WO2014201920A1 - 一种制备多通道陶瓷中空纤维膜的方法 - Google Patents

一种制备多通道陶瓷中空纤维膜的方法 Download PDF

Info

Publication number
WO2014201920A1
WO2014201920A1 PCT/CN2014/077152 CN2014077152W WO2014201920A1 WO 2014201920 A1 WO2014201920 A1 WO 2014201920A1 CN 2014077152 W CN2014077152 W CN 2014077152W WO 2014201920 A1 WO2014201920 A1 WO 2014201920A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
ceramic hollow
channel
casting solution
Prior art date
Application number
PCT/CN2014/077152
Other languages
English (en)
French (fr)
Inventor
顾学红
时振洲
陈园园
张春
徐南平
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Priority to JP2016520251A priority Critical patent/JP6170245B2/ja
Priority to US14/898,471 priority patent/US11390565B2/en
Priority to EP14814530.3A priority patent/EP3012013B1/en
Publication of WO2014201920A1 publication Critical patent/WO2014201920A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6225Fibres based on zirconium oxide, e.g. zirconates such as PZT
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/082Hollow fibre membranes characterised by the cross-sectional shape of the fibre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00411Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/081Hollow fibre membranes characterised by the fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/025Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding

Definitions

  • the invention relates to a method for preparing a multi-channel ceramic hollow fiber membrane, belonging to the field of inorganic membrane preparation.
  • the invention aims to improve the mechanical properties of the hollow fiber and to solve its brittleness in the application process.
  • Ceramic membranes are widely used in chemical, petrochemical, food, and environmental engineering industries due to their excellent chemical stability, high temperature resistance, and narrow pore size distribution.
  • the ceramic hollow fiber membrane not only has the advantages of the traditional ceramic membrane, but also has a packing density of up to 3000 m 2 /m 3 (Marcel Mulder, Li Lin, the basic principle of translating membrane technology), which is 10 times that of the tubular membrane and the flat membrane.
  • the separation efficiency is remarkably improved and can be used for the support in the field of membrane separation, the microfiltration process, and the catalyst carrier in the membrane reactor.
  • Some researchers have improved the strength and toughness of ceramics in three ways: to improve the powder size (CN 1472448 A), to optimize the mechanical properties of ceramics by the pinning effect of small particle powders at the main grain boundaries; YSZ phase transformation toughening ( CN 102850042 A), through the stabilizer yttria and zirconia to form a solid solution, forming a tetragonal phase crystal form at room temperature, the internal stress formed by the crystal transformation can consume external stress, improve the mechanical properties of the ceramic; whisker toughening, through the whisker Pull out, break and increase the microcrack extension path to consume external stress and improve ceramic mechanical properties.
  • the finger-shaped pores and the porous structure in the asymmetric structure of the ceramic hollow fiber membrane are the biggest defects for improving the strength and toughness of the hollow fiber membrane. Therefore, these solutions are not ideal for solving brittle, low-intensity problems. Therefore, the preparation of a high mechanical strength ceramic hollow fiber membrane has become a problem that must be solved before large-scale application.
  • the technical scheme of the invention is: A method for preparing a multi-channel ceramic hollow fiber, the specific steps of which are as follows:
  • Preparation of casting solution The ceramic powder, polymer, organic solvent and dispersing agent are stirred uniformly to form a uniform stable casting solution; wherein the ceramic powder accounts for 55-65% of the total mass of the casting solution, high The molecular polymer accounts for 4 ⁇ 8% of the total mass of the casting solution, the organic solvent accounts for 27 ⁇ 38% of the total mass of the casting solution, and the dispersant accounts for 0.61.6% of the total mass of the casting solution; (2) Vacuum defoaming: removing air bubbles in the casting solution under vacuum;
  • Multi-channel ceramic hollow fiber membrane molding The casting solution liquid is driven by air pressure through a multi-channel hollow fiber mold, and undergoes phase transformation in an internal and external coagulation bath after a certain air gap to form a multi-channel ceramic hollow fiber membrane green body;
  • High-temperature sintering The multi-channel ceramic hollow fiber membrane green body is placed in a furnace for temperature-programming, and a multi-channel ceramic hollow fiber membrane is prepared by low-temperature debinding and high-temperature melting treatment.
  • the ceramic powder is one or both of yttria-stabilized zirconia (YSZ), alumina, and titania; the average particle size of the powder ranges from 0.05 to 4 ⁇ m; and the polymer is polyethersulfone.
  • YSZ yttria-stabilized zirconia
  • the polymer is polyethersulfone.
  • the organic solvent is one of ⁇ -methylpyrrolidone, dimethylformamide, dimethylacetamide or trichloromethane or Two kinds
  • the dispersing agent is one or both of polyvinylpyrrolidone, ethyl cellulose, and polyethylene glycol.
  • the external coagulation bath is one or both of water, ethanol or hydrazine-methylpyrrolidone;
  • the internal coagulation bath is one of deionized water, dimethylacetamide or hydrazine-methylpyrrolidone or Two kinds;
  • the temperature of the internal coagulation bath and the external coagulation bath are both 15 ⁇ 35 °C;
  • the internal coagulation bath flow rate is 40 ⁇ 60 mL/min.
  • the degree of vacuum of vacuum defoaming is 0.1 to 0.2 MPa, and the defoaming time is 1 to 2 hours.
  • the air spacing is 10 40 cm; the driving air pressure is 0.1 0.4 MPa.
  • the temperature programming is first heated to 500 ⁇ 600 °C at a heating rate of l ⁇ 2 °C/min, and then heated to 1400 ⁇ 1600 °C at a heating rate of 3 ⁇ 5 °C/min, and the temperature is kept for 4-8 hours. Then, it is cooled to lj500 ⁇ 600 °C at 3 ⁇ 5 °C/min, and finally cooled naturally.
  • the multi-channel ceramic hollow fiber membrane prepared by the method of the invention is characterized in that the outer diameter of the multi-channel ceramic hollow fiber membrane is 2 ⁇ 4 mm, the diameter of the channel is 0.6 1.2 mm; the breaking load of the multi-channel ceramic hollow fiber membrane is 19 ⁇ 25N, pure water flux 3 ⁇ 4 1.43-2.4 L.Ta ⁇ .m" 2 min" 1 , porosity is 53 ⁇ 65%, average pore diameter is 1.2 ⁇ 2.9 ⁇ .
  • the number of channels is 4-9.
  • the ceramic powder, the high molecular polymer, the organic solvent and the dispersing agent are stirred and mixed uniformly to prepare a uniform and stable casting liquid.
  • the casting solution is degassed under vacuum.
  • the internal coagulation bath flow rate is 40 60 mL/min
  • the internal coagulation bath temperature is 15 ⁇ 35 °C
  • the casting solution is squeezed into the spinning wire under the action of the driving pressure of 0.1 ⁇ 0.4 MPa and the gear pump.
  • Head under the synergistic action of phase inversion and multi-channel hollow fiber membrane mold, the initially formed green body is solidified by an air gap of 10 40 cm and vertically falling into an outer coagulation bath at a temperature of 15 to 35 °C.
  • the drying temperature of the multi-channel ceramic hollow fiber membrane green body is 40 ⁇ 60 °C, and the drying temperature has an important influence on the quality of the green body.
  • the dried green body is sintered at a high temperature of 1400 to 1600 ° C for 4 to 8 hours to produce a multi-channel ceramic hollow fiber.
  • the prepared multi-channel ceramic hollow fiber membrane supports the skeleton structure in the inner cavity, thereby achieving the effect of enhancing the strength of the ceramic hollow fiber membrane.
  • the innovation of the invention lies in optimizing the overall structure of the ceramic hollow fiber membrane, and supporting the inner cavity of the ceramic hollow fiber membrane
