CN102811969A - 制备中空纤维陶瓷膜的方法 - Google Patents

制备中空纤维陶瓷膜的方法 Download PDF

Info

Publication number
CN102811969A
CN102811969A CN2011800143438A CN201180014343A CN102811969A CN 102811969 A CN102811969 A CN 102811969A CN 2011800143438 A CN2011800143438 A CN 2011800143438A CN 201180014343 A CN201180014343 A CN 201180014343A CN 102811969 A CN102811969 A CN 102811969A
Authority
CN
China
Prior art keywords
fiber
polymeric binder
oxygen
precursors
inorganic oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800143438A
Other languages
English (en)
Other versions
CN102811969B (zh
Inventor
J·C·尼兹达科斯塔
A·C-H·利奥
S·刘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Queensland UQ
Original Assignee
University of Queensland UQ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2010900646A external-priority patent/AU2010900646A0/en
Application filed by University of Queensland UQ filed Critical University of Queensland UQ
Publication of CN102811969A publication Critical patent/CN102811969A/zh
Application granted granted Critical
Publication of CN102811969B publication Critical patent/CN102811969B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0046Inorganic membrane manufacture by slurry techniques, e.g. die or slip-casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/0271Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63436Halogen-containing polymers, e.g. PVC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2975Tubular or cellular

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Inorganic Fibers (AREA)

Abstract

一种用于制备中空纤维形式的陶瓷膜的方法,所述方法包括:通过混合无机氧化物前体颗粒与聚合物粘结剂溶液形成悬浮液,所述聚合物粘结剂溶解在用于所述粘结剂的溶剂中;将所述悬浮液进料通过喷丝头而形成中空纤维;使所述纤维通过空气隙并通入混凝剂中而凝固所述纤维;加热所述纤维而去除聚合物粘结剂;和烧结所述纤维而使它们成为气密的,其中选择聚合物粘结剂,使其可通过加热从所述纤维中去除,不遗留任何的残余物质在陶瓷中,所述残余物质会损害纤维的透氧性。

