウム19.20g(221.04mmol)を加え、100℃で7時間反応させた。反応後、反応液を室温まで冷却し、水2.4Lに投入して凝固物を含む液を得た。凝固物をアセトンに加え、撹拌しながら洗浄し、その後濾過を行った。この洗浄、濾過を4回繰り返した。4回濾過後の濾物を1N硫酸水溶液に加え、撹拌しながら洗浄し、その後濾過を行った。この洗浄、濾過を7回繰り返した。7回濾過後の濾物を洗浄液のpHが5以上になるまで脱イオン水で洗浄し、濾過を行った。得られた濾物を75℃で24時間乾燥させることにより褐色重合体粉末を得た。
 得られた重合体は、下記式(21)で表される構造(q:r=98.14:1.86)を有することが推定される。このスルホン酸基を有する重合体のGPCで測定したポリスチレン換算のMnは71000であり、Mwが160000であった。この重合体のイオン交換容量は2.35meq/gであり、Tgは150℃であった。
Figure JPOXMLDOC01-appb-C000022
(式中、p、qおよびrは、その構造単位を形成する原料の仕込み量から算出される値である。)
 〔実施例1〕
 合成例3で得られた重合体8.55gと、合成例9で得られた重合体0.45gとをメタノール/NMP=40/60(質量比)の混合溶媒51gに溶解した溶液をPETフィルムの上にダイコータにてキャスト塗工し、80℃で5分予備乾燥した後、160℃で20分乾燥した。乾燥後の塗膜付PETフィルムを大量の蒸留水に一晩浸漬し、塗膜中の残存NMPを取り除いた後、風乾し、合成例3で得られた重合体と合成例9で得られた重合体とが質量比95/5で含まれ、電解質膜の厚みが20μmである電解質膜付PETフィルムを得た。
 〔実施例2〕
 合成例3で得られた重合体8.55gと、フッ素系重合体(ポリフッ化ビニリデン;型番301F、エルフ・アトケム社製)0.45gとをメタノール/NMP=40/60(質量比)の混合溶媒51gに溶解した溶液を用いた以外は実施例1と同様に製膜し、合成例3で得られた重合体とフッ素系重合体とが質量比95/5で含まれ、電解質膜の厚みが20μmである電解質膜付PETフィルムを得た。
 〔比較例1〕
 合成例3で得られた重合体9.00gを、メタノール/NMP=40/60(質量比)の混合溶媒51gに溶解した溶液を用いた以外は実施例1と同様に製膜し、合成例3の重合体からなる厚みが20μmである電解質膜付PETフィルムを得た。
 〔比較例2〕
 合成例3で得られた重合体8.55gと、合成例2で得られた重合体0.45gとをメタノール/NMP=40/60(質量比)の混合溶媒51gに溶解した溶液を用いた以外は実施例1と同様に製膜し、合成例3で得られた重合体と合成例2で得られた重合体とが質量比95/5で含まれ、電解質膜の厚みが20μmである電解質膜付PETフィルムを得た。
 〔実施例3〕
 合成例6で得られた重合体8.55gと、合成例9で得られた重合体0.45gとメタノール/NMP=40/60(質量比)の混合溶媒51gに溶解した溶液を用いた以外は実施例1と同様に製膜し、合成例6で得られた重合体と合成例9で得られた重合体とが質量比95/5で含まれ、電解質膜の厚みが20μmである電解質膜付PETフィルムを得た。
 〔比較例3〕
 合成例6で得られた重合体9.00gを、メタノール/NMP=40/60(質量比)の混合溶媒51gに溶解した溶液を用いた以外は実施例1と同様に製膜し、合成例6の重合体からなる厚みが20μmである電解質膜付PETフィルムを得た。
 〔実施例4〕
 市販のNafion D2020(デュポン(株)製、ポリマー濃度21%分散液、イオン交換容量1.08meq/g)42.9gに、30gのNMPを添加後、水および1-プロパノールを留去し溶媒置換することで、NafionのNMP溶液を得た。これに、メタノール40g、NMP30gを添加し、メタノール/NMP=40/60(質量比)の混合溶媒からなるNafion溶液を得た。次いで、合成例9で得られた重合体0.47gを、このNafion溶液に、添加、撹拌し、溶解させた。得られた溶液を用いた以外は実施例1と同様に製膜し、Nafionと合成例9で得られた重合体とが質量比95/5で含まれ、電解質膜の厚みが20μmである電解質膜付PETフィルムを得た。
 〔実施例5〕
 合成例7で得られた重合体8.55gと、合成例8で得られた重合体0.45gとをメタノール/NMP=40/60(質量比)の混合溶媒51gに溶解した溶液を用いた以外は実施例1と同様に製膜し、合成例7で得られた重合体と合成例8で得られた重合体とが質量比95/5で含まれ、電解質膜の厚みが20μmである電解質膜付PETフィルムを得た。
 〔実施例6〕