  • the skeleton structure achieves the effect of enhancing the strength of the ceramic hollow fiber membrane.
  • the preparation technology of multi-channel ceramic hollow fiber membrane has been matured.
  • the multi-channel ceramic hollow fiber membrane exhibits the following advantages: (1) High mechanical strength, the fracture load of the multi-channel ceramic hollow fiber membrane reaches 19 ⁇ 22 N, which is 5-7 times that of the ordinary ceramic hollow fiber membrane.
  • the skeleton structure in the inner cavity of the multi-channel ceramic hollow fiber membrane and the support triangle of one week become the main structure for improving the strength of the ceramic hollow fiber membrane; (2) high throughput and high selectivity.
  • the multi-channel ceramic hollow fiber membrane has a typical asymmetric structure (the finger hole increases the flux and the sponge increases the selectivity); (3) the wall thickness is reduced, and the transmembrane resistance of the material liquid through the wall thickness is lowered.
  • the wall thickness of the multi-channel ceramic hollow fiber membrane is 0.1 0.3 mm, and the wall thickness of the ordinary ceramic hollow fiber membrane is 0.4 0.5 mm.
  • the mechanical strength of the multi-channel ceramic hollow fiber membrane is simultaneously increased, and the amount of strength and flux which are mutually restricted is adjusted.
  • the project has been designed and enlarged by technical research and industrial production equipment, and now has an annual production capacity of 20,000.
  • the multi-channel ceramic hollow fiber membrane has a length of 70 cm, a breaking load of 19-22 N, and a porosity of 50-60%. .
  • FIG. 2 SEM image of YSZ seven-channel ceramic hollow fiber membrane (A area - skeleton structure, B area - support triangle area, C area - finger hole area, D area - sponge area);
  • FIG. 3 SEM image of A1 2 0 3 seven-channel ceramic hollow fiber membrane (A region-skeleton structure, B region-sponge, C-porous structure);
  • Fig. 4 SEM image of YSZ four-channel ceramic hollow fiber membrane (A region-skeleton structure) , B area - support triangle area, C area - finger hole area, D area - sponge area).
  • Figure 5 SEM image of A1 2 0 3 four-channel ceramic hollow fiber membrane (A area - skeleton structure, B area - support triangle area, C area - sponge area, D area - finger hole area).
  • N-methylpyrrolidone, polyvinylpyrrolidone, polyethersulfone, and YSZ were uniformly mixed in a mass ratio of 0.3:0.01:0.04:0.65 in a certain order.
  • the mixed casting solution was transferred to a spinning can, and degassing was carried out for 2 hours under a vacuum of 0.1 MPa.
  • the tap water is an external coagulation bath, the external coagulation bath temperature is 15 ° C, the deionized water is an internal coagulation bath, the internal coagulation bath temperature is 15 ° C, the internal coagulation bath flow rate is 40 mL / min, the air spacing is 10 cm, at 0.14 Under the pressure of MPa, the casting solution is extruded from the spinneret, and is initially formed by the internal coagulation bath and the seven-channel spinneret. After sufficient phase transformation in the external coagulation bath, a certain microstructure of YSZ is finally formed. Seven-channel ceramic hollow fiber membrane green body. The entire spinning process is shown in Figure 1. The green body is placed in a furnace for sintering.
  • the prepared seven-channel ceramic hollow fiber membrane had an outer diameter of 2.92 mm and a channel diameter of 0.61 mm, as shown in FIG.
  • Pure water flux method, three-point bending strength method, Archimedes method row Four methods of water method and gas bubble pressure method were used to characterize the performance of YSZ seven-channel hollow fiber ceramic membrane.
  • the pure water flux of the YSZ seven-channel hollow fiber ceramic membrane is ⁇ . ⁇ ⁇ . ⁇ ⁇ 1 , the breaking load is 19 ⁇ , the porosity is 65%, and the average pore diameter is 1.4 1.6 ⁇ .
  • the dimethylacetamide, polyvinylpyrrolidone, polysulfone, and A1 2 0 3 were uniformly mixed in a mass ratio of 0.372:0.008:0.07:0.55 in a certain order.
  • the mixed and uniform casting liquid was transferred to a spinning can, and degassing was performed for 1 hour under a vacuum of 0.2 MPa.
  • Ethanol was selected as the external coagulation bath, the external coagulation bath temperature was 25 ° C, dimethylacetamide was used as the internal coagulation bath, the internal coagulation bath temperature was 20 ° C, the internal coagulation bath flow rate was controlled at 60 mL / min, and the air spacing was 40 cm, driven by a pressure of 0.2 MPa, the casting solution was extruded from the spinneret and initially formed under the action of an internal coagulation bath and a seven-channel spinneret. After sufficient phase transformation in the outer coagulation bath, a certain microstructure of the A1 2 0 3 seven-channel ceramic hollow fiber membrane green body is finally formed. The green body is then sintered in the furnace.
  • the prepared A1 2 0 3 seven-channel ceramic hollow fiber membrane had an outer diameter of 3.37 mm and a channel diameter of 0.65 mm, as shown in FIG.
  • the same characterization means as in Example 1 was employed.
  • the pure water flux of the A1 2 0 3 seven-channel hollow fiber ceramic membrane is 1.43 L.Pa '.m- 2 min 1 , the breaking load is 20 N, the porosity is 56 %, and the average pore diameter is 1.2-1.4 ⁇ .
  • the mixture of trichloromethane, polyethylene glycol, polyvinylidene fluoride and YSZ is uniformly mixed in a mass ratio of 0.305:0.01:0.045:0.64 in a certain order.
  • the mixed casting solution was transferred to a spinning can, and degassing was carried out for 2 hours under a vacuum of 0.1 MPa.
  • external coagulation bath temperature is 25 °C
  • N-methylpyrrolidone as internal coagulation bath
  • internal coagulation bath temperature is 25 °C
  • internal coagulation bath flow rate is controlled at 50 mL/min
  • air spacing 20 cm driven by a pressure of 0.32 MPa
  • the casting solution is extruded from the spinneret, initially formed by the internal coagulation bath and the four-channel spinneret, and fully phase-converted in the outer coagulation bath.
  • a YSZ four-channel ceramic hollow fiber membrane green body having a certain microstructure is formed. The green body is placed in a furnace for sintering.
  • the prepared YSZ four-channel ceramic hollow fiber membrane had an outer diameter of 2.60 mm and a channel diameter of 0.86 mm, as shown in Fig. 4.
  • the same characterization means as in Example 1 was employed.
  • the pure water flux of YSZ four-channel hollow fiber ceramic membrane is L ⁇ .n ⁇ min - 1 , the fracture load is 22 N, the porosity is 56 %, and the average pore diameter is 2.6 ⁇ 2.9 ⁇ .
  • the dimethylacetamide, polyvinylpyrrolidone, polysulfone, and hydrazine 1 2 0 3 were uniformly mixed in a mass ratio of 0.27:0.016:0.07:0.644 in a certain order.
  • the mixed and uniform casting liquid was transferred to a spinning can, and degassing was performed for 1 hour under a vacuum of 0.2 MPa.
  • Ethanol is selected as the external coagulation bath, the external coagulation bath temperature is 35 ° C, deionized water is used as the internal coagulation bath, and the internal coagulation bath temperature At 35 °C, the internal coagulation bath flow rate is controlled at 40 mL/min, the air spacing is 30 cm, and the casting solution is extruded from the spinneret under the pressure of 0.4 MPa.
  • the internal coagulation bath and the four-channel spray Initial molding under the action of the silk head. After sufficient phase transformation in the outer coagulation bath, a certain microstructure of the A1 2 0 3 four-channel ceramic hollow fiber membrane green body is finally formed. The green body is then sintered in the furnace.
  • the prepared A1 2 0 3 four-channel ceramic hollow fiber membrane had an outer diameter of 2.78 mm and a channel diameter of 0.9 mm, as shown in FIG.
  • the same characterization means as in Example 1 was employed.
  • the pure water flux of the A1 2 0 3 four-channel hollow fiber ceramic membrane is S LP ⁇ .m ⁇ min- 1 , the breaking load is 25 N, the porosity is 53%, and the average pore diameter is 1.4 1.5 ⁇ .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Abstract

