WO2014087957A1 - 電解質膜アセンブリー、膜-電極接合体、燃料電池、水電解セルおよび水電解装置 - Google Patents

電解質膜アセンブリー、膜-電極接合体、燃料電池、水電解セルおよび水電解装置 Download PDF

Info

Publication number
WO2014087957A1
WO2014087957A1 PCT/JP2013/082319 JP2013082319W WO2014087957A1 WO 2014087957 A1 WO2014087957 A1 WO 2014087957A1 JP 2013082319 W JP2013082319 W JP 2013082319W WO 2014087957 A1 WO2014087957 A1 WO 2014087957A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
electrolyte
polymer
membrane assembly
membranes
Prior art date
Application number
PCT/JP2013/082319
Other languages
English (en)
French (fr)
Inventor
宣彰 若林
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2014551086A priority Critical patent/JPWO2014087957A1/ja
Publication of WO2014087957A1 publication Critical patent/WO2014087957A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8814Temporary supports, e.g. decal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • the present invention relates to an electrolyte membrane assembly, a membrane-electrode assembly, a fuel cell, a water electrolysis cell, and a water electrolysis apparatus.
  • Fuel cells are power generators that directly extract electricity by electrochemically reacting hydrogen gas, methanol, and oxygen gas. They attract attention as pollution-free power generators that can directly convert chemical energy into electrical energy with high efficiency. ing.
  • Such a fuel cell is usually composed of a pair of electrode membranes (anode electrode and cathode electrode) carrying a catalyst and one proton conductive solid polymer electrolyte membrane sandwiched between the electrode membranes. Hydrogen ions and electrons are generated at the anode electrode, and the hydrogen ions pass through the solid polymer electrolyte membrane and react with oxygen at the cathode electrode to generate water.
  • the solid polymer electrolyte membrane used here is required to have sufficient proton conductivity and suppression of permeation so that the supplied gas or fuel such as methanol does not directly react. In order to obtain a fuel cell exhibiting stable performance, it is required that the properties required for these solid polymer electrolyte membranes can be exhibited over a long period of time.
  • electrolyte membranes such as Nafion (registered trademark, manufactured by DuPont) are known as the solid polymer electrolyte membrane.
  • these electrolyte membranes are fuels.
  • the battery When the battery is operated for a long time, it does not show sufficient durability, so it is not easy to obtain a fuel cell that exhibits stable properties over a long period of time.
  • Patent Documents 1 and 2 disclose a polymer electrolyte laminate film composed of a laminate of two or more films having a proton exchange resin as a highly durable polymer electrolyte membrane.
  • An object of the present invention is to provide an electrolyte membrane assembly which is excellent in durability and suppresses a decrease in molecular weight over time and precipitation of platinum inside the electrolyte membrane.
  • a configuration example of the present invention is as follows.
  • An electrolyte membrane assembly comprising a polymer having an ion exchange group and having two or more electrolyte membranes having a glass transition temperature of 100 ° C. or higher.
  • An electrolyte membrane assembly having two or more electrolyte membranes containing a polymer having a glass transition temperature of 100 ° C. or higher and having an ion exchange group.
  • An electrolyte membrane comprising a structure obtained by bending an electrolyte membrane having a glass transition temperature of 100 ° C. or higher and a polymer having an ion exchange group so that one surface of the electrolyte membrane is in contact with the electrolyte membrane Assembly.
  • electrolyte membranes Two or more electrolyte membranes are stacked, or two or more electrolyte membranes are laminated or cross-linked at a temperature lower than the glass transition temperature of the electrolyte membrane.
  • a membrane-electrode assembly in which the gas diffusion layer, the catalyst layer, the electrolyte membrane assembly according to any one of [1] to [7], the catalyst layer, and the gas diffusion layer are laminated in this order.
  • a fuel cell having the membrane-electrode assembly according to [8].
  • a water electrolysis cell comprising a catalyst layer, the electrolyte membrane assembly according to any one of [1] to [7], and a laminate in which the catalyst layers are laminated in this order.
  • a water electrolysis apparatus having the water electrolysis cell according to [10].
  • an electrolyte membrane having sufficient proton conductivity and permeation suppression properties such as fuel and oxygen, excellent durability, molecular weight decrease with time and platinum deposition inside the electrolyte membrane are suppressed. You can get an assembly.
  • FIG. 1 is a schematic diagram showing an example of a membrane-electrode assembly including an electrolyte membrane assembly composed of two electrolyte membranes.
  • FIG. 2 is a schematic diagram illustrating an example of an electrolyte membrane assembly including a structure in which one electrolyte membrane is bent so that one surface of the electrolyte membrane is in contact.
  • the electrolyte membrane assembly of the present invention comprises: Including a polymer having an ion exchange group, and having two or more electrolyte membranes having a glass transition temperature (Tg) of 100 ° C. or higher, Having two or more electrolyte membranes containing a polymer having an ion exchange group with a glass transition temperature of 100 ° C. or higher, or It includes a structure formed by bending an electrolyte membrane containing a polymer having a glass transition temperature of 100 ° C. or higher and having an ion exchange group so that one surface of the electrolyte membrane is in contact.
  • Such an electrolyte membrane assembly has sufficient proton conductivity and suppression of permeation of fuel and oxygen, etc., has excellent durability, and suppresses a decrease in molecular weight over time and platinum deposition inside the electrolyte membrane. Is.
  • the electrolyte membrane assembly of the present invention has sufficient proton conductivity and suppression of permeation of fuel and oxygen, etc., equivalent to one electrolyte membrane or a laminate of two or more electrolyte membranes bonded or fused together. Have sex. Furthermore, when the electrolyte membrane assembly of the present invention is used, the same electrolyte membrane is used as compared with the case of using one electrolyte membrane or a laminate of two or more electrolyte membranes bonded or fused. However, it is excellent in durability and can suppress a decrease in molecular weight over time.
  • the reason why such an effect is obtained is not clear, but the electrolyte membrane interfaces are in physical contact with each other, and the morphology and conduction path of the electrolyte membrane surface are shifted at the electrolyte membrane interface. Therefore, it is considered that large ions such as platinum hardly pass through the conduction path, but small ions such as protons can pass through the conduction path. That is, it is considered that the electrolyte membrane assembly of the present invention desirably has a certain degree of contact resistance at the interface between the electrolyte membranes, and further, the contact resistance is preferably high within a range that does not impair the power generation performance.
  • a catalyst layer is provided on the electrode of the fuel cell, and platinum is used as a catalyst contained in the catalyst layer.
  • This platinum is important because it promotes the chemical reaction that is the source of the extracted electrical energy.
  • a part of the platinum in the catalyst layer is deposited in the electrolyte membrane. It is considered that the deterioration of the electrolyte membrane is caused by platinum, which causes the long-term stability of the fuel cell to decrease.
  • platinum is used for all or part of the electrode catalyst layer, and during operation as in the case of the fuel cell.
  • Part of the platinum in the catalyst layer is deposited in the electrolyte membrane, and this deposited platinum is thought to cause deterioration of the electrolyte membrane and reduce the long-term stability of the water electrolysis device. .
  • the present inventors have found that according to the electrolyte membrane assembly of the present invention, it is possible to reduce the movement of platinum into the electrolyte membrane and the precipitation inside the electrolyte membrane that occur during fuel cell operation. It was. According to the electrolyte membrane assembly of the present invention, the reason why such an effect is obtained is not clear, but due to the high resistance that platinum ions pass through at the interface between the electrolyte membranes, the precipitation of platinum inside the electrolyte membrane It is thought that the amount was suppressed. Therefore, according to the electrolyte membrane assembly of the present invention, a fuel cell and a water electrolysis device having excellent durability can be obtained.
  • the electrolyte membrane assembly of the present invention comprises a fuel cell as described in the following examples, and platinum deposition inside the electrolyte membrane by the potential cycle when the battery is operated as described in the following examples.
  • the amount (platinum deposition amount in the assembly) is preferably 5 ⁇ gcm ⁇ 2 or less, more preferably 3 ⁇ gcm ⁇ 2 or less.
  • the electrolyte membrane assembly of the present invention is used to form a fuel cell as described in the following examples, and the cell is operated as described in the following examples, the electrolyte membrane assembly is subjected to a potential cycle.
  • the amount of platinum deposited is one electrolyte membrane made of the same polymer as that contained in the electrolyte membrane constituting the electrolyte membrane assembly (note that the electrolyte membrane has the same thickness as the electrolyte membrane assembly).
  • platinum deposition amount of each electrolyte membrane constituting the electrolyte membrane assembly is different, or when the platinum deposition amount on the cathode side and the anode side in the folded electrolyte membrane is different, at least one of these electrolyte membranes (cathode side or The anode side electrolyte membrane) only needs to satisfy the above range, and any of these electrolyte membranes (cathode side and anode side electrolyte membranes) preferably satisfies the above range.
  • electrolyte membrane assembly of the present invention When an electrolyte membrane assembly having two or more different electrolyte membranes is used as the electrolyte membrane assembly of the present invention, one electrolyte membrane to be compared with the electrolyte membrane assembly of the present invention was measured by the same method as described above. An electrolyte membrane with the least amount of platinum deposited.
  • the amount of platinum deposited inside the electrolyte membrane is in the above range, an electrolyte membrane assembly with excellent durability and suppressed molecular weight degradation over time can be obtained, and a fuel cell with excellent power generation / water electrolysis performance and long-term stability And a water electrolysis device is preferable.
  • the amount of platinum deposited inside the electrolyte membrane can be measured by the method described in the following examples.
  • An electrolyte membrane assembly in which the amount of platinum deposited inside the electrolyte membrane is in the above range can be produced by, for example, the following methods (i) to (iv).
  • the number average molecular weight retention measured by gel permeation chromatography (GPC) before and after the no-load voltage (OCV) durability test is preferably 70 to 100%. Preferably, it is 75 to 100%.
  • the retention rate of the number average molecular weight measured by gel permeation chromatography (GPC) before and after the no-load voltage (OCV) durability test measured using the electrolyte membrane assembly of the present invention is the same as that of the electrolyte membrane assembly.
  • the retention rate is preferably 1.1 times or more, and more preferably 1.2 times or more.
  • electrolyte membranes constituting the electrolyte membrane assembly When the number average molecular weight retention rates of the electrolyte membranes constituting the electrolyte membrane assembly are different, or when the number average molecular weight retention rates of the cathode side and the anode side in the folded electrolyte membrane are different, these electrolyte membranes It is sufficient that at least one (electrolyte membrane on the cathode side or anode side) satisfies the above range, and any of these electrolyte membranes (electrolyte membrane on the cathode side and anode side) preferably satisfies the above range.
  • electrolyte membrane assembly of the present invention When an electrolyte membrane assembly having two or more different electrolyte membranes is used as the electrolyte membrane assembly of the present invention, one electrolyte membrane to be compared with the electrolyte membrane assembly of the present invention was measured by the same method as described above. An electrolyte membrane having the highest number average molecular weight retention.
  • the number average molecular weight retention ratio is in the above range, an electrolyte membrane assembly having excellent durability and suppressing a decrease in molecular weight over time can be obtained, and a fuel cell and a water electrolysis apparatus having excellent long-term stability can be obtained. preferable.
  • the retention rate of the number average molecular weight can be measured by the method described in the examples below.
  • An electrolyte membrane assembly having a number average molecular weight retention within the above range can be produced, for example, by the following methods (i) to (iv).
  • the thickness of the electrolyte membrane assembly may be the same as that of an electrolyte membrane usually used for fuel cells or water electrolysis cells, but is preferably 5 to 200 ⁇ m, more preferably 10 to 150 ⁇ m.
  • the electrolyte membrane assembly of the present invention is an assembly of the electrolyte membranes, and includes two or more electrolyte membranes.
  • Such an electrolyte membrane assembly is not particularly limited as long as it is formed using two or more electrolyte membranes, and may be substantially composed of only two or more electrolyte membranes, and an adhesive layer or the like is provided between the electrolyte membranes. May be present.
  • the two or more electrolyte membranes used in the present invention may be the same membrane or may be different types of electrolyte membranes.
  • the electrolyte membrane assembly of the present invention includes a structure formed by bending the electrolyte membrane so that one surface of the electrolyte membrane is in contact.
  • Such an electrolyte membrane assembly can be said to be an assembly of electrolyte membranes at the portion where the electrolyte membranes are folded.
  • the structure may be a single electrolyte membrane folded, or may be a laminate of two or more electrolyte membranes, and may be a single electrolyte membrane folded. And other electrolyte membranes (bent or unbent) may be included.
  • An adhesive layer or the like may be present between the electrolyte membranes that are in contact with each other by bending, and an adhesive layer or the like may also be present between the folded electrolyte membrane and the other electrolyte membrane.
  • the manufacturing method of the electrolyte membrane assembly of the present invention is not particularly limited. For example, (i) two or more electrolyte membranes are simply overlapped, and (ii) two or more electrolyte membranes are added to the Tg of the electrolyte membrane. (Iii) two or more electrolyte membranes are bonded to each other at a temperature below the Tg of the electrolyte membrane or a weight constituting the electrolyte membrane. It can be produced by crosslinking at a temperature lower than the Tg of the coalescence, and (iv) bending one electrolyte membrane so that one surface of the electrolyte membrane is in contact.
  • the electrolyte membrane assembly of the present invention has three or more electrolyte membranes
  • at least two electrolyte membranes were produced by the above-described methods (i) to (iv) or known coating methods. It may be a laminate, and the laminate and at least one electrolyte membrane may be laminated by another method.
  • the electrolyte membrane assembly obtained by the method (i) does not substantially contain impurities such as adhesives other than the electrolyte membrane, the battery characteristics are hardly deteriorated by the impurities during operation of the fuel cell. Therefore, it is preferable.
  • an electrolyte membrane assembly from which at least one electrolyte membrane can be peeled can be obtained.
  • Such an electrolyte membrane assembly is particularly excellent in durability and has a molecular weight over time. This is preferable because a general decrease and precipitation of platinum inside the electrolyte membrane are suppressed.
  • the temperature below the Tg of the electrolyte membrane or the temperature below the Tg of the polymer constituting the electrolyte membrane is not particularly limited, but is preferably a temperature 10 to 90 ° C. lower than Tg, More preferably, the temperature is 20 to 50 ° C. lower than Tg.
  • the “temperature lower than the Tg of the electrolyte membrane” means the lowest Tg among all the electrolyte membranes used.
  • Tg a temperature lower than Tg of the electrolyte membrane
  • the temperature lower than Tg of the polymer constituting the electrolyte membrane The temperature below the Tg of the polymer having the lowest Tg among all the electrolyte membranes used.
  • a conventionally known adhesive may be used, and a known press such as a hot press, a roll press, or a vacuum press in a state where two or more electrolyte membranes are stacked. It may be bonded by technology or the like.
  • the method (ii) is preferably a method in which two or more electrolyte membranes are simply overlapped and then bonded at a temperature lower than the Tg of the electrolyte membrane or a temperature lower than the Tg of the polymer constituting the electrolyte membrane.
  • the electrolyte membrane assembly obtained by the method (ii) is preferable from the viewpoint of ease of work in manufacturing a membrane-electrode assembly and a water electrolysis cell, which will be described later, without disassembly.
  • the temperature below the Tg of the electrolyte membrane or the temperature below the Tg of the polymer constituting the electrolyte membrane is not particularly limited, but is preferably a temperature at which a crosslinking reaction proceeds. More preferably, the temperature is 10 to 90 ° C. lower than Tg, and particularly preferably 20 to 50 ° C. lower than Tg.
  • the method (iii) may be performed by using an electrolyte membrane containing a crosslinking agent, or may be performed by applying a crosslinking agent to the interface when two or more electrolyte membranes are crosslinked. Further, the crosslinking may be performed while applying pressure by a known press technique such as a hot press, a roll press, a vacuum press or the like in a state where two or more electrolyte membranes are superposed.
  • a known press technique such as a hot press, a roll press, a vacuum press or the like in a state where two or more electrolyte membranes are superposed.
  • a temperature lower than Tg of the electrolyte membrane or the electrolyte membrane is formed.
  • the method of crosslinking at a temperature lower than the Tg of the polymer is preferable from the viewpoints of obtaining an electrolyte membrane assembly that is excellent in durability, decreases in the molecular weight over time, and suppresses platinum deposition inside the electrolyte membrane.