 合成例7で得られた重合体8.55gと、合成例9で得られた重合体0.45gとをメタノール/NMP=40/60(質量比)の混合溶媒51gに溶解した溶液を用いた以外は実施例1と同様に製膜し、合成例7で得られた重合体と合成例9で得られた重合体とが質量比95/5で含まれ、電解質膜の厚みが20μmである電解質膜付PETフィルムを得た。
 図1に、得られた電解質膜の断面の透過型電子顕微鏡写真を示す。この写真において、背景に広がる白黒部分は、合成例7で得られた重合体(重合体(1))であり、白色の独立した大きな塊部分は、合成例9で得られた重合体(重合体(2))である。この写真から明らかなように、合成例7で得られた重合体と合成例9で得られた重合体とは相溶せずに、合成例7で得られた重合体中に合成例9で得られた重合体が分散していることが確認できた。他の実施例もこのような結果になると考えられる。
 〔実施例7〕
 合成例7で得られた重合体8.55gと、合成例2で得られた重合体0.45gとをメタノール/NMP=40/60(質量比)の混合溶媒51gに溶解した溶液を用いた以外は実施例1と同様に製膜し、合成例7で得られた重合体と合成例2で得られた重合体とが質量比95/5で含まれ、電解質膜の厚みが20μmである電解質膜付PETフィルムを得た。
 〔実施例8〕
 合成例7で得られた重合体8.55gと、合成例5で得られた重合体0.45gとをメタノール/NMP=40/60(質量比)の混合溶媒51gに溶解した溶液を用いた以外は実施例1と同様に製膜し、合成例7で得られた重合体と合成例5で得られた重合体とが質量比95/5で含まれ、電解質膜の厚みが20μmである電解質膜付PETフィルムを得た。
 〔実施例9〕
 合成例7で得られた重合体8.55gと、合成例10で得られた重合体0.45gとをメタノール/NMP=40/60(質量比)の混合溶媒51gに溶解した溶液を用いた以外は実施例1と同様に製膜し、合成例7で得られた重合体と合成例10で得られた重合体とが質量比95/5で含まれ、電解質膜の厚みが20μmである電解質膜付PETフィルムを得た。
 〔実施例10〕
 合成例7で得られた重合体8.55gと、フッ素系重合体(ポリフッ化ビニリデン;型番301F、エルフ・アトケム社製)0.45gとをメタノール/NMP=40/60(質量比)の混合溶媒51gに溶解した溶液を用いた以外は実施例1と同様に製膜し、合成例7で得られた重合体とフッ素系重合体とが質量比95/5で含まれ、電解質膜の厚みが20μmである電解質膜付PETフィルムを得た。
 〔比較例4〕
 合成例7で得られた重合体9.00gを、メタノール/NMP=40/60(質量比)の混合溶媒51gに溶解した溶液を用いた以外は実施例1と同様に製膜し、合成例7の重合体からなる厚みが20μmである電解質膜付PETフィルムを得た。
 〔実施例11〕
 合成例11で得られた重合体8.55gと、合成例8で得られた重合体0.45gとをメタノール/NMP=40/60(質量比)の混合溶媒51gに溶解した溶液を用いた以外は実施例1と同様に製膜し、合成例11で得られた重合体と合成例8で得られた重合体とが質量比95/5で含まれ、電解質膜の厚みが20μmである電解質膜付PETフィルムを得た。
 〔比較例5〕
 合成例11で得られた重合体9.00gを、メタノール/NMP=40/60(質量比)の混合溶媒51gに溶解した溶液を用いた以外は実施例1と同様に製膜し、合成例11の重合体からなる厚みが20μmである電解質膜付PETフィルムを得た。
 〔実施例12〕
 合成例12で得られた重合体8.55gと、合成例8で得られた重合体0.45gとをメタノール/NMP=40/60(質量比)の混合溶媒51gに溶解した溶液を用いた以外は実施例1と同様に製膜し、合成例12で得られた重合体と合成例8で得られた重合体とが質量比95/5で含まれ、電解質膜の厚みが20μmである電解質膜付PETフィルムを得た。
 〔比較例6〕
 合成例12で得られた重合体9.00gを、メタノール/NMP=40/60(質量比)の混合溶媒51gに溶解した溶液を用いた以外は実施例1と同様に製膜し、合成例12の重合体からなる厚みが20μmである電解質膜付PETフィルムを得た。
Figure JPOXMLDOC01-appb-T000023
 表1の結果から、重合体(2)を添加することで、接合可能温度を低下させることができ、かつ密着性を向上させることができることが分かった。
 また、重合体(2)を添加しても著しく比抵抗を悪化させることが無く、密着性が向上することにより、電極と膜界面間のプロトン伝導性が向上し、発電性能を向上できることが分かった。
 実施例1および実施例2と比較例2とを対比すると、重合体(1)と、該重合体(1)の疎水性構造単位とは異なる疎水性構造単位を有さない重合体(2)とを用いた場合では、十分な効果が得られないことが分かった。

