WO2015005342A1 - 窒素酸化物除去用触媒 - Google Patents
窒素酸化物除去用触媒 Download PDFInfo
- Publication number
- WO2015005342A1 WO2015005342A1 PCT/JP2014/068189 JP2014068189W WO2015005342A1 WO 2015005342 A1 WO2015005342 A1 WO 2015005342A1 JP 2014068189 W JP2014068189 W JP 2014068189W WO 2015005342 A1 WO2015005342 A1 WO 2015005342A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- alumina
- layer
- cerium
- exhaust gas
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 208
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 title abstract description 239
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 102
- 239000000470 constituent Substances 0.000 claims abstract description 80
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 65
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 65
- 229910052809 inorganic oxide Inorganic materials 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 42
- 238000000746 purification Methods 0.000 claims abstract description 22
- 239000010970 precious metal Substances 0.000 claims abstract description 21
- 238000003860 storage Methods 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 239000002002 slurry Substances 0.000 claims description 59
- 229910000510 noble metal Inorganic materials 0.000 claims description 56
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 26
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 24
- 239000011232 storage material Substances 0.000 claims description 24
- 239000011148 porous material Substances 0.000 claims description 20
- 238000002156 mixing Methods 0.000 claims description 14
- 229910052763 palladium Inorganic materials 0.000 claims description 12
- 229910052697 platinum Inorganic materials 0.000 claims description 12
- 229910052703 rhodium Inorganic materials 0.000 claims description 12
- 239000010948 rhodium Substances 0.000 claims description 12
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 12
- 238000001035 drying Methods 0.000 claims description 9
- 238000010304 firing Methods 0.000 claims description 9
- 238000001238 wet grinding Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 abstract description 52
- 229930195733 hydrocarbon Natural products 0.000 abstract description 14
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 14
- -1 nitrogen oxide (NOx) Chemical compound 0.000 abstract description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract 4
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract 2
- 239000001569 carbon dioxide Substances 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 181
- 239000000843 powder Substances 0.000 description 45
- 229910000420 cerium oxide Inorganic materials 0.000 description 16
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 239000000463 material Substances 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 229910052712 strontium Inorganic materials 0.000 description 13
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 13
- 239000004215 Carbon black (E152) Substances 0.000 description 12
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- 238000005470 impregnation Methods 0.000 description 7
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 229910052761 rare earth metal Inorganic materials 0.000 description 6
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 5
- 150000001342 alkaline earth metals Chemical class 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000006722 reduction reaction Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910052878 cordierite Inorganic materials 0.000 description 4
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 2
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 2
- 229910001950 potassium oxide Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910002060 Fe-Cr-Al alloy Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- CNLWCVNCHLKFHK-UHFFFAOYSA-N aluminum;lithium;dioxido(oxo)silane Chemical compound [Li+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O CNLWCVNCHLKFHK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- ITHZDDVSAWDQPZ-UHFFFAOYSA-L barium acetate Chemical compound [Ba+2].CC([O-])=O.CC([O-])=O ITHZDDVSAWDQPZ-UHFFFAOYSA-L 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- CSSYLTMKCUORDA-UHFFFAOYSA-N barium(2+);oxygen(2-) Chemical class [O-2].[Ba+2] CSSYLTMKCUORDA-UHFFFAOYSA-N 0.000 description 1
- KOPBYBDAPCDYFK-UHFFFAOYSA-N caesium oxide Chemical class [O-2].[Cs+].[Cs+] KOPBYBDAPCDYFK-UHFFFAOYSA-N 0.000 description 1
- 229910001942 caesium oxide Inorganic materials 0.000 description 1
- 239000004106 carminic acid Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- ZADYMNAVLSWLEQ-UHFFFAOYSA-N magnesium;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[Mg+2].[Si+4] ZADYMNAVLSWLEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000003863 physical function Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- VXNYVYJABGOSBX-UHFFFAOYSA-N rhodium(3+);trinitrate Chemical compound [Rh+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VXNYVYJABGOSBX-UHFFFAOYSA-N 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052642 spodumene Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- JUWGUJSXVOBPHP-UHFFFAOYSA-B titanium(4+);tetraphosphate Chemical compound [Ti+4].[Ti+4].[Ti+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O JUWGUJSXVOBPHP-UHFFFAOYSA-B 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/63—Platinum group metals with rare earths or actinides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9422—Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0236—Drying, e.g. preparing a suspension, adding a soluble salt and drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0244—Coatings comprising several layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0248—Coatings comprising impregnated particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1021—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1023—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1025—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/204—Alkaline earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/204—Alkaline earth metals
- B01D2255/2042—Barium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2065—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/902—Multilayered catalyst
- B01D2255/9025—Three layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/91—NOx-storage component incorporated in the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/92—Dimensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/945—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/638—Pore volume more than 1.0 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0203—Impregnation the impregnation liquid containing organic compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a catalyst for removing nitrogen oxides. Specifically, the present invention relates to an exhaust gas purification catalyst for the purpose of removing nitrogen oxides (NOx) among harmful components contained in the exhaust gas of internal combustion engines such as gasoline engines and diesel engines, and exhaust gas using the catalyst. It relates to a purification method.
- NOx nitrogen oxides
- NOx in the atmosphere causes photochemical smog and acid rain. For this reason, NOx emissions from automobiles equipped with an internal combustion engine, which is one of NOx generation sources, have become a social problem. For this reason, in the future, studies are being made in the direction of stricter regulations regarding NOx emissions. However, since diesel engines and gasoline lean burn engines are lean combustion with a large amount of oxygen, it is difficult to reduce and remove NOx.
- NOx purification catalysts For example, a NOx occlusion treatment method typified by a method of occluding nitrogen oxides and subsequently introducing hydrocarbon (HC) as a reducing substance under engine control to remove nitrogen oxides (Patent Document 1). Furthermore, as a technique for compensating for the disadvantages of NOx occlusion removal, there is a method in which a catalyst for oxidizing HC and CO is disposed upstream of the exhaust gas flow, and a catalyst for NOx purification is disposed downstream (Patent Document 2). Another object is to effectively utilize H 2 contained in the exhaust gas, selectively purifying HC and CO on the upstream side, and reducing NOx on the downstream side using the remaining H 2 . Furthermore, a technique for reducing and removing NOx by actively introducing a reducing agent such as ammonia into exhaust gas has been proposed (Patent Document 3).
- the exhaust gas temperature can be efficiently purified even in a high temperature range where the exhaust gas temperature exceeds 500 ° C., and even in a relatively low temperature range of about 250 ° C. Yes. Further, not only when the engine speed is low, but also at high space velocity (high SV) with respect to the exhaust gas purifying catalyst that exhausts a large amount of exhaust gas at a high speed, efficient removal of nitrogen oxides is desired. It is rare.
- the present invention aims to solve the above problems.
- the exhaust gas purifying catalyst of the present invention includes: a three-dimensional structure; and a catalyst component layer composed of one or more constituent layers on the three-dimensional structure; Alumina having supported mesopores (hereinafter also referred to as “(a) noble metal unsupported alumina”), (b) NOx occlusion material supported cerium, (c) a refractory inorganic oxide, and (d) a noble metal,
- the outermost constituent layer includes (a) noble metal unsupported alumina and (b) NOx occlusion material-supporting cerium.
- 6 is a graph showing an average NOx purification rate (%) of a completed catalyst according to the present invention when it is constantly evaluated in a high temperature range where the catalyst inlet temperature is about 450 ° C. and in a high SV range of about 150,000 h ⁇ 1 .
- the first invention of the present invention includes a three-dimensional structure; and a catalyst component layer comprising one or more constituent layers on the three-dimensional structure;
- the catalyst component layer includes (a) alumina having no precious metal unsupported mesopore (hereinafter also referred to as “(a) precious metal unsupported alumina”), (b) NOx occlusion material-supporting cerium, (c) a refractory inorganic oxide, and ( d) contains noble metals,
- the outermost constituent layer relates to an exhaust gas purifying catalyst containing (a) noble metal unsupported alumina and (b) NOx storage material supported cerium.
- the second invention of the present invention relates to a method for producing the catalyst
- the third invention relates to a method for treating exhaust gas using the catalyst.
- the exhaust gas purifying catalyst of the present invention comprises (a) alumina having no-noble metal-supported mesopores, (b) NOx occlusion material-supporting cerium, and (c) a refractory inorganic material on a three-dimensional structure serving as a carrier.
- the catalyst component layer contains an oxide and (d) a noble metal.
- the catalyst component layer is composed of one or more constituent layers, and the constituent layers excluding the outermost layer may contain at least one of the catalyst components (a) to (d). Includes at least (a) precious metal unsupported alumina and (b) NOx storage material supported cerium. Further, the entire catalyst component layer includes all of the catalyst components (a) to (d).
- NOx can be efficiently removed from CO, HC and NOx which are harmful components contained in the exhaust gas.
- NOx which is a harmful component contained in exhaust gas, can be efficiently reduced and removed even in a high temperature range of 500 ° C. or higher and also in a high SV range.
- the outermost constituent layer contains (a) noble metal unsupported alumina and (b) NOx occlusion material-supported cerium. It is considered that NOx can be efficiently reduced and removed in a high SV region. Accordingly, the one or more constituent layers are more preferably at least two layers. However, the above mechanism is inference and does not limit the present invention.
- the three-dimensional structure serves as a catalyst carrier that supports the catalyst component layer.
- a monolithic carrier is preferable.
- the monolithic carrier what is usually called a ceramic honeycomb carrier may be used, and in particular cordierite, mullite, ⁇ -alumina, zirconia, titania, titanium phosphate, aluminum titanate, betalite, spodumene, aluminosilicate, magnesium silicate.
- a honeycomb carrier made of a material such as cordierite is preferable.
- a fire-resistant three-dimensional structure using an oxidation-resistant heat-resistant metal such as stainless steel or Fe—Cr—Al alloy is also used.
- the shape of the gas passage port may be hexagonal, quadrangular, triangular or corrugated.
- a cell density number of cells / unit cross-sectional area of 100 to 600 cells / in 2 is sufficient, preferably 200 to 500 cells / in 2.
- Noble metal unsupported alumina is alumina having mesopores substantially free of noble metal. The noble metal has substantially no specific effect. For example, 0.005 mass% or less for Pt on noble metal unsupported alumina, 0.0005 mass% or less for Pd, and Rh. 0.0005 mass% or less.
- noble metal unsupported alumina it is possible to improve the heat resistance of the catalyst layer and prevent the catalyst component layer from being peeled off from the three-dimensional structure. Further, (a) the noble metal unsupported alumina has mesopores, so that the reducing agent can be strongly adsorbed and the NOx removal efficiency is further improved.
- the alumina is not particularly limited as long as it has mesopores, and any alumina may be used. Examples thereof include ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina. These aluminas may be used alone or in combination of two or more.
- heat-resistant alumina it is also preferable to use heat-resistant alumina from the viewpoint of improving the heat resistance of the catalyst.
- Such heat-resistant alumina has a specific surface area of 100 m 2 / g or more, and preferably of 120 ⁇ 350m 2 / g, and less lowering of even the specific surface area when exposed to 700 ° C. heat of about.
- the precious metal unsupported alumina is usually a powder having an average particle size of 2.0 to 60 ⁇ m, preferably 5.0 to 50 ⁇ m, more preferably 5.0 to 40 ⁇ m.
- the amount of the precious metal unsupported alumina used is not particularly limited, but is preferably 5 to 150 g (hereinafter referred to as g / L), more preferably 10 to 100 g / L per liter (L) of the catalyst. It is. If the (a) noble metal unsupported alumina is 5 g / L or more, the (a) noble metal unsupported alumina brings about the desired effect, so that the performance can be sufficiently exhibited. On the other hand, if it is 150 g / L or less, since it becomes difficult to coat
- alumina having mesopores is used as the precious metal unsupported alumina.
- Mesopore means pores having an average pore diameter of 2 to 50 nm, preferably 2 to 30 nm, more preferably 5 to 25 nm.
- mesopores of noble metal unsupported alumina those having a pore volume of 0.7 to 1.2 ml / g are preferable, and within this range, the reducing agent can be strongly adsorbed and NOx removal efficiency is improved. To do.
- the pore volume of the noble metal unsupported alumina is more preferably 0.8 to 1.15 ml / g.
- the specific surface area of the noble metal unsupported alumina is preferably 350 m 2 / g or less, particularly preferably 120 to 310 m 2 / g.
- the average particle diameter is 2.0 to 50 ⁇ m, preferably 5.0 to 50 ⁇ m, more preferably 5.0 to 40 ⁇ m.
- the effect of the present invention can be achieved by using precious metal unsupported alumina.
- the effect of the present invention can be further generated by making it exist in the outermost constituent layer among one or more constituent layers constituting the surface layer of the catalyst, that is, the catalyst component layer.
- NOx occlusion material carrying cerium is obtained by carrying NOx occlusion material on cerium.
- the NOx occlusion material may be an oxide of a highly basic element, preferably an alkali metal and / or alkaline earth metal oxide, more preferably barium oxide or strontium oxide. Cerium can be used in the oxide state.
- the NOx occlusion material-supporting cerium can be formed by supporting the NOx occlusion material on cerium oxide, a mixture of the NOx occlusion material source and the cerium source, both or both crystals. Or it can also be set as the solid solution in which the other was dissolved.
- the NOx occlusion material-supporting cerium can be obtained by mixing each solid raw material and heating (solid phase reaction method), mixing the aqueous liquids of each raw material, drying, and firing (liquid (Layer reaction method). Furthermore, when one of the raw materials is a solid and the other is an aqueous liquid, the solid can be obtained by impregnating the liquid with the liquid, drying, and solid firing (impregnation method).
- the NOx occlusion material-supporting cerium can exhibit the desired effect of the present invention by being present in the outermost layer of the catalyst, that is, the outermost layer of the constituent layers constituting the catalyst component layer.
- the amount of NOx occlusion material-supporting cerium used is not particularly limited. Specifically, (b) NOx occlusion material-supporting cerium is preferably 3 to 200 g, more preferably 3 to 100 g (hereinafter referred to as g / L), most preferably 10 to 1 liter (L) of the catalyst. 100 g.
- the amount of NOx storage material supported cerium used (supported amount) is 3 g / L or more
- the NOx storage material supported cerium can sufficiently perform, and 200 g / L or less. It is preferable because the mechanical strength of the catalyst component layer can be prevented from decreasing.
- This (b) NOx occlusion material-supporting cerium is usually a powder, and the average particle size is not particularly limited.
- the ratio of cerium oxide and NOx storage material at this time is preferably 0.5 to 5.0 in terms of weight ratio (CeO 2 equivalent mass / NOx storage material mass), 1.0 Most preferred is ⁇ 5.0.
- a weight ratio of 5.0 or less is preferable because the NOx storage material can be sufficiently dispersed on the cerium oxide.
- the weight ratio is 0.5 or more, the NOx occlusion material can sufficiently exhibit performance, which is preferable.
- the above (a) alumina having no precious metal-supported mesopores and (b) NOx occlusion material-supporting cerium are included in the outermost constituent layer among one or more constituent layers constituting the catalyst component layer.
- the constituent layer on the outermost surface may contain catalyst components other than (a) noble metal unsupported alumina and (b) NOx storage material supported cerium.
- the total amount of catalyst components in the outermost constituent layer is preferably 30 to 350 g, more preferably 50 to 300 g, per liter of catalyst. When the total amount of the catalyst components is 30 to 350 g, the catalyst of the present invention exhibits a sufficient function as the catalyst components and can achieve the desired effect.
- the refractory inorganic oxide is used for supporting a noble metal.
- the refractory inorganic oxide is not particularly limited as long as it is usually used for a catalyst for an internal combustion engine, and any refractory inorganic oxide may be used.
- single oxides such as ⁇ -alumina, silica, titania, zirconia, and composite oxides thereof are used.
- the above refractory inorganic oxides may be used alone or in the form of a mixture of two or more.
- These refractory inorganic oxides are usually powders having an average particle size of 2.0 to 60 ⁇ m, preferably 5.0 to 50 ⁇ m, more preferably 5.0 to 40 ⁇ m.
- the amount (supported amount) of the refractory inorganic oxide is not particularly limited, but is preferably 10 to 450 g, more preferably 50 to 400 g, and still more preferably 100 to 200 g per liter (L) of the catalyst. If it is 10 or more, the catalyst component (for example, precious metal unsupported alumina or the precious metal described in detail below) can be sufficiently dispersed, and the durability is sufficient. On the other hand, if it is 450 g or less, an effect commensurate with the addition of the refractory inorganic oxide is recognized, and the effects of other catalytic active components (for example, noble metals described in detail below) can be sufficiently exhibited. As a result, it is possible to prevent the activity from decreasing, the pressure loss from increasing, and the mechanical strength of the catalyst layer from decreasing.
- the catalyst component for example, precious metal unsupported alumina or the precious metal described in detail below
- alumina As alumina, alumina having different functions, physical properties and functions of the present invention can be used.
- One is heat-resistant alumina used to improve the heat resistance of the catalyst.
- Such heat-resistant alumina has a specific surface area of 100 m 2 / g or more, preferably 120 to 350 m 2 / g, and has a small decrease in specific surface area even when exposed to heat at about 700 ° C.
- alumina having mesopores can also be used for supporting noble metals.
- Mesopore means a pore having a pore diameter of 2 to 50 nm, preferably 2 to 30 nm.
- the pore volume is 0.7 to 1.2 ml / g, preferably 0.8 to 1.15 ml / g.
- the alumina when used without supporting a noble metal, it becomes (a) a noble metal unsupported alumina.
- a single type of noble metal may be used, or a plurality of types may be used in combination.
- the amount of noble metal used is 0.1 to 15 g per liter of catalyst (hereinafter referred to as g / L), preferably 0.5 to 10 g if platinum, and 0.05 to 10 g if noble metal is palladium. 10 g, preferably 0.1 to 5.0 g, and rhodium, 0.1 to 5.0 gg, preferably 0.1 to 2.0 g.
- Precious metals are used by supporting them on the above refractory inorganic oxides. In that case, you may carry
- the supporting method is a method of mixing a refractory inorganic oxide and an aqueous solution of a precious metal, drying and firing, a method of adding a reducing agent after mixing and reducing the precious metal source to adhere to the refractory inorganic oxide, or mixing.
- a method of post-heating and adsorbing the noble metal to the refractory inorganic oxide can be used.
- a promoter can be added to the catalyst component layer in addition to the catalyst component.
- an oxide of at least one element selected from the group consisting of alkali metals, alkaline earth metals, rare earth elements and magnesium can be used.
- oxides of rare earth elements selected from the group consisting of europium, gadolinium, terbium, dysprosium, holmium, erbium and the like.
- oxides of alkali metals, alkaline earth metals or rare earth elements are preferred. More preferred are sodium oxide, potassium oxide, barium oxide, strontium oxide, cerium oxide and lanthanum oxide, and particularly preferred are potassium oxide, barium oxide, strontium oxide and cerium oxide. Of the above combinations, those used for NOx storage material-supporting cerium are excluded.
- the promoter component is 5 to 450 g, more preferably 5 to 400 g, more preferably 10 to 300 g, and most preferably 20 to 100 g per liter (L) of the catalyst.
- the NOx removal efficiency can be improved particularly in a high temperature region and a high SV region by using a co-catalyst such as an alkaline earth metal simultaneously with the noble metal unsupported alumina.
- a co-catalyst such as an alkaline earth metal simultaneously with the noble metal unsupported alumina.
- the promoter component is preferably contained in a constituent layer other than the outermost constituent layer.
- the effect of the catalyst of the present invention can be further improved by making it present in the inner constituent layer of the constituent layers of the catalyst component layer, that is, when the constituent layer is 2, in the first constituent layer.
- the first constituent layer is an inner layer when the constituent layer constituting the catalyst component layer is two layers.
- a catalyst component that covers the three-dimensional structure as an inner layer is mixed and wet pulverized to obtain a first slurry.
- the method of mixing and wet pulverization is not particularly limited, and any method can be used. For example, (a) noble metal unsupported alumina, (b) NOx occlusion material supported cerium, (c) a refractory inorganic oxide and (d) a water-soluble salt of a noble metal, and if necessary, a promoter component.
- a first slurry can be obtained by making a slurry using a wet pulverizer such as a ball mill.
- the solvent used for preparing the first slurry is not particularly limited, and those used in this technical field can be appropriately employed.
- the concentration of the catalyst component in the solvent is not particularly limited as long as a desired amount can be supported on the three-dimensional structure.
- the amount is preferably such that the concentration of the catalyst component in the solvent is 20 to 60% by mass, more preferably 25 to 50% by mass.
- the catalytically active components contained in the first component layer (inner layer) of the catalyst of the present invention are (a) noble metal unsupported alumina, (b) NOx storage material supported cerium, (c) refractory inorganic oxide, and (d)
- the catalyst component layer as a whole contains at least one kind of water-soluble salt of noble metal, and (a) noble metal unsupported alumina, (b) NOx occlusion material supported cerium, (c) refractory inorganic oxide, and (d) There is no particular limitation as long as it contains a water-soluble salt of a noble metal.
- an oxide of at least one element selected from the group consisting of refractory inorganic oxides and alkali metals, alkaline earth metals, rare earth elements, other oxides and noble metals can be included.
- the amount (supported amount) of the catalytically active component in the inner layer is not particularly limited, but is preferably 50 to 450 g, more preferably 70 to 400 g, per liter (L) of the catalyst.
- Step of forming the first constituent layer the three-dimensional structure is immersed in the first slurry prepared as described above, and if necessary, the excess first slurry is removed, dried, and fired to form the first constituent layer in the three-dimensional structure. Form on the body.
- the excess first slurry is blown off with compressed air, and 70 to 280 ° C., more preferably 100 to 200 ° C. until there is no loss of moisture. It can be dried for 30 minutes, more preferably 5 to 25 minutes.
- firing for example, firing can be performed in an electric furnace at 300 to 800 ° C., more preferably at 400 to 600 ° C. for 15 minutes to 3 hours, more preferably 30 minutes to 90 minutes.
- Step of obtaining a second slurry When the two constituent layers constituting the catalyst component layer are two layers, the second constituent layer covers the first constituent layer (inner layer) and becomes the outer layer. In this case, the second constituent layer is the outermost constituent layer and also the outermost layer.
- the catalyst components contained in the second constituent layer are mixed and wet pulverized to obtain a second slurry.
- the method of mixing and wet pulverization is not particularly limited, and any method can be used.
- the second slurry forms the outermost constituent layer, so that (a) noble metal unsupported alumina and (b) NOx storage material supported cerium are included. As an essential component, it is put into a solvent.
- a refractory inorganic oxide (c) a refractory inorganic oxide, (d) a water-soluble salt of a noble metal, and a promoter component may be added together to the solvent. After these materials are added to the solvent, a second slurry can be obtained by using a wet pulverizer such as a ball mill as a slurry.
- the same solvents as those for obtaining the first slurry described above can be used.
- the catalytically active component contained in the second component layer (outer layer) of the catalyst of the present invention includes (a) noble metal unsupported alumina and (b) NOx occlusion material-supported cerium, and a catalyst component layer
- a catalyst component layer As a whole, there is no particular limitation as long as it contains (a) no-noble metal-supported alumina, (b) a NOx storage material-supporting cerium, (c) a refractory inorganic oxide, and (d) a water-soluble salt of a noble metal.
- the second constituent layer includes a refractory inorganic oxide and an oxide of at least one element selected from the group consisting of alkali metals, alkaline earth metals, rare earth elements, other oxides, and Can contain noble metals.
- the amount (supported amount) of the catalytically active component in the second component layer (outer layer) is not particularly limited, but is preferably 30 to 350 g, more preferably 50 to 350 g, per liter (L) of the catalyst. When the amount of the catalyst component supported by the second constituent layer is within such a range, the catalyst component exhibits a sufficient function and an expected effect can be realized.
- Step of forming the second constituent layer the three-dimensional structure on which the first constituent layer is formed is immersed in the second slurry produced as described above, and if necessary, the excess second slurry is removed, dried and fired, A second constituent layer is formed on one constituent layer.
- the method of immersion, drying, and baking, if the 2nd component layer can be formed there will be no restriction
- the catalyst component layer is composed of two constituent layers, the catalyst of the present invention is completed by forming the second constituent layer.
- the catalyst of the present invention may be one in which the catalyst component layer is formed of only one component layer on the three-dimensional structure, or the catalyst component layer is formed of two or more component layers. It may be a thing. Two layers are preferred. By providing a catalyst component layer composed of two or more constituent layers on the three-dimensional structure, different catalyst components can be supported for each constituent layer. Thereby, since a different function can be given to each constituent layer, it becomes possible to further improve the exhaust gas purification performance of the entire catalyst.
- the step of obtaining the first slurry and the first slurry as long as the slurry includes all of the catalyst components and The catalyst can be completed by performing only the step of forming one constituent layer.
- a catalyst component layer comprising two or more constituent layers is formed, after forming the first constituent layer by the above method, the step of forming the first slurry using a desired catalyst component and The operation in the step of forming the first constituent layer is repeated to form the second and higher constituent layers.
- a finished catalyst can be manufactured by implementing the process which comprises said 2nd slurry, and the process of forming a 2nd constituent layer for the constituent layer used as the outermost layer.
- the present invention also provides an exhaust gas treatment method characterized in that exhaust gas is treated using the above-described exhaust gas purification catalyst of the present invention.
- the exhaust gas targeted by the catalyst of the present invention is exhaust gas from internal combustion engines such as diesel engines and gasoline engines.
- the catalyst of the present invention is effective for removing NOx in exhaust gas.
- the exhaust gas exhibits an excellent effect when it repeats an oxidizing atmosphere and a reducing atmosphere.
- the space velocity (SV) of the exhaust gas is 10,000 to 300,000 h ⁇ 1 , preferably 10,000 to 200,000 h ⁇ 1 .
- the catalyst of the present invention is also effective for such high space velocity exhaust gas.
- the exhaust gas treatment temperature may be from about 150 ° C. to 900 ° C. or more, preferably from 200 ° C. to 700 ° C.
- the catalyst of the present invention is effective in removing NOx from such a low temperature range to a high temperature range.
- the exhaust gas purifying catalyst of the present invention can treat exhaust gas by being installed in the exhaust gas passage, and can be installed under the floor of an automobile from the downstream of the engine manifold. Furthermore, it can also be used in combination with a catalyst having another function. For example, a catalyst / adsorbent having a hydrocarbon adsorption function, a diesel particulate filter, a three-way catalyst, and an oxidation catalyst.
- a catalyst / adsorbent having a hydrocarbon adsorption function, a diesel particulate filter, a three-way catalyst, and an oxidation catalyst.
- a preferred combination condition is that the purification catalyst of the present invention is installed on the upstream side of the exhaust gas, a hydrocarbon adsorbent or a diesel particulate filter is installed on the downstream side, or a three-way catalyst or an oxidation catalyst is installed on the upstream side of the exhaust gas.
- the exhaust gas purifying catalyst of the present invention is installed on the downstream side of the exhaust gas.
- Strontium-supporting cerium powder was prepared as the NOx storage material-supporting cerium. 500 g of cerium oxide, 102.1 g of strontium nitrate, and 276 g of water were supported by an impregnation method, then dried at 120 ° C. for 12 hours to completely remove moisture, and then calcined at 600 ° C. for 1 hour to obtain a powder. Body D (strontium-supporting cerium powder) was obtained.
- Example 1 (First component layer) Aqueous slurry A was obtained by mixing 400 g of powder B, 25 g of powder C, 400 g of powder D, 400 g of cerium oxide, 50 g of heat-resistant alumina (refractory inorganic oxide) and 1912.5 g of water.
- a commercially available cordierite monolith honeycomb carrier (three-dimensional structure, 400 cells / square inch, diameter 103 mm, length 130 mm, volume 1.083 L (liter)) is immersed in this aqueous slurry A, and excess slurry is compressed air. Blew away. Next, it was dried for 10 minutes at 150 ° C. until there was no loss of moisture, and further baked in an electric furnace at 500 ° C. for 1 hour to obtain an inner layer coat (A) (first constituent layer).
- the amount of the catalytically active component supported was 255 g per liter (L) of the catalyst.
- the supported amount of the cerium oxide inner layer coat (A) as a cocatalyst was 80 g / L.
- the amount of cerium supported to store NOx in the inner layer coat was 67 g / L with respect to the catalyst.
- This catalyst (A) carries platinum 2.7 g / L, palladium 0.6 g / L, rhodium 0.2 g / L, and refractory inorganic oxide 156 g / L with respect to the catalyst.
- Unsupported alumina oxide (I) was 20.0 g / L, and strontium was supported on cerium oxide at 4.0 g / L.
- the weight ratio of cerium to the NOx storage material (CeO 2 equivalent mass / NOx storage material mass) was 5.
- the amount of cerium supported on the NOx occlusion material was 87 g / L with respect to the catalyst.
- the supported amount of strontium with respect to the catalyst was 17.33 g / L.
- the amount of the cerium supported on the NOx occlusion material in the outer layer coat (B) was 20 g / L with respect to the catalyst.
- the catalyst component carrying amount of the outer layer coat (B) was 109 g / L based on the catalyst.
- Example 2 First component layer
- an inner layer coat (A) (first constituent layer) was formed on a carrier.
- the average pore diameter was 17 nm) 100 g of (II) and 100 g of heat-resistant alumina (refractory inorganic oxide) and 816.3 g of water were mixed to obtain an aqueous slurry C.
- the carrier having the inner layer coat (A) was immersed in the aqueous slurry C, and the excess slurry was blown off with compressed air. Next, it was dried for 20 minutes at 150 ° C. until there was no water loss, and further calcined at 500 ° C. for 1 hour in an electric furnace to obtain a finished catalyst (B).
- the catalyst (B) 2.7 g / L of platinum, 0.6 g / L of palladium and 0.2 g / L of rhodium, and 156 g / L of refractory inorganic oxide were supported on the catalyst.
- the outer layer was coated with strontium-supporting cerium in which noble metal-unsupported alumina oxide (II) 20.0 g / L and strontium were supported on cerium oxide at 4.0 g / L.
- the weight ratio of cerium to the NOx storage material (CeO 2 equivalent mass / NOx storage material mass) was 5.
- the loading amount of NOx occlusion material-carrying cerium was 87 g / L.
- the supported amount of strontium with respect to the catalyst was 17.33 g / L.
- the catalyst component loading of the outer layer coat (B) was 109 g / L with respect to the catalyst.
- the amount of the cerium supported on the NOx storage material in the outer layer coat (B) was 20 g / L with respect to the catalyst.
- Example 3 (First component layer) In the same manner as in Example 1, an inner layer coat (A) (first constituent layer) was formed on a carrier.
- this catalyst (C) 2.7 g / L of platinum, 0.6 g / L of palladium and 0.2 g / L of rhodium, and 156 g / L of refractory inorganic oxide were supported on the catalyst. Further, the outer layer was coated with strontium-supporting cerium in which noble metal unsupported alumina (III) 20.0 g / L and strontium were supported on cerium oxide at 4.0 g / L. The weight ratio of cerium with respect to NOx-absorbing material (CeO 2 in terms of mass / NOx occlusion material weight) was 5. Further, the amount of cerium supported on the NOx storage material (total of the inner layer and the outer layer) was 87 g / L. The supported amount of strontium with respect to the catalyst was 17.33 g / L.
- the catalyst component loading of the outer layer coat (B) was 109 g / L with respect to the catalyst.
- the amount of the cerium supported on the NOx storage material in the outer layer coat (B) was 20 g / L with respect to the catalyst.
- Example 4 400 g of powder B, 25 g of powder C, 400 g of powder F, 400 g of cerium oxide, 50 g of heat-resistant alumina (refractory inorganic oxide) and 1912.5 g of water were mixed to obtain an aqueous slurry E.
- a commercially available cordierite monolith honeycomb carrier 400 cells / square inch, diameter 103 mm, length 130 mm, volume 1.083 L
- was immersed and excess slurry was blown off with compressed air.
- the supported amount of the catalytically active component was 255 g per liter (L) of the catalyst.
- the supported amount of the cerium oxide inner layer coat (A) as a cocatalyst was 80 g / L.
- the carrier having the inner layer coat (B) was immersed in the aqueous slurry B produced in the same manner as in Example 1, and the excess slurry was blown off with compressed air. Next, it was dried for 20 minutes at 150 ° C. until there was no loss of moisture, and further calcined at 500 ° C. for 1 hour in an electric furnace to obtain a finished catalyst (D).
- This catalyst (D) had the same composition as the finished catalyst (A) except that the inner layer strontium was changed to barium.
- the weight ratio of cerium to the NOx storage material (CeO 2 equivalent mass / NOx storage material mass) was 5.
- the amount of cerium supported on the NOx storage material was 87 g / L with respect to the catalyst.
- This catalyst (E) carries platinum 2.7 g / L, palladium 0.6 g / L and rhodium 0.2 g / L, and refractory inorganic oxide 160 g / L with respect to the catalyst.
- the constituent layer supported 20.0 g / L of precious metal unsupported alumina (I). Moreover, the catalyst component carrying amount of the outermost constituent layer was 109 g / L with respect to the catalyst.
- Aqueous slurry G was obtained by mixing 100 g of alumina oxide (IV), 100 g of heat-resistant alumina (refractory inorganic oxide) and 816.3 g of water.
- the inner layer coat (A) was immersed in this aqueous slurry G, and excess slurry was blown off with compressed air. Next, it was dried for 20 minutes at 150 ° C. until the weight loss disappeared, and further calcined at 500 ° C. for 1 hour in an electric furnace to obtain a finished catalyst (F).
- the surface layer has an unsupported alumina oxide IV of 20.0 g / L.
- L and strontium were supported on cerium oxide at 4.0 g / L.
- the weight ratio of cerium to the NOx storage material (CeO 2 equivalent mass / NOx storage material mass) was 5.
- the loading amount of the NOx storage material-supporting cerium was 87 g / L with respect to the catalyst.
- the amount of NOx occlusion material-supporting cerium supported in the outer layer was 20 g / L.
- This catalyst (G) was supported with 2.7 g / L of platinum, 0.6 g / L of palladium, 0.2 g / L of rhodium, and 176 g / L of refractory inorganic oxide with respect to the catalyst. Further, 20.0 g / L of noble metal unsupported alumina (I) and 4.0 g / L of strontium-supported alumina in which strontium was supported on heat-resistant alumina were supported on the outermost constituent layer. Moreover, the catalyst component carrying amount of the outermost constituent layer was 109 g / L with respect to the catalyst.
- FIG. 1 is a graph showing the average NOx purification rate (%) of completed catalysts (A) to (G) when they are constantly evaluated in a high temperature range where the catalyst inlet temperature is about 500 ° C.
- the finished catalysts (A) to (D) used in Examples 1 to 4 showed that NOx reduction performance was 20 to 40% higher than the finished catalysts (E) to (G) used in Comparative Examples. .
- FIG. 2 shows the average NOx purification rate (%) of the completed catalysts (A) to (G) when they are constantly evaluated in a high temperature range where the catalyst inlet temperature is about 450 ° C. and in a high SV range of about 150,000 h ⁇ 1. It is a graph to show.
- the finished catalysts (A) to (D) used in Examples 1 to 4 have a NOx reduction performance 20 to 50% higher than the finished catalysts (E) and (G) that do not contain strontium in the surface layer. It was also about 10% higher than F).
- FIG. 3 is a graph showing the average NOx purification rate (%) of the finished catalysts (A) to (G) when they are constantly evaluated in a low temperature range where the catalyst inlet temperature is about 250 ° C.
- the finished catalysts (A) to (D) used in Examples 1 to 4 showed that NOx reduction performance was 20 to 30% higher than that of the finished catalyst (G) in which strontium was supported on alumina oxide. .
- the present invention can be used for exhaust gas treatment, and in particular, since exhaust gas can reduce NOx even at high temperature and high SV, it can be used for automobile exhaust gas treatment.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Combustion & Propulsion (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
前記三次元構造体上の、1以上の構成層からなる触媒成分層;を含み、
前記触媒成分層は(a)貴金属未担持メソポアを有するアルミナ(以下、「(a)貴金属未担持アルミナ」とも称する)、(b)NOx吸蔵材担持セリウム、(c)耐火性無機酸化物および(d)貴金属を含み、
前記1以上の構成層のうち、最表面の構成層は、(a)貴金属未担持アルミナおよび前記(b)NOx吸蔵材担持セリウムを含む、排ガス浄化用触媒に関するものである。
本発明の排ガス浄化用触媒は、担体となる三次元構造体上に、触媒成分である、(a)貴金属未担持メソポアを有するアルミナ、(b)NOx吸蔵材担持セリウム、(c)耐火性無機酸化物および(d)貴金属を含む触媒成分層を有している。触媒成分層は、1以上の構成層からなり、最表面の層を除く構成層は(a)~(d)の触媒成分のうち少なくともいずれかを含んでいればよいが、最表面の構成層は、少なくとも(a)貴金属未担持アルミナおよび(b)NOx吸蔵材担持セリウムを含む。また、触媒成分層全体としては、(a)~(d)の触媒成分をすべて含む。
三次元構造体は、触媒成分層を担持する触媒用担体としての役割を果たす。三次元構造体としては、モノリス担体が好ましい。モノリス担体としては、通常、セラミックハニカム担体と称されるものであればよく、特にコージェライト、ムライト、α-アルミナ、ジルコニア、チタニア、リン酸チタン、アルミニウムチタネート、ベタライト、スポジュメン、アルミノシリケート、マグネシウムシリケート等を材料とするハニカム担体が好ましく、なかでもコージェライト質のものが特に好ましい。その他、ステンレス鋼、Fe-Cr-Al合金等の如き酸化抵抗性の耐熱性金属を用いて耐火性三次元構造体としたものも使用される。
(a)貴金属未担持アルミナとは、実質的に貴金属が含まれないメソポアを有するアルミナである。実質的には貴金属が特有の効果を奏しない程度のものをいい、例えば貴金属未担持アルミナにPtであれば0.0005質量%以下、Pdであれば0.0005質量%以下、Rhであれば0.0005質量%以下である。(a)貴金属未担持アルミナを用いることで、触媒層の耐熱性を向上させることおよび触媒成分層が三次元構造体から剥がれないようにすることができる。また、(a)貴金属未担持アルミナがメソポアを有することで、還元剤を強く吸着することができNOx除去効率がより向上する。
(b)NOx吸蔵材担持セリウムは、NOx吸蔵材をセリウムに担持したものである。NOx吸蔵材は塩基性の高い元素の酸化物を用いることができるが、好ましくはアルカリ金属および/またはアルカリ土類金属の酸化物であり、さらに好ましくは酸化バリウム、または酸化ストロンチウムである。セリウムは酸化物状態のものを用いることができる。
耐火性無機酸化物は、貴金属を担持するために用いられる。耐火性無機酸化物としては、通常内燃機関用の触媒に用いられるものであれば、特に制限されず、何れのものであってもよい。例えば、α-アルミナ、γ-アルミナ、δ-アルミナ、η-アルミナ、θ-アルミナ、チタニア、ジルコニア、酸化珪素(シリカ)などの単独酸化物、これらの複合酸化物であるアルミナ-チタニア、アルミナ-ジルコニア、チタニア-ジルコニア、ゼオライト、シリカ-アルミナなどが挙げられる。好ましくは、γ-アルミナ、シリカ、チタニア、ジルコニアなどの単独酸化物、およびこれらの複合酸化物が使用される。上記耐火性無機酸化物は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。
本発明に用いる貴金属としては、白金、パラジウム、ロジウム、イリジウム、ルテニウムなどが挙げられるが、好ましくは白金、パラジウム、ロジウム、イリジウムであり、より好ましくは白金、パラジウム又はロジウムである。貴金属は単独の種類を使用してもよく、複数種類を組み合わせて使用してもよい。
本発明においては、前記触媒成分に加えて、触媒成分層に、助触媒を添加して使用することができる。助触媒としては、アルカリ金属、アルカリ土類金属及び希土類元素及びマグネシウムからなる群より選択される少なくとも1種の元素の酸化物を用いることができる。アルカリ金属酸化物としては、ナトリウム、カリウム、ルビジウム、セシウムの酸化物、アルカリ土類金属酸化物としては、ストロンチウム、バリウムの酸化物、希土類元素酸化物としては、セリウム、ランタン、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウムなどからなる群より選択される希土類元素の酸化物が挙げられる。これらのものは単独又は2種以上の混合物の形態で使用されてもよい。これらのうち、アルカリ金属、アルカリ土類金属又は希土類元素の酸化物が好ましい。より好ましくは、酸化ナトリウム、酸化カリウム、酸化バリウム、酸化ストロンチウム、酸化セリウム、酸化ランタンであり、特に好ましくは、酸化カリウム、酸化バリウム、酸化ストロンチウム、酸化セリウムである。なお、上記の組合せのうちNOx吸蔵材担持セリウムに用いるものは除く。
以下に好ましい排ガス浄化用触媒の製造方法を記載するが、本発明の効果を奏するものであれば以下の方法に限定されるものではない。下記の製造方法は、特に触媒成分層が2以上の構成層からなる場合に好適である。したがって、本発明の一実施態様は、排ガス浄化用触媒の製造方法も提供する。
三次元構造体を第一のスラリーに浸し、乾燥し、焼成して、第一の構成層を前記三次元構造体上に形成する工程;
第二の触媒成分を混合し、湿式粉砕し、第二のスラリーを得る工程;および
前記三次元構造体を第二のスラリーに浸し、乾燥し、焼成して第一の構成層上に第二の構成層を形成し、触媒成分層を得る工程;
を含む、排ガス浄化用触媒の製造方法である。
第一の構成層は、触媒成分層を構成する構成層が2層である場合には、内層となる。本工程では、内層として三次元構造体を被覆する触媒成分を混合し、湿式粉砕し、第一のスラリーを得る。混合、湿式粉砕の方法は、特に制限はされず、どのような方法も用いることができる。例えば、(a)貴金属未担持アルミナ、(b)NOx吸蔵材担持セリウム、(c)耐火性無機酸化物および(d)貴金属の水溶性塩のうち少なくとも一種、並びに必要に応じて助触媒成分を、溶媒に混合した後、ボールミル等の湿式粉砕機を用いてスラリーとし、第一のスラリーを得ることができる。
本工程では、上記のように作製した第一のスラリーに、三次元構造体を浸し、必要により余剰の第一のスラリーを除き、乾燥し、焼成して、第一の構成層を三次元構造体上に形成する。浸漬、乾燥、焼成の方法については、第一の構成層が形成できれば、特に制限はない。例えば、三次元構造体を第一のスラリーに浸漬した後、乾燥するには、余剰のスラリーを圧縮空気により吹き飛ばし、70~280℃、より好ましくは100~200℃で水分減量がなくなるまで1~30分間、より好ましくは5~25分乾燥することができる。焼成するには、例えば、電気炉で300~800℃、より好ましくは400~600℃で15分~3時間、より好ましくは30分~90分焼成することができる。
第二の構成層は、触媒成分層を構成する構成層が2層である場合には、第一の構成層(内層)上を被覆し、外層となる。この場合には、第二の構成層は最表面の構成層であり、最外層でもある。本工程では、第二の構成層に含まれる触媒成分を混合し、湿式粉砕し、第二のスラリーを得る。混合、湿式粉砕の方法は、特に制限はされず、どのような方法も用いることができる。例えば、触媒成分層が2層のみの構成層の場合には、第二のスラリーは最表面の構成層を形成するため、(a)貴金属未担持アルミナおよび前記(b)NOx吸蔵材担持セリウムを、必須の成分として、溶媒に投入する。さらに、必要に応じて(c)耐火性無機酸化物、(d)貴金属の水溶性塩、助触媒成分を併せて溶媒に加えてもよい。溶媒にこれらの材料を投入した後、ボールミル等の湿式粉砕機を用いてスラリーとし、第二のスラリーを得ることができる。
本工程では、上記のように作製した第二のスラリーに、第一の構成層を形成した三次元構造体を浸し、必要により余剰の第二のスラリーを除き、乾燥し、焼成して、第一の構成層上に第二の構成層を形成する。浸漬、乾燥、焼成の方法については、第二の構成層が形成できれば、特に制限はなく、第一の構成層と同様の方法を用いることができる。触媒成分層が2の構成層からなる場合には、第二の構成層を形成することにより、本発明の触媒が完成される。
本発明は、上記した本発明の排ガス浄化用触媒を用いて排ガスを処理することを特徴とする排ガス処理方法をも提供する。本発明の触媒が対象とする排ガスは、ディーゼルエンジン、ガソリンエンジンなどの内燃機関の排ガスである。上記したように、本発明の触媒は排ガス中のNOxの除去に有効である。特に排ガスが酸化雰囲気、還元雰囲気を繰り返すときに優れた効果を発揮するものである。
触媒調製に先立ち、触媒調製に用いる粉体を以下の手順により得た。
耐熱性アルミナ(耐火性無機酸化物)500gおよび硝酸ロジウム溶液333.3gを含浸法にて担持させ、次に120℃で12時間乾燥し、水分を完全に除去した後、500℃で1時間焼成して、粉体A(ロジウム粉体)を得た。
耐熱性アルミナ(耐火性無機酸化物)500gおよびビスエタノールアミン白金溶液142.5gを含浸法にて担持させ、次に120℃で12時間乾燥し、水分を完全に除去した後、500℃で1時間焼成して、粉体B(白金粉体)を得た。
耐熱性アルミナ(耐火性無機酸化物)500gおよび硝酸パラジウム溶液148.8gを含浸法にて担持させ、次に120℃で12時間乾燥し、水分を完全に除去した後、500℃で1時間焼成して、粉体C(パラジウム粉体)を得た。
NOx吸蔵材担持セリウムとして、ストロンチウム担持セリウム粉体を調製した。セリウム酸化物500gと硝酸ストロンチウム102.1gと水276gとを含浸法にて担持させ、次に120℃で12時間乾燥し、水分を完全に除去した後、600℃で1時間焼成して、粉体D(ストロンチウム担持セリウム粉体)を得た。
別途、耐熱性アルミナ500gと硝酸ストロンチウム102.1gと水276gとを含浸法にて担持させ、次に120℃で12時間乾燥し、水分を完全に除去した後、600℃で1時間焼成して、粉体E(ストロンチウム担持アルミナ粉体)を得た。
NOx吸蔵材担持セリウムとして、バリウム担持セリウム粉体を調製する例を示す。セリウム酸化物500gと酢酸バリウム164.2gと水260gとを含浸法にて担持させ、次に120℃で12時間乾燥し、水分を完全に除去した後、500℃で1時間焼成して、粉体F(バリウム担持セリウム粉体)を得た。
(実施例1)
(第一の構成層)
粉体B400g、粉体C25g、粉体D400g、セリウム酸化物400gおよび耐熱性アルミナ(耐火性無機酸化物)50gと水1912.5gを混合し、水性スラリーAを得た。この水性スラリーAに市販のコージェライト質モノリスハニカム担体(三次元構造体、400セル/平方インチ、直径103mm、長さ130mm、体積1.083L(リットル))を浸漬し、余剰のスラリーを圧縮空気により吹き飛ばした。次に、150℃で水分減量がなくなるまで10分間乾燥し、さらに電気炉にて500℃で1時間焼成し、内層コート(A)(第一の構成層)を得た。
次に粉体A34.2g、粉体B140g、粉体C50g、粉体D120g、1.13ml/gの細孔容積、300m2/gの比表面積を有する貴金属未担持メソポアを有するアルミナ(平均細孔径は11nm)(I)100gおよび耐熱性アルミナ(耐火性無機酸化物)100gと水816.3gを混合し、水性スラリーBを得た。この水性スラリーBに内層コート(A)を浸漬し、余剰のスラリーを圧縮空気により吹き飛ばした。次に、150℃で水分減量がなくなるまで20分間乾燥し、さらに電気炉にて500℃で1時間焼成し、外層コート(B)(第二の構成層、最表面の構成層)を有する完成触媒(A)を得た。
(第一の構成層)
実施例1と同様にして、担体上に内層コート(A)(第一の構成層)を形成した。
粉体A34.2g、粉体B140g、粉体C50g、粉体D120g、0.82ml/gの細孔容積を有し、150m2/gの比表面積を有する貴金属未担持メソポアを有するアルミナ酸化物(平均細孔径は17nm)(II)100gおよび耐熱性アルミナ(耐火性無機酸化物)100gと水816.3gを混合し、水性スラリーCを得た。この水性スラリーCに上記の内層コート(A)を有する担体を浸漬し、余剰のスラリーを圧縮空気により吹き飛ばした。次に、150℃で水分減量がなくなるまで20分間乾燥し、さらに電気炉にて500℃で1時間焼成し、完成触媒(B)を得た。
(第一の構成層)
実施例1と同様にして、担体上に内層コート(A)(第一の構成層)を形成した。
粉体A34.2g、粉体B140g、粉体C50g、粉体D120g、0.99ml/gの細孔容積、200m2/gの比表面積を有する貴金属未担持メソポアを有するアルミナ(平均細孔径は21nm)(III)100gおよび耐熱性アルミナ(耐火性無機酸化物)100gと水816.3gを混合し、水性スラリーDを得た。この水性スラリーDに内層コート(A)を浸漬し、余剰のスラリーを圧縮空気により吹き飛ばした。次に、150℃で水分減量がなくなるまで20分間乾燥し、さらに電気炉にて500℃で1時間焼成し、完成触媒(C)を得た。
(第一の構成層)
粉体B400g、粉体C25g、粉体F400g、セリウム酸化物400g、耐熱性アルミナ(耐火性無機酸化物)50gおよび水1912.5gを混合し、水性スラリーEを得た。この水性スラリーEに市販のコージェライト質モノリスハニカム担体(400セル/平方インチ、直径103mm、長さ130mm、体積1.083L)を浸漬し、余剰のスラリーを圧縮空気により吹き飛ばした。次に、150℃で水分減量がなくなるまで10分間乾燥し、さらに電気炉にて500℃で1時間焼成し、内層コート(B)を得た。また、得られた内層コート(B)について、触媒活性成分の担持量は、触媒1リットル(L)当たり255gであった。また、助触媒であるセリウム酸化物の内層コート(A)における担持量は、80g/Lであった。
次に、実施例1と同様にして作製した水性スラリーBに、上記の内層コート(B)を有する担体を浸漬し、余剰のスラリーを圧縮空気により吹き飛ばした。次に、150℃で水分減量がなくなるまで20分間乾燥し、さらに電気炉にて500℃で1時間焼成し、完成触媒(D)を得た。
(第一の構成層)
実施例1と同様にして、担体上に内層コート(A)(第一の構成層)を形成した。
粉体A34.2g、粉体B140g、粉体C50g、セリウム酸化物100g、1.13ml/gの細孔容積、300m2/gの比表面積を有する貴金属未担持メソポアを有するアルミナ(平均細孔径は11nm)(I)100g、耐熱性アルミナ(耐火性無機酸化物)120gおよび水816.3gを混合し、水性スラリーFを得た。この水性スラリーFに上記の内層コート(A)を有する担体を浸漬し、余剰のスラリーを圧縮空気により吹き飛ばした。次に、150℃で水分減量がなくなるまで20分間乾燥し、さらに電気炉にて500℃で1時間焼成し、完成触媒(E)を得た。
(第一の構成層)
実施例1と同様にして、担体上に内層コート(A)(第一の構成層)を形成した。
粉体A34.2g、粉体B140g、粉体C50g、粉体D120g、0.65ml/gの細孔容積を有し、500m2/gの比表面積を有し、貴金属未担持メソポアを含んでいないアルミナ酸化物(IV)100g、耐熱性アルミナ(耐火性無機酸化物)100gおよび水816.3gを混合し、水性スラリーGを得た。この水性スラリーGに内層コート(A)を浸漬し、余剰のスラリーを圧縮空気により吹き飛ばした。次に、150℃で水分減量がなくなるまで20分間乾燥し、さらに電気炉にて500℃で1時間焼成し、完成触媒(F)を得た。
(第一の構成層)
実施例1と同様にして、担体上に内層コート(A)(第一の構成層)を形成した。
粉体A34.2g、粉体B140g、粉体C50g、粉体E120g、1.13ml/gの細孔容積を有し、300m2/gの比表面積を有する貴金属未担持メソポアを有するアルミナ(平均細孔径は11nm)(I)100g、耐熱性アルミナ(耐火性無機酸化物)100gおよび水816.3gを混合し、水性スラリーHを得た。この水性スラリーHに内層コート(A)を有する担体を浸漬し、余剰のスラリーを圧縮空気により吹き飛ばした。次に、150℃で水分減量がなくなるまで20分間乾燥し、さらに電気炉にて500℃で1時間焼成し、完成触媒(G)を得た。
(NOx還元評価結果)
上記実施例1~4で調製した完成触媒(A)~(D)および比較例1~4で調製した完成触媒(E)~(G)について、下記試験を行った。
NOx浄化率(%)={エンジン出口NOx(ppm)-触媒出口NOx(ppm)}/エンジン出口NOx(ppm)×100
図1は、触媒入口温度約500℃の高温域で定常評価した時の、完成触媒(A)~(G)の平均NOx浄化率(%)を示すグラフである。実施例1~4に用いた完成触媒(A)~(D)は、比較例に用いた完成触媒(E)~(G)に比べ、NOx還元性能が2~4割ほど高いことを示した。
Claims (10)
- 三次元構造体;および
前記三次元構造体上の、1以上の構成層からなる触媒成分層;を含み、
前記触媒成分層は(a)貴金属未担持メソポアを有するアルミナ(以下、「(a)貴金属未担持アルミナ」と略す)、(b)NOx吸蔵材担持セリウム、(c)耐火性無機酸化物および(d)貴金属を含み、
前記1以上の構成層のうち、最表面の構成層は、(a)貴金属未担持アルミナおよび前記(b)NOx吸蔵材担持セリウムを含む、排ガス浄化用触媒。 - 前記1以上の構成層は、少なくとも2層である請求項1に記載の触媒。
- 前記(a)貴金属未担持アルミナは、触媒1リットル当り5~150g、
前記(b)NOx吸蔵材担持セリウムは、触媒1リットル当り3~200g、
前記(c)耐火性無機酸化物は、触媒1リットル当り10~450g、および
前記(d)貴金属は、触媒1リットル当り、白金の場合0.1~15g、パラジウムの場合0.05~10g、ロジウムの場合0.1~5.0g含まれる、
請求項1または2に記載の触媒。 - 前記最表面の構成層における触媒成分の合計量は、触媒1リットル当り30~350gである請求項1~3のいずれか一つに記載の触媒。
- 前記(a)貴金属未担持アルミナのメソポアの細孔容積は0.7~1.2ml/gの範囲内である請求項1~4のいずれか一つに記載の触媒。
- 前記(b)NOx吸蔵材担持セリウムにおける、NOx吸蔵材に対するセリウムの重量比(CeO2換算質量/NOx吸蔵材質量)は0.5~5.0である請求項1~5のいずれかの一つに記載の触媒。
- 前記触媒成分層がさらに助触媒を含有してなる請求項1~6のいずれか一つに記載の触媒。
- 前記助触媒が前記最表面の構成層以外の構成層に含まれる請求項7に記載の触媒。
- 第一の触媒成分を混合し、湿式粉砕し、第一のスラリーを得る工程;
三次元構造体を第一のスラリーに浸し、乾燥し、焼成して、第一の構成層を前記三次元構造体上に形成する工程;
第二の触媒成分を混合し、湿式粉砕し、第二のスラリーを得る工程;および
前記三次元構造体を第二のスラリーに浸し、乾燥し、焼成して第一の構成層上に第二の構成層を形成し、触媒成分層を得る工程;
を含む、排ガス浄化用触媒の製造方法。 - 請求項1~8のいずれか一つに記載の触媒または請求項9に記載の方法により得られた触媒を用いて排ガスを処理することを特徴とする排ガス処理方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14823794.4A EP3020473A4 (en) | 2013-07-08 | 2014-07-08 | Nitrogen oxide removal catalyst |
US14/903,152 US9861961B2 (en) | 2013-07-08 | 2014-07-08 | Catalyst for nitrogen oxide removal |
JP2015526350A JP6027241B2 (ja) | 2013-07-08 | 2014-07-08 | 窒素酸化物除去用触媒 |
CN201480039365.3A CN105358249B (zh) | 2013-07-08 | 2014-07-08 | 氮氧化物去除用催化剂 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-143029 | 2013-07-08 | ||
JP2013143029 | 2013-07-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015005342A1 true WO2015005342A1 (ja) | 2015-01-15 |
Family
ID=52280022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/068189 WO2015005342A1 (ja) | 2013-07-08 | 2014-07-08 | 窒素酸化物除去用触媒 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9861961B2 (ja) |
EP (1) | EP3020473A4 (ja) |
JP (1) | JP6027241B2 (ja) |
CN (1) | CN105358249B (ja) |
WO (1) | WO2015005342A1 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101507325B1 (ko) * | 2013-12-20 | 2015-03-31 | 희성촉매 주식회사 | 배기가스 정화용 촉매 부재 및 워시코트 |
PL3097977T3 (pl) * | 2014-01-22 | 2022-01-10 | Umicore Shokubai Japan Co., Ltd. | Katalizator oczyszczania gazów spalinowych dla silnika zasilanego mieszankami ubogimi paliw |
GB2560940A (en) * | 2017-03-29 | 2018-10-03 | Johnson Matthey Plc | Three layer NOx Adsorber catalyst |
GB2560942A (en) * | 2017-03-29 | 2018-10-03 | Johnson Matthey Plc | NOx Adsorber catalyst |
GB2560941A (en) * | 2017-03-29 | 2018-10-03 | Johnson Matthey Plc | NOx Adsorber catalyst |
JP6408062B1 (ja) * | 2017-04-28 | 2018-10-17 | 株式会社キャタラー | 排ガス浄化用触媒 |
EP3881931A4 (en) * | 2018-11-12 | 2022-01-05 | Umicore Shokubai Japan Co., Ltd. | EXHAUST GAS PURIFICATION CATALYST FOR DIESEL ENGINES, MANUFACTURING PROCESSES FOR THESE AND EMISSION GAS PURIFICATION PROCESSES WITH IT |
US10982578B2 (en) * | 2019-01-31 | 2021-04-20 | Hyundai Motor Company | CO clean-up catalyst, after treatment system and after treatment method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09500570A (ja) * | 1993-06-25 | 1997-01-21 | エンゲルハード・コーポレーシヨン | 層状触媒複合体 |
JPH10501737A (ja) * | 1994-06-17 | 1998-02-17 | エンゲルハード・コーポレーシヨン | 層状触媒複合体 |
JP2001123827A (ja) | 1999-10-25 | 2001-05-08 | Nissan Motor Co Ltd | 排気ガス浄化システム |
JP2001170500A (ja) * | 1999-01-12 | 2001-06-26 | Toyota Central Res & Dev Lab Inc | 多孔体及びその製造方法、並びに、該多孔体を用いた排ガス浄化用触媒 |
JP2001248471A (ja) | 2000-03-01 | 2001-09-14 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2002276337A (ja) * | 2001-03-15 | 2002-09-25 | Nissan Motor Co Ltd | 内燃機関の排気浄化装置 |
JP2005262071A (ja) * | 2004-03-18 | 2005-09-29 | Nissan Motor Co Ltd | 排気ガス浄化用触媒及びその製造方法 |
JP2006326437A (ja) | 2005-05-24 | 2006-12-07 | Valtion Teknillinen Tutkimuskeskus | 窒素酸化物接触還元用触媒 |
JP2007275878A (ja) * | 2006-03-16 | 2007-10-25 | Ict:Kk | 排ガス浄化用触媒、その製造方法、およびかかる触媒を用いた排ガスの浄化方法 |
WO2010041741A1 (ja) * | 2008-10-09 | 2010-04-15 | 本田技研工業株式会社 | 排ガス浄化装置 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9713428D0 (en) * | 1997-06-26 | 1997-08-27 | Johnson Matthey Plc | Improvements in emissions control |
JP2000024517A (ja) | 1998-07-10 | 2000-01-25 | Toyota Motor Corp | 排ガス浄化用触媒及びその製造方法 |
US6511642B1 (en) | 1999-01-12 | 2003-01-28 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Porous material, catalyst, method of producing the porous material and method for purifying exhaust gas |
US20030175192A1 (en) * | 2001-01-26 | 2003-09-18 | Engelhard Corporation | SOx trap for enhancing NOx trap performance and methods of making and using the same |
US6777370B2 (en) * | 2001-04-13 | 2004-08-17 | Engelhard Corporation | SOx tolerant NOx trap catalysts and methods of making and using the same |
US6677272B2 (en) * | 2001-08-15 | 2004-01-13 | Corning Incorporated | Material for NOx trap support |
US6764665B2 (en) * | 2001-10-26 | 2004-07-20 | Engelhard Corporation | Layered catalyst composite |
US7041622B2 (en) | 2002-02-06 | 2006-05-09 | Delphi Technologies, Inc. | Catalyst, an exhaust emission control device and a method of using the same |
US7875250B2 (en) | 2003-12-11 | 2011-01-25 | Umicore Ag & Co. Kg | Exhaust treatment device, and methods of making the same |
US7795172B2 (en) * | 2004-06-22 | 2010-09-14 | Basf Corporation | Layered exhaust treatment catalyst |
KR101051418B1 (ko) * | 2006-03-16 | 2011-07-22 | 인터내쇼날 카탈리스트 테크놀로지, 인코포레이티드 | 배기가스 정화용 촉매, 그 제조방법 및 이러한 촉매를이용한 배기가스의 정화방법 |
US7758834B2 (en) * | 2006-08-21 | 2010-07-20 | Basf Corporation | Layered catalyst composite |
US7517510B2 (en) * | 2006-08-21 | 2009-04-14 | Basf Catalysts Llc | Layered catalyst composite |
US20080044330A1 (en) * | 2006-08-21 | 2008-02-21 | Shau-Lin Franklin Chen | Layered catalyst composite |
US7550124B2 (en) * | 2006-08-21 | 2009-06-23 | Basf Catalysts Llc | Layered catalyst composite |
US20080120970A1 (en) * | 2006-11-29 | 2008-05-29 | Marcus Hilgendorff | NOx Storage Materials and Traps Resistant to Thermal Aging |
KR101496916B1 (ko) * | 2007-10-29 | 2015-02-27 | 유미코어 니폰 쇼쿠바이 가부시키가이샤 | 질소 산화물 제거용 촉매 및 그것을 사용한 질소 산화물 제거 방법 |
EP2307122B1 (en) * | 2008-07-31 | 2014-09-17 | Basf Se | Nox storage materials and traps resistant to thermal aging |
WO2010044453A1 (ja) * | 2008-10-17 | 2010-04-22 | 株式会社アイシーティー | 排ガス浄化用触媒およびそれを用いた浄化方法 |
US9440192B2 (en) * | 2009-01-16 | 2016-09-13 | Basf Corporation | Diesel oxidation catalyst and use thereof in diesel and advanced combustion diesel engine systems |
US10773209B2 (en) * | 2009-02-20 | 2020-09-15 | Basf Corporation | Aging-resistant catalyst article for internal combustion engines |
US8568675B2 (en) * | 2009-02-20 | 2013-10-29 | Basf Corporation | Palladium-supported catalyst composites |
US8784759B2 (en) * | 2010-06-10 | 2014-07-22 | Basf Se | NOx storage catalyst with reduced Rh loading |
US8734743B2 (en) * | 2010-06-10 | 2014-05-27 | Basf Se | NOx storage catalyst with improved hydrocarbon conversion activity |
US9242242B2 (en) * | 2010-09-02 | 2016-01-26 | Basf Se | Catalyst for gasoline lean burn engines with improved NO oxidation activity |
GB201021649D0 (en) * | 2010-12-21 | 2011-02-02 | Johnson Matthey Plc | NOx Absorber catalyst |
US8617496B2 (en) * | 2011-01-19 | 2013-12-31 | Basf Corporation | Three way conversion catalyst with alumina-free rhodium layer |
US9034269B2 (en) * | 2012-11-29 | 2015-05-19 | Basf Se | Diesel oxidation catalyst comprising palladium, gold and ceria |
KR101438953B1 (ko) * | 2012-12-18 | 2014-09-11 | 현대자동차주식회사 | 저온에서의 NOx 흡장성능이 개선된 LNT촉매 |
-
2014
- 2014-07-08 JP JP2015526350A patent/JP6027241B2/ja active Active
- 2014-07-08 CN CN201480039365.3A patent/CN105358249B/zh active Active
- 2014-07-08 EP EP14823794.4A patent/EP3020473A4/en active Pending
- 2014-07-08 WO PCT/JP2014/068189 patent/WO2015005342A1/ja active Application Filing
- 2014-07-08 US US14/903,152 patent/US9861961B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09500570A (ja) * | 1993-06-25 | 1997-01-21 | エンゲルハード・コーポレーシヨン | 層状触媒複合体 |
JPH10501737A (ja) * | 1994-06-17 | 1998-02-17 | エンゲルハード・コーポレーシヨン | 層状触媒複合体 |
JP2001170500A (ja) * | 1999-01-12 | 2001-06-26 | Toyota Central Res & Dev Lab Inc | 多孔体及びその製造方法、並びに、該多孔体を用いた排ガス浄化用触媒 |
JP2001123827A (ja) | 1999-10-25 | 2001-05-08 | Nissan Motor Co Ltd | 排気ガス浄化システム |
JP2001248471A (ja) | 2000-03-01 | 2001-09-14 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2002276337A (ja) * | 2001-03-15 | 2002-09-25 | Nissan Motor Co Ltd | 内燃機関の排気浄化装置 |
JP2005262071A (ja) * | 2004-03-18 | 2005-09-29 | Nissan Motor Co Ltd | 排気ガス浄化用触媒及びその製造方法 |
JP2006326437A (ja) | 2005-05-24 | 2006-12-07 | Valtion Teknillinen Tutkimuskeskus | 窒素酸化物接触還元用触媒 |
JP2007275878A (ja) * | 2006-03-16 | 2007-10-25 | Ict:Kk | 排ガス浄化用触媒、その製造方法、およびかかる触媒を用いた排ガスの浄化方法 |
WO2010041741A1 (ja) * | 2008-10-09 | 2010-04-15 | 本田技研工業株式会社 | 排ガス浄化装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3020473A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3020473A1 (en) | 2016-05-18 |
US20160184803A1 (en) | 2016-06-30 |
JP6027241B2 (ja) | 2016-11-16 |
JPWO2015005342A1 (ja) | 2017-03-02 |
CN105358249B (zh) | 2018-04-10 |
EP3020473A4 (en) | 2017-05-03 |
US9861961B2 (en) | 2018-01-09 |
CN105358249A (zh) | 2016-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7018997B2 (ja) | 酸化窒素を酸化するための触媒物品、システム及び方法 | |
JP6027241B2 (ja) | 窒素酸化物除去用触媒 | |
JP6132324B2 (ja) | リーンバーンエンジン用排ガス浄化触媒 | |
JP5937710B2 (ja) | 排ガス浄化用酸化触媒、その製造方法およびそれを用いた排ガス浄化方法 | |
US20140271390A1 (en) | ZPGM Catalyst Systems and Methods of Making Same | |
JP4012320B2 (ja) | 希薄燃焼エンジン用排気ガス浄化用触媒 | |
WO2012029050A1 (en) | Catalyst for gasoline lean burn engines with improved no oxidation activity | |
CN112808279A (zh) | 排气净化用催化剂 | |
JP6106197B2 (ja) | NOx吸蔵還元型排ガス浄化用触媒および当該触媒を用いた排ガス浄化方法 | |
JP4648914B2 (ja) | 炭化水素吸着剤、排ガス浄化用触媒および排ガス浄化方法 | |
JP2008215359A (ja) | 希薄燃焼エンジン排気ガスの浄化方法 | |
JP2022553892A (ja) | ディーゼル酸化触媒 | |
JP2005021895A (ja) | 希薄燃焼エンジン用排気ガス浄化用触媒 | |
JP2014213315A (ja) | 排ガス浄化用触媒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480039365.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14823794 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015526350 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14903152 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014823794 Country of ref document: EP |