  • the electrolyte membrane assembly obtained by the above method (iii) is preferable in terms of ease of work in manufacturing a membrane-electrode assembly and a water electrolysis cell, which will be described later, without disassembly. Moreover, an electrolyte membrane assembly with high mechanical strength can be obtained by crosslinking. This is particularly effective when a thin electrolyte membrane is used.
  • the cross-linking agent can be used without particular limitation as long as it can cross-link between electrolyte membranes.
  • a cross-linking agent having the following structure is preferable.
  • R 1 is hydrogen or an arbitrary organic group.
  • cross-linking agent examples include RESITOP C357 (manufactured by Gunei Chemical Industry Co., Ltd.), DM-BI25X-F, 46DMOC, 46DMOIPP, 46DMOEP (trade name, manufactured by Asahi Organic Materials Co., Ltd.), DML -MBPC, DML-MBOC, MDL-OCHP, DML-PC, DML-PCHP, DML-PTBP, DML-34X, DML-EP, DML-POP, DML-OC, dimethylol-Bis-C, dimethylol-BisOC-P , DML-BisOC-Z, DML-BisOCHP-Z, DML-PFP, DML-PSBP, DML-MB25, DML-MTrisPC, DML-Bis25X-34XL, DML-Bis25X-PCHP (trade name, Honshu Chemical Industry Co., Ltd.) ), "Nikarak" (registered trademark) MX-29 (registere
  • TriML-P TriML-35XL
  • TriML-TrisCR-HAP trade name, manufactured by Honshu Chemical Industry Co., Ltd.
  • TM-BIP-A trade name, manufactured by Asahi Organic Materials Co., Ltd.
  • TML-BP TML-HQ
  • TML-pp-BPF TML-BPA
  • TMOM-BP trade name, manufactured by Honshu Chemical Industry Co., Ltd.
  • Nicarac MX-280
  • “Nicarac” MX-270 trade name, Co., Ltd.
  • HML-TPPHBA HML-TPHAP
  • HML-TPHAP trade name, manufactured by Honshu Chemical Industry Co., Ltd.
  • the method (iv) it is only necessary to bend one electrolyte membrane so that one surface of the electrolyte membrane is in contact with each other.
  • bonding or crosslinking is performed at a temperature lower than the Tg of the electrolyte membrane or a temperature lower than the Tg of the polymer constituting the electrolyte membrane. You may let them.
  • the electrolyte membrane assembly obtained by the method (iv) is preferable in terms of ease of work in manufacturing a membrane-electrode assembly and a water electrolysis cell, which will be described later, without the assembly being separated.
  • the electrolyte membrane assembly obtained in the above (i) to (iv) uses one type or two or more types of electrolyte membrane forming compositions, and a certain composition is applied on a substrate by a known method. After being dried or cured by the above, a laminate obtained by applying the composition thereover by a known method (a laminate obtained by a known coating method), or two or more electrolyte membranes, It is different from those fused by applying a temperature higher than the Tg of the electrolyte membrane or a temperature higher than the Tg of the polymer constituting the electrolyte membrane.
  • the electrolyte membrane assembly obtained in the above (i) to (iv) is obtained by applying two or more electrolyte membranes on each other and applying a solvent (solution containing this solvent) that dissolves the electrolyte membrane. It is also different from the one.
  • the electrolyte membrane assembly of the present invention When the electrolyte membrane assembly of the present invention is used in a fuel cell or the like, a certain amount of pressure is applied to the other member such as an electrode constituting the fuel cell or the like, or when the fuel cell is used. However, even in this case, the electrolyte membrane assembly of the present invention is different from a known coating method or an electrolyte membrane laminate obtained by fusion.
  • the electrolyte membrane includes a polymer having an ion exchange group.
  • Such an electrolyte membrane is not particularly limited, and may be one that has been conventionally used as a solid polymer electrolyte membrane.
  • the ion exchange group may be any known one and is not particularly limited, and examples thereof include a phosphonic acid group and a sulfonic acid group. Among these, by using a polymer having a sulfonic acid group, an electrolyte membrane assembly having excellent power generation / water electrolysis performance can be obtained.
  • the Tg of the electrolyte membrane and the polymer does not fuse the electrolyte membranes constituting the electrolyte membrane assembly during the operation of the fuel cell or water electrolysis device, so that a fuel cell or water electrolysis device having a desired effect can be obtained. From such points, it is 100 ° C. or higher, more preferably 120 ° C. or higher, and particularly preferably 150 ° C. or higher.
  • the upper limit of Tg is not particularly limited, but may be, for example, 220 ° C.
  • the Tg of the electrolyte membrane and the polymer is in the above range, it is possible to obtain an electrolyte membrane assembly that is excellent in durability and that suppresses a decrease in molecular weight with time and platinum deposition inside the electrolyte membrane, In addition, a fuel cell and a water electrolysis device having excellent durability and the like can be obtained.
  • Tg of all electrolyte membranes used is 100 ° C. or higher, or Tg of all polymers constituting the electrolyte membrane to be used is 100 ° C. or higher. It is preferable that When the electrolyte membrane and the polymer have two or more glass transition temperatures, the Tg of the electrolyte membrane and the polymer refers to the lower glass transition temperature. Moreover, when the said electrolyte membrane consists only of a polymer substantially, Tg of this electrolyte membrane is the same as Tg of a polymer.
  • the Tg can be measured by the method described in the examples below.
  • the Tg of the electrolyte membrane when the electrolyte membrane contains a component other than the reinforcing layer and the polymer is obtained by immersing the electrolyte membrane in a solvent that can dissolve the polymer contained in the electrolyte membrane. After the polymer is eluted from the solvent, the solvent is removed to obtain a polymer, and this polymer can be used to measure the Tg of the polymer contained in the electrolyte membrane.
  • the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is preferably 10,000 to 1,000,000, more preferably 20,000 to 800,000, and even more preferably 50,000 to 300,000.
  • the number average molecular weight (Mn) is preferably 3,000 to 1,000,000, more preferably 6000 to 800,000, and still more preferably 15,000 to 300,000.
  • the average molecular weight of the polymer can be measured by the method described in the Examples below.
  • the ion exchange capacity of the polymer is preferably 0.5 to 3.5 meq / g, more preferably 0.5 to 3.0 meq / g, and still more preferably 0.8 to 2.8 meq / g.
  • An ion exchange capacity of 0.5 meq / g or more is preferable because it provides an electrolyte membrane with high proton conductivity and high power generation / water electrolysis performance.
  • it is 3.5 meq / g or less, it becomes an electrolyte membrane having sufficiently high water resistance, which is preferable.
  • the ion exchange capacity of the polymer can be measured by the method described in the Examples below.
  • the ion exchange capacity can be adjusted by changing the type, ratio, combination, etc. of the structural units contained in the polymer. Therefore, it can be adjusted by changing the charge amount ratio, type, etc. of the precursor (monomer / oligomer) that induces the structural unit during the polymerization.
  • the proportion of the structural unit containing an ion exchange group is increased in the polymer, the ion exchange capacity of the obtained electrolyte membrane is increased and the proton conductivity is increased, but the water resistance tends to be reduced.
  • the proportion of the structural unit is reduced, the ion exchange capacity of the obtained electrolyte membrane is reduced and the water resistance is increased, but the proton conductivity tends to be lowered.
  • the electrolyte membrane can be produced, for example, by including a step of applying a composition containing the polymer and a solvent for dissolving the polymer onto a substrate by a known method.
  • the composition can be prepared by applying the composition onto a substrate made of plastic, metal, glass, or the like, then drying the applied composition and peeling it from the substrate.
  • a base material which is a constituent material of a fuel cell and is laminated in contact with an electrolyte membrane assembly, for example, when using the following catalyst layer, the obtained electrolyte membrane is used without peeling from the base material. May be.
  • the electrolyte membrane may be an electrolyte membrane including a reinforcing layer obtained by impregnating or applying a reinforcing layer made of a porous material or a sheet-like fibrous substance with the composition. Further, an electrolyte membrane containing a fiber, a filler-like reinforcing material, or the like may be used.
  • the electrolyte membrane is made of a compound having a high platinum affinity (eg, a compound containing a sulfur atom), a metal-containing compound such as tin oxide or tin ion, and a metal ion as necessary, as long as the effects of the present invention are not impaired.
  • An additive such as at least one metal component selected from the group may be included.
  • the composition further includes inorganic acids such as sulfuric acid and phosphoric acid; phosphate glass; tungstic acid; phosphate hydrate; ⁇ -alumina proton substitution product; Inorganic proton conductor particles such as a product; an organic acid containing a carboxylic acid; an organic acid containing a sulfonic acid; an organic acid containing a phosphonic acid;
  • inorganic acids such as sulfuric acid and phosphoric acid
  • phosphate glass such as tungstic acid; phosphate hydrate; ⁇ -alumina proton substitution product
  • Inorganic proton conductor particles such as a product; an organic acid containing a carboxylic acid; an organic acid containing a sulfonic acid; an organic acid containing a phosphonic acid;
  • the thickness of the electrolyte membrane may be the same as that of an electrolyte membrane usually used in a fuel cell or a water electrolysis apparatus, but is preferably 3 to 200 ⁇ m, more preferably 5 to 150 ⁇ m.
  • polystyrene-graft-ethylenetetrafluoroethylene copolymer examples include aliphatic polycarbonate.
  • aliphatic heavy polymers such as polyacetal, polyethylene, polypropylene, acrylic resin, polystyrene, polystyrene-graft-ethylenetetrafluoroethylene copolymer, polystyrene-graft-polytetrafluoroethylene, and aliphatic polycarbonate.
  • the polymer a known polymer can be used, and is not particularly limited.
  • the polymers described in JP-A-174179, JP-A-2010-135282, JP-A-2004-137444, JP-A-2004-345997, JP-A-2004-346163 and the like are preferable, and the following polymers (1 ) Is more preferable.
  • the polymer is a perfluoro-based polymer because it is excellent in durability and can obtain an electrolyte membrane assembly in which the molecular weight decreases with time and the precipitation of platinum inside the electrolyte membrane is suppressed. Preferably not.
  • the polymer (1) is a polymer having a structural unit having a proton conductive group and a hydrophobic structural unit, and is a polymer or an oligomer.
  • the structural unit having a proton conductive group may be simply a proton conductive group, and examples of the proton conductive group include a sulfonic acid group, a phosphonic acid group, a carboxy group, and a bissulfonylimide group. And sulfonic acid groups are preferred.
  • the polymer (1) is a polymer comprising a hydrophilic segment (A1) serving as a structural unit having a proton conductive group and a hydrophobic segment (B1) serving as a hydrophobic structural unit. It is preferable.
  • the polymer (1) may be a block polymer or a random polymer, but an electrolyte membrane that is more excellent in power generation, water electrolysis performance, and dimensional stability during a wet and dry cycle is obtained. From the viewpoint of being obtained, a block copolymer of the hydrophilic segment (A1) and the hydrophobic segment (B1) is preferable.
  • the hydrophilic segment (A1) is not particularly limited as long as it has a proton conductive group and exhibits hydrophilicity.
  • the hydrophilic segment (A1) has an aromatic ring in the main chain and a proton conductive group such as a sulfonic acid group. From the point that an electrolyte membrane having high continuity of the hydrophilic segment and high proton conductivity can be obtained (hereinafter referred to as “structural unit”). (5) ”) is preferable, and a segment composed of the structural unit (5) is more preferable.
  • the hydrophilic segment (A1) may consist of only one type of structural unit or may contain two or more types of structural units.
  • Ar 11 , Ar 12 and Ar 13 are each independently a halogen atom, a nitrile group, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated carbon atom having 1 to 20 carbon atoms.
  • R 18 and R 19 each independently represents a hydrogen atom or a protecting group. However, at least one of all R 18 and R 19 contained in the structural unit (5) is a hydrogen atom.
  • x 1 independently represents an integer of 0 to 6
  • x 2 represents an integer of 1 to 7
  • a represents 0 or 1
  • b represents an integer of 0 to 20.
  • the protecting group refers to an ion, atom or atomic group used for the purpose of temporarily protecting a reactive group (—SO 3 — or —SO 3 ⁇ ).
  • a reactive group —SO 3 — or —SO 3 ⁇
  • Specific examples include an alkali metal atom, an aliphatic hydrocarbon group, an alicyclic group, an oxygen-containing heterocyclic group, and a nitrogen-containing cation.
  • the hydrophilic segment (A1) includes, in addition to the structural unit (5) having a sulfonic acid group, as a structural unit having a proton conductive group other than a sulfonic acid group, for example, a structural unit having a phosphonic acid group, Aromatic structural units having a nitrogen-containing heterocyclic ring described in Kaikai 2011-089036 and International Publication No. 2007/010731 may be included.
  • hydrophobic segment (B1) is not particularly limited as long as it is a hydrophobic segment.
  • the hydrophilic segment (B1) may be composed of only one type of structural unit or may include two or more types of structural units.
  • the hydrophobic segment (B1) preferably includes a hydrophobic segment that has an aromatic ring in the main chain and does not contain a proton conductive group such as a sulfonic acid group, and an electrolyte membrane that is more excellent in suppressing hot water swelling.
  • structural unit (1) the structural unit represented by the following formula (1)
  • structural unit (2) the structural unit represented by the following formula (2)
  • structural unit (3 ′) a structural unit represented by the following formula (3 ′)
  • the segment is preferably a segment composed of at least one structural unit selected from the group consisting of the structural unit (1) and the structural unit (2).
  • the polymer (1) contains any of the structural units (1) to (3 ′), in particular, the structural unit (1) or (2), the hydrophobicity of the polymer is remarkably improved. . Therefore, it is possible to obtain an electrolyte membrane having excellent hot water resistance while having proton conductivity similar to the conventional one. Moreover, when segment (B1) contains a nitrile group, an electrolyte membrane with high toughness and mechanical strength can be produced.
  • the segment (B1) contains the structural unit (1)
  • the segment (B1) includes the polymer (1) obtained by increasing the rigidity and increasing the aromatic ring density.
  • the hot water resistance, radical resistance to peroxide, gas barrier properties, mechanical strength, dimensional stability, etc. of the electrolyte membrane can be improved.
  • the hydrophobic segment (B1) may include one type of structural unit (1), or may include two or more types of structural units (1).
  • At least one substitutable carbon atom constituting the aromatic ring may be replaced with a nitrogen atom, and R 21 is independently a halogen atom, a hydroxy group, a nitro group, a nitrile group or R 22 —.
  • E- is a direct bond, —O—, —S—, —CO—, —SO 2 —, —CONH—, —COO—, —CF 2 —, —CH 2 —, —C (CF 3 ) 2 -or -C (CH 3 ) 2- ;
  • R 22 represents an alkyl group, a halogenated alkyl group, an alkenyl group, an aryl group, a halogenated aryl group or a nitrogen-containing heterocyclic ring, and at least one of these groups one of the hydrogen atoms, further hydroxy group, a nitro group, may be substituted with at least one group selected from the group consisting of nitrile group, and R 22 -E-.
  • the plurality of E may be the same or different, and a plurality of R 22 (however, The structure of the portion excluding the structural difference caused by the substitution may be the same or different.
  • c 1 and c 2 independently represent an integer of 0 or 1 or more, d represents an integer of 1 or more, and e independently represents an integer of 0 to (2c 1 + 2c 2 +4).
  • the hydrophobic segment (B1) contains the structural unit (2) because radical resistance to peroxide and the like is improved and an electrolyte membrane excellent in power generation / water electrolysis durability can be obtained. Moreover, when the hydrophobic segment (B1) contains the structural unit (2), an appropriate flexibility (flexibility) can be imparted to the segment (B1), and the electrolyte membrane containing the resulting polymer Toughness can be improved.
  • the hydrophobic segment (B1) may include one type of structural unit (2), or may include two or more types of structural units (2).
  • At least one substitutable carbon atom constituting the aromatic ring may be replaced with a nitrogen atom, and R 31 is independently a halogen atom, a hydroxy group, a nitro group, a nitrile group or R 22 —.
  • E- (E and R 22 are each independently synonymous with E and R 22 in the formula (1)), and a plurality of R 31 may be bonded to form a ring structure.
  • f represents 0 or an integer of 1 or more
  • g represents an integer of 0 to (2f + 4).
  • the structural unit represented by Formula (2) is a structural unit other than the structural unit represented by Formula (1).
  • the hydrophobic segment (B1) may include one type of structural unit (3 ′) or may include two or more types of structural units (3 ′).
  • a ′ and D ′ are each independently a direct bond, —O—, —S—, —CO—, —SO 2 —, —SO—, —CONH—, —COO—, — (CF 2 ) i — (i is an integer from 1 to 10), — (CH 2 ) j — (j is an integer from 1 to 10), —CR ′ 2 — (R ′ is an aliphatic hydrocarbon) Group, an aromatic hydrocarbon group or a halogenated hydrocarbon group.),
  • a cyclohexylidene group or a fluorenylidene group, B ′ independently represents an oxygen atom or a sulfur atom
  • R 1 to R 16 represent each independently represent hydrogen atom, halogen atom, hydroxy group, nitro group, nitrile group or R 22 -E- (E and R 22 are independently the same as E and R 22 in the formula (1).) shows the , R 1 to R 16 may be combined to
  • the polymer (1) can be synthesized by a conventionally known method and is not particularly limited.
  • the compound serving as the structural unit is reacted in the presence of a catalyst or a solvent.
  • it can be synthesized by introducing a proton conductive group by a method such as conversion of a sulfonic acid ester group or the like to a sulfonic acid group, or sulfonation using a sulfonating agent.
  • the membrane-electrode assembly according to the present invention is a membrane-electrode assembly in which a gas diffusion layer, a catalyst layer, an electrolyte membrane assembly of the present invention, a catalyst layer, and a gas diffusion layer are laminated in this order.
  • the catalyst layer for the cathode electrode is provided on one surface of the electrolyte membrane assembly of the present invention
  • the catalyst layer for the anode electrode is provided on the other surface, and further for the cathode electrode and the anode electrode.
  • Each of the catalyst layers is preferably provided with a gas diffusion layer in contact with the side opposite to the electrolyte membrane assembly.
  • Examples of the membrane-electrode assembly including an electrolyte membrane assembly composed of two electrolyte membranes include a membrane-electrode assembly as shown in FIG.
  • the electrolyte membranes are laminated by the methods (i) to (iii) so that the surfaces with the largest areas of the electrolyte membranes overlap. It is preferable from the viewpoint that a fuel cell having excellent power generation performance and a water electrolysis apparatus having excellent water electrolysis performance can be obtained.
  • electrolyte membrane assembly 16 is used instead of the electrolyte membrane assembly 16 in FIG. 1, when an electrolyte membrane assembly including a structure in which one electrolyte membrane is bent so that one surface of the electrolyte membrane is in contact with the electrolyte membrane is used.
  • a membrane-electrode assembly comprising assembly 16 'in the orientation shown is preferred. That is, when the electrolyte membrane is bent, the surface of the electrolyte membrane having the largest area is overlapped, and the electrolyte membrane interface that can be bent is substantially perpendicular to the stacking direction with the catalyst layer or the like. Thus, it is preferable to bend the electrolyte membrane.
  • the gas diffusion layer is not particularly limited, and a known one can be used, and examples thereof include a porous substrate or a laminated structure of a porous substrate and a microporous layer.
  • the microporous layer is preferably in contact with the catalyst layer.
  • the gas diffusion layer preferably contains a fluoropolymer in order to impart water repellency.
  • the thickness of the gas diffusion layer may be the same as that of a gas diffusion layer usually used in fuel cells, but is preferably 50 to 400 ⁇ m, more preferably 100 to 300 ⁇ m.
  • the catalyst layer is not particularly limited, and a known layer can be used.
  • the catalyst layer includes a catalyst, an ion exchange resin electrolyte, and the like.
  • a noble metal catalyst such as platinum, palladium, gold, ruthenium or iridium is preferably used.
  • the noble metal catalyst may contain two or more elements such as an alloy or a mixture.
  • a catalyst supported on high specific surface area carbon fine particles may be used.
  • the ion exchange resin electrolyte functions as a binder component for binding the catalyst, and efficiently supplies ions generated by the reaction on the catalyst to the electrolyte membrane assembly at the anode electrode, and from the electrolyte membrane assembly at the cathode electrode.
  • a substance that efficiently supplies the generated ions to the catalyst is preferable.
  • the ion exchange resin electrolyte is preferably a polymer having a proton exchange group in order to improve proton conductivity in the catalyst layer.
  • proton exchange groups contained in such a polymer include, but are not particularly limited to, sulfonic acid groups, carboxylic acid groups, and phosphoric acid groups.
  • a polymer having such a proton exchange group is also used without any particular limitation, but a polymer having a proton exchange group composed of a fluoroalkyl ether side chain and a fluoroalkyl main chain, and a sulfonic acid group can be used.
  • An aromatic hydrocarbon polymer having the same is preferably used.
  • the polymer exemplified in the column of the electrolyte membrane may be used as an ion exchange resin electrolyte, and further includes a polymer having a proton exchange group and containing a fluorine atom, another polymer obtained from ethylene, styrene, and the like. These copolymers or blends may be used.
  • an ion exchange resin electrolyte a known one can be used without particular limitation, and may be, for example, Nafion.
  • the catalyst layer may further contain additives such as carbon fiber and a resin not having an ion exchange group, if necessary.
  • This additive is preferably a component having high water repellency, and examples thereof include a fluorine-containing copolymer, a silane coupling agent, a silicone resin, a wax, and polyphosphazene. It is a coalescence.
  • the thickness of the catalyst layer may be the same as that of a catalyst layer usually used in a fuel cell or a water electrolysis apparatus, but is preferably 1 to 100 ⁇ m, more preferably 3 to 50 ⁇ m.
  • the fuel cell according to the present invention has the membrane-electrode assembly. For this reason, the fuel cell according to the present invention is particularly excellent in durability, a decrease in power generation performance over time is suppressed, and stable power generation is possible over a long period of time.
  • the fuel cell according to the present invention includes at least one electricity generation unit including a separator, located on both outer sides of at least one membrane-electrode assembly; a fuel supply unit for supplying fuel to the electricity generation unit And an oxidant supply part for supplying an oxidant to the electricity generation part.
  • separator those used in ordinary fuel cells can be used. Specifically, a carbon type separator, a metal type separator, etc. are mentioned.
  • the fuel cell of the present invention may be a single cell or a stack cell in which a plurality of single cells are connected in series.
  • a known method can be used as the stacking method. Specifically, it may be flat stacking in which single cells are arranged in a plane, and a fuel or oxidant flow path is a stack in which single cells are stacked via separators formed on the back surface of the separator. Polar stacking may be used.
  • the water electrolysis cell according to the present invention includes a laminate in which the catalyst layer, the electrolyte membrane assembly of the present invention, and the catalyst layer are laminated in this order.
  • the catalyst layer known ones can be used without particular limitation, and specific examples include the same layers as the catalyst layer described in the membrane-electrode assembly.
  • the water electrolysis apparatus according to the present invention has the water electrolysis cell. For this reason, the water electrolysis apparatus according to the present invention is particularly excellent in durability, suppresses a decrease in performance over time, and enables stable electrolysis over a long period of time.
  • the ion exchange capacity of the polymers obtained in the following synthesis examples was measured as follows.
  • the polymer obtained in the following synthesis example was immersed in deionized water to completely remove the acid remaining in the polymer, and then immersed in 2 mL of 2N saline per 1 mg of the polymer.
  • a hydrochloric acid aqueous solution was prepared by ion exchange. This hydrochloric acid aqueous solution was neutralized with a standard aqueous solution of 0.001N sodium hydroxide using phenolphthalein as an indicator.
  • the polymer after ion exchange was washed with deionized water, dried in vacuum at 110 ° C. for 2 hours, and the dry weight was measured.
  • Ion exchange capacity titration amount of sodium hydroxide (mmol) / dry weight of polymer (g)
  • NMP buffer solution N-methyl-2-pyrrolidone buffer solution
  • TOSOH HLC-8220 manufactured by Tosoh Corporation
  • Mn number average molecular weight
  • Mw weight average molecular weight in terms of polystyrene were determined by gel permeation chromatography (GPC) using TSKgel ⁇ -M (manufactured by Tosoh Corporation) as a column.
  • the NMP buffer solution was prepared at a ratio of NMP (3 L) / phosphoric acid (3.3 mL) / lithium bromide (7.83 g).
  • THF tetrahydrofuran
  • TOSOH HLC-8220 manufactured by Tosoh Corporation
  • TSKgel ⁇ -M manufactured by Tosoh Corporation
  • the resulting reaction solution was allowed to cool and then diluted by adding 100 mL of toluene.
  • the precipitate of the inorganic compound produced as a by-product was removed by filtration, and the filtrate was put into 2 L of methanol.
  • the precipitated product was collected by filtration, collected, dried, and dissolved in 250 mL of tetrahydrofuran.
  • the obtained solution was poured into 2 L of methanol and reprecipitated to obtain 107 g of the target compound (precipitate).
  • the Mn in terms of polystyrene determined by GPC (solvent: THF) of the obtained target compound was 7,300.
  • the obtained compound was an oligomer represented by the following structural formula.
  • 2,3-dimethyl-1-propanol (neopentyl alcohol) (38.8 g, 440 mmol) was added to pyridine (300 mL) and cooled to about 10 ° C.
  • the crude crystals obtained above were gradually added thereto over about 30 minutes. After the total amount was added, the reaction was further stirred for 30 minutes. After the reaction, the reaction solution was poured into 1000 mL of hydrochloric acid water, and the precipitated solid was collected. The obtained solid was dissolved in ethyl acetate, washed successively with aqueous sodium bicarbonate solution and brine, dried over magnesium sulfate, and ethyl acetate was distilled off to obtain crude crystals. This was recrystallized from methanol to obtain white crystals of neopentyl 3- (2,5-dichlorobenzoyl) benzenesulfonate represented by the following structural formula.
  • the dried product is placed in a 2 L three-necked flask equipped with a stirrer, thermometer, cooling tube, Dean-Stark tube and nitrogen-introduced three-way cock, and stirred at 100 ° C. in 1 L of toluene to retain residual moisture. It was dissolved while leaving. After allowing to cool, the precipitated crystals were filtered to obtain 142 g of pale yellow 2,5-dichloro-4 ′-(2-pyridinyloxy) benzophenone represented by the following structural formula in a yield of 83%.
  • the obtained mixture was heated with stirring (finally heated to 82 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction.
  • the solution after the reaction was diluted with 175 mL of DMAc, stirred for 30 minutes, and then filtered using Celite as a filter aid.
  • the obtained filtrate was put into a 1 L three-necked flask equipped with a stirrer, to which 24.4 g (281 mmol) of lithium bromide was added in 1/3 portions at intervals of 1 hour. The reaction was carried out at 5 ° C. for 5 hours under a nitrogen atmosphere. After the reaction, the mixture was cooled to room temperature, poured into 4 L of acetone and solidified.
  • the coagulated product was collected by filtration, air-dried, pulverized with a mixer, put into 1500 mL of 1N sulfuric acid, and washed with stirring. After filtration, the filtrate is washed with ion-exchanged water until the pH of the washing liquid becomes 5 or higher, and then dried at 80 ° C. overnight, and 38.0 g of a polymer having a sulfonic acid group into which a target basic unit has been introduced. Got.
  • the ion exchange capacity of this polymer was 2.33 meq / g.
  • the obtained polymer having a sulfonic acid group was a compound (resin A) represented by the following structural formula. Moreover, the glass transition temperature of the obtained compound was 190 degreeC.
  • the addition system solution was added to the obtained reaction system under nitrogen. After heating the system to 60 ° C. with stirring, 15.39 g (235.43 mmol) of zinc and 2.05 g (3.14 mmol) of bis (triphenylphosphine) nickel dichloride were added to further promote the polymerization, and 80 ° C. For 3 hours. An exotherm and an increase in viscosity were observed with the reaction.
  • the obtained solution was diluted with 273 mL of DMAc and filtered using Celite as a filter aid.
  • 29.82 g (343.33 mmol) of lithium bromide was added and reacted at 100 ° C. for 7 hours.
  • the reaction solution was cooled to room temperature and poured into 3.2 L of water to be solidified.
  • Acetone was added to the coagulated product, and washing and filtration were performed 4 times with stirring.
  • the washed product was washed and filtered seven times while stirring with 1N sulfuric acid. Further, the washed product was washed and filtered with deionized water until the pH of the washing solution reached 5 or higher.
  • the obtained washed product was dried at 75 ° C. for 24 hours to obtain 26.3 g of a polymer having a target sulfonic acid group.
  • the polystyrene-equivalent molecular weight measured by GPC (solvent: NMP buffer solution) of the polymer having a sulfonic acid group was Mn of 53,000 and Mw of 120,000. Moreover, the ion exchange capacity of this polymer was 2.30 meq / g.
  • p is a value calculated from the charged amount of the raw material forming the structural unit.
  • the obtained carbon black paste was applied on a gas diffusion layer 34DC made by SGL CARBON with a doctor blade so that the weight increase after drying was 0.3 mg / cm 2 and dried at 80 ° C. for 15 minutes.
  • a base layer coating gas diffusion layer was prepared.
  • zirconia balls having a diameter of 5 mm, platinum ruthenium-supported carbon particles (“TEC61E54” manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), Pt: 29.8 mass% supported, Ru: 23.2 mass% 1.28 g and 3.60 g of distilled water were added and kneaded for 10 minutes at 200 rpm using a planetary ball mill (P-5). Thereafter, 12.02 g of n-propyl alcohol and Nafion D2020 (3.90 g) were further added, kneaded at 200 rpm for 30 minutes, and then zirconia balls were removed to obtain an anode catalyst paste.
  • TEC61E54 platinum ruthenium-supported carbon particles
  • the obtained anode catalyst paste was applied on the underlayer of the underlayer coating gas diffusion layer with a doctor blade so that the amount of Pt and Ru was 0.5 mg / cm 2, and then dried at 80 ° C. for 15 minutes, An anode gas diffusion electrode was prepared.
  • a cathode catalyst paste In an 80 mL PTFE container, 80 g of zirconia balls (YTZ balls) having a diameter of 5 mm, platinum-supported carbon particles (“TEC10E50E” manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., Pt: 45.6% by mass), and distilled water 3 .64 g was added and kneaded at 200 rpm for 10 minutes using a planetary ball mill (P-5). Thereafter, 11.91 g of n-propyl alcohol and Nafion D2020 (4.40 g) were further added and kneaded at 200 rpm for 30 minutes, and then the zirconia balls were removed to obtain a cathode catalyst paste.
  • YTZ balls zirconia balls having a diameter of 5 mm
  • platinum-supported carbon particles (“TEC10E50E” manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., Pt: 45.6% by mass)
  • the obtained cathode catalyst paste was applied on the underlayer of the underlayer coating gas diffusion layer with a doctor blade so that the amount of Pt was 0.5 mg / cm 2, and then dried at 80 ° C. for 15 minutes to obtain a cathode gas.
  • a diffusion electrode was produced.
  • Example 1 Film formation Resin A film 2 was obtained in the same manner as in Comparative Example 1 except that the film thickness was 20 ⁇ m.
  • Example 2 Film Formation Resin B film 2 was obtained in the same manner as in Comparative Example 2 except that the film thickness was adjusted to 10 ⁇ m.
  • pure hydrogen gas containing water vapor with a dew point of 45 ° C. is supplied to the anode gas diffusion electrode side at 0.05 L / min, and nitrogen gas contains water vapor with a dew point of 45 ° C. on the cathode gas diffusion electrode side.
  • the fuel cell was supplied at a rate of 0.1 L / min, the temperature of the fuel cell was controlled at 50 ° C., and the cathode voltage relative to the anode was increased from 0.6 V to 1.5 V using a potentiogalvanostat (1287 type manufactured by Solartron). It was reciprocated 100 times at a sweep speed of 0.1 V / s.
  • Example 3 (6) Amount of platinum deposited inside electrolyte membrane by potential cycle
  • the electrolyte membrane was the same as Comparative Example 3 except that a resin A film 2 was used instead of the resin A film 1.
  • the amount of platinum deposited inside was measured. The results are shown in Table 2.
  • Example 4 (6) Precipitation amount of platinum inside electrolyte membrane by potential cycle
  • the two resin A membranes 2 obtained in Example 3 above are superposed on a hot press machine ("Film Laminator" manufactured by Luminous Co., Ltd.). Then, the resin A film 4 was obtained by pressing at 160 ° C. for 5 minutes under a load of 30 kgf / cm 2 .
  • the amount of platinum deposited inside the electrolyte membrane was measured in the same manner as in Comparative Example 3 except that the resin A membrane 4 was used instead of the resin A membrane 1. The results are shown in Table 2.
  • Example 5 (6) Precipitation amount of platinum inside electrolyte membrane by potential cycle
  • the cross-linking agent RESITOP C357 (Gunei Chemical Industry Co., Ltd.) is applied on the resin A film 2, and the resin A film 2 is further stacked on the coated surface.
  • the resin A film 5 was obtained by placing on a hot press machine (“Film Laminator” manufactured by Luminous Co., Ltd.) and pressing at 160 ° C. for 5 minutes under a load of 30 kgf / cm 2 .
  • the amount of platinum deposited inside the electrolyte membrane was measured in the same manner as in Comparative Example 3 except that the resin A membrane 5 was used instead of the resin A membrane 1. The results are shown in Table 2.
  • Example 6 (1) Film Formation Resin A film 6 was obtained in the same manner as in Comparative Example 1 except that the film thickness was 10 ⁇ m. Similarly, a resin A film 7 was obtained in the same manner as in Comparative Example 1 except that the film thickness was changed to 30 ⁇ m.
  • Example 7 Fabrication of fuel cell
  • the resin A film 6 and the resin A film 7 are overlapped, and the anode gas diffusion electrode cut out to 5 cm ⁇ 5 cm is further formed outside the resin A film 7 and the cathode gas diffusion electrode is resin.
  • a fuel cell having an effective area of 25 cm 2 was fabricated by superimposing them on the A film 6 side so that the catalyst paste application side and the resin film surface were in contact with each other and incorporating them into an evaluation cell (“JFC-025-01H”).
  • Example 8 (3 ′) Fabrication of Fuel Cell
  • the anode gas diffusion electrode and cathode gas diffusion electrode cut out to 5 cm ⁇ 5 cm on the both sides of the resin A membrane 2 on both sides of the resin A membrane 2 and the catalyst paste application side and the resin membrane
  • the fuel cells having an effective area of 25 cm 2 were manufactured by stacking them so that the surfaces were in contact with each other and incorporating them in an evaluation cell (“JFC-025-01H”).
  • Example 9 Fabrication of fuel cell
  • the resin A membrane 2 and the resin B membrane 1 are overlapped, and the anode gas diffusion electrode cut out to 5 cm ⁇ 5 cm is further formed on the outer side, and the cathode gas diffusion electrode is the resin A.
  • a fuel cell having an effective area of 25 cm 2 was fabricated by stacking the membrane 2 side so that the catalyst paste application side and the resin membrane surface were in contact with each other and incorporating them in an evaluation cell (“JFC-025-01H”).
  • Example 10 Amount of platinum deposited inside the electrolyte membrane by the potential cycle
  • the platinum inside the electrolyte membrane was the same as in Comparative Example 3 except that the resin A membrane 1 was bent instead of the resin A membrane 1.
  • the amount of precipitation was measured. The results are shown in Table 2.
  • Example 2 Using the fuel cells obtained in Example 2 and Comparative Example 2, a power generation test was performed as follows. A pure hydrogen gas containing water vapor with a dew point of 60 ° C. is supplied to the anode side of the fuel cell so that the utilization rate of hydrogen becomes 70%, and the utilization rate of oxygen without humidifying the air to the cathode side. The fuel cell temperature was controlled at 80 ° C. and power was generated at 0.25 A / cm 2 for 12 hours. Table 3 shows the voltage and cell resistance after 12 hours of power generation.
  • the electrolyte membrane assembly of the present invention has sufficient proton conductivity comparable to that of one electrolyte membrane.
  • the electrolyte membrane assembly of the present invention also has sufficient proton conductivity comparable to that of a laminate of two or more electrolyte membranes bonded or fused together.
  • Membrane-electrode assembly 12 Gas diffusion layer 14: Catalyst layer 16: Electrolyte membrane assembly (electrolyte membrane assembly comprising two electrolyte membranes) 16 ′: Electrolyte membrane assembly (electrolyte membrane assembly including a structure formed by bending one electrolyte membrane so that one surface of the electrolyte membrane is in contact)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)
  • Conductive Materials (AREA)

Abstract

 イオン交換基を有する重合体を含み、ガラス転移温度が100℃以上である電解質膜を2枚以上有する、電解質膜アセンブリー。

Description

電解質膜アセンブリー、膜-電極接合体、燃料電池、水電解セルおよび水電解装置
 本発明は、電解質膜アセンブリー、膜-電極接合体、燃料電池、水電解セルおよび水電解装置に関するものである。
 燃料電池は、水素ガスやメタノールと酸素ガスとを電気化学的に反応させて直接電気を取り出す発電装置であり、化学エネルギーを電気エネルギーに高効率で直接変換できる無公害な発電装置として注目を集めている。
 このような燃料電池は、通常、触媒を担持した一対の電極膜(アノード極およびカソード極)と該電極膜に挟持された1枚のプロトン伝導性の固体高分子電解質膜とから構成される。アノード極では、水素イオンと電子が生じ、水素イオンは固体高分子電解質膜を通って、カソード極で酸素と反応して水が生じる。
 ここで用いられる固体高分子電解質膜は、十分なプロトン伝導性や、供給されるガスやメタノール等の燃料が直接反応することがないようにこれらの透過を抑制することなどが求められ、長期に安定した性能を示す燃料電池を得るために、これらの固体高分子電解質膜に求められる性質も長期にわたって発揮できることが求められている。
 前記固体高分子電解質膜として、従来より、Nafion(登録商標、DuPont社製)などの様々な電解質膜が知られているが、上記のような構成の燃料電池において、これらの電解質膜は、燃料電池の長時間の運転に際し、十分な耐久性を示さないため、長期に安定した性質を示す燃料電池を得ることは容易ではなかった。
 ここで、特許文献1および2には、高耐久性を有する高分子電解質膜として、プロトン交換樹脂を有するフィルム2層以上の積層体からなる高分子電解質積層膜が開示されている。
特開2006-155924号公報 特開2006-128095号公報
 しかしながら、前記特許文献1および2に記載の高分子電解質膜は、耐久性に改善の余地があった。
 本発明の目的は、耐久性に優れ、分子量の経時的な低下や電解質膜内部での白金の析出が抑制された電解質膜アセンブリーを提供することにある。
 このような状況のもと、本発明者らは、前記課題を解決すべく鋭意検討した結果、以下の構成の電解質膜アセンブリーによれば、前記の目的を達成できることを見出し、本発明を完成するに至った。
 本発明の構成例は以下の通りである。
 [1] イオン交換基を有する重合体を含み、ガラス転移温度が100℃以上である電解質膜を2枚以上有する、電解質膜アセンブリー。
 [2] ガラス転移温度が100℃以上であり、かつ、イオン交換基を有する重合体、を含む電解質膜を2枚以上有する、電解質膜アセンブリー。
 [3] ガラス転移温度が100℃以上であり、かつ、イオン交換基を有する重合体、を含む電解質膜を、該電解質膜の1つの面が接するように折り曲げてなる構造体を含む、電解質膜アセンブリー。
 [4] [1]~[3]のいずれかに記載の電解質膜アセンブリーを用いて測定した無負荷電圧(OCV)耐久性試験前後での、ゲルパーミエーションクロマトグラフィー(GPC)で測定した数平均分子量の保持率が、該電解質膜アセンブリーを構成する電解質膜に含まれる重合体と同じ重合体からなる1枚の電解質膜(なお、該電解質膜は、前記電解質膜アセンブリーと同じ厚さである)を用いて同様に測定した数平均分子量の保持率の1.1倍以上である、[1]~[3]のいずれかに記載の電解質膜アセンブリー。
 [5] [1]~[4]のいずれかに記載の電解質膜アセンブリーを用い、電位サイクルによる電解質膜内部での白金析出量(μgcm-2)が、該電解質膜アセンブリーを構成する電解質膜に含まれる重合体と同じ重合体からなる1枚の電解質膜(なお、該電解質膜は、前記電解質膜アセンブリーと同じ厚さである)を用いて同様に測定した電位サイクルによる電解質膜内部での白金析出量の、0.8倍以下である、[1]~[4]のいずれかに記載の電解質膜アセンブリー。
 [6] 2枚以上の前記電解質膜を重ね合わせること、または、2枚以上の前記電解質膜を、該電解質膜のガラス転移温度未満の温度で張り合わせるもしくは架橋させること、で形成された、[1]、[2]、[4]または[5]に記載の電解質膜アセンブリー。
 [7] 2枚以上の前記電解質膜を重ね合わせること、または、2枚以上の前記電解質膜を、該電解質膜を構成する重合体のガラス転移温度未満の温度で貼り合わせるもしくは架橋させること、で形成された、[1]、[2]、[4]または[5]に記載の電解質膜アセンブリー。
 [8] ガス拡散層、触媒層、[1]~[7]の何れかに記載の電解質膜アセンブリー、触媒層およびガス拡散層がこの順で積層された膜-電極接合体。
 [9] [8]に記載の膜-電極接合体を有する燃料電池。
 [10] 触媒層、[1]~[7]の何れかに記載の電解質膜アセンブリーおよび触媒層がこの順で積層された積層体を含む、水電解セル。
 [11] [10]に記載の水電解セルを有する水電解装置。
 本発明によれば、十分なプロトン伝導性ならびに燃料および酸素等の透過抑制性を有し、耐久性に優れ、分子量の経時的な低下や電解質膜内部での白金の析出が抑制された電解質膜アセンブリーを得ることができる。
図1は、2枚の電解質膜からなる電解質膜アセンブリーを含む膜-電極接合体の一例を示す概略模式図である。 図2は、1枚の電解質膜を、該電解質膜の1つの面が接するように折り曲げてなる構造体を含む電解質膜アセンブリーの一例を示す概略模式図である。
 ≪電解質膜アセンブリー≫
 本発明の電解質膜アセンブリーは、
 イオン交換基を有する重合体を含み、ガラス転移温度(Tg)が100℃以上である電解質膜を2枚以上有する、
 ガラス転移温度が100℃以上であり、かつ、イオン交換基を有する重合体、を含む電解質膜を2枚以上有する、または、
 ガラス転移温度が100℃以上であり、かつ、イオン交換基を有する重合体、を含む電解質膜を、該電解質膜の1つの面が接するように折り曲げてなる構造体を含む。
 このような電解質膜アセンブリーは、十分なプロトン伝導性ならびに燃料および酸素等の透過抑制性を有し、耐久性に優れ、分子量の経時的な低下や電解質膜内部での白金の析出が抑制されたものである。
 従来、燃料電池では、アノード極で生じた水素イオンは、電解質膜を通って、カソード極で反応するため、高いプロトン伝導性を示す電解質膜アセンブリーを得るためには、用いる電解質膜同士の界面での水素イオンの授受がスムーズになるよう、電解質膜同士の界面での接触抵抗等を低減するように、電解質膜同士は、しっかり接合または融着していること、さらに言えば、界面が存在しないこと(1枚の電解質膜)が望ましいと考えられてきた。
 また、十分な燃料および酸素等の透過抑制性を有する電解質膜アセンブリーを得る点からも、電解質膜同士は、しっかり接合または融着していること、または、1枚の電解質膜が望ましいと考えられてきた。
 一方で、本発明の電解質膜アセンブリーは、1枚の電解質膜や、接合または融着された2枚以上の電解質膜の積層体と同程度の十分なプロトン伝導性ならびに燃料および酸素等の透過抑制性を有する。
 さらに、本発明の電解質膜アセンブリーを用いると、1枚の電解質膜や、接合または融着された2枚以上の電解質膜の積層体を用いた場合に比べ、同じ電解質膜を用いた場合であっても、耐久性に優れ、分子量の経時的な低下を抑制することができる。
 本発明の電解質膜アセンブリーによれば、このような効果が得られる理由は定かではないが、電解質膜界面同士が物理的に接触して、電解質膜表面のモルフォロジーや伝導パスが電解質膜界面でズレているため白金のような大きなイオンは伝導パスを通過しにくいが、プロトンのような小さなイオンは伝導パスを通ることができるためであると考えられる。つまり、本発明の電解質膜アセンブリーは、電解質膜同士の界面で、ある程度の接触抵抗が存在すること、さらには接触抵抗が発電性能を損なわない範囲で高いことが望ましいと考えられる。
 また、一般的に、燃料電池の電極には、触媒層が設けられ、触媒層に含まれる触媒として白金が用いられている。この白金は、取り出される電気エネルギーの元となる化学反応を促進するため重要であるが、一方で、電池作動中に、触媒層にある白金の一部が電解質膜内で析出し、この析出した白金により、電解質膜の劣化が引き起こされ、燃料電池の長期安定性が低下する要因になっていると考えられる。
 さらに、水の電気分解により水素と酸素を生成する水電解装置中の水電解セルにおいても、電極触媒層の全部または一部に白金が使用されており、燃料電池の場合と同様に作動中に触媒層にある白金の一部が電解質膜内で析出し、この析出した白金により、電解質膜の劣化が引き起こされ、水電解装置の長期安定性が低下する要因となっていると考えられている。
 本発明者らは、鋭意検討した結果、本発明の電解質膜アセンブリーによれば、燃料電池作動時に起こる、白金の電解質膜内部への移動や電解質膜内部での析出を低減することができることを見出した。
 本発明の電解質膜アセンブリーによれば、このような効果が得られる理由は定かではないが、電解質膜同士の界面での白金イオンが通過する抵抗が高いことにより、電解質膜内部での白金の析出量が抑制されたと考えられる。
 従って、本発明の電解質膜アセンブリーによれば、耐久性に優れる燃料電池および水電解装置を得ることができる。
 本発明の電解質膜アセンブリーは、下記実施例に記載のように燃料電池を構成し、該電池を下記実施例に記載のように作動させた場合の、電位サイクルによる、電解質膜内部での白金析出量(アセンブリー内での白金析出量)は、好ましくは5μgcm-2以下であり、より好ましくは3μgcm-2以下である。
 また、本発明の電解質膜アセンブリーを用い、下記実施例に記載のように燃料電池を構成し、該電池を下記実施例に記載のように作動させた場合の、電位サイクルによる電解質膜内部での白金析出量(μgcm-2)は、該電解質膜アセンブリーを構成する電解質膜に含まれる重合体と同じ重合体からなる1枚の電解質膜(なお、該電解質膜は、前記電解質膜アセンブリーと同じ厚さである)を用いて同様に測定した電位サイクルによる電解質膜内部での白金析出量の、0.8倍以下であることが好ましく、0.6倍以下であることがより好ましい。
 前記電解質膜アセンブリーを構成する電解質膜それぞれの白金析出量が異なる場合、または、折り曲げられた電解質膜におけるカソード側とアノード側の白金析出量が異なる場合、これらの電解質膜の少なくとも一方(カソード側またはアノード側の電解質膜)が前記範囲を満たせばよく、これらの電解質膜のいずれの膜(カソード側およびアノード側の電解質膜)も前記範囲を満たすことが好ましい。
 なお、本発明の電解質膜アセンブリーとして、2種類以上の異なる電解質膜を有する電解質膜アセンブリーを用いる場合、本発明の電解質膜アセンブリーと比較する1枚の電解質膜は、前記と同様の方法で測定した白金析出量の最も少ない電解質膜のことをいう。
 電解質膜内部での白金析出量が前記範囲にあると、耐久性に優れ、分子量の経時的な低下が抑制された電解質膜アセンブリーが得られ、発電・水電解性能および長期安定性に優れる燃料電池および水電解装置が得られるため好ましい。
 なお、前記電解質膜内部での白金析出量は、下記実施例に記載の方法で測定することができる。
 電解質膜内部での白金析出量が前記範囲にあるような電解質膜アセンブリーは、例えば、下記(i)~(iv)の方法で製造することができる。
 本発明の電解質膜アセンブリーは、無負荷電圧(OCV)耐久性試験前後での、ゲルパーミエーションクロマトグラフィー(GPC)で測定した数平均分子量の保持率が、好ましくは70~100%であり、より好ましくは75~100%である。
 また、本発明の電解質膜アセンブリーを用いて測定した無負荷電圧(OCV)耐久性試験前後での、ゲルパーミエーションクロマトグラフィー(GPC)で測定した数平均分子量の保持率は、該電解質膜アセンブリーを構成する電解質膜に含まれる重合体と同じ重合体からなる1枚の電解質膜(なお、該電解質膜は、前記電解質膜アセンブリーと同じ厚さである)を用いて同様に測定した数平均分子量の保持率の1.1倍以上であることが好ましく、1.2倍以上であることがより好ましい。
 前記電解質膜アセンブリーを構成する電解質膜それぞれの数平均分子量の保持率が異なる場合、または、折り曲げられた電解質膜におけるカソード側とアノード側の数平均分子量の保持率が異なる場合、これらの電解質膜の少なくとも一方(カソード側またはアノード側の電解質膜)が前記範囲を満たせばよく、これらの電解質膜のいずれの膜(カソード側およびアノード側の電解質膜)も前記範囲を満たすことが好ましい。
 なお、本発明の電解質膜アセンブリーとして、2種類以上の異なる電解質膜を有する電解質膜アセンブリーを用いる場合、本発明の電解質膜アセンブリーと比較する1枚の電解質膜は、前記と同様の方法で測定した数平均分子量の保持率の最も高い電解質膜のことをいう。
 数平均分子量の保持率が前記範囲にあると、耐久性に優れ、分子量の経時的な低下が抑制された電解質膜アセンブリーが得られ、長期安定性に優れる燃料電池および水電解装置が得られるため好ましい。
 なお、前記数平均分子量の保持率は、下記実施例に記載の方法で測定することができる。
 数平均分子量の保持率が前記範囲にあるような電解質膜アセンブリーは、例えば、下記(i)~(iv)の方法で製造することができる。
 前記電解質膜アセンブリーの厚みは、燃料電池や水電解セルに通常用いられる電解質膜と同程度の厚みであればよいが、好ましくは5~200μm、より好ましくは10~150μmである。
 <電解質膜アセンブリーの製造方法等>
 本発明の電解質膜アセンブリーは、前記電解質膜の集合体であり、前記電解質膜を2枚以上含む。このような電解質膜アセンブリーは、2枚以上の電解質膜を用いて作成されれば特に制限されず、実質的に2枚以上の電解質膜のみからなってもよく、電解質膜間に接着層等が存在していてもよい。
 本発明で用いる2枚以上の電解質膜は、アセンブリーを構成する電解質膜全てが同じ膜であってもよいし、種類の異なる電解質膜であってもよい。
 また、本発明の電解質膜アセンブリーは、前記電解質膜を、該電解質膜の1つの面が接するように折り曲げてなる構造体を含む。このような電解質膜アセンブリーは、電解質膜が折り重なった部分において、電解質膜の集合体ともいえる。
 前記構造体は、1枚の電解質膜を折り曲げたものであってもよいし、2枚以上の電解質膜を積層し折り曲げたものであってもよいし、1枚の電解質膜を折り曲げたものと、他の電解質膜(折り曲げたものまたは折り曲げていないもの)とを含んでいてもよい。折り曲げることで接する電解質膜間には、接着層等が存在していてもよいし、折り曲げた電解質膜と前記他の電解質膜との間にも、接着層等が存在していてもよい。
 本発明の電解質膜アセンブリーの製造方法は、特に制限されないが、例えば、(i)2枚以上の電解質膜を単に重ね合わせること、(ii)2枚以上の前記電解質膜を、該電解質膜のTg未満の温度または該電解質膜を構成する重合体のTg未満の温度で貼り合わせること、(iii)2枚以上の前記電解質膜を、該電解質膜のTg未満の温度または該電解質膜を構成する重合体のTg未満の温度で架橋させること、(iv)1枚の電解質膜を該電解質膜の1つの面が接するように折り曲げることで製造することができる。
 また、例えば、本発明の電解質膜アセンブリーは、3枚以上の電解質膜を有する場合、少なくとも2枚の電解質膜が、前記(i)~(iv)の方法や公知の塗装方法等により製造された積層体であり、該積層体と少なくとも1枚の電解質膜とを他の方法で積層したものであってもよい。
 前記(i)の方法で得られた電解質膜アセンブリーは、実質的に、電解質膜以外の接着剤などの不純物を含まないため、燃料電池作動中における、該不純物による電池特性の劣化などが起こりにくいため好ましい。
 また、前記(i)の方法によれば、電解質膜の少なくとも1枚が剥離可能である電解質膜アセンブリーを得ることができ、このような電解質膜アセンブリーは、特に、耐久性に優れ、分子量の経時的な低下や電解質膜内部での白金の析出が抑制されるため好ましい。
 前記(ii)の方法における、前記電解質膜のTg未満の温度または電解質膜を構成する重合体のTg未満の温度としては、特に制限されないが、好ましくはTgより10~90℃低い温度であり、より好ましくはTgより20~50℃低い温度である。なお、本発明の電解質膜アセンブリーとして、2種類以上の異なるTgを有する電解質膜を用いる場合には、「前記電解質膜のTg未満の温度」とは、用いる電解質膜全てのうち、最も低いTgを有する電解質膜のTg未満の温度のことをいい、2種類以上の異なるTgを有する重合体を含む電解質膜を用いる場合には、「前記電解質膜を構成する重合体のTg未満の温度」とは、用いる電解質膜全てのうち、最も低いTgを有する重合体のTg未満の温度のことをいう。
 2枚以上の電解質膜を貼り合わせる際には、従来公知の接着剤を用いてもよく、2枚以上の電解質膜を重ね合わせた状態で、ホットプレス、ロールプレス、真空プレス等の公知のプレス技術等により貼り合わせたものであってもよい。
 前記(ii)の方法としては、好ましくは、2枚以上の電解質膜を単に重ね合わせた後、前記電解質膜のTg未満の温度または電解質膜を構成する重合体のTg未満の温度で貼り合わせる方法が、耐久性に優れ、分子量の経時的な低下や電解質膜内部での白金の析出が抑制される電解質膜アセンブリーが得られるなどの点から好ましい。
 前記(ii)の方法で得られた電解質膜アセンブリーは、該アセンブリーがばらばらにならず、後述する膜-電極接合体や水電解セルを製造する際の作業容易性などの点で好ましい。
 前記(iii)の方法における、前記電解質膜のTg未満の温度または電解質膜を構成する重合体のTg未満の温度としては、特に制限されないが、架橋反応が進行するような温度であることが好ましく、より好ましくはTgより10~90℃低い温度であり、特に好ましくはTgより20~50℃低い温度である。
 前記(iii)の方法は、架橋剤を含む電解質膜を用いることで行ってもよく、2枚以上の電解質膜を架橋させる際に、界面に架橋剤を塗布することで行ってもよい。
 また、架橋の際には、2枚以上の電解質膜を重ね合わせた状態で、ホットプレス、ロールプレス、真空プレス等の公知のプレス技術等により圧力をかけながら行ってもよい。
 前記(iii)の方法としては、好ましくは、2枚以上の電解質膜を単に重ね合わせた後または架橋剤を介在させて重ね合わせた後、前記電解質膜のTg未満の温度または電解質膜を構成する重合体のTg未満の温度で架橋させる方法が、耐久性に優れ、分子量の経時的な低下や電解質膜内部での白金の析出が抑制される電解質膜アセンブリーが得られるなどの点から好ましい。
 前記(iii)の方法で得られた電解質膜アセンブリーは、該アセンブリーがばらばらにならず、後述する膜-電極接合体や水電解セルを製造する際の作業容易性などの点で好ましい。また、架橋により、機械的強度の高い電解質膜アセンブリーを得ることができる。これは、特に厚みの薄い電解質膜を用いる場合に有効である。
 前記架橋剤としては電解質膜間を架橋できるものであれば特に制限なく使用することができるが、例えば下記構造を有する架橋剤が好ましい。
Figure JPOXMLDOC01-appb-C000001
(式中R1は水素または任意の有機基である。)
 前記架橋剤としては、具体的には、RESITOP C357(群栄化学工業(株)製)、DM-BI25X-F、46DMOC、46DMOIPP、46DMOEP(商品名、旭有機材工業(株)製)、DML-MBPC、DML-MBOC、MDL-OCHP、DML-PC、DML-PCHP、DML-PTBP、DML-34X、DML-EP、DML-POP、DML-OC、ジメチロール-Bis-C、ジメチロール-BisOC-P、DML-BisOC-Z、DML-BisOCHP-Z、DML-PFP、DML-PSBP、DML-MB25、DML-MTrisPC、DML-Bis25X-34XL、DML-Bis25X-PCHP(商品名、本州化学工業(株)製)、”ニカラック”(登録商標)MX-290(商品名、(株)三和ケミカル製)、2,6-ジメトキシメチル-4-t-ブチルフェノール、2,6-ジメトキシメチル-p-クレゾール、2,6-ジアセトキシメチル-p-クレゾール等、TriML-P、TriML-35XL、TriML-TrisCR-HAP(商品名、本州化学工業(株)製)等、TM-BIP-A(商品名、旭有機材工業(株)製)、TML-BP、TML-HQ、TML-pp-BPF、TML-BPA、TMOM-BP(商品名、本州化学工業(株)製)、”ニカラック”MX-280、”ニカラック”MX-270(商品名、(株)三和ケミカル製)等、HML-TPPHBA、HML-TPHAP(商品名、本州化学工業(株)製)を挙げることができる。
 前記(iv)の方法では、1枚の電解質膜を該電解質膜の1つの面が接するように折り曲げればよく、折り曲げて接触する面同士は、前記(i)と同様の効果を期待して、単に重ね合わせるだけでもよく、前記(ii)や(iii)と同様の効果を期待して、電解質膜のTg未満の温度または電解質膜を構成する重合体のTg未満の温度で貼り合わせるまたは架橋させてもよい。前記(iv)の方法で得られた電解質膜アセンブリーは、該アセンブリーがばらばらにならず、後述する膜-電極接合体や水電解セルを製造する際の作業容易性などの点で好ましい。
 なお、前記(i)~(iv)で得られた電解質膜アセンブリーは、1種類または2種類以上の電解質膜形成用組成物を用い、ある組成物を公知の方法で基板上に塗布し、必要により乾燥や硬化させた後、さらにその上にある組成物を公知の方法で塗布すること等により得られる積層体(公知の塗装方法により得られる積層体)や、2枚以上の電解質膜に、該電解質膜のTg以上の温度または電解質膜を構成する重合体のTg以上の温度かけることで融着させたものとは異なる。また、前記(i)~(iv)で得られた電解質膜アセンブリーは、2枚以上の電解質膜を、該電解質膜を溶解させる溶媒(この溶媒を含む溶液)を塗布して重ね合わせて得られるものとも異なる。
 本発明の電解質膜アセンブリーを燃料電池等に使用する場合には、該燃料電池等を構成する電極などの他の部材と積層するに際に、ある程度の圧力がかかったり、燃料電池の使用時等の際にある程度の温度がかかることがあるが、この場合でも、本発明の電解質膜アセンブリーは、公知の塗装方法や融着により得られる電解質膜積層体などとは異なるものである。
 <電解質膜>
 前記電解質膜は、イオン交換基を有する重合体を含む。このような電解質膜としては、特に制限されず、従来より固体高分子電解質膜として使用されていたものであってもよい。
 イオン交換基としては、公知のものであればよく、特に限定されないが、ホスホン酸基、スルホン酸基等が挙げられる。
 中でも、スルホン酸基を有する重合体を用いることで、発電・水電解性能に優れる電解質膜アセンブリーを得ることができる。
 前記電解質膜および重合体のTgは、燃料電池や水電解装置の作動中に電解質膜アセンブリーを構成する電解質膜同士が融着せず、所望の効果を有する燃料電池や水電解装置を得ることができるなどの点から、100℃以上であり、より好ましくは120℃以上、特に好ましくは150℃以上である。該Tgの上限は特に制限されないが、例えば、220℃であればよい。
 前記電解質膜および重合体のTgが前記範囲にあることで、耐久性に優れ、分子量の経時的な低下や電解質膜内部での白金の析出が抑制された電解質膜アセンブリーを得ることができ、さらに、耐久性等に優れる燃料電池および水電解装置を得ることができる。
 なお、本発明の電解質膜アセンブリーとして、2種類以上の異なる電解質膜を用いる場合には、用いる電解質膜全てのTgが100℃以上または用いる電解質膜を構成する全ての重合体のTgが100℃以上であることが好ましい。前記電解質膜および重合体が2つ以上のガラス転移温度を有する場合、前記電解質膜および重合体のTgとは、その低い方のガラス転移温度のことをいう。また、前記電解質膜が、実質的に重合体のみからなる場合、該電解質膜のTgは、重合体のTgと同じである。
 前記Tgは、具体的には、下記実施例に記載の方法で測定することができる。
 なお、前記電解質膜が補強層や前記重合体以外の他の成分を含む場合の該電解質膜のTgは、該電解質膜に含まれる重合体を溶解しうる溶媒に電解質膜を浸漬し、電解質膜から重合体を溶出させた後、溶媒を除去し重合体を得、この重合体を用いて、電解質膜に含まれる重合体のTgを測定することで測定することができる。
 前記重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の、重量平均分子量(Mw)は、好ましくは1万~100万、より好ましくは2万~80万、さらに好ましくは5万~30万であり、数平均分子量(Mn)は、好ましくは3000~100万、より好ましくは6000~80万、さらに好ましくは15000~30万である。重合体の平均分子量は、具体的には、下記実施例に記載の方法で測定することができる。
 前記重合体のイオン交換容量は、好ましくは0.5~3.5meq/g、より好ましくは0.5~3.0meq/g、さらに好ましくは0.8~2.8meq/gである。イオン交換容量が0.5meq/g以上であれば、プロトン伝導度が高く、かつ発電・水電解性能の高い電解質膜となるため好ましい。一方、3.5meq/g以下であれば、充分に高い耐水性を有する電解質膜となるため好ましい。重合体のイオン交換容量は、具体的には、下記実施例に記載の方法で測定することができる。
 前記イオン交換容量は、重合体に含まれる構造単位の種類、その割合、組み合わせなどを変更することにより、調整することができる。したがって、重合時に構造単位を誘導する前駆体(モノマー・オリゴマー)の仕込み量比、種類等を変えれば調整することができる。
 概して、イオン交換基を含む構造単位の存在割合が重合体中に多くなると、得られる電解質膜のイオン交換容量が増えプロトン伝導性が高くなるが、耐水性が低下する傾向にあり、一方、該構造単位の存在割合が少なくなると、得られる電解質膜のイオン交換容量が小さくなり、耐水性が高まるが、プロトン伝導性が低下する傾向にある。
 前記電解質膜は、例えば、前記重合体と該重合体を溶解する溶媒とを含む組成物を、公知の方法により基材上に塗布する工程を含むことにより製造することができる。具体的には、前記組成物をプラスチック製、金属製またはガラス製などの基材上に塗布した後、塗布した組成物を乾燥させ、基材から剥離することで作成することができる。なお、基材として、燃料電池の構成材料であり、電解質膜アセンブリーに接して積層されるもの、例えば、下記触媒層を用いる場合には、得られた電解質膜を基材から剥離せずに用いてもよい。
 前記電解質膜としては、前記組成物を多孔質材料やシート状の繊維質物質などからなる補強層に含浸させたり、塗布したりすることで得られる、補強層を含む電解質膜であってもよく、繊維、フィラー状の補強材などを含む電解質膜であってもよい。
 前記電解質膜は、本発明の効果を損なわない範囲において、必要に応じて、白金親和度の高い化合物(例:硫黄原子などを含む化合物)、酸化スズやスズイオンなどの金属含有化合物および金属イオンからなる群より選ばれる少なくとも1種の金属成分等の添加剤を含んでいてもよい。
 また、前記組成物には、前記重合体および溶媒に加え、さらに、硫酸、リン酸などの無機酸;リン酸ガラス;タングステン酸;リン酸塩水和物;β-アルミナプロトン置換体;プロトン導入酸化物等の無機プロトン伝導体粒子;カルボン酸を含む有機酸;スルホン酸を含む有機酸;ホスホン酸を含む有機酸;適量の水などを配合してもよい。
 前記電解質膜の厚みは、燃料電池や水電解装置に通常用いられる電解質膜と同程度の厚みであればよいが、好ましくは3~200μm、より好ましくは5~150μmである。
 前記重合体としては、例えば、ポリアセタール、ポリエチレン、ポリプロピレン、アクリル系樹脂、ポリスチレン、ポリスチレン-グラフト-エチレンテトラフルオロエチレン共重合体、ポリスチレン-グラフト-ポリテトラフルオロエチレン、脂肪族ポリカーボネート等の脂肪族系重合体にスルホン酸基が導入された重合体、ポリエステル、ポリスルホン、ポリフェニレンエーテル、ポリエーテルイミド、芳香族ポリカーボネート、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエーテルケトンケトン、ポリエーテルエーテルスルホン、ポリエーテルスルホン、ポリカーボネート、ポリフェニレンスルフィド、芳香族ポリアミド、芳香族ポリアミドイミド、芳香族ポリイミド、ポリベンゾオキサゾール、ポリベンゾチアゾール、ポリベンゾイミダゾール等の主鎖の一部または全部に芳香族環を有する芳香族系重合体にスルホン酸基が導入された重合体が挙げられる。
 また、これらの重合体に導入する基を、スルホン酸基からホスホン酸基等のイオン交換基に変えた重合体、またはこれらの基が共存する重合体等が挙げられる。
 前記重合体としては、公知の重合体を用いることができ、特に限定されないが、例えば、国際公開第2013/018677号、特開2012-067216号公報、特開2010-238374号公報、特開2010-174179号公報、特開2010-135282号公報、特開2004-137444号公報、特開2004-345997号公報、特開2004-346163号公報等に記載の重合体が好ましく、下記重合体(1)がより好ましい。
 なお、耐久性に優れ、分子量の経時的な低下や電解質膜内部での白金の析出が抑制された電解質膜アセンブリーを得ることができる等の点から、前記重合体は、パーフルオロ系重合体ではないことが好ましい。
 ・重合体(1)
 前記重合体(1)は、プロトン伝導性基を有する構造単位と疎水性構造単位とを有する重合体であり、ポリマーまたはオリゴマーである。
 本発明において、プロトン伝導性基を有する構造単位は、単にプロトン伝導性基であってもよく、プロトン伝導性基としては、スルホン酸基、ホスホン酸基、カルボキシ基、ビススルホニルイミド基などが挙げられ、スルホン酸基が好ましい。
 前記重合体(1)は、具体的には、プロトン伝導性基を有する構造単位となる親水性セグメント(A1)と、疎水性構造単位となる疎水性セグメント(B1)とからなる重合体であることが好ましい。この場合、該重合体(1)は、ブロック重合体であってもよく、ランダム重合体であってもよいが、より発電や水電解性能および乾湿サイクル時の寸法安定性に優れる電解質膜が得られる等の点から、親水性セグメント(A1)と疎水性セグメント(B1)とのブロック共重合体が好ましい。
 ・親水性セグメント(A1)
 親水性セグメント(A1)としては、プロトン伝導性基を有し、親水性を示すセグメントであれば特に制限されないが、例えば、主鎖に芳香環を有し、スルホン酸基などのプロトン伝導性基を含有する親水性セグメントが挙げられ、親水性セグメントの連続性が高く、プロトン伝導度が高い電解質膜が得られるなどの点から、下記式(5)で表される構造単位(以下「構造単位(5)」ともいう。)を含むセグメントであることが好ましく、構造単位(5)からなるセグメントであることがより好ましい。
 親水性セグメント(A1)は、1種類の構造単位のみからなってもよく、2種類以上の構造単位を含んでもよい。
Figure JPOXMLDOC01-appb-C000002
 式(5)中、Ar11、Ar12およびAr13はそれぞれ独立に、ハロゲン原子、ニトリル基、炭素数1~20の1価の炭化水素基もしくは炭素数1~20の1価のハロゲン化炭化水素基で置換されていてもよい、ベンゼン環、縮合芳香環または含窒素複素環を有する芳香族基を示し、YおよびZはそれぞれ独立に、直接結合、-O-、-S-、-CO-、-SO2-、-SO-、-(CH2u-、-(CF2u-(uは1~10の整数である。)、-C(CH32-または-C(CF32-を示し、R17は独立に、直接結合、-O(CH2p-、-O(CF2p-、-(CH2p-または-(CF2p-(pは1~12の整数を示す。)を示し、R18およびR19はそれぞれ独立に、水素原子または保護基を示す。ただし、前記構造単位(5)中に含まれる全てのR18およびR19のうち少なくとも1個は水素原子である。
 x1は独立に、0~6の整数を示し、x2は1~7の整数を示し、aは0または1を示し、bは0~20の整数を示す。
 前記保護基とは、反応性の基(-SO3-または-SO3 -)を一時的に保護する目的で使用されるイオン、原子または原子団等のことをいう。具体的には、アルカリ金属原子、脂肪族炭化水素基、脂環基、含酸素複素環基および含窒素カチオンなどが挙げられる。
 親水性セグメント(A1)は、スルホン酸基を有する前記構造単位(5)以外にも、スルホン酸基以外のプロトン伝導性基を有する構造単位として、例えば、ホスホン酸基を有する構造単位や、特開2011-089036号公報および国際公開第2007/010731号等に記載の含窒素複素環を有する芳香族系構造単位などを含んでもよい。
 ・疎水性セグメント(B1)
 疎水性セグメント(B1)としては、疎水性を示すセグメントであれば特に制限されない。
 親水性セグメント(B1)は、1種類の構造単位のみからなってもよく、2種類以上の構造単位を含んでもよい。
 疎水性セグメント(B1)としては、好ましくは、主鎖に芳香環を有し、スルホン酸基などのプロトン伝導性基を含有しない疎水性セグメントが挙げられ、より熱水膨潤抑制に優れる電解質膜が得られるなどの点から、下記式(1)で表される構造単位(以下「構造単位(1)」ともいう。)、下記式(2)で表される構造単位(以下「構造単位(2)」ともいう。)および下記式(3')で表される構造単位(以下「構造単位(3')」ともいう。)からなる群より選ばれる少なくとも1種の構造単位を含むセグメントであることが好ましく、構造単位(1)および構造単位(2)からなる群より選ばれる少なくとも1種の構造単位からなるセグメントであることがより好ましい。
 前記重合体(1)が、構造単位(1)~(3')のいずれか、特には、構造単位(1)または(2)を含有することにより、該重合体の疎水性が著しく向上する。このため、従来と同様のプロトン伝導性を具備しながら、優れた熱水耐性を有する電解質膜を得ることができる。また、セグメント(B1)がニトリル基を含む場合は、靭性および機械的強度の高い電解質膜を製造できる。
・構造単位(1)
 疎水性セグメント(B1)が、構造単位(1)を含有することにより、該セグメント(B1)の剛直性が高くなり、かつ芳香環密度が高くなることで、得られる重合体(1)を含む電解質膜の熱水耐性、過酸化物に対するラジカル耐性、ガスバリア性、機械的強度および寸法安定性等を向上させることができる。
 前記疎水性セグメント(B1)は、1種類の構造単位(1)を含んでもよく、2種類以上の構造単位(1)を含んでもよい。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、芳香環を構成する少なくとも1つの置換可能な炭素原子は窒素原子に置き換えられてもよく、R21は独立に、ハロゲン原子、ヒドロキシ基、ニトロ基、ニトリル基またはR22-E-(Eは、直接結合、-O-、-S-、-CO-、-SO2-、-CONH-、-COO-、-CF2-、-CH2-、-C(CF32-または-C(CH32-を示し;R22は、アルキル基、ハロゲン化アルキル基、アルケニル基、アリール基、ハロゲン化アリール基または含窒素複素環を示し、これらの基の少なくとも1つの水素原子は、さらにヒドロキシ基、ニトロ基、ニトリル基およびR22-E-からなる群より選ばれる少なくとも1種の基で置換されていてもよい。)を示し、複数のR21が結合して環構造を形成してもよい。
 なお、R21がR22-E-であり、かつ、該R22がさらにR22-E-で置換される場合、複数のEは同一でも異なっていてもよく、複数のR22(ただし、置換によって生じる構造の差異を除く部分の構造)も同一でも異なっていてもよい。このことは、他の式中の符号においても同様である。
 c1およびc2は独立に0または1以上の整数を示し、dは1以上の整数を示し、eは独立に、0~(2c1+2c2+4)の整数を示す。
・構造単位(2)
 前記疎水性セグメント(B1)が構造単位(2)を含むと、過酸化物などに対するラジカル耐性が向上し、発電・水電解耐久性に優れる電解質膜が得られると考えられるため好ましい。
 また、前記疎水性セグメント(B1)が構造単位(2)を含有することにより、該セグメント(B1)に適度な屈曲性(柔軟性)を付与することができ、得られる重合体を含む電解質膜の靭性を向上させることができる。
 前記疎水性セグメント(B1)は、1種類の構造単位(2)を含んでもよく、2種類以上の構造単位(2)を含んでもよい。
Figure JPOXMLDOC01-appb-C000004
 式(2)中、芳香環を構成する少なくとも1つの置換可能な炭素原子は窒素原子に置き換えられてもよく、R31は独立に、ハロゲン原子、ヒドロキシ基、ニトロ基、ニトリル基またはR22-E-(EおよびR22はそれぞれ独立に、前記式(1)中のEおよびR22と同義である。)を示し、複数のR31が結合して環構造を形成してもよい。
 fは0または1以上の整数を示し、gは0~(2f+4)の整数を示す。ただし、式(2)で表される構造単位は、式(1)で表される構造単位以外の構造単位である。
・構造単位(3')
 前記疎水性セグメント(B1)が構造単位(3')を含有することにより、該セグメント(B1)に適度な屈曲性(柔軟性)を付与することができ、得られる重合体を含む電解質膜の靭性を向上させることができる。
 前記疎水性セグメント(B1)は、1種類の構造単位(3')を含んでもよく、2種類以上の構造単位(3')を含んでもよい。
Figure JPOXMLDOC01-appb-C000005
 式(3')中、A'およびD'はそれぞれ独立に、直接結合、-O-、-S-、-CO-、-SO2-、-SO-、-CONH-、-COO-、-(CF2i-(iは1~10の整数である)、-(CH2j-(jは1~10の整数である)、-CR'2-(R'は脂肪族炭化水素基、芳香族炭化水素基またはハロゲン化炭化水素基を示す。)、シクロヘキシリデン基またはフルオレニリデン基を示し、B'は独立に、酸素原子または硫黄原子を示し、R1~R16はそれぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、ニトロ基、ニトリル基またはR22-E-(EおよびR22はそれぞれ独立に、式(1)中のEおよびR22と同義である。)を示し、R1~R16のうちの複数の基が結合して環構造を形成してもよい。
 sおよびtはそれぞれ独立に、0~4の整数を示し、rは0または1以上の整数を示す。
 ・重合体(1)の合成方法
 前記重合体(1)は、従来公知の方法で合成することができ、特に制限されないが、例えば、前記構造単位となる化合物を触媒や溶媒の存在下で反応させ、必要によりスルホン酸エステル基などをスルホン酸基に変換する、または、スルホン化剤を用いてスルホン化する等の方法でプロトン伝導性基を導入することにより合成することができる。
 ≪膜-電極接合体≫
 本発明に係る膜-電極接合体は、ガス拡散層、触媒層、本発明の電解質膜アセンブリー、触媒層およびガス拡散層がこの順で積層された膜-電極接合体である。具体的には、本発明の電解質膜アセンブリーの一方の面にはカソード電極用の触媒層が、他方の面にはアノード電極用の触媒層が設けられており、さらにカソード電極用およびアノード電極用の各触媒層の電解質膜アセンブリーと反対側に接して、それぞれガス拡散層が設けられたものであることが好ましい。
 2枚の電解質膜からなる電解質膜アセンブリーを含む膜-電極接合体としては、例えば、図1に示すような膜-電極接合体が挙げられる。このように、2枚以上の電解質膜を含む電解質膜アセンブリーは、該電解質膜のうち、最も面積の広い面が重なり合うように、電解質膜が前記(i)~(iii)の方法で積層されたものであることが、発電性能に優れる燃料電池、および、水電解性能に優れる水電解装置が得られるなどの点から好ましい。
 また、1枚の電解質膜を、該電解質膜の1つの面が接するように折り曲げてなる構造体を含む電解質膜アセンブリーを用いる場合、図1の電解質膜アセンブリー16の代わりに、図2の電解質膜アセンブリー16'を図の向きで含む膜-電極接合体が好ましい。つまり、電解質膜を折り曲げる際には、該電解質膜のうち、最も面積の広い面が重なり合うように、また、折り曲げることでできる電解質膜界面が、触媒層などとの積層方向と略垂直方向になるように電解質膜を折り曲げることが好ましい。
 前記ガス拡散層としては、特に制限されず公知のものを使用することができるが、多孔性基材または多孔性基材と微多孔層との積層構造体等が挙げられる。ガス拡散層が多孔性基材と微多孔層との積層構造体からなる場合には、微多孔層が触媒層に接することが好ましい。また、前記ガス拡散層は、撥水性を付与するために含フッ素重合体を含んでいることが好ましい。
 前記ガス拡散層の厚みは、燃料電池に通常用いられるガス拡散層と同程度の厚みであればよいが、好ましくは50~400μm、より好ましくは100~300μmである。
 前記触媒層は、特に制限されず公知のものを使用することができるが、例えば、触媒、イオン交換樹脂電解質などから構成される。
 触媒としては、白金、パラジウム、金、ルテニウム、イリジウムなどの貴金属触媒が好ましく用いられる。また、貴金属触媒は、合金や混合物などのように、2種以上の元素を含むものであってもよい。このような貴金属触媒は、高比表面積カーボン微粒子に担持したものを用いてもよい。
 イオン交換樹脂電解質は、前記触媒を結着させるバインダー成分として働くとともに、アノード極では触媒上の反応によって発生したイオンを電解質膜アセンブリーへ効率的に供給し、また、カソード極では電解質膜アセンブリーから供給されたイオンを触媒へ効率的に供給する物質であることが好ましい。
 前記イオン交換樹脂電解質としては、触媒層内のプロトン伝導性を向上させるためにプロトン交換基を有するポリマーが好ましい。
 このようなポリマーに含まれるプロトン交換基としては、スルホン酸基、カルボン酸基、リン酸基などが挙げられるが特に限定されるものではない。
 また、このようなプロトン交換基を有するポリマーも、特に限定されることなく用いられるが、フルオロアルキルエーテル側鎖とフルオロアルキル主鎖とから構成されるプロトン交換基を有するポリマーや、スルホン酸基を有する芳香族炭化水素系重合体などが好ましく用いられる。また、前記電解質膜の欄で例示した重合体をイオン交換樹脂電解質として使用してもよく、さらに、プロトン交換基を有し、フッ素原子を含むポリマー、エチレンやスチレンなどから得られる他のポリマーや、これらの共重合体やブレンドであっても構わない。
 このようなイオン交換樹脂電解質は、公知のものを特に制限なく使用可能であり、例えば、Nafionであってもよい。
 前記触媒層は、必要に応じてさらに、炭素繊維、イオン交換基を有しない樹脂等の添加剤を含んでもよい。この添加剤としては撥水性の高い成分であることが好ましく、例えば、含フッ素共重合体、シランカップリング剤、シリコーン樹脂、ワックス、ポリホスファゼンなどを挙げることができるが、好ましくは含フッ素共重合体である。
 前記触媒層の厚みは、燃料電池や水電解装置に通常用いられる触媒層と同程度の厚みであればよいが、好ましくは1~100μm、より好ましくは3~50μmである。
 ≪燃料電池≫
 本発明に係る燃料電池は、前記膜-電極接合体を有する。このため、本発明に係る燃料電池は、特に耐久性に優れ、発電性能の経時的な低下が抑制され、長期にわたって安定な発電が可能である。
 本発明に係る燃料電池は、具体的には、少なくとも一つの膜-電極接合体の両外側に位置する、セパレータを含む少なくとも一つの電気発生部;燃料を前記電気発生部に供給する燃料供給部;および酸化剤を前記電気発生部に供給する酸化剤供給部を含む燃料電池であることが好ましい。
 前記セパレータとしては、通常の燃料電池に使用されるものを用いることができる。具体的にはカーボンタイプのセパレータ、金属タイプのセパレータ等が挙げられる。
 また、燃料電池を構成する部材としては、公知のものを特に制限なく使用することが可能である。本発明の燃料電池は単セルであってもよいし、複数の単セルを直列に繋いだスタックセルであってもよい。スタックの方法としては公知の方法を用いることができる。具体的には単セルを平面状に並べた平面スタッキングであってもよいし、および燃料または酸化剤の流路が、セパレータの裏表面にそれぞれ形成されているセパレータを介して単セルを積み重ねるバイポーラースタッキングであってもよい。
 ≪水電解セル≫
 本発明に係る水電解セルは、触媒層、本発明の電解質膜アセンブリーおよび触媒層がこの順で積層された積層体を含む。
 前記触媒層としては、公知のものを特に制限なく使用可能であり、具体的には、前記膜-電極接合体で説明した触媒層と同様の層などが挙げられる。
 ≪水電解装置≫
 本発明に係る水電解装置は、前記水電解セルを有する。このため、本発明に係る水電解装置は、特に耐久性に優れ、性能の経時的な低下が抑制され、長期にわたって安定な電気分解が可能である。
 以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
 〔スルホン酸基を有する重合体のイオン交換容量〕
 以下の合成例で得られた重合体のイオン交換容量は以下のようにして測定した。
 以下の合成例で得られた重合体を脱イオン水に浸漬することで、該重合体中に残存している酸を完全に除去した後、重合体1mg当たり2mLの2N食塩水に浸漬してイオン交換させることにより塩酸水溶液を調製した。この塩酸水溶液を、フェノールフタレインを指示薬として、0.001N水酸化ナトリウムの標準水溶液にて中和滴定した。イオン交換後の重合体を脱イオン水で洗浄し、110℃で2時間真空乾燥させて乾燥重量を測定した。下記式に示すように、水酸化ナトリウムの滴定量と重合体の乾燥重量とから、スルホン酸基の当量(以下「イオン交換容量」という。)を求めた。
 イオン交換容量(meq/g)=水酸化ナトリウムの滴定量(mmol)/重合体の乾燥重量(g)
 〔分子量の測定〕
 以下の合成例で得られた化合物の分子量の測定は測定する化合物に応じて以下の(A)または(B)の方法を用いた。
 (A)測定する化合物をN-メチル-2-ピロリドン緩衝溶液(以下「NMP緩衝溶液」という。)に溶解し、溶離液としてNMP緩衝溶液を、装置としてTOSOH HLC-8220(東ソー(株)製)を、カラムとしてTSKgel α-M(東ソー(株)製)を用いたゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレン換算の数平均分子量(Mn)および重量平均分子量(Mw)を求めた。
 NMP緩衝溶液は、NMP(3L)/リン酸(3.3mL)/臭化リチウム(7.83g)の比率で調製した。
 (B)測定する化合物をテトラヒドロフラン(THF)に溶解し、溶離液としてTHFを、装置としてTOSOH HLC-8220(東ソー(株)製)を、カラムとしてTSKgel α-M(東ソー(株)製)を用いたゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレン換算の数平均分子量(Mn)および重量平均分子量(Mw)を求めた。
 (2)ガラス転移温度の測定
 動的粘弾性装置(アイティー計測制御(株)製「DVA-200」)を用い、変形様式:引張、下限弾性率:1000Pa、下限動ちから:0cN、昇温速度:2℃/分、測定周波数10Hz、歪:0.05%、静/動力比:1.5、上限伸び率:50%、最小加重:0.5cNの条件で測定することで、温度と弾性率との曲線を得、得られた曲線の変曲点からガラス転移温度を求めた。
 〔合成例1〕
 (1)疎水性ユニットの合成
 撹拌機、温度計、冷却管、Dean-Stark管および窒素導入の三方コックを取り付けた1Lの三つ口のフラスコに、2,6-ジクロロベンゾニトリル49.4g(0.29モル)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン88.4g(0.26モル)、および炭酸カリウム47.3g(0.34モル)を量り取った。得られたフラスコを窒素置換後、該フラスコにスルホラン346mLおよびトルエン173mLを加えて攪拌した。フラスコをオイルバスにつけ、150℃で加熱還流させた。反応により生成した水をトルエンと共沸させ、Dean-Stark管で系外に除去しながら反応させると、約3時間で水の生成がほとんど認められなくなった。反応温度を徐々に上げながら大部分のトルエンを除去した後、200℃で3時間反応を続けた。次いで、2,6-ジクロロベンゾニトリル12.3g(0.072モル)を加え、さらに5時間反応した。得られた反応液を放冷後、トルエン100mLを加えて希釈した。副生した無機化合物の沈殿物を濾過除去し、濾液を2Lのメタノール中に投入した。沈殿した生成物を濾別、回収し、乾燥後、テトラヒドロフラン250mLに溶解させた。得られた溶液をメタノール2Lに投入し、再沈殿させ、目的の化合物(沈殿物)107gを得た。
 得られた目的の化合物のGPC(溶媒:THF)で求めたポリスチレン換算のMnは7,300であった。得られた化合物は下記構造式で表されるオリゴマーであった。
Figure JPOXMLDOC01-appb-C000006
 (2)親水性ユニットの合成
 攪拌機および冷却管を備えた3Lの三つ口フラスコに、クロロスルホン酸233.0g(2モル)を加え、続いて2,5-ジクロロベンゾフェノン100.4g(400ミリモル)を加え、得られたフラスコを100℃のオイルバスに入れ、8時間反応させた。8時間後、反応液を砕氷1000gにゆっくりと注ぎ、酢酸エチルで抽出した。有機層を食塩水で洗浄し、硫酸マグネシウムで乾燥させた後、酢酸エチルを留去し、淡黄色の粗結晶3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸クロリドを得た。粗結晶は精製せず、そのまま次工程に用いた。
 2,2-ジメチル-1-プロパノール(ネオペンチルアルコール)38.8g(440ミリモル)をピリジン300mLに加え、約10℃に冷却した。ここに上記で得られた粗結晶を約30分かけて徐々に加えた。全量添加後、さらに30分撹拌し反応させた。反応後、反応液を塩酸水1000mL中に注ぎ、析出した固体を回収した。得られた固体を酢酸エチルに溶解させ、炭酸水素ナトリウム水溶液、食塩水で順次洗浄後、硫酸マグネシウムで乾燥させ、酢酸エチルを留去することで粗結晶を得た。これをメタノールで再結晶し、下記構造式で表される3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチルの白色結晶を得た。
Figure JPOXMLDOC01-appb-C000007
 (3)塩基性ユニットの合成
 撹拌羽根、温度計および窒素導入管を取り付けた2Lの3つ口フラスコに、フルオロベンゼン240.2g(2.50モル)を取り、氷浴で10℃まで冷却し、2,5-ジクロロ安息香酸クロライド134.6g(0.50モル)、および塩化アルミニウム86.7g(0.65モル)を反応温度が40℃を超えないように徐々に添加した。添加後、40℃で8時間撹拌した。薄層クロマトグラフィーにより原料の消失を確認した後、攪拌後の混合物を氷水に滴下し、酢酸エチルで抽出した。得られた有機層を5%重曹水により中和した後、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた後、エバポレーターで溶媒を留去した。これをメタノールで再結晶させることで、中間体の2,5-ジクロロ-4'-フルオロベンゾフェノンを130g、収率97%で得た。
 撹拌機、温度計、冷却管、Dean-Stark管および窒素導入の三方コックを取り付けた2Lの3つ口フラスコに、前記2,5-ジクロロ-4'-フルオロベンゾフェノン130.5g(0.49モル)、2-ヒドロキシピリジン46.1g(0.49モル)、および炭酸カリウム73.7g(0.53モル)を取り、N,N-ジメチルアセトアミド(DMAc)500mLおよびトルエン100mLを加え、オイルバス中、窒素雰囲気下で撹拌しながら130℃で反応させた。反応により生成した水をトルエンと共沸させ、Dean-Stark管で系外に除去しながら反応させると、約3時間で水の生成がほとんど認められなくなった。その後、大部分のトルエンを除去し、130℃で10時間反応を続けた。得られた反応液を放冷後濾過し、濾液を2Lの水/メタノール(9/1)中に投入した。沈殿した生成物を濾別により回収し、乾燥させた。
 撹拌機、温度計、冷却管、Dean-Stark管および窒素導入の三方コックを取り付けた2Lの3つ口フラスコに前記乾燥物を取り、トルエン1L中、100℃で撹拌し、残留した水分を留去しながら溶解させた。放冷後、析出した結晶を濾過することにより下記構造式で表される淡黄色の2,5-ジクロロ-4'-(2-ピリジニルオキシ)ベンゾフェノンを142g、収率83%で得た。
Figure JPOXMLDOC01-appb-C000008
 (4)スルホン酸基を有する重合体の合成
 撹拌機、温度計および窒素導入管を接続した1Lの3つ口フラスコに、乾燥したDMAc166mLを入れ、そこに(1)で合成したオリゴマー13.4g(1.8ミリモル)、(2)で合成した3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル37.6g(93.7ミリモル)、(3)で合成した2,5-ジクロロ-4'-(2-ピリジニルオキシ)ベンゾフェノン1.61g(4.7ミリモル)、ビス(トリフェニルホスフィン)ニッケルジクロリド2.62g(4.0ミリモル)、トリフェニルホスフィン10.5g(40.1ミリモル)、ヨウ化ナトリウム0.45g(3.0ミリモル)、および亜鉛15.7g(240.5ミリモル)の混合物を窒素下で加えた。
 得られた混合物を撹拌下に加熱し(最終的には82℃まで加温)、3時間反応させた。反応途中で系中の粘度上昇が観察された。反応後の溶液をDMAc175mLで希釈し、30分撹拌した後、セライトを濾過助剤として用い濾過した。得られた濾液を、撹拌機を取り付けた1Lの3つ口フラスコに入れ、ここに臭化リチウム24.4g(281ミリモル)を1/3ずつ3回に分け1時間間隔で加え、内温120℃で5時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、アセトン4Lに注ぎ、凝固させた。凝固物を濾集、風乾後、ミキサーで粉砕し、1N硫酸1500mLに入れ、攪拌しながら洗浄を行った。濾過後、濾物を洗浄液のpHが5以上となるまで、イオン交換水で洗浄後、80℃で一晩乾燥し、目的の塩基性ユニットが導入されたスルホン酸基を有する重合体38.0gを得た。得られたスルホン酸基を有する重合体のGPC(溶媒:NMP緩衝溶液)で測定したポリスチレン換算の分子量は、Mn=63000、Mw=194000であった。また、この重合体のイオン交換容量は2.33meq/gであった。得られたスルホン酸基を有する重合体は、下記構造式で表される化合物(樹脂A)であった。また、得られた化合物のガラス転移温度は190℃であった。
Figure JPOXMLDOC01-appb-C000009
(式中、o、m、kおよびnは、その構造単位を形成する原料の仕込み量から算出される値である。)
 〔合成例2〕
 (1)親水性ユニットの合成
 攪拌機を備えた1Lのフラスコに、ネオペンチルアルコール(45.30g、514mmol)のピリジン(300mL)溶液を加え、続いて3,5-ジクロロベンゼンスルホニルクロライド(114.65g、467mmol)を少量ずつ攪拌しながら15分かけて添加した。この間、反応温度は18~20℃に保った。反応混合物の入ったフラスコを、氷浴中で冷却しながらさらに30分攪拌した後、氷冷した10% HCl水溶液(1600mL)を添加した。水に不溶の成分を700mLの酢酸エチルで抽出し、1N HCl水溶液で2回(各700mL)洗浄し、次いで、5% NaHCO3水溶液で2回(各700mL)洗浄し、その後硫酸マグネシウムで乾燥させた。回転乾燥機を用いて溶媒を除去し、残渣を500mLのメタノールで再結晶させた。その結果、下記構造式で表される3,5-ジクロロベンゼンスルホン酸ネオペンチルの光沢のある無色結晶を収量105.98g、収率76%で得た。
Figure JPOXMLDOC01-appb-C000010
 (2)スルホン酸基を有する重合体の合成
 添加系:得られた3,5-ジクロロベンゼンスルホン酸ネオペンチル29.15g(98.09mmol)およびトリフェニルホスフィン1.65g(6.28mmol)の混合物中に、脱水したDMAc71mLを窒素下で加えて添加系溶液を調製した。
 反応系:2,5-ジクロロベンゾフェノン23.03g(91.71mmol)、2,6-ジクロロベンゾニトリル1.75g(10.19mmol)、トリフェニルホスフィン1.92g(7.34mmol)および亜鉛15.99g(244.57mmol)の混合物中に、脱水したDMAc66mLを窒素下で加えた。この反応系を撹拌下に60℃まで加熱した後、ビス(トリフェニルホスフィン)ニッケルジクロリド1.60g(2.45mmol)を加えて重合を開始し、80℃で20分間撹拌した。反応に伴い発熱や粘度上昇が観察された。
 得られた反応系に添加系溶液を窒素下で加えた。この系を撹拌下に60℃まで加熱した後、亜鉛15.39g(235.43mmol)およびビス(トリフェニルホスフィン)ニッケルジクロリド2.05g(3.14mmol)を加えてさらに重合を促進させ、80℃で3時間撹拌した。反応に伴い発熱や粘度上昇が観察された。
 得られた溶液をDMAc273mLで希釈し、セライトを濾過助剤として用いて濾過した。濾液に臭化リチウム29.82g(343.33mmol)を加え、100℃で7時間反応させた。反応後、反応液を室温まで冷却し、水3.2Lに投入して凝固させた。凝固物にアセトンを加え、撹拌しながら4回洗浄・濾過を行った。洗浄物を1N硫酸で撹拌しながら7回洗浄・濾過を行った。さらに洗浄物を洗浄液のpHが5以上となるまで脱イオン水で洗浄・濾過を行った。得られた洗浄物を75℃で24時間乾燥させることにより目的のスルホン酸基を有する重合体26.3gを得た。
 このスルホン酸基を有する重合体のGPC(溶媒:NMP緩衝溶液)で測定したポリスチレン換算の分子量は、Mnが53000であり、Mwが120000であった。また、この重合体のイオン交換容量は2.30meq/gであった。NMRで確認したところ、得られたスルホン酸基を有する重合体は、下記構造単位(q:r=90:10)を有する化合物(樹脂B)であった。また、得られた化合物のガラス転移温度は166℃であった。
Figure JPOXMLDOC01-appb-C000011
(式中、pは、その構造単位を形成する原料の仕込み量から算出される値である。)
 〔ガス拡散電極の作製〕
 80mLのポリテトラフルオロエチレン(PTFE)容器に直径5mmのジルコニアボール(ニッカトー(株)製「YTZボール」)80g、カーボンブラック(ライオン(株)製「ケッチェンブラックEC」)0.48g、蒸留水12.14g、n-プロピルアルコール4.05g、およびNafion D2020(DuPont社製、ポリマー濃度21%分散液、イオン交換容量1.08meq/g)3.33gを入れ、遊星ボールミル(フリッチュ社製「P-5」)を用いて200rpmで5分間混練した後、ジルコニアボールを除去することでカーボンブラックペーストを作製した。
 得られたカーボンブラックペーストをSGL CARBON社製のガス拡散層34DC上にドクターブレードにて乾燥後の重量増加が0.3mg/cm2になるように塗布し、80℃で15分間乾燥させることで下地層塗布ガス拡散層を作製した。
 80mLのPTFE容器に、直径5mmのジルコニアボール(YTZボール)80g、白金ルテニウム担持カーボン粒子(田中貴金属工業(株)製「TEC61E54」、Pt:29.8質量%担持、Ru:23.2質量%担持)1.28g、および蒸留水3.60gを入れ、遊星ボールミル(P-5)を用いて200rpmで10分間混練した。その後、更にn-プロピルアルコール12.02gおよびNafion D2020(3.90g)を加え、200rpmで30分間混練した後、ジルコニアボールを除去することでアノード触媒ペーストを得た。
 得られたアノード触媒ペーストを、下地層塗布ガス拡散層の下地層上にPtおよびRuの量が0.5mg/cm2になるようにドクターブレードにて塗布後、80℃で15分間乾燥し、アノードガス拡散電極を作製した。
 80mLのPTFE容器に、直径5mmのジルコニアボール(YTZボール)80g、白金担持カーボン粒子(田中貴金属工業(株)製「TEC10E50E」、Pt:45.6質量%担持)1.25g、および蒸留水3.64gを入れ、遊星ボールミル(P-5)を用いて200rpmで10分間混練した。その後、更にn-プロピルアルコール11.91gおよびNafion D2020(4.40g)を加え、200rpmで30分間混練した後、ジルコニアボールを除去することでカソード触媒ペーストを得た。
 得られたカソード触媒ペーストを、下地層塗布ガス拡散層の下地層上にPtの量が0.5mg/cm2になるようにドクターブレードにて塗布後、80℃で15分間乾燥し、カソードガス拡散電極を作製した。
 [比較例1]
 (1)製膜
 合成例1で得られた樹脂A 16gをメタノール/NMP=40/60(質量比)の混合溶媒84mLに溶解した溶液をPETフィルム上にダイコーターにてキャスト塗工し、80℃で40分予備乾燥した後、120℃で40分乾燥した。乾燥後の塗膜付PETフィルムを大量の蒸留水に一晩浸漬し、塗膜中の残存NMPを取り除いた後、風乾し、PETフィルムから剥離することで膜厚が40μmである樹脂A膜1を得た。
 (2)ガラス転移温度の測定
 動的粘弾性装置(アイティー計測制御(株)製「DVA-200」)を用い、変形様式:引張、下限弾性率:1000Pa、下限動ちから:0cN、昇温速度:2℃/分、測定周波数10Hz、歪:0.05%、静/動力比:1.5、上限伸び率:50%、最小加重:0.5cNの条件で測定することで、温度と弾性率との曲線を得、得られた曲線の変曲点から求めた樹脂A膜1のガラス転移温度は190℃であった。
 なお同一の樹脂および同様の製法から得られる膜のガラス転移温度は膜厚によらず同一である。
 (3)燃料電池の作製
 1枚の樹脂A膜1の両面に5cm×5cmに切り出したアノードガス拡散電極およびカソードガス拡散電極を触媒ペースト塗布側と樹脂A膜1表面が接するようにそれぞれ重ね合わせ、評価用セル((株)ケミックス製「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製した。
 (4)OCV(open circuit voltage)耐久試験
 前記燃料電池のアノードガス拡散電極側に、純水素ガスに露点80℃の水蒸気を含ませたものを0.5L/minで供給し、カソードガス拡散電極側に、空気に露点80℃の水蒸気を含ませたものを2L/minで供給し、燃料電池の温度を80℃に制御し、0~1A/cm2までの電流掃引を120回繰り返し、前処理をした。
 その後、アノードガス拡散電極側に、純水素ガスに露点80℃の水蒸気を含ませたものを0.08L/minで供給し、カソードガス拡散電極側に、酸素ガスに露点80℃の水蒸気を含ませたものを0.3L/minで供給し、燃料電池の温度を100℃に制御し、開回路にて150時間運転することでOCV耐久試験を行った。
 OCV耐久試験後の樹脂A膜1をセルから取り出し、前記分子量の測定に記載の(A)と同様の方法で分子量を測定したところ、その数平均分子量は初期値の44%まで低下していた。結果を表1に示す。
 (5)ガス透過性
 前記燃料電池のアノードガス拡散電極側に、純水素ガスに露点80℃の水蒸気を含ませたものを0.5L/minで供給し、カソードガス拡散電極側に、空気に露点80℃の水蒸気を含ませたものを2L/minで供給し、燃料電池の温度を80℃に制御し、0~1A/cm2までの電流掃引を120回繰り返し、前処理をした。
 その後、アノードガス拡散電極側に、純水素ガスに露点80℃の水蒸気を含ませたものを0.08L/minで供給し、カソードガス拡散電極側に酸素ガスに露点80℃の水蒸気を含ませたものを0.3L/minで供給し、燃料電池の温度を100℃に制御し、ポテンショガルバノスタット(ソーラトロン社製 1287型)を用い、アノードに対するカソードの電圧を0.4Vにしたときの水素酸化の電流値から求めたガス透過性は0.076μmol h-1 cm-2であった。
 [実施例1]
 (1)製膜
 膜厚を20μmにした以外は比較例1と同様の方法で樹脂A膜2を得た。
 (3')燃料電池の作製
 2枚の樹脂A膜2を重ね合わせ、更にその外側に5cm×5cmに切り出したアノードガス拡散電極およびカソードガス拡散電極を触媒ペースト塗布側と樹脂A膜2表面が接するようにそれぞれ重ね合わせ、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製した。
 (4)OCV耐久試験
 比較例1と同様の方法でOCV耐久試験したところ、OCV耐久試験後の樹脂A膜2の数平均分子量は初期値に対しアノード側で81%、カソード側で79%と比較例1に対し高い保持率を示した。結果を表1に示す。
 (5)ガス透過性
 比較例1におけるガス透過性試験において、前記(3')で作成した燃料電池を用いた以外は比較例1と同様の方法で求めたガス透過性は0.078μmol h-1 cm-2であり、比較例1と同程度であった。
 [比較例2]
 (1)製膜
 合成例2で得られた樹脂B 15gをNMP/メチルエチルケトン/メタノール=60/20/20(質量比)の混合溶媒85mLに溶解した溶液をPETフィルム上にダイコーターにてキャスト塗工し、80℃で40分予備乾燥した後、120℃で40分乾燥した。乾燥後の塗膜付PETフィルムを大量の蒸留水に一晩浸漬し、塗膜中の残存NMPを取り除いた後、風乾し、PETフィルムから剥離することで膜厚が20μmである樹脂B膜1を得た。
 (2)ガラス転移温度の測定
 比較例1と同様の方法で測定した樹脂B膜1のガラス転移温度は166℃であった。
 (3)燃料電池の作製
 樹脂B膜1を使用した他は比較例1と同様の方法で燃料電池を作製した。
 (4)OCV耐久試験
 比較例1と同様の方法でOCV耐久試験したところ、OCV耐久試験後の樹脂B膜1の数平均分子量は初期値に対し62%まで低下していた。結果を表1に示す。
 [実施例2]
 (1)製膜
 膜厚を10μmに調整した以外は比較例2と同様の方法で樹脂B膜2を得た。
 (3')燃料電池の作製
 樹脂B膜2を使用した他は実施例1と同様の方法で燃料電池を作製した。
 (4)OCV耐久試験
 比較例1と同様の方法でOCV耐久試験したところ、OCV耐久試験後の樹脂B膜2の数平均分子量は初期値に対しアノード側で88%、カソード側で75%と比較例2に対し高い保持率を示した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000012
 [比較例3]
 (6)電位サイクルによる電解質膜内部での白金析出量
 樹脂A膜1を使用し、比較例1と同様の方法で燃料電池を作製し、燃料電池のアノードガス拡散電極側に、純水素ガスに露点80℃の水蒸気を含ませたものを0.5L/minで供給し、カソードガス拡散電極側に、空気に露点80℃の水蒸気を含ませたものを2L/minで供給し、燃料電池の温度を80℃に制御し、0~1A/cm2までの電流掃引を120回繰り返し、前処理をした。
 その後、アノードガス拡散電極側に、純水素ガスに露点45℃の水蒸気を含ませたものを0.05L/minで供給し、カソードガス拡散電極側に、窒素ガスに露点45℃の水蒸気を含ませたものを0.1L/minで供給し、燃料電池の温度を50℃に制御し、ポテンショガルバノスタット(ソーラトロン社製 1287型)を用いアノードに対するカソードの電圧を0.6Vから1.5Vまで掃引速度0.1V/sで100回往復させた。
その後、燃料電池から膜を取り出し、膜に付着した電極を除去後、膜内に析出した白金量を蛍光X線分析装置(スペクトリ(株)「Magix」)にて元素分析することで定量した。結果を表2に示す。
 [比較例4]
 (1)製膜
 合成例1で得られた樹脂A16gをメタノール/NMP=40/60(質量比)の混合溶媒84mLに溶解した溶液1をPETフィルム上にダイコーターにてキャスト塗工し、80℃で40分予備乾燥した後、120℃で40分乾燥することで、膜厚20μmの塗膜を形成した。次いで、該塗膜上に、溶液1をPETフィルム上にダイコーターにてキャスト塗工し、80℃で40分予備乾燥した後、120℃で40分乾燥することで、さらに、膜厚20μmの塗膜を形成した。
 得られた塗膜付PETフィルムを大量の蒸留水に一晩浸漬し、塗膜中の残存NMPを取り除いた後、風乾し、PETフィルムから剥離することで総膜厚が40μmである樹脂A膜3を得た。
 (6)電位サイクルによる電解質膜内部での白金析出量
 樹脂A膜1の代わりに樹脂A膜3を用いた以外は、比較例3と同様にして、電解質膜内部での白金析出量を測定した。結果を表2に示す。
 [実施例3]
 (6)電位サイクルによる電解質膜内部での白金析出量
 樹脂A膜1の代わりに、2枚の樹脂A膜2を重ね合わせたものを用いた以外は、比較例3と同様にして、電解質膜内部での白金析出量を測定した。結果を表2に示す。
 [実施例4]
 (6)電位サイクルによる電解質膜内部での白金析出量
 前記実施例3で得られた2枚の樹脂A膜2を重ね合わせてホットプレス機((株)ルミナス製「フィルムラミネータ装置」)上に置き、30kgf/cm2の荷重下、160℃で5分間プレスすることで、樹脂A膜4を得た。
 樹脂A膜1の代わりに、樹脂A膜4を用いた以外は、比較例3と同様にして、電解質膜内部での白金析出量を測定した。結果を表2に示す。
 [実施例5]
 (6)電位サイクルによる電解質膜内部での白金析出量
 樹脂A膜2上に架橋剤RESITOP C357(群栄化学工業(株))を塗布し、塗布面上にさらに、前記樹脂A膜2を重ね合わせてホットプレス機((株)ルミナス社製「フィルムラミネータ装置」)上に置き、30kgf/cm2の荷重下、160℃で5分間プレスすることで、樹脂A膜5を得た。
 樹脂A膜1の代わりに、樹脂A膜5を用いた以外は、比較例3と同様にして、電解質膜内部での白金析出量を測定した。結果を表2に示す。
 [実施例6]
 (1)製膜
 膜厚を10μmにした以外は比較例1と同様の方法で樹脂A膜6を得た。同様にして膜厚を30μmにした以外は比較例1と同様の方法で樹脂A膜7を得た。
 (3')燃料電池の作製
 樹脂A膜6と樹脂A膜7とを重ね合わせ、更にその外側に5cm×5cmに切り出したアノードガス拡散電極を樹脂A膜6側に、そしてカソードガス拡散電極を樹脂A膜7側に、触媒ペースト塗布側と樹脂膜表面が接するようにそれぞれ重ね合わせ、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製した。
(6)電位サイクルによる電解質膜内部での白金析出量
 比較例3で用いた燃料電池の代わりに、前記で得られた燃料電池を用いた以外は、比較例3と同様にして、電解質膜内部での白金析出量を測定した。結果を表2に示す。
 [実施例7]
(3')燃料電池の作製
 樹脂A膜6と樹脂A膜7を重ね合わせ、更にその外側に5cm×5cmに切り出したアノードガス拡散電極を樹脂A膜7側に、そしてカソードガス拡散電極を樹脂A膜6側に、触媒ペースト塗布側と樹脂膜表面が接するようにそれぞれ重ね合わせ、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製した。
 (6)電位サイクルによる電解質膜内部での白金析出量
 比較例3で用いた燃料電池の代わりに、前記で得られた燃料電池を用いた以外は、比較例3と同様にして、電解質膜内部での白金析出量を測定した。結果を表2に示す。
 [実施例8]
 (3')燃料電池の作製
 樹脂A膜2の両面に樹脂A膜6を重ね合わせ、更にその外側に5cm×5cmに切り出したアノードガス拡散電極およびカソードガス拡散電極を触媒ペースト塗布側と樹脂膜表面が接するようにそれぞれ重ね合わせ、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製した。
 (6)電位サイクルによる電解質膜内部での白金析出量
 比較例3で用いた燃料電池の代わりに、前記で得られた燃料電池を用いた以外は、比較例3と同様にして、電解質膜内部での白金析出量を測定した。結果を表2に示す。
 [実施例9]
(3')燃料電池の作製
 樹脂A膜2と樹脂B膜1を重ね合わせ、更にその外側に5cm×5cmに切り出したアノードガス拡散電極を樹脂B膜1側に、カソードガス拡散電極を樹脂A膜2側に、触媒ペースト塗布側と樹脂膜表面が接するようにそれぞれ重ね合わせ、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製した。
 (6)電位サイクルによる電解質膜内部での白金析出量
 比較例3で用いた燃料電池の代わりに、前記で得られた燃料電池を用いた以外は、比較例3と同様にして、電解質膜内部での白金析出量を測定した。結果を表2に示す。
 [実施例10]
 (6)電位サイクルによる電解質膜内部での白金析出量
 樹脂A膜1の代わりに、樹脂A膜2を折り曲げたものを用いた以外は、比較例3と同様にして、電解質膜内部での白金析出量を測定した。結果を表2に示す。
 [比較例5]
 (6)電位サイクルによる電解質膜内部での白金析出量
 樹脂A膜1の代わりに、厚み50μmのNafion NRE212CS(DuPont社製)を用いた以外は、比較例3と同様にして、電解質膜内部での白金析出量を測定した。結果を表2に示す。なお、比較例1と同様の方法で測定したNafion NRE212CSのTgは75℃であった。
 [比較例6]
 (6)電位サイクルによる電解質膜内部での白金析出量
 樹脂A膜1の代わりに、厚み25μmの2枚のNafion NRE211CS(DuPont社製)を重ね合わせたものを用いた以外は、比較例3と同様にして、電解質膜内部での白金析出量を測定した。結果を表2に示す。なお、比較例1と同様の方法で測定したNafion NRE211CSのTgは75℃であった。
 [比較例7]
 (6)電位サイクルによる電解質膜内部での白金析出量
 Nafion D2020をPET基板上に塗布し80℃で15分間乾燥させることで作成した厚み20μmの2枚のNafion膜を重ね合わせてホットプレス機((株)ルミナス社製「フィルムラミネータ装置」)上に置き、30kgf/cm2の荷重下、120℃で5分間プレスすることで、樹脂膜6を得た。なお、比較例1と同様の方法で測定した厚み20μmのNafion膜のTgは75℃であった。
 樹脂A膜1の代わりに、樹脂膜6を用いた以外は、比較例3と同様にして、電解質膜内部での白金析出量を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000013
 表2の結果から、1枚の電解質膜または電解質膜同士をしっかり接合または融着したものを用いた場合、および、Tgが100℃未満の電解質膜を用いた場合には、電解質膜内部での白金の析出量が多かった。
 一方、本発明の電解質膜アセンブリーを用いた場合、電解質膜同士の界面での白金イオンが通過する抵抗が高いことにより、電解質膜内部での白金の析出量が抑制されたと考えられる。
 <発電試験>
 実施例2および比較例2で得られた燃料電池を用い、以下のようにして発電試験を行った。
 燃料電池のアノード側に、純水素ガスに露点60℃の水蒸気を含ませたものを水素の利用率が70%になるように供給し、カソード側に、空気を加湿せずに酸素の利用率が40%になるように供給し、燃料電池の温度を80℃に制御し、0.25A/cm2で12時間発電した。12時間発電後の電圧とセル抵抗を表3に示す。
Figure JPOXMLDOC01-appb-T000014
 表3から、本発明の電解質膜アセンブリーは、1枚の電解質膜と同程度の十分なプロトン伝導性を有する。なお、本発明の電解質膜アセンブリーは、接合または融着された2枚以上の電解質膜の積層体と同程度の十分なプロトン伝導性をも有する。
10:膜-電極接合体
12:ガス拡散層
14:触媒層
16:電解質膜アセンブリー(2枚の電解質膜からなる電解質膜アセンブリー)
16': 電解質膜アセンブリー(1枚の電解質膜を、該電解質膜の1つの面が接するように折り曲げてなる構造体を含む電解質膜アセンブリー)

Claims (11)

  1.  イオン交換基を有する重合体を含み、ガラス転移温度が100℃以上である電解質膜を2枚以上有する、電解質膜アセンブリー。
  2.  ガラス転移温度が100℃以上であり、かつ、イオン交換基を有する重合体、を含む電解質膜を2枚以上有する、電解質膜アセンブリー。
  3.  ガラス転移温度が100℃以上であり、かつ、イオン交換基を有する重合体、を含む電解質膜を、該電解質膜の1つの面が接するように折り曲げてなる構造体を含む、電解質膜アセンブリー。
  4.  請求項1~3のいずれか1項に記載の電解質膜アセンブリーを用いて測定した無負荷電圧(OCV)耐久性試験前後での、ゲルパーミエーションクロマトグラフィー(GPC)で測定した数平均分子量の保持率が、該電解質膜アセンブリーを構成する電解質膜に含まれる重合体と同じ重合体からなる1枚の電解質膜(なお、該電解質膜は、前記電解質膜アセンブリーと同じ厚さである)を用いて同様に測定した数平均分子量の保持率の1.1倍以上である、請求項1~3のいずれか1項に記載の電解質膜アセンブリー。
  5.  請求項1~4のいずれか1項に記載の電解質膜アセンブリーを用い、電位サイクルによる電解質膜内部での白金析出量(μgcm-2)が、該電解質膜アセンブリーを構成する電解質膜に含まれる重合体と同じ重合体からなる1枚の電解質膜(なお、該電解質膜は、前記電解質膜アセンブリーと同じ厚さである)を用いて同様に測定した電位サイクルによる電解質膜内部での白金析出量の、0.8倍以下である、請求項1~4のいずれか1項に記載の電解質膜アセンブリー。
  6.  2枚以上の前記電解質膜を重ね合わせること、または、2枚以上の前記電解質膜を、該電解質膜のガラス転移温度未満の温度で張り合わせるもしくは架橋させること、で形成された、請求項1、2、4または5に記載の電解質膜アセンブリー。
  7.  2枚以上の前記電解質膜を重ね合わせること、または、2枚以上の前記電解質膜を、該電解質膜を構成する重合体のガラス転移温度未満の温度で貼り合わせるもしくは架橋させること、で形成された、請求項1、2、4または5に記載の電解質膜アセンブリー。
  8.  ガス拡散層、触媒層、請求項1~7の何れか1項に記載の電解質膜アセンブリー、触媒層およびガス拡散層がこの順で積層された膜-電極接合体。
  9.  請求項8に記載の膜-電極接合体を有する燃料電池。
  10.  触媒層、請求項1~7の何れか1項に記載の電解質膜アセンブリーおよび触媒層がこの順で積層された積層体を含む、水電解セル。
  11.  請求項10に記載の水電解セルを有する水電解装置。
PCT/JP2013/082319 2012-12-03 2013-12-02 電解質膜アセンブリー、膜-電極接合体、燃料電池、水電解セルおよび水電解装置 WO2014087957A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014551086A JPWO2014087957A1 (ja) 2012-12-03 2013-12-02 電解質膜アセンブリー、膜−電極接合体、燃料電池、水電解セルおよび水電解装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012264164 2012-12-03
JP2012-264164 2012-12-03
JP2013143692 2013-07-09
JP2013-143692 2013-07-09

Publications (1)

Publication Number Publication Date
WO2014087957A1 true WO2014087957A1 (ja) 2014-06-12

Family

ID=50883375

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/082320 WO2014087958A1 (ja) 2012-12-03 2013-12-02 膜-電極接合体の製造方法、膜-電極接合体、膜-電極接合体形成用積層体、固体高分子型燃料電池および水電解装置
PCT/JP2013/082319 WO2014087957A1 (ja) 2012-12-03 2013-12-02 電解質膜アセンブリー、膜-電極接合体、燃料電池、水電解セルおよび水電解装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082320 WO2014087958A1 (ja) 2012-12-03 2013-12-02 膜-電極接合体の製造方法、膜-電極接合体、膜-電極接合体形成用積層体、固体高分子型燃料電池および水電解装置

Country Status (4)

Country Link
US (1) US20150322578A1 (ja)
EP (1) EP2927998A4 (ja)
JP (2) JPWO2014087958A1 (ja)
WO (2) WO2014087958A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141719A1 (ja) * 2014-03-20 2015-09-24 日本ゼオン株式会社 感放射線樹脂組成物及び電子部品
KR20190097210A (ko) * 2016-12-22 2019-08-20 존슨 맛쎄이 푸엘 셀스 리미티드 라미네이트 구조를 갖는 촉매-코팅된 멤브레인

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI673154B (zh) * 2014-06-20 2019-10-01 日商東京應化工業股份有限公司 多孔性之醯亞胺系樹脂膜製造系統、分隔膜及多孔性之醯亞胺系樹脂膜製造方法
WO2016039299A1 (ja) * 2014-09-10 2016-03-17 東京応化工業株式会社 多孔質ポリイミド膜の製造方法
EP3504747B1 (en) 2016-08-25 2023-11-01 Proton Energy Systems, Inc. Membrane electrode assembly and method of making the same
CN117996004A (zh) * 2017-05-19 2024-05-07 高级电池概念有限责任公司 可用于双极电池组件的电池极板及制备方法
US11631877B2 (en) 2018-02-28 2023-04-18 Jtec Energy, Inc. Method of bonding acid-doped membranes and a bonded polybenzimidazole membrane structure
JP7093666B2 (ja) * 2018-04-05 2022-06-30 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 燃料電池用触媒およびその製造方法
JP6802827B2 (ja) * 2018-09-18 2020-12-23 株式会社東芝 水素製造装置及び隔膜
WO2022241156A1 (en) * 2021-05-12 2022-11-17 Giner, Inc. Membrane electrode assembly and method for fabricating same
DE102021214923A1 (de) * 2021-12-22 2023-06-22 Siemens Energy Global GmbH & Co. KG Membranelektrodenanordnung und Verfahren zu deren Herstellung
JP2023177957A (ja) * 2022-06-03 2023-12-14 三菱重工業株式会社 膜電極接合体、電解セル、電解装置、および膜電極接合体の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005372A1 (fr) * 2000-07-06 2002-01-17 Matsushita Electric Industrial Co., Ltd. Procede pour realiser la jonction entre un film d'electrolyte et une electrode
JP2002093424A (ja) * 2000-07-10 2002-03-29 Toray Ind Inc 膜−電極接合体の製造方法
JP2004164861A (ja) * 2002-11-08 2004-06-10 Dainippon Printing Co Ltd 燃料電池用触媒層形成シート、該シートの製造方法及び触媒層−電解質膜積層体の製造方法
JP2007018906A (ja) * 2005-07-08 2007-01-25 Gs Yuasa Corporation:Kk 固体高分子形燃料電池用膜/電極接合体の製造方法およびそれを備えた固体高分子形燃料電池
JP2008053167A (ja) * 2006-08-28 2008-03-06 Toyota Motor Corp 燃料電池の製造方法
JP2008166002A (ja) * 2006-12-27 2008-07-17 Honda Motor Co Ltd 固体高分子型燃料電池用膜−電極構造体
JP2009505364A (ja) * 2005-08-16 2009-02-05 ビーエーエスエフ ソシエタス・ヨーロピア 触媒被覆膜の製造方法
WO2011078310A1 (ja) * 2009-12-25 2011-06-30 Jsr株式会社 水素燃料型燃料電池

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176317A (ja) * 1993-12-20 1995-07-14 Sanyo Electric Co Ltd 電極/イオン交換薄膜接合体の製造方法、及び電極/イオン交換薄膜/電極接合体の製造方法
US6641862B1 (en) * 1999-09-24 2003-11-04 Ion Power, Inc. Preparation of fuel cell electrode assemblies
JP2002216789A (ja) * 2001-01-19 2002-08-02 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池の製造方法
JP3975908B2 (ja) 2002-08-22 2007-09-12 Jsr株式会社 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびにプロトン伝導膜およびその製造方法
JP4269777B2 (ja) 2003-05-21 2009-05-27 Jsr株式会社 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP4193581B2 (ja) 2003-05-21 2008-12-10 Jsr株式会社 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP4836438B2 (ja) 2004-11-25 2011-12-14 旭化成イーマテリアルズ株式会社 高分子電解質積層膜
JP5084097B2 (ja) 2004-12-01 2012-11-28 株式会社リコー 電解質膜の製造方法
CN101223208B (zh) 2005-07-15 2012-06-06 捷时雅株式会社 含氮芳香族化合物及其制造方法、聚合物以及质子传导膜
JP2007273280A (ja) 2006-03-31 2007-10-18 Dainippon Printing Co Ltd 燃料電池用触媒層及び触媒層−電解質膜積層体
JP2009070675A (ja) * 2007-09-13 2009-04-02 Fuji Electric Holdings Co Ltd 固体高分子形燃料電池用膜電極接合体
JP2010135282A (ja) 2008-10-28 2010-06-17 Jsr Corp プロトン伝導膜およびその製造方法、膜−電極接合体、固体高分子型燃料電池
JP5581593B2 (ja) 2009-01-30 2014-09-03 Jsr株式会社 ポリアリーレン系共重合体、プロトン伝導膜および固体高分子電解質型燃料電池
JP5391779B2 (ja) 2009-03-30 2014-01-15 Jsr株式会社 高分子電解質膜および固体高分子電解質型燃料電池
JP2011023225A (ja) 2009-07-16 2011-02-03 Dainippon Printing Co Ltd 燃料電池の触媒層−電解質膜積層体、電解質膜−電極接合体及び燃料電池
JP5625317B2 (ja) 2009-10-22 2014-11-19 Jsr株式会社 新規な芳香族化合物および側鎖にスルホン酸基を含む芳香環を有するポリアリーレン系共重合体
JP5581937B2 (ja) 2010-09-24 2014-09-03 Jsr株式会社 芳香族系共重合体、ならびにその用途
CA2843375A1 (en) 2011-07-29 2013-02-07 Jsr Corporation Aromatic copolymer having proton conductive group and uses thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005372A1 (fr) * 2000-07-06 2002-01-17 Matsushita Electric Industrial Co., Ltd. Procede pour realiser la jonction entre un film d'electrolyte et une electrode
JP2002093424A (ja) * 2000-07-10 2002-03-29 Toray Ind Inc 膜−電極接合体の製造方法
JP2004164861A (ja) * 2002-11-08 2004-06-10 Dainippon Printing Co Ltd 燃料電池用触媒層形成シート、該シートの製造方法及び触媒層−電解質膜積層体の製造方法
JP2007018906A (ja) * 2005-07-08 2007-01-25 Gs Yuasa Corporation:Kk 固体高分子形燃料電池用膜/電極接合体の製造方法およびそれを備えた固体高分子形燃料電池
JP2009505364A (ja) * 2005-08-16 2009-02-05 ビーエーエスエフ ソシエタス・ヨーロピア 触媒被覆膜の製造方法
JP2008053167A (ja) * 2006-08-28 2008-03-06 Toyota Motor Corp 燃料電池の製造方法
JP2008166002A (ja) * 2006-12-27 2008-07-17 Honda Motor Co Ltd 固体高分子型燃料電池用膜−電極構造体
WO2011078310A1 (ja) * 2009-12-25 2011-06-30 Jsr株式会社 水素燃料型燃料電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141719A1 (ja) * 2014-03-20 2015-09-24 日本ゼオン株式会社 感放射線樹脂組成物及び電子部品
US9880468B2 (en) 2014-03-20 2018-01-30 Zeon Corporation Radiation-sensitive resin composition and electronic device
KR20190097210A (ko) * 2016-12-22 2019-08-20 존슨 맛쎄이 푸엘 셀스 리미티드 라미네이트 구조를 갖는 촉매-코팅된 멤브레인
CN113529121A (zh) * 2016-12-22 2021-10-22 庄信万丰燃料电池有限公司 具有层合结构的催化剂涂覆的膜
US11502308B2 (en) 2016-12-22 2022-11-15 Johnson Matthey Hydrogen Technologies Limited Catalyst-coated membrane having a laminate structure
KR102547602B1 (ko) * 2016-12-22 2023-06-27 존슨 맛쎄이 하이드로젠 테크놀로지스 리미티드 라미네이트 구조를 갖는 촉매-코팅된 멤브레인

Also Published As

Publication number Publication date
WO2014087958A1 (ja) 2014-06-12
US20150322578A1 (en) 2015-11-12
EP2927998A1 (en) 2015-10-07
JPWO2014087958A1 (ja) 2017-01-05
EP2927998A4 (en) 2016-08-03
JPWO2014087957A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
WO2014087957A1 (ja) 電解質膜アセンブリー、膜-電極接合体、燃料電池、水電解セルおよび水電解装置
US9975995B2 (en) Ion conducting polymer comprising partially branched block copolymer and use thereof
CA2529926C (en) Polymer electrolyte as well as polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell using the same
TWI671942B (zh) 複合高分子電解質膜以及使用其之附有觸媒層的電解質膜、膜電極複合物、固體高分子形燃料電池、氫壓縮裝置及複合高分子電解質膜之製造方法
US20060280983A1 (en) Solid electrolyte, membrane and electrode assembly, and fuel cell
JP5905857B2 (ja) 高分子電解質、高分子電解質膜、燃料電池用触媒層バインダー、およびその利用
WO2013027758A1 (ja) バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池
WO2014157389A1 (ja) 電解質膜用組成物、固体高分子電解質膜、該電解質膜の製造方法、膜-電極接合体、固体高分子型燃料電池、水電解セルおよび水電解装置
WO2015005370A1 (ja) 電解質膜、膜-電極接合体および固体高分子型燃料電池
JP2018031010A (ja) 高分子電解質及びその利用
JP2015228292A (ja) 固体高分子電解質膜、膜−電極接合体、燃料電池、水電解セルおよび水電解装置
JP5458765B2 (ja) プロトン伝導膜およびその製造方法、膜−電極接合体、固体高分子型燃料電池
JP2009021233A (ja) 膜−電極接合体及びその製造方法、並びに固体高分子形燃料電池
JP4554568B2 (ja) 固体高分子型燃料電池用膜−電極構造体
JP6069972B2 (ja) 芳香族スルホンイミド誘導体、スルホンイミド基含有ポリマー、それを用いた高分子電解質材料、高分子電解質成型体および固体高分子型燃料電池
WO2022244660A1 (ja) 電解質膜積層体、触媒層付電解質膜、膜電極接合体、水電解式水素発生装置および触媒層付電解質膜の製造方法
JP5309822B2 (ja) 芳香族スルホン酸誘導体、スルホン化ポリマーならびにそれを用いた高分子電解質材料および高分子電解質型燃料電池
JP6090971B2 (ja) 高分子電解質膜、およびその利用
Kyeong et al. Development of poly (arylene ether sulfone)-based blend membranes containing aliphatic moieties for the low-temperature decal transfer method
JP2007063533A (ja) スルホン酸基含有ポリマーとその用途および製造方法
WO2013161405A1 (ja) 電解質膜用組成物、固体高分子電解質膜、該電解質膜の製造方法、膜-電極接合体、固体高分子型燃料電池、水電解セルおよび水電解装置
JP2015228291A (ja) 電解質膜アセンブリー、膜−電極接合体、燃料電池、水電解セルおよび水電解装置
JP2015220018A (ja) 炭化水素系高分子電解質膜、膜−電極接合体および燃料電池
JP4022833B2 (ja) スルホン酸基含有ポリマー及びその用途
JPWO2008038702A1 (ja) スルホン酸基含有ポリマー、その製造方法、スルホン酸基含有ポリマーを用いた高分子電解質膜、膜/電極接合体及び燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860617

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551086

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860617

Country of ref document: EP

Kind code of ref document: A1