Description

制备中空纤维陶瓷膜的方法
技术领域
本发明涉及气密性陶瓷中空纤维的制备。更具体地,本发明涉及当与以前报道的中空纤维相比时,显示出改善的透氧性的气密性陶瓷中空纤维的制备。本发明还涉及确定的气密性陶瓷中空纤维本身。
背景技术
混合式离子-电子导电性陶瓷膜可用于高温空气分离,并涉及以氧气作为反应物的各种化学反应。例如,通过常规的陶瓷加工方法,已将钙钛矿膜制成平的圆盘或相对大直径(约1cm)管的形式。但是,利用中空纤维的几何形状可实现单位体积更大的膜面积,其中所述纤维的外径仅为数毫米。
通过由Liu和Gavalas(Oxygen selective ceramic hollow fibre membranes,J.Membr.Sci.,2005246103-108)最初描述的湿法相反转/烧结技术,已常规制备了气密性的钙钛矿中空纤维。通常,所述相反转工艺被描述为通过温度变化,将溶液浸入非溶剂的浴(湿法)中,或将其暴露在非溶剂(干法)的气氛中而在聚合物溶液中引起相分离。更详细地,Liu和Gavalas所述的方法涉及在24小时搅拌下,向聚合物溶液(溶于N-甲基2-吡咯烷酮(NMP)中的聚醚砜(PESf))加入某些氧化物前体粉末(钡、锶、钴和铁的硝酸盐混合物)。然后在室温下将所得悬浮液脱气,并转移至氮气加压的储存器中。通过孔中设管(tube-in-orifice)的喷丝头进行纤维的湿法纺丝,使出现的纤维在浸入水浴之前穿过空气隙(air gap)而使得聚合物胶凝化。在彻底浸泡在水中之后,干燥胶凝化的中空纤维,并在合适高温下的烘箱中加热以分解并去除聚合物。然后进行烧结,得到气密性结构。然后将纤维冷却至室温。在该制备过程中,聚合物的作用是粘结剂,其使得在烧结工艺之前和过程中能够保持中空纤维的形状。
对于粘结剂使用PESf,这是因为它是稳定的(其玻璃化转变温度高于230°C)、易溶于各种有机溶剂中,并易于在相反转工艺中施用。PESf中的重复单元如下所示。
Figure BDA00002148178500021
钙钛矿膜的重量性质是最大的氧流量(oxygen flux),并希望这尽可能高。在上述提及的Liu和Gavalas的研究中报道了950°C下的最大氧气流量为3.9mL/min/cm2,平均透氧分压为0.022atm,并且据称该膜与对于由相同的钙钛矿材料形成的管式膜的文献中所报道的值相比是有利的。
但在另一项研究中,Chen等人(Further performance ofBa0.5Sr0.5Co0.8Fe0.2O3-δ(B SCF)perovskite membranes for air separation,Ceramics International 2009 35 2455-2461)报道了改善的膜的氧气流量,所述膜通过前体硝酸盐的单轴压制而形成圆盘形膜,然后将其烧制而进行制备。在不同的温度下和对于不同的氧气分压梯度,测试通过该膜的透氧性。通过降低膜厚度和通过膜的表面改性观察到氧气流量的进一步改善。表面改性涉及用包含前体硝酸盐的浆料喷涂膜表面,然后干燥和烧制。所报道的900°C下的最高氧气流量为6.0mL/min/cm2
希望提供一种替代方法,通过该方法可制备具有合适高的氧气流量特性的钙钛矿膜,同时保留提供单位体积下大表面积的膜形态。
发明内容
由此,本发明提供一种用于制备中空纤维形式的陶瓷膜的方法,所述方法包括:
通过将无机氧化物前体颗粒与聚合物粘结剂溶液混合而形成悬浮液,所述聚合物粘结剂溶解在用于所述粘结剂的溶剂中;
将所述悬浮液进料通过喷丝头以形成中空纤维;
将所述纤维通过空气隙并通入凝结剂中,以凝固所述纤维;
加热所述纤维以去除所述聚合物粘结剂;和
烧结所述纤维以使它们成为气密的,
其中,选择所述聚合物粘结剂,使得可以通过加热从所述纤维中去除所述聚合物粘结剂,不遗留任何残余物质在所述陶瓷中,所述残余物质会损害所述纤维的透氧性。
根据本发明已发现,用于形成所述纤维的聚合物粘结剂的性质对于(最终)纤维的透氧性具有影响。更具体地,相信在聚合物粘结剂中某些物质的存在反而可能导致杂质(contaminant)化合物的形成,杂质化合物留在经烧结的陶瓷的晶体结构中,并且可以阻碍氧离子通过陶瓷的(高温)输送,并由此降低氧流量。根据本发明,基于考虑这方面来具体选择用作粘结剂的聚合物。
根据本发明,选择用以形成所述纤维的聚合物粘结剂,使得(a)它满足用作粘结剂的必要的功能性要求,以便可形成所述纤维,和(b)可以通过加热将它从所述纤维中去除,不遗留任何残余物质在最终的陶瓷结构中,所述遗留会阻碍(成品)纤维的透氧性。由此,所述聚合物通常是在加热时可以分解成气态物质的聚合物,对于在进行加热时的常规温度下,所述气态物质对于陶瓷组分是非反应性的。由此,在一个实施方案中,特别选择用作粘结剂的聚合物是不含硫的。相信所述聚合物中硫的存在可能会导致在所得陶瓷中三价或更高价阳离子部位的化学计量变化,和陶瓷中金属硫酸盐的形成。该类化合物改变陶瓷的晶体结构,并不利地影响其透氧性
该观点可参照具有式ABO3的钙钛矿进行举例说明,其中A是碱金属、碱土金属或稀土金属(例如Ba、Sr、La),B是过渡金属(例如Fe、Co)。在A或B部位中,该结构与其他金属的掺杂(例如以如AlA'l–xByB'l-yOδ-8的形式)导致晶格畸变和氧空位的产生。相信这会阻碍氧离子通过钙钛矿的输送。
希望使用相对挥发性的聚合物粘结剂,使得可以采用相对低的温度而从一旦形成的(初始)纤维中去除聚合物。在粘合剂组分和陶瓷组分之间的低温反应可能不会发生。在此情况下,实际上可以使用包含可能不利的物质如硫的粘合剂,只要所述粘合剂可以通过在一定温度下加热而从纤维中清洁地除去,在所述温度下,相对于其他的陶瓷反应性组分,该类物质是良性的。
根据本发明,相信聚合物粘结剂中的硫造成的化学计量变化可能形成重要的物质,该物质造成纤维的氧流量下降,原因在于纤维中杂质性非离子性金属氧化物和含硫化合物的存在。由此,本发明将对不含硫的聚合物粘结剂的使用进行更详细地举例说明。但是,本发明不应被认为严格限于该应用和不含硫的聚合物粘结剂,而应考虑如上所述的更普遍的原则。
本发明还提供根据本发明形成的中空纤维陶瓷膜,应注意粘结剂的选择是本发明的重要方面。
本发明还提供改进中空纤维陶瓷膜透氧性的方法,所述中空纤维陶瓷膜通过使用含硫聚合物作为粘结剂时的相反转形成,所述方法包括通过用不遗留任何残余物质在纤维中的粘结剂替代至少部分的含硫粘结剂而形成纤维,所述残余物质会损害纤维的透氧性。根据本发明的该方面,如果替代含硫粘结剂,优选至少50%,更优选至少75%,并且还更优选100%。
发明详述
根据本发明,利用上述方法,通过湿法相反转/烧结制备陶瓷中空纤维。在所述方法的第一步骤中,通过混合无机氧化物前体颗粒与聚合物粘结剂溶液而形成悬浮液,所述聚合物粘结剂溶解在用于所述粘结剂的溶剂中。根据上述原则选择聚合物粘结剂,还应注意所述粘结剂应表现出使它对于纤维形成有用的其他性质。例如,所述聚合物粘结剂应理想地产生易延展的和牢固的初始纤维。在本发明的实际情况中,任何特定聚合物的使用都可通过常规试验评价。
所述聚合物可以是均聚物或共聚物。通常,所述聚合物具有150-250°C的Tg。所述聚合物通常具有15000-45000的分子量。
根据本发明可使用的聚合物的实例包括聚酰亚胺、聚醚酰亚胺、聚丙烯腈、聚酰胺酰亚胺和聚偏氟乙烯。
聚酰亚胺(PI)是以它的热稳定性、化学品耐受性和优异的机械性质闻名的热固性聚合物。它在高温下保持结构完整度的能力和在它的分子结构中不含硫使得它成为用作根据本发明的陶瓷中空纤维制备中的聚合物粘结剂的理想候选。
聚醚酰亚胺(PEI)是以其相对于PESf的高的热稳定性和优异的强度而闻名的无定形聚合物。它易于通过相反转技术加工,并且不将杂质如PESf引入陶瓷中空纤维中。
聚丙烯腈(PAN)是高度结晶的聚合物,其已用于超滤膜的制备。通过常规的相反转技术,它可被制成中空纤维。
聚酰胺酰亚胺(PAI)是具有特别的热性质、化学性质和机械性质的高性能无定形聚合物。它在高温下保持结构完整性的能力和在它的分子结构中不含硫使得它成为用作根据本发明的陶瓷中空纤维制备中的聚合物粘结剂的理想候选。
聚偏氟乙烯(PVDF)是半结晶聚合物,由于其高的化学品耐受性而被广泛用于超滤膜的制备。它是柔软的,且具有约140°C的熔点。
一开始,将所选的聚合物溶于合适的溶剂中,并且本领域技术人员会理解可能的使用溶剂。所述溶剂应是所述聚合物的良溶剂,并应该能够提供稳定的无机氧化物前体颗粒的悬浮液。此外,所述溶剂应与纤维形成方法相匹配,并且对于所述聚合物粘结剂,如上所述的溶剂不应产生任何可能造成成品纤维中的杂质问题的物质。候选的溶剂包括N-甲基2-吡咯烷酮(已发现其通常是可用的,特别对于聚合物如聚醚酰亚胺)、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、γ-丁内酯、二醇醚、二醇酯、二甲基亚砜、四氢呋喃、二氯甲烷、氯仿、二噁烷、甲乙酮、丙酮和乙腈。还可使用非极性溶剂,例如甲苯、己烷、苯等。
所述无机氧化物前体颗粒包含金属化合物、通常是硝酸盐的混合物,所述混合物在烧结时会形成包含金属氧化物的陶瓷结构,所述陶瓷结构具有氧离子输送功能。通常,所述陶瓷可以具有钙钛矿、萤石、钙铁铝石或aurivillite结构、以及包含陶瓷和金属(例如银、金、铂、钯等)的双相材料。
根据本发明形成的钙钛矿通常具有ABO3-δ结构,其中A是二价阳离子,B是三价或更高价阳离子,δ为0.001-1.5,并相应选择所述无机氧化物前体颗粒。在本发明的实施方案中,优选形成包括以下元素的具有钙钛矿结构的陶瓷:Ba、Sr、Co、Fe和O;Ba、Sr、Fe、Zn和O;Ba、Co、Fe、Zr和O;La、Sr、Co、Fe和O;Ba、Bi、Sc、Co和O;Ba、Sr、Co、Fe、Y和O;或Ba、Sr、Co、Cu和O。优选地,所述钙钛矿是BSCF。该钙钛矿可使用合适的金属硝酸盐混合物作为无机氧化物前体而形成。
根据本发明使用的萤石通常具有AδB1-δO2-δ和AB2-2δO3结构,其中A、B和δ如上定义。在萤石中可存在不同的阳离子A和/或阳离子B的混合物。
根据本发明使用的钙铁铝石通常具有A2B2O5-δ结构,其中A、B和δ如上定义。在钙铁铝石中可存在不同的阳离子A和/或阳离子B的混合物。
阳离子B可优选以多种氧化态出现。但是,部分或所有的B型的阳离子还可以是具有恒定的氧化态的三价或更高价的阳离子。通常,本发明使用包含A型阳离子的氧化物陶瓷,所述阳离子选自第II主族、第I过渡族、第II过渡族、镧系元素的阳离子和这些阳离子的混合物,优选选自Mg2+、Ca2+、Sr2+、Cu2+、Ag2+、Zn2+、Cd2+和镧系元素。
还可使用包含B型阳离子的氧化物陶瓷,所述阳离子选自元素周期表的第IIIB族至第VIIIB族和镧系元素、第III主族至第V主族的金属的阳离子,和这些阳离子的混合物,例如选自Fe3+、Fe4+、Ti3+、Ti4+、Zr3+、Zr4+、Ce3+、Ce4+、Mn3+、Mn4+、Co2+、Co3+、Nd3+、Nd4+、Gd3+、Gd4+、Sm3+、Sm4+、Dy3+、Dy4+、Ga3+、Yb3+、Al3+、Bi4+,和这些阳离子的混合物。