Claims (11)

  1.  疎水性構造単位とプロトン伝導性基を有する構造単位とを有する重合体(1)、および、該重合体(1)の疎水性構造単位とは異なるスルホン酸基を有さない疎水性構造単位を有する重合体(2)を含有する、電解質膜。
  2.  前記重合体(2)が芳香族ポリエーテル系重合体または含フッ素ポリマーである、請求項1に記載の電解質膜。
  3.  前記重合体(1)と前記重合体(2)の含有量の合計を100重量%とした際、前記重合体(1)の含有量が50~99.9重量%である、請求項1または2に記載の電解質膜。
  4.  前記重合体(2)の数平均分子量が1000~60000である、請求項1~3のいずれか1項に記載の電解質膜。
  5.  前記重合体(2)の示差走査熱量測定(DSC、昇温速度20℃/分)によるガラス転移温度(Tg)が220℃以下である、請求項1~4のいずれか1項に記載の電解質膜。
  6.  水接触角が50~120°である、請求項1~5のいずれか1項に記載の電解質膜。
  7.  前記重合体(2)は前記重合体(1)と相溶しない、請求項1~6のいずれか1項に記載の電解質膜。
  8.  前記重合体(2)が、下記式(3)で表される構造単位を含む芳香族ポリエーテル系重合体である、請求項1~7のいずれか1項に記載の電解質膜。
    Figure JPOXMLDOC01-appb-C000001
    [式(3)中、
    AおよびDはそれぞれ独立に、直接結合、-O-、-S-、-CO-、-SO2-、-SO-、-CONH-、-COO-、-(CF2i-(iは1~10の整数である)、-(CH2j-(jは1~10の整数である)、-CR'2-(R'は脂肪族炭化水素基、芳香族炭化水素基またはハロゲン化炭化水素基を示す。)、シクロヘキシリデン基またはフルオレニリデン基を示し、
    Bは独立に、-O-または-S-を示し、
    1~R16はそれぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、ニトロ基、ニトリル基またはR22-E-(Eは、直接結合、-O-、-S-、-CO-、-SO2-、-CONH-、-COO-、-CF2-、-CH2-、-C(CF32-または-C(CH32-を示し;R22は、アルキル基、ハロゲン化アルキル基、アルケニル基、アリール基、ハロゲン化アリール基または含窒素複素環を示し、これらの基の少なくとも1つの水素原子は、ヒドロキシ基、ニトロ基、ニトリル基およびR22-E-からなる群より選ばれる少なくとも1種の基で置換されていてもよい。)を示し、
    1~R16のうちの複数が結合して環構造を形成してもよく、
    sおよびtはそれぞれ独立に、0~4の整数を示し、rは0または1以上の整数を示す。
    但し、式(3)において、A、BおよびDのうち少なくとも1つは-O-であり、rが0の場合sは1~4の整数である。]
  9.  前記重合体(1)に含まれる疎水性構造単位が、芳香環を含み、2つの結合手を有する構造であり、
     1つの芳香環に前記2つの結合手の両方が結合した、または、
     1つの芳香環(a)、および、該芳香環(a)と単結合もしくは少なくとも1つの芳香環を介してつながった芳香環(b)を有し、芳香環(a)と芳香環(b)それぞれに結合手が1つずつ結合した、
    構造単位である、請求項1~8のいずれか1項に記載の電解質膜。
  10.  ガス拡散層、触媒層、請求項1~9のいずれか1項に記載の電解質膜、触媒層およびガス拡散層がこの順で積層された膜-電極接合体。
  11.  請求項10に記載の膜-電極接合体を有する固体高分子型燃料電池。
PCT/JP2014/068267 2013-07-09 2014-07-09 電解質膜、膜-電極接合体および固体高分子型燃料電池 WO2015005370A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/903,685 US20160149250A1 (en) 2013-07-09 2014-07-09 Electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
EP14823755.5A EP3021395A4 (en) 2013-07-09 2014-07-09 Electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
KR1020167002918A KR20160030223A (ko) 2013-07-09 2014-07-09 전해질막, 막-전극 접합체 및 고체 고분자형 연료 전지
JP2015526368A JPWO2015005370A1 (ja) 2013-07-09 2014-07-09 電解質膜、膜−電極接合体および固体高分子型燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013143693 2013-07-09
JP2013-143693 2013-07-09