一种制备多通道陶瓷中空纤维膜的方法,以一定比例将陶瓷粉体、高分子聚合物、有机溶剂和分散剂混合均匀制备铸膜液,铸膜液经过脱气泡处理后,在多通道中空纤维模具以及相转化的协同作用下形成膜生坯。膜生坯经过高温焙烧形成多通道陶瓷中空纤维膜。多通道陶瓷中空纤维膜具有自身非对称结构以及内腔中的骨架结构,能够同时满足陶瓷中空纤维膜强度和通量要求。

Description

一种制备多通道陶瓷中空纤维膜的方法
技术领域
本发明涉及一种制备多通道陶瓷中空纤维膜的方法, 属无机膜制备领域。发明旨在提高中 空纤维机械性能, 解决其在应用过程中易脆性。
背景技术
陶瓷膜具有优异化学稳定性、 耐高温、 孔径分布窄等特点, 被广泛用于化工、 石油化工、 食品工业、环境工程等领域。陶瓷中空纤维膜不仅具有传统陶瓷膜的优点,而且具有高达 3000 m2/m3的装填密度 (MarcelMulder.著 李琳, 译 膜技术基本原理), 是管式膜、 平板膜的 10倍, 因而分离效率得到显著的提高, 可以将其用于膜分离领域的支撑体、微滤工艺、膜反应器中催 化剂载体。
有关无机中空纤维膜的报道首先见于 20世纪 90年代初, Lee和 Smid以氧化铝为原料, 分别采用干 /湿法纺丝和熔融法纺丝制备中空纤维膜。 随着中空纤维膜制备技术成熟, 不同材 料、 不同微结构的中空纤维膜被制备出来。 随着中空纤维膜应用规模扩大, 其低强度、 易脆性 问题日益突显, 表现为: 长期在有水 /有机溶剂体系中使用存在的强度失效隐患。 因此, 制备 出高机械强度、高通量陶瓷中空纤维膜是大规模工业化应用前急需解决的问题。 Li等人 (Li K et al. Desalination, 199 2006 360-362)试图提高中空纤维强度, 但制备的中空纤维膜断裂负荷始终 维持在 3N左右。 一些材料学领域专家也在优化陶瓷的机械性能, 使陶瓷在应用过程中的可靠 性提高。一些研究者通过 3个途径来改善陶瓷的强度和韧性: 改善粉体尺寸(CN 1472448 A), 通过小颗粒粉体在主晶界的钉扎效应来优化陶瓷机械性能; YSZ相变增韧(CN 102850042 A), 通过稳定剂氧化钇与氧化锆形成固溶体,在室温下形成四方相晶型, 晶形转变形成的内应力可 以消耗外应力, 提高陶瓷机械性能; 晶须增韧, 通过晶须的拔出、 断裂以及增加微裂纹扩展路 径来消耗外应力,提高陶瓷机械性能。但陶瓷中空纤维膜非对称结构中的指状孔、多孔结构(旨 在提高中空纤维膜通量), 成为提升中空纤维膜强度、 韧性的最大缺陷。 因此, 这些方案在解 决脆性, 低强度问题时都不理想。 因此, 制备高机械强度陶瓷中空纤维膜成为大规模应用前必 须解决的问题。
发明内容
本发明的目的是为了改进现有技术的不足而提供一种制备多通道陶瓷中空纤维的方法。 本发明的技术方案是: 一种制备多通道陶瓷中空纤维的方法, 其具体步骤如下:
(1)铸膜液配制: 将陶瓷粉体、 高分子聚合物、 有机溶剂、 分散剂搅拌均匀形成均一稳定 的铸膜液; 其中陶瓷粉体占铸膜液总质量的 55~65%, 高分子聚合物占铸膜液总质量的 4~8 %, 有机溶剂占铸膜液总质量的 27~38 %, 分散剂占铸膜液总质量的 0.6 1.6 %; (2)真空脱泡: 在真空度下脱去铸膜液中气泡;
(3)多通道陶瓷中空纤维膜成型: 铸膜液在气压的驱动下通过多通道中空纤维模具, 经过 一段空气间距, 在内外凝固浴中进行相转化, 形成多通道陶瓷中空纤维膜生坯;
(4)干燥: 在温度为 40°C~60°C下, 将多通道陶瓷中空纤维膜生坯晾干;
(5)高温烧结: 多通道陶瓷中空纤维膜生坯置于炉中程序升温, 进行低温排胶、 高温熔融 处理烧结制得多通道陶瓷中空纤维膜。
优选所述的陶瓷粉体为氧化钇稳定氧化锆 (YSZ) 、 氧化铝、 氧化钛中的一种或者两种; 粉体的平均粒径范围为 0.05 4 μιη; 高分子聚合物为聚醚砜、 聚砜或偏氟乙烯均聚物中的一种 或两种; 有机溶剂为 Ν-甲基吡咯垸酮、 二甲基甲酰胺、 二甲基乙酰胺或三氯甲垸中的一种或 两种; 分散剂为聚乙烯吡咯垸酮、 乙基纤维素、 聚乙二醇中的一种或两种。
优选外凝固浴为水、 乙醇或 Ν-甲基吡咯垸酮中的一种或者两种; 内凝固浴为去离子水、 二甲基乙酰胺或 Ν-甲基吡咯垸酮中的一种或者两种; 内凝固浴和外凝固浴的温度均为 15~35°C ; 内凝固浴流量为 40~60 mL/min。
优选真空脱泡的真空度为 0.1~0.2 MPa, 脱泡时间为 1~2 h。 优选空气间距为 10 40 cm; 驱动气压为 0.1 0.4 MPa。
