WO2014198238A1 - 正极材料及其制备方法 - Google Patents

正极材料及其制备方法 Download PDF

Info

Publication number
WO2014198238A1
WO2014198238A1 PCT/CN2014/079866 CN2014079866W WO2014198238A1 WO 2014198238 A1 WO2014198238 A1 WO 2014198238A1 CN 2014079866 W CN2014079866 W CN 2014079866W WO 2014198238 A1 WO2014198238 A1 WO 2014198238A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode material
lithium
sintering
hydroxide
Prior art date
Application number
PCT/CN2014/079866
Other languages
English (en)
French (fr)
Inventor
陈璞
端南朗
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2014198238A1 publication Critical patent/WO2014198238A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1257Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing lithium, e.g. Li2MnO3, Li2[MxMn1-xO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of batteries, and particularly relates to a preparation method of a cathode material and a cathode material. Background technique
  • the main constituent materials include positive electrode materials, negative electrode materials, electrolytes, and separators; in general, among the components of lithium-ion batteries, the positive electrode materials occupy the most important position, and the positive electrode materials are good or bad. Directly affect the performance of the final lithium-ion battery.
  • lithium cobalt oxide is still the most widely used cathode material for lithium ion batteries.
  • performance of lithium ion batteries continues to increase, its capacity and safety are gradually difficult to meet the demand.
  • lack of cobalt resources has caused the price of cobalt to soar.
  • the existing binary positive electrode material and the ternary positive electrode material are prepared by a coprecipitation method.
  • the coprecipitation method generally includes a coprecipitation step and a sintering step.
  • the coprecipitation step is to form a transition metal ion such as Ni, Mn or Co by a precipitant to form a precursor of the positive electrode material; and in the sintering step, the precursor of the positive electrode material and the lithium source are sintered at a high temperature to form a positive electrode material.
  • the positive electrode material is prepared by the coprecipitation method, and the synthesis route is long, the steps are cumbersome, the yield is small, and the cost is high; in addition, the process is difficult to control and a large amount of by-products are generated in the coprecipitation step.
  • the technical problem to be solved by the present invention is that the preparation method of the existing positive electrode material has a long synthetic route and is cumbersome.
  • the invention provides a preparation method of a cathode material, which comprises the following steps:
  • the raw materials including nickel hydroxide, manganese carbonate, and lithium hydroxide and/or lithium carbonate;
  • the raw material further comprises cobalt hydroxide.
  • the sintering temperature is 940-960 °C.
  • the sintering time is from 1 to 18 hours.
  • the sintering time is 2-7 h.
  • the preparation method further comprises the step of pre-sintering the raw material; the pre-sintering temperature is lower than the sintering temperature.
  • the pre-sintering temperature is from 400 to 600.
  • the pre-sintering time is 2-6 h.
  • the oxygen-containing atmosphere is an air atmosphere.
  • the present invention also provides a positive electrode material which is prepared by the production method of the present invention.
  • the preparation method of the positive electrode material of the present invention removes the coprecipitation step compared with the coprecipitation method, so the synthesis route is short, the tube is easy to operate, the equipment requirements are low, the output is large, and the cost is low.
  • the process is easy to control and does not produce by-products of waste liquid such as coprecipitation.
  • the positive electrode material containing the impurity-free phase is obtained by the production method of the present invention, has high purity, high specific capacity, and good cycle performance of the battery.
  • Fig. 2 is an XRD pattern of the positive electrode material of Example 1 and Comparative Example 1.
  • Fig. 3 is an XRD pattern of the positive electrode materials of Example 2 and Comparative Example 2.
  • Fig. 4 is an XRD pattern of the positive electrode materials of Example 1 and Example 2.
  • Fig. 5 is a 0.2C charge and discharge graph of the battery produced in Example 2.
  • Fig. 6 is a 0.2C cycle chart of the battery produced in Example 2.
  • Figure 7 is a graph showing the effect of sintering time versus capacity on lithium-rich NCM cathode materials.
  • Figure 8 is a graph showing the effect of sintering time versus capacity on lithium-rich NM cathode materials.
  • Fig. 9 is a graph showing the rate cycling of the battery produced in Example 6.
  • a method for preparing a positive electrode material comprising the steps of:
  • the raw materials including nickel hydroxide, manganese carbonate, and lithium hydroxide and/or lithium carbonate;
  • a metal composite oxide containing Li, Ni and Mn is obtained.
  • the raw material of the present invention is nickel hydroxide, manganese carbonate, lithium hydroxide, or the raw materials are nickel hydroxide, manganese carbonate, or lithium carbonate.
  • the raw materials of the present invention are nickel hydroxide, manganese carbonate, lithium hydroxide and M source, or the raw materials are nickel hydroxide, manganese carbonate, lithium carbonate and M source.
  • the starting material of the present invention further comprises cobalt hydroxide.
  • cobalt hydroxide can be selectively added.
  • the raw material of the present invention contains nickel hydroxide, manganese carbonate, lithium hydroxide, or the raw material contains nickel hydroxide, manganese carbonate, and lithium carbonate.
  • the raw material of the present invention contains nickel hydroxide, cobalt hydroxide, manganese carbonate, lithium hydroxide, or the raw material contains nickel hydroxide, cobalt hydroxide, manganese carbonate, and lithium carbonate.
  • the ratio of nickel hydroxide, manganese carbonate, cobalt hydroxide, lithium hydroxide/lithium carbonate in the raw material of the present invention can be calculated from the content of the metal element in the positive electrode material to be synthesized.
  • the content of lithium hydroxide/lithium carbonate in the raw material is proportional to the degree of lithium enrichment of the cathode material.
  • the purity of the raw material of the present invention is preferably more than 98% by weight.
  • the raw material of the invention can effectively ensure the sufficient reaction of each component of the raw material at the sintering temperature of the invention, and reduce the generation of side reactions, thereby effectively avoiding the generation of by-products (impurity phases), A positive electrode material having a single phase is obtained.
  • the raw materials After determining the ratio of the raw materials, the raw materials are sent to a ball mill for ball milling.
  • the raw materials can be mixed by step milling or by ball milling.