Publications (1)

Publication Number Publication Date
WO2015005370A1 true WO2015005370A1 (ja) 2015-01-15

Family

ID=52280048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068267 WO2015005370A1 (ja) 2013-07-09 2014-07-09 電解質膜、膜-電極接合体および固体高分子型燃料電池

Country Status (5)

Country Link
US (1) US20160149250A1 (ja)
EP (1) EP3021395A4 (ja)
JP (1) JPWO2015005370A1 (ja)
KR (1) KR20160030223A (ja)
WO (1) WO2015005370A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207610A (ja) * 2015-04-28 2016-12-08 東洋紡株式会社 複合高分子電解質膜およびその製造方法ならびに膜電極接合体、燃料電池
JP2016207609A (ja) * 2015-04-28 2016-12-08 東洋紡株式会社 複合高分子電解質膜およびその製造方法ならびに膜電極接合体、燃料電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002889A1 (ja) * 2014-07-04 2016-01-07 旭硝子株式会社 電解質材料、液状組成物、固体高分子形燃料電池用膜電極接合体および含フッ素分岐ポリマー
KR101878357B1 (ko) * 2015-09-24 2018-07-16 주식회사 아모그린텍 연료전지용 분리막, 그의 제조방법 및 연료전지 전극 어셈블리

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820716A (ja) * 1994-06-24 1996-01-23 Hoechst Ag スルホン化芳香族ポリエーテル−ケトンをベースとする均一なポリマーアロイ
JP2003031232A (ja) * 2001-05-08 2003-01-31 Ube Ind Ltd 固体高分子型燃料電池用高分子電解質及び燃料電池
WO2007010731A1 (ja) 2005-07-15 2007-01-25 Jsr Corporation 含窒素芳香族化合物およびその製造方法、重合体およびプロトン伝導膜
JP2007056147A (ja) 2005-08-25 2007-03-08 Ube Ind Ltd 高分子電解質組成物およびその用途
WO2007116482A1 (ja) * 2006-03-31 2007-10-18 Fujitsu Limited 電解質組成物、固体電解質膜及び固体高分子型燃料電池
JP2011089036A (ja) 2009-10-22 2011-05-06 Jsr Corp 新規な芳香族化合物および側鎖にスルホン酸基を含む芳香環を有するポリアリーレン系共重合体
WO2013018677A1 (ja) * 2011-07-29 2013-02-07 Jsr株式会社 プロトン伝導性基を有する芳香族系共重合体およびその用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006160902A (ja) * 2004-12-08 2006-06-22 Asahi Glass Co Ltd 高分子電解質膜及びその製造方法
JP2008053101A (ja) * 2006-08-25 2008-03-06 Toyota Motor Corp 燃料電池用膜・電極接合体及び燃料電池
US7976730B2 (en) * 2008-08-25 2011-07-12 GM Global Technology Operations LLC Blends of low equivalent molecular weight PFSA ionomers with Kynar 2751
JP2010135280A (ja) * 2008-10-28 2010-06-17 Jsr Corp プロトン伝導膜およびその製造方法、膜−電極接合体、固体高分子型燃料電池
JP5599819B2 (ja) * 2009-12-04 2014-10-01 プルーデント エナジー インク ポリマーブレンドプロトン交換膜及びこれを製造する方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820716A (ja) * 1994-06-24 1996-01-23 Hoechst Ag スルホン化芳香族ポリエーテル−ケトンをベースとする均一なポリマーアロイ
JP2003031232A (ja) * 2001-05-08 2003-01-31 Ube Ind Ltd 固体高分子型燃料電池用高分子電解質及び燃料電池
WO2007010731A1 (ja) 2005-07-15 2007-01-25 Jsr Corporation 含窒素芳香族化合物およびその製造方法、重合体およびプロトン伝導膜
JP2007056147A (ja) 2005-08-25 2007-03-08 Ube Ind Ltd 高分子電解質組成物およびその用途
WO2007116482A1 (ja) * 2006-03-31 2007-10-18 Fujitsu Limited 電解質組成物、固体電解質膜及び固体高分子型燃料電池
JP2011089036A (ja) 2009-10-22 2011-05-06 Jsr Corp 新規な芳香族化合物および側鎖にスルホン酸基を含む芳香環を有するポリアリーレン系共重合体
WO2013018677A1 (ja) * 2011-07-29 2013-02-07 Jsr株式会社 プロトン伝導性基を有する芳香族系共重合体およびその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3021395A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207610A (ja) * 2015-04-28 2016-12-08 東洋紡株式会社 複合高分子電解質膜およびその製造方法ならびに膜電極接合体、燃料電池
JP2016207609A (ja) * 2015-04-28 2016-12-08 東洋紡株式会社 複合高分子電解質膜およびその製造方法ならびに膜電極接合体、燃料電池