优选程序升温是先以 l~2°C/min 的升温速率加热到 500~600°C, 再以 3~5°C/min的升温速率 加热到 1400~1600°C, 保温 4~8 h, 然后以 3~5°C/min冷却至 lj500~600°C, 最后自然冷却。
本发明方法所制备的多通道陶瓷中空纤维膜, 其特征在于多通道陶瓷中空纤维膜的外径 为 2~4 mm, 通道直径为 0.6 1.2 mm; 多通道陶瓷中空纤维膜断裂负荷达为 19~25N, 纯水通量 ¾ 1.43-2.4 L.Ta^.m"2 min"1, 孔隙率为 53~65%, 平均孔径为 1.2~2.9μιη。 优选通道数为 4~9。
本发明将陶瓷粉体、 高分子聚合物、 有机溶剂、 分散剂搅拌混合均匀, 制备均一稳定的 铸膜液。 铸膜液在真空脱气泡。 在蠕动泵控制下, 内凝固浴流速为 40 60 mL/min, 内凝固浴温 度为 15~35°C, 在 0.1~0.4 MPa的驱动气压与齿轮泵的作用下将铸膜液挤入喷丝头, 在相转化与 多通道中空纤维膜模具的协同作用下,初步成型的生坯通过 10 40 cm的空气间距, 垂直落入温 度为 15~35°C的外凝固浴中凝固成型。 多通道陶瓷中空纤维膜生坯晾干温度为 40~60°C,晾干温 度对生坯的质量产生重要影响, 温度过低则晾干时间长, 效率低, 温度过高则固化反应速度过 快, 造成生坯中气孔含量增多甚至开裂。 晾干的生坯经过 1400~1600°C, 4~8 h的高温烧结, 制 得多通道陶瓷中空纤维。制备的多通道陶瓷中空纤维膜在内腔中支撑起骨架结构, 达到了增强 陶瓷中空纤维膜强度效果。
有益效果:
本发明的创新之处, 在于优化陶瓷中空纤维膜整体结构, 在陶瓷中空纤维膜内腔支撑起 骨架结构,达到了增强陶瓷中空纤维膜强度效果。现已成熟掌握多通道陶瓷中空纤维膜的制备 技术。 在应用过程中多通道陶瓷中空纤维膜表现出以下优势: (1)高机械强度, 多通道陶瓷中 空纤维膜的断裂负荷达到 19~22 N,是普通陶瓷中空纤维膜的 5~7倍。多通道陶瓷中空纤维膜内 腔中的骨架结构以及一周的支撑三角区成为提升陶瓷中空纤维膜强度的主要结构; (2)高通量、 高选择性。 多通道陶瓷中空纤维膜具备典型的非对称结构, (指状孔提高通量、 海绵体提高选 择性);(3)减少壁厚,料液通过壁厚的跨膜阻力降低。多通道陶瓷中空纤维膜壁厚在 0.1 0.3 mm, 普通陶瓷中空纤维膜的壁厚在 0.4 0.5 mm。在壁厚减少情况下, 多通道陶瓷中空纤维膜机械强 度同步提升, 调和了强度、通量这对相互制约的量。 该项目经过技术研究和工业生产设备的设 计、 放大, 现已能达到 20000根年生产能力, 多通道陶瓷中空纤维膜长度达 70 cm, 断裂负荷为 19-22 N, 孔隙率为 50~60%。
附图说明
图 1 干 /湿法纺丝流程图;
图 2 YSZ七通道陶瓷中空纤维膜 SEM图 (A区域 -骨架结构, B区域-支撑三角区, C区域 -指状 孔区, D区域-海绵体区);
图 3 A1203七通道陶瓷中空纤维膜 SEM图 (A区域 -骨架结构, B区域-海绵体, C-多孔结构); 图 4 YSZ四通道陶瓷中空纤维膜 SEM图 (A区域 -骨架结构, B区域-支撑三角区, C区域 -指状 孔区, D区域-海绵体区)。
图 5 A1203四通道陶瓷中空纤维膜 SEM图 (A区域 -骨架结构, B区域-支撑三角区, C区域 -海绵体区, D区域-指状孔区)。
具体实施方式
现以给出具体实施例与附图说明多通道陶瓷中空纤维膜的制备工艺。
实施例 1 YSZ七通道中空纤维膜制备
按一定顺序将 N-甲基吡咯垸酮、 聚乙烯吡咯垸酮、 聚醚砜、 YSZ按 0.3:0.01 :0.04:0.65的 质量比例混合均匀。 将混合均匀铸膜液转移到纺丝罐中, 在真空度为 0.1 MPa下, 进行 2 h脱 气泡。自来水为外凝固浴,外凝固浴温度为 15°C,去离子水为内凝固浴,内凝固浴温度为 15°C, 内凝固浴流量为 40 mL/min,空气间距为 10 cm,在 0.14 MPa的压力驱动下,将铸膜液从喷丝头 内挤出, 在内凝固浴、 七通道喷丝头的作用下初步成型, 在外凝固浴中经过充分相转化, 最终 形成一定微观结构的 YSZ七通道陶瓷中空纤维膜生坯。 整个纺丝流程如附图 1所示。 再将生 坯置入炉内烧结。先以 rC/min升温速率加热到 500°C,再以 3 °C/min的升温速率加热到 1400°C, 保温 5 h, 以 3 °C/min的降温速率冷却到 500°C, 自然冷却。制备的七通道陶瓷中空纤维膜外径 为 2.92mm,通道直径为 0.61mm,如附图 2。 采用纯水通量法、 三点弯曲强度法、 阿基米德法排 水法、 气体泡压法四种方法表征 YSZ七通道中空纤维陶瓷膜的性能。 YSZ七通道中空纤维陶 瓷膜的纯水通量为 Ι.δδ Ρ .η^ ιηίη·1,断裂负荷为 19 Ν,孔隙率为 65 %,平均孔径为 1.4 1.6 μη ο
实施例 2 Α1203 通道中空纤维膜制备
按一定顺序将二甲基乙酰胺、 聚乙烯吡咯垸酮、 聚砜、 A1203按 0.372:0.008:0.07:0.55的质 量比例混合均匀。 将混合均匀铸膜液转移到纺丝罐中, 在真空度为 0.2 MPa下, 进行 l h脱气 泡。 选择乙醇作为外凝固浴,, 外凝固浴温度为 25°C, 二甲基乙酰胺作为内凝固浴, 内凝固浴 温度为 20°C, 内凝固浴流量控制在 60 mL/min, 空气间距为 40 cm,在 0.2 MPa的压力驱动下, 将铸膜液从喷丝头内挤出, 在内凝固浴、 七通道喷丝头的作用下初步成型。在外凝固浴中经过 充分相转化, 最终形成一定微观结构的 A1203七通道陶瓷中空纤维膜生坯。 再将生坯至于炉内 烧结。先以 2°C/min升温速率加热到 600°C,再以 5°C/min的升温速率加热到 1600°C,保温 8 h, 以 5°C/min的降温速率冷却到 600°C, 自然冷却。 制备的 A1203七通道陶瓷中空纤维膜外径为 3.37mm, 通道直径为 0.65mm,如附图 3。 采用采用与实施例 1相同的表征手段。 A1203七通道 中空纤维陶瓷膜的纯水通量为 1.43 L.Pa '.m-2 min 1, 断裂负荷为 20 N, 孔隙率为 56 %, 平均 孔径为 1.2~1.4 μιη。
实施例 3 YSZ四通道中空纤维膜制备
按一定顺序将三氯甲垸、 聚乙二醇、 聚偏氟乙烯、 YSZ按 0.305:0.01 :0.045:0.64的质量比 例混合均匀。 将混合均匀铸膜液转移到纺丝罐中, 在真空度为 0.1 MPa下, 进行 2 h脱气泡。 选择自来水作为外凝固浴、 外凝固浴温度为 25°C, N-甲基吡咯垸酮作为内凝固浴, 内凝固浴 温度为 25°C, 内凝固浴流量控制在 50 mL/min, 空气间距为 20 cm,在 0.32 MPa的压力驱动下, 将铸膜液从喷丝头内挤出, 在内凝固浴、 四通道喷丝头的作用下初步成型, 在外凝固浴中经过 充分相转化, 最终形成一定微观结构的 YSZ四通道陶瓷中空纤维膜生坯。 再将生坯置入炉内 烧结。先以 2°C/min升温速率加热到 600°C,再以 4°C/min的升温速率加热到 1500°C,保温 6 h, 以 4°C/min的降温速率冷却到 600°C, 自然冷却。 制备的 YSZ 四通道陶瓷中空纤维膜外径为 2.60mm, 通道直径为 0.86mm,如附图 4。采用采用与实施例 1相同的表征手段。 YSZ四通道中 空纤维陶瓷膜的纯水通量为 L ^.n^ min—1, 断裂负荷为 22 N, 孔隙率为 56 %, 平均孔径 为 2.6~2.9 μιη。
实施例 4 Α1203四通道中空纤维膜制备
按一定顺序将二甲基乙酰胺、 聚乙烯吡咯垸酮、 聚砜、 Α1203按 0.27:0.016:0.07:0.644的质 量比例混合均匀。 将混合均匀铸膜液转移到纺丝罐中, 在真空度为 0.2 MPa下, 进行 l h脱气 泡。 选择乙醇作为外凝固浴、 外凝固浴温度为 35°C, 去离子水作为内凝固浴, 内凝固浴温度 为 35 °C, 内凝固浴流量控制在 40 mL/min, 空气间距为 30 cm,在 0.4 MPa的压力驱动下, 将铸 膜液从喷丝头内挤出, 在内凝固浴、 四通道喷丝头的作用下初步成型。在外凝固浴中经过充分 相转化,最终形成一定微观结构的 A1203四通道陶瓷中空纤维膜生坯。再将生坯至于炉内烧结。 先以 2°C/min升温速率加热到 600°C,再以 4°C/min的升温速率加热到 1550°C,保温 5 h,以 4°C /min的降温速率冷却到 500°C,自然冷却。制备的 A1203四通道陶瓷中空纤维膜外径为 2.78mm, 通道直径为 0.9mm,如附图 5。 采用采用与实施例 1相同的表征手段。 A1203四通道中空纤维陶 瓷膜的纯水通量为 S LP^.m^ min—1, 断裂负荷为 25 N, 孔隙率为 53 %, 平均孔径为 1.4 1.5 μη ο

