WO2014196816A1 - 신규한 이차전지 - Google Patents

신규한 이차전지 Download PDF

Info

Publication number
WO2014196816A1
WO2014196816A1 PCT/KR2014/004986 KR2014004986W WO2014196816A1 WO 2014196816 A1 WO2014196816 A1 WO 2014196816A1 KR 2014004986 W KR2014004986 W KR 2014004986W WO 2014196816 A1 WO2014196816 A1 WO 2014196816A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
secondary battery
lithium secondary
iron phosphate
active material
Prior art date
Application number
PCT/KR2014/004986
Other languages
English (en)
French (fr)
Inventor
정원희
조민선
김신규
이민희
최승렬
이재헌
정근창
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL14807757T priority Critical patent/PL3007261T3/pl
Priority to EP14807757.1A priority patent/EP3007261B1/en
Priority to JP2015555941A priority patent/JP6642870B2/ja
Priority to CN201480007889.4A priority patent/CN104969400A/zh
Priority to CN201811589719.8A priority patent/CN110010859B/zh
Priority to US14/766,314 priority patent/US10044029B2/en
Publication of WO2014196816A1 publication Critical patent/WO2014196816A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention provides a cathode comprising lithium iron phosphate and a layered lithium nickel manganese cobalt composite oxide as a cathode active material; And a negative electrode including a negative electrode active material having a potential difference with the lithium iron phosphate of 3.10V or more at a 50% state of charge (SOC) point at which all the lithium iron phosphate is expressed. will be.
  • the lithium secondary battery has a structure in which a non-aqueous electrolyte containing lithium salt is impregnated in an electrode assembly having a porous separator interposed between a positive electrode and a negative electrode on which an active material is coated on a current collector.
  • Lithium cobalt oxide, lithium manganese oxide, lithium nickel oxide, lithium composite oxide, etc. are used as a positive electrode active material of such a lithium secondary battery, and carbon materials are mainly used as a negative electrode active material, and silicon compounds, sulfur compounds, etc. Use is also considered.
  • Lithium iron phosphate (LiFePO 4 ) has a lower operating voltage range than the conventional lithium active material (LiNiMnCoO 2 ) material or spinel manganese (LiMn 2 O 4 ), which is widely used as a cathode active material.
  • amorphous carbon (Hard Carbon, Soft Carbon, etc.) has been used as a negative electrode active material of a secondary battery for high power.
  • the amorphous carbon when the lithium iron phosphate is used as the positive electrode active material due to the high operating voltage at the discharge end, the output increase effect was not satisfactory.
  • the present invention aims to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the inventors of the present application after extensive research and various experiments, described later, the lithium iron phosphate on the positive electrode containing lithium iron phosphate and a layered lithium nickel manganese cobalt composite oxide as a positive electrode active material
  • the lithium secondary battery containing the negative electrode containing the negative electrode active material which has a potential difference of 3.10V or more, it confirmed that the output at a discharge terminal can be improved, and came to complete this invention.
  • the lithium secondary battery according to the present invention includes a positive electrode including lithium iron phosphate and a lithium nickel manganese cobalt composite oxide having a layered structure as a positive electrode active material;
  • a negative electrode including a negative electrode active material having a potential difference with the lithium iron phosphate of 3.10V or more at a 50% state of charge (SOC) point at which all lithium iron phosphate is expressed;
  • the lithium secondary battery has a structure in which a lithium salt-containing non-aqueous electrolyte is impregnated into an electrode assembly having a separator interposed between a positive electrode and a negative electrode.
  • the positive electrode is prepared by, for example, applying a positive electrode mixture containing a positive electrode active material onto a positive electrode current collector and then drying the positive electrode mixture, and optionally, a binder, a conductive material, a filler, and the like are further optionally added to the positive electrode mixture. May be included.
  • the positive electrode current collector is generally made to a thickness of 3 to 500 ⁇ m.
  • a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with carbon, nickel, titanium, silver, or the like can be used.
  • the positive electrode current collector may increase the adhesion of the positive electrode active material by forming minute unevenness on the surface thereof, as in the negative electrode current collector, and may be used in various forms such as film, sheet, foil, net, porous body, foam, and nonwoven fabric. Form is possible.
  • the cathode active material may be a lithium transition metal oxide as a material capable of causing an electrochemical reaction.
  • the present invention includes lithium iron phosphate as the positive electrode active material, and the lithium iron phosphate may be lithium iron phosphate having an olivine structure represented by LiFePO 4 .
  • the lithium iron phosphate may have a method of coating a conductive material on the surface of lithium iron phosphate in order to be used as a cathode active material due to its low conductivity.
  • the conductive material may be any material as long as it has an electrical conductivity, but preferably carbon, a conductive polymer, and the like.
  • the present invention may include a lithium nickel manganese cobalt composite oxide having a layered structure represented by the following formula in addition to the lithium iron phosphate.
  • the ratio of divalent nickel (Ni 2+ ) is relatively high. In this case, since the amount of charge that can move lithium ions increases, there is an advantage that high capacity can be exhibited.
  • lithium nickel-based oxides have a disadvantage in that the crystal structure is low because the Ni content of Ni 2+ increases as the Ni content is increased and the oxygen desorption increases at high temperatures. Therefore, the nickel content exceeds 0.9. It is not desirable to do so.
  • the mixing ratio of the lithium iron phosphate and lithium nickel manganese cobalt composite oxide may be 30: 70 to 5: 95 by weight, and in detail, 20: 80 to 5: 95.
  • the content of lithium iron phosphate exceeds 30%, the overall energy density is significantly reduced due to lithium iron phosphate having a relatively small expression capacity, and thus it is not preferable as an automotive battery that needs to draw the maximum energy in a predetermined space. If it is less than 10%, the output assisting effect of the low SOC region due to the mixing of lithium iron phosphate is not large, which is not preferable.
  • the conductive material is typically added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the binder is a component that assists the bonding of the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the positive electrode active material.
  • binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
  • the filler is optionally used as a component for inhibiting the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • the negative electrode is manufactured by applying a negative electrode mixture containing a negative electrode active material on a negative electrode current collector, for example, and then drying the negative electrode mixture, as necessary, the conductive material, binder, Ingredients such as fillers may be included.
  • the negative electrode current collector is generally made to a thickness of 3 to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver and the like on the surface, aluminum-cadmium alloy and the like can be used.
  • fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
  • the negative electrode active material is not particularly limited as long as the potential difference with lithium iron phosphate is set to a range of 3.10V to 3.30V.
  • the potential difference between the negative electrode active material and lithium iron phosphate is less than 3.10V, it is not preferable because a high operating voltage is not secured and the output of the terminal portion is not improved during the discharge process. For this reason, the potential difference is more preferably in the range of 3.10V to 3.30V at the 50% State of Charge (SOC) point at which the entire lithium iron phosphate is expressed.
  • SOC State of Charge
