JP5890053B2 - 半導体装置の製造方法、及び、半導体装置 - Google Patents

半導体装置の製造方法、及び、半導体装置 Download PDF

Info

Publication number
JP5890053B2
JP5890053B2 JP2015090650A JP2015090650A JP5890053B2 JP 5890053 B2 JP5890053 B2 JP 5890053B2 JP 2015090650 A JP2015090650 A JP 2015090650A JP 2015090650 A JP2015090650 A JP 2015090650A JP 5890053 B2 JP5890053 B2 JP 5890053B2
Authority
JP
Japan
Prior art keywords
gate
insulating film
metal
semiconductor layer
concerns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015090650A
Other languages
English (en)
Other versions
JP2015159320A (ja
Inventor
舛岡 富士雄
富士雄 舛岡
広記 中村
広記 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unisantis Electronics Singapore Pte Ltd
Original Assignee
Unisantis Electronics Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisantis Electronics Singapore Pte Ltd filed Critical Unisantis Electronics Singapore Pte Ltd
Priority to JP2015090650A priority Critical patent/JP5890053B2/ja
Publication of JP2015159320A publication Critical patent/JP2015159320A/ja
Application granted granted Critical
Publication of JP5890053B2 publication Critical patent/JP5890053B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明は半導体装置の製造方法、及び、半導体装置に関する。
半導体集積回路、特にMOSトランジスタを用いた集積回路は、高集積化の一途を辿っている。この高集積化に伴って、その中で用いられているMOSトランジスタはナノ領域まで微細化が進んでいる。このようなMOSトランジスタの微細化が進むと、リーク電流の抑制が困難であり、必要な電流量確保の要請から回路の占有面積をなかなか小さくできない、といった問題があった。このような問題を解決するために、基板に対してソース、ゲート、ドレインが垂直方向に配置され、ゲート電極が柱状半導体層を取り囲む構造のSurrounding Gate Transistor(以下、「SGT」という。)が提案されている(例えば、特許文献1、特許文献2、特許文献3を参照)。
従来のSGTの製造方法では、シリコン柱を描画するためのマスクを用いて窒化膜ハードマスクが柱状に形成されたシリコン柱を形成し、平面状シリコン層を描画するためのマスクを用いてシリコン柱底部に平面状シリコン層を形成し、ゲート配線を描画するためのマスクを用いてゲート配線を形成している(例えば特許文献4を参照)。
すなわち、3つのマスクを用いてシリコン柱、平面状シリコン層、ゲート配線を形成している。
また、従来のMOSトランジスタにおいて、メタルゲートプロセスと高温プロセスを両立させるために、高温プロセス後にメタルゲートを作成するメタルゲートラストプロセスが実際の製品で用いられている(非特許文献1)。ポリシリコンでゲートを作成し、その後、層間絶縁膜を堆積後、化学機械研磨によりポリシリコンゲートを露出し、ポリシリコンゲートをエッチング後、メタルを堆積している。そのためSGTにおいてもメタルゲートプロセスと高温プロセスを両立させるために、高温プロセス後にメタルゲートを作成するメタルゲートラストプロセスを用いる必要がある。
メタルゲートラストプロセスでは、ポリシリコンゲートを形成後、イオン注入により拡散層を形成している。SGTでは、柱状シリコン層上部がポリシリコンゲートに覆われるため工夫が必要である。
シリコン柱が細くなると、シリコンの密度は5×1022個/cm3であるから、シリコン柱内に不純物を存在させることが難しくなってくる。
従来のSGTでは、チャネル濃度を1017cm-3以下と低不純物濃度とし、ゲート材料の仕事関数を変えることによってしきい値電圧を決定することが提案されている(例えば、特許文献5を参照)。
平面型MOSトランジスタにおいて、LDD領域のサイドウォールが低濃度層と同一の導電型を有する多結晶シリコンにより形成され、LDD領域の表面キャリアがその仕事関数差によって誘起され、酸化膜サイドウォールLDD型MOSトランジスタに比してLDD領域のインピーダンスが低減できることが示されている(例えば、特許文献6を参照)。その多結晶シリコンサイドウォールは電気的にゲート電極と絶縁されていることが示されている。また図中には多結晶シリコンサイドウォールとソース・ドレインとは層間絶縁膜により絶縁していることが示されている。
また、ゲート配線と基板間の寄生容量を低減するために、従来のMOSトランジスタでは、第1の絶縁膜を用いている。例えばFINFET(非特許文献2)では、1つのフィン状半導体層の周囲に第1の絶縁膜を形成し、第1の絶縁膜をエッチバックし、フィン状半導体層を露出し、ゲート配線と基板間の寄生容量を低減している。そのためSGTにおいてもゲート配線と基板間の寄生容量を低減するために第1の絶縁膜を用いる必要がある。SGTではフィン状半導体層に加えて、柱状半導体層があるため、柱状半導体層を形成するための工夫が必要である。
特開平2−71556号公報 特開平2−188966号公報 特開平3−145761号公報 特開2009−182317号公報 特開2004−356314号公報 特開平11−297984号公報
IEDM2007 K.Mistry et.al, pp 247-250 IEDM2010 CC.Wu, et. al, 27.1.1-27.1.4.
そこで、2個のマスクで、フィン状半導体層、柱状半導体層、ゲート電極とゲート配線を形成し、ゲートラストプロセスであり、自己整合で柱状半導体層上部を金属と半導体との仕事関数差によってn型半導体層もしくはp型半導体層として機能させる構造を持つSGTの製造方法と、その結果得られるSGTの構造を提供することを目的とする。
本発明の半導体装置の製造方法は、半導体基板上にフィン状半導体層を形成し、前記フィン状半導体層の周囲に第1の絶縁膜を形成する第1工程と、前記第1工程の後、柱状半導体層と第1のポリシリコンによる第1のダミーゲートを形成する第2工程と、前記第2工程の後、前記第1のダミーゲートと前記柱状半導体層の側壁に第2のダミーゲートを形成する第3工程と、前記第3工程の後、前記第2のダミーゲートの周囲に、サイドウォール状に残存させ、第5の絶縁膜からなるサイドウォールを形成し、前記フィン状半導体層上部と前記柱状半導体層下部に第2の拡散層を形成し、前記第2の拡散層上に金属と半導体の化合物を形成する第4工程と、前記第4の工程の後、層間絶縁膜を堆積し、前記第2のダミーゲートと前記第1のダミーゲートの上部を露出し、前記第2のダミーゲートと前記第1のダミーゲートを除去し、第1のゲート絶縁膜を前記柱状半導体層の周囲と前記第5の絶縁膜の内側に形成し、第1の金属を堆積し、ゲート電極及びゲート配線を形成する第5工程と、前記第5の工程の後、前記柱状半導体層周囲と前記ゲート電極と前記ゲート配線上に第2のゲート絶縁膜を堆積し、前記ゲート配線上の一部の前記第2のゲート絶縁膜を除去し、第2の金属を堆積し、エッチバックを行い、前記柱状半導体層上の前記第2のゲート絶縁膜を除去し、第3の金属を堆積し、前記第3の金属と前記第2の金属の一部をエッチングすることで、第2の金属が前記柱状半導体層上部側壁を取り囲む第1のコンタクトと、前記第1のコンタクトの上部と前記柱状半導体層上部とを接続する第2のコンタクトと、前記ゲート配線上に形成された前記第2の金属と前記第3の金属からなる第3のコンタクトを形成する第6の工程を有することを特徴とする。
また、前記第2工程であって、前記フィン状半導体層の周囲に第2の絶縁膜を形成し、前記第2の絶縁膜の上に前記第1のポリシリコンを堆積し平坦化し、前記ゲート配線と前記柱状半導体層を形成するための第2のレジストを、前記フィン状半導体層の方向に対して垂直の方向に形成し、前記第1のポリシリコンと前記第2の絶縁膜と前記フィン状半導体層をエッチングすることにより、前記柱状半導体層と前記第1のポリシリコンによる前記第1のダミーゲートを形成することを特徴とする。
また、前記第3工程であって、前記柱状半導体層と前記第1のダミーゲートの周囲に第4の絶縁膜を形成し、前記第4の絶縁膜の周囲に第2のポリシリコンを堆積し、エッチングをすることにより、前記第1のダミーゲートと前記柱状半導体層の側壁に残存させ、前記第2のダミーゲートを形成することを特徴とする。
また、前記第4工程であって、前記第2のダミーゲートの周囲に、前記第5の絶縁膜を形成し、エッチングをし、サイドウォール状に残存させ、前記第5の絶縁膜からなるサイドウォールを形成し、前記フィン状半導体層上部と前記柱状半導体層下部に前記第2の拡散層を形成し、前記第2の拡散層上に前記金属と半導体の化合物を形成することを特徴とする。
また、前記第5工程であって、層間絶縁膜を堆積し化学機械研磨し、前記第2のダミーゲートと前記第1のダミーゲートの上部を露出し、前記第2のダミーゲートと前記第1のダミーゲートを除去し、前記第2の絶縁膜と前記第4の絶縁膜を除去し、第1のゲート絶縁膜を前記柱状半導体層の周囲と前記第5の絶縁膜の内側に形成し、第1の金属を堆積し、エッチバックを行い、前記ゲート電極及び前記ゲート配線を形成することを特徴とする。
また、前記第2の絶縁膜の上に前記第1のポリシリコンを堆積し平坦化後、前記第1のポリシリコン上に第3の絶縁膜を形成することをさらに含むことを特徴とする。
また、前記第4の工程の後、コンタクトストッパ膜を堆積することをさらに有することを特徴とする。
また、前記第5工程の後、前記第1のゲート絶縁膜を除去する工程をさらに有することを特徴とする。
また、前記第1のコンタクトの金属の仕事関数は、4.0eVから4.2eVの間であることを特徴とする。
また、前記第1のコンタクトの金属の仕事関数は、5.0eVから5.2eVの間であることを特徴とする。
また、本発明の半導体装置は、半導体基板上に形成されたフィン状半導体層と、前記フィン状半導体層の周囲に形成された第1の絶縁膜と、前記フィン状半導体層上に形成された柱状半導体層と、前記柱状半導体層の周囲に形成された第1のゲート絶縁膜と、前記第1のゲート絶縁膜の周囲に形成された金属からなるゲート電極と、前記ゲート電極に接続された前記フィン状半導体層に直交する方向に延在する金属からなるゲート配線と、前記ゲート電極と前記ゲート配線の周囲と底部に形成された前記第1のゲート絶縁膜と、前記ゲート電極の外側の幅と前記ゲート配線の幅は同じであって、前記フィン状半導体層の上部と前記柱状半導体層の下部に形成された第2の拡散層と、前記柱状半導体層の上部側壁の周囲に形成された第2のゲート絶縁膜と、前記第2のゲート絶縁膜の周囲に形成された第2の金属からなる第1のコンタクトと、前記第1のコンタクトの上部と前記柱状半導体層上部とを接続する第3の金属からなる第2のコンタクトと、前記ゲート配線上に形成された前記第2の金属と前記第3の金属からなる第3のコンタクトを有することを特徴とする。
また、前記第1のコンタクトのゲート配線に直交する方向の幅は、前記第3のコンタクトのゲート配線に直交する方向の幅と等しいことを特徴とする。
また、前記第1のコンタクトのゲート配線に直交する方向の幅は、前記ゲート配線のゲート配線に直交する方向の幅と等しいことを特徴とする。
また、前記第3のコンタクトのゲート配線に直交する方向の幅は、前記ゲート配線のゲート配線に直交する方向の幅と等しいことを特徴とする。
また、前記第1のコンタクトのゲート配線に直交する方向の幅は、前記第2のコンタクトのゲート配線に直交する方向の幅と等しいことを特徴とする。
また、前記第1のコンタクトの周囲と底部に形成された前記第2のゲート絶縁膜をさらに有することを特徴とする。
また、前記第1のコンタクトの第2の金属の仕事関数は、4.0eVから4.2eVの間であることを特徴とする。
また、前記第1のコンタクトの第2の金属の仕事関数は、5.0eVから5.2eVの間であることを特徴とする。
本発明によれば、2個のマスクで、フィン状半導体層、柱状半導体層、ゲート電極とゲート配線を形成し、ゲートラストプロセスであり、自己整合で柱状半導体層上部を金属と半導体との仕事関数差によってn型半導体層もしくはp型半導体層として機能させる構造を持つSGTの製造方法と、その結果得られるSGTの構造を提供することができる。
半導体基板上にフィン状半導体層を形成し、前記フィン状半導体層の周囲に第1の絶縁膜を形成する第1工程と、前記第1工程の後、柱状半導体層と第1のポリシリコンによる第1のダミーゲートを形成する第2工程と、前記第2工程の後、前記第1のダミーゲートと前記柱状半導体層の側壁に第2のダミーゲートを形成する第3工程と、前記第3工程の後、前記第2のダミーゲートの周囲に、サイドウォール状に残存させ、第5の絶縁膜からなるサイドウォールを形成し、前記フィン状半導体層上部と前記柱状半導体層下部に第2の拡散層を形成し、前記第2の拡散層上に金属と半導体の化合物を形成する第4工程と、前記第4の工程の後、層間絶縁膜を堆積し、前記第2のダミーゲートと前記第1のダミーゲートの上部を露出し、前記第2のダミーゲートと前記第1のダミーゲートを除去し、第1のゲート絶縁膜を前記柱状半導体層の周囲と前記第5の絶縁膜の内側に形成し、第1の金属を堆積し、エッチバックを行い、ゲート電極及びゲート配線を形成する第5工程と、により、2個のマスクで、フィン状半導体層、柱状半導体層、後にゲート電極とゲート配線となる第1のダミーゲート及び第2のダミーゲートを形成することができ、工程数を削減することができる。
柱状半導体層と、ゲート配線との合わせずれをなくすことができる。
また、ポリシリコンで第1のダミーゲートと第2のダミーゲートを作成し、その後、層間絶縁膜を堆積後、化学機械研磨により第1のダミーゲートと第2のダミーゲートを露出し、ポリシリコンゲートをエッチング後、金属を堆積する従来のメタルゲートラストの製造方法を用いることができるため、メタルゲートSGTを容易に形成できる。
また、前記第5の工程の後、露出した前記第1のゲート絶縁膜を除去し、前記柱状半導体層周囲と前記ゲート電極と前記ゲート配線上に第2のゲート絶縁膜を堆積し、前記ゲート配線上の一部の前記第2のゲート絶縁膜を除去し、第2の金属を堆積し、エッチバックを行い、前記柱状半導体層上の前記第2のゲート絶縁膜を除去し、第3の金属を堆積し、前記第3の金属と前記第2の金属の一部をエッチングすることで、第2の金属が前記柱状半導体層上部側壁を取り囲む第1のコンタクトと、前記第1のコンタクトの上部と前記柱状半導体層上部とを接続する第2のコンタクトと、前記ゲート配線上に形成された前記第2の金属と前記第3の金属からなる第3のコンタクトを形成する第6の工程と、を有することを特徴とすることにより、柱状半導体層上部に拡散層を形成することが不要となる。また、同時にゲート配線上のコンタクトを形成することができる。
第5の工程の後、ゲート電極とゲート配線の上方には、ゲート電極とゲート配線と同じ形状の孔が残っている。従って、露出した前記第1のゲート絶縁膜を除去し、前記柱状半導体層周囲と前記ゲート電極と前記ゲート配線上に第2のゲート絶縁膜を堆積し、前記ゲート配線上の一部の前記第2のゲート絶縁膜を除去し、第2の金属を堆積し、エッチバックを行うと、ゲート電極とゲート配線と同じ形状の孔に金属が埋め込まれ、自己整合で、第2の金属が前記柱状半導体層上部側壁を取り囲む第1のコンタクトを形成することができる。
また、前記ゲート配線上の一部の前記第2のゲート絶縁膜を除去しているため、同時にゲート配線のための第3のコンタクトを形成することができ、ゲート配線のためのコンタクトを容易に形成できる。
メタルゲートラストプロセスをSGTに適用しようとすると、柱状半導体層上部がポリシリコンゲートに覆われるため、柱状半導体層上部に拡散層を形成することが難しい。従って、ポリシリコンゲート形成前に柱状半導体層上部に拡散層を形成することとなる。一方、本発明では、柱状半導体層上部に拡散層を形成せず、柱状半導体層上部を金属と半導体との仕事関数差によってn型半導体層もしくはp型半導体層として機能させることができる。従って、柱状半導体層上部に拡散層を形成する工程を削減することができる。
また、前記ゲート電極と前記ゲート配線の周囲と底部に形成された前記第1のゲート絶縁膜により、ゲート電極とゲート配線とは、柱状半導体層とフィン状半導体層とから絶縁をすることができる。
第5の工程の後のゲート電極とゲート配線の上方のゲート電極とゲート配線と同じ形状の孔を埋めることにより、第1のコンタクトと第2のコンタクトと第3のコンタクトを形成するため、前記第1のコンタクトのゲート配線に直交する方向の幅は、前記第3のコンタクトのゲート配線に直交する方向の幅と等しくなる。また、前記第1のコンタクトのゲート配線に直交する方向の幅は、前記ゲート配線のゲート配線に直交する方向の幅と等しくなる。また、前記第3のコンタクトのゲート配線に直交する方向の幅は、前記ゲート配線のゲート配線に直交する方向の幅と等しくなる。また、前記第1のコンタクトのゲート配線に直交する方向の幅は、前記第2のコンタクトのゲート配線に直交する方向の幅と等しくなる。
従って、第1のコンタクトと第2のコンタクトと第3のコンタクトは、ゲート配線と直交する方向の合わせずれをなくすことができる。
(a)は本発明に係る半導体装置の平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のX−X’線での断面図である。(c)は(a)のY−Y’線での断面図である。
以下に、本発明の実施形態に係るSGTの構造を形成するための製造工程を、図2〜図41を参照して説明する。
まず、半導体基板上にフィン状半導体層を形成し、前記フィン状半導体層の周囲に第1の絶縁膜を形成する第1工程を示す。本実施例では、シリコン基板としたが、シリコン以外の半導体を用いることもできる。
図2に示すように、シリコン基板101上にフィン状シリコン層を形成するための第1のレジスト102を形成する。
図3に示すように、シリコン基板101をエッチングし、フィン状シリコン層103を形成する。今回はレジストをマスクとしてフィン状シリコン層を形成したが、酸化膜や窒化膜といったハードマスクを用いてもよい。
図4に示すように、第1のレジスト102を除去する。
図5に示すように、フィン状シリコン層103の周囲に第1の絶縁膜104を堆積する。第1の絶縁膜として高密度プラズマによる酸化膜や低圧CVD(Chemical Vapor Deposition)による酸化膜を用いてもよい。
図6に示すように、第1の絶縁膜104をエッチバックし、フィン状シリコン層103の上部を露出する。ここまでは、非特許文献2のフィン状シリコン層の製法と同じである。
以上によりシリコン基板101上にフィン状シリコン層103を形成し、前記フィン状シリコン層103の周囲に第一の絶縁膜104を形成する第1工程が示された。
次に、前記フィン状半導体層の周囲に第2の絶縁膜を形成し、前記第2の絶縁膜の上に第1のポリシリコンを堆積し平坦化し、ゲート配線と柱状半導体層を形成するための第2のレジストを、前記フィン状半導体層の方向に対して垂直の方向に形成し、前記第1のポリシリコンと前記第2の絶縁膜と前記フィン状半導体層をエッチングすることにより、柱状半導体層と前記第1のポリシリコンによる第1のダミーゲートを形成する第2工程を示す。
図7に示すように、前記フィン状シリコン層103の周囲に第2の絶縁膜105を形成する。第2の絶縁膜105は、酸化膜が好ましい。
図8に示すように、前記第2の絶縁膜105の上に第1のポリシリコン106を堆積し平坦化する。
図9に示すように、前記第1のポリシリコン106上に第3の絶縁膜107を形成する。第3の絶縁膜107は、窒化膜が好ましい。
図10に示すように、ゲート配線と柱状シリコン層を形成するための第2のレジスト108を、前記フィン状シリコン層103の方向に対して垂直の方向に形成する。
図11に示すように、前記第3の絶縁膜107と前記第1のポリシリコン106と前記第2の絶縁膜105と前記フィン状シリコン層103をエッチングすることにより、柱状シリコン層109と前記第1のポリシリコンによる第1のダミーゲート106を形成する。このとき、第2のレジストがエッチング中に除去された場合、第3の絶縁膜107がハードマスクとして機能する。第2のレジストがエッチング中に除去されないとき、第3の絶縁膜を使用しなくてもよい。
図12に示すように、第2のレジスト108を除去する。
以上により、前記フィン状半導体層の周囲に第2の絶縁膜を形成し、前記第2の絶縁膜の上に第1のポリシリコンを堆積し平坦化し、ゲート配線と柱状半導体層を形成するための第2のレジストを、前記フィン状半導体層の方向に対して垂直の方向に形成し、前記第1のポリシリコンと前記第2の絶縁膜と前記フィン状半導体層をエッチングすることにより、柱状半導体層と前記第1のポリシリコンによる第1のダミーゲートを形成する第2工程が示された。
次に、前記第2工程の後、前記柱状半導体層と前記第1のダミーゲートの周囲に第4の絶縁膜を形成し、前記第4の絶縁膜の周囲に第2のポリシリコンを堆積し、エッチングをすることにより、前記第1のダミーゲートと前記柱状半導体層の側壁に残存させ、第2のダミーゲートを形成する第3工程を示す。
図13に示すように、前記柱状シリコン層109と前記第1のダミーゲート106の周囲に第4の絶縁膜110を形成する。第4の絶縁膜110は、酸化膜が好ましい。
図14に示すように、前記第4の絶縁膜110の周囲に第2のポリシリコン113を堆積する。
図15に示すように、第2のポリシリコン113をエッチングをすることにより、前記第1のダミーゲート106と前記柱状シリコン層109の側壁に残存させ、第2のダミーゲート113を形成する。
以上により、前記第2工程の後、前記柱状半導体層と前記第1のダミーゲートの周囲に第4の絶縁膜を形成し、前記第4の絶縁膜の周囲に第2のポリシリコンを堆積し、エッチングをすることにより、前記第1のダミーゲートと前記柱状半導体層の側壁に残存させ、第2のダミーゲートを形成する第3工程が示された。
次に、前記第2のダミーゲートの周囲に、第5の絶縁膜を形成し、エッチングをし、サイドウォール状に残存させ、前記第5の絶縁膜からなるサイドウォールを形成し、前記フィン状半導体層上部と前記柱状半導体層下部に第2の拡散層を形成し、前記第2の拡散層上に金属と半導体の化合物を形成する第4工程を示す。
図16に示すように、前記第2のダミーゲート113の周囲に、第5の絶縁膜114を形成する。第5の絶縁膜114は、窒化膜が好ましい。
図17に示すように、第5の絶縁膜114をエッチングをし、サイドウォール状に残存させ、前記第5の絶縁膜からなるサイドウォール114を形成する。
図18に示すように、不純物を導入し、前記フィン状シリコン層103上部と前記柱状シリコン層109下部に第2の拡散層115を形成する。n型拡散層のときは、砒素やリンを導入することが好ましい。p型拡散層のときは、ボロンを導入することが好ましい。不純物導入は、第5の絶縁膜を形成する前に行ってもよい。
図19に示すように、前記第2の拡散層115上に金属と半導体の化合物116を形成する。このとき、第2のダミーゲート113上部にも金属と半導体の化合物117が形成される。
以上により、前記第2のダミーゲートの周囲に、第5の絶縁膜を形成し、エッチングをし、サイドウォール状に残存させ、前記第5の絶縁膜からなるサイドウォールを形成し、前記フィン状半導体層上部と前記柱状半導体層下部に第2の拡散層を形成し、前記第2の拡散層上に金属と半導体の化合物を形成する第4工程が示された。
次に、前記第4の工程の後、層間絶縁膜を堆積し、前記第2のダミーゲートと前記第1のダミーゲートの上部を露出し、前記第2のダミーゲートと前記第1のダミーゲートを除去し、第1のゲート絶縁膜を前記柱状半導体層の周囲と前記第5の絶縁膜の内側に形成し、第1の金属を堆積し、ゲート電極及びゲート配線を形成する第5工程を示す。
図20に示すように、コンタクトストッパ膜118を堆積し、層間絶縁膜119を堆積する。コンタクトストッパ膜118として、窒化膜が好ましい。また、コンタクト孔エッチングの制御ができるときは、コンタクトストッパ膜を用いなくてもよい。
図21に示すように、化学機械研磨し、前記第2のダミーゲートと前記第1のダミーゲートの上部を露出する。このとき、第2のダミーゲート113上部に形成された金属と半導体の化合物117を除去する。
図22に示すように、前記第2のダミーゲート113と前記第1のダミーゲート106を除去する。
図23に示すように、前記第2の絶縁膜105と前記第4の絶縁膜110を除去する。
図24に示すように、第1のゲート絶縁膜120を前記柱状シリコン層109の周囲と前記第5の絶縁膜114の内側に形成し、第1の金属121を堆積する。柱状シリコン層109の周囲にゲート電極121aが形成される。また、ゲート配線121bが形成される。前記ゲート電極121aと前記ゲート配線121bの周囲と底部に形成された前記第1のゲート絶縁膜120により、ゲート電極121aとゲート配線121bとは、柱状シリコン層109とフィン状シリコン層103とから絶縁をすることができる。
図25に示すように、第1の金属121のエッチバックを行い、柱状シリコン層109上部を露出する。
以上により、前記第4の工程の後、層間絶縁膜を堆積し、前記第2のダミーゲートと前記第1のダミーゲートの上部を露出し、前記第2のダミーゲートと前記第1のダミーゲートを除去し、第1のゲート絶縁膜を前記柱状半導体層の周囲と前記第5の絶縁膜の内側に形成し、第1の金属を堆積し、ゲート電極及びゲート配線を形成する第5工程が示された。
次に、前記柱状半導体層周囲と前記ゲート電極と前記ゲート配線上に第2のゲート絶縁膜を堆積し、前記ゲート配線上の一部の前記第2のゲート絶縁膜を除去し、第2の金属を堆積し、エッチバックを行い、前記柱状半導体層上の前記第2のゲート絶縁膜を除去し、第3の金属を堆積し、前記第3の金属と前記第2の金属の一部をエッチングすることで、第2の金属が前記柱状半導体層上部側壁を取り囲む第1のコンタクトと、前記第1のコンタクトの上部と前記柱状半導体層上部とを接続する第2のコンタクトと、前記ゲート配線上に形成された前記第2の金属と前記第3の金属からなる第3のコンタクトを形成する第6の工程を示す。
図26に示すように、露出した第1のゲート絶縁膜120を除去する。
図27に示すように、柱状シリコン層109周囲とゲート電極121aとゲート配線121b上に第2のゲート絶縁膜123を堆積する。
図28に示すように、ゲート配線121b上の一部の第2のゲート絶縁膜123を除去するための第3のレジスト124を形成する。
図29に示すように、ゲート配線121b上の一部の第2のゲート絶縁膜123を除去する。
図30に示すように、第3のレジスト124を除去する。
図31に示すように、第2の金属125を堆積する。第2の金属125の金属の仕事関数は、トランジスタがn型のときは、4.0eVから4.2eVの間であることが好ましい。また、第2の金属126の仕事関数は、トランジスタがp型のときは、5.0eVから5.2eVの間であることを特徴とすることが好ましい。
図32に示すように、第2の金属125のエッチバックを行い、柱状シリコン層109上の第2のゲート絶縁膜123を露出する。
図33に示すように、露出した柱状シリコン層109上の第2のゲート絶縁膜123を除去する。
図34に示すように、第3の金属126を堆積する。第3の金属は第2の金属と同じ金属でもよい。
図35に示すように、コンタクト孔を形成するための第4のレジスト127を形成する。
図36に示すように、層間絶縁膜119とコンタクトストッパ膜118をエッチングし、コンタクト孔128を形成する。
図37に示すように、第4のレジスト127を除去する。
図38に示すように、金属配線のための第4の金属130を堆積する。このときコンタクト129が形成される。
図39に示すように、金属配線を形成し、第3の金属126と第2の金属125の一部をエッチングするための第5のレジスト131、132、133を形成する。
図40に示すように、第4の金属130をエッチングし、金属配線134、135、136を形成する。また、第3の金属126と第2の金属125の一部をエッチングすることで、第2の金属125が柱状シリコン層109上部側壁を取り囲む第1のコンタクト125aと、前記第1のコンタクト125aの上部と柱状シリコン層109上部とを接続する第2のコンタクト126aと、ゲート配線121b上に形成された第2の金属125bと第3の金属126bからなる第3のコンタクト137を形成する。金属配線形成前に、第3の金属126と第2の金属125の一部をエッチングしてもよい。従って、第1のコンタクトと第2のコンタクトと第3のコンタクトは、ゲート配線と直交する方向の合わせずれをなくすことができる。
柱状シリコン層109上部に拡散層を形成せず、柱状シリコン層上部を第2の金属とシリコンとの仕事関数差によってn型シリコン層もしくはp型シリコン層として機能させることができる。従って、柱状シリコン層上部に拡散層を形成する工程を削減することができる。
図41に示すように、第5のレジスト131、132、133を除去する。
以上により、前記柱状半導体層周囲と前記ゲート電極と前記ゲート配線上に第2のゲート絶縁膜を堆積し、前記ゲート配線上の一部の前記第2のゲート絶縁膜を除去し、第2の金属を堆積し、エッチバックを行い、前記柱状半導体層上の前記第2のゲート絶縁膜を除去し、第3の金属を堆積し、前記第3の金属と前記第2の金属の一部をエッチングすることで、第2の金属が前記柱状半導体層上部側壁を取り囲む第1のコンタクトと、前記第1のコンタクトの上部と前記柱状半導体層上部とを接続する第2のコンタクトと、前記ゲート配線上に形成された前記第2の金属と前記第3の金属からなる第3のコンタクトを形成する第6の工程が示された。
以上により、2個のマスクで、フィン状半導体層、柱状半導体層、ゲート電極とゲート配線を形成し、ゲートラストプロセスであり、自己整合で柱状半導体層上部を金属と半導体との仕事関数差によってn型半導体層もしくはp型半導体層として機能させる構造を持つSGTの製造方法が示された。
上記製造方法によって得られる半導体装置の構造を図1に示す。
シリコン基板101上に形成されたフィン状シリコン層103と、前記フィン状シリコン層103の周囲に形成された第1の絶縁膜104と、前記フィン状シリコン層103上に形成された柱状シリコン層109と、前記柱状シリコン層109の周囲に形成された第1のゲート絶縁膜120と、前記第1のゲート絶縁膜120の周囲に形成された金属からなるゲート電極121aと、前記ゲート電極121aに接続された前記フィン状シリコン層103に直交する方向に延在する金属からなるゲート配線121bと、前記ゲート電極121aと前記ゲート配線121bの周囲と底部に形成された前記第1のゲート絶縁膜120と、ここで前記ゲート電極121aの外側の幅と前記ゲート配線121bの幅は同じであり、前記フィン状シリコン層103の上部と前記柱状シリコン層109の下部に形成された第2の拡散層115と、前記柱状シリコン層109の上部側壁の周囲に形成された第2のゲート絶縁膜123と、前記第2のゲート絶縁膜123の周囲に形成された第2の金属からなる第1のコンタクト125aと、前記第1のコンタクト125aの上部と前記柱状シリコン層109上部とを接続する第3の金属からなる第2のコンタクト126bと、前記ゲート配線121b上に形成された前記第2の金属と前記第3の金属からなる第3のコンタクト137を有することを特徴とする
第5の工程の後のゲート電極とゲート配線の上方のゲート電極とゲート配線と同じ形状の孔を埋めることにより、第1のコンタクトと第2のコンタクトと第3のコンタクトを形成するため、前記第1のコンタクトのゲート配線に直交する方向の幅は、前記第3のコンタクトのゲート配線に直交する方向の幅と等しくなる。また、前記第1のコンタクトのゲート配線に直交する方向の幅は、前記ゲート配線のゲート配線に直交する方向の幅と等しくなる。また、前記第3のコンタクトのゲート配線に直交する方向の幅は、前記ゲート配線のゲート配線に直交する方向の幅と等しくなる。また、前記第1のコンタクトのゲート配線に直交する方向の幅は、前記第2のコンタクトのゲート配線に直交する方向の幅と等しくなる。
従って、第1のコンタクトと第2のコンタクトと第3のコンタクトは、ゲート配線と直交する方向の合わせずれをなくすことができる。
本発明では、柱状シリコン層109上部に拡散層を形成せず、柱状シリコン層109上部を第2の金属125とシリコンとの仕事関数差によってn型シリコン層もしくはp型シリコン層として機能させることができる。従って、柱状シリコン層上部に拡散層を形成する工程を削減することができる。
前記第2の金属125の仕事関数が4.0eVから4.2eVの間であるとき、n型シリコンの仕事関数4.05eVの近傍であるため、柱状シリコン層109上部は、n型シリコンとして機能する。この場合、第2の金属としては例えば、タンタルとチタンの化合物(TaTi)や窒化タンタル(TaN)が好ましい。
前記第2の金属125の仕事関数が5.0eVから5.2eVの間であるとき、p型シリコンの仕事関数5.15eVの近傍であるため、柱状シリコン層106上部は、p型シリコンとして機能する。この場合、第2の金属としては例えば、ルテニウム(Ru)や窒化チタン(TiN)が好ましい。
また、前記ゲート電極121aと前記ゲート配線121bの周囲と底部に形成された前記第1のゲート絶縁膜120により、ゲート電極121aとゲート配線121bとは、柱状シリコン層109とフィン状シリコン層103とから絶縁をすることができる。
セルフアラインで形成されるので、柱状シリコン層109と、ゲート配線121bとの合わせずれをなくすことができる。
なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。
例えば、上記実施例において、p型(p+型を含む。)とn型(n+型を含む。)とをそれぞれ反対の導電型とした半導体装置の製造方法、及び、それにより得られる半導体装置も当然に本発明の技術的範囲に含まれる。
101.シリコン基板
102.第1のレジスト
103.フィン状シリコン層
104.第1の絶縁膜
105.第2の絶縁膜
106.第1のポリシリコン、第1のダミーゲート
107.第3の絶縁膜
108.第2のレジスト
109.柱状シリコン層
110.第4の絶縁膜
113.第2のポリシリコン、第2のダミーゲート
114.第5の絶縁膜、第5の絶縁膜からなるサイドウォール
115.第2の拡散層
116.金属と半導体の化合物
117.金属と半導体の化合物
118.コンタクトストッパ膜
119.層間絶縁膜
120.第1のゲート絶縁膜
121.第1の金属
121a.ゲート電極
121b.ゲート配線
123.第2のゲート絶縁膜
124.第3のレジスト
125.第2の金属
125a.第1のコンタクト
125b.第2の金属
126.第3の金属
126a.第2のコンタクト
126b.第3の金属
127.第4のレジスト
128.コンタクト孔
129.コンタクト
130.第4の金属
131.第5のレジスト
132.第5のレジスト
133.第5のレジスト
134.金属配線
135.金属配線
136.金属配線
137.第3のコンタクト

Claims (1)

  1. 半導体基板上に形成されたフィン状半導体層と、
    前記フィン状半導体層の周囲に形成された第1の絶縁膜と、
    前記フィン状半導体層上に形成された柱状半導体層と、
    前記柱状半導体層の周囲に形成された第1のゲート絶縁膜と、
    前記第1のゲート絶縁膜の周囲に形成された金属からなるゲート電極と、
    前記ゲート電極に接続された前記フィン状半導体層に直交する方向に延在する金属からなるゲート配線と、
    前記ゲート電極と前記ゲート配線の周囲と底部に形成された前記第1のゲート絶縁膜と、
    前記柱状半導体層の上部側壁の周囲に形成された第2のゲート絶縁膜と、
    前記第2のゲート絶縁膜の周囲に形成された第2の金属からなる第1のコンタクトと、
    前記ゲート配線上に形成された前記第2の金属を含む第3のコンタクトと、
    を有し、
    前記第1のコンタクトの上部と前記柱状半導体層上部が電気的に接続されていることを特徴とする半導体装置。
JP2015090650A 2015-04-27 2015-04-27 半導体装置の製造方法、及び、半導体装置 Active JP5890053B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015090650A JP5890053B2 (ja) 2015-04-27 2015-04-27 半導体装置の製造方法、及び、半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015090650A JP5890053B2 (ja) 2015-04-27 2015-04-27 半導体装置の製造方法、及び、半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014536016A Division JP5740535B1 (ja) 2013-07-19 2013-07-19 半導体装置の製造方法、及び、半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016027697A Division JP6326437B2 (ja) 2016-02-17 2016-02-17 半導体装置の製造方法、及び、半導体装置

Publications (2)

Publication Number Publication Date
JP2015159320A JP2015159320A (ja) 2015-09-03
JP5890053B2 true JP5890053B2 (ja) 2016-03-22

Family

ID=54183058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015090650A Active JP5890053B2 (ja) 2015-04-27 2015-04-27 半導体装置の製造方法、及び、半導体装置

Country Status (1)

Country Link
JP (1) JP5890053B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110050A1 (ja) * 2008-02-15 2009-09-11 日本ユニサンティスエレクトロニクス株式会社 半導体装置の製造方法
JP2012004473A (ja) * 2010-06-21 2012-01-05 Renesas Electronics Corp 半導体装置及び半導体装置の製造方法
FR2968125B1 (fr) * 2010-11-26 2013-11-29 Centre Nat Rech Scient Procédé de fabrication d'un dispositif de transistor a effet de champ implémenté sur un réseau de nanofils verticaux, dispositif de transistor résultant, dispositif électronique comprenant de tels dispositifs de transistors, et processeur comprenant au moins un tel dispositif électronique
US8759178B2 (en) * 2011-11-09 2014-06-24 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
CN103201842A (zh) * 2011-11-09 2013-07-10 新加坡优尼山帝斯电子私人有限公司 半导体器件的制造方法及半导体器件

Also Published As

Publication number Publication date
JP2015159320A (ja) 2015-09-03

Similar Documents

Publication Publication Date Title
JP5731073B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5822326B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5759077B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5779739B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5838529B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5902868B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5680801B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5740535B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP6368836B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6326437B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5890053B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6080989B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5869166B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6329299B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6033938B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5861197B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6121386B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6211637B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6154051B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6285393B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5989197B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP2016146503A (ja) 半導体装置の製造方法及び半導体装置
JP2015079988A (ja) 半導体装置の製造方法及び半導体装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160217

R150 Certificate of patent or registration of utility model

Ref document number: 5890053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250