Claims

权利要求
1.一种制备多通道陶瓷中空纤维的方法, 其具体步骤如下:
(1)铸膜液配制: 将陶瓷粉体、 高分子聚合物、 有机溶剂、 分散剂搅拌均匀形成均一稳定 的铸膜液; 其中陶瓷粉体占铸膜液总质量的 55~65%, 高分子聚合物占铸膜液总质量的 4~8%, 有机溶剂占铸膜液总质量的 27~38 %, 分散剂占铸膜液总质量的 0.6 1.6 %;
(2)真空脱泡: 在真空度下脱去铸膜液中气泡;
(3)多通道陶瓷中空纤维膜成型: 铸膜液在气压的驱动下通过多通道中空纤维模具, 经过 一段空气间距, 在内外凝固浴中进行相转化, 形成多通道陶瓷中空纤维膜生坯;
(4)干燥: 在温度为 40°C~60°C下, 将多通道陶瓷中空纤维膜生坯晾干;
(5)高温烧结: 多通道陶瓷中空纤维膜生坯置于炉中程序升温, 烧结制得多通道陶瓷中空 纤维膜。
2.根据权利要求 1所述的方法,其特征在于所述的陶瓷粉体为氧化钇稳定氧化锆、氧化铝、 氧化钛中的一种或者两种; 粉体的平均粒径范围为 0.05 4 μιη; 高分子聚合物为聚醚砜、聚砜 或偏氟乙烯均聚物中的一种或两种; 有机溶剂为 Ν-甲基吡咯垸酮、 二甲基甲酰胺、 二甲基乙 酰胺或三氯甲垸中的一种或两种; 分散剂为聚乙烯吡咯垸酮、 乙基纤维素、聚乙二醇中的一种 或两种。
3.根据权利要求 1所述的方法,其特征在于外凝固浴为水、乙醇或 Ν-甲基吡咯垸酮中的一 种或者两种; 内凝固浴为去离子水、 二甲基乙酰胺或 Ν-甲基吡咯垸酮中的一种或者两种; 内 凝固浴和外凝固浴的温度均为 15 35 °C; 内凝固浴流量为 40 60 mL/min。
4.根据权利要求 1所述的方法, 其特征在于真空脱泡的真空度为 0.1 0.2 MPa, 脱泡时间 为 l~2h。
5.根据权利要求 1所述的方法,其特征在于空气间距为 10 40 cm;驱动气压为 0.1~0.4 MPa。
6.根据权利要求 1所述的方法, 其特征在于程序升温是先以 l~20C/min 的升温速率加热到 500 600 °C, 再以 3~5°C/min的升温速率加热到 1400 1600 °C, 保温 4~8 h, 然后以 3~5°C/min 冷却到 500 600 °C, 最后自然冷却。
7. 一种如权利要求 1所述的方法所制备的多通道陶瓷中空纤维膜, 其特征在于多通道陶瓷 中空纤维膜的外径为 2~4mm, 通道直径为 0.6 1.2 mm; 多通道陶瓷中空纤维膜断裂负荷达为 19-25N, 纯水通量为 1.43 2.4 L..Pa-l.m-2min-l, 孔隙率为 53~65%, 平均孔径为 1.2~2.9 μ m。
8.根据权利要求 7所述的多通道陶瓷中空纤维膜, 其特征在于通道数为 4~9。
PCT/CN2014/077152 2013-06-19 2014-05-09 一种制备多通道陶瓷中空纤维膜的方法 WO2014201920A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016520251A JP6170245B2 (ja) 2013-06-19 2014-05-09 マルチチャンネルセラミック中空糸膜の製造方法
US14/898,471 US11390565B2 (en) 2013-06-19 2014-05-09 Method for preparing multichannel ceramic hollow fiber membrane
EP14814530.3A EP3012013B1 (en) 2013-06-19 2014-05-09 Method for preparing multichannel ceramic hollow fiber membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310244094.2A CN103349918B (zh) 2013-06-19 2013-06-19 一种制备多通道陶瓷中空纤维膜的方法
CN201310244094.2 2013-06-19

Publications (1)

Publication Number Publication Date
WO2014201920A1 true WO2014201920A1 (zh) 2014-12-24

Family

ID=49306385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077152 WO2014201920A1 (zh) 2013-06-19 2014-05-09 一种制备多通道陶瓷中空纤维膜的方法