  • the negative electrode active material may be a graphite-based material.
  • Such graphite-based material may be a material composed of natural graphite alone.
  • the graphite material may be made of a mixture of natural graphite and artificial graphite.
  • the artificial graphite When natural graphite and artificial graphite are mixed, the orientation due to volume expansion is suppressed, thereby exhibiting negative electrode characteristics suitable for automotive batteries requiring long life.
  • the artificial graphite may be included in an amount of 20 wt% or less based on the total weight of the mixture, and in detail, 5 wt% to 20 wt% based on the total weight of the mixture.
  • the graphite-based material may have an average particle diameter (D50) of 5 ⁇ m to 30 ⁇ m range. If the particle size is less than 5 mu m, it is unfavorable because the increase of the fine powder is disadvantageous, and if the average particle diameter is more than 30 mu m, the decrease in output becomes apparent.
  • D50 average particle diameter
  • the graphite-based material may be coated with amorphous carbon.
  • amorphous carbon surface side reactions caused by the electrolyte are suppressed compared to the graphite-based uncoated active material, thereby increasing initial efficiency and showing stable life characteristics.
  • the coating component of the surface plays a role similar to that of the conductive material, it has a positive effect on output improvement.
  • the binder, the conductive material and the components added as necessary are the same as those described for the negative electrode.
  • a filler may optionally be added as a component that inhibits expansion of the negative electrode.
  • a filler is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
  • the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
  • viscosity modifiers such as viscosity modifiers, adhesion promoters, and the like may optionally be further included or in combination of two or more.
  • the viscosity modifier is a component for adjusting the viscosity of the electrode mixture to facilitate the mixing process of the electrode mixture and the coating process on the current collector thereof, it may be added up to 30% by weight based on the total weight of the negative electrode mixture.
  • examples of such viscosity modifiers include, but are not limited to, carboxymethyl cellulose, polyvinylidene fluoride, and the like.
  • the solvent described above can serve as a viscosity modifier.
  • the adhesion promoter is an auxiliary component added to improve the adhesion of the active material to the current collector, it may be added in less than 10% by weight compared to the binder, for example, oxalic acid (oxalic acid), adipic acid (adipic acid), Formic acid, acrylic acid derivatives, itaconic acid derivatives, and the like.
  • the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the pore diameter of the separator is generally from 0.01 to 10 ⁇ m ⁇ m, thickness is generally 5 ⁇ 300 ⁇ m.
  • a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
  • a solid electrolyte such as a polymer
  • the solid electrolyte may also serve as a separator.
  • the lithium salt-containing non-aqueous electrolyte solution consists of an electrolyte solution and a lithium salt, and a non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, and the like are used as the electrolyte solution.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyedgetion lysine, polyester sulfides, polyvinyl alcohols, polyvinylidene fluorides, Polymerizers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide.
  • pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. .
  • a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
  • lithium salts such as LiPF 6 , LiClO 4 , LiBF 4 , LiN (SO 2 CF 3 ) 2, and the like, may be prepared by cyclic carbonate of EC or PC as a highly dielectric solvent and DEC, DMC or EMC as a low viscosity solvent.
  • Lithium salt-containing non-aqueous electrolyte can be prepared by adding to a mixed solvent of linear carbonate.
  • the present invention also provides a battery module including the lithium secondary battery as a unit cell, and provides a battery pack including the battery module.
  • the battery pack may be used as a power source for devices requiring high temperature stability, long cycle characteristics, high rate characteristics, and the like.
  • Preferred examples of the device include a power tool that is driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
  • Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage systems and the like, but is not limited thereto.
  • Example 1 is a graph showing the potential difference between the positive electrode active material and the graphite-based negative electrode active material in Experimental Example 1 according to the present invention
  • Figure 2 is a graph showing the output characteristics of the batteries prepared in Examples 1, 2, 3, 4 and Comparative Examples 2, 3 in Experimental Example 2 according to the present invention
  • Example 4 is a graph showing the output characteristics of the batteries prepared in Example 1 and Comparative Example 4 in Experimental Example 4 according to the present invention
  • Example 5 is a graph showing a comparison of the cycle characteristics of the batteries prepared in Example 1 and Comparative Example 5 in Experimental Example 5 according to the present invention.
  • a negative electrode mixture slurry was prepared by adding weight% to a solvent, H 2 O, and coating, drying, and compressing one surface of a copper foil to prepare a negative electrode.
  • a lithium secondary battery was manufactured using the positive electrode, the negative electrode, and the carbonate electrolyte prepared as described above.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that LiFePO 4 and LiNi 0.6 Mn 0.2 Co 0.2 O 2 were mixed at a weight ratio of 10:90 as the cathode active material.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that LiFePO 4 and LiNi 0.6 Mn 0.2 Co 0.2 O 2 were mixed at a weight ratio of 20:80 as the cathode active material.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that LiFePO 4 and LiNi 0.6 Mn 0.2 Co 0.2 O 2 were mixed at a weight ratio of 5:95 as the cathode active material.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that natural graphite and amorphous carbon were mixed in a ratio of 90:10 by weight instead of natural graphite and artificial graphite of Example 1 as a negative electrode active material.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that LiFePO 4 and lithium nickel cobalt manganese composite oxide were mixed at a weight ratio of 40:60.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that LiNi 0.6 Mn 0.2 Co 0.2 O 2 , which is a lithium nickel cobalt manganese composite oxide, was used alone.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that natural graphite and artificial graphite were mixed in a ratio of 90:10 by weight.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that natural graphite and artificial graphite were mixed at a ratio of 95: 5 by weight.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that natural graphite was used alone as a negative electrode active material.
  • a lithium secondary battery was manufactured in the same manner as in Example 3, except that Ni: Mn: Co of the lithium nickel cobalt manganese composite oxide was included in a content of 1: 1.
  • a lithium secondary battery was manufactured in the same manner as in Example 1, except that natural graphite without amorphous carbon was applied instead of natural graphite of Example 1.
  • the battery of Example 1 is in the range of 3.10V to 3.30V at the SOC point compared to the battery of Comparative Example 1, it can be seen that it is possible to ensure a high operating voltage to improve the output of the terminal portion during the discharge process Can be.
  • Example 1 The cells prepared in Example 1 and Comparative Example 4 were formed at 4.2 V, and then output variations in all SOC regions were measured, and the results are shown in FIG. 4.
  • Example 1 has a higher relative output than the battery of Comparative Example 4.
  • the battery prepared in Example 1 using the positive electrode active material containing natural graphite coated with amorphous carbon it can prevent a sharp performance degradation due to charging and discharging compared to the battery prepared in Comparative Example 5 It can be seen.
  • the potential difference with lithium iron phosphate is 3.10V or more at a 50% state of charge (SOC) point at which the entire lithium iron phosphate is expressed, thereby ensuring a high operating voltage. This has the effect of increasing the output at the discharge end.

