WO2015003595A1 - 一种二氯丙醇的生产方法 - Google Patents

一种二氯丙醇的生产方法 Download PDF

Info

Publication number
WO2015003595A1
WO2015003595A1 PCT/CN2014/081762 CN2014081762W WO2015003595A1 WO 2015003595 A1 WO2015003595 A1 WO 2015003595A1 CN 2014081762 W CN2014081762 W CN 2014081762W WO 2015003595 A1 WO2015003595 A1 WO 2015003595A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorination
tower
column
reactor
reaction
Prior art date
Application number
PCT/CN2014/081762
Other languages
English (en)
French (fr)
Inventor
宋秀山
韩敏华
陈旭辉
Original Assignee
南京奥凯化工科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京奥凯化工科技有限公司 filed Critical 南京奥凯化工科技有限公司
Publication of WO2015003595A1 publication Critical patent/WO2015003595A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/62Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by introduction of halogen; by substitution of halogen atoms by other halogen atoms

Definitions

  • This invention relates to a process for the production of epichlorohydrin intermediate dichloropropanol. Background technique
  • Dichloropropanol is an intermediate in the production of epichlorohydrin and an important organic raw material.
  • the rapid growth of demand for epoxy resins has strongly promoted the development of epichlorohydrin.
  • the development of epichlorohydrin has led to the development of dichloropropanol production technology and the expansion of the market.
  • the methods for industrially producing epichlorohydrin mainly include a chlorohydrin method and an allyl acetate method.
  • the chlorohydrin method has a history of about 50 years and accounts for 95% of the total output of epichlorohydrin (ECH).
  • the disadvantages of the chlorohydrin method are high chlorine consumption, high material consumption and high energy consumption; serious equipment corrosion and high maintenance costs; There are many by-products, which produce a large amount of organic chloride wastewater (about 5 (T60 m 3 wastewater) per 1 t of ECH produced.
  • the acrylic acetate method is a process developed in the 1980s, accounting for about 5% of total ECH production, propylene acetate.
  • the disadvantage of the ester method is that the process is longer, the catalyst has a short service life, the equipment is corroded, the stainless steel material is required to prevent acetic acid corrosion, and the allyl alcohol unit mixed gas explosion is prevented, and the one-time investment cost is relatively high.
  • the glycerol method produces dichloropropanol to obtain a new machine.
  • Glycerol has a wide range of sources, which can be derived from glycerin, which is a by-product of grain fermentation. It can also be derived from glycerin, which is a by-product of the biodiesel industry. It is free from the dependence of petroleum resources and saves a lot of oil resources. It also reduces environmental pollution. Compared to the petroleum production of dichloropropanol, equipment investment is greatly reduced. For China, a large agricultural country, making full use of crop biological resources is convenient for recycling of resources and sustainable economic development.
  • Chinese patent CN101679162A provides a method for producing dichloropropanol. The experiment uses a reactor process with agitation and provides experimental test data. The patent owner is Solvay of Belgium.
  • Chinese Patent No. CN101481298A provides a process for preparing dichloropropanol from glycerin, wherein the chlorination uses a tubular reaction rectification column as a chlorination reactor. Glycerol and hydrogen chloride are in countercurrent contact with the packing layer in the column, and the heat generated by the reaction is removed from the reaction system by circulating water outside the column.
  • the patent owner is Shandong University of Science and Technology.
  • Chinese patent CN100509726C provides a method for preparing dichloropropanol from glycerol, the main feature of which is that the chlorination reactor adopts a tubular reactor, the reaction temperature is 80-140 ° C, and the patent owner is Jiangsu Institute of Technology ( Shan Yuhua et al. invented).
  • Chinese patent CN101337950A provides a biodiesel by-product glycerin which is chlorinated with hydrogen chloride gas in a chlorination column. After passing through an oil-water separator, dichloropropanol is distilled off through a rectification column, and dichloropropanol is saponified by a saponification tower. Thick ring The oxychloropropane and the crude epichlorohydrin are separated and purified by a rectification column to obtain the finished epichlorohydrin.
  • the process is a continuous production process
  • the catalyst is a mono- or dicarboxylic acid or a derivative thereof, among which malonic acid, succinic acid, adipic acid are preferred, and the patent owner is Jiangsu Institute of Technology (invented by Zhang Yue et al.).
  • the Chinese patent CN101357880A provides a method for the preparation of dichloropropanol by the reaction of glycerol autocatalysis with hydrogen chloride.
  • the main process principle is a multi-tank reaction in series, the reaction temperature is 150 ° C, the pressure is 0. IMPa - 0. 2MPa, the patent owner is Nanjing University of Technology (invented by Qiao Xu et al.).
  • Chinese patent CN101323555A provides a method for preparing dichloropropanol by hydrochlorination of glycerol.
  • the main process principle is a tandem multi-tank reaction.
  • the catalyst is a carboxylic acid or a derivative thereof, wherein the monobasic acid is preferably propionic acid or octanoic acid, dibasic acid.
  • Adipic acid is preferred, and the patent owner is Shanghai Chlor-Alkali Chemical Co., Ltd. (invented by Zhang Binquan et al.).
  • Chinese patent CN101029000A provides a method for preparing dichloropropanol by hydrochlorination of glycerol.
  • the main process principle is a tandem multi-tank reaction.
  • the catalyst is an organic nitrile.
  • the reaction is activated with concentrated hydrochloric acid before the reaction, and the chlorination reaction pressure is 0. 5MPa-l.
  • OMPa the chlorinating agent is dry hydrogen chloride gas
  • the patent owner is Jiangsu Yangnong Chemical Group Co., Ltd. (invented by Xu Yumei et al.).
  • Chinese patent CN10217036A provides a method for producing epichlorohydrin, a method for producing dichloropropanol from glycerol, which is ultimately derived from the conversion of animal fat in biodiesel production; the patent owner is Solvay.