其它可使用的氧化物陶瓷包含B型氧离子,所述阳离子选自Sn2+、Pb2+、Ni2+、Pd2+、镧系元素、和这些阳离子的混合物。
根据本发明使用的Aurivillite通常包含结构要素(Bi2O2)(VO3.5[]0.5)或相关的结构要素,其中[]是氧空位。
所述无机氧化物前体颗粒应足够小,以提供所述颗粒在聚合物溶液中相对均匀的分散体,由此可以形成纤维。所述颗粒还应小至足以在前体中空纤维中得到相对均匀的无机颗粒的分布。选择晶粒尺寸,使得在未经烧结的前体中空纤维中实现至少高度致密的层。
一般而言,其中位粒径应小于约4μm,优选小于2μm,并且更优选小于1μm。已发现当平均粒径低于约1μm时可制备更多无缺陷的中空纤维,并且其粒径分布窄。希望所述前体颗粒表现出窄的粒径分布,例如至少99体积%的所述无机颗粒具有在0.1-1.0μm之间的粒径。
一个特别优选的粒径分布是其中没有颗粒的尺寸超过3μm,并且其中存在两组相似尺寸的颗粒,也就是大颗粒和小颗粒。这对于达到相对高程度的填充均匀性和增强的初始密度是希望的,因为较小粒径的颗粒适合较大粒径的颗粒之间的其他空缺的空间。
所述前体颗粒可以是商购的、合成的,和/或通过已知的研磨技术、从较大粒径的颗粒的粒径降低进行制备。
可通过以任何合适的次序混合单独组分形成悬浮液。例如,可将前体颗粒、聚合物粘结剂和溶剂混合在一起。但是,通常优选将聚合物溶于溶剂中,然后在混合下加入前体颗粒。可施加升高的温度,以促进所述聚合物在溶剂中的溶解。
通常,所述悬浮液包含50-75重量%的前体颗粒、5-15重量%的聚合物粘结剂和余量的溶剂。前体颗粒与聚合物粘结剂的重量比通常为约5:1-约15:1。还可使用添加剂,例如增塑剂和分散剂,只要它们没有不利地影响成品纤维的性质。EDTA和柠檬酸盐方法的作用是形成并稳定溶液中的金属离子。
在已形成悬浮液后,将其进料通过喷丝头。喷丝头的设计是常规的。喷丝头的外径(OD)和内径(ID)可以分别为10mm和0.2mm,且可以是5mm(OD)和0.2mm,并且优选为2.5mm(OD)和0.5mm(ID)。在离开喷丝头之后,使纤维经过空气隙,并进入混凝剂浴中。实际上,将纤维例如通过在合适的拾取辊(take-up roll)上卷绕而牵拉入所述浴中。牵拉的速率可用以改变进入该浴之前的纤维的直径。在进入混凝剂浴时,纤维的聚合溶液组分经历相反转,使纤维凝固。混凝剂通常是水和/或极性有机溶剂,例如乙醇等。经牵拉的纤维直径通常为200-1000μm。
所述方法中的下一步骤涉及例如在150°C的温度下,通过在烘箱中加热而干燥纤维。然后,加热纤维以分解并去除聚合物粘结剂。通常在该步骤中逐渐地施加热。举例而言,可以以3°C/min的速率升至750-850°C的温度,并保持数小时。分解的程度和速率以及聚合物的去除可进行试验测试,以优化在所述方法的该部分中的温度状态(regime)。
然后在升高的温度下烧结纤维。烧结是为了造成气密性结构的形成。通常,烧结在至少1000°C的温度下进行数小时。再次,通过试验可优化所述方法的该部分。
附图说明
以下参照随附的非限制性附图说明本发明,其中:
图1是举例说明用于测定陶瓷中空纤维的透氧量的试验配置的示意图;和
图2是在标准化为150ml/min.cm2的氩气吹扫气流速度下,用两种类型的聚合物粘结剂PESF和PEI制备的BSCF中空纤维的透氧量的图。通过以下的非限制性实施例,举例说明本发明的实施方案。
实施例1
使用组合的EDTA-柠檬酸盐络合方法制备用于中空纤维的BSCF粉末。得到纯度大于99.9%的粉末形式的钡、锶、钴和铁的硝酸盐。在500°C下,在空气中煅烧BSCF粉末4小时,并研磨,以得到小于3μm的粒径。将BSCF粉末加入NMP和聚醚酰亚胺(PEI)[SABIC Innovative Plastics]的混合物中(质量比为6:1:5),搅拌24小时以确保均匀的混合物。加入0.5质量%-1质量%的分子量为1,300,000的聚乙烯基吡咯烷酮(PVP)[Sigma-Aldrich],以将混合物的粘度调节至5.2Pa.s。为了使BSCF-NMP-PEI混合物形成所需的中空纤维几何形状,使用孔径/内径为2.5mm/0.8mm的孔中设管的喷丝头。当从喷丝头挤出混合物时,将水用作混凝剂。干燥经挤出的中空纤维,切成短长度,并在1050°C下烧结4小时而得到气密性的膜。在烧结之前,中空纤维常被称为“初始的”,其含义是它仍然包含聚合粘结剂。
按照以下步骤测试纤维的透氧性。
将50-70mm之间长度的钙钛矿中空纤维悬挂在对开式铰链管式炉(split hinge tube furnace)中,所述管式炉具有10cm的恒温区。将石英管连接在中空纤维的两端,并用银基密封剂密封。当用气相色谱仪(GC)检测渗透气流而未检测到氮气时,膜密封体是气密性的。试验设置的示意图见图1所示。渗透性试验通过使氩气吹扫气经过钙钛矿中空纤维的渗透气流,并改变管式炉的温度而进行。为了该操作,用氩气作为吹扫气,使得氧渗透发生在550-950°C之间的温度下。使用石英管将氩气输送至中空纤维,并用于从中空纤维输送排出气(output)(氩气和氧气)。用银密封剂将石英管连接至中空纤维的各端。为了便于对比,在保持于50ml/(min.cm2)下的吹扫气速率下进行所有试验,其中所述面积是指膜的内表面积。最高温度由银密封剂的熔化温度表示。氩气/氧气渗透气流直接从钙钛矿纤维进料至配有用于分析的
Figure BDA00002148178500081
分子筛柱的气相色谱仪(Shimadzu GC-2014)。渗透物流速由纤维下游的气泡式流量计检测。
使用下式1和2分别计算膜面积和透氧率(oxygen permeation):
S = πL ( D o - D i ) ln ( D o / D i ) (式1)
Figure BDA00002148178500091
(式2)
其中L、Do和Di是纤维长度、外径和内径,单位mm,F渗透物和C氧气分别是渗透物流速(ml/min)和氧气百分比。
对于BSCF纤维的透氧率为9.5mL/min/cm2
重复进行测试,以将钙钛矿BSCC(Ba 0.5Sr 0.5Co 0.8Cu 0.2 03-δ)和BBSC(Ba Bi 0.5Sc 0.1Co 0.85 03-δ)备用作中空纤维膜。发现BSCC膜的透氧率为13.5mL/min/cm2,并且BBSC膜为12mL/min/cm2
相信根据本发明实现的透氧率值高于使用含硫粘结剂制备纤维的等同陶瓷材料的文献中所报道的透氧率值。
实施例2
按照实施例1的一般方法制备BSCF中空纤维陶瓷膜。但是,使用的粘结剂是PESf。
拉曼光谱揭示未掺入BSCF中的Co3O4的晶相,并且XPS检测出用PESf合成的样品中BaSO4的存在。但是,这两种化合物似乎不存在于PEI用做粘结剂时所制备的样品中。为了解释该现象,下式1和式2中的反应可解释在该工作中所得的结果:
Figure BDA00002148178500092
式1
使钡、锶、钴和铁的氧化物(从硝酸盐合成,并在250°C下煅烧)与PEI粘结剂反应,导致Ba0.5Sr0.5Co0.8Fe0.2O3-δ形成(所述反应由式1表示)。
Figure BDA00002148178500094
Figure BDA00002148178500095
式2
使钡、锶、钴和铁的氧化物(从硝酸盐合成,并在250°C下煅烧)与PESf粘结剂反应,导致不同组成的Ba(0.5-x)Sr0.5Co(0.8-y)Fe0.2O3-δ形成(所述反应由式2表示,其中X和Y表示BaSO4和Co3O4的浓度)。
由于在聚合物粘结剂中硫的存在,Ba可优先反应形成稳定的盐BaSO4(由式2中的Y表示),由此改变可形成BSCF钙钛矿结构的氧化钡对氧化钴的化学计量。氧化钡与硫化合物的反应已知在250-450°C之间的温度下进行,这可通过拉曼光谱检测的BaSO4证实。
如式2所示,一旦样品在高于1000°C的温度下烧结,剩余的氧化物形成通式ABO3的钙钛矿晶体。由于在B-部位中存在比A-部位中更多的三价和/或更高价的阳离子,Co3O4的量保留不反应,以弥补Ba的短缺。这确保了钙钛矿具有正确的形成立方体结构的元素比例。用PESf制成的钙钛矿膜具有不同的晶体式Ba(0.5-Y)Sr0.5Co(0.8-Y)Fe0.2O3-δ(由式2表示),而非Ba0.5Sr0.5Co0.8Fe0.2O3-δ(由式1表示的PEI制成的钙钛矿膜)。此外,PESf衍生的膜可具有已形成的非离子性传导的Co3O4和BaSO4部位,所述部位间隔在钙钛矿结构中。因此,变化的钙钛矿组成以及Co3O4和BaSO4的存在降低了该膜的透氧性。
实施例3
制备具有相似厚度和密度的圆盘膜以降低误差,并能够容易地比较透氧性结果。测试使用纯的BSCF(即不使用任何粘结剂)的对照品以提供用于对比目的的基线。纯BSCF圆盘膜可通过将粉末压制成丸粒而易于制备。但是,中空纤维需要聚合物粘结剂,而这不能通过使用纯BSCF实现。未采用PESf制备的膜显示出比用PESf制备的膜在测试温度下的氧气流量始终更高(至少45%)。在纯的和PEI衍生的BSCF膜之间的氧流量存在微小的差异。但是,所述差异处于试验误差内,并可归因于在制备中的微小差异、膜厚度的微小差异、或不同批次膜的烧结的微小差异。但是,本工作的关键性发现证实了以下假设:在使用含硫粘结剂制备的BSCF膜的烧结过程中形成的未掺入的氧化钴和硫化合物不利地影响透氧性。
实施例4
渗透性结果表明,从使用PEI而非PESf制备的BSCF中空纤维(参见图2)可得到更高的透氧性。较令人感兴趣的是,BSCF-PEI中空纤维膜在700°C下输送可观的1.69ml min-1cm-2的氧流量,这与BSCF-PESf膜在850°C下的同一流量相似。透氧性的差异在850°C下明显得多,其中BSCF-PEI产生6.19ml min-1cm-2,而BSCF-PESf仅控制1.74ml min-1cm-2
950°C的最高温度的设置延续了BSCF-PEI中空纤维膜的渗透性值更高的趋势,所述渗透性值达到9.50ml min-1cm-2,比BSCF-PESf中空纤维膜改善了105%。这些结果超出了文献中公开的最佳透氧性结果。BSCF-PEI中空纤维的透氧性结果还进一步证实了未掺入的氧化钴和硫化合物改变BSCF-PESf样品中的钙钛矿组成的假设。相似地,不同BSCF结构的形成阻断了可用于氧离子扩散通过所述膜的通路,由此减少了总氧流量。不含硫的聚合物PEI的使用避免了三价或更高价的阳离子(Co3O4)的未掺入和BaSO4的形成,产生更纯的钙钛矿结构和改善的透氧性。
在不背离本发明范围的情况下,许多改变对于本领域技术人员而言是明显的。
遍及本说明书和随后的权利要求书之处,除非上下文另有需要,可以理解术语“包含/包括”及其变例表示包括所表明的整数或步骤或整数或步骤的集合,但不排除其他的整数或步骤或整数或步骤的集合。
本说明书中援引的任何在先公开(或从中衍生的信息)或援引的任何已知事物不是且不应被作为以下的确认、承认或任何形式的暗示:该在先公开(或从中衍生的信息)或已知事物形成与本说明书相关的技术领域的部分公知常识。

Claims (15)

1.一种用于制备中空纤维形式的陶瓷膜的方法,所述方法包括:
通过混合无机氧化物前体颗粒与聚合物粘结剂溶液形成悬浮液,所述聚合物粘结剂溶解在用于所述粘结剂的溶剂中;
将所述悬浮液进料通过喷丝头而形成中空纤维;
使所述纤维通过空气隙并进入混凝剂中,以凝固所述纤维;
加热所述纤维以去除所述聚合物粘结剂;和
烧结所述纤维以使它们成为气密的,
其中选择所述聚合物粘结剂,使其能够通过加热从所述纤维中去除,不遗留任何残余物质在所述陶瓷中,所述残余物质会损害所述纤维的透氧性。
2.权利要求1的方法,其中所述聚合物粘结剂是不含硫的。
3.权利要求1的方法,其中所述聚合物粘结剂具有150-250°C的Tg。
4.权利要求1的方法,其中所述聚合物粘结剂具有15,000-45,000的分子量。
5.权利要求1的方法,其中所述聚合物粘结剂选自聚酰亚胺、聚醚酰亚胺、聚丙烯腈、聚酰胺酰亚胺和聚偏氟乙烯。
6.权利要求1的方法,其中所述溶剂选自N-甲基2-吡咯烷酮、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、γ-丁内酯、二醇醚、二醇酯、二甲基亚砜、四氢呋喃、二氯甲烷、氯仿、二噁烷、甲乙酮、丙酮、乙腈、甲苯、己烷和苯。
7.权利要求1的方法,其中所述无机氧化物前体颗粒包含金属化合物的混合物,所述混合物在烧结时能够形成包含金属氧化物的陶瓷结构,所述陶瓷结构具有氧离子输送功能。
8.权利要求1的方法,其中所述陶瓷选自钙钛矿、萤石、钙铁铝石或aurivillite结构、以及包含陶瓷和金属的双相材料。
9.权利要求1的方法,其中所述无机氧化物前体颗粒具有小于约4μm的中位粒径。
10.权利要求1的方法,其中所述无机氧化物前体颗粒具有的粒径分布使得没有颗粒的尺寸大于3μm,并且使得存在两组相似尺寸的颗粒。
11.权利要求10的方法,其中所述无机氧化物前体颗粒具有小于1μm的平均粒径。
12.权利要求1的方法,其中所述悬浮液包含50-75重量%的无机氧化物前体颗粒、5-15重量%的聚合物粘结剂和余量的溶剂。
13.权利要求1的方法,其中所述无机氧化物前体颗粒与聚合物粘结剂的重量比为约5:1-约15:1。
14.一种通过权利要求1的方法制备的中空纤维陶瓷膜。
15.一种改善中空纤维陶瓷膜的透氧性方法,所述中空纤维陶瓷膜通过使用含硫聚合物作为粘合剂时的相反转形成,所述方法包括通过用不遗留任何残余物质在纤维中的粘结剂替代至少部分的所述含硫粘结剂而形成所述纤维,所述残余物质会损害所述纤维的透氧性。
CN201180014343.8A 2010-02-17 2011-02-17 制备中空纤维陶瓷膜的方法 Expired - Fee Related CN102811969B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2010900646A AU2010900646A0 (en) 2010-02-17 Method of manufacture
AU2010900646 2010-02-17
PCT/AU2011/000167 WO2011100795A1 (en) 2010-02-17 2011-02-17 Method of manufacture for hollow fibre ceramic membrane

Publications (2)

Publication Number Publication Date
CN102811969A true CN102811969A (zh) 2012-12-05
CN102811969B CN102811969B (zh) 2015-04-22

Family

ID=44482402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180014343.8A Expired - Fee Related CN102811969B (zh) 2010-02-17 2011-02-17 制备中空纤维陶瓷膜的方法

Country Status (5)

Country Link
US (1) US20130059150A1 (zh)
EP (1) EP2536673A1 (zh)
CN (1) CN102811969B (zh)
AU (1) AU2011217737B2 (zh)
WO (1) WO2011100795A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014201920A1 (zh) * 2013-06-19 2014-12-24 南京工业大学 一种制备多通道陶瓷中空纤维膜的方法
CN104524987A (zh) * 2015-01-16 2015-04-22 张晓东 一种蜂窝状中空纤维陶瓷超滤膜及其生产方法
CN104923083A (zh) * 2015-06-04 2015-09-23 上海穗杉实业有限公司 不锈钢掺杂钙钛矿陶瓷双相复合中空纤维透氧膜及其制备方法
CN110935329A (zh) * 2019-12-16 2020-03-31 山东理工大学 一种银/氧化铝复合中空纤维透氧膜微反应器的制备方法
CN110935328A (zh) * 2019-11-12 2020-03-31 南京工业大学 一种有机含氟聚合物掺杂的钙钛矿中空纤维透氧膜的制备方法
CN111601771A (zh) * 2017-11-14 2020-08-28 英国N4制药有限公司 颗粒材料的生产方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014115849A1 (de) * 2014-10-30 2016-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Anordnung zur Erzeugung und thermischen Kompression von Sauerstoff
CN105080359B (zh) * 2015-08-07 2017-05-24 天津工业大学 一种陶瓷中空纤维透氧膜束的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015516A (en) * 1998-06-16 2000-01-18 National University Of Singapore Ultrathin high-performance hollow fiber membranes
CN1539791A (zh) * 2003-04-25 2004-10-27 中国科学技术大学 钙钛矿型氧化物增强的致密陶瓷透氧膜材料及其氧分离器
CN1676198A (zh) * 2005-01-14 2005-10-05 山东理工大学 用于空分制氧的陶瓷中空纤维膜反应器及其制法和应用
CN101200374A (zh) * 2007-10-24 2008-06-18 山东理工大学 一种复合结构陶瓷中空纤维膜的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020362A1 (de) * 2002-08-30 2004-03-11 Itn Nanovation Gmbh Keramische hohlfasern hergestellt aus nanoskaligen pulverteilchen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015516A (en) * 1998-06-16 2000-01-18 National University Of Singapore Ultrathin high-performance hollow fiber membranes
CN1539791A (zh) * 2003-04-25 2004-10-27 中国科学技术大学 钙钛矿型氧化物增强的致密陶瓷透氧膜材料及其氧分离器
CN1676198A (zh) * 2005-01-14 2005-10-05 山东理工大学 用于空分制氧的陶瓷中空纤维膜反应器及其制法和应用
CN101200374A (zh) * 2007-10-24 2008-06-18 山东理工大学 一种复合结构陶瓷中空纤维膜的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BARBARA ZYDORCZAK 等: "Fabrication of ultrathin La0.6Sr0.4Co0.2Fe0.8O3–δ hollow fibre membranes for oxygen permeation", 《CHEMICAL ENGINEERING SCIENCE》 *
BO MENG 等: "SrCo0.9Sc0.1O3−δ perovskite hollow fibre membranes for air separation at intermediate temperatures", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
BO MENG 等: "SrCo0.9Sc0.1O3−δ perovskite hollow fibre membranes for air separation at intermediate temperatures", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》, vol. 29, no. 13, 31 October 2009 (2009-10-31), pages 2815 - 2822, XP026211310, DOI: doi:10.1016/j.jeurceramsoc.2009.03.035 *
XIAOYAO TAN 等: "Oxyfuel combustion using a catalytic ceramic membrane reactor", 《CATALYSIS TODAY》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014201920A1 (zh) * 2013-06-19 2014-12-24 南京工业大学 一种制备多通道陶瓷中空纤维膜的方法
CN104524987A (zh) * 2015-01-16 2015-04-22 张晓东 一种蜂窝状中空纤维陶瓷超滤膜及其生产方法
CN104923083A (zh) * 2015-06-04 2015-09-23 上海穗杉实业有限公司 不锈钢掺杂钙钛矿陶瓷双相复合中空纤维透氧膜及其制备方法
CN111601771A (zh) * 2017-11-14 2020-08-28 英国N4制药有限公司 颗粒材料的生产方法
CN110935328A (zh) * 2019-11-12 2020-03-31 南京工业大学 一种有机含氟聚合物掺杂的钙钛矿中空纤维透氧膜的制备方法
CN110935328B (zh) * 2019-11-12 2022-02-11 南京工业大学 一种有机含氟聚合物掺杂的钙钛矿中空纤维透氧膜的制备方法
CN110935329A (zh) * 2019-12-16 2020-03-31 山东理工大学 一种银/氧化铝复合中空纤维透氧膜微反应器的制备方法

Also Published As

Publication number Publication date
AU2011217737A1 (en) 2012-09-06
EP2536673A1 (en) 2012-12-26
US20130059150A1 (en) 2013-03-07
CN102811969B (zh) 2015-04-22
WO2011100795A1 (en) 2011-08-25
AU2011217737B2 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
CN102811969B (zh) 制备中空纤维陶瓷膜的方法
US8268041B2 (en) Hollow organic/inorganic composite fibers, sintered fibers, methods of making such fibers, gas separation modules incorporating such fibers, and methods of using such modules
Yacou et al. Palladium surface modified La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ hollow fibres for oxygen separation
Sunarso et al. High performance BaBiScCo hollow fibre membranes for oxygen transport
Haworth et al. High performance yttrium-doped BSCF hollow fibre membranes
Tan et al. Influence of powder synthesis methods on microstructure and oxygen permeation performance of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ perovskite-type membranes
Liu et al. Ba0. 5Sr0. 5Co0. 8Fe0. 2O3‐δ ceramic hollow‐fiber membranes for oxygen permeation
JP5033620B2 (ja) 水素分離用混合プロトン/電子伝導性セラミック膜
Zhu et al. Oxygen permeability and structural stability of BaCe0. 15Fe0. 85O3− δ membranes
US8771404B2 (en) Hollow ceramic fibers, precursors for manufacture thereof utilizing nanoparticles, methods of making the same, and methods of using the same
EP1846345B1 (de) Verbünde keramischer hohlfasern, verfahren zu deren herstellung und deren verwendung
Yin et al. Oxygen permeation through the LSCO-80/CeO2 asymmetric tubular membrane reactor
US8747525B2 (en) Composite hollow ceramic fibers, precursors for, methods of making the same, and methods of using the same
EP2141268B1 (en) Hollow organic/inorganic composite fibers, sintered fibers, methods of making such fibers, gas separation modules incorporating such fibers, and methods of using such modules
Sahini et al. BaxSr1-xCoyFe1-yO3-δ (BSCF) mixed ionic-electronic conducting (MIEC) materials for oxygen separation membrane and SOFC applications: insights into processing, stability, and functional properties
Leo et al. Oxygen permeation through perovskite membranes and the improvement of oxygen flux by surface modification
US8741031B2 (en) Hollow ceramic fibers, precursors for manufacture thereof utilizing pore formers, methods of making the same, and methods of using the same
Meng et al. SrCo0. 9Sc0. 1O3− δ perovskite hollow fibre membranes for air separation at intermediate temperatures
Meng et al. Zirconium stabilized Ba0. 5Sr0. 5 (Co0. 8− xZrx) Fe0. 2O3− α perovskite hollow fibre membranes for oxygen separation
Liu et al. Preparation of SrCe0. 95Yb0. 05O3− α perovskite for use as a membrane material in hollow fibre fabrication
Van Noyen et al. Fabrication of perovskite capillary membranes for high temperature gas separation
Nurherdiana et al. Effect of the sintering process on the morphology and mechanical properties of La0. 6Sr0. 4Co0. 2Fe0. 8O3-δ asymmetric flat membranes prepared by the phase inversion method
Chae et al. Oxygen permeation properties of Sm/Sr co-doped ceria decorated Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ hollow fiber membrane
Babakhani et al. Synthesis of BSCFO ceramics membrane using a simple complexing method and experimental study of sintering parameters
Liu et al. From chelating precursor to perovskite oxides and hollow fiber membranes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150422

Termination date: 20170217