Abstract

본 발명은, 양극 활물질로서 리튬 인산철과, 층상 구조의 리튬 니켈 망간 코발트 복합 산화물을 포함하고 있는 양극; 및 상기 리튬 인산철과의 전위차가 전체 리튬 인산철이 발현하는 50% 충전도(SOC: State of Charge) 지점에서 3.10V 이상인 음극 활물질을 포함하는 음극;을 포함하는 것을 특징으로 하는 리튬 이차전지를 제공한다.

Description

신규한 이차전지
본 발명은 양극 활물질로서 리튬 인산철과, 층상 구조의 리튬 니켈 망간 코발트 복합 산화물을 포함하고 있는 양극; 및 상기 리튬 인산철과의 전위차가 전체 리튬 인산철이 발현하는 50% 충전도(SOC: State of Charge) 지점에서 3.10V 이상인 음극 활물질을 포함하는 음극;을 포함하는 것을 특징으로 하는 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
또한, 최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로는 주로 니켈 수소금속(Ni-MH) 이차전지가 사용되고 있지만, 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 되어 있다.
리튬 이차전지는 전류 집전체 상에 각각 활물질이 도포되어 있는 양극과 음극 사이에 다공성의 분리막이 개재된 전극조립체에 리튬염을 포함하는 비수계 전해질이 함침되어 있는 구조로 이루어져 있다.
이러한 리튬 이차전지의 양극 활물질로는 리튬 코발트계 산화물, 리튬 망간계 산화물, 리튬 니켈계 산화물, 리튬 복합 산화물 등이 사용되고 있고, 음극 활물질로는 탄소재료가 주로 사용되고 있고, 규소 화합물, 황 화합물 등의 사용도 고려되고 있다.
높은 출력 특성이 요구되는 자동차용 전지 제작 시 낮은 전압대에서 출력을 보조해 줄 수 있는 양극재의 사용의 필요성이 대두되고 있다. 리튬 인산철(LiFePO4)은 기존에 널리 사용되고 있던 양극 활물질인 삼성분계(LiNiMnCoO2) 물질이나 스피넬 망간 (LiMn2O4) 등에 비해 작동 전압대가 낮은 특성을 가지고 있다.
일반적으로 이차전지의 음극 활물질로는 고출력을 위해 비정질계 탄소(Hard Carbon, Soft Carbon 등)를 사용하여 왔다. 그러나, 상기 비정질계 탄소의 경우, 방전 말단에서 작동 전압이 높아서 리튬 인산철을 양극 활물질로 사용하는 경우에는 출력 증가 효과가 만족스럽지 못하였다.
따라서, 이러한 문제점들을 근본적으로 해결할 수 있는 기술에 대한 필요성이 매우 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 양극 활물질로서 리튬 인산철과 층상 구조의 리튬 니켈 망간 코발트 복합 산화물을 포함을 포함하고 있는 양극에 상기 리튬 인산철과의 전위차가 3.10V 이상인 음극 활물질을 포함하는 음극을 포함하는 리튬 이차전지를 제조하는 경우, 방전 말단에서의 출력을 향상시킬 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명에 따른 리튬 이차전지는, 양극 활물질로서 리튬 인산철과, 층상 구조의 리튬 니켈 망간 코발트 복합 산화물을 포함하고 있는 양극; 및
상기 리튬 인산철과의 전위차가 전체 리튬 인산철이 발현하는 50% 충전도(SOC: State of Charge) 지점에서 3.10V 이상인 음극 활물질을 포함하는 음극;
을 포함하는 것을 특징으로 한다.
이러한 리튬 이차전지는 양극과 음극 사이에 분리막이 개재된 구조의 전극조립체에 리튬염 함유 비수계 전해액이 함침되어 있는 구조로 이루어져 있다.
상기 양극은, 예를 들어, 양극 집전체 상에 양극 활물질을 포함하고 있는 양극 합제를 도포한 후 건조하여 제조되며, 상기 양극 합제에는, 필요에 따라, 바인더, 도전재, 충진제 등이 선택적으로 더 포함될 수도 있다.
상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또한, 양극 집전체는, 상기 음극 집전체에서와 마찬가지로, 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 양극 활물질은 전기화학적 반응을 일으킬 수 있는 물질로서, 리튬 전이금속 산화물일 수 있다. 본 발명은 양극 활물질로서 리튬 인산철을 포함하며, 상기 리튬 인산철은 LiFePO4로 표현되는 올리빈 구조의 리튬 철 인산화물일 수 있다.
상기 리튬 인산철은 그 자체의 도전성이 낮아서 양극 활물질로 사용되기 위해서는 리튬 인산철의 표면에 도전성 물질을 코팅하는 방법을 사용할 수 있다. 상기 도전성 물질은 전기 전도성을 가지는 물질이면 어느 것이나 가능하지만, 바람직하게는 탄소, 전도성 폴리머 등을 들 수 있다.
또한, 본 발명은 상기 리튬 인산철 이외에 하기의 화학식으로 표현되는 층상 구조의 리튬 니켈 망간 코발트 복합 산화물을 포함할 수 있다.
Li1+zNibMncCo1-(b+c+d)MdO(2-e)Ae
상기 식에서, -0.5≤z≤0.5, 0.6≤b≤0.9, 0.05≤c≤0.35, 0≤d≤0.2, 0≤e≤0.2, b+c+d<1 이고, M = Al, Mg, Cr, Ti, Si 또는 Y 이고, A = F, P 또는 Cl이다.
일반적으로, 다른 전이금속에 비해 니켈의 함량이 0.6 이상인 경우 경우 2가 니켈(Ni2+)의 비율이 상대적으로 높아진다. 이 경우 리튬 이온을 이동시킬 수 있는 전하의 양이 늘어나게 되므로 고용량을 발휘할 수 있다는 장점이 있다.
다만, 이러한 리튬 니켈계 산화물은 Ni이 다량 함유될수록 소성 과정 중 Ni2+의 함량이 높아지면서 고온에서 산소의 탈리가 심해지기 때문에 결정구조의 안정성이 낮은 단점이 있으므로, 니켈의 함량이 0.9를 초과하는 것은 바람직하지 않다.
하나의 구체적인 예에서, 상기 리튬 인산철과 리튬 니켈 망간 코발트 복합 산화물의 혼합비는 중량을 기준을 30 : 70 내지 5 : 95일 수 있고, 상세하게는 20 : 80 내지 5 : 95일 수 있다.