  • the process is reasonable, the reaction temperature and pressure are easy to control, the yield and selectivity are high, and it is easy to scale large production.
  • the glycerin raw material may be derived from glycerin as a by-product of grain fermentation, or may be derived from glycerol as a by-product of biodiesel;
  • the hydrogen chloride may be hydrogen chloride by-product of chloride, or may be synthetic hydrogen chloride or hydrogen chloride analyzed by hydrochloric acid.
  • Fig. 1 is a three-stage chlorination tower reactor series process, which comprises the following steps:
  • Step 1 When driving, the glycerin is divided into two parts, a part of the glycerol 1 and the total mass of the glycerin at the time of driving is 0.5 to 7% of the catalyst tin complex salt 2 is added to the mixing kettle (R101) to dissolve into a homogeneous phase, from the kettle
  • the outlet No. 3 pipe (3) is metered by the first transfer pump (P101) and transported through the No. 4 pipe (4) into the top of the exhaust gas absorption tower (T101).
  • the distributor enters the tower, and the tail gas absorption tower (T101) is a packed spray absorption tower.
  • the catalyst is added once.
  • the fixed value is directly added from the top of the exhaust gas absorption tower (T101), and enters the tower through the distributor.
  • the hydrogen chloride 7 from the hydrogen chloride main pipe 6 is introduced into the tower through the gas distributor from the tail gas absorption tower (T101), and the glycerin and hydrogen chloride are in the packing.
  • the tail gas absorption tower mainly increases the utilization of hydrogen chloride.
  • the main product in the tower is monochloroglycerin.
  • the reaction rate of chlorine is relatively fast, and it can react without catalyst.
  • the operating pressure in the tower is absolute pressure 40_50KPa, and the operating temperature is 80.
  • the tail gas of the exhaust gas absorption tower enters the alkaline water absorption system through the No. 34 pipeline.
  • the above tin composite salt is composed of SnCl 2 '2H 2 0 and CuCl, wherein the mass of SnCl 2 '2H 2 0 and CuCl The ratio is (2 ⁇ 4): 1, uniformly mixed into a tin composite salt catalyst (AG-01 catalyst);
  • Step 2 Exhaust gas absorption tower (T101)
  • the liquid at the outlet of the tower tank 8 is metered by the second transfer pump (P102) and sent to the top of the first column chlorination reactor (T102) by the No. 9 pipe 9 and distributed.
  • the gas enters the column, and the hydrogen chloride from the hydrogen chloride main pipe 6 passes through the No. 10 pipe 10 from the first column chlorination reactor (T102), and the gas is introduced into the column through the gas distributor.
  • the gas and liquid are in countercurrent contact in the column, and the chlorination generates heat.
  • the first material heat exchanger (E101) is removed, and the third material circulation pump (P103) continuously circulates the reaction liquid in the tower of the first column chlorination reactor (T102) into the liquid distributor at the top of the tower for circulation.
  • the glycerin and hydrogen chloride countercurrent contact reaction on the filler on the one hand accelerates the glycerol conversion rate, on the other hand removes the chlorination heat, controls the reaction temperature, and the reaction liquid reaches the design stop in the first column chlorination reactor (T10) After time, by gravity overflow (15) to the second chlorination column reactor (T103);
  • the second chlorination column reactor (T103) has the same reaction mechanism as the first chlorination column reactor (T102), except that the composition of monochloroglycerin (monochloropropanediol) and dichloropropanol is different.
  • the gravity is overflowed (19) to the third chlorination column reactor (T104), the third chlorination column reactor ( The reaction mechanism of T104) is the same as that of the first and second chlorination column reactors.
  • Step 5 Continue to rectify and distill out from the top of the column through the distillation column dichloropropanol (DCP).
  • the crude dichloropropanol is continuously purified according to the process requirements to obtain the finished DCP, which is sold as a product or continues to be synthesized as a raw material.
  • the reconstituted parts of the distillation column (T105) are mainly catalyst, glycerin and monochloroglycerol, which are continuously produced by the sixth transfer pump (P106) and enter the first chlorination through the No. 31 pipe (31). Cycling in the tower reactor (T102), ten times Cycle production, the yield of dichloropropanol is 85% (calculated as glycerol);
  • Chlorination column reactor operating conditions :
  • Chlorination reaction time The total residence time is 1CT12 hours;
  • Chlorination catalyst Tin composite salt, when the first time driving, add glycerol mass 0.5. 5 / ⁇ , normal operation state recycling, no longer added.
  • step 1 The method of producing dichloropropanol described above, the amount of catalyst is preferably added in step 1 is the mass of glycerin ⁇ 2% 0
  • the chlorination tower reactor is a packed spray reactor.
  • the above-mentioned method for producing dichloropropanol can also be a series process of a 5-stage chlorination reactor.
  • the method of the invention has the advantages that: the catalyst can be added at a time when driving, recycling is used, the cost is reduced, the sewage is reduced; the reaction condition is mild, the side reaction is small, and the yield of dichloropropanol is high.
  • T102 104 is a first to third column chlorination reactor
  • T101 is a tail gas absorption tower
  • T105 is a rectification column
  • ⁇ 10 ⁇ 106 is the first one.
  • the sixth transfer pump; ⁇ 10 ⁇ 106 is the first to sixth heat exchangers; R101 is a mixing kettle; and V101 is a storage tank.
  • FIG. 2 is a schematic diagram of a series process of a 5-stage chlorination column, in which.
  • T102, T103a, T103b, T103c and T104 are first to fifth column chlorination reactors;
  • T101 is a tail gas absorption tower;
  • T105 is a rectification column;
  • ⁇ 10 ⁇ 106 is the first to sixth delivery pumps;
  • ⁇ 10 ⁇ 106 is the first to the first Six heat exchangers;
  • R101 is a mixing kettle;
  • V101 is a storage tank.
  • Example 1 As shown in Fig. 1, it is a three-stage chlorination reactor series process, wherein T102 ⁇ T 104 is a tower chlorination reactor, T101 is a tail gas absorption tower, and T105 is a dichlorohydrin (DCP) distillation. tower.
  • T102 ⁇ T 104 is a tower chlorination reactor
  • T101 is a tail gas absorption tower
  • T105 is a dichlorohydrin (DCP) distillation. tower.
  • Glycerol 1 and tin salt catalyst 2 were added to the R101 kettle and dissolved to be homogeneous.
  • the kettle outlet 3 was metered and conveyed 4 through the pump P101 into the top of the T101 column, and passed through the distributor into the column.
  • the catalyst is added in one time. Under normal operation, it is no longer added and recycled.
  • Another portion of the glycerin (without catalyst) feed line 5 was added directly from the top of the T101 column at the production scale setting and passed through the distributor into the column.
  • Hydrogen chloride 7 from hydrogen chloride manifold 6 is passed through the T101 column
  • the distributor enters the tower, and glycerin reacts with hydrogen chloride countercurrently on the packing.
  • the T101 absorber mainly increases the utilization of hydrogen chloride.
  • the main product in the tower is monochloroglycerol.
  • the reaction rate of chlorine is relatively fast, and it can react without catalyst.
  • the operating pressure is an absolute pressure of 40 kPa, and the absorption tower off-gas T101 is passed through a No. 34 line 34 to the alkaline water absorption system.
  • the tail gas absorption tower T101 tower tank discharge port 8 liquid is metered and transported by the pump P102 9 into the top of the first tower chlorination reactor T102, and enters the tower through the distributor, and the hydrogen chloride 10 from the header 6 is chlorinated by the first tower.
  • the reactor T102 tower is passed into the tower through the gas distributor, the gas and liquid are countercurrently contacted in the tower, the chlorination heat is removed by the first heat exchanger E101, and the third material transfer pump P103 is a material circulation pump, which accelerates the glycerol conversion on the one hand. The rate, on the other hand, removes chlorination to generate heat and controls the reaction temperature. After the reaction solution reaches the designed residence time in the T102 column, it is gravity overflowed (15) to the second chlorination column reactor T103.
  • the second chlorination column reactor T103 reaction mechanism is the same as that of the first chlorination tower reactor T102, except that the content of monochloroglycerin (monochloropropanediol) and dichloropropanol is different.
  • the reaction liquid After the reaction liquid reaches the designed residence time in the tower of the second chlorination column reactor T103, it overflows by gravity to the third chlorination tower reactor T104.
  • the tower liquid In the T104 chlorination tower, the tower liquid is in a certain proportion.
  • the production is preheated into the preheater E105 and then enters the dichlorohydrin rectification column T105, while the corresponding amount of glycerin is replenished from the exhaust gas absorption tower T101.
  • the water formed by the reaction is distilled off from the top of the dichlorohydrin rectification column T105, and is condensed and collected in the storage tank V101 via the fourth heat exchanger E104. The fraction was subjected to decantation to recover hydrogen chloride and dichlorohydrin in the water.
  • the dichloropropanol rectification tower T105 tower reconstituted fraction is mainly monochloroglycerin, glycerin and catalyst, which is continuously produced by the sixth material transfer pump P106, and enters the first chlorination tower reactor T102 through the No. 31 pipeline (31).
  • the medium is recycled and the corresponding amount of glycerin is replenished from the exhaust gas absorption tower T101.
  • Chlorination catalyst Tin composite salt, the first time the first time the vehicle is started to add 2%wt of catalyst of total mass of glycerin, it will be recycled in normal operation state and will not be added.
  • Example 2 As shown in FIG. 2, it is a series process of a 5-stage chlorination reactor, wherein the chlorination reaction tower is T102, T103a, T103b, T103c and T104 are connected in series, T101 is a tail gas absorption tower, and T105 is a dichlorohydrin (DCP) distillation column.
  • DCP dichlorohydrin
  • Chlorination catalyst Tin composite salt, l%wt catalyst of total mass of glycerin is added at the first time when driving, and it is recycled in normal operating state and is not added.
  • Example 3 As shown in Fig. 1, it is a series process of a 3-stage chlorination reactor, the chlorination reaction temperature is 115 ° C, the reaction time is 10 hours, the chlorination catalyst: tin composite salt, the total mass of glycerol added at the first time of driving The 7% wt catalyst is recycled in normal operating conditions and is no longer added. Other conditions are the same as in the first embodiment.
  • the components of the chlorinated product are determined by gas chromatography as follows:
  • Example 4 As shown in Fig. 1, a 3-stage chlorination reactor was connected in series, the chlorination reaction temperature was 130 ° C, the reaction time was 10 hours, the chlorination catalyst: tin composite salt, the total mass of glycerol added at the first time of driving 0.5% of the catalyst, recycled under normal operating conditions, no longer added. Other conditions are the same as in the first embodiment.
  • Example 5 As shown in Figure 1, A 3-stage chlorination reactor was connected in series, the chlorination reaction temperature was 60 ° C, and the reaction time was 11 hours. Other conditions were the same as in Example 1.
  • the components of the chlorinated product are determined by gas chromatography as follows:
  • Example 6 As shown in Fig. 1, a 3-stage chlorination reactor was connected in series, the chlorination reaction temperature was 110 ° C, and the reaction time was 12 hours. Other conditions were the same as in Example 1.
  • the components of the chlorinated product are determined by gas chromatography as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Compounds (AREA)