Also Published As

Publication number Publication date
KR20160030223A (ko) 2016-03-16
EP3021395A1 (en) 2016-05-18
JPWO2015005370A1 (ja) 2017-03-02
EP3021395A4 (en) 2017-02-08
US20160149250A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
WO2014087957A1 (ja) 電解質膜アセンブリー、膜-電極接合体、燃料電池、水電解セルおよび水電解装置
JP7359139B2 (ja) 積層電解質膜、膜電極複合体、および、水電解式水素発生装置、ならびに、積層電解質膜の製造方法
JP2011103295A (ja) 高分子電解質膜、膜−電極接合体、及び固体高分子形燃料電池
WO2013018677A1 (ja) プロトン伝導性基を有する芳香族系共重合体およびその用途
JP2008140779A (ja) 膜−電極接合体
WO2015005370A1 (ja) 電解質膜、膜-電極接合体および固体高分子型燃料電池
WO2014157389A1 (ja) 電解質膜用組成物、固体高分子電解質膜、該電解質膜の製造方法、膜-電極接合体、固体高分子型燃料電池、水電解セルおよび水電解装置
JP5458765B2 (ja) プロトン伝導膜およびその製造方法、膜−電極接合体、固体高分子型燃料電池
JP2009021234A (ja) 膜−電極接合体及びその製造方法、並びに固体高分子形燃料電池
JP2009021233A (ja) 膜−電極接合体及びその製造方法、並びに固体高分子形燃料電池
JP5407429B2 (ja) プロトン伝導膜およびその製造方法、膜−電極接合体、固体高分子型燃料電池
JP4554568B2 (ja) 固体高分子型燃料電池用膜−電極構造体
JP2008053084A (ja) 燃料電池用膜・電極接合体及び燃料電池
JP5552785B2 (ja) 固体高分子電解質膜およびその製造方法、液状組成物
JP5549970B2 (ja) 超強酸基を有する芳香族高分子電解質及びその利用
JP2015228292A (ja) 固体高分子電解質膜、膜−電極接合体、燃料電池、水電解セルおよび水電解装置
JP2010135280A (ja) プロトン伝導膜およびその製造方法、膜−電極接合体、固体高分子型燃料電池
JP2012114049A (ja) 固体高分子電解質膜、およびその製造方法、ならびにそれを用いた膜−電極接合体、燃料電池
JP2015008060A (ja) 電解質膜、膜−電極接合体および固体高分子型燃料電池
JP5440330B2 (ja) 固体高分子電解質膜およびその製造方法、液状組成物
WO2008023773A1 (fr) Ensemble d'électrode à membrane pour une pile à combustible et pile à combustible
JP2008311146A (ja) 膜−電極接合体及びその製造方法、並びに固体高分子型燃料電池
WO2011125735A1 (ja) 固体高分子電解質複合膜およびその製造方法
WO2023181990A1 (ja) 電解質膜、触媒層付電解質膜、膜電極接合体、および水電解装置
JP5261934B2 (ja) 高分子型燃料電池用電極電解質およびその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823755

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526368

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14903685

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014823755

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014823755

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167002918

Country of ref document: KR

Kind code of ref document: A