  • the raw materials may be added to the ball mill in a ball mill for ball-mixing, or nickel hydroxide, cobalt hydroxide, and manganese carbonate may be ball-milled and then mixed with lithium hydroxide by ball milling.
  • the invention may be a two-step ball milling blend or a three-step ball mill blend.
  • the two components of the raw material are first ball milled and mixed, and the other two components are ball milled and mixed, and finally ball milled and mixed. It is also possible to first ball mill the two components of the raw material, and then add the other two components in a ball mill mixture.
  • the present invention has no limitation on the order of mixing the components in the raw material, and may be, for example, cobalt hydroxide and nickel hydroxide, manganese carbonate, and finally lithium hydroxide; or cobalt hydroxide, nickel hydroxide and lithium carbonate. The last manganese carbonate.
  • the ball mill used in the ball milling of the present invention may be various ball mills in the art.
  • planetary ball mills for example, tubular ball mills, horizontal ball mills, or vertical ball mills.
  • a ball that does not chemically react with each component of the raw material during ball milling for example, a zirconia grinding ball, an alumina grinding ball, a ceramic grinding ball, a metal grinding ball, or the like may be used.
  • the invention has no special requirement for the shape of the grinding ball, and the shape of the grinding ball can be either a conventional spherical shape or a football shape or the like.
  • the grinding balls of the present invention are used in an amount such that the weight of the grinding balls is 5 to 10 times, more preferably 6.7 times, the weight of the raw materials. This can effectively improve the ball grinding effect and reduce the loss of the material adhering to the grinding ball.
  • the ball mill of the present invention has a rotational speed of from 100 to 500 rad/min, more preferably from 200 to 300 rad/min.
  • the ball milling time is 0.5-8 h, more preferably l -6 h.
  • the ball mill of the present invention may be a thousand mill, that is, without adding a dispersing agent, directly feeding the raw material into a ball mill in a ball mill; or may be a wet ball milling, that is, adding a dispersing agent during ball milling.
  • the ball mill of the present invention is wet ball milled. It can better mix raw materials, and is a positive electrode material which is more uniformly dispersed and more advantageous for synthetic performance.
  • the dispersing agent in the wet ball milling uses a liquid which does not chemically react with each component of the raw material during ball milling, such as water, ethanol, toluene, acetone, and the like.
  • the dispersing agent of the present invention is preferably water or ethanol.
  • the oxygen-containing atmosphere at the time of sintering of the present invention serves to provide oxygen which participates in the reaction during the sintering process.
  • the oxygen-containing atmosphere during sintering of the present invention may be an air atmosphere, an oxygen atmosphere, or an atmosphere formed by mixing oxygen with other gases not participating in the reaction.
  • the sintering temperature of the present invention is 905-995 °C.
  • the sintering temperature is lower than 905 °C, a large amount of impurity phase is formed in the positive electrode material, resulting in a decrease in the specific capacity of the battery.
  • the sintering temperature is higher than 995 °C, the structure of the crystal of the positive electrode material is easily disordered, resulting in poor electrochemical performance of the positive electrode material.
  • the components of the raw material can be sufficiently reacted without substantial loss, the crystal structure of the positive electrode material is regular, no by-products are produced, and a positive electrode material containing almost no impurity phase can be obtained, and the specific capacity of the positive electrode material is obtained. And excellent cycle performance.
  • the sintering temperature of the present invention is 940-960 ° C, more preferably 950 ° C.
  • the prepared positive electrode material is superior in specific capacity and cycle performance.
  • the sintering time of the present invention is from 1 to 18 hours, more preferably from 2 to 7 hours. This effectively ensures that there is sufficient time for each transition metal ion to be hooked in the crystal of the positive electrode material.
  • the preparation method of the present invention further comprises pre-sintering the raw material after ball milling and between sintering, and the pre-sintering temperature of the present invention is lower than the sintering temperature.
  • pre-sintering the raw materials can be decomposed to prepare for subsequent sintering, and pre-sintering can also enhance the contact between the raw material particles, prompting the product phase to be formed in a shorter period of time.
  • the pre-sintering temperature of the present invention is from 400 to 600 ° C, more preferably 500 ° C. At this temperature, the pre-sintering effect is better, and the prepared cathode material is more excellent in electrochemical performance.
  • the pre-sintering time of the present invention is 4-6 h, more preferably 5 h.
  • the present invention preferably has a heating rate of 10-20 ° C / min at the time of sintering or pre-sintering.
  • the raw material is sintered with nickel oxide, manganese carbonate, lithium hydroxide and/or lithium carbonate, and sintered at 905-995 ° C, so that each component in the raw material can be sufficiently reacted after being sufficiently mixed, and is effective. Inhibition of side reactions (such as nickel hydroxide and lithium hydroxide or lithium carbonate alone), avoiding the production of by-products (ie, impurity phase, such as LiQ. 3 Nio. 70 ), and finally forming a positive electrode with a single phase.
  • the material has excellent electrochemical properties.
  • the present invention also provides a positive electrode material obtained by the production method of the present invention.
  • the ball milled product was then fed to a sintering furnace and sintered at 95 CTC for 6 h under an air atmosphere.
  • a positive electrode material LiNi 1/3 Co 1/3 Mn 1/3 0 2 was obtained , which was designated as Al.
  • Example 1 The difference from Example 1 was that the sintering temperature was 900 ° C, and the other portions were the same as in Example 1. A positive electrode material was obtained, which was designated as D1.
  • Example 2 The difference from Example 1 was that lithium hydroxide was used in place of lithium hydroxide, and the other portions were the same as in Example 1.
  • a positive electrode material LiNi 1/3 Co 1/3 Mn 1/3 0 2 was obtained , which was designated as A2.
  • Example 2 The difference from Example 2 was that the sintering temperature was 85 CTC, and the other portions were the same as in Example 2. A positive electrode material was obtained, which was designated as D2.
  • Ll cathode material 0.5Li 2 MnO 3 ⁇ 0.5LiNi 0 . 5 Co 0 . 2 Mn 0 . 3 O 2 , has been made A3.
  • Example 3 The difference from Example 3 was that the sintering time was 12 h, and the other portions were the same as in Example 3.
  • Ll cathode material 0.5Li 2 MnO 3 ⁇ 0.5LiNi 0 . 5 Co 0 . 2 Mn 0 . 3 O 2 , has been used as ⁇ 4.
  • Example 3 The difference from Example 3 was that the sintering time was 18 h, and the other portions were the same as in Example 3.
  • Ll cathode material 0.5Li 2 MnO 3 ⁇ 0.5LiNi 0 . 5 Co 0 . 2 Mn 0 . 3 O 2 , as ⁇ 5.
  • the ball milled product was then fed into a sintering furnace and pre-fired at 50 CTC for 5 h in an air atmosphere and then sintered at 950 ° C for 6 h.
  • Ll cathode material 0.5Li 2 MnO 3 ⁇ 0.5LiNi 0 . 5 Co 0 . 2 Mn 0 . 3 O 2 , as ⁇ 6.
  • Example 6 The difference from Example 6 was that the sintering time was 12 h, and the other portions were the same as in Example 3.
  • Ll cathode material 0.5Li 2 MnO 3 ⁇ 0.5LiNi 0 . 5 Co 0 . 2 Mn 0 . 3 O 2 , as ⁇ 7.
  • Example 6 The difference from Example 6 was that the sintering time was 18 h, and the other portions were the same as in Example 3.
  • Ll cathode material 0.5Li 2 MnO 3 ⁇ 0.5LiNi 0 . 5 Co 0 . 2 Mn 0 . 3 O 2 , has been used as ⁇ 8.
  • the ball milled product was then fed to a sintering furnace and sintered at 95 CTC for 6 h under an air atmosphere.
  • the ill positive electrode material 0.5Li 2 MnO 3 ⁇ 0.5LiNi 0 . 5 Mn 0 . 5 O 2 , has been used as ⁇ 9.
  • Example 9 The difference from Example 9 was that the sintering time was 12 h, and the other portions were the same as in Example 3.
  • a 10 a positive electrode material 0.5Li 2 MnO 3 ⁇ 0.5LiNi 0. 5 Mn 0. 5 O 2, referred to as A 10.
  • Example 11 The difference from Example 9 was that the sintering time was 18 h, and the other portions were the same as in Example 3.
  • the ill positive electrode material 0.5Li 2 MnO 3 ⁇ 0.5LiNi 0 . 5 Mn 0 . 5 O 2 , has been made All.
  • the ball milled product was then fed to a sintering furnace and pre-fired at 50 CTC for 5 h in an air atmosphere and then sintered at 950 ° C for 6 h.
  • Example 12 The difference from Example 12 was that the sintering time was 12 h, and the other portions were the same as in Example 3.
  • the ill positive electrode material 0.5Li 2 MnO 3 ⁇ 0.5LiNi 0 . 5 Mn 0 . 5 O 2 , has been used as ⁇ 13.
  • Example 12 The difference from Example 12 was that the sintering time was 18 h, and the other portions were the same as in Example 3.
  • Example 1 The raw materials of Example 1 and the raw materials of Example 2 were respectively subjected to a thermogravimetric test, and the results are shown in the figure.
  • the two raw materials have different thermogravimetric characteristics, and the decomposition temperature of the raw material of Example 2 is significantly lower than that of the raw material of Example 1, which indicates that the raw material of Example 2 is more advantageous for the synthetic preparation of the positive electrode material.
  • the positive electrode materials Al and D1 were respectively subjected to XRD tests, and the results are shown in Fig. 2.
  • the positive electrode materials A2 and D2 were respectively subjected to XRD tests, and the results are shown in Fig. 3.
  • the preparation method of the present invention effectively suppresses the generation of an impurity phase. It can also be seen from Fig. 2 and Fig. 3 that the peak intensity of Example 1 is significantly larger than that of Comparative Example 1, and the peak intensity of Example 2 is significantly larger than that of Comparative Example 2. This indicates that the positive electrode material obtained by the preparation method of the present invention has a better crystal structure and superior performance.
  • Example 2 As can be seen from FIG. 4, the peak of Example 2 is stronger than the peak intensity of Example 1, and the positive electrode material of Example 2 of the present invention has better crystal structure than that of the positive electrode material of Example 1, and the performance is superior.
  • Positive electrode sheet 80 wt% of positive electrode material, 10 wt% of conductive agent acetylene black (purity of 99.5 %, MTI), and 10 wt% of binder polyvinylidene fluoride (Kynar, HSV900) were dissolved in N-methylpyrrolidine ( NMP) (purity ⁇ 99.5 %, Sigma-Aldrich), which was drawn on aluminum foil and dried to form a positive electrode sheet.
  • NMP N-methylpyrrolidine
  • the amount of the positive electrode dressing is greater than 5 mg/cm 2 .
  • Electrolyte lmol/L lithium hexafluoroacetate LiPF 6
  • solvent ethylene carbonate EC, diethyl carbonate DEC, dimethyl carbonate DMC with a mass of 1:1:1.
  • the positive electrode sheet and the lithium metal sheet, and the electrolyte were made into a button battery (CR3025).
  • the positive electrode material A2 was fabricated into a battery according to the above battery preparation method, and the battery was subjected to a charge and discharge curve test at 0.2 C and an average operating voltage of 3.75 V, and the results are shown in Fig. 5.
  • the reversible specific capacity is 155 mAh/g, which is substantially the same as the specific capacity of the ternary material prepared by the coprecipitation method.
  • the positive electrode materials A 1 - A 2 and D 1 - D 2 were respectively fabricated into batteries according to the above-described battery preparation method, and charged and discharged at 0.2 C, and the first specific capacity was recorded. The results are shown in Table 1.
  • the positive electrode materials A3-A8 were separately fabricated into batteries according to the above-described battery preparation method, and after 10 cycles at 0. 1 C, the specific capacity was recorded, and the results are shown in Fig. 7.
  • the positive electrode material A9-A 14 was separately fabricated into a battery according to the above-described battery preparation method, and after 10 cycles at 0 ° C, the specific capacity was recorded, and the results are shown in Fig. 8.
  • the maximum specific capacity of the lithium-rich NM positive electrode material is 165 mAh/g without pre-sintering, that is, the maximum value is obtained at a sintering time of 12 h.
  • the maximum specific capacity of the lithium-rich NM cathode material is 215 mAh/g, that is, the maximum value is reached at a sintering time of 6 h, and the specific capacity decreases as the sintering time increases.
  • the positive electrode material A2 was fabricated into a battery according to the above-described battery preparation method, and subjected to a charge and discharge cycle performance test at 0.2 C, and the results are shown in Fig. 6.
  • the positive electrode material A6 was fabricated into a battery according to the above battery preparation method, and after circulating 25 times at 2.5-4.8 V, 0.1 C, 0.1 C, 0.2 C, 0.5 C, 1 C, 2 C, 5 C were sequentially performed at 2.5-4.6 V. 0. 1C 5 cycles each, and the last 0.5C cycle 30 times. The discharge specific capacity during the cycle was recorded, and the results are shown in Fig. 9.
  • the discharge specific capacity of Example 6 can still exceed 205 mAh/g when the charging voltage is reduced to 4.6V.
  • the specific discharge capacity can still exceed 155mAh/g.
  • its initial capacity can be restored at 100% at 0.1 C. After that, the capacity can be kept stable by circulating 25 times at 0.5C.
  • the positive electrode material synthesized by the preparation method of the present invention has excellent cycle performance and rate discharge performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

正极材料及其制备方法。制备方法包括,将原料进行球磨混合,原料包括氢氧化镍、碳酸锰、以及氢氧化锂和/或碳酸锂;在含氧气氛下在905-995°C下烧结;得到含Li、Ni和Mn的金属复合氧化物。制备方法合成路线短、简单易行、产量大、成本低;且容易控制、并不产生副产物。

Description

正极材料及其制备方法 技术领域
本发明属于电池领域, 具体涉及一种正极材料的制备方法及正极材料。 背景技术
手机、 笔记本电脑、 数码相机、 电动工具等便携式电子产品在市场上的 广泛应用, 带动了锂离子电池的快速发展。 对锂离子电池而言, 主要构成材 料包括正极材料、 负极材料、 电解液以及隔膜等; 一般来说, 在锂离子电池 组成成分中, 正极材料占据着最重要的地位, 正极材料的好坏, 直接影响了 最终锂离子电池的性能指标。
目前钴酸锂仍是应用最广泛的锂离子电池正极材料, 但是随着人们对锂 离子电池性能的不断提高, 其容量和安全性逐渐难以满足需求, 加之钴资源 缺乏造成钴价飞涨,亟需替代钴酸锂的正极材料。故如何获取制备工艺筒单、 性能优异、 价格便宜的正极材料是当今锂离子电池发展过程中关键性因素。
近年来, 人们陆续开发了二元正极材料、 三元正极材料。 现有的二元正 极材料、 三元正极材料多釆用共沉淀法来制备。 在制备二元正极材料、 三元 正极材料时, 共沉淀法一般包括共沉淀步骤和烧结步骤。 其中, 共沉淀步骤 是将 Ni、 Mn或 Co等过渡金属离子, 利用沉淀剂共同沉积形成正极材料前躯 体; 而烧结步骤是将正极材料前躯体和锂源一起高温烧结, 最终形成正极材 料。
但是, 共沉淀法制备正极材料, 其合成工艺路线长、 步骤繁瑣、 产量小、 成本高; 另外, 在共沉淀步骤时工艺难以控制、 且产生大量副产物。
发明内容
本发明所要解决的技术问题是, 现有正极材料的制备方法合成工艺路线 长, 步骤繁瑣。
本发明提供了一种正极材料的制备方法, 其包括如下步骤:
( 1 ) 将原料进行球磨混合, 所述原料包括氢氧化镍、 碳酸锰、 以及氢 氧化锂和 /或碳酸锂;
( 2 ) 在含氧气氛下, 在 905-995 °C下烧结; 得到含 Li、 Ni和 Mn的金属复合氧化物。
优选地, 所述原料还包括氢氧化钴。
优选地, 所述烧结的温度为 940-960 °C。
优选地, 所述烧结的时间为 l - 18h。
更优选地, 所述烧结的时间为 2-7h。
优选地, 在球磨之后、 在烧结之前, 所述制备方法还包括对原料进行预 烧结的步骤; 所述预烧结的温度低于烧结的温度。
更优选地, 所述预烧结的温度为 400-600 。
更优选地, 所述预烧结的时间为 2-6h。
优选地, 所述含氧气氛为空气气氛。
本发明还提供了一种正极材料, 所述正极材料釆用本发明的制备方法制 付。
与现有技术相比, 本发明的正极材料制备方法, 相比共沉淀法而言, 删 除了共沉淀步骤, 因此合成路线短、 筒单易行、 对设备的要求低、 产量大、 成本低; 工艺容易控制、 并不产生如共沉淀的废液的副产物。 最重要的是, 釆用本发明的制备方法得到正极材料不含杂质相、 纯度高、 且比容量高、 电 池循环性能好。
附图说明
图 1是实施例 1与实施例 2的原料的热重分析图谱。
图 2是实施例 1与对比例 1的正极材料的 XRD图谱。
图 3是实施例 2与对比例 2的正极材料的 XRD图谱。
图 4是实施例 1与实施例 2的正极材料的 XRD图谱。
图 5是实施例 2制成的电池的 0.2C充放电曲线图。
图 6是实施例 2制成的电池的 0.2C循环曲线图。
图 7是富锂 NCM正极材料的烧结时间对比容量影响的关系图。
图 8是富锂 NM正极材料的烧结时间对比容量影响的关系图。
图 9是实施例 6制成的电池的倍率循环曲线图。
具体实施方式
为了使本发明所解决的技术问题、 技术方案及有益效果更加清楚明白, 以下结合实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的 具体实施例仅仅用以解释本发明, 并不用于限定本发明。
一种正极材料的制备方法, 其包括如下步骤:
( 1 ) 将原料进行球磨混合, 所述原料包括氢氧化镍、 碳酸锰、 以及氢 氧化锂和 /或碳酸锂;
( 2 ) 在含氧气氛下, 在 905-995 °C下烧结;
得到含 Li、 Ni和 Mn的金属复合氧化物。
本发明的正极材料制备方法所适用的正极材料, 可以是通式 I所示的金 属复合氧化物; 通式 I为 Lix(NiaMnbMc)h02的金属复合氧化物, 其中 M为 掺杂元素, 0.8 < x < 1.2 , 0<a<l , 0<b< l , 0 < c< l , a+b+c= l。 其可以是掺杂或 未掺杂的二元正极材料、掺杂或未掺杂的三元正极材料。特别需要指出的是, 本发明的制备方法同样适用于富锂二元正极材料或富锂三元正极材料。
其中, 在不含 M元素的情况下, 即 c=0时, 本发明的原料为氢氧化镍、 碳酸锰、 氢氧化锂, 或原料为氢氧化镍、 碳酸锰、 碳酸锂。
在含 M元素的情况下, 即 c≠0时, 本发明的原料为氢氧化镍、碳酸锰、 氢氧化锂和 M源, 或原料为氢氧化镍、 碳酸锰、 碳酸锂和 M源。
优选情况下, 本发明的原料还包括氢氧化钴。
根据合成的正极材料中是否含钴, 可以选择性加入氢氧化钴。 例如, 当 制备锂镍锰的二元正极材料时, 本发明的原料含氢氧化镍、 碳酸锰、 氢氧化 锂, 或原料含氢氧化镍、 碳酸锰、 碳酸锂。 当制备锂镍钴锰的三元材料时, 本发明的原料含氢氧化镍、 氢氧化钴、 碳酸锰、 氢氧化锂, 或原料含氢氧化 镍、 氢氧化钴、 碳酸锰、 碳酸锂。
本发明的原料中氢氧化镍、碳酸锰、氢氧化钴、氢氧化锂 /碳酸锂的比例, 可以根据需要合成的正极材料中金属元素的含量来计算配比。 例如, 在制备 富锂正极材料时,原料中的氢氧化锂 /碳酸锂的含量要根据正极材料的富锂程 度来配比。
为了保证正极材料的性能优异, 本发明的原料的纯度优选大于 98wt%。 本发明的原料, 可以有效确保原料各组分在本发明的烧结温度下充分的 反应, 减小了副反应的产生, 从而有效避免了副产物 (杂质相) 的产生, 从 而得到具有单一相的正极材料。
在确定原料配比之后, 将原料送入球磨机中球磨。
在球磨时, 原料可以分步球磨混合, 也可以一步球磨混合。 例如, 可以 将原料一次性一起加入球磨机中球磨混合,还可以先将氢氧化镍、氢氧化钴、 碳酸锰球磨混合, 然后再加入氢氧化锂球磨混合。
对于分步球磨混合, 本发明可以是二步的球磨混合, 也可以是三步的球 磨混合。 例如先将原料中两组份球磨混合, 同时将另外两组份球磨混合, 最 后一起球磨混合。 亦可以先将原料中两组份球磨混合, 然后依次加入另外两 个组分球磨混合。
本发明对于原料中各组分混合顺序也没有限制, 例如可以是先氢氧化钴 和氢氧化镍, 后碳酸锰, 最后氢氧化锂; 还可以是先氢氧化钴、 氢氧化镍和 碳酸锂, 最后碳酸锰。
本发明球磨时使用的球磨机, 可以是本领域中各种球磨机。 例如行星球 磨机、 管式球磨机、 卧式球磨机、 或立式球磨机等。
球磨时使用的磨球, 选用球磨时不与原料各组分之间产生化学反应的磨 球, 例如可选用氧化锆磨球、 氧化铝磨球、 陶瓷磨球、 金属磨球等。
本发明对于磨球的形状无特殊要求, 磨球的形状既可以是传统的球形, 也可以是橄榄球形等其他形状。
优选地, 本发明的磨球使用量为, 磨球的重量为原料重量的 5- 10倍, 更 优选为 6.7 倍。 这样可以有效提高球磨效果, 以及减少原料粘附在磨球上的 损失。
优选地,本发明球磨的转速为 100-500rad/min ,更优选为 200-300rad/min。 球磨的时间 0.5- 8h , 更优选为 l -6h。
本发明的球磨, 可以是千磨, 即不加入分散剂, 直接将原料送入球磨机 中球磨; 还可以是湿法球磨, 即在球磨时加入分散剂。
在一优选实施方式下, 本发明的球磨釆用湿法球磨。 其可以更好的混合 原料, 是原料分散得更均勾, 更加有利于合成性能优异的正极材料。
湿法球磨中的分散剂, 选用球磨时不与原料各组分之间产生化学反应的 液体, 例如水、 乙醇、 甲苯、 丙酮等。 本发明的分散剂优选为水或乙醇。 在湿法球磨之后, 可以直接将浆料从球磨机中送入烧结装置, 也可以将 浆料中的分散剂去除后, 再送入烧结装置中烧结。
其中, 本发明烧结时的含氧气氛, 其作用是在烧结过程中提供参与反应 的氧气。
本发明烧结时的含氧气氛可以是空气气氛, 也可以是氧气气氛, 还可以 是氧气与不参与反应的其他气体混合形成的气氛。
本发明的烧结的温度为 905-995 °C。 当烧结温度低于 905 °C , 制备得到正 极材料中含大量的杂质相, 造成电池比容量下降。 当烧结温度高于 995 °C , 易造成正极材料晶体的结构排布混乱, 造成正极材料的电化学性能差。 在本 发明的烧结的温度下, 原料各组分可以充分反应, 基本不损耗, 正极材料晶 体排布规整, 不产生副产物, 可以获得几乎不含杂质相的正极材料, 且正极 材料的比容量以及循环性能优异。
优选地, 本发明的烧结的温度为 940-960 °C , 更优选为 950 °C 。
在 940-960 °C的烧结温度下, 制备的正极材料比容量、 以及循环性能性 能更加优异。
优选地, 本发明烧结的时间为 l - 18h , 更优选为 2-7h。 这样可以有效确 保有足够的时间使各过渡金属离子在正极材料晶体中均勾分布。
在优选情况下, 本发明的制备方法还包括在球磨之后、 烧结之间, 对原 料进行预烧结, 本发明预烧结的温度低于烧结的温度。 通过预烧结, 可以使 原料分解, 为后续的烧结做好准备, 同时预烧结还可以增强原料颗粒之间的 接触, 促使产物相在更短的时间内生成。
优选地, 本发明的预烧结的温度为 400-600 °C , 更优选为 500 °C。 在此温 度下, 预烧结效果较好, 制备的正极材料电化学性能更加优异。
优选地, 本发明的预烧结的时间为 4-6h , 更优选为 5h。
增加预烧结步骤,对于富锂正极材料的性能提升幅度更大。可能原因为: 富锂正极材料中有一部分锂离子会掺杂进入过渡金属离子层, 预烧结可使原 料分解, 增强颗粒之间的接触, 从而更好的促使部分锂离子进入过渡金属层 中, 与过渡金属形成很好的混排结构, 最终使制备得到的富锂正极材料性能 大幅提升。 为了使制备的正极材料性能更加优异, 本发明优选烧结或预烧结时的升 温速率为 10-20°C/min。
本发明的制备方法, 原料釆用氧化镍、 碳酸锰、 氢氧化锂和 /或碳酸锂, 并在 905-995°C下烧结, 使原料中各组分能够在充分混合之后充分地反应, 有效抑制了副反应(例如氢氧化镍与氢氧化锂或碳酸锂之间单独反应 ), 避免 了副产物 (即杂质相, 例如 LiQ.3Nio.70 ) 的产生, 最终形成具有单一相的正 极材料, 其电化学性能优良。
本发明还提供了一种通过本发明的制备方法得到的正极材料。
以下结合具体的实施例对本发明进行进一步的阐述和说明。
实施例 1
原料: lOmol氢氧化锂、 3.3mol氢氧化镍、 3.3mol氢氧化钴、 以及 3.3mol 碳酸锰。
将上述原料加入球磨机中, 球磨 24h。
然后将球磨后的产物送入烧结炉中,在空气气氛下,在 95CTC下烧结 6h。 得到正极材料 LiNi1/3Co1/3Mn1/302, 记作 Al。
对比例 1
与实施例 1所不同的是, 烧结的温度为 900°C , 其它部分同实施例 1。 得到正极材料, 记作 Dl。
实施例 2
与实施例 1所不同的是,用碳酸锂替代氢氧化锂,其它部分同实施例 1。 得到正极材料 LiNi1/3Co1/3Mn1/302, 记作 A2。
对比例 2
与实施例 2所不同的是, 烧结的温度为 85CTC , 其它部分同实施例 2。 得到正极材料, 记作 D2。
实施例 3
原料: 15mol碳酸锂、 2.5mol氢氧化镍、 lmol氢氧化钴、 以及 6.5mol碳 酸锰。
将上述原料加入球磨机中, 球磨 24h。
然后将球磨后的产物送入烧结炉中,在空气气氛下,在 95CTC下烧结 6h。 得 ll正极材料 0.5Li2MnO3 · 0.5LiNi0.5Co0.2Mn0.3O2 , 己作 A3。
实施例 4
与实施例 3所不同的是, 烧结的时间为 12h , 其它部分同实施例 3。 得 ll正极材料 0.5Li2MnO3 · 0.5LiNi0.5Co0.2Mn0.3O2 , 己作 Α4。
实施例 5
与实施例 3所不同的是, 烧结的时间为 18h , 其它部分同实施例 3。 得 ll正极材料 0.5Li2MnO3 · 0.5LiNi0.5Co0.2Mn0.3O2 , 己作 Α5。
实施例 6
原料: 15mol碳酸锂、 2.5mol氢氧化镍、 lmol氢氧化钴、 以及 6.5mol碳 酸锰。
将上述原料加入球磨机中, 球磨 24h。
然后将球磨后的产物送入烧结炉中, 在空气气氛下, 先在 50CTC下预烧 结 5h , 后在 950 °C下烧结 6h。
得 ll正极材料 0.5Li2MnO3 · 0.5LiNi0.5Co0.2Mn0.3O2 , 己作 Α6。
实施例 7
与实施例 6所不同的是, 烧结的时间为 12h , 其它部分同实施例 3。 得 ll正极材料 0.5Li2MnO3 · 0.5LiNi0.5Co0.2Mn0.3O2 , 己作 Α7。
实施例 8
与实施例 6所不同的是, 烧结的时间为 18h , 其它部分同实施例 3。 得 ll正极材料 0.5Li2MnO3 · 0.5LiNi0.5Co0.2Mn0.3O2 , 己作 Α8。
实施例 9
原料: 15mol氢氧化锂、 2.5mol氢氧化镍、 以及 7.5mol碳酸锰。
将上述原料加入球磨机中, 球磨 24h。
然后将球磨后的产物送入烧结炉中,在空气气氛下,在 95CTC下烧结 6h。 得 ill正极材料 0.5Li2MnO3 · 0.5LiNi0.5Mn0.5O2 , 己作 Α9。
实施例 10
与实施例 9所不同的是, 烧结的时间为 12h , 其它部分同实施例 3。 得到正极材料 0.5Li2MnO3 · 0.5LiNi0.5Mn0.5O2 , 记作 A 10。
实施例 11 与实施例 9所不同的是, 烧结的时间为 18h, 其它部分同实施例 3。
得 ill正极材料 0.5Li2MnO3 · 0.5LiNi0.5Mn0.5O2 , 己作 All。
实施例 12
原料: 15mol氢氧化锂、 2.5mol氢氧化镍、 以及 7.5mol碳酸锰。
将上述原料加入球磨机中, 球磨 24h。
然后将球磨后的产物送入烧结炉中, 在空气气氛下, 先在 50CTC下预烧 结 5h, 后在 950°C下烧结 6h。
得到正极材料 0.5Li2MnO3 · 0.5LiNi0.5Mn0.5O2 , 记作 A12。
实施例 13
与实施例 12所不同的是, 烧结的时间为 12h, 其它部分同实施例 3。
得 ill正极材料 0.5Li2MnO3 · 0.5LiNi0.5Mn0.5O2 , 己作 Α13。
实施例 14
与实施例 12所不同的是, 烧结的时间为 18h, 其它部分同实施例 3。
得到正极材料 0.5Li2MnO3 · 0.5LiNi0.5Mn0.5O2 , 记作 A14。
实施例以及对比例各主要参数如下表:
烧结
目标产物 原料 ¾:1 ! 预烧结 温度
氢氧化锂、 氢氧化镍、 氢氧化钴、
A1 NCM 950 °C 6h 无
碳酸锰
氢氧化锂、 氢氧化镍、 氢氧化钴、
D1 NCM 900°C 6h 无
碳酸锰
碳酸锂、 氢氧化镍、 氢氧化钴、
A2 NCM 950 °C 6h 无
碳酸锰
碳酸锂、 氢氧化镍、 氢氧化钴、
D2 NCM 850 °C 6h 无
碳酸锰
碳酸锂、 氢氧化镍、 氢氧化钴、
A3 富锂 NCM 950 °C 6h 无
碳酸锰
碳酸锂、 氢氧化镍、 氢氧化钴、
A4 富锂 NCM 950 °C 12h 无
碳酸锰
碳酸锂、 氢氧化镍、 氢氧化钴、
A5 富锂 NCM 950 °C 18h 无
碳酸锰
碳酸锂、 氢氧化镍、 氢氧化钴、
A6 富锂 NCM 950 °C 6h 500 °C , 5h 碳酸锰
A7 富锂 NCM 碳酸锂、 氢氧化镍、 氢氧化钴、 950 °C 12h 500 °C , 5h 碳酸锰
碳酸锂、 氢氧化镍、 氢氧化钴、
A8 富锂 NCM 950 °C 18h 500 °C , 5h 碳酸锰 A9 富锂匪 碳酸锂、 氢氧化镍、 碳酸锰 950 °C 6h 无
A10 富锂匪 碳酸锂、 氢氧化镍、 碳酸锰 950 °C 12h 无
All 富锂匪 碳酸锂、 氢氧化镍、 碳酸锰 950 °C 18h 无
A12 富锂匪 碳酸锂、 氢氧化镍、 碳酸锰 950 °C 6h 500 °C , 5h
A13 富锂匪 碳酸锂、 氢氧化镍、 碳酸锰 950 °C 12h 500 °C , 5h
A14 富锂匪 碳酸锂、 氢氧化镍、 碳酸锰 950 °C 18h 500 °C , 5h 材料性能测试:
原料热重分析:
对实施例 1的原料, 以及实施例 2的原料分别作热重测试, 结果示于图
1。
从图 1可以看出, 两种原料具有不同的热重特性, 实施例 2的原料的分 解温度明显低于实施例 1 的原料, 这说明实施例 2的原料更利于正极材料的 合成制备。
正极材料 XRD测试:
对正极材料 Al、 D1分别作 XRD测试, 结果示于图 2。
对正极材料 A2、 D2分别作 XRD测试, 结果示于图 3。
将正极材料 Al、 A2的结果示于图 4。
从图 2可以看出, 在 900°C (对比例 1 ) XRD 曲线中, 在 2 Θ =43.9。 处 ( 图 2中小三角指向处)有一个小杂质峰, 这可能是杂质相 ( Li0.3Ni0.7O) 的 衍射峰。 而在 95CTC (实施例 1 ) 2 Θ =43.9。 处则未发现杂质峰。
同样,从图 3可以看出,在 850°C (对比例 2 ) XRD曲线中,在 2 Θ =43.9。 处 ( 图 3 中小三角指向处) 也有一个小杂质峰。 而在 95CTC (实施例 2) 2 Θ =43.9。 处则未发现杂质峰。
结合图 2以及图 3可以看出, 本发明的制备方法有效抑制了杂质相的产 生。 并且从图 2、 图 3 中还可以看出, 实施例 1 的峰强明显大于对比例 1 的 峰强, 实施例 2的峰强明显大于对比例 2的峰强。 这说明本发明制备方法得 到的正极材料的晶体晶型结构更好, 性能更优。
从图 4可以看出, 实施例 2的峰强大于实施例 1 的峰强, 本发明实施例 2的正极材料比实施例 1 的正极材料的晶体晶型结构好, 性能更优。 电池的制备:
正极片:将 80wt %的正极材料, 10wt %的导电剂乙炔黑(纯度为 99.5 % , MTI ) , 和 10wt%粘合剂聚偏氟乙烯 ( Kynar , HSV900 ) 溶解在 N-甲基吡咯 烷 ( NMP ) (纯度≥99.5 % , Sigma-Aldrich 公司 ), 在铝箔上拉浆、 烘千之后 制成正极片。 正极敷料量大于 5mg/cm2
电解液: lmol/L 六氟碑酸锂 LiPF6 , 溶剂为质量为 1 : 1 : 1 的碳酸乙烯酯 EC、 碳酸二乙酯 DEC、 碳酸二甲酯 DMC。
将正极片和锂金属片, 以及电解液制成纽扣电池 ( CR3025 )。
电化学性能测试:
充放电曲线测试:
将正极材料 A2按照上述的电池制备方法制成电池, 在 0.2C、 平均工作 电压 3.75V下, 对电池进行充放电曲线测试, 结果示于图 5。
从图 5可以看出, 其可逆比容量达 155mAh/g , 这与共沉淀法制备的三元 材料的比容量基本相同。
比容量测试:
将正极材料 A 1 - A 2、以及 D 1 - D 2按照上述的电池制备方法分别制成电池, 在 0.2C下充放电, 记录其首次比容量, 结果示于表 1。
表 1
Figure imgf000012_0001
从表 1 可以看出, 实施例 1和实施例 2的正极材料的比容量远远大于对 比例 1 和对比例 2。 这说明本发明的制备方法可以有效提高正极材料的比容 量。
将正极材料 A3-A8按照上述的电池制备方法分别制成电池,在 0. 1C下, 循环 10次之后, 记录其比容量, 结果示于图 7。
将正极材料 A9-A 14按照上述的电池制备方法分别制成电池,在 0. 1C下, 循环 10次之后, 记录其比容量, 结果示于图 8。
从图 7 中可以看出, 在无预烧结的情况下和预烧结的情况下, 富锂 NCM 正极材料的比容量均随着烧结时间的增长而下降, 并且均在烧结时间为 6h 时, 其比容量达到最大值, 分别为 190mAh/g、 220mAh/g。
从图 8 中可以看出, 在无预烧结的情况下, 富锂 NM正极材料的最大比 容量 165mAh/g , 即在烧结时间为 12h达到最大值。 在无预烧结的情况下, 富 锂 NM正极材料的最大比容量为 215mAh/g , 即在烧结时间为 6h 时达到最大 值, 随着烧结时间的增长, 其比容量下降。
上述比容量的数据均釆用循环 10次的,这是因为富锂正极材料的比容量 在循环 10次之后趋于稳定。
循环性能测试:
将正极材料 A2按照上述的电池制备方法制成电池, 在 0.2C下作充放电 循环性能测试, 结果示于图 6。
从图 6 中可以看出, 在 65 次循环之后, 其放电容量保持率高达 95%。 这说明本发明的制备方法得到的正极材料具有非常优异的循环性能。
倍率性能测试:
将正极材料 A6 按照上述的电池制备方法制成电池, 在 2.5-4.8V、 0. 1C 下循环 25次之后, 在 2.5-4.6V下依次 0.1C、 0.2C、 0.5C、 1C、 2C、 5C、 0. 1C 各循环 5次, 最后 0.5C循环 30次。 记录循环过程中放电比容量, 结果示于 图 9。
从图 9中可以看出, 在充电电压减至 4.6V时, 实施例 6的放电比容量仍 可超过 205mAh/g。 在 0.5C 下, 放电比容量仍可超过 155mAh/g。 并且经过 5C如此大的倍率放电循环之后, 在 0.1 C下其初始容量可以 100%的恢复。 在 此之后, 在 0.5C下仍可循环 25次保持容量稳定。 从而说明本发明的制备方 法合成的正极材料具有非常优异的循环性能以及倍率放电性能。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本 发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本 发明的保护范围之内。

Claims

权 利 要 求 书
1.一种正极材料的制备方法, 其特征在于: 其包括如下步骤:
( 1 ) 将原料进行球磨混合, 所述原料包括氢氧化镍、 碳酸锰、 以及氢 氧化锂和 /或碳酸锂;
( 2 ) 在含氧气氛下在 905-995 °C下烧结;
得到含 Li、 Ni和 Mn的金属复合氧化物。
2.根据权利要求 1 所述的正极材料的制备方法, 其特征在于: 所述原料 还含氢氧化钴。
3.根据权利要求 1 所述的正极材料的制备方法, 其特征在于: 所述烧结 的温度为 940-96CTC。
4.根据权利要求 1 所述的正极材料的制备方法, 其特征在于: 所述烧结 的时间为 l - 18h。
5.根据权利要求 1 所述的正极材料的制备方法, 其特征在于: 所述烧结 的时间为 2-7h。
6.根据权利要求 1 所述的正极材料的制备方法, 其特征在于: 在球磨之 后、 在烧结之前, 所述制备方法还包括对原料进行预烧结的步骤; 所述预烧 结的温度低于烧结的温度。
7.根据权利要求 6 所述的正极材料的制备方法, 其特征在于: 所述预烧 结的温度为 400-600 °C。
8.根据权利要求 6 所述的正极材料的制备方法, 其特征在于: 所述预烧 结的时间为 2-6h。
9.根据权利要求 1 所述的正极材料的制备方法, 其特征在于: 所述含氧 气氛为空气气氛。
10. 一种正极材料, 其特征在于: 所述正极材料由权利要求 1 -9之一所 述方法制得。
PCT/CN2014/079866 2013-06-13 2014-06-13 正极材料及其制备方法 WO2014198238A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310233763.6A CN104241622A (zh) 2013-06-13 2013-06-13 正极材料及其制备方法
CN201310233763.6 2013-06-13

Publications (1)

Publication Number Publication Date
WO2014198238A1 true WO2014198238A1 (zh) 2014-12-18

Family

ID=52021675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079866 WO2014198238A1 (zh) 2013-06-13 2014-06-13 正极材料及其制备方法

Country Status (2)

Country Link
CN (1) CN104241622A (zh)
WO (1) WO2014198238A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109455773B (zh) * 2018-11-30 2021-07-20 上海电力学院 一种锂离子电池高镍三元正极材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886343A (zh) * 2003-11-26 2006-12-27 3M创新有限公司 用于锂离子电池阴极材料的锂镍钴锰混合金属氧化物的固态合成
CN102163709A (zh) * 2011-03-09 2011-08-24 合肥工业大学 一种锂离子电池用氧化钴镍锰锂-氧化铜复合正极材料及其制备方法
CN102576871A (zh) * 2009-09-04 2012-07-11 丰田自动车株式会社 锂二次电池用正极活性物质及其利用
CN102656724A (zh) * 2009-12-14 2012-09-05 丰田自动车株式会社 锂二次电池用正极活性物质及其利用
CN103050683A (zh) * 2012-12-28 2013-04-17 深圳市贝特瑞新能源材料股份有限公司 一种多相锰基固溶体复合正极材料及其制备方法
CN103069623A (zh) * 2010-08-09 2013-04-24 株式会社村田制作所 电极活性物质及具备该电极活性物质的非水电解质二次电池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100739921B1 (ko) * 2003-06-03 2007-07-16 가부시키가이샤 유아사코오포레이션 비수 전해질 전지
KR20080108222A (ko) * 2006-04-07 2008-12-12 미쓰비시 가가꾸 가부시키가이샤 리튬 이차 전지 정극 재료용 리튬 천이 금속계 화합물분체, 그 제조 방법, 그 분무 건조체 및 그 소성 전구체,그리고, 그것을 사용한 리튬 이차 전지용 정극 및 리튬이차 전지
CN101148263A (zh) * 2006-09-19 2008-03-26 上海杉杉新材料研究院有限责任公司 高电压锂离子电池正极材料锂镍锰氧的制备方法
US8962195B2 (en) * 2007-09-04 2015-02-24 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder, method for manufacturing the same, spray-dried substance serving as firing precursor thereof, and lithium secondary battery positive electrode and lithium secondary battery using the same
CN102055023A (zh) * 2007-11-12 2011-05-11 株式会社杰士汤浅国际 锂二次电池的制造方法
CN102683668B (zh) * 2011-12-19 2016-04-13 中国科学院宁波材料技术与工程研究所 尖晶石镍锰基氧化物正极材料及其制备方法
CN103066269B (zh) * 2012-12-25 2015-08-19 贵州安达科技能源股份有限公司 一种三元正极活性材料制备方法及电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1886343A (zh) * 2003-11-26 2006-12-27 3M创新有限公司 用于锂离子电池阴极材料的锂镍钴锰混合金属氧化物的固态合成
CN102576871A (zh) * 2009-09-04 2012-07-11 丰田自动车株式会社 锂二次电池用正极活性物质及其利用
CN102656724A (zh) * 2009-12-14 2012-09-05 丰田自动车株式会社 锂二次电池用正极活性物质及其利用
CN103069623A (zh) * 2010-08-09 2013-04-24 株式会社村田制作所 电极活性物质及具备该电极活性物质的非水电解质二次电池
CN102163709A (zh) * 2011-03-09 2011-08-24 合肥工业大学 一种锂离子电池用氧化钴镍锰锂-氧化铜复合正极材料及其制备方法
CN103050683A (zh) * 2012-12-28 2013-04-17 深圳市贝特瑞新能源材料股份有限公司 一种多相锰基固溶体复合正极材料及其制备方法

Also Published As

Publication number Publication date
CN104241622A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
CN109216688B (zh) 一种三元锂电材料、其制备方法与锂离子电池
JP4973825B2 (ja) 非水電解質二次電池用正極活物質の製造法、非水電解質二次電池
US9466829B2 (en) Lithium—manganese-type solid solution positive electrode material
JP4063350B2 (ja) ゾル−ゲル法を利用した複合酸化物の製造方法
WO2018095053A1 (zh) 钴酸锂正极材料及其制备方法以及锂离子二次电池
JP3974420B2 (ja) リチウム二次電池用正極活物質の製造方法
JPH09237631A (ja) リチウム二次電池用正極活物質とその製造方法及びリチウム二次電池
JP4997700B2 (ja) リチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2013206679A (ja) 非水系電解質二次電池用正極活物質とその製造方法および二次電池
JP6020204B2 (ja) 非水電解質二次電池
CN111771301A (zh) 锂二次电池正极活性材料、其制备方法和包含它的锂二次电池
JP2006093067A (ja) リチウム二次電池用正極活物質及びその製造方法
JP2011165372A (ja) リチウム二次電池用負極材料とその製造方法およびリチウム二次電池
JP6294219B2 (ja) リチウムコバルト系複合酸化物の製造方法
JP3007859B2 (ja) 高容量のLiMn2O4二次電池陽極化合物の調製方法
KR102142335B1 (ko) 리튬 이온 전지용 산화물계 양극 활물질, 리튬 이온 전지용 산화물계 양극 활물질 전구체의 제조 방법, 리튬 이온 전지용 산화물계 양극 활물질의 제조 방법, 리튬 이온 전지용 양극 및 리튬 이온 전지
JP2001122628A (ja) リチウムマンガン複合酸化物粒子状組成物とその製造方法及び二次電池
WO2013125798A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법
JP7149414B2 (ja) リチウム遷移金属複合酸化物、その調製方法および使用、ならびに非水電解質二次リチウム電池
JP2012209242A (ja) リチウムマンガンチタンニッケル複合酸化物及びその製造方法、並びにそれを部材として使用したリチウム二次電池
JP2009242121A (ja) リチウムマンガン酸化物粉体粒子及びその製造方法、並びにそれを正極活物質として用いたリチウム二次電池
CN105609756A (zh) 4.5v锂电池正极材料及其生产方法以及4.5v锂电池正极材料前驱体生产方法
CN113889617B (zh) 一种复合结构高锰基材料及其制备方法与应用
CN102738455A (zh) 层状锰酸锂及其制备方法
KR20150059820A (ko) 공침법에 의한 리튬 이차전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차전지용 양극활물질 전구체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14811436

Country of ref document: EP

Kind code of ref document: A1