Abstract

本发明提供一种二氯丙醇的生产方法。在催化剂作用下,甘油与氯化剂(如氯化氢) 在氯化反应塔中进行氯化反应,生成二氯丙醇。本方法中采用:锡复合盐为催化剂,该催化剂只需一次性投入,循环回用;塔式反应器,其优点能保证气液接触均匀,减少返混,适合大规模工业化生产。本发明方法反应条件温和,副反应少,二氯丙醇收率高。

Description

一种二氯丙醇的生产方法
技术领域
本发明涉及环氧氯丙烷中间体二氯丙醇的生产方法。 背景技术
二氯丙醇是生产环氧氯丙烷的中间体, 也是重要的有机原料。近年来, 对环氧树脂 需求的快速增长, 有力地促进了环氧氯丙烷的发展, 环氧氯丙烷的发展又带动了二氯丙 醇生产技术的发展及市场的扩大。
目前工业化生产环氧氯丙烷的方法主要有氯醇法、 乙酸烯丙酯法。 氯醇法约有 50 年历史,占环氧氯丙烷 (ECH)总产量的 95% ;氯醇法的缺点是氯耗量高、 物耗高、 能耗大; 设备腐蚀严重、 维护费用高;产品副产物多,产生大量有机氯化物废水 (每生产 1 t ECH 约产生 5(T60 m3废水)。 醋酸丙烯酯法是 20世纪 80年代开发的工艺,约占 ECH总产量的 5%, 醋酸丙烯酯法的缺点是工艺流程更长,催化剂使用寿命短,设备腐蚀,需要不锈钢材 料防醋酸腐蚀,防止烯丙醇单元混合气爆炸,一次性投资费用相对较高。
因此, 在这种背景下甘油法制二氯丙醇获得新机。甘油来源比较广泛, 可以来源于 粮食发酵副产的甘油, 也可以来源生物柴油工业副产的甘油, 摆脱了以石油资源为原料 的依附, 又节约了大量的石油资源 。 还减少了环境污染。 相对于石油法生产二氯丙醇 来说, 设备投入大大减少。 对于中国这个农业大国来说, 充分利用农作物生物资源, 便 于资源的循环利用与经济的可持续发展。
甘油法生产环氧氯丙烷或二氯丙醇技术在国内专利方面已有些报道:
中国专利 CN101679162A, 提供了一种二氯丙醇的生产方法, 该专利中实验采用带 搅拌的反应器工艺, 并提供了实验小试数据, 专利所有权人为比利时的索尔维公司。
中国专利 CN101481298A, 提供了一种甘油制备二氯丙醇的方法, 该专利中氯化采 用列管式反应精馏塔作为氯化反应器。 甘油与氯化氢逆流接触通过塔中的填料层, 反应 生成的热由列管外的循环水移出反应体系, 专利所有权人为山东科技大学。
中国专利 CN100509726C, 提供了一种从甘油制备二氯丙醇的方法, 其主要特征在 于氯化反应器采用的是管式反应器,反应温度在 80-140°C,专利所有权人为江苏工业学 院(单玉华等人发明)。
中国专利 CN101337950A, 提供了一种生物柴油副产物甘油在氯化塔中与氯化氢气 体进行氯化, 经油水分离器后经精馏塔蒸出二氯丙醇, 二氯丙醇经皂化塔皂化后得粗环 氧氯丙烷, 粗环氧氯丙烷再经精馏塔分离提纯得成品环氧氯丙烷。 该工艺为连续化生产 工艺, 催化剂为一元或二元羧酸或其衍生物, 其中优选丙二酸、 丁二酸、 己二酸, 专利 所有权人为江苏工业学院 (张跃等人发明)。
中国专利 CN101357880A, 提供了甘油自催化与氯化氢反应制备二氯丙醇的方法, 其主要工艺原理是串联多釜式反应, 反应温度在 150°C, 压力 0. IMPa— 0. 2MPa, 专利所 有权人为南京工业大学(乔旭等人发明)。
中国专利 CN101323555A, 提供了甘油氢氯化制备二氯丙醇的方法, 其主要工艺原 理是串联多釜式反应, 催化剂为羧酸或其衍生物, 其中一元酸优选丙酸或辛酸, 二元酸 优选己二酸, 专利所有权人为上海氯碱化工有限公司 (张斌全等人发明)。
中国专利 CN101029000A, 提供了甘油氢氯化制备二氯丙醇的方法, 其主要工艺原 理是串联多釜式反应, 催化剂为有机腈, 反应前用浓盐酸活化, 其氯化反应操作压力为 0. 5MPa-l . OMPa, 氯化剂为干燥的氯化氢气体, 专利所有权人为江苏扬农化工集团有限 公司 (许玉梅等人发明)。
中国专利 CN10217036A, 提供了一种生产表氯醇的生产方法, 从甘油生产二氯丙醇 的方法, 甘油最终来自生物柴油生产中动物脂肪的转化; 专利所有权人为索尔维公司。
综上所说,甘油氢氯化生产环氧氯丙烷或二氯丙醇技术日渐成熟,设备运行成本低, 市场前景比较大。 发明内容
本发明的目的就是提供一种甘油法生产二氯丙醇的生产方法。该工艺流程合理、反 应温度和压力易于控制, 收率和选择性高, 易于规模化大生产。
本发明中甘油原料可以来自粮食发酵副产的甘油, 也可以来自生物柴油副产的甘 油; 氯化氢可以是氯化物副产的氯化氢, 也可以是合成氯化氢, 也可以是盐酸解析的氯 化氢等。
本发明的技术方案如下:
一种二氯丙醇的生产方法, 它如图 1所示, 它为 3级氯化塔式反应器串联工 艺, 它包括如下步骤:
步骤 1. 开车时,将甘油分成两部分,一部分甘油①和开车时甘油一次投料总质量 的 0. 5〜7% 的催化剂锡复合盐②加入混合釜(R101 ) 中溶解为均相, 由釜出口 3号管道 ( 3 )经第一输送泵(P101 )计量和经 4号管道(4)输送进入尾气吸收塔(T101 )塔顶, 经分布器进入塔中, 尾气吸收塔(T101 ) 为填料喷淋吸收塔, 催化剂为一次加入, 正常 操作情况下, 不再添加, 循环回用, 另一部分不含有催化剂的甘油⑤按生产规模设定值 直接从尾气吸收塔(T101 )塔顶加入, 经分布器进入塔中, 来自氯化氢总管⑥的氯化氢 ⑦由尾气吸收塔(T101 )塔釜经气体分布器进入塔中, 甘油与氯化氢在填料上逆流接触 反应, 尾气吸收塔主要提高氯化氢利用率, 塔中主要生成物为一氯甘油, 一氯反应速度 比较快, 没有催化剂也能反应, 塔中操作压力为绝对压力 40_50KPa, 操作温度为 80-100°C, 尾气吸收塔 (T101 ) 的尾气经 34号管道进入碱水吸收系统, 上述的锡复合 盐由 SnCl2'2H20和 CuCl组成, 其中 SnCl2'2H20与 CuCl的质量比为(2〜4) : 1, 均匀混合 而成锡复合盐催化剂 (AG— 01催化剂);
步骤 2. 尾气吸收塔 (T101 ) 塔釜出料口⑧液体经第二输送泵 (P102) 计量经 9 号管道⑨输送进入第一塔式氯化反应器(T102)氯化塔顶, 经分布器进入塔中, 来自氯 化氢总管⑥的氯化氢经 10号管道⑩由第一塔式氯化反应器 (T102) 塔釜经气体分布器 进入塔中, 气液在塔中逆流接触, 氯化生成热通过第一换热器 (E101 ) 移出, 第三物料 循环泵 (P103)将第一塔式氯化反应器(T102)塔釜中的反应液不停地打入塔顶的液体 分布器进行循环, 甘油与氯化氢在填料上逆流接触反应, 一方面加速甘油转化率, 另一 方面移出氯化生成热, 控制反应温度, 反应液在第一塔式氯化反应器 (T10 ) 中达到设 计的停留时间后, 通过重力溢流 (15)到第二氯化塔式反应器 (T103);
步骤 3. 第二氯化塔式反应器 (T103) 反应机理同第一氯化塔式反应器 (T102), 只是一氯甘油 (一氯丙二醇) 与二氯丙醇等组成含量有区别, 反应液在第二氯化塔式反 应器(T103)中达到设计的停留时间后,通过重力溢流 (19)到第三氯化塔式反应器(T104), 第三氯化塔式反应器(T104) 的反应机理同第一、 第二氯化塔式反应器, 在第三氯化塔 式反应器 (T104) 中, 塔釜液的一部分通过 22号管道 (22) 进入预热器 (E106) 预热 后再进入二氯丙醇精馏塔 (T105) 中, 同时从尾气吸收塔 (T101 ) 补充相应量的甘油; 步骤 4. 在二氯丙醇精馏塔 (T105) 中, 将在第一〜第三氯化塔式反应器 (T102〜 T 104) 反应过程中反应生成的水由塔顶蒸出反应体系, 经冷凝器 (E104) 冷凝收集于 储罐 (V101 ) 中, 通过倾析回收水中的氯化氢和二氯丙烷;
步骤 5. 继续精馏, 通过精馏塔二氯丙醇 (DCP) 由塔顶蒸出, 粗二氯丙醇按工艺 要求继续提纯得成品 DCP,作为产品对外销售,或作为原料继续合成环氧氯丙烷等产品, 精馏塔(T105)的塔釜重组份主要为催化剂、甘油和一氯甘油, 通过第六输送泵(P106 ) 连续采出, 经 31 号管道 (31 ) 进入第一氯化塔式反应器 (T102) 中循环使用, 经十次 循环生产, 二氯丙醇的收率为 85% (以甘油量计算)以上;
氯化塔式反应器操作条件:
1 )操作温度: 6(Γ130Ό ; 优选的为 lOCTllCTC ;
2)操作压力: 2(Tl00kPa (G) ; 优选的为 40〜60 kPa (G) ;
3)氯化反应时间: 总停留时间为 1CT12小时;
4)氯化催化剂: 锡复合盐, 首次开车时一次性添加甘油质量的 0. 5 /ο, 正常操作状 态循环回用, 不再添加。
上述的二氯丙醇的生产方法, 步骤 1 所述的催化剂加入的量优选的为甘油质量的 Γ2%0
上述的二氯丙醇的生产方法, 所述的氯化塔式反应器为填料喷淋式反应器。
上述的二氯丙醇的生产方法, 它也可以是 5级氯化反应器串联工艺。 本发明方法的优点是: 催化剂只需开车时一次加入, 循环回用, 减少了成本, 减少 了排污; 反应条件温和, 副反应少, 二氯丙醇产率高。 附图说明
图 1为 3级塔式氯化反应器串联工艺流程示意图,其中: T102 104为第一〜第三塔 式氯化反应器; T101为尾气吸收塔; T105为精馏塔; Ρ10ΓΡ106为第一〜第六输送泵; Ε10ΓΕ106为第一〜第六换热器; R101为混合釜; V101为储罐。
图 2为 5级氯化塔串联流程示意图, 其中。 T102、 T103a、 T103b、 T103c和 T104 为第一〜第五塔式氯化反应器; T101为尾气吸收塔; T105为精馏塔; Ρ10ΓΡ106为第一〜 第六输送泵; Ε10ΓΕ106为第一〜第六换热器; R101为混合釜; V101为储罐。 具体实施方式
实施例 1 :如图 1所示, 为 3级氯化反应器串联工艺,其中 T102〜T 104为塔式氯 化反应器, T101为尾气吸收塔, T105为二氯丙醇(DCP)精馏塔。
将甘油①和锡盐催化剂②加入 R101釜中溶解为均相, 由釜出口③经泵 P101计量 输送④进入 T101塔顶, 经分布器进入塔中。 催化剂为一次加入, 正常操作情况下, 不 再添加, 循环回用。 另一部分甘油 (不含有催化剂)进料线⑤按生产规模设定值直接从 T101塔顶加入, 经分布器进入塔中。 来自氯化氢总管⑥的氯化氢⑦由 T101塔釜经气体 分布器进入塔中,甘油与氯化氢在填料上逆流接触反应, T101吸收塔主要提高氯化氢利 用率, 塔中主要生成物为一氯甘油, 一氯反应速度比较快, 没有催化剂也能反应, 塔中 操作压力为绝对压力 40kPa, 吸收塔尾气 T101经 34号管道 34去碱水吸收系统。
尾气吸收塔 T101塔釜出料口⑧液经泵 P102计量输送⑨进入第一塔式氯化反应器 T102塔顶, 经分布器进入塔中, 来自总管⑥的氯化氢⑩由第一塔式氯化反应器 T102塔 釜经气体分布器进入塔中, 气液在塔中逆流接触, 氯化生成热通过第一换热器 E101移 出, 第三物料输送泵 P103为物料循环泵, 一方面加速甘油转化率, 另一方面移出氯化 生成热, 控制反应温度。 反应液在 T102塔中达到设计的停留时间后, 通过重力溢流 (15) 到第二氯化塔式反应器 T103。
第二氯化塔式反应器 T103反应机理同第一氯化塔式反应器 T102, 只是一氯甘油 (一氯丙二醇) 与二氯丙醇等组成含量有区别。 反应液在第二氯化塔式反应器 T103塔 中达到设计的停留时间后, 通过重力溢流到第三氯化塔式反应器 T104, 在 T104氯化塔 中, 塔釜液按一定的比例采出进入预热器 E105预热后再进入二氯丙醇精馏塔 T105中, 同时从尾气吸收塔 T101补充相应量的甘油。
在 Τ102〜 Τ 104塔式氯化反应过程中, 反应生成的水由二氯丙醇精馏塔 T105塔顶 蒸出反应体系, 经第四热交换器 E104冷凝收集于储罐 V101中。 馏份通过倾析回收水中 的氯化氢和二氯丙醇。
通过二氯丙醇精馏塔 T105精馏, DCP由塔顶蒸出, 粗 DCP按工艺要求继续提纯得 成品 DCP 作为产品对外销售, 或作为原料继续生成合成环氧氯丙烷。 二氯丙醇精馏塔 T105塔釜重组份主要为一氯甘油、甘油和催化剂,通过第六物料输送泵 P106连续采出, 通过 31号管道 ( 31 )进入第一氯化塔式反应器 T102中循环使用,同时从尾气吸收塔 T101 补充相应量的甘油。
甘油氯化操作条件:
1 ) 操作温度: 110°C,
2 ) 操作压力: 50kPa (G) .
3 ) 氯化反应时间: 10小时.
4) 氯化催化剂: 锡复合盐, 首次开车时一次性添加甘油总质量的 2%wt催化剂, 正常 操作状态循环回用, 不再添加。 实施例 2: 如图 2所示, 为 5级氯化反应器串联工艺, 其中氯化反应塔由 T102、 T103a、 T103b、 T103c和 T 104五塔串联而成, T101为尾气吸收塔, T105为二氯丙醇 (DCP)精馏塔。
1 )操作温度: 100°C,
2 )操作压力: 40kPa (G) .
3 )氯化反应时间: 12小时.
4)氯化催化剂: 锡复合盐, 首次开车时一次性添加甘油总质量的 l%wt催化剂, 正常 操作状态循环回用, 不再添加。
其他条件同实施例 1。
1 )通过气相色谱检测氯化液产品组分如下表:
Figure imgf000008_0001
实施例 3: 如图 1所示, 为 3级氯化反应器串联工艺, 氯化反应温度 115°C, 反应 时间 10小时, 氯化催化剂: 锡复合盐, 首次开车时一次性添加甘油总质量的 7%wt催化 剂, 正常操作状态循环回用, 不再添加。 其它条件同实施例 1。
通过气相色谱检测氯化液产品组分如下表:
Figure imgf000008_0002
实施例 4: 如图 1所示, 为 3级氯化反应器串联工艺, 氯化反应温度 130°C, 反应时间 10小时, 氯化催化剂: 锡复合盐, 首次开车时一次性添加甘油总质量的 0. 5%催化剂, 正常操作状态循环回用, 不再添加。 其它条件同实施例 1。
通过气相色谱检测氯化液产品组分如下表:
Figure imgf000008_0003
共沸液采出 728 0. 12 26. 34 29. 26 42. 55 塔釜液采出 1248 1. 56 10. 67 86. 34 4. 37 4. 68 实施例 5: 如图 1所示, 为 3级氯化反应器串联工艺, 氯化反应温度 60°C, 反应时间 11 小时, 其它条件同实施例 1。
通过气相色谱检测氯化液产品组分如下表:
Figure imgf000009_0001
实施例 6: 如图 1所示, 为 3级氯化反应器串联工艺, 氯化反应温度 110°C, 反应时间 12小时, 其它条件同实施例 1。
通过气相色谱检测氯化液产品组分如下表:
Figure imgf000009_0002

Claims

WO 2015/003595 权利要求书 PCT/CN2014/081762
1、 一种二氯丙醇的生产方法, 其特征是它为 3级氯化塔式反应器串联工艺, 它包括如下步骤:
步骤 1. 开车时,将甘油分成两部分,一部分甘油①和开车时甘油一次投料总质量 的 0. 5〜7% 的催化剂锡复合盐②加入混合釜(R101 ) 中溶解为均相, 由釜出口 3号管道 (3)经第一输送泵(P101 )计量和经 4号管道(4)输送进入尾气吸收塔(T101 )塔顶, 经分布器进入塔中, 尾气吸收塔(T101 )为填料喷淋吸收塔, 催化剂为一次加入, 正常 操作情况下, 不再添加, 循环回用, 另一部分不含有催化剂甘油按生产规模设定值直接 从尾气吸收塔(T101 )塔顶加入, 经分布器进入塔中, 来自氯化氢总管⑥的氯化氢由尾 气吸收塔(T101 )塔釜经气体分布器进入塔中, 甘油与氯化氢在填料上逆流接触反应, 塔中主要生成物为一氯甘油,塔中操作压力为绝对压力 40_50KPa,操作温度为 80-100°C, 尾气吸收塔(T101 )的尾气经 34号管道进入碱水吸收系统,上述的锡复合盐由 SnCl2,2H20 和 CuCl组成, 其中 SnCl2'2H20与 CuCl的质量比为(2〜4) : 1, 均匀混合而成锡复合盐催 化剂;
步骤 2. 尾气吸收塔(T101 )塔釜出料口⑧液体经第二输送泵 (P102 )计量经 9 号管道⑨输送进入第一塔式氯化反应器(T102)塔顶, 经分布器进入塔中, 来自氯化氢 总管⑥的氯化氢经 10号管道⑩由第一塔式氯化反应器(T102)塔釜经气体分布器进入 塔中, 气液在塔中逆流接触, 氯化生成热通过第一换热器(E101 )移出, 第三物料循环 泵(P103)将第一塔式氯化反应器(T102)塔釜中的反应液不停地打入塔顶的液体分布 器进行循环, 甘油与氯化氢在填料上逆流接触反应, 一方面加速甘油转化率, 另一方面 移出氯化生成热, 控制反应温度, 反应液在第一塔式氯化反应器(T10 ) 中达到设计的 停留时间后, 通过重力溢流到第二氯化塔式反应器(T103);
步骤 3. 第二氯化塔式反应器(T103) 反应机理同第一氯化塔式反应器(T102), 只是一氯甘油与二氯丙醇组成含量有区别, 反应液在第二氯化塔式反应器(T103) 中达 到设计的停留时间后, 通过重力溢流到第三氯化塔式反应器(T104), 第三氯化塔式反 应器(T104)的反应机理同第一、第二氯化塔式反应器, 在第三氯化塔式反应器(T104) 中, 塔釜液的一部分通过 22号管道(22)进入预热器(E106)预热后再进入二氯丙醇 精馏塔(T105) 中, 同时从尾气吸收塔(T101 )补充相应量的甘油;
步骤 4. 在二氯丙醇精馏塔(T105) 中, 将在第一〜第三氯化塔式反应器(T102〜 T 104) 反应过程中反应生成的水由塔顶蒸出反应体系, 经冷凝器(E104) 冷凝收集于 储罐(V101 ) 中, 通过倾析回收水中的氯化氢和二氯丙烷; WO 2015/003595 权利要求书 PCT/CN2014/081762 步骤 5. 继续精馏, 通过精馏塔二氯丙醇 (DCP) 由塔顶蒸出, 粗二氯丙醇按工艺 要求继续提纯得成品 DCP, 精馏塔 (T105) 的塔釜重组份主要为催化剂、 甘油和一氯甘 油, 通过第六输送泵 (P106) 连续采出, 经 31 号管道 (31 ) 进入第一氯化塔式反应器 (T102) 中循环使用;
氯化塔式反应器操作条件:
1 ) 操作温度: 6(Γ130Ό ;
2) 操作压力: 20〜100kPa(G) ;
3) 氯化反应时间: 总停留时间为 1CT12小时;
4) 氯化催化剂: 锡复合盐, 首次开车时一次性添加甘油总质量的 0. 5 /ο, 正常操作 状态循环回用, 不再添加。
2. 根据权利要求 1所述的生产方法, 其特征是: 所述的氯化塔式反应器的操作温 度为 100^110°C o
3. 根据权利要求 1所述的生产方法, 其特征是: 所述的氯化塔式反应器的操作压 力为 40〜60 kPa (G)。
4. 根据权利要求 1所述的生产方法, 其特征是: 步骤 1所述的催化剂加入的量为 开车时甘油一次投料总质量的广 2%。
5. 根据权利要求 1所述的生产方法, 其特征是: 所述的氯化塔式反应器为填料喷 淋式反应器。
6. 根据权利要求 1所述的生产方法, 其特征是: 它为 5级氯化反应器串联工艺。
PCT/CN2014/081762 2013-07-09 2014-07-07 一种二氯丙醇的生产方法 WO2015003595A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310287481.4A CN103333047B (zh) 2013-07-09 2013-07-09 一种二氯丙醇的生产方法
CN201310287481.4 2013-07-09

Publications (1)

Publication Number Publication Date
WO2015003595A1 true WO2015003595A1 (zh) 2015-01-15

Family

ID=49241273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081762 WO2015003595A1 (zh) 2013-07-09 2014-07-07 一种二氯丙醇的生产方法

Country Status (2)

Country Link
CN (1) CN103333047B (zh)
WO (1) WO2015003595A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106748653A (zh) * 2017-02-09 2017-05-31 天津市新天进科技开发有限公司 二元醇水溶液脱水副产一元醇的节能工艺方法和装置
CN106984253A (zh) * 2017-04-27 2017-07-28 平顶山市神鹰化工科技有限公司 一种固体光气合成装置及方法
CN110523226A (zh) * 2019-09-09 2019-12-03 丹阳市助剂化工厂有限公司 一种氯化石蜡尾气处理工艺及吸收设备
CN110938046A (zh) * 2018-09-21 2020-03-31 中国科学院大连化学物理研究所 一种抑制反应控制相转移催化生产环氧氯丙烷水解的方法
CN111187138A (zh) * 2020-01-21 2020-05-22 江苏扬农化工集团有限公司 一种处理二氯苯精馏残渣的方法
CN111871142A (zh) * 2020-06-24 2020-11-03 吴军祥 一种从混合气体中分离氯化氢的方法
CN113105302A (zh) * 2021-03-04 2021-07-13 老河口华辰化学有限公司 一种邻氯甲苯氯化联产邻氯氯苄、邻氯二氯苄和邻氯三氯苄的方法
CN113620771A (zh) * 2020-05-08 2021-11-09 中国石油化工股份有限公司 一种二乙苯脱氢制二乙烯基苯的反应系统及反应方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103333047B (zh) * 2013-07-09 2015-03-11 南京奥凯化工科技有限公司 一种二氯丙醇的生产方法
TWI565689B (zh) * 2015-07-31 2017-01-11 國立清華大學 二氯丙醇的製造方法與環氧氯丙烷的製造方法
TWI561506B (en) * 2015-07-31 2016-12-11 Univ Nat Tsing Hua Method for manufacturing dichlorohydrin and method for manufacturing epichlorohydrin by using glycerol as raw material
CN108409526B (zh) * 2018-03-09 2020-11-20 中国化学赛鼎宁波工程有限公司 一种一氯甲烷节能生产系统及方法
CN108440247A (zh) * 2018-03-27 2018-08-24 佛山市飞程信息技术有限公司 一种甘油氯化合成二氯丙醇的方法
CN108640814A (zh) * 2018-04-18 2018-10-12 佛山市飞程信息技术有限公司 一种甘油氯化合成二氯丙醇的方法
CN111138384A (zh) * 2019-12-27 2020-05-12 浙江巨化技术中心有限公司 一种含氟烯烃生产过程中副产氯化氢的处理方法
CN112142690A (zh) * 2020-10-22 2020-12-29 丹阳市助剂化工厂有限公司 一种利用氯化石蜡含氯尾气甘油法生产环氧氯丙烷工艺
CN112591712A (zh) * 2020-12-21 2021-04-02 中国天辰工程有限公司 一种甘油法制备环氧氯丙烷工艺尾气中氯化氢的回收装置及方法
CN113480407B (zh) * 2021-05-17 2023-03-21 北京化工大学 一种二氯丙醇的连续化制备系统及方法
CN114621057B (zh) * 2022-04-27 2024-05-24 宁波环洋新材料股份有限公司 一种二氯丙醇的生产方法
CN115785026A (zh) * 2022-10-26 2023-03-14 山东鲁泰控股集团有限公司石墨烯高分子复合材料研发中心 一种甘油法连续化生产环氧氯丙烷的工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1882522A (zh) * 2003-11-20 2006-12-20 索尔维公司 从甘油生产二氯丙醇的方法,甘油最终来自生物柴油生产中动物脂肪的转化
CN101323555A (zh) * 2008-07-24 2008-12-17 上海氯碱化工股份有限公司 甘油氢氯化制备二氯丙醇的方法
CN102295529A (zh) * 2011-07-11 2011-12-28 江西省化学工业研究所 一种用甘油和盐酸连续制备二氯丙醇的方法
CN103333047A (zh) * 2013-07-09 2013-10-02 南京奥凯化工科技有限公司 一种二氯丙醇的生产方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1762556A1 (en) * 2005-05-20 2007-03-14 SOLVAY (Société Anonyme) Process for producing dichloropropanol from glycerol
CN100509726C (zh) * 2007-01-26 2009-07-08 江苏工业学院 一种从甘油制备二氯丙醇的方法
JP5146194B2 (ja) * 2008-08-19 2013-02-20 東ソー株式会社 ジクロロプロパノールの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1882522A (zh) * 2003-11-20 2006-12-20 索尔维公司 从甘油生产二氯丙醇的方法,甘油最终来自生物柴油生产中动物脂肪的转化
CN101323555A (zh) * 2008-07-24 2008-12-17 上海氯碱化工股份有限公司 甘油氢氯化制备二氯丙醇的方法
CN102295529A (zh) * 2011-07-11 2011-12-28 江西省化学工业研究所 一种用甘油和盐酸连续制备二氯丙醇的方法
CN103333047A (zh) * 2013-07-09 2013-10-02 南京奥凯化工科技有限公司 一种二氯丙醇的生产方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106748653A (zh) * 2017-02-09 2017-05-31 天津市新天进科技开发有限公司 二元醇水溶液脱水副产一元醇的节能工艺方法和装置
CN106748653B (zh) * 2017-02-09 2023-05-02 天津市新天进科技开发有限公司 二元醇水溶液脱水副产一元醇的节能工艺方法和装置
CN106984253A (zh) * 2017-04-27 2017-07-28 平顶山市神鹰化工科技有限公司 一种固体光气合成装置及方法
CN110938046A (zh) * 2018-09-21 2020-03-31 中国科学院大连化学物理研究所 一种抑制反应控制相转移催化生产环氧氯丙烷水解的方法
CN110938046B (zh) * 2018-09-21 2022-08-02 中国科学院大连化学物理研究所 一种抑制反应控制相转移催化生产环氧氯丙烷水解的方法
CN110523226A (zh) * 2019-09-09 2019-12-03 丹阳市助剂化工厂有限公司 一种氯化石蜡尾气处理工艺及吸收设备
CN111187138A (zh) * 2020-01-21 2020-05-22 江苏扬农化工集团有限公司 一种处理二氯苯精馏残渣的方法
CN111187138B (zh) * 2020-01-21 2022-08-23 江苏扬农化工集团有限公司 一种处理二氯苯精馏残渣的方法
CN113620771A (zh) * 2020-05-08 2021-11-09 中国石油化工股份有限公司 一种二乙苯脱氢制二乙烯基苯的反应系统及反应方法
CN111871142A (zh) * 2020-06-24 2020-11-03 吴军祥 一种从混合气体中分离氯化氢的方法
CN113105302A (zh) * 2021-03-04 2021-07-13 老河口华辰化学有限公司 一种邻氯甲苯氯化联产邻氯氯苄、邻氯二氯苄和邻氯三氯苄的方法
CN113105302B (zh) * 2021-03-04 2024-01-12 老河口华辰化学有限公司 一种邻氯甲苯氯化联产邻氯氯苄、邻氯二氯苄和邻氯三氯苄的方法

Also Published As

Publication number Publication date
CN103333047B (zh) 2015-03-11
CN103333047A (zh) 2013-10-02

Similar Documents

Publication Publication Date Title
WO2015003595A1 (zh) 一种二氯丙醇的生产方法
CN110776394B (zh) 由2-氯-1,1-二氟乙烷催化裂解制含氟乙烯的方法
JP6575126B2 (ja) フルフラールの製造方法及びフランの製造方法
WO2021129377A1 (zh) 一种含氟烯烃生产过程中副产氯化氢的处理方法
CN101029000A (zh) 一种甘油催化氢氯化制备二氯丙醇的方法
CN105669398A (zh) 生产苯甲醛的装置及方法
CN107286087B (zh) 一种2-氰基-3-氯-5-三氟甲基吡啶的合成方法
CN102381940A (zh) 一种碳五烯醇的生产方法
TWI507391B (zh) 乙酸烯丙酯之製法
CN113582809A (zh) 一种有机氯代物消除氯化氢的方法
CN106892798B (zh) 制备二氯丙醇的方法
CN102746150A (zh) 采用二氟一氯乙烷工艺的高沸物制备二氟溴乙酸乙酯的方法
CN101704722B (zh) 二元羧酸-稀土氯化物催化甘油氯化合成二氯丙醇的方法和反应装置
CN103464178B (zh) 一种甘油氯化合成二氯丙醇的ag—01催化剂
CN108164416B (zh) 一种基于生物柴油制备壬二酸单甲酯的新工艺
CN102234223A (zh) 一种甘油与氯化氢反应合成二氯丙醇的方法
CN114181040B (zh) 一种二氯丙醇的制备方法
CN205821214U (zh) 一种高纯度醋酸甲酯的生产工艺装置
CN112552149B (zh) 一种制备全氟烷基乙烯基醚的反应系统及其方法
CN105237354B (zh) 甘油氯化残液的回收利用方法
CN101035750A (zh) 羟基化合物的制造方法
EP3995482A1 (en) Unit for preparing diester-based material, and system for preparing diester-based material, comprising same
EP3995481B1 (en) System and method for preparing diester-based composition
CN107118075A (zh) 一种氯丙烯提纯系统
CN212335079U (zh) 一种醋酸甲酯和甲醛合成甲基丙烯酸甲酯的生产工艺装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/06/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14823631

Country of ref document: EP

Kind code of ref document: A1