여기서, 리튬 인산철의 함량이 30%를 초과하는 경우 상대적으로 발현 용량이 작은 리튬 인산철로 인해 전반적인 에너지 밀도가 현저히 떨어지게 되므로 정해진 공간 내에서 최대의 에너지를 끌어내야 하는 자동차용 전지로 바람직하지 않으며, 10% 미만인 경우에는 리튬 인산철의 혼합으로 의한 저 SOC영역의 출력 보조 효과가 크지 않기 때문에 바람직하지 않다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합제 등을 들 수 있다.
상기 충진제는 전극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합제; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
한편, 상기 음극은, 예를 들어, 음극 집전체 상에 음극 활물질을 포함하고 있는 음극 합제를 도포한 후 건조하여 제조되며, 상기 음극 합제에는, 필요에 따라, 앞서 설명한 바와 같은 도전재, 바인더, 충진제 등의 성분들이 포함될 수 있다.
상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질은 리튬 인산철과의 전위차가 3.10V 내지 3.30V 범위로 설정되는 물질이라면 크게 한정되지 않는다.
상기 음극 활물질과 리튬 인산철과의 전위차가 3.10V 미만인 경우, 높은 작동 전압을 확보하지 못하여 방전 과정에서 말단 부위의 출력을 향상시키지 못하므로 바람직하지 않다. 이와 같은 이유에서, 상기 전위차는 전체 리튬 인산철이 발현하는 50% 충전도(SOC: State of Charge) 지점에서 3.10V 내지 3.30V 범위인 것이 더욱 바람직하다.
상기와 같은 조건을 만족하는 음극 활물질의 하나의 구체적인 예로서, 상기 음극활물질은 흑연계 물질일 수 있다. 이러한 흑연계 물질은 천연 흑연 단독으로 구성된 물질일 수 있다.
이와는 다르게 상기 흑연계 물질은 천연 흑연과 인조 흑연의 혼합물로 이루어질 수도 있다.
천연흑연과 인조흑연이 혼합되어 있는 경우 부피 팽창에 의한 배향성이 억제되어 장기 수명이 요구되는 자동차용 전지에 적합한 음극 특성을 나타낼 수 있다. 이러한 효과를 얻기 위하여 상기 인조 흑연은 혼합물 전체 중량을 기준으로 20 중량% 이하로 포함될 수 있으며, 상세하게는 혼합물 전체 중량을 기준으로 5 중량% 내지 20 중량%로 포함되는 것이 바람직하다.
또한, 본 발명의 출원인들이 확인한 바에 따르면, 인조흑연이 20 중량%를 초과하여 첨가되는 경우에는 제조 공정성이 크게 저하되는 반면에, 부피 팽창에 의한 배향성이 억제되는 효과가 크게 개선되지 않으며, 그에 따라 높은 효율의 음극을 제조하기 어렵다.
또한, 상기 흑연계 물질은 평균 입경(D50)이 5 ㎛ 내지 30 ㎛ 범위일 수 있다. 입경이 5 ㎛ 미만인 경우에는 미분의 증가로 전극 형성에 불리하고, 평균 입경이 30 ㎛ 초과인 경우에는 출력 저하가 뚜렷해지므로 바람직하지 않다.
한편, 상기 흑연계 물질은 비정질 탄소로 코팅되어 있을 수 있다. 비정질 탄소로 표면이 코팅된 흑연계 물질의 경우 코팅되지 않은 흑연 활물질에 비해 전해액에 의한 표면 부반응이 억제되어 초기 효율이 높아지고 안정적인 수명 특성을 보이게 된다. 또한 표면의 코팅성분이 도전재와 유사한 역할을 하게 되므로 출력 향상에도 긍정적인 효과를 미친다.
상기 바인더와 도전재 및 필요에 따라 첨가되는 성분들은 음극에서의 설명과 동일하다.
경우에 따라서는, 음극의 팽창을 억제하는 성분으로서 충진제가 선택적으로 첨가될 수 있다. 이러한 충진제는 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
또한, 점도 조절제, 접착 촉진제 등의 기타의 성분들이 선택적으로 또는 둘 이상의 조합으로서 더 포함될 수 있다.
상기 점도 조절제는 전극 합제의 혼합 공정과 그것의 집전체 상의 도포 공정이 용이할 수 있도록 전극 합제의 점도를 조절하는 성분으로서, 음극 합제 전체 중량을 기준으로 30 중량%까지 첨가될 수 있다. 이러한 점도 조절제의 예로는, 카르복시메틸셀룰로우즈, 폴리비닐리덴 플로라이드 등이 있지만, 이들만으로 한정되는 것은 아니다. 경우에 따라서는, 앞서 설명한 용매가 점도 조절제로서의 역할을 병행할 수 있다.
상기 접착 촉진제는 집전체에 대한 활물질의 접착력을 향상시키기 위해 첨가되는 보조성분으로서, 바인더 대비 10 중량% 이하로 첨가될 수 있으며, 예를 들어 옥살산 (oxalic acid), 아디프산(adipic acid), 포름산(formic acid), 아크릴산(acrylic acid) 유도체, 이타콘산(itaconic acid) 유도체 등을 들 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬염 함유 비수계 전해액은 전해액과 리튬염으로 이루어져 있으며, 상기 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
하나의 바람직한 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수계 전해질을 제조할 수 있다.
본 발명은 또한, 상기 리튬 이차전지를 단위전지로 포함하는 전지모듈을 제공하고, 상기 전지모듈을 포함하는 전지팩을 제공한다.
상기 전지팩은 고온 안정성 및 긴 사이클 특성과 높은 레이트 특성 등이 요구되는 디바이스의 전원으로 사용될 수 있다.
상기 디바이스의 바람직한 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
도 1은 본 발명에 따른 실험예 1에서 양극활물질과 흑연계 음극활물질의 전위차를 나타낸 그래프이다;
도 2는 본 발명에 따른 실험예 2에서 실시예 1, 2, 3, 4 및 비교예 2, 3에서 제조된 전지의 출력 특성을 비교하여 나타낸 그래프이다;
도 3은 본 발명에 따른 실험예 3에서 실시예 5, 6, 7에서 제조된 전지의 출력 특성을 나타낸 그래프이다;
도 4는 본 발명에 따른 실험예 4에서 실시예 1 및 비교예 4에서 제조된 전지의 출력 특성을 비교하여 나타낸 그래프이다;
도 5는 본 발명에 따른 실험예 5 에서 실시예 1 및 비교예 5에서 제조된 전지의 사이클 특성을 비교하여 나타낸 그래프이다.
이하, 실시예를 통해 본 발명을 더욱 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
<실시예 1>
양극 활물질로서 표면에 도전성 물질인 카본이 코팅된 LiFePO4 및 리튬 니켈 코발트 망간 복합산화물인 LiNi0.6Mn0.2Co0.2O2을 중량비로 15 : 85의 비율로 혼합한 혼합물 90 중량%, Super-P(도전제) 5 중량% 및 PVdF(바인더) 5 중량%를 NMP에 첨가하여 양극 혼합물 슬러리를 제조하였다. 이를 알루미늄 호일의 일면에 코팅, 건조 및 압착하여 양극을 제조하였다.
음극 활물질로서 비정질 탄소로 코팅된 천연흑연 및 인조흑연을 중량비로 95 : 5의 비율로 혼합한 혼합물 96 중량%, Super-P(도전제) 1 중량% 및 SBR(바인더) 2 중량%, 증점제 1 중량%를 용제인 H2O에 첨가하여 음극 혼합물 슬러리를 제조하고, 구리 호일의 일면에 코팅, 건조, 및 압착하여 음극을 제조하였다.
상기와 같이 제조된 양극 및 음극과 카보네이트 전해액을 이용하여 리튬 이차전지를 제작하였다.
<실시예 2>
양극 활물질로서, LiFePO4 및 LiNi0.6Mn0.2Co0.2O2을 중량비로 10 : 90의 비율로 혼합하여 사용한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 리튬 이차전지를 제조하였다.
<실시예 3>
양극 활물질로서, LiFePO4 및 LiNi0.6Mn0.2Co0.2O2을 중량비로 20 : 80의 비율로 혼합하여 사용한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 리튬 이차전지를 제조하였다.
<실시예 4>
양극 활물질로서, LiFePO4 및 LiNi0.6Mn0.2Co0.2O2을 중량비로 5 : 95의 비율로 혼합하여 사용한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 리튬 이차전지를 제조하였다.
<비교예 1>
음극 활물질로서 실시예 1의 천연흑연 및 인조흑연 대신 천연흑연 및 비정질 카본을 중량비로 90 : 10의 비율로 혼합하여 사용한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 리튬 이차전지를 제조하였다.
<비교예 2>
양극 활물질로서, LiFePO4 및 리튬 니켈 코발트 망간 복합산화물을 중량비로 40 :60의 비율로 혼합하여 사용한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 리튬 이차전지를 제조하였다.
<비교예 3>
양극 활물질로서, 리튬 니켈 코발트 망간 복합산화물인 LiNi0.6Mn0.2Co0.2O2을 단독으로 사용한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 리튬 이차전지를 제조하였다.
<실시예 5>
음극 활물질로서, 천연흑연 및 인조흑연을 중량비로 90 : 10의 비율로 혼합하여 사용한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 리튬 이차전지를 제조하였다.
<실시예 6>
음극 활물질로서, 천연흑연 및 인조흑연을 중량비로 95 : 5의 비율로 혼합하여 사용한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 리튬 이차전지를 제조하였다.
<실시예 7>
음극 활물질로서 천연흑연을 단독으로 사용한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 리튬 이차전지를 제조하였다.
<비교예 4>
양극 활물질로서, 리튬 니켈 코발트 망간 복합산화물의 Ni : Mn : Co가 1 : 1 : 1의 함량으로 포함된 것을 제외하고는 실시예 3과 동일한 방법을 사용하여 리튬 이차전지를 제조하였다.
<비교예 5>
음극 활물질로서, 실시예 1의 천연흑연 대신, 비정질 탄소가 코팅되지 않은 천연흑연을 적용한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 리튬 이차전지를 제조하였다.
<실험예 1>
실시예 1과 비교예 1에서 각각 제조한 리튬 이차 전지에 대하여 양극 및 음극의 전위차를 측정하였고, 그 결과를 하기 도 1에 나타내었다.
도 1에 따르면, 실시예 1의 전지는 비교예 1의 전지에 비하여 SOC 지점에서 3.10V 내지 3.30V 범위에 속하므로, 높은 작동 전압을 확보하여 방전 과정에서 말단 부위의 출력을 향상시킬 수 있음을 알 수 있다.
<실험예 2>
상기 실시예 1, 2, 3, 4 및 비교예 2, 3에서 제조된 전지를 4.2 V에서 포메이션 한 뒤 SOC 전 영역에서 출력 변화를 측정하여 그 결과를 하기 도 2에 나타내었다.
도 2에 따르면, 실시예 1, 2, 3, 4의 전지는 비교예 2, 3의 전지에 비하여 상대 출력이 높은 것을 알 수 있다.
<실험예 3>
상기 실시예 5, 6, 및 7에서 제조된 전지를 4.2 V에서 포메이션 한 뒤 SOC 전 영역에서 출력 변화를 측정하여 그 결과를 하기 도 3에 나타내었다.
도 3에 따르면, 실시예 5, 6, 7의 전지는 인조흑연의 첨가 비율이 높아질수록 방전 출력 특성이 개선됨을 알 수 있다.
<실험예 4>
상기 실시예 1 및 비교예 4에서 제조된 전지를 4.2 V에서 포메이션 한 뒤 SOC 전 영역에서 출력 변화를 측정하여 그 결과를 하기 도 4에 나타내었다.
도 4에 따르면, 실시예 1의 전지는 비교예 4의 전지에 비하여 상대 출력이 높은 것을 알 수 있다.
<실험예 5>
상기 실시예 1 및 비교예 5에서 제조된 리튬 이차전지들을 500사이클의 충방전에 따른 전지의 용량을 측정하였고, 그 결과를 하기 도 5에 나타내었다.
도 5에 따르면, 실시예 1에서 제조된 전지는 비정질 탄소가 코팅된 천연흑연을 포함하는 양극활물질을 이용하는 바, 비교예 5에서 제조된 전지에 비하여 충방전에 따른 급격한 성능 저하를 방지할 수 있음을 알 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
상기에서 설명한 바와 같이, 본 발명에 따른 리튬 이차전지는 리튬 인산철과의 전위차가 전체 리튬 인산철이 발현하는 50% 충전도(SOC: State of Charge) 지점에서 3.10V 이상이어서, 높은 작동 전압을 확보하여 방전 말단에서의 출력을 증가시키는 효과가 있다.