Country Status (5)

Country Link
US (1) US11390565B2 (zh)
EP (1) EP3012013B1 (zh)
JP (1) JP6170245B2 (zh)
CN (1) CN103349918B (zh)
WO (1) WO2014201920A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113733293A (zh) * 2021-08-18 2021-12-03 山东理工大学 基于3D打印的Pd/Al2O3微孔道反应器的制备方法
CN115959926A (zh) * 2022-12-30 2023-04-14 中南大学 一种相转化造孔剂及粉煤灰陶瓷平板膜支撑体的造孔方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001027459A (ja) * 1999-07-15 2001-01-30 Zexel Valeo Climate Control Corp レシーバドライヤ
CN103349918B (zh) * 2013-06-19 2015-11-11 南京工业大学 一种制备多通道陶瓷中空纤维膜的方法
CN103657435A (zh) * 2013-12-10 2014-03-26 南京工业大学 多孔金属中空纤维膜及其制备方法
CN103657436B (zh) * 2013-12-31 2016-06-01 南京工业大学 一种高强度的中空纤维分子筛膜及其制备方法
CN103768965B (zh) * 2014-01-09 2015-12-30 南京工业大学 一种多通道混合导体中空纤维膜的制备方法
GB2526310A (en) * 2014-05-20 2015-11-25 Imp Innovations Ltd Monolith
CN104524987A (zh) * 2015-01-16 2015-04-22 张晓东 一种蜂窝状中空纤维陶瓷超滤膜及其生产方法
CN105479585B (zh) * 2015-11-25 2017-08-25 山东理工大学 三维打印制备具有立体通道的蜂窝型陶瓷膜组件的方法
CN105688688A (zh) * 2016-02-26 2016-06-22 苏州市贝克生物科技有限公司 一种适用于直饮机中的中空纤维超滤膜及其制备方法
CN106268378A (zh) * 2016-08-04 2017-01-04 李祥庆 一种中空纤维复合纳滤膜的制备方法
CN106673636A (zh) * 2016-12-13 2017-05-17 南京工业大学 一种复合金属氧化物中空纤维的制备方法
CN107970783B (zh) * 2017-12-07 2020-03-24 山东理工大学 横截面为花瓣型的中空纤维陶瓷透氧膜的制备方法
CN107930415B (zh) * 2017-12-07 2020-02-11 山东理工大学 表面负载催化剂的横截面为花瓣型的中空纤维陶瓷膜的制备方法
CN107983276B (zh) * 2017-12-07 2020-05-19 山东理工大学 横截面为花瓣型的中空纤维电催化膜反应器的制备方法
CN107983177B (zh) * 2017-12-07 2019-12-20 山东理工大学 横截面为花瓣型的双组分非对称中空纤维陶瓷膜的制备方法
EP3903913A4 (en) * 2018-12-27 2022-05-04 Kolon Industries, Inc. FUEL CELL MEMBRANE HUMIDIFIER INCLUDING MULTI-CHANNEL HOLLOW FIBER MEMBRANES
CN110368818B (zh) * 2019-08-11 2021-09-28 景德镇陶瓷大学 一种高通量平板陶瓷膜的制备方法
CN113398774A (zh) * 2021-06-16 2021-09-17 四川凯歌微纳科技有限公司 一种中空纤维陶瓷膜及其制备方法
CN113926320A (zh) * 2021-09-09 2022-01-14 浙江浙能天然气运行有限公司 用于VOCs回收的中空纤维陶瓷复合膜及其制备工艺
CN114292113B (zh) * 2021-11-19 2023-06-02 东华大学 一种陶瓷纳米纤维低温煅烧成型装置
CN114558451B (zh) * 2022-02-23 2023-06-23 泰州禾益新材料科技有限公司 一种三维梯形凹凸结构peg脱硫膜及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01280021A (ja) * 1988-04-28 1989-11-10 Nok Corp 多孔質セラミックス多層中空糸の製造法
JPH022846A (ja) * 1987-10-06 1990-01-08 Nok Corp 多孔質セラミックス多層中空糸の製造法
US6341701B1 (en) * 1996-12-27 2002-01-29 Ngk Insulators, Ltd. Ceramic porous membrane including ceramic of ceramic and ceramic sol particles, ceramic porous body including the membrane, and method of manufacturing the membrane
CN1360966A (zh) * 2000-12-26 2002-07-31 南京理工大学 氧化铝中空纤维膜制备方法
CN1472448A (zh) 2003-07-17 2004-02-04 南京工业大学 纳米陶瓷弹簧生产方法
WO2009120151A1 (en) * 2008-03-28 2009-10-01 Nanyang Technological University Membrane made of a nanostructured material
CN101905121A (zh) * 2010-08-26 2010-12-08 南京工业大学 一种氧化铝基陶瓷中空纤维膜制备方法
CN202136924U (zh) * 2011-07-16 2012-02-08 景德镇陶瓷学院 一种高渗透性中空纤维陶瓷膜
CN102811969A (zh) * 2010-02-17 2012-12-05 昆士兰大学 制备中空纤维陶瓷膜的方法
CN102850042A (zh) 2011-06-27 2013-01-02 上海敬开德精密陶瓷有限公司 相变增韧陶瓷材料及其瓷件制备工艺
CN102861516A (zh) * 2012-09-18 2013-01-09 华南理工大学 一种中空纤维分子筛膜Al2O3支撑体及其制备方法
CN103111192A (zh) * 2013-02-28 2013-05-22 南京工业大学 一种陶瓷中空纤维膜的微观结构调变方法
CN103349918A (zh) * 2013-06-19 2013-10-16 南京工业大学 一种制备多通道陶瓷中空纤维膜的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2776286B1 (fr) * 1998-03-20 2000-05-12 Ceramiques Tech Soc D Fibre ceramique poreuse multi-canal
FR2786710B1 (fr) * 1998-12-04 2001-11-16 Ceramiques Tech Soc D Membrane comprenant un support poreux et une couche d'un tamis modeculaire et son procede de preparation
KR100750289B1 (ko) * 2006-06-26 2007-08-20 한국화학연구원 다중채널을 갖는 고강도 내오염성 중공사막의 제조방법
JP2009184893A (ja) * 2008-02-08 2009-08-20 Nok Corp 多孔質セラミックスキャピラリーおよびその製造法
CN101456744B (zh) * 2008-12-26 2012-05-23 山东理工大学 一种蜂窝型陶瓷膜的制备方法
CN101773794A (zh) * 2010-01-26 2010-07-14 东华大学 一种三组分五孔中空纤维膜及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022846A (ja) * 1987-10-06 1990-01-08 Nok Corp 多孔質セラミックス多層中空糸の製造法
JPH01280021A (ja) * 1988-04-28 1989-11-10 Nok Corp 多孔質セラミックス多層中空糸の製造法
US6341701B1 (en) * 1996-12-27 2002-01-29 Ngk Insulators, Ltd. Ceramic porous membrane including ceramic of ceramic and ceramic sol particles, ceramic porous body including the membrane, and method of manufacturing the membrane
CN1360966A (zh) * 2000-12-26 2002-07-31 南京理工大学 氧化铝中空纤维膜制备方法
CN1472448A (zh) 2003-07-17 2004-02-04 南京工业大学 纳米陶瓷弹簧生产方法
WO2009120151A1 (en) * 2008-03-28 2009-10-01 Nanyang Technological University Membrane made of a nanostructured material
CN102811969A (zh) * 2010-02-17 2012-12-05 昆士兰大学 制备中空纤维陶瓷膜的方法
CN101905121A (zh) * 2010-08-26 2010-12-08 南京工业大学 一种氧化铝基陶瓷中空纤维膜制备方法
CN102850042A (zh) 2011-06-27 2013-01-02 上海敬开德精密陶瓷有限公司 相变增韧陶瓷材料及其瓷件制备工艺
CN202136924U (zh) * 2011-07-16 2012-02-08 景德镇陶瓷学院 一种高渗透性中空纤维陶瓷膜
CN102861516A (zh) * 2012-09-18 2013-01-09 华南理工大学 一种中空纤维分子筛膜Al2O3支撑体及其制备方法
CN103111192A (zh) * 2013-02-28 2013-05-22 南京工业大学 一种陶瓷中空纤维膜的微观结构调变方法
CN103349918A (zh) * 2013-06-19 2013-10-16 南京工业大学 一种制备多通道陶瓷中空纤维膜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI K ET AL., DESALINATION, vol. 199, 2006, pages 360 - 362

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113733293A (zh) * 2021-08-18 2021-12-03 山东理工大学 基于3D打印的Pd/Al2O3微孔道反应器的制备方法
CN113733293B (zh) * 2021-08-18 2023-02-03 山东理工大学 基于3D打印的Pd/Al2O3微孔道反应器的制备方法
CN115959926A (zh) * 2022-12-30 2023-04-14 中南大学 一种相转化造孔剂及粉煤灰陶瓷平板膜支撑体的造孔方法
CN115959926B (zh) * 2022-12-30 2023-10-24 中南大学 一种相转化造孔剂及粉煤灰陶瓷平板膜支撑体的造孔方法

Also Published As

Publication number Publication date
CN103349918B (zh) 2015-11-11
EP3012013B1 (en) 2019-07-31
EP3012013A4 (en) 2017-01-18
US20160137557A1 (en) 2016-05-19
CN103349918A (zh) 2013-10-16
JP2016529090A (ja) 2016-09-23
US11390565B2 (en) 2022-07-19
EP3012013A1 (en) 2016-04-27
JP6170245B2 (ja) 2017-07-26

Similar Documents

Publication Publication Date Title
WO2014201920A1 (zh) 一种制备多通道陶瓷中空纤维膜的方法
Shi et al. Preparation and characterization of α-Al2O3 hollow fiber membranes with four-channel configuration
Zhu et al. Modified dip-coating method for preparation of pinhole-free ceramic membranes
CN101708435B (zh) 一种不对称结构陶瓷中空纤维和管式超滤膜的制备方法
WO2013143345A1 (zh) 一种同质增强型聚偏氟乙烯中空纤维膜的制备方法
Zhang et al. Highly permeable porous YSZ hollow fiber membrane prepared using ethanol as external coagulant
Fung et al. Nickel aluminate spinel reinforced ceramic hollow fibre membrane
Lee et al. Micro-structured alumina multi-channel capillary tubes and monoliths
Luiten-Olieman et al. Towards a generic method for inorganic porous hollow fibers preparation with shrinkage-controlled small radial dimensions, applied to Al2O3, Ni, SiC, stainless steel, and YSZ
CN105771675B (zh) 一种非对称结构陶瓷膜及其制备方法
CN101905121A (zh) 一种氧化铝基陶瓷中空纤维膜制备方法
CN109851328A (zh) 一种高性能陶瓷平板膜支撑体的制备工艺
CN106810212B (zh) 一种高效平板陶瓷膜的制作工艺
CN105854632A (zh) 一种硅藻土中空纤维陶瓷膜的制备方法
CN104841286B (zh) 一种螺旋状无机中空纤维膜及其制备方法
Zhu et al. Design and optimization of ceramic membrane structure: from the perspective of flux matching between support and membrane
CN113999046B (zh) 一种低温反应烧结碳化硅陶瓷膜的制备方法
KR101561606B1 (ko) 다공성 중공사막의 제조방법 및 이로부터 제조된 다공성 중공사막
CN105013338A (zh) 一次成型的陶瓷金属双层中空纤维膜的制备方法
KR20150014718A (ko) 다공성 중공사막의 제조방법 및 이로부터 제조된 다공성 중공사막
CN104785123A (zh) 一种中空纤维陶瓷膜制备方法
US20170144938A1 (en) Monolith
CN102512987B (zh) 一种高通量的聚偏氟乙烯中空纤维膜的制备方法
CN110981453B (zh) 一种轻质陶瓷过滤膜的制备方法
CN106007779B (zh) 高纯氧化铝平板陶瓷膜支撑体的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814530

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014814530

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14898471

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016520251

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE