WO2014199433A1 - 半導体装置の製造方法、及び、半導体装置 - Google Patents

半導体装置の製造方法、及び、半導体装置 Download PDF

Info

Publication number
WO2014199433A1
WO2014199433A1 PCT/JP2013/065998 JP2013065998W WO2014199433A1 WO 2014199433 A1 WO2014199433 A1 WO 2014199433A1 JP 2013065998 W JP2013065998 W JP 2013065998W WO 2014199433 A1 WO2014199433 A1 WO 2014199433A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
insulating film
gate
fin
forming
Prior art date
Application number
PCT/JP2013/065998
Other languages
English (en)
French (fr)
Inventor
舛岡 富士雄
広記 中村
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to PCT/JP2013/065998 priority Critical patent/WO2014199433A1/ja
Priority to JP2014521767A priority patent/JP5680801B1/ja
Publication of WO2014199433A1 publication Critical patent/WO2014199433A1/ja
Priority to US14/793,108 priority patent/US9525038B2/en
Priority to US15/342,237 priority patent/US10056471B2/en
Priority to US15/342,217 priority patent/US10186601B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28114Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor characterised by the sectional shape, e.g. T, inverted-T
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L2029/7858Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET having contacts specially adapted to the FinFET geometry, e.g. wrap-around contacts

Definitions

  • the present invention relates to a semiconductor device manufacturing method and a semiconductor device.
  • SGT Surrounding Gate Transistor
  • a silicon pillar in which a nitride film hard mask is formed in a columnar shape is formed using a mask for drawing a silicon pillar, and a silicon pillar is drawn using a mask for drawing a planar silicon layer.
  • a planar silicon layer is formed at the bottom, and a gate wiring is formed using a mask for drawing the gate wiring (see, for example, Patent Document 4). That is, a silicon pillar, a planar silicon layer, and a gate wiring are formed using three masks.
  • Non-patent Document 1 a metal gate last process for creating a metal gate after a high temperature process is used in an actual product in order to achieve both a metal gate process and a high temperature process.
  • an interlayer insulating film is deposited, then the polysilicon gate is exposed by chemical mechanical polishing, and after etching the polysilicon gate, a metal is deposited. Therefore, also in SGT, in order to make a metal gate process and a high temperature process compatible, it is necessary to use the metal gate last process which produces a metal gate after a high temperature process.
  • the conventional MOS transistor uses the first insulating film.
  • FINFET Non-patent Document 2
  • a first insulating film is formed around one fin-like semiconductor layer, the first insulating film is etched back, the fin-like semiconductor layer is exposed, and the gate wiring and the substrate The parasitic capacitance between them is reduced. Therefore, also in SGT, it is necessary to use the first insulating film in order to reduce the parasitic capacitance between the gate wiring and the substrate.
  • SGT since there is a columnar semiconductor layer in addition to the fin-shaped semiconductor layer, a device for forming the columnar semiconductor layer is required.
  • JP-A-2-71556 Japanese Patent Laid-Open No. 2-188966 Japanese Patent Laid-Open No. 3-145761 JP 2009-182317 A IEDM2007 K.Mistry et.al, pp 247-250 IEDM2010 CC.Wu, et. Al, 27.1.1-27.1.4.
  • an object of the present invention is to provide a method of manufacturing SGT which is a gate last process and a structure of SGT obtained as a result of forming a fin-like semiconductor layer, a columnar semiconductor layer, a gate electrode and a gate wiring with two masks. To do.
  • the method for manufacturing a semiconductor device of the present invention includes a first step of forming a fin-like semiconductor layer on a semiconductor substrate and forming a first insulating film around the fin-like semiconductor layer, and after the first step, A second insulating film is formed around the fin-shaped semiconductor layer, a first polysilicon is deposited on the second insulating film and planarized, and a second wiring for forming a gate wiring and a columnar semiconductor layer is formed.
  • the columnar semiconductor layer is formed by etching the first polysilicon, the second insulating film, and the fin-shaped semiconductor layer in a direction perpendicular to the direction of the fin-shaped semiconductor layer.
  • a second step of forming a first dummy gate made of the first polysilicon is
  • the method further includes depositing a first polysilicon on the second insulating film and planarizing the first polysilicon, and then forming a third insulating film on the first polysilicon.
  • a fourth insulating film is formed around the columnar semiconductor layer and the first dummy gate, and second polysilicon is deposited around the fourth insulating film, It has a third step of forming a second dummy gate by etching and remaining on the side walls of the first dummy gate and the columnar semiconductor layer.
  • a third resist is formed, etch back is performed, and the upper portion of the columnar semiconductor layer is exposed to expose the columnar semiconductor.
  • a first diffusion layer is formed on the upper layer.
  • a fifth insulating film is formed around the second dummy gate, etched, and left in a sidewall shape to form a sidewall made of the fifth insulating film, and the fin-like semiconductor
  • the method includes a fourth step of forming a second diffusion layer above the layer and below the columnar semiconductor layer, and forming a metal-semiconductor compound on the second diffusion layer.
  • a contact stopper film is deposited, an interlayer insulating film is deposited, and chemical mechanical polishing is performed to expose the second dummy gate and the upper portion of the first dummy gate, The dummy gate and the first dummy gate are removed, the second insulating film and the fourth insulating film are removed, and the gate insulating film is disposed around the columnar semiconductor layer and inside the fifth insulating film.
  • a fifth step of forming a gate electrode and a gate wiring by depositing a metal film, performing an etch back, and forming a gate electrode.
  • the semiconductor device of the present invention is formed on the fin-like semiconductor layer, the fin-like semiconductor layer formed on the semiconductor substrate, the first insulating film formed around the fin-like semiconductor layer, and the fin-like semiconductor layer.
  • the width of the columnar semiconductor layer and the width of the columnar semiconductor layer in the direction orthogonal to the fin-shaped semiconductor layer is the same as the width of the fin-shaped semiconductor layer in the direction orthogonal to the fin-shaped semiconductor layer, and is formed around the columnar semiconductor layer.
  • the gate insulating film formed on the periphery and bottom of the gate electrode and the gate wiring, and the width outside the gate electrode and the width of the gate wiring are the same, and is formed above the columnar semiconductor layer.
  • a fin-like silicon layer, a columnar silicon layer, a gate electrode and a gate wiring are formed with two masks, and a method for producing SGT, which is a gate last process, and the resulting SGT structure are provided. be able to.
  • a first polysilicon is deposited and planarized on the second insulating film, and a second resist for forming a gate wiring and a columnar semiconductor layer is formed on the fin-shaped semiconductor layer.
  • Forming the first polysilicon, the second insulating film, and the fin-like semiconductor layer by etching the first polysilicon, the second insulating film, and the fin-like semiconductor layer; A second step of forming a dummy gate; a fourth insulating film is formed around the columnar semiconductor layer and the first dummy gate; and a second polysilicon is deposited around the fourth insulating film.
  • the first dummy gate and the second dummy gate are made of polysilicon, and after that, an interlayer insulating film is deposited, and then the first dummy gate and the second dummy gate are exposed by chemical mechanical polishing. Since the conventional metal gate last manufacturing method of depositing metal after etching the gate can be used, the metal gate SGT can be easily formed.
  • the gate electrode and the gate wiring can be insulated from the columnar semiconductor layer and the fin-shaped semiconductor layer by the gate insulating film formed around and at the bottom of the gate electrode and the gate wiring.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG. FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG. (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line X-X ′ in FIG.
  • FIG. 6C is a sectional view taken along line Y-Y ′ in FIG.
  • a first step of forming a fin-like semiconductor layer on a semiconductor substrate and forming a first insulating film around the fin-like semiconductor layer is shown.
  • the silicon substrate is used, but a substrate made of another semiconductor may be used.
  • a first resist 102 for forming a fin-like silicon layer is formed on the silicon substrate 101.
  • the silicon substrate 101 is etched to form a fin-like silicon layer 103.
  • the fin-like silicon layer is formed using a resist as a mask this time, a hard mask such as an oxide film or a nitride film may be used.
  • the first resist 102 is removed.
  • a first insulating film 104 is deposited around the fin-like silicon layer 103.
  • an oxide film formed by high-density plasma or an oxide film formed by low-pressure CVD (Chemical Vapor Deposition) may be used.
  • the first insulating film 104 is etched back to expose the upper portion of the fin-like silicon layer 103.
  • the process up to here is the same as the manufacturing method of the fin-like silicon layer of Non-Patent Document 2.
  • the first step of forming the fin-like silicon layer 103 on the silicon substrate 101 and forming the first insulating film 104 around the fin-like silicon layer 103 has been shown.
  • a second insulating film is formed around the fin-shaped semiconductor layer, and first polysilicon is deposited and planarized on the second insulating film to form a gate wiring and a columnar semiconductor layer.
  • the second resist is formed in a direction perpendicular to the direction of the fin-shaped semiconductor layer, and the first polysilicon, the second insulating film, and the fin-shaped semiconductor layer are etched to form a columnar shape.
  • a second step of forming a semiconductor layer and a first dummy gate made of the first polysilicon is shown.
  • a second insulating film 105 is formed around the fin-like silicon layer 103.
  • the second insulating film 105 is preferably an oxide film.
  • a first polysilicon 106 is deposited on the second insulating film 105 and planarized.
  • a third insulating film 107 is formed on the first polysilicon 106.
  • the third insulating film 107 is preferably a nitride film.
  • a second resist 108 for forming a gate wiring and a columnar silicon layer is formed in a direction perpendicular to the direction of the fin-shaped silicon layer 103.
  • the third insulating film 107 As shown in FIG. 11, by etching the third insulating film 107, the first polysilicon 106, the second insulating film 105, and the fin-like silicon layer 103, the columnar silicon layer 109 and the first silicon layer 109 are etched. A first dummy gate 106 made of one polysilicon is formed.
  • the third insulating film 107 functions as a hard mask.
  • the third insulating film may not be used.
  • the second resist 108 is removed.
  • the second insulating film is formed around the fin-like semiconductor layer, the first polysilicon is deposited and planarized on the second insulating film, and the gate wiring and the columnar semiconductor layer are formed.
  • the second resist is formed in a direction perpendicular to the direction of the fin-shaped semiconductor layer, and the first polysilicon, the second insulating film, and the fin-shaped semiconductor layer are etched to form a columnar shape.
  • a second step of forming a semiconductor layer and a first dummy gate made of the first polysilicon is shown.
  • a fourth insulating film is formed around the columnar semiconductor layer and the first dummy gate, and second polysilicon is deposited around the fourth insulating film.
  • a fourth insulating film 110 is formed around the columnar silicon layer 109 and the first dummy gate 106.
  • the fourth insulating film 110 is preferably an oxide film.
  • a third resist 111 is formed and etched back to expose the upper part of the columnar silicon layer 109.
  • impurities are introduced to form a first diffusion layer 112 on the columnar silicon layer 109.
  • a first diffusion layer 112 In the case of an n-type diffusion layer, it is preferable to introduce arsenic or phosphorus. In the case of a p-type diffusion layer, it is preferable to introduce boron.
  • the third resist 111 is removed.
  • a second polysilicon 113 is deposited around the fourth insulating film 110.
  • the second polysilicon 113 is etched, and the remaining portion of the second polysilicon 113 is left on the side walls of the first dummy gate 106 and the columnar silicon layer 109 to form the second polysilicon 113.
  • the dummy gate 113 is formed.
  • the fourth insulating film is formed around the columnar semiconductor layer and the first dummy gate, and the second polysilicon is deposited around the fourth insulating film.
  • the third step of forming the second dummy gate by etching is left on the side walls of the first dummy gate and the columnar semiconductor layer.
  • a fifth insulating film is formed around the second dummy gate, etched, and left in a sidewall shape to form a sidewall made of the fifth insulating film, and the fin shape
  • a fourth step is shown in which a second diffusion layer is formed on the upper part of the semiconductor layer and the lower part of the columnar semiconductor layer, and a compound of metal and semiconductor is formed on the second diffusion layer.
  • a fifth insulating film 114 is formed around the second dummy gate 113.
  • the fifth insulating film 114 is preferably a nitride film.
  • the fifth insulating film 114 is etched and left in the shape of a sidewall to form a sidewall 114 made of the fifth insulating film.
  • impurities are introduced to form a second diffusion layer 115 above the fin-like silicon layer 103 and below the columnar silicon layer 109.
  • a second diffusion layer 115 above the fin-like silicon layer 103 and below the columnar silicon layer 109.
  • boron In the case of a p-type diffusion layer, it is preferable to introduce boron.
  • a metal-semiconductor compound 116 is formed on the second diffusion layer 115.
  • a metal-semiconductor compound 117 is also formed on the second dummy gate 113.
  • a fifth insulating film is formed around the second dummy gate, etched, and left in a sidewall shape to form a sidewall made of the fifth insulating film.
  • a fourth step is shown in which a second diffusion layer is formed in the upper part of the semiconductor layer and the lower part of the columnar semiconductor layer, and a compound of metal and semiconductor is formed on the second diffusion layer.
  • a contact stopper film is deposited, an interlayer insulating film is deposited, and chemical mechanical polishing is performed to expose the upper portions of the second dummy gate and the first dummy gate, and 2 dummy gates and the first dummy gate are removed, the second insulating film and the fourth insulating film are removed, and the gate insulating film is formed around the columnar semiconductor layer and the fifth insulating film.
  • a fifth step of forming a gate electrode and a gate wiring by forming metal, depositing an etch back, and forming a gate electrode and a gate wiring is shown.
  • a contact stopper film 118 is deposited, and an interlayer insulating film 119 is deposited.
  • the contact stopper film 118 is preferably a nitride film.
  • the second dummy gate 113 and the first dummy gate 106 are removed.
  • the second insulating film 105 and the fourth insulating film 110 are removed.
  • a gate insulating film 120 is formed around the pillar-shaped silicon layer 109 and inside the fifth insulating film 114, and a metal 121 is deposited.
  • a gate electrode 121 a is formed around the columnar silicon layer 109.
  • the gate wiring 121b is formed.
  • the gate electrode 121a and the gate wiring 121b are insulated from the columnar silicon layer 109 and the fin-shaped silicon layer 103 by the gate insulating film 120 formed around and at the bottom of the gate electrode 121a and the gate wiring 121b. Can do.
  • the metal 121 is etched back to expose the upper portion of the columnar silicon layer 109.
  • a contact stopper film is deposited, an interlayer insulating film is deposited and chemical mechanical polishing is performed, and the upper portions of the second dummy gate and the first dummy gate are exposed. 2 dummy gates and the first dummy gate are removed, the second insulating film and the fourth insulating film are removed, and the gate insulating film is formed around the columnar semiconductor layer and the fifth insulating film.
  • a fifth step is shown in which a gate electrode and a gate wiring are formed by depositing a metal, etching back, and forming a gate electrode and a gate wiring.
  • an oxide film 122 is deposited.
  • a fourth resist 123 for forming contact holes is formed.
  • the contact holes 124 and 125 are formed by etching the oxide film 122, the gate insulating film 120, and the interlayer insulating film 119.
  • the fourth resist 123 is removed.
  • a fifth resist 126 for forming a contact hole is formed.
  • the oxide film 122 and the gate insulating film 120 are etched to form a contact hole 127.
  • the fifth resist 126 is removed.
  • a metal 128 is deposited to form contacts 129, 130, and 131.
  • sixth resists 132, 133, and 134 are formed to form metal wiring.
  • the metal 128 is etched to form metal wirings 135, 136, and 137.
  • the sixth resists 132, 133, 134 are removed.
  • a method for manufacturing SGT which is a gate last process, was formed by forming a fin-like semiconductor layer, a columnar semiconductor layer, a gate electrode and a gate wiring with two masks.
  • FIG. 1 A structure of a semiconductor device obtained by the manufacturing method is shown in FIG.
  • the width of the columnar silicon layer 109 in the direction orthogonal to the fin-shaped semiconductor layer is the same as the width of the fin-shaped silicon layer 103 in the direction orthogonal to itself, and the gate formed around the columnar silicon layer 109.
  • the gate insulating film formed on the periphery and bottom of the wiring 121b, the gate electrode 121a, and the gate wiring 121b 20, the outer width W1 of the gate electrode 121a and the width W2 of the gate wiring 121b are the same, the first diffusion layer 112 formed on the columnar silicon layer 109, and the fin-like silicon layer 103. And a second diffusion layer 115 formed below the columnar silicon layer 109.
  • the gate electrode 121a and the gate wiring 121b are insulated from the columnar silicon layer 109 and the fin-shaped silicon layer 103 by the gate insulating film 120 formed around and at the bottom of the gate electrode 121a and the gate wiring 121b. can do.

Abstract

 2個のマスクで、フィン状半導体層、柱状半導体層、ゲート電極とゲート配線を形成し、ゲートラストプロセスであるSGTの製造方法とその結果得られるSGTの構造を提供することを課題とする。半導体基板上にフィン状半導体層を形成し、前記フィン状半導体層の周囲に第1の絶縁膜を形成する第1工程と、前記第1工程の後、前記フィン状半導体層の周囲に第2の絶縁膜を形成し、前記第2の絶縁膜の上に第1のポリシリコンを堆積し平坦化し、ゲート配線と柱状半導体層を形成するための第2のレジストを、前記フィン状半導体層の方向に対して垂直の方向に形成し、前記第1のポリシリコンと前記第2の絶縁膜と前記フィン状半導体層をエッチングすることにより、柱状半導体層と前記第1のポリシリコンによる第1のダミーゲートを形成する第2工程とにより、上記課題を解決する。

Description

半導体装置の製造方法、及び、半導体装置
 本発明は半導体装置の製造方法、及び、半導体装置に関する。
 半導体集積回路、特にMOSトランジスタを用いた集積回路は、高集積化の一途を辿っている。この高集積化に伴って、その中で用いられているMOSトランジスタはナノ領域まで微細化が進んでいる。このようなMOSトランジスタの微細化が進むと、リーク電流の抑制が困難であり、必要な電流量確保の要請から回路の占有面積をなかなか小さくできない、といった問題があった。このような問題を解決するために、基板に対してソース、ゲート、ドレインが垂直方向に配置され、ゲート電極が柱状半導体層を取り囲む構造のSurrounding Gate Transistor(以下、「SGT」という。)が提案されている(例えば、特許文献1、特許文献2、特許文献3を参照)。
 従来のSGTの製造方法では、シリコン柱を描画するためのマスクを用いて窒化膜ハードマスクが柱状に形成されたシリコン柱を形成し、平面状シリコン層を描画するためのマスクを用いてシリコン柱底部に平面状シリコン層を形成し、ゲート配線を描画するためのマスクを用いてゲート配線を形成している(例えば特許文献4を参照)。
 すなわち、3つのマスクを用いてシリコン柱、平面状シリコン層、ゲート配線を形成している。
 また、従来のMOSトランジスタにおいて、メタルゲートプロセスと高温プロセスを両立させるために、高温プロセス後にメタルゲートを作成するメタルゲートラストプロセスが実際の製品で用いられている(非特許文献1)。ポリシリコンでゲートを作成し、その後、層間絶縁膜を堆積後、化学機械研磨によりポリシリコンゲートを露出し、ポリシリコンゲートをエッチング後、メタルを堆積している。そのためSGTにおいてもメタルゲートプロセスと高温プロセスを両立させるために、高温プロセス後にメタルゲートを作成するメタルゲートラストプロセスを用いる必要がある。
 また、ゲート配線と基板間の寄生容量を低減するために、従来のMOSトランジスタでは、第1の絶縁膜を用いている。例えばFINFET(非特許文献2)では、1つのフィン状半導体層の周囲に第1の絶縁膜を形成し、第1の絶縁膜をエッチバックし、フィン状半導体層を露出し、ゲート配線と基板間の寄生容量を低減している。そのためSGTにおいてもゲート配線と基板間の寄生容量を低減するために第1の絶縁膜を用いる必要がある。SGTではフィン状半導体層に加えて、柱状半導体層があるため、柱状半導体層を形成するための工夫が必要である。
特開平2-71556号公報 特開平2-188966号公報 特開平3-145761号公報 特開2009-182317号公報 IEDM2007 K.Mistry et.al, pp 247-250 IEDM2010 CC.Wu, et. al, 27.1.1-27.1.4.
 そこで、2個のマスクで、フィン状半導体層、柱状半導体層、ゲート電極とゲート配線を形成し、ゲートラストプロセスであるSGTの製造方法とその結果得られるSGTの構造を提供することを目的とする。
 本発明の半導体装置の製造方法は、半導体基板上にフィン状半導体層を形成し、前記フィン状半導体層の周囲に第1の絶縁膜を形成する第1工程と、前記第1工程の後、前記フィン状半導体層の周囲に第2の絶縁膜を形成し、前記第2の絶縁膜の上に第1のポリシリコンを堆積し平坦化し、ゲート配線と柱状半導体層を形成するための第2のレジストを、前記フィン状半導体層の方向に対して垂直の方向に形成し、前記第1のポリシリコンと前記第2の絶縁膜と前記フィン状半導体層をエッチングすることにより、柱状半導体層と前記第1のポリシリコンによる第1のダミーゲートを形成する第2工程と、を有することを特徴とする。
 また、前記第2の絶縁膜の上に第1のポリシリコンを堆積し平坦化後、前記第1のポリシリコン上に第3の絶縁膜を形成することをさらに含むことを特徴とする。
 また、前記第2工程の後、前記柱状半導体層と前記第1のダミーゲートの周囲に第4の絶縁膜を形成し、前記第4の絶縁膜の周囲に第2のポリシリコンを堆積し、エッチングをすることにより、前記第1のダミーゲートと前記柱状半導体層の側壁に残存させ、第2のダミーゲートを形成する第3工程を有することを特徴とする。
 また、前記柱状半導体層と前記第1のダミーゲートの周囲に第4の絶縁膜を形成後、第3のレジストを形成し、エッチバックを行い、前記柱状半導体層上部を露出し、前記柱状半導体層上部に第1の拡散層を形成することを特徴とする。
 また、前記第2のダミーゲートの周囲に、第5の絶縁膜を形成し、エッチングをし、サイドウォール状に残存させ、前記第5の絶縁膜からなるサイドウォールを形成し、前記フィン状半導体層上部と前記柱状半導体層下部に第2の拡散層を形成し、前記第2の拡散層上に金属と半導体の化合物を形成する第4工程を有することを特徴とする。
 また、前記第4の工程の後、コンタクトストッパ膜を堆積し、層間絶縁膜を堆積し化学機械研磨し、前記第2のダミーゲートと前記第1のダミーゲートの上部を露出し、前記第2のダミーゲートと前記第1のダミーゲートを除去し、前記第2の絶縁膜と前記第4の絶縁膜を除去し、ゲート絶縁膜を前記柱状半導体層の周囲と前記第5の絶縁膜の内側に形成し、金属膜を堆積し、エッチバックを行い、ゲート電極及びゲート配線を形成する第5工程を有することを特徴とする。
 また、本発明の半導体装置は、半導体基板上に形成されたフィン状半導体層と、前記フィン状半導体層の周囲に形成された第1の絶縁膜と、前記フィン状半導体層上に形成された柱状半導体層と、ここで前記柱状半導体層のフィン状半導体層に直交する方向の幅は前記フィン状半導体層の自身に直交する方向の幅と同じであり、前記柱状半導体層の周囲に形成されたゲート絶縁膜と、前記ゲート絶縁膜の周囲に形成された金属からなるゲート電極と、前記ゲート電極に接続された前記フィン状半導体層に直交する方向に延在する金属からなるゲート配線と、前記ゲート電極と前記ゲート配線の周囲と底部に形成された前記ゲート絶縁膜と、ここで前記ゲート電極の外側の幅と前記ゲート配線の幅は同じであり、前記柱状半導体層の上部に形成された第1の拡散層と、前記フィン状半導体層の上部と前記柱状半導体層の下部に形成された第2の拡散層と、を有することを特徴とする。
 本発明によれば、2個のマスクで、フィン状シリコン層、柱状シリコン層、ゲート電極とゲート配線を形成し、ゲートラストプロセスであるSGTの製造方法とその結果得られるSGTの構造を提供することができる。
 半導体基板上にフィン状半導体層を形成し、前記フィン状半導体層の周囲に第1の絶縁膜を形成する第1工程と、前記第1工程の後、前記フィン状半導体層の周囲に第2の絶縁膜を形成し、前記第2の絶縁膜の上に第1のポリシリコンを堆積し平坦化し、ゲート配線と柱状半導体層を形成するための第2のレジストを、前記フィン状半導体層の方向に対して垂直の方向に形成し、前記第1のポリシリコンと前記第2の絶縁膜と前記フィン状半導体層をエッチングすることにより、柱状半導体層と前記第1のポリシリコンによる第1のダミーゲートを形成する第2工程と、前記柱状半導体層と前記第1のダミーゲートの周囲に第4の絶縁膜を形成し、前記第4の絶縁膜の周囲に第2のポリシリコンを堆積し、エッチングをすることにより、前記第1のダミーゲートと前記柱状半導体層の側壁に残存させ、第2のダミーゲートを形成する第3工程を有することを特徴とすることにより、2個のマスクで、フィン状半導体層、柱状半導体層、後にゲート電極とゲート配線となる第1のダミーゲート及び第2のダミーゲートを形成することができ、工程数を削減することができる。
 柱状半導体層と、ゲート配線との合わせずれをなくすことができる。
 また、ポリシリコンで第1のダミーゲートと第2のダミーゲートを作成し、その後、層間絶縁膜を堆積後、化学機械研磨により第1のダミーゲートと第2のダミーゲートを露出し、ポリシリコンゲートをエッチング後、金属を堆積する従来のメタルゲートラストの製造方法を用いることができるため、メタルゲートSGTを容易に形成できる。
 また、前記ゲート電極と前記ゲート配線の周囲と底部に形成された前記ゲート絶縁膜により、ゲート電極とゲート配線とは、柱状半導体層とフィン状半導体層とから絶縁をすることができる。
(a)は本発明に係る半導体装置の平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX-X’線での断面図である。(c)は(a)のY-Y’線での断面図である。
 以下に、本発明の実施形態に係るSGTの構造を形成するための製造工程を、図2~図40を参照して説明する。
 まず、半導体基板上にフィン状半導体層を形成し、前記フィン状半導体層の周囲に第1の絶縁膜を形成する第1工程を示す。本実施例では、シリコン基板としたが、他の半導体からなる基板とすることもできる。
 図2に示すように、シリコン基板101上にフィン状シリコン層を形成するための第1のレジスト102を形成する。
 図3に示すように、シリコン基板101をエッチングし、フィン状シリコン層103を形成する。今回はレジストをマスクとしてフィン状シリコン層を形成したが、酸化膜や窒化膜といったハードマスクを用いてもよい。
 図4に示すように、第1のレジスト102を除去する。
 図5に示すように、フィン状シリコン層103の周囲に第1の絶縁膜104を堆積する。第1の絶縁膜104として、高密度プラズマによる酸化膜や低圧CVD(Chemical Vapor Deposition)による酸化膜を用いてもよい。
 図6に示すように、第1の絶縁膜104をエッチバックし、フィン状シリコン層103の上部を露出する。ここまでは、非特許文献2のフィン状シリコン層の製法と同じである。
 以上によりシリコン基板101上にフィン状シリコン層103を形成し、前記フィン状シリコン層103の周囲に第一の絶縁膜104を形成する第1工程が示された。
 次に、前記フィン状半導体層の周囲に第2の絶縁膜を形成し、前記第2の絶縁膜の上に第1のポリシリコンを堆積し平坦化し、ゲート配線と柱状半導体層を形成するための第2のレジストを、前記フィン状半導体層の方向に対して垂直の方向に形成し、前記第1のポリシリコンと前記第2の絶縁膜と前記フィン状半導体層をエッチングすることにより、柱状半導体層と前記第1のポリシリコンによる第1のダミーゲートを形成する第2工程を示す。
 図7に示すように、前記フィン状シリコン層103の周囲に第2の絶縁膜105を形成する。第2の絶縁膜105は、酸化膜が好ましい。
 図8に示すように、前記第2の絶縁膜105の上に第1のポリシリコン106を堆積し平坦化する。
 図9に示すように、前記第1のポリシリコン106上に第3の絶縁膜107を形成する。第3の絶縁膜107は、窒化膜が好ましい。
 図10に示すように、ゲート配線と柱状シリコン層を形成するための第2のレジスト108を、前記フィン状シリコン層103の方向に対して垂直の方向に形成する。
 図11に示すように、前記第3の絶縁膜107と前記第1のポリシリコン106と前記第2の絶縁膜105と前記フィン状シリコン層103をエッチングすることにより、柱状シリコン層109と前記第1のポリシリコンによる第1のダミーゲート106を形成する。このとき、第2のレジストがエッチング中に除去された場合、第3の絶縁膜107がハードマスクとして機能する。第2のレジストがエッチング中に除去されないとき、第3の絶縁膜を使用しなくてもよい。
 図12に示すように、第2のレジスト108を除去する。
 以上により、前記フィン状半導体層の周囲に第2の絶縁膜を形成し、前記第2の絶縁膜の上に第1のポリシリコンを堆積し平坦化し、ゲート配線と柱状半導体層を形成するための第2のレジストを、前記フィン状半導体層の方向に対して垂直の方向に形成し、前記第1のポリシリコンと前記第2の絶縁膜と前記フィン状半導体層をエッチングすることにより、柱状半導体層と前記第1のポリシリコンによる第1のダミーゲートを形成する第2工程が示された。
 次に、前記第2工程の後、前記柱状半導体層と前記第1のダミーゲートの周囲に第4の絶縁膜を形成し、前記第4の絶縁膜の周囲に第2のポリシリコンを堆積し、エッチングをすることにより、前記第1のダミーゲートと前記柱状半導体層の側壁に残存させ、第2のダミーゲートを形成する第3工程を示す。
 図13に示すように、前記柱状シリコン層109と前記第1のダミーゲート106の周囲に第4の絶縁膜110を形成する。第4の絶縁膜110は、酸化膜が好ましい。
 図14に示すように、第3のレジスト111を形成し、エッチバックを行い、前記柱状シリコン層109上部を露出する。
 図15に示すように、不純物を導入し、前記柱状シリコン層109上部に第1の拡散層112を形成する。n型拡散層のときは、砒素やリンを導入することが好ましい。p型拡散層のときは、ボロンを導入することが好ましい。
 図16に示すように、第3のレジスト111を除去する。
 図17に示すように、前記第4の絶縁膜110の周囲に第2のポリシリコン113を堆積する。
 図18に示すように、第2のポリシリコン113をエッチングし、第2のポリシリコン113の残りの部分を前記第1のダミーゲート106と前記柱状シリコン層109の側壁に残存させて、第2のダミーゲート113を形成する。
 以上により、前記第2工程の後、前記柱状半導体層と前記第1のダミーゲートの周囲に第4の絶縁膜を形成し、前記第4の絶縁膜の周囲に第2のポリシリコンを堆積し、エッチングをすることにより、前記第1のダミーゲートと前記柱状半導体層の側壁に残存させ、第2のダミーゲートを形成する第3工程が示された。
 次に、前記第2のダミーゲートの周囲に、第5の絶縁膜を形成し、エッチングをし、サイドウォール状に残存させ、前記第5の絶縁膜からなるサイドウォールを形成し、前記フィン状半導体層上部と前記柱状半導体層下部に第2の拡散層を形成し、前記第2の拡散層上に金属と半導体の化合物を形成する第4工程を示す。
 図19に示すように、前記第2のダミーゲート113の周囲に、第5の絶縁膜114を形成する。第5の絶縁膜114は、窒化膜が好ましい。
 図20に示すように、第5の絶縁膜114をエッチングをし、サイドウォール状に残存させ、前記第5の絶縁膜からなるサイドウォール114を形成する。
 図21に示すように、不純物を導入し、前記フィン状シリコン層103上部と前記柱状シリコン層109下部に第2の拡散層115を形成する。n型拡散層のときは、砒素やリンを導入することが好ましい。p型拡散層のときは、ボロンを導入することが好ましい。
 図22に示すように、前記第2の拡散層115上に金属と半導体の化合物116を形成する。このとき、第2のダミーゲート113上部にも金属と半導体の化合物117が形成される。
 以上により、前記第2のダミーゲートの周囲に、第5の絶縁膜を形成し、エッチングをし、サイドウォール状に残存させ、前記第5の絶縁膜からなるサイドウォールを形成し、前記フィン状半導体層上部と前記柱状半導体層下部に第2の拡散層を形成し、前記第2の拡散層上に金属と半導体の化合物を形成する第4工程が示された。
 次に、前記第4の工程の後、コンタクトストッパ膜を堆積し、層間絶縁膜を堆積し化学機械研磨し、前記第2のダミーゲートと前記第1のダミーゲートの上部を露出し、前記第2のダミーゲートと前記第1のダミーゲートを除去し、前記第2の絶縁膜と前記第4の絶縁膜を除去し、ゲート絶縁膜を前記柱状半導体層の周囲と前記第5の絶縁膜の内側に形成し、金属を堆積し、エッチバックを行い、ゲート電極及びゲート配線を形成する第5工程を示す。
 図23に示すように、コンタクトストッパ膜118を堆積し、層間絶縁膜119を堆積する。コンタクトストッパ膜118として、窒化膜が好ましい。
 図24に示すように、化学機械研磨し、前記第2のダミーゲートと前記第1のダミーゲートの上部を露出する。このとき、第2のダミーゲート113上部に形成された金属と半導体の化合物117を除去する。
 図25に示すように、前記第2のダミーゲート113と前記第1のダミーゲート106を除去する。
 図26に示すように、前記第2の絶縁膜105と前記第4の絶縁膜110を除去する。
 図27に示すように、ゲート絶縁膜120を前記柱状シリコン層109の周囲と前記第5の絶縁膜114の内側に形成し、金属121を堆積する。柱状シリコン層109の周囲にゲート電極121aが形成される。また、ゲート配線121bが形成される。前記ゲート電極121aと前記ゲート配線121bの周囲と底部に形成された前記ゲート絶縁膜120により、ゲート電極121aとゲート配線121bとは、柱状シリコン層109とフィン状シリコン層103とから絶縁をすることができる。
 図28に示すように、金属121のエッチバックを行い、柱状シリコン層109上部を露出する。
 以上により、前記第4の工程の後、コンタクトストッパ膜を堆積し、層間絶縁膜を堆積し化学機械研磨し、前記第2のダミーゲートと前記第1のダミーゲートの上部を露出し、前記第2のダミーゲートと前記第1のダミーゲートを除去し、前記第2の絶縁膜と前記第4の絶縁膜を除去し、ゲート絶縁膜を前記柱状半導体層の周囲と前記第5の絶縁膜の内側に形成し、金属を堆積し、エッチバックを行い、ゲート電極及びゲート配線を形成する第5工程が示された。
 図29に示すように、酸化膜122を堆積する。
 図30に示すように、コンタクト孔を形成するための第4のレジスト123を形成する。
 図31に示すように、酸化膜122、ゲート絶縁膜120、層間絶縁膜119をエッチングすることにより、コンタクト孔124、125を形成する。
 図32に示すように、第4のレジスト123を除去する。
 図33に示すように、コンタクト孔を形成するための第5のレジスト126を形成する。
 図34に示すように、酸化膜122、ゲート絶縁膜120をエッチングし、コンタクト孔127を形成する。
 図35に示すように、第5のレジスト126を除去する。
 図36に示すように、コンタクト孔124下のコンタクトストッパ膜118を除去する。
 図37に示すように、金属128を堆積し、コンタクト129、130、131を形成する。
 図38に示すように、金属配線を形成するため第6のレジスト132、133、134を形成する。
 図39に示すように、金属128をエッチングし、金属配線135、136、137を形成する。
 図40に示すように、第6のレジスト132、133、134を除去する。
 以上により、2個のマスクで、フィン状半導体層、柱状半導体層、ゲート電極とゲート配線を形成し、ゲートラストプロセスであるSGTの製造方法が示された。
 上記製造方法によって得られる半導体装置の構造を図1に示す。
 シリコン基板101上に形成されたフィン状シリコン層103と、前記フィン状シリコン層103の周囲に形成された第1の絶縁膜104と、前記フィン状シリコン層103上に形成された柱状シリコン層109と、前記柱状シリコン層109のフィン状半導体層に直交する方向の幅は前記フィン状シリコン層103の自身に直交する方向の幅と同じであり、前記柱状シリコン層109の周囲に形成されたゲート絶縁膜120と、前記ゲート絶縁膜120の周囲に形成された金属からなるゲート電極121aと、前記ゲート電極121aに接続された前記フィン状シリコン層109に直交する方向に延在する金属からなるゲート配線121bと、前記ゲート電極121aと前記ゲート配線121bの周囲と底部に形成された前記ゲート絶縁膜120と、前記ゲート電極121aの外側の幅W1と前記ゲート配線121bの幅W2は同じであり、前記柱状シリコン層109の上部に形成された第1の拡散層112と、前記フィン状シリコン層103の上部と前記柱状シリコン層109の下部に形成された第2の拡散層115と、を有する。
 セルフアラインで形成されるので、柱状シリコン層109と、ゲート配線121bとの合わせずれをなくすことができる。
 また、前記ゲート電極121aと前記ゲート配線121bの周囲と底部に形成された前記ゲート絶縁膜120により、ゲート電極121aとゲート配線121bとは、柱状シリコン層109とフィン状シリコン層103とから絶縁をすることができる。
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。
 例えば、上記実施例において、p型(p+型を含む。)とn型(n+型を含む。)とをそれぞれ反対の導電型とした半導体装置の製造方法、及び、それにより得られる半導体装置も当然に本発明の技術的範囲に含まれる。
101.シリコン基板
102.第1のレジスト
103.フィン状シリコン層
104.第1の絶縁膜
105.第2の絶縁膜
106.第1のポリシリコン、第1のダミーゲート
107.第3の絶縁膜
108.第2のレジスト
109.柱状シリコン層
110.第4の絶縁膜
111.第3のレジスト
112.第1の拡散層
113.第2のポリシリコン、第2のダミーゲート
114.第5の絶縁膜、第5の絶縁膜からなるサイドウォール
115.第2の拡散層
116.金属と半導体の化合物
117.金属と半導体の化合物
118.コンタクトストッパ膜
119.層間絶縁膜
120.ゲート絶縁膜
121.金属
121a.ゲート電極
121b.ゲート配線
122.酸化膜
123.第4のレジスト
124.コンタクト孔
125.コンタクト孔
126.第5のレジスト
127.コンタクト孔
128.金属
129.コンタクト
130.コンタクト
131.コンタクト
132.第6のレジスト
133.第6のレジスト
134.第6のレジスト
135.金属配線
136.金属配線
137.金属配線

Claims (7)

  1.  半導体基板上にフィン状半導体層を形成し、前記フィン状半導体層の周囲に第1の絶縁膜を形成する第1工程と、
     前記第1工程の後、
     前記フィン状半導体層の周囲に第2の絶縁膜を形成し、
     前記第2の絶縁膜の上に第1のポリシリコンを堆積し平坦化し、
     ゲート配線と柱状半導体層を形成するための第2のレジストを、前記フィン状半導体層の方向に対して垂直の方向に形成し、
     前記第1のポリシリコンと前記第2の絶縁膜と前記フィン状半導体層をエッチングすることにより、柱状半導体層と前記第1のポリシリコンによる第1のダミーゲートを形成する第2工程と、
     を有することを特徴とする半導体装置の製造方法。
  2.  前記第2の絶縁膜の上に第1のポリシリコンを堆積し平坦化後、前記第1のポリシリコン上に第3の絶縁膜を形成することをさらに含むことを特徴とする請求項1に記載の半導体装置の製造方法。
  3.  前記第2工程の後、前記柱状半導体層と前記第1のダミーゲートの周囲に第4の絶縁膜を形成し、前記第4の絶縁膜の周囲に第2のポリシリコンを堆積し、エッチングをすることにより、前記第1のダミーゲートと前記柱状半導体層の側壁に残存させ、第2のダミーゲートを形成する第3工程を有することを特徴とする請求項1に記載の半導体装置の製造方法。
  4.  前記柱状半導体層と前記第1のダミーゲートの周囲に第4の絶縁膜を形成後、第3のレジストを形成し、エッチバックを行い、前記柱状半導体層上部を露出し、前記柱状半導体層上部に第1の拡散層を形成することを特徴とする請求項3に記載の半導体装置の製造方法。
  5.  前記第2のダミーゲートの周囲に、第5の絶縁膜を形成し、エッチングをし、サイドウォール状に残存させ、前記第5の絶縁膜からなるサイドウォールを形成し、前記フィン状半導体層上部と前記柱状半導体層下部に第2の拡散層を形成し、前記第2の拡散層上に金属と半導体の化合物を形成する第4工程を有することを特徴とする請求項3に記載の半導体装置の製造方法。
  6.  前記第4の工程の後、コンタクトストッパ膜を堆積し、層間絶縁膜を堆積し化学機械研磨し、前記第2のダミーゲートと前記第1のダミーゲートの上部を露出し、前記第2のダミーゲートと前記第1のダミーゲートを除去し、前記第2の絶縁膜と前記第4の絶縁膜を除去し、ゲート絶縁膜を前記柱状半導体層の周囲と前記第5の絶縁膜の内側に形成し、金属を堆積し、エッチバックを行い、ゲート電極及びゲート配線を形成する第5工程を有することを特徴とする請求項5に記載の半導体装置の製造方法。
  7.  半導体基板上に形成されたフィン状半導体層と、
    前記フィン状半導体層の周囲に形成された第1の絶縁膜と、
    前記フィン状半導体層上に形成された柱状半導体層と、ここで、前記柱状半導体層のフィン状半導体層に直交する方向の幅は前記フィン状半導体層の自身に直交する方向の幅と同じであり、
    前記柱状半導体層の周囲に形成されたゲート絶縁膜と、
    前記ゲート絶縁膜の周囲に形成された金属からなるゲート電極と、
    前記ゲート電極に接続された前記フィン状半導体層に直交する方向に延在する金属からなるゲート配線と、
    前記ゲート電極と前記ゲート配線の周囲と底部に形成された前記ゲート絶縁膜と、ここで、前記ゲート電極の外側の幅と前記ゲート配線の幅は同じであり、
    前記柱状半導体層の上部に形成された第1の拡散層と、
    前記フィン状半導体層の上部と前記柱状半導体層の下部に形成された第2の拡散層と、
    を有することを特徴とする半導体装置。
PCT/JP2013/065998 2013-06-10 2013-06-10 半導体装置の製造方法、及び、半導体装置 WO2014199433A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/065998 WO2014199433A1 (ja) 2013-06-10 2013-06-10 半導体装置の製造方法、及び、半導体装置
JP2014521767A JP5680801B1 (ja) 2013-06-10 2013-06-10 半導体装置の製造方法、及び、半導体装置
US14/793,108 US9525038B2 (en) 2013-06-10 2015-07-07 Method for producing semiconductor device and semiconductor device
US15/342,237 US10056471B2 (en) 2013-06-10 2016-11-03 Semiconductor device
US15/342,217 US10186601B2 (en) 2013-06-10 2016-11-03 Method for producing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/065998 WO2014199433A1 (ja) 2013-06-10 2013-06-10 半導体装置の製造方法、及び、半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/793,108 Continuation US9525038B2 (en) 2013-06-10 2015-07-07 Method for producing semiconductor device and semiconductor device

Publications (1)

Publication Number Publication Date
WO2014199433A1 true WO2014199433A1 (ja) 2014-12-18

Family

ID=52021769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065998 WO2014199433A1 (ja) 2013-06-10 2013-06-10 半導体装置の製造方法、及び、半導体装置

Country Status (3)

Country Link
US (3) US9525038B2 (ja)
JP (1) JP5680801B1 (ja)
WO (1) WO2014199433A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125205A1 (ja) * 2014-02-18 2015-08-27 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置の製造方法、及び、半導体装置
US9318447B2 (en) * 2014-07-18 2016-04-19 Taiwan Semiconductor Manufacturing Company Limited Semiconductor device and method of forming vertical structure
US9653465B1 (en) * 2016-09-12 2017-05-16 International Business Machines Corporation Vertical transistors having different gate lengths

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110050A1 (ja) * 2008-02-15 2009-09-11 日本ユニサンティスエレクトロニクス株式会社 半導体装置の製造方法
WO2013069102A1 (ja) * 2011-11-09 2013-05-16 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置の製造方法及び半導体装置
WO2013080378A1 (ja) * 2011-12-02 2013-06-06 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置の製造方法と半導体装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2703970B2 (ja) 1989-01-17 1998-01-26 株式会社東芝 Mos型半導体装置
JP3057661B2 (ja) 1988-09-06 2000-07-04 株式会社東芝 半導体装置
JP2950558B2 (ja) 1989-11-01 1999-09-20 株式会社東芝 半導体装置
KR100771871B1 (ko) * 2006-05-24 2007-11-01 삼성전자주식회사 수직 채널 트랜지스터를 구비한 반도체 소자
KR100803697B1 (ko) * 2007-01-18 2008-02-20 삼성전자주식회사 반도체 소자 및 이를 형성하기 위한 방법
JP4316658B2 (ja) 2008-01-29 2009-08-19 日本ユニサンティスエレクトロニクス株式会社 半導体装置の製造方法
US8163605B2 (en) 2008-02-15 2012-04-24 Unisantis Electronics Singapore Pte Ltd. Production method for semiconductor device
JP4487221B1 (ja) * 2009-04-17 2010-06-23 日本ユニサンティスエレクトロニクス株式会社 半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110050A1 (ja) * 2008-02-15 2009-09-11 日本ユニサンティスエレクトロニクス株式会社 半導体装置の製造方法
WO2013069102A1 (ja) * 2011-11-09 2013-05-16 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置の製造方法及び半導体装置
WO2013080378A1 (ja) * 2011-12-02 2013-06-06 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置の製造方法と半導体装置

Also Published As

Publication number Publication date
JPWO2014199433A1 (ja) 2017-02-23
US10056471B2 (en) 2018-08-21
US20170077265A1 (en) 2017-03-16
US9525038B2 (en) 2016-12-20
JP5680801B1 (ja) 2015-03-04
US20170077267A1 (en) 2017-03-16
US20150303296A1 (en) 2015-10-22
US10186601B2 (en) 2019-01-22

Similar Documents

Publication Publication Date Title
JP5731073B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5779739B1 (ja) 半導体装置の製造方法、及び、半導体装置
WO2015019444A1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5902868B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5680801B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5872054B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5740535B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5798276B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP6368836B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6328832B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5861197B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6121386B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6154051B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5989197B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6080989B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6326437B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5869166B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6174174B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5890053B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6211637B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6055883B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5977865B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP2016027676A (ja) 半導体装置の製造方法、及び、半導体装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014521767

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886924

Country of ref document: EP

Kind code of ref document: A1