Claims (18)

  1. 양극 활물질로서 리튬 인산철과, 층상 구조의 리튬 니켈 망간 코발트 복합 산화물을 포함하고 있는 양극; 및
    상기 리튬 인산철과의 전위차가 전체 리튬 인산철이 발현하는 50% 충전도(SOC: State of Charge) 지점에서 3.10V 이상인 음극 활물질을 포함하는 음극;
    을 포함하는 것을 특징으로 하는 리튬 이차전지.
  2. 제 1 항에 있어서, 상기 리튬 인산철은 올리빈 구조의 리튬 철 인산화물인 것을 특징으로 하는 리튬 이차전지.
  3. 제 1 항에 있어서, 상기 리튬 인산철은 표면에 도전성 물질이 코팅되어 있는 것을 특징으로 하는 리튬 이차전지.
  4. 제 1 항에 있어서, 상기 층상 구조의 리튬 니켈 망간 코발트 복합 산화물은 하기 화학식으로 표현되는 것을 특징으로 하는 리튬 이차전지:
    Li1+zNibMncCo1-(b+c+d)MdO(2-e)Ae
    상기 식에서, -0.5≤z≤0.5, 0.6≤b≤0.9, 0.05≤c≤0.35, 0≤d≤0.2, 0≤e≤0.2, b+c+d<1 이고, M = Al, Mg, Cr, Ti, Si 또는 Y 이고, A = F, P 또는 Cl 이다.
  5. 제 1 항에 있어서, 상기 리튬 인산철과 리튬 니켈 망간 코발트 복합 산화물의 혼합비는 중량을 기준을 30 : 70 내지 5 : 95인 것을 특징으로 하는 리튬 이차전지.
  6. 제 5 항에 있어서, 상기 리튬 인산철과 리튬 니켈 망간 코발트 복합 산화물의 혼합비는 중량을 기준을 20 : 80 내지 5 : 95인 것을 특징으로 하는 리튬 이차전지.
  7. 제 1 항에 있어서, 상기 전위차는 3.10V 내지 3.30V 범위인 것을 특징으로 하는 리튬 이차전지.
  8. 제 1 항에 있어서, 상기 음극 활물질은 흑연계 물질인 것을 특징으로 하는 리튬 이차전지.
  9. 제 8 항에 있어서, 상기 흑연계 물질은 천연 흑연인 것을 특징으로 하는 리튬 이차전지.
  10. 제 8 항에 있어서, 상기 흑연계 물질은 천연 흑연과 인조 흑연의 혼합물로 이루어진 것을 특징으로 하는 리튬 이차전지.
  11. 제 10 항에 있어서, 상기 인조 흑연은 혼합물 전체 중량을 기준으로 20 중량% 이하로 포함되어 있는 것을 특징으로 하는 리튬 이차전지.
  12. 제 11 항에 있어서, 상기 인조 흑연은 혼합물 전체 중량을 기준으로 5 중량% 내지 20 중량%로 포함되어 있는 것을 특징으로 하는 리튬 이차전지.
  13. 제 8 항에 있어서, 상기 흑연계 물질은 비정질 탄소로 코팅되어 있는 것을 특징으로 하는 리튬 이차전지.
  14. 제 8 항에 있어서, 상기 흑연계 물질은 평균 입경(D50)이 5 ㎛ 내지 30 ㎛ 범위인 것을 특징으로 하는 리튬 이차전지.
  15. 제 1 항 내지 제 14 항 중 어느 하나에 따른 리튬 이차전지를 단위전지로 포함하는 것을 특징으로 하는 전지모듈.
  16. 제 15 항에 따른 전지모듈을 포함하는 것을 특징으로 하는 전지팩.
  17. 제 16 항에 따른 전지팩을 포함하는 디바이스.
  18. 제 17 항에 있어서, 상기 디바이스는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장용 시스템인 것을 특징으로 하는 디바이스.
PCT/KR2014/004986 2013-06-05 2014-06-05 신규한 이차전지 WO2014196816A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL14807757T PL3007261T3 (pl) 2013-06-05 2014-06-05 Nowy akumulator
EP14807757.1A EP3007261B1 (en) 2013-06-05 2014-06-05 Novel secondary battery
JP2015555941A JP6642870B2 (ja) 2013-06-05 2014-06-05 新規な二次電池
CN201480007889.4A CN104969400A (zh) 2013-06-05 2014-06-05 新型二次电池
CN201811589719.8A CN110010859B (zh) 2013-06-05 2014-06-05 二次电池、电池模块、电池组和装置
US14/766,314 US10044029B2 (en) 2013-06-05 2014-06-05 Secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0064421 2013-06-05
KR20130064421 2013-06-05

Publications (1)

Publication Number Publication Date
WO2014196816A1 true WO2014196816A1 (ko) 2014-12-11

Family

ID=52008386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004986 WO2014196816A1 (ko) 2013-06-05 2014-06-05 신규한 이차전지

Country Status (7)

Country Link
US (1) US10044029B2 (ko)
EP (1) EP3007261B1 (ko)
JP (1) JP6642870B2 (ko)
KR (2) KR101522166B1 (ko)
CN (2) CN104969400A (ko)
PL (1) PL3007261T3 (ko)
WO (1) WO2014196816A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287651B2 (ja) * 2014-07-10 2018-03-07 トヨタ自動車株式会社 非水系二次電池
JP2018041675A (ja) * 2016-09-09 2018-03-15 株式会社豊田自動織機 リチウムイオン二次電池
JP6952247B2 (ja) * 2017-01-19 2021-10-20 パナソニックIpマネジメント株式会社 正極活物質、および、電池
KR102237952B1 (ko) * 2017-07-28 2021-04-08 주식회사 엘지화학 이차전지용 양극 및 이를 포함하는 리튬 이차전지
KR102254263B1 (ko) 2017-10-16 2021-05-21 주식회사 엘지에너지솔루션 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지
KR102647045B1 (ko) * 2018-12-12 2024-03-14 주식회사 엘지에너지솔루션 리튬 이차 전지용 음극 활물질 및 이를 포함하는 이차전지
US11916225B2 (en) 2019-04-09 2024-02-27 Sk On Co., Ltd. Lithium secondary battery
JP7389598B2 (ja) 2019-09-20 2023-11-30 太平洋セメント株式会社 リチウムイオン二次電池用混合型正極活物質及びリチウムイオン二次電池用正極の製造方法
EP4276965A3 (en) 2020-03-27 2024-01-03 Contemporary Amperex Technology Co., Limited Secondary cell, and device comprising secondary cell
KR20230117994A (ko) * 2022-02-03 2023-08-10 주식회사 엘지에너지솔루션 리튬 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080031616A (ko) * 2006-10-04 2008-04-10 삼성에스디아이 주식회사 양극 활물질 및 이를 채용한 리튬 전지
KR20080109298A (ko) * 2007-06-12 2008-12-17 삼성에스디아이 주식회사 복합 활물질을 포함하는 캐소드 및 이를 채용한 리튬 전지
KR101113074B1 (ko) * 2009-06-08 2012-02-16 주식회사 엘지화학 양극 활물질, 및 이를 포함하는 양극, 리튬 이차 전지
KR101139972B1 (ko) * 2010-02-24 2012-04-30 주식회사 엘지화학 출력 향상을 위한 양극 활물질 및 이를 포함하는 리튬 이차전지
KR101199915B1 (ko) * 2012-07-23 2012-11-09 에너테크인터내셔널 주식회사 개선된 충방전 전압곡선 특성을 갖는 리튬이차전지용 음극 재료 및 이를 이용한 음극 전극의 제조방법

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3059820B2 (ja) 1992-04-09 2000-07-04 三洋電機株式会社 リチウム二次電池
US7189475B2 (en) * 2000-07-27 2007-03-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Lithium secondary battery
JP4729716B2 (ja) * 2003-02-20 2011-07-20 三菱化学株式会社 リチウム二次電池負極及びリチウム二次電池
CN100438136C (zh) 2004-02-13 2008-11-26 株式会社Lg化学 具有改进结构的电池组
US8637187B2 (en) 2004-06-30 2014-01-28 Mitsubishi Chemical Corporation Negative electrode material for lithium secondary battery, method for producing same, negative electrode for lithium secondary battery using same and lithium secondary battery
JP5317390B2 (ja) * 2006-02-09 2013-10-16 三洋電機株式会社 非水電解質二次電池
JP2007317538A (ja) * 2006-05-26 2007-12-06 Sony Corp 電池
JP5213015B2 (ja) * 2007-09-04 2013-06-19 Necエナジーデバイス株式会社 リチウムイオン二次電池
WO2010052950A1 (ja) 2008-11-04 2010-05-14 国立大学法人岩手大学 不定比チタン化合物、その炭素複合体、それら化合物の製造方法、及びそれら化合物を含むリチウムイオン二次電池用負極活物質、並びにそれを用いたリチウムイオン二次電池
JP5682970B2 (ja) 2009-05-27 2015-03-11 エルジー・ケム・リミテッド 正極活物質、及びこれを含む正極、リチウム二次電池
JP5574404B2 (ja) * 2009-07-16 2014-08-20 Necエナジーデバイス株式会社 リチウムイオン二次電池
JP5480911B2 (ja) * 2009-11-18 2014-04-23 三井化学株式会社 電気化学セル用水性ペースト、該水性ペーストを塗布してなる電気化学セル用極板、および該極板を含む電池
JP5055350B2 (ja) * 2009-12-28 2012-10-24 シャープ株式会社 非水電解質二次電池及び非水電解質二次電池用の電極
JP5672113B2 (ja) * 2010-03-31 2015-02-18 株式会社Gsユアサ 非水電解質二次電池
CN102694195A (zh) 2011-03-24 2012-09-26 江西日普升太阳能光伏产业有限公司 一种便于电池管理系统管理的磷酸铁锂电池
KR101288779B1 (ko) 2011-04-04 2013-07-22 주식회사 엘지화학 출력 향상을 위한 리튬이차전지용 양극재 및 이를 포함하는 리튬이차전지
JP2013073906A (ja) * 2011-09-29 2013-04-22 Toppan Printing Co Ltd 非水電解液二次電池用正極電極及び非水電解液二次電池
JP5797993B2 (ja) 2011-09-30 2015-10-21 富士重工業株式会社 非水電解質二次電池
JP6056125B2 (ja) 2011-10-20 2017-01-11 Tdk株式会社 組電池及び蓄電装置
CN202564476U (zh) 2012-04-11 2012-11-28 深圳市翔丰华科技有限公司 锂离子电池负极用石墨球

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080031616A (ko) * 2006-10-04 2008-04-10 삼성에스디아이 주식회사 양극 활물질 및 이를 채용한 리튬 전지
KR20080109298A (ko) * 2007-06-12 2008-12-17 삼성에스디아이 주식회사 복합 활물질을 포함하는 캐소드 및 이를 채용한 리튬 전지
KR101113074B1 (ko) * 2009-06-08 2012-02-16 주식회사 엘지화학 양극 활물질, 및 이를 포함하는 양극, 리튬 이차 전지
KR101139972B1 (ko) * 2010-02-24 2012-04-30 주식회사 엘지화학 출력 향상을 위한 양극 활물질 및 이를 포함하는 리튬 이차전지
KR101199915B1 (ko) * 2012-07-23 2012-11-09 에너테크인터내셔널 주식회사 개선된 충방전 전압곡선 특성을 갖는 리튬이차전지용 음극 재료 및 이를 이용한 음극 전극의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3007261A4 *

Also Published As

Publication number Publication date
EP3007261B1 (en) 2019-09-04
KR101589993B1 (ko) 2016-02-01
KR101522166B1 (ko) 2015-05-22
KR20140143118A (ko) 2014-12-15
US20160099462A1 (en) 2016-04-07
PL3007261T3 (pl) 2020-02-28
US10044029B2 (en) 2018-08-07
EP3007261A1 (en) 2016-04-13
KR20150013101A (ko) 2015-02-04
JP6642870B2 (ja) 2020-02-12
EP3007261A4 (en) 2017-01-25
CN110010859B (zh) 2022-05-24
CN104969400A (zh) 2015-10-07
CN110010859A (zh) 2019-07-12
JP2016505207A (ja) 2016-02-18

Similar Documents

Publication Publication Date Title
WO2014196816A1 (ko) 신규한 이차전지
WO2015016563A1 (ko) 전해액과 반응을 방지하기 위한 코팅층을 포함하는 전극
WO2013122352A1 (ko) 수계 바인더를 포함하는 음극을 구비한 리튬 이차전지
WO2012144785A2 (ko) 양극 활물질 및 그것을 포함한 리튬 이차전지
WO2016089099A1 (ko) 저온 성능이 향상된 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2010079965A2 (ko) 리튬 이차전지용 양극 활물질
WO2011105833A9 (ko) 출력 향상을 위한 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2017171425A1 (ko) 리튬 코발트 산화물을 포함하는 코어 및 붕소와 불소를 포함하는 코팅층을 포함하는 양극 활물질 입자 및 이의 제조 방법
WO2010079958A2 (ko) 리튬 이차전지용 양극 활물질
WO2010079949A2 (ko) 리튬 이차전지용 양극 활물질
WO2012161476A2 (ko) 에너지 밀도 특성이 향상된 고에너지 밀도의 리튬 이차전지
WO2012161479A2 (ko) 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
WO2013009078A9 (ko) 에너지 밀도 특성이 향상된 고 에너지 리튬 이차전지
WO2015053478A1 (ko) 규소계 화합물을 포함하는 이차전지
WO2013157856A1 (ko) 다층구조 전극 및 그 제조방법
WO2014204185A1 (ko) 수명 특성이 향상된 리튬 이차전지
WO2014081252A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2013157832A1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
WO2013157863A1 (ko) 전극 및 이를 포함하는 이차전지
WO2015141997A1 (ko) 양극 활물질과 이를 포함하는 리튬 이차전지
WO2015016506A1 (ko) 에너지 밀도가 향상된 전극 활물질 및 이를 포함하는 리튬 이차전지
WO2012086939A2 (ko) 음극 활물질 및 이를 이용한 이차전지
WO2012077929A2 (ko) 음극 활물질 및 이를 이용한 이차전지
WO2015012640A1 (ko) 에너지 밀도가 향상된 이차전지용 전극 및 이를 포함하는 리튬 이차전지
WO2014081249A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807757

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015555941

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014807757

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14766314

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE