WO2014196432A1 - 高強力繊維複合材及びストランド構造体並びにマルチストランド構造体 - Google Patents

高強力繊維複合材及びストランド構造体並びにマルチストランド構造体 Download PDF

Info

Publication number
WO2014196432A1
WO2014196432A1 PCT/JP2014/064127 JP2014064127W WO2014196432A1 WO 2014196432 A1 WO2014196432 A1 WO 2014196432A1 JP 2014064127 W JP2014064127 W JP 2014064127W WO 2014196432 A1 WO2014196432 A1 WO 2014196432A1
Authority
WO
WIPO (PCT)
Prior art keywords
strength fiber
strength
strand structure
fiber composite
composite material
Prior art date
Application number
PCT/JP2014/064127
Other languages
English (en)
French (fr)
Inventor
林 豊
武俊 中山
穂奈美 野田
Original Assignee
小松精練株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小松精練株式会社 filed Critical 小松精練株式会社
Priority to JP2015521406A priority Critical patent/JP6129963B2/ja
Priority to EP14808311.6A priority patent/EP3006611B1/en
Publication of WO2014196432A1 publication Critical patent/WO2014196432A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C1/00Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
    • D04C1/02Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof made from particular materials
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • D07B1/025Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics comprising high modulus, or high tenacity, polymer filaments or fibres, e.g. liquid-crystal polymers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B7/00Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
    • D07B7/02Machine details; Auxiliary devices
    • D07B7/14Machine details; Auxiliary devices for coating or wrapping ropes, cables, or component strands thereof
    • D07B7/145Coating or filling-up interstices
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/104Rope or cable structures twisted
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1096Rope or cable structures braided
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2014Compound wires or compound filaments
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2038Strands characterised by the number of wires or filaments
    • D07B2201/2039Strands characterised by the number of wires or filaments three to eight wires or filaments respectively forming a single layer
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2046Strands comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2075Fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/206Epoxy resins
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3007Carbon
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2015Construction industries
    • D07B2501/2023Concrete enforcements

Definitions

  • the present invention relates to a high-strength fiber composite material having a core wire bundled with high-strength fiber yarns, a strand structure composed of the high-strength fiber composite material, and a multi-strand structure composed of the strand structure.
  • Carbon fiber is excellent in mechanical performance such as tensile strength and elastic modulus, corrosion resistance against acids and alkalis, and is lightweight. Therefore, it is also used in various industrial fields such as automobiles, aircraft, electrical / electronic devices, toys, and home appliances, and is also being applied to structural applications.
  • Patent Document 1 discloses an example in which a carbon fiber composite material is used as a tensile material such as braces (struts) in a frame in order to improve the earthquake resistance of a building.
  • Patent Document 2 discloses an example of a wire using a carbon fiber composite material.
  • Carbon fiber composites are effective in improving tensile strength and bending strength, but are weak against shearing forces. Such problems are not limited to carbon fiber yarns, but fibers called high strength fibers such as basalt fiber yarns are bundled by aligning the fiber directions to form a high strength fiber bundle, and the peripheral surface of this high strength fiber bundle The same applies to a high-strength fiber composite material that is entirely covered with other fibers.
  • the present inventors have disclosed an inner layer composed of a core wire of one or more string-like carbon fiber bundles, an intermediate layer including a resin provided around the core wire, and a periphery of the intermediate layer.
  • a high-strength fiber composite material string-like reinforcing fiber composite
  • the high-strength fiber composite material has excellent tensile strength derived from carbon fibers, is excellent in shear strength, and in a more preferable form of the high-strength fiber composite material, it has shape variability.
  • the carbon fiber bundle constituting the core wire of the high-strength fiber composite material is one. It may break. As a result, the tensile strength of the high strength fiber composite material as a whole may be reduced.
  • a high-strength fiber composite material in the form of a rod such as a tensile material
  • a long high-strength fiber composite material may be wound around a drum during storage, resulting in similar problems. There is a fear.
  • an object of the present invention is to provide a high-strength fiber composite material capable of obtaining the original tensile strength of a high-strength fiber yarn even when used in an application where bending stress occurs, and an application product thereof. It is.
  • the present invention provides the following.
  • a high-strength fiber composite material having a core wire obtained by twisting a high-strength fiber bundle formed by bundling high-strength fiber yarns and solidifying the twisted high-strength fiber bundle with a solidifying agent.
  • the high-strength fiber bundle is bundled by winding a restraining material around it, and the high-strength fiber bundle is integrated with the restraining material and a solidifying agent in a state where the high-strength fiber bundle is twisted to constitute the core wire.
  • the high strength fiber composite material according to ⁇ 1> is bundled by winding a restraining material around it, and the high-strength fiber bundle is integrated with the restraining material and a solidifying agent in a state where the high-strength fiber bundle is twisted to constitute the core wire.
  • ⁇ 3> The high strength fiber composite material according to ⁇ 1> or ⁇ 2>, wherein the number of twists of the high strength fiber bundle is 2 to 50 times / m.
  • ⁇ 4> The high-strength fiber composite material according to any one of ⁇ 1> to ⁇ 3>, wherein the solidifying agent is a thermoplastic resin.
  • ⁇ 5> The high-strength fiber composite material according to claim 4, wherein the thermoplastic resin is a thermoplastic epoxy resin.
  • ⁇ 6> The high-strength fiber composite material according to any one of ⁇ 1> to ⁇ 5>, wherein the core wire has a diameter of 1 to 5 mm.
  • ⁇ 7> The high strength fiber composite material according to any one of ⁇ 1> to ⁇ 6>, wherein the high strength fiber yarn includes carbon fiber or basalt fiber.
  • ⁇ 8> A strand structure having a strand structure formed by twisting two or more high-strength fiber composite materials according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 9> The strand structure according to ⁇ 8>, wherein the number of twists is 1.1 to 50 times / m.
  • ⁇ 10> The strand structure according to ⁇ 8> or ⁇ 9>, wherein the number of high-strength fiber composites constituting the strand structure is 2 to 40.
  • the first invention according to the present application is a high-strength fiber having a core obtained by twisting a high-strength fiber bundle formed by bundling high-strength fiber yarns and solidifying the twisted high-strength fiber bundle with a solidifying agent. It relates to a strong fiber composite material.
  • the core wire constituting the high-strength fiber composite material is solidified by the solidifying agent in a state where the high-strength fiber bundle is twisted, so even if a strong force is applied from the outside, the high-strength fiber It is suppressed that the high strength fiber yarns constituting the bundle are scattered, and the original tensile strength of the high strength fiber can be stably exhibited. Since the high-strength fiber bundle is solidified by a solidifying agent in a twisted state, handling properties and strength are improved (stabilized) because the high-strength fiber yarn constituting the high-strength fiber bundle is not scattered. At the same time, the high-strength fiber yarn is not easily broken even when bent.
  • the high-strength fiber composite material may be broken when the high-strength fiber composite material is wound around a drum or used in a place where bending stress is applied. Therefore, there is a possibility that a high-strength fiber composite material (further, a later-described strand structure composed of the high-strength fiber composite material) cannot be used or the original strength of the high-strength fiber cannot be exhibited.
  • the high strength fiber bundle is not twisted, the length of each bundle of high strength fiber yarns tends to vary in the high strength fiber bundle, and the original high strength fibers possessed by each high strength fiber yarn The original strength cannot be exhibited, and the strength of the high strength fiber bundle as a whole may be insufficient.
  • twisting the high strength fiber bundle it is avoided that the high strength fiber composite material breaks, and further, the high strength fiber yarns constituting the high strength fiber bundle are integrated in the same length. Therefore, the original strength of the high strength fiber is exhibited.
  • the high-strength fiber composite material can maintain a strong tensile strength even when a bending stress is applied, such as when it is used after being wound around a drum and when it is stretched or pulled while being bent. If the high strength fiber bundle is simply twisted without using the solidifying agent, the strength is insufficient as compared with the high strength fiber composite material of the present invention integrated with the solidifying agent.
  • the high-strength fiber yarns constituting the high-strength fiber bundle preferably include carbon fibers or basalt fibers, more preferably carbon fibers or basalt fibers, and particularly preferably carbon fibers.
  • Basalt fiber and carbon fiber have high tensile strength, but shear strength is weak and easy to break.Therefore, high strength fiber composites using these are used in applications where bending stress such as wire or rope is generated, or used in drums, etc.
  • the high strength fiber composite material When wound up and stored, the high strength fiber composite material is easily broken, but by twisting the high strength fiber bundle made of basalt fiber or carbon fiber, it is transverse (vertical) to the length direction of the high strength fiber composite material. Even if direction force is applied, it is possible to prevent breakage. Therefore, a high-strength fiber composite material having a high-strength fiber bundle made of basalt fiber or carbon fiber has the original tensile strength of basalt fiber or carbon fiber even when bending stress occurs.
  • the high-strength fiber bundle is wound by binding a restraining material around the high-strength fiber bundle.
  • a restraining material Preferably it is.
  • the core wire is a united high-strength fiber bundle and restraint material.
  • the high-strength fiber yarns constituting the high-strength fiber bundle are restrained from being twisted, entangled, or broken, and the original tensile strength of the high-strength fiber can be sufficiently maintained.
  • the high-strength fiber composite material can be prevented from being broken even if a bending stress is applied after integration with a solidifying agent.
  • the restraining material may be any material that can be wound around the high strength fiber bundle and bind the high strength fiber bundle in a twisted state.
  • a form in which the entire periphery of the high strength fiber bundle is covered with a restraining material is preferable.
  • the surface of the high strength fiber bundles can be coated to such an extent that it cannot be visually confirmed. This is preferable because it functions as a protective layer for protecting the high-strength fiber yarns constituting the strong-fiber bundle.
  • the high-strength fiber threads that make up the high-strength fiber bundle may jump out from between the restraining materials before being integrated with the solidifying agent.
  • the high-strength fiber yarns that make up the high-strength fiber bundle are prevented from being twisted, entangled, broken, broken, broken, Handling properties until the high-strength fiber bundle is integrated with the resin are maintained, and thus the original tensile strength of the high-strength fiber composite can be sufficiently maintained.
  • the twist number of the high-strength fiber bundle is preferably 2 to 50 times / m, more preferably 4 to 40 times / m.
  • the number of twists is more preferably 10 times / m or more, further preferably 15 times / m or more, and even more preferably 20 times or more.
  • the upper limit of the number of twists is 50 times / m or less, preferably 40 times / m or less. If the number of twists of the high strength fiber bundle is less than 2 times / m, the effect obtained by twisting the high strength fiber bundle may be insufficient, and if it exceeds 50 times / m, There is a possibility that the high strength fiber yarn constituting the strength fiber bundle may be broken at the stage of twisting.
  • thermoplastic resin As the solidifying agent that can be used, either a thermoplastic resin or a thermosetting resin may be used, but a thermoplastic resin is preferably used. That is, it can be deformed by heat, and it is easy to form a drum structure on a thinner drum or a strand structure described later while heating. Moreover, it is preferable to use a solidifying agent having a high affinity with the high strength fiber yarn.
  • examples of a preferable thermoplastic resin include a thermoplastic epoxy resin (particularly, a thermoplastic epoxy resin having a linearly polymerized structure).
  • thermoplastic epoxy resins a polymerization type thermoplastic epoxy resin (particularly, a thermoplastic epoxy resin having a structure polymerized linearly) is preferable.
  • the high-strength fiber composite material of the present invention preferably has a core wire diameter of 1 to 5 mm.
  • the diameter of the core wire is based on the portion having the largest diameter of the high-strength fiber composite material, and when the high-strength fiber composite material includes the restraint material, the thickness of the restraint material portion is also included. If the diameter of the core wire is in such a range, it can be wound around a thin drum (for example, a drum having a diameter of 70 cm or less) without applying heat.
  • the high-strength fiber composite material of the present invention only needs to have the above-described core wire, and the surroundings may be colored or a protective layer may be provided on the outer layer.
  • a second invention according to the present application is a strand structure having a strand structure configured by twisting two or more high-strength fiber composite materials according to the first invention.
  • the “strand structure” means a structure in which two to several tens of strands having the same diameter or different diameters are combined in a single layer or multiple layers
  • the strand structure according to the second invention of the present application is The high-strength fiber composite material according to the first invention of the present application is characterized in that it is used as a strand.
  • the strand structure according to the second invention is composed of the high-strength fiber composite material having the above properties, the composite material having excellent tensile strength while maintaining the performance of the above-described high-strength fiber composite material of the present invention. It is.
  • the strand structure according to the second invention can be manufactured by drawing a necessary number of long high-strength fiber composite materials from the creel and twisting them together.
  • a thermoplastic resin used as the solidifying agent
  • the strand structure obtained at the time of manufacture is long and can be wound around a drum and stored in the same manner as a high-strength fiber composite material.
  • the said strand structure can be cut
  • the strand structure obtained by twisting is integrated with the strand structure to prevent breakage and to stabilize the tensile strength.
  • the high-strength fiber composite material constituting the strand structure according to the second invention may be two or more, and is appropriately determined in consideration of the intended performance (particularly tensile strength) and application.
  • the number is 40, and preferably 7 to 37. If it exceeds 40, it may be difficult to twist at a predetermined pitch.
  • a necessary number of high-strength fiber composite materials may be bundled, and the entire bundled high-strength fiber composite materials may be twisted, or (2) One or a plurality of high-strength fiber composite materials are arranged at the center to form a core, and the high-strength fiber composite material to be the core is surrounded by other high-strength fiber composite materials, so that the core You may twist together a strong fiber composite material and another high strength fiber composite material.
  • the number of twists of the strand structure according to the second invention is preferably 1.1 to 50 times / m in any case of the twisting methods (1) and (2).
  • the number is preferably 1.5 to 20 times / m.
  • 3rd invention which concerns on this application is a multi-strand structure which has a strand structure comprised by twisting together the 2 or more strand structure which concerns on said 2nd invention.
  • the “multi-strand structure” means that the strand structure according to the second invention of the present application is used as a strand, and 2 to several tens of strands having the same diameter or different diameters (strand structure) Body) means a structure in which a single layer or multiple layers are combined.
  • the multi-strand structure is particularly suitable for applications requiring high tensile strength, such as applications of reinforcing bars for large buildings, PC steel wires and PC steel materials, and chain substitute wires for mooring large ships.
  • the multi-strand structure according to the third invention has advantages in that the handling property is good and the strength is stable because the multi-strand structure does not fall apart compared to the case where the same number of strand structures are used.
  • the number of the strand structure used for constructing the multi-strand structure according to the third invention may be two or more, and the intended performance (particularly tensile strength), application Is appropriately determined and is usually 2 to 40. If the number of strand structures constituting the multi-strand structure exceeds 40, it may be difficult to twist at a predetermined pitch.
  • the number is preferably 7 to 37.
  • a necessary number of strand structures may be bundled and the entire bundled strand structure may be twisted, or (2) one or A strand structure (hereinafter sometimes referred to as a “core strand”) is formed by arranging a plurality of strand structures in the center, and the core strand is surrounded by another strand structure. Then, the core strand and another strand structure may be twisted together.
  • the number of twists of the multi-strand structure according to the third invention is preferably 0.3 to 30 times / m in any case of the twisting methods (1) and (2).
  • the number is preferably 0.5 to 15 times / m.
  • the high-strength fiber composite material according to the first invention of the present application, the strand structure according to the second invention, and the multi-strand structure according to the third invention are all kinds of civil engineering, architecture, construction, ships, mining, fishing, etc. It can be applied to the industrial field, and its use is not limited.
  • the high-strength fiber composite material, the strand structure and the multi-strand structure of the present invention have excellent strength derived from high-strength fibers and are lightweight, and therefore, such as buildings such as steel structures, reinforced concrete and wooden structures, bridges, etc. It can be preferably used as a brace material or a reinforcing material (including a substitute for a reinforcing metal fitting) used for a bridge or the like.
  • the high-strength fiber composite material, the strand structure, and the multi-strand structure of the present invention may be colored, for example, or further provided with a protective layer on the outer layer.
  • the high-strength fiber composite material (or strand structure or multi-strand structure) of the present invention may be combined with an arbitrary member and used as a composite structure member.
  • a suitable composite structure member at least one end of a high-strength fiber composite material (or a strand structure or a multi-strand structure) is inserted into a body portion of a fixing jig, and the high-strength fiber composite material ( Alternatively, the high-strength fiber composite material (or the strand structure or multi-strand structure) and the fixing treatment can be fixed by bonding and fixing the end of the strand structure or multi-strand structure) and the body of the fixing jig.
  • the composite structural member formed by integrating the tool is mentioned.
  • a strand structure composed of a plurality of high-strength fiber composites twisted together is not integrated with a solidifying agent because the plurality of high-strength fiber composites that have been twisted together is fixed.
  • the adhesive strength with the jig is increased and stabilized, and particularly excellent in tensile strength and strength stability, it can be suitably used as a tensile material such as a brace as a composite structural member integrated with a fixing jig.
  • a fixing jig suitable for the composite material of the present invention includes a fixing jig disclosed in Japanese Patent Application No. 2012-84240 by the present inventors.
  • the surface area of the strand structure increases and the adhesive strength with concrete increases. The strength of concrete buildings can be improved.
  • the high strength fiber composite material which has the original tensile strength of a high strength fiber yarn and can be used conveniently for the use which a bending stress generate
  • the high-strength fiber composite material of the present invention has an advantage that it is difficult to cause a decrease in strength even when it is used in applications in which bending stress such as a wire or rope is generated, or wound around a drum or the like and stored.
  • the strand structure and multi-strand structure composed of the high-strength fiber composite material of the present invention have strength derived from high-strength fibers, are lightweight and excellent in tensile strength, and can be used for various applications. it can.
  • FIG. 1 It is a schematic diagram of the high strength fiber composite material according to Embodiment 1 of the present invention. It is a figure for demonstrating the manufacturing method of the high strength fiber composite material of this invention. It is a schematic diagram (side view) of the high strength fiber composite material 1a which concerns on Embodiment 2 of this invention. It is a schematic diagram (sectional drawing) of the high strength fiber composite material 1a which concerns on Embodiment 2 of this invention. It is a schematic diagram which shows the strand structure 10 which concerns on Embodiment 3 of this invention. It is a schematic diagram (side view) which shows the multi-strand structure 100 which concerns on Embodiment 4 of this invention.
  • FIG. 1 It is a schematic diagram (cross-sectional view (strand structure 10: 7 pieces)) showing the multi-strand structure 100 according to Embodiment 4 of the present invention.
  • 2 is a photograph of the high-strength fiber composite material of Example 1. It is a photograph of the strand structure of Example 3 (twisting pitch: 20 times / m).
  • 4 is a photograph of the strand structure of Example 4 (twist pitch: 5 times / m).
  • 6 is a photograph of the multi-strand structure of Example 5.
  • FIG. 1 shows a high strength fiber composite material 1 according to Embodiment 1 of the present invention.
  • the high strength fiber composite material 1 includes a core wire 2 obtained by solidifying a twisted high strength fiber bundle 5 with a solidifying agent.
  • the high-strength fiber bundle 5 is a bundle of a plurality of high-strength fiber yarns 4 (usually thousands to hundreds of thousands, or millions), and the cross section is circular or flat.
  • the high strength fiber bundle 5 is solidified by a solidifying agent in a state where a predetermined number of twists are applied.
  • the number of twists of the high strength fiber bundle 5 is the resistance to bending stress of the obtained high strength fiber composite material, the anti-breaking property of the high strength fiber yarn, the strength against the twist of the high strength fiber yarn 4 (the carbon fiber yarn cannot be cut by twisting). ) And a carbon fiber bundle that is not constrained to jump out from between the restraining materials when restrained by the restraining material before applying the solidifying agent to be described later. .
  • the twist number of the high strength fiber bundle 5 is preferably 2 to 50 times / m, more preferably 5 to 40 times / m, and further preferably 10 to 30 times / m.
  • the core wire 2 in the high strength fiber composite material 1 preferably has a diameter of 1 to 10 mm, and more preferably has a diameter of 1 to 5 mm.
  • the diameter of the high-strength fiber bundle 1 is the sum of the diameter of the high-strength fiber bundle 5 and the thickness of the solidifying agent, and the diameter of the high-strength fiber bundle 5 so as to be the target diameter.
  • the amount of solidifying agent applied is selected.
  • the diameter of the core wire is 1 to 10 mm (more preferably 1 to 5 mm)
  • the high-strength fiber composite material and the strand structure or multi-strand structure described later can be easily wound around the drum. Flexibility such as following the shape can be enhanced.
  • the diameter of the core wire is 1 to 10 mm (more preferably 1 to 5 mm)
  • the surface area becomes large when the end of the strand structure or multi-strand structure is bonded to the fixing jig, and the fixing treatment is increased. It can contribute to the improvement of the adhesive strength between the tool and the strand structure or multi-strand structure.
  • the high-strength fiber yarn 4 constituting the high-strength fiber bundle 5 a fiber also called a super fiber can be used.
  • the high-strength fiber yarn 4 include carbon fiber, basalt fiber, para-aramid fiber, meta-aramid fiber, ultrahigh molecular weight polyethylene fiber, polyarylate fiber, PBO (polyparaphenylene benzoxazole) fiber, polyphenylene sulfide (PPS).
  • Fiber polyimide fiber, fluorine fiber, polyvinyl alcohol (PVA fiber) and the like can be used.
  • the high-strength fiber yarn 4 of the present invention is particularly useful when carbon fibers, basalt fibers, and particularly carbon fibers that have high strength in the fiber direction but low shearing force are used.
  • the high strength fiber bundle 5 may use one type of the above high strength fiber yarn, or may mix two or more types.
  • the high strength fiber bundle 5 may be a mixture of yarns made of organic fibers other than the high strength fiber yarns as long as the strength and bendability are not impaired. Further, the high-strength fiber bundle 5 may contain a sizing agent or a sizing agent.
  • any of polyacrylonitrile (PAN) type and pitch type carbon fiber yarns can be used.
  • PAN-based carbon fiber yarn is preferable from the viewpoint of a balance between strength and elastic modulus of the obtained molded product.
  • the high-strength fiber bundle obtained by bundling the carbon fiber yarns is made up of 6000 (6K), 12000 (12K), 24000 (24K) carbon fiber yarns, etc., which are supplied from a carbon fiber manufacturer, and the required strength.
  • one or a plurality of (two or more) bundles can be used.
  • the number of high-strength fiber bundles in the case of bundling a plurality of high-strength fiber bundles in which carbon fiber yarns are bundled is not particularly limited and is appropriately determined according to the intended use, but is usually 100 or less.
  • thermoplastic resin either a thermoplastic resin or a thermosetting resin can be used.
  • a solidifying agent having high affinity with the high tenacity fiber yarn is preferable.
  • a thermoplastic resin is preferably used as a solidifying agent because it can be made variable by heating.
  • Preferred examples include polyetheretherketone (PEEK), polypropylene, polyethylene, polystyrene, polyamide (nylon 6, nylon 66, nylon 12, nylon 42, etc.), ABS resin, acrylic resin, vinyl chloride resin, vinylidene chloride resin.
  • polyether ether ketone PEEK
  • acrylic resin vinyl chloride resin, vinylidene chloride resin, polyethylene resin, epoxy resin, urethane resin, polycarbonate resin, resorcinol resin
  • it is excellent in impact resistance, and an epoxy resin is suitable.
  • it is a thermoplastic epoxy resin, it can melt
  • thermoplastic epoxy resins a polymerizable thermoplastic epoxy resin that polymerizes is preferable, and a polymerizable thermoplastic epoxy resin that polymerizes in a straight chain is particularly preferable. It is difficult to impregnate the resin inside the high-strength fiber bundle if the high-strength fiber bundle, which is the core wire, is twisted or if the periphery of the high-strength fiber bundle is covered with a restraining material It is. On the other hand, the polymerization-type thermoplastic epoxy resin can be easily adjusted in viscosity because the thermoplastic epoxy resin before polymerization can be diluted with an organic solvent.
  • thermoplastic epoxy resin prior to polymerization (up to the high strength fiber bundle inside).
  • the high-strength fiber bundle and the restraint material are integrated with the thermoplastic epoxy resin by polymerizing the polymerization type thermoplastic epoxy resin.
  • a high strength fiber composite material having excellent strength can be obtained.
  • thermoplastic resin used to impart fluidity by heating and melting is difficult to adjust the viscosity, and the crystal arrangement is changed by heating or melting because it is generally a crystalline resin, Although the properties such as strength of the original resin may be altered, the polymerizable thermoplastic epoxy resin is amorphous before and after polymerization, so it can be melted and deformed by heating. The risk of alteration is small.
  • the method of applying the above resin (solidifying agent) to the high strength fiber bundle 5 may be a spray coating method or a method of coating the resin on the high strength fiber with a brush. From the viewpoint of productivity, the dip-nip method It is preferable to squeeze excess resin through a die after dipping into a resin (solidifying agent) solution.
  • a device for applying the resin (solidifying agent) a device of the type shown in FIG. 2 having a die for adjusting the shape of the high-strength fiber composite material and adjusting the amount of resin impregnation and resin application may be cited as a suitable example. it can.
  • thermoplastic resin when the core wire 2 according to Embodiment 1 is manufactured using an apparatus of the type shown in FIG. 2, first, the creel 7a is twisted with a predetermined number of twists.
  • the high-strength fiber bundle 5 that has been applied is supplied and immersed in a molten thermoplastic resin dissolved in a solvent or an emulsion containing a thermoplastic resin and passed therethrough. At that time, the resin is contained up to the inside of the high-strength fiber bundle 5 by squeezing with a die 7f.
  • the excess resin is removed and the wire diameter and alignment are adjusted, and after the resin is contained to the inside of the high-strength fiber bundle 5, it is heated by a heating furnace 7c having a preheating furnace 7g.
  • the core wire 2 composed of the high-strength fiber bundle 5 to which the thermoplastic resin (solidifying agent) is applied is formed by evaporating the solvent and drying it to cure the thermoplastic resin.
  • the high-strength fiber composite material composed of the core wire 2 is wound around and stored in the drum 7e as it is long. And after construction is decided, it can cut
  • the high-strength fiber bundle that has been twisted is wound around the drum and then the drum is attached to the creel to give the resin, but the high-strength fiber bundle that has not been twisted is twisted. Thereafter, the resin may be applied without being wound around the drum.
  • the high strength fiber bundle is wound by binding a restraint material around it, and the high strength fiber bundle is united by the solidifying agent together with the restraint material in a twisted state.
  • a high-strength fiber composite material according to the second embodiment that constitutes the core wire will be described.
  • 3A and 3B the same components as those in FIG. 1 may be denoted by the same reference numerals and description thereof may be omitted.
  • the high-strength fiber composite material 1a shown in FIGS. 3A and 3B includes a core wire 2 obtained by solidifying a twisted high-strength fiber bundle 5 and a restraining material 3 that winds and bundles the high-strength fiber bundle 5 with a solidifying agent.
  • a core wire 2 obtained by solidifying a twisted high-strength fiber bundle 5
  • a restraining material 3 that winds and bundles the high-strength fiber bundle 5 with a solidifying agent.
  • Constraint material 3 binds high-strength fiber bundle 5 so that high-strength fiber thread 4 does not fall from the peripheral surface.
  • the high-strength fiber composite material 1a includes the high-strength fiber bundle 5 and the restraint material 3 by restraining the twisted high-strength fiber bundle 5 with the restraint material 3 and applying a solidifying agent thereto. Are integrated by a solidifying agent.
  • the braided constraining material 3 is formed by winding the fibers to be the constraining material 3 and assembling a tubular braid (round punching).
  • the restraining material 3 By making the restraining material 3 into a braided shape, the surface of the high strength fiber bundle 5 can be coated to such an extent that it cannot be visually confirmed, so that the high strength fiber bundle 5 is bound and the restraining material is inside the high strength fiber bundle. 5 functions as a protective layer that protects the high-strength fiber yarns constituting the belt 5.
  • the high-strength fiber composite material having such a configuration is used as a brace material, a reinforcing reinforcing material for concrete, etc., it is possible to prevent disconnection even when it comes into contact with sharp objects such as gravel. Moreover, since it is not necessary to provide a separate protective layer, a single high-strength fiber composite material can be made thinner and contribute to cost reduction.
  • the resin (solidifying agent) solution when the excess resin is squeezed by handling with a die, tension is applied in the length direction of the fiber.
  • the braid structure does not open the eyes like a knitted fabric, but reduces the diameter of the braid with the eyes closed.
  • the restraint material 3 should just be able to bind so that the high strength fiber yarn 4 which comprises the high strength fiber bundle 5 may not be separated, and arrangement
  • positioning of the restraint material 3 is not limited to the braid shape shown to FIG. 3A and FIG. 3B. Further, it is not necessary to completely cover the surface of the high strength fiber bundle with the restraining material, and a part of the surface of the high strength fiber bundle may not be covered. As an example of arrangement by other restraint materials, one restraint material is spirally wound to bind a high strength fiber bundle, or a fiber serving as a restraint material is wound around the periphery of the high strength fiber bundle.
  • a restraint material for binding high-strength fiber bundles with a braided string-like restraint made of coarse cylindrical circular knitting, or for binding high-strength fiber bundles of high-strength fiber composites.
  • a form in which high-strength fiber bundles are bound by a restraining material in which fibers or the like are arranged at predetermined intervals may be used.
  • the high strength fiber bundle 5 is passed through the center of the string making machine and restrained on the peripheral surface of the high strength fiber bundle 5 using the string making machine.
  • a braid may be formed from the material 3.
  • the braid-like restraint material 3 is formed on the peripheral surface of the high strength fiber bundle 5.
  • the restraining material 3 for binding the high-strength fiber bundle 5 may be twisted or not.
  • the constraining material 3 is preferably a flexible material, such as polyamide (nylon, etc.), vinylon, polyacryl, polypropylene, vinyl chloride, aramid, cellulose, polyamide, polyester, polyacetal, etc., regenerated fiber such as rayon, acetate, etc. Semi-synthetic fibers such as silk, wool, hemp, cotton and other natural fibers can be used.
  • a fiber having excellent thermal stability is preferable, Polyester fiber, glass fiber, and basalt fiber are preferable, and glass fiber is particularly preferable. By using a fiber having excellent thermal stability, it is possible to suppress the occurrence of deviation between the high-strength fiber yarn and the restraining material when heat is applied, and to express a stable tensile strength.
  • the core wire 2 in order to bind the high-strength fiber yarns 4 more firmly, it is possible to impregnate a high-strength fiber bundle particularly bound with a restraining material with a solidifying agent and cure the high-strength fiber bundle together with the restraining material. preferable. By doing so, a high-strength fiber bundle and a restraint material can be firmly integrated.
  • the high-strength fiber composite material in which the core wire 2 is firmly integrated can be formed into a rod shape (rod shape). In this case, it can be wound and moved and stored, but it can also be moved and stored in a state where the high strength fiber composite material is cut into a length of several cm to several m. In particular, a rod-shaped high-strength fiber composite material can be easily placed because it does not lose its shape when it is placed in a narrow groove or inserted into a deep hole.
  • the restraint material 3 and the solidifying agent have a role of a protective layer, but a protective layer (a cylindrical body or a resin layer made of a fiber material) is separately provided so as to cover the entire outer periphery. May be provided.
  • the high-strength fiber composite material 1a according to Embodiment 2 can be manufactured using the same device as the high-strength fiber composite material 1. That is, the high-strength fiber bundle 5 supplied from the creel 7a is twisted and subsequently passed through a stringing machine (not shown) or passed through a circular knitting machine (not shown) and restrained with a restraining material or the like, A high-strength fiber bundle bound with a restraining material is obtained.
  • the high-strength fiber composite material of Embodiment 2 can be obtained by the same procedure as that described.
  • the high-strength fiber composite material according to the second embodiment may be used by cutting the high-strength fiber bundle 5 into a long length without winding the high-strength fiber bundle 5 and cutting it into an arbitrary length after the construction is determined. it can. Moreover, you may cut
  • the high-strength fiber bundle 5 that is separately twisted is passed through a string making machine or passed through a circular knitting machine (not shown) and restrained by a restraint material or the like, and the high-strength fiber bundle bound by the restraint material And wind it on a drum.
  • the drum is attached to the creel 7a, and the high-strength fiber composite material of Embodiment 2 can be obtained in the same procedure as described above.
  • FIG. 4 A third embodiment of the present invention will be described with reference to FIG. 4, the same components as those in FIGS. 1 to 3A and 3B are denoted by the same reference numerals, and description thereof is omitted.
  • a strand structure 10 shown in FIG. 4 includes seven high-strength fiber composite materials 1a described in the second embodiment, and one high-strength fiber composite material 1a (hereinafter referred to as “high-strength”) disposed in the center.
  • the fiber composite material 1b may be referred to as” the other high strength fiber composite material 1a “(hereinafter may be referred to as” high strength fiber composite material 1c ").
  • each of the seven high-strength fiber composite materials 1a (1b, 1c) constituting the strand structure 10 is provided with a binding material 3 in a braid shape so as to cover the entire outer periphery.
  • Is arranged. 4 illustrates the high-strength fiber composite material 1a having the structure shown in FIGS. 3A and 3B as the high-strength fiber composite material constituting the strand structure 10, but the present invention is not limited to this. Any material may be used as long as it has a structure of a high-strength fiber composite material.
  • the high-strength fiber composite material 1b and the high-strength fiber composite material 1c are the same high-strength fiber composite material 1a, but satisfy the requirements of the high-strength fiber composite material of the present invention. If so, they may be different.
  • the surface area of the strand structure 10 is large, and an adhesive for adhering to the fixing jig enters between them, and the adhesive strength between the fixing jig and the strand structure 10 is improved. Further, by using the high-strength fiber composite material 1a (1b, 1c) which has the original tensile strength of high-strength fiber yarns and is excellent in durability against bending stress, further bending stress is applied to the drum. After that, excellent tensile strength can be maintained even when used in a stretched state or at a place where bending stress is applied.
  • High strength fiber bundle ⁇ strand structure S direction ⁇ Z direction, S direction ⁇ S direction, Z direction ⁇ Z direction, Z direction ⁇ S direction are all possible.
  • the wire diameter (the diameter of the high strength fiber composite material) becomes thinner as the number of wires increases.
  • the strand increases the flexibility, but conversely there is a risk that the wear resistance, deformation resistance and the like will be reduced.
  • the twist number of the strand structure 10 shown in FIG. 4 is 20 times / m, but is not limited thereto, and is selected from 1.1 to 50 times / m depending on the purpose. If the number of twists is too small, the high-strength fiber composite material 1a tends to break apart. On the other hand, if the number of twists is too large, the tensile strength may decrease. When the number of high-strength composite materials is 7 to 37, 1.5 to 20 times / m is preferable. More preferably, it is 2 to 10 times / m.
  • the high-strength fiber composite material 1b serving as the core and the other high-strength fiber composite material 1c are twisted so as to surround the high-strength fiber composite material 1b serving as the core.
  • a necessary number (for example, 2 to 50) of high-strength fiber composite materials may be bundled and the whole bundled high-strength fiber composite materials may be twisted.
  • the strand structure 10 can be manufactured using a known apparatus. That is, if the high-strength fiber composite material 1a is wound around a drum or the like and installed on the creel, the high-strength fiber composite material 1a is twisted with a twisting machine, a twisting machine, a twisting gathering machine or the like so as to have a predetermined number of twists. Good.
  • the long strand structure 10 after manufacture is not cut
  • the number of high-strength fiber composite materials 1a (1b, 1c) constituting the strand structure 10 is seven, but is not limited to this, and is appropriately determined in consideration of the intended performance (particularly tensile strength) and application. Although there is no particular limitation, the number is usually 2 to 50. The number is preferably 7 to 37. For example, when a bundle of 24,000 carbon fiber yarns (24k) is used as the high-strength fiber bundle 5, the number of high-strength fiber composites constituting the strand structure is about 2 to 50. It is suitable for uses such as brace materials.
  • the high-strength fiber bundles in each layer are twisted at the same angle. There are cross twists and parallel twists that twist in one step so that the high-strength fiber bundles of each layer have the same pitch.
  • the number of high-strength fiber composite materials constituting the strand structure is about 2 to 50. is there.
  • a strand structure for use as a wire is obtained by using a bundle (12,000) of 12,000 carbon fiber yarns (12k) as a high-strength fiber bundle 5, the high-strength fiber composite material constituting the strand structure The number is about 2 to 50.
  • the number of high-strength fiber bundles used in the strand structure is insufficient from the aspect of strength in the above-mentioned number, the number of high-strength fiber bundles may be further increased, but from the viewpoint of tensile strength of the strand structure Therefore, the multi-strand structure according to Embodiment 4 in which two or more strand structures described below are twisted together may be used.
  • FIGS. 5A and 5B A fourth embodiment of the present invention will be described with reference to FIGS. 5A and 5B.
  • FIGS. 5A and 5B the same components as those in FIGS.
  • FIG. 5A A cross-sectional view of the multi-strand structure 100 according to Embodiment 4 is shown in FIG. 5A, and a side view thereof is shown in FIG. 5B.
  • the multi-strand structure 100 includes seven strand structures 10 described in the third embodiment of the present invention, and a single strand structure 10a (hereinafter referred to as a “core strand 10a”) disposed in the center.
  • the other six strand structures 10b surround the other. That is, the multi-strand structure 100 has a strand structure in which the core strand 10a and the six strand structures 10b surrounded by the core strand 10a are twisted, and the strand structure 10 itself that is a constituent member thereof.
  • the strand structure 10 is composed of the seven high-strength fiber composite materials 1a in which the restraining material 3 is arranged in a braid shape so as to cover the entire outer periphery as described above, and the constraining material arranged in the braid shape. 3 functions as a protective layer for the internal high-strength fiber bundle 5. Therefore, it is particularly suitable for applications where tensile strength is required, such as a reinforcing bar as a substitute for a reinforcing bar, or a rod shape such as a tendon as a substitute for a PC steel wire.
  • the strand structure 10 is used as the constituent member in the multi-strand structure 100, the present invention is not limited to this, and another strand structure according to the third embodiment of the present invention can be used.
  • the number of strand structures 10 constituting the multi-strand structure 100 is seven, but is not limited to this, and is appropriately determined in consideration of the intended performance (particularly tensile strength) and application, and usually 2 to 40. If the number exceeds 40, it may be difficult to twist at a predetermined pitch, so the number is preferably 7 to 37.
  • the number of twists of the multi-strand structure 100 is appropriately determined in consideration of target performance (particularly tensile strength) and application.
  • the number of twists of the multi-strand structure 100 is preferably 0.3 to 30 turns / m, and when the number of strand structures 10 is 7 to 37, 0.5 to 15 turns / m is preferable.
  • the core strand 10a and the other strand structure 10b are twisted so as to surround the core strand 10a.
  • a necessary number for example, 2 to 50
  • the entire bundled strand structure may be twisted to form a multi-strand structure without a core strand.
  • the multi-strand structure 100 can be manufactured using a known twisting machine, twisting machine, twisting gathering machine, and the like. That is, the strand structure 10 may be manufactured by twisting so that the number of twists becomes a predetermined number.
  • the long multi-strand structure 100 after manufacture is not cut
  • Example 1 High-strength fiber composite material
  • One 24K carbon fiber bundle (PAN-based carbon fiber, manufactured by Toray Industries, Inc., T700SC) twisted 30 times / m in the S direction as a twisted high-strength fiber bundle.
  • polyester fibers (1100 decitex polyester fiber bundles) as a restraining material, and using a string making machine (24 punching machine), the entire surface around a 24K carbon fiber bundle with 8 stones The braid was constrained with polyester fibers. The coverage of the carbon fiber bundle surface with the restraining material was almost 100%, and the carbon fiber bundle inside was not visible.
  • the high-strength fiber composite material of Example 1 which consists of a core wire integrated in 1 was obtained.
  • the external appearance photograph of the high strength fiber composite material of Example 1 is shown in FIG.
  • the obtained high-strength fiber composite material of Example 1 had a diameter of 2.0 mm (measured with calipers).
  • Example 2 High-strength fiber composite material Similar to Example 1, except that vinylon fibers (1100 dtex latex fiber fibers) were used instead of polyester fibers (1100 dtex polyester fiber bundles) as the restraint material. A high strength fiber composite was obtained. Ten high-strength fiber composites obtained were aligned and allowed to stand for one month in a state of being wound around a drum having a diameter of 60 cm and 50 cm at room temperature.
  • the high-strength fiber composite material left for one month is cut into 60 cm, bundled 10 pieces, each end is inserted into a steel pipe (length: 120 mm, inner diameter: 14 mm, outer diameter: 20 mm), and urethane type Fix using adhesive (UM890 modified 1 main part 1 part, hardener 2 parts, made by Cemedine Co., Ltd.), and in accordance with JIS K7165, use tensile tester AG-100kN plus made by Shimadzu Corporation Then, the test piece A type, the test speed 2 mm / min, and the jig was measured for tensile strength using a V-groove parallel eye for a round bar.
  • the tensile strength was also measured for those stored in a straight state without being wound up. As a result, a decrease in tensile strength was observed in the case of 41.7 kN which was wound and stored at 41.7 kN, which was wound and stored at 60 cm, and 44.9 kN which was wound and stored at 41.7 kN. There wasn't.
  • Example 3 Strand structure Ten high-strength fiber composites wound around the drum obtained in Example 1 were bundled and heated to 120 ° C., and the entire ten high-strength fiber composites Z were bundled.
  • the strand structure of Example 3 was obtained by twisting in the direction at 20 turns / m, twisting the ten high-strength fiber composite materials and winding them around a 70 cm diameter drum at room temperature.
  • the obtained strand structure of Example 3 had a structure without a high-strength fiber composite material serving as a core.
  • FIG. 7 shows an external appearance photograph of the strand structure of Example 3.
  • the obtained long strand structure is cut to 2 m to form a rod, and each end is inserted into a threaded steel pipe (length 120 mm, inner diameter 14 mm, outer diameter 20 mm), and urethane adhesive (UM890 modified) 1 1 part by weight of main agent, 2 parts by weight of curing agent, fixed with Cemedine Co., Ltd., and in accordance with JSCE-E532-1995, the bending tensile strength evaluation device (RAT100DE-S, manufactured by Tokyo Tester Co., Ltd.) The bending tensile strength of the strand structure of Example 3 was measured.
  • the diameters of the R part used in the bending tensile strength test are 300 mm and 500 mm.
  • the test speed was 100 to 500 N / mm 2 .
  • the bending angle is 180 °.
  • the tensile strength was excellent at 66 kN at 300 mm and 66 kN at 500 mm.
  • Example 4 Strand structure Seven high-strength fiber composite materials of Example 1 to be used are prepared, and one high-strength fiber composite material is used as a core, and is surrounded by six high-strength composite materials. A strand structure of Example 4 was obtained in which the number of twists was twisted in the Z direction at 5 times / m while heating to ° C. FIG. 8 shows an appearance photograph.
  • Example 5 Multi-strand structure 37 high-strength fiber composite materials of Example 1 were prepared, and a strand of 4 layers of 1 ⁇ 6 ⁇ 12 ⁇ 18 was twisted 8 times / m in the S direction while heating to 120 ° C. A structure was obtained. Next, the seven strand structures are twisted at a rate of 5 times / m in the Z direction while heating at 120 ° C. so that the six strand structures are surrounded by one strand structure. Thus, a multi-strand structure of Example 5 was obtained.
  • FIG. 9 shows an appearance photograph of the multi-strand structure of Example 5.
  • Comparative Example 1 The high strength fiber bundle of Comparative Example 1 was the same as in Example 1 except that one twisted 24K carbon fiber bundle (PAN-based carbon fiber, manufactured by Toray Industries, Inc., T700SC) was used. A strong fiber composite was obtained. Using the high-strength fiber composite material of Comparative Example 1, the same bending tensile strength test as in Example 3 was attempted, but it was broken when attached to the R portion of 300 mm and the R portion of 500 mm.
  • PAN-based carbon fiber bundle PAN-based carbon fiber, manufactured by Toray Industries, Inc., T700SC
  • Comparative Example 2 As a form conforming to the strand structure of Example 3, ten high-strength fiber composite materials of Comparative Example 1 were arranged without twisting, and the same bending tensile strength as Example 3 was tried. It broke when attached to the part.
  • the high-strength fiber composite material and the strand structure and the multi-strand structure of the present invention sufficiently exhibit the mechanical properties such as the tensile strength and elastic modulus inherent to the high-strength fiber yarn such as carbon fiber yarn, It is industrially promising because it can be applied to all industrial fields such as construction, ships, mining and fishing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Textile Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ropes Or Cables (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

 ワイヤー等の曲げ応力が発生する用途で使用する場合や、ドラム等に巻き取り保管した場合においても、高強力繊維糸本来の引張強度を得ることが可能な高強力繊維複合材及びその応用品を提供する。高強力繊維糸を束ねてなる高強力繊維束に撚りをかけ、当該撚りがかかった高強力繊維束を固化剤により固化した芯線を有してなる高強力繊維複合材。当該高強力繊維複合材は、曲げられても高強力繊維糸が折れにくく、耐剪断性に優れ、ワイヤー等の曲げ応力が発生する用途で使用したり、ドラム等に巻き取って保管しておいても、高強力繊維本来の引張強度を保つことができる。また、当該高強力繊維複合材を2本以上撚り合わせて構成されるストランド構造を有するストランド構造体は、高強力繊維の本来の強度を保ち、ストランド構造を有さない同数の高強力繊維複合材を使用した場合と比較して、より引張強度が安定する。

Description

高強力繊維複合材及びストランド構造体並びにマルチストランド構造体
 本発明は、高強力繊維糸を束ねた芯線を備えた高強力繊維複合材及び該高強力繊維複合材から構成されるストランド構造体並びに該ストランド構造体から構成されるマルチストランド構造体に関する。
 炭素繊維は、引張強度や弾性係数等の機械的性能、酸やアルカリに対する耐食性に優れると共に、軽量である。そのため、自動車、航空機、電気・電子機器、玩具、家電製品などの様々な産業分野においても使用され、また、構造物用途への適用も試みられている。例えば、特許文献1には、建物の耐震性を向上させるため、架構内にブレース(筋交い)などの引張材として、炭素繊維複合材が使用された例が開示されている。また、特許文献2には、炭素繊維複合材を使用したワイヤーの例が開示されている。
 炭素繊維複合材は、引張強度の向上や曲げ強度の向上には効果を発揮するが、剪断力に対して弱いという性質がある。このような問題は、炭素繊維糸だけに限らず、バサルト繊維糸などの高強力繊維と称される繊維を、繊維方向を合わせて束ねて高強力繊維束とし、この高強力繊維束の周囲面全体を他の繊維で覆って高強力繊維複合材としても同様である。
 また、本発明者等は、特許文献3において、1または複数の紐状炭素繊維束の芯線からなる内層と、前記芯線の周囲に設けられた樹脂を含む中間層と、前記中間層の周囲に設けられた編状筒紐からなる外層と、を含む高強力繊維複合材(紐状強化繊維複合体)について報告している。該高強力繊維複合材は、炭素繊維に由来する優れた引張強度を有すると共に、剪断強度にも優れ、また、前記高強力繊維複合材のより好ましい形態では、形状の可変性も有する。
 一方で、前記高強力繊維複合材をワイヤーやロープ等で径の細いドラムに巻いたりなどの曲げ応力が発生する用途で使用する場合、高強力繊維複合材の芯線を構成する炭素繊維束が一部折れてしまうことがある。その結果、高強力繊維複合材全体としての引張強度が低下してしまうおそれがある。また、高強力繊維複合材を、引張材等のロッド状で使用する場合においても、保管時には長尺状の高強力繊維複合材をドラムに巻き取って使用することがあり、同様の問題が生じるおそれがある。
特開2006-348506号公報 米国特許2008/0028740 特開2012-136814号公報
 このように、炭素繊維糸などの高強力繊維糸を束ねた高強力繊維束を使用した高強力繊維複合材は、ワイヤーやロープ等の曲げ応力が発生する用途で使用する場合や、ドラムなどに巻き取り保管した場合において、高強力繊維糸本来の優れた特徴を十分に活用できていない場合があり、改善の余地が残されていた。
 かかる状況下、本発明の目的は、曲げ応力が発生する用途で使用する場合においても、高強力繊維糸本来の引張強度を得ることが可能な高強力繊維複合材及びその応用品を提供することである。
 本発明は、以下を提供する。
 <1> 高強力繊維糸を束ねてなる高強力繊維束に撚りをかけ、当該撚りがかかった高強力繊維束を固化剤により固化した芯線を有してなる高強力繊維複合材。
 <2> 前記高強力繊維束がその周囲に拘束材を巻き回して結束され、前記高強力繊維束に撚りがかかった状態で当該拘束材と共に固化剤によって一体化して前記芯線を構成してなる<1>に記載の高強力繊維複合材。
 <3> 前記高強力繊維束の撚り数が、2~50回/mである<1>または<2>に記載の高強力繊維複合材。
 <4> 前記固化剤が、熱可塑性樹脂である<1>から<3>のいずれかに記載の高強力繊維複合材。
 <5> 前記熱可塑性樹脂が、熱可塑性エポキシ樹脂である請求項4に記載の高強力繊維複合材。
 <6> 前記芯線の直径が1~5mmである<1>から<5>のいずれかに記載の高強力繊維複合材。
 <7> 前記高強力繊維糸が、炭素繊維またはバサルト繊維を含む<1>から<6>のいずれかに記載の高強力繊維複合材。
 <8> <1>から<7>のいずれかに記載の高強力繊維複合材を2本以上撚り合わせて構成されるストランド構造を有するストランド構造体。
 <9> 撚り数が1.1~50回/mである<8>に記載のストランド構造体。
 <10> ストランド構造体を構成する高強力繊維複合材の本数が、2~40本である<8>または<9>に記載のストランド構造体。
 <11> <8>から<10>のいずれかに記載のストランド構造体を2本以上撚り合わせて構成されるストランド構造を有するマルチストランド構造体。
 <12> 撚り数が0.3~30回/mである<11>に記載のマルチストランド構造体。
 <13> マルチストランド構造体を構成するストランド構造体の本数が、2~40本である<11>または<12>に記載のマルチストランド構造体。
 すなわち、本願に係る第1の発明は、高強力繊維糸を束ねてなる高強力繊維束に撚りをかけ、当該撚りがかかった高強力繊維束を固化剤により固化した芯線を有してなる高強力繊維複合材に関する。
 このような構成において、高強力繊維複合材を構成する芯線が、高強力繊維束に撚りをかけられた状態で固化剤によって固化されているので、外部から強い力がかかっても、高強力繊維束を構成する高強力繊維糸がバラけたりするのが抑制され、高強力繊維本来の引張強度を安定し発揮することができる。
 そして、高強力繊維束が、撚りが掛けられた状態で固化剤により固化されているため、高強力繊維束を構成する高強力繊維糸がバラケないことによりハンドリング性や強度が向上(安定)すると共に、曲げられても高強力繊維糸が折れにくい。高強力繊維束に撚りをかけないと、当該高強力繊維複合材をドラムに巻いた場合や曲げ応力がかかる場所で使用した場合に高強力繊維複合材が折れてしまう可能性がある。そのため、高強力繊維複合材(さらには該高強力繊維複合材から構成される後述のストランド構造体)が使用できなかったり、高強力繊維本来の強度を発揮できないおそれがある。また、高強力繊維束に撚りをかけないと、高強力繊維束において、束ねられた高強力繊維糸それぞれの長さにばらつきが発生しやすくなり、高強力繊維糸それぞれが有する本来の高強力繊維本来の強度が発揮できなくなり、高強力繊維束全体としての強度が不足する場合がある。
 高強力繊維束に撚りをかけることにより高強力繊維複合材が折れてしまうことが回避され、さらに、高強力繊維束を構成する高強力繊維糸それぞれの長さが揃った状態で一体化されるため、高強力繊維本来の強度が発揮される。その結果、高強力繊維複合材は、ドラムに巻いた後伸ばして使用した場合や曲げたまま引っ張られる場合など、曲げ応力がかかっても強い引張強度を維持することができる。
 なお、固化剤を使用せずに高強力繊維束に撚りをかけただけであると、固化剤で一体化した本願発明の高強力繊維複合材と比較して強度が不足する。
 本発明の高強力繊維複合材では、詳しくは実施形態で後述する高強力繊維のいずれも使用できるが、バサルト繊維や炭素繊維が好適であり、特に炭素繊維が好適である。そのため、高強力繊維束を構成する高強力繊維糸として、炭素繊維またはバサルト繊維を含むことが好ましく、炭素繊維またはバサルト繊維であることがより好ましく、炭素繊維であることが特に好ましい。
 バサルト繊維や炭素繊維は、引張強度が強いが、剪断強度が弱く折れやすいため、これらを用いた高強力繊維複合材をワイヤーやロープ等の曲げ応力が発生する用途で使用したり、ドラム等に巻き取って保管する場合に、高強力繊維複合材が折れやすいが、バサルト繊維や炭素繊維からなる高強力繊維束に撚りをかけることで、高強力繊維複合材の長さ方向に対する横(垂直)方向の力がかかっても折れを防ぐことができる。そのため、バサルト繊維や炭素繊維からなる高強力繊維束を有する高強力繊維複合材は、曲げ応力が発生する場合においてもバサルト繊維や炭素繊維本来の引張強度を有する。
 本願発明の高強力繊維複合材は、前記高強力繊維束がその周囲に拘束材を巻き回して結束され、撚りがかかった状態で当該拘束材と共に固化剤によって一体化して前記芯線を構成していることが好ましい。
 このように撚られた高強力繊維束が拘束材によってその周囲を巻き回して結束され、かつ、固化剤によって高強力繊維束と拘束材が一体化した芯線であると、外部から強い力がかかっても、高強力繊維束を構成する高強力繊維糸がねじれたり、交絡したり、バラけたりするのが抑制され、高強力繊維本来の引張強度を十分に保つことができる。特に撚られた高強力繊維束を使用することにより、固化剤で一体化した後、曲げ応力がかかっても高強力繊維複合材が折れることが抑制される。
 拘束材は、高強力繊維束の周囲に巻き回し、撚りがかかった状態の高強力繊維束を結束できるものであればよい。特に高強力繊維束の周囲全面を拘束材で覆う形態が好ましい。高強力繊維束(特に炭素繊維、バサルト繊維)の周囲全面を拘束材で覆うことにより、前記の効果に加え、砂利などの鋭利物と接触しても、高強力繊維糸が切断されることを防ぐことができる。
 特に高強力繊維束を結束する拘束材を組紐構造にすると、高強力繊維束の表面を目視にて確認できない程度にまで被覆できるので、高強力繊維束を結束すると共に、拘束材が内部の高強力繊維束を構成する高強力繊維糸の保護を行う保護層として機能するため好ましい。
 なお、高強力繊維束が撚られていないと、固化剤で一体化する前に拘束材の間から高強力繊維束を構成する高強力繊維糸が飛び出すことがあるが、撚られた高強力繊維束を使用することにより、外部から強い力がかかっても、高強力繊維束を構成する高強力繊維糸がねじれたり、交絡したり、バラけたり、切れたり、折れたりするのが抑制され、高強力繊維束が樹脂で一体化されるまでの間のハンドリング性が保たれ、如いては高強力繊維複合材の本来の引張強度を十分に保つことができる。
 本願発明において、高強力繊維束の撚り数が、2~50回/mであることが好適であり、より好適には4~40回/mである。撚り数は、より好適には10回/m以上、さらに好適には15回/m以上、さらにより好適には20回以上である。撚り数の上限は、50回/m以下、好ましくは40回/m以下である。高強力繊維束の撚り数が、2回/m未満であると、高強力繊維束に撚りをかけたことで得られる効果が不十分になるおそれがあり、50回/mを超えると、高強力繊維束を構成する高強力繊維糸が撚糸の段階で切れてしまうおそれがある。
 使用できる固化剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれでもよいが、熱可塑性樹脂が好ましく用いられる。すなわち、熱により変形することが可能であり、加熱しながらより細い形のドラムへのドラム巻きや、後述するストランド構造体を形成することが容易である。また、高強力繊維糸と親和性の高い固化剤とすることが好ましい。
 固化剤の詳細は実施形態にて後述するが、好ましい熱可塑性樹脂として、熱可塑性エポキシ樹脂(特には直鎖状に重合した構造を有する熱可塑性エポキシ樹脂)を挙げることができる。熱可塑性エポキシ樹脂の中でも、重合型の熱可塑性エポキシ樹脂(特には直鎖状に重合した構造を有する熱可塑性エポキシ樹脂)が好ましい。
 本発明の高強力繊維複合材は、芯線の直径が1~5mmであることが好ましい。なお、芯線の直径は、高強力繊維複合材の最も直径が大きい部分を基準とし、高強力繊維複合材が拘束材を含む場合は、拘束材部分の厚みも含むものとする。
 芯線の直径がこのような範囲であれば、熱をかけなくとも細い径のドラム(例えば、直径70cm以下のドラム)に巻くことができる。また、ストランド構造体とした場合にも小さな径のドラムに巻きやすく、ストランド構造体の端部と定着治具との接着時には、表面積も大きくなり、定着治具とストランド構造体の接着強度の向上に寄与することができる。
 また、本願発明の高強力繊維複合材は、上述の芯線を有していればよく、周囲を着色したり、さらにその外層に保護層を設けたりしてもよい。
 本願に係る第2の発明は、上記第1の発明にかかる高強力繊維複合材を2本以上撚り合わせて構成されたストランド構造を有するストランド構造体である。
 ここで、「ストランド構造」とは、同一径又は異なる直径の2本~数十本の素線が単層又は多層により合わされた構造を意味し、本願の第2の発明にかかるストランド構造体は、本願の第1の発明にかかる高強力繊維複合材を素線として使用していることに特徴がある。
 第2の発明にかかるストランド構造体は、上記性質を有する高強力繊維複合材から構成されるため、上述した本発明の高強力繊維複合材の性能を保ちつつ、さらに引張強度に優れた複合材である。
 第2の発明にかかるストランド構造体は、必要本数の長尺状の高強力繊維複合材をクリールから引き出し、それらを撚り合せて製造することができる。なお、上記固化剤として熱可塑性樹脂を使用している場合には、熱可塑性樹脂が軟化する温度に加熱して撚りあわせることが好ましい。
 製造時に得られるストランド構造体は長尺であり、高強力繊維複合材と同様にドラムに巻きつけて保管することができる。当該ストランド構造体は、適当な長さに切断し、ワイヤーやロープ等の用途に使用することができる。また、ロッド状に切断して、コンクリートの筋材や、引張材として用いることができる。
 なお、撚りをかけることにより得られるストランド構造体は、ストランド構造体が一体となり、バラケを防ぎ、また、引張強度が安定する。
 第2の発明にかかるストランド構造体を構成する高強力繊維複合材は、2本以上であればよく、目的とする性能(特に引張強度)、用途を考慮して適宜決定され、通常、2~40本であり、好適には7~37本である。40本を超えると所定のピッチで撚りをかけることが困難になるおそれがある。
 第2の発明にかかるストランド構造体を撚り合わせる方法として、(1)必要本数の高強力繊維複合材を束ね、束ねられた高強力繊維複合材全体に撚りを掛けてもよいし、(2)1本または複数本の高強力繊維複合材を中心に配置して芯とし、当該芯となる高強力繊維複合材を他の高強力繊維複合材が取り囲む構造となるようにして、芯となる高強力繊維複合材と他の高強力繊維複合材とを撚り合わせてもよい。
 第2の発明にかかるストランド構造体の撚り数は、上記(1)、(2)のいずれの撚り方法で場合であっても、1.1~50回/mであることが好ましい。特にストランド構造体を構成する高強力繊維複合材が7~37本の場合は、好ましくは、1.5~20回/mである。
 また、本願に係る第3の発明は、上記の第2の発明に係るストランド構造体を2本以上撚り合わせて構成されたストランド構造を有するマルチストランド構造体である。ここで、「マルチストランド構造」とは、素線として本願の第2の発明にかかるストランド構造体を素線として使用し、同一径又は異なる直径の2本~数十本の素線(ストランド構造体)が単層又は多層により合わされた構造を意味する。
 このようにストランド構造体を撚り合わせたストランド構造(マルチストランド構造)とすることにより、同本数のストランド構造体を単に引き揃えた場合と比較して、より強度の強いマルチストランド構造体となる。そのため、当該マルチストランド構造体は、大型建築物の補強筋材やPC鋼線やPC鋼材、大型船舶の係留用の鎖代替ワイヤーの用途など、特に引張強度が求められる用途に好適である。
 なお、第3の発明に係るマルチストランド構造体は、同本数のストランド構造体を引きそろえて使用した場合と比較して、バラバラにならないためハンドリング性が良いと共に強度が安定するという利点がある。
 第3の発明にかかるマルチストランド構造体を構成するために使用される(第2の発明にかかる)ストランド構造体は、2本以上であればよく、目的とする性能(特に引張強度)、用途を考慮して適宜決定され、通常、2~40本である。マルチストランド構造体を構成する、ストランド構造体の本数が40本を超えると所定のピッチで撚りをかけることが困難になるおそれがある。好適には7~37本である。
 第3の発明にかかるマルチストランド構造体を撚り合わせる方法として、(1)必要本数のストランド構造体を束ね、束ねられたストランド構造体全体に撚りを掛けてもよいし、(2)1本または複数本のストランド構造体を中心に配置して芯となるストランド構造体(以下、「芯ストランド」と称す場合がある。)とし、当該芯ストランドを他のストランド構造体が取り囲む構造となるようにして、芯ストランドと他のストランド構造体とを撚り合わせてもよい。
 第3の発明に係るマルチストランド構造体の撚り数は、上記(1)、(2)のいずれの撚り方法で場合であっても、0.3~30回/mであることが好ましい。特に当該ストランド構造体を構成するストランド構造体が7~37本の場合は、好ましくは、0.5~15回/mである。
 本願の第1の発明にかかる高強力繊維複合材及び第2の発明にかかるストランド構造体並びに第3の発明にかかるマルチストランド構造体は、土木、建築、建設、船舶、鉱業や漁業などのあらゆる産業分野へ適用することができ、その用途は限定されない。
 本発明の高強力繊維複合材及びストランド構造体並びにマルチストランド構造体は、高強力繊維に由来する優れた強度を有し、軽量であるため、鉄骨構造や鉄筋コンクリートや木造などの建物、橋等の橋梁などに用いられるブレース材、補強材(補強金具代替品を含む)として好ましく用いることができる。また、細いものであっても十分な強度を有しているため、照明、テーブルなどの家具、階段などを吊り下げるワイヤー、間仕切りなどの建具、テーブル、椅子、手すりなどのインテリア、フェンス、塀、グリ-ンカーテンなどに用いるツタ類の支持具、ネットなどのエクステリアなどを種々のものに用いることができ、デザイン性に優れた建築物を製造することも可能である。また、塩害の起こりやすい洋上風力発電施設や船舶等の係留に用いる鎖などの代替物としても好適である。また、さらに曲げ応力がかかっても折れにくいため、ドラムに巻いて長尺のものとして用いたり、曲げ応力がかかる場所であっても好ましく用いることができる。
 また、本発明の高強力繊維複合材及びストランド構造体並びにマルチストランド構造体は、例えば、周囲を着色したり、さらにその外層に保護層を設けたりしてもよい。
 また、本発明の高強力繊維複合材(または、ストランド構造体やマルチストランド構造体)は、任意の部材と複合化させて使用して複合構造部材としてもよい。好適な複合構造部材の例として、高強力繊維複合材(または、ストランド構造体やマルチストランド構造体)の少なくとも一方の端部が定着治具の胴部内に挿入され、当該高強力繊維複合材(または、ストランド構造体やマルチストランド構造体)の端部と定着治具の胴部とを接着固定することにより、当該高強力繊維複合材(または、ストランド構造体やマルチストランド構造体)と定着治具とを一体化してなる複合構造部材が挙げられる。
 特に複数の高強力繊維複合材を撚り合せて構成されるストランド構造体は、撚り合わされた複数の高強力繊維複合材が固化剤で一体化されていないため、ストランド構造体の表面積が大きくなり定着治具との接着強度が増大、安定化し、特に引張強度及び強度の安定性に優れるため、定着治具とを一体化してなる複合構造部材として、ブレースなどの引張材として好適に使用できる。なお、本発明の複合材に好適な定着治具として、本発明者等により特願2012-84240号にて開示された定着治具が挙げられる。また、コンクリート用筋材として用いた場合にも、撚り合わされた複数の高強力繊維複合材が固化剤で一体化されていないため、ストランド構造体の表面積が大きくなりコンクリートとの接着強度が増大し、コンクリート建築物等の強度向上を図ることができる。
 本発明によれば、高強力繊維糸本来の引張強度を有し、かつ、曲げ応力が発生する用途に好適に使用できる高強力繊維複合材が提供される。本発明の高強力繊維複合材は、ワイヤーやロープ等の曲げ応力が発生する用途で使用したり、ドラム等に巻き取って保管しておいても強度低下が発生しにいという利点がある。
 また、本発明の高強力繊維複合材から構成されるストランド構造体やマルチストランド構造体は、高強力繊維に由来する強度を有し、軽量で引張強度に優れ、様々な用途に使用することができる。
本発明の実施の形態1に係る高強力繊維複合材の模式図である。 本発明の高強力繊維複合材の製造方法を説明するための図である。 本発明の実施の形態2に係る高強力繊維複合材1aの模式図(側面図)である。 本発明の実施の形態2に係る高強力繊維複合材1aの模式図(断面図)である。 本発明の実施の形態3に係るストランド構造体10を示す模式図である。 本発明の実施の形態4に係るマルチストランド構造体100を示す模式図(側面図)である。 本発明の実施の形態4に係るマルチストランド構造体100を示す模式図(断面図(ストランド構造体10:7本))である。 実施例1の高強力繊維複合材の写真である。 実施例3のストランド構造体(撚りピッチ:20回/m)の写真である。 実施例4のストランド構造体(撚りピッチ:5回/m)の写真である。 実施例5のマルチストランド構造体の写真である。
 1,1a 高強力繊維複合材
 1b 芯となる高強力繊維複合材
 1c 芯となる高強力繊維複合材を取り囲む高強力繊維複合材
 2 芯線
 3 拘束材
 4 高強力繊維糸
 5 高強力繊維束
 7a クリール
 7b ダイス
 7c 加熱炉
 7d ローラ
 7e ドラム
 7g 予熱炉
 7f ダイス
 10 ストランド構造体
 10a 芯となるストランド構造体(芯ストランド)
 10b 芯ストランドを取り囲むストランド構造体
 100 マルチストランド構造体
 以下、本発明に係る高強力繊維複合材の実施形態について、図面を参照して説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。また、本明細書において「~」という表現を用いる場合、その前後の数値を含む表現として用いる。
 (実施の形態1)
 図1に本発明の実施の形態1の高強力繊維複合材1を示す。高強力繊維複合材1は、撚りがかかった高強力繊維束5を固化剤により固化した芯線2からなる。
 高強力繊維束5は、高強力繊維糸4を、複数本(通常、数千本から数十万本、あるいは数百万本)束ねたものであり、その断面が円形状または扁平状である。本実施形態の高強力繊維複合材1では、高強力繊維束5は所定の回数の撚りがかけられた状態で固化剤により、固化されている。高強力繊維束5の撚り数は、得られる高強力繊維複合材の曲げ応力に対する耐性、高強力繊維糸のバラケ防止性、高強力繊維糸4の撚りに対する強度(撚りにより炭素繊維糸が切れない)や後に説明する固化剤を付与する前の拘束材で拘束された状態のときに拘束材の間から炭素繊維束が飛び出す(目むき)ことが無いようにすることを考慮して決定される。高強力繊維束5の撚り数は、好ましくは2~50回/mであり、より好ましくは5~40回/mであり、さらに好ましくは10~30回/mである。
 高強力繊維複合材1における芯線2は、直径1~10mmであることが好ましく、直径1~5mmであることがより好ましい。なお、本実施形態において、高強力繊維複合材1の直径は、高強力繊維束5の直径と固化剤の厚みとの合計であり、目的とする直径になるように高強力繊維束5の直径、固化剤の付与量が選択される。
 芯線の直径が直径1~10mm(より好適には1~5mm)であると、当該高強力繊維複合材及び後に説明するストランド構造体やマルチストランド構造体がドラムに巻きやすくなり、また、任意の形状に追従するなどのフレキシブル性を高めることができる。また、芯線の直径が直径1~10mm(より好適には1~5mm)であると、ストランド構造体やマルチストランド構造体の端部と定着治具との接着時には、表面積も大きくなり、定着治具とストランド構造体やマルチストランド構造体の接着強度の向上に寄与することができる。
 高強力繊維束5を構成する高強力繊維糸4は、スーパー繊維とも称される繊維が使用できる。高強力繊維糸4としては、例えば、炭素繊維、バサルト繊維、パラ系アラミド繊維、メタ系アラミド繊維、超高分子量ポリエチレン繊維、ポリアリレート繊維、PBO(ポリパラフェニレンベンズオキサゾール)繊維、ポリフェニレンサルファイド(PPS)繊維、ポリイミド繊維、フッ素繊維、ポリビニルアルコール(PVA繊維)などが使用できる。本発明の高強力繊維糸4は、特に繊維方向の強度は強いが剪断力が弱い炭素繊維、バサルト繊維、特に炭素繊維を用いた場合に有用である。
 高強力繊維束5は、上記高強力繊維糸を1種類で用いてもよく、2種類以上を混合させてもよい。また、高強力繊維束5は、上記高強力繊維糸以外の有機繊維からなる糸をその強度や曲げ性が損なわれない範囲で混合したりしたものでもよい。また、高強力繊維束5にはサイジング剤や集束剤を含ませてもよい。
 高強力繊維束5を構成する高強力繊維糸4として炭素繊維糸を用いる場合、ポリアクリロニトリル(PAN)系、ピッチ系のいずれの炭素繊維糸も使用できる。この中でも、得られる成形品の強度と弾性率とのバランスの観点から、PAN系炭素繊維糸が好ましい。
 また、この炭素繊維糸を束ねた高強力繊維束は、炭素繊維メーカーから供給される炭素繊維糸6000本(6K)、12000本(12K)、24000本(24K)等を、必要とされる強度に応じて1本、または複数本(2本以上)束ねたものを用いることができる。炭素繊維糸を束ねた高強力繊維束を複数本束ねる場合の高強力繊維束の本数に特に制限はなく、目的用途に応じで適宜決定されるが、通常、100本以下である。
 固化剤としては、熱可塑性樹脂、熱硬化性樹脂のいずれも使用できる。また、高強力繊維糸と親和性の高い固化剤が好ましい。特に加熱することにより可変性を持たせることができるため、固化剤として熱可塑性樹脂が好ましく用いられる。
 好適な具体例としては、ポリエーテルエーテルケトン(PEEK)、ポリプロピレン、ポリエチレン、ポリスチレン、ポリアミド(ナイロン6、ナイロン66、ナイロン12、ナイロン42等)、ABS樹脂、アクリル樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、ポリフェニレンオキサイド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルイミド、ポリアリレート、エポキシ樹脂、ウレタン樹脂、ポリカーボネート樹脂、レゾルシノール樹脂などが挙げられるが、これに制限されない。
 この中でも酸やアルカリに対する耐久性の観点から、ポリエーテルエーテルケトン(PEEK)、アクリル樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、ポリエチレン樹脂、エポキシ樹脂、ウレタン樹脂、ポリカーボネート樹脂、レゾルシノール樹脂が好適であり、特に耐衝撃性に優れ、エポキシ樹脂が好適である。また、熱可塑性エポキシ樹脂であれば、ケトン溶剤に溶解が可能で素材分別しリサイクルができる。
 また、特に熱可塑性エポキシ樹脂の中でも、重合する重合型の熱可塑性エポキシ樹脂が好ましく、特に直鎖状に重合する重合型の熱可塑性エポキシ樹脂がこのましい。
 芯線となる高強力繊維束に撚りがかけられていたり、さらには高強力繊維束の周りが拘束材で覆われているものでは、高強力繊維束の内部にまで樹脂を含侵させることが困難である。
 一方、重合型の熱可塑性エポキシ樹脂は、重合させる前の熱可塑性エポキシ樹脂を有機溶剤で希釈することができるので粘度調整が容易である。
 そのため、有機溶媒で希釈した低粘度の樹脂溶液を用いることにより、撚りがかけられている高強力繊維束の内部まで(さらには拘束材で覆われているものであっても外周の拘束材から内部の高強力繊維束まで)重合前の熱可塑性エポキシ樹脂を含浸させることができる。重合前の熱可塑性エポキシ樹脂を高強力繊維束の内部に含侵させた後、当該重合型の熱可塑性エポキシ樹脂を重合させることにより高強力繊維束と拘束材が熱可塑性エポキシ樹脂で一体化された、強度の優れた高強力繊維複合材が得られる。
 また、加熱溶融することにより流動性を付与し用いられる一般的な熱可塑性樹脂は、粘度調整が困難であると共に、一般に結晶性樹脂であるためか加熱溶融を行うことにより結晶配列が変化し、当初の樹脂が有している強度などの性質が変質するおそれがあるが、重合型の熱可塑性エポキシ樹脂は、重合前及び重合後も非晶質であるため、加熱溶融や加熱変形させても変質のリスクが小さい。
 高強力繊維束5への上述の樹脂(固化剤)を付与する方法は、スプレーコート法や刷毛で高強力繊維に樹脂をコートする方法などでもよいが、生産性の観点から、ディップ-ニップ法や樹脂(固化剤)溶液にディップした後、ダイスを通して余分な樹脂を絞る方法が好適である。樹脂(固化剤)を付与する装置として、高強力繊維複合材の形状を整えると共に、樹脂の含浸、樹脂付与量を調整するダイスを有する図2に示す形式の装置を好適な例として挙げることができる。
 樹脂として熱可塑性樹脂を付与する場合で説明すると、図2に示す形式の装置を用いて実施形態1に係る芯線2を製造する場合には、まず、クリール7aから、所定の撚り数で撚りがかけられた高強力繊維束5を供給し、溶融あるいは溶媒に溶解した熱可塑性樹脂、あるいは熱可塑性樹脂を含むエマルジョンに浸漬して通過させる。その際、ダイス7fによって絞ることにより、樹脂を高強力繊維束5の内部まで含有させる。次いでダイス7bを通過させ、余分な樹脂を取り除くと共に線径、線形を整え、また、樹脂を高強力繊維束5の内部まで含有させたのちに、予熱炉7gを有する加熱炉7cにより加熱して溶媒を留去して乾燥させ、熱可塑性樹脂を硬化させ、熱可塑性樹脂(固化剤)が付与された高強力繊維束5からなる芯線2を形成する。芯線2からなる高強力繊維複合材は、長尺のまま、ドラム7eに巻き取られ保管される。そして、施工が決まった後、任意の長さに切断して用いることができる。また、得られた高強力繊維複合材はドラムに巻かずに任意の長さに切断し保管してもよい。
 また、上記方法では、撚りをかけた高強力繊維束をドラムに巻き取ったのちに前記ドラムをクリールに取り付け樹脂付与を行っているが、撚りをかけていない高強力繊維束に撚りをかけたのち、ドラムに巻かずにそのまま続けて樹脂付与を行ってもよい。
(実施の形態2)
 以下、図3A及び図3Bを参照して、高強力繊維束がその周囲に拘束材を巻き回して結束され、当該高強力繊維束に撚りがかかった状態で当該拘束材と共に固化剤によって一体化して芯線を構成してなる実施の形態2の高強力繊維複合材について説明する。なお、図3A及び図3Bにおいては、図1と同じ構成のものは同符号を付して説明を省略する場合がある。
 図3A及び図3Bに示す高強力繊維複合材1aは、撚りがかかった高強力繊維束5と、高強力繊維束5を巻きまわして結束する拘束材3とを固化剤により固化した芯線2からなる。高強力繊維複合材1aの拘束材3以外の基本的構成は、上記実施の形態1に係る芯線2と同様であるため、適宜説明を省略する。
 拘束材3は、高強力繊維束5を周囲面から高強力繊維糸4がばらばらにならないように結束するものである。本実施形態では、高強力繊維複合材1aは、撚りがかかった高強力繊維束5を拘束材3で拘束して、そこに固化剤を付与することで、高強力繊維束5と拘束材3とが固化剤によって一体化している。
 本実施形態の高強力繊維複合材1aでは、拘束材3となる繊維を巻き回して、筒状の組紐(丸打)を組むことで、組紐状の拘束材3を形成している。拘束材3を組紐状にすることで、高強力繊維束5の表面を目視にて確認できない程度にまで被覆できるので、高強力繊維束5を結束すると共に、拘束材が内部の高強力繊維束5を構成する高強力繊維糸の保護を行う保護層として機能する。そのため、このような構成の高強力繊維複合材をブレース材やコンクリート用の補強筋材等として用いた場合では、砂利などの鋭利物と接触しても断線することを防ぐことができる。また、別途保護層を設ける必要がなくなるため、一本の高強力繊維複合材をより細くすることができ、また、コスト低下にも寄与する。
 また、拘束材で拘束された高強力繊維束5を樹脂(固化剤)溶液にディップした後、ダイスで扱いて余分な樹脂を絞るときに繊維の長さ方向に張力がかかるが、拘束材が組紐構造であれば編物のように目が開いてしまうのではなく、目が閉じた状態で組紐の径が細くなる。そのため、内部の高強力繊維束の露出を抑えつつ、拘束材と高強力繊維束の密着性を高めることができるので、得られる高強力繊維複合材1aの強度の観点より好ましい。
 なお、拘束材3は高強力繊維束5を構成する高強力繊維糸4がばらばらにならないように結束できればよく、拘束材3の配置は図3A及び図3Bに示す組紐状に限定されない。また、高強力繊維束の表面を拘束材で完全に被覆する必要もなく、高強力繊維束の表面の一部が被覆されていなくてもよい。
 他の拘束材による配置の例として、1本の拘束材を螺旋状に巻きつけて高強力繊維束を結束したり、高強力繊維束の周囲面に拘束材となる繊維を巻き回して目の粗い筒状の丸編を編んだ編紐状の拘束材によって高強力繊維束を結束したり、高強力繊維複合材の高強力繊維束を結束するための拘束材として、拘束材で挙げられている繊維等を所定間隔に配置した拘束材によって高強力繊維束を結束する形態であってもよい。
 一方で、高強力繊維束の保護という観点からは、拘束材を組紐状にして、高強力繊維束の表面全体を被覆することが好ましい。
 図3A及び図3Bに示す組紐状の拘束材3を形成するためには、高強力繊維束5を製紐機の中央に通し、製紐機を用いて高強力繊維束5の周囲面に拘束材3により、組物を形成すればよい。そうすることで、組紐状の拘束材3が高強力繊維束5の周囲面に形成される。なお、高強力繊維束5を結束する拘束材3には撚りが掛かっていても、掛かっていなくてもよい。
 拘束材3としては、柔軟なものが好ましく、ポリアミド(ナイロン等)、ビニロン、ポリアクリル、ポリプロピレン、塩化ビニル、アラミド、セルロース、ポリアミド、ポリエステル、ポリアセタール等の合成繊維や、レーヨン等の再生繊維、アセテート等の半合成繊維、絹、羊毛、麻、綿などの天然繊維等が使用できる。また、拘束材3としては、固化剤の耐熱性や固化の状況にもよるが、高強力繊維複合材の製造工程あるいは使用環境において熱がかかる場合には、熱安定性に優れる繊維が好ましく、ポリエステル繊維やガラス繊維、バサルト繊維が好ましく、特にはガラス繊維が好ましい。熱安定性に優れる繊維を用いることにより、熱がかかったときに高強力繊維糸と拘束材とのずれの発生を抑制し、安定した引張強度を発現することができる。
 なお、芯線2においては、高強力繊維糸4をより強固に結束するために、特に拘束材により結束した高強力繊維束に固化剤を含浸させ、拘束材と共に高強力繊維束を硬化させることが好ましい。そうすることで、高強力繊維束および拘束材を強固に一体化させることができる。
 芯線2を強固に一体化させた高強力繊維複合材は、棒状(ロッド状)にすることができる。この場合には、巻き取って移動保管も可能であるが、高強力繊維複合材を数cm~数m程度の長さに切断した状態で移動、保管を行うることもできる。特にはロッド状の高強力繊維複合材であれば、狭い溝に配置するときや奥行きの深い穴などに挿入するときなどに、型崩れしないため容易に配置することができる。
 また、高強力繊維複合材1aは、拘束材3及び固化剤が保護層の役割を有するが、さらにその外周の全面を覆うように別途保護層(繊維材料からなる筒状体や樹脂層等)が設けられていてもよい。
 実施の形態2に係る高強力繊維複合材1aは、高強力繊維複合材1と同様の装置を用い製造することができる。すなわち、クリール7aから供給された高強力繊維束5に撚りをかけ引き続き製紐機(図示せず)に通したり、丸編機(図示せず)に通したりして拘束材等で拘束し、拘束材で結束された高強力繊維束を得る。得られた拘束材で結束された高強力繊維束を、上述の溶融あるいは溶媒に溶解した熱可塑性樹脂、あるいは熱可塑性樹脂を含むエマルジョンに浸漬して通過させる以外は、上述の実施の形態1で説明した方法と同様の手順で、実施の形態2の高強力繊維複合材を得ることができる。実施の形態2の高強力繊維複合材は、高強力繊維束5を切断せずに、長尺のまま、ドラムに巻き取り、施工が決まった後、任意の長さに切断して用いることができる。また、ドラムには巻かずにあらかじめ任意の長さに切断してもよい。
 また、別途撚りをかけた高強力繊維束5を製紐機に通したり、丸編機(図示せず)に通したりして拘束材等で拘束し、拘束材で結束された高強力繊維束を得、ドラムに巻きとる。前記ドラムを前記クリール7aに取り付け、上述と同様の手順で実施の形態2の高強力繊維複合材を得ることができる。
(実施の形態3)
 本発明の実施の形態3を図4に基づき説明する。なお、図4においては、図1~図3A、図3Bと同じ構成のものは同符号を付して説明を省略する。
 図4に示すストランド構造体10は、実施の形態2で説明した高強力繊維複合材1aを7本備えてなり、中心に配置された1本の高強力繊維複合材1a(以下、「高強力繊維複合材1b」と称す場合がある。)を他の6本の高強力繊維複合材1a(以下、「高強力繊維複合材1c」と称す場合がある。)が取り囲む構造を有する。
 高強力繊維複合材1a(1b,1c)は、図3A及び図3Bで示した構成であるため、詳しい説明は省略する。なお、図4においては図示しないが、ストランド構造体10を構成する7本の高強力繊維複合材1a(1b,1c)のそれぞれにはその外周の全面を覆うように組紐状に拘束材3が配置されている。
 また、図4ではストランド構造体10を構成する高強力繊維複合材としては、図3A及び図3Bで示した構成の高強力繊維複合材1aを例示しているがこれに限定されず、本発明の高強力繊維複合材の構成のものであればいずれものでもよい。また、本実施形態において、高強力繊維複合材1bと高強力繊維複合材1cは同一の高強力繊維複合材1aであるが、本発明の高強力繊維複合材の要件を満たす高強力繊維複合材であれば、異なっていてもよい。
 本実施形態に係るストランド構造体10では、芯となる高強力繊維複合材1bと、当該高強力繊維複合材1bを取り囲む他の6本の高強力繊維複合材1cが撚り合されているストランド構造を有していることで、樹脂を用いて一体化しなくとも、バラケを防ぎ一体化できる。このため、ストランド構造体10は引張強度が安定している。また、ストランド構造体10の端部と定着治具とを接着する場合においても、ストランド構造体10を構成する高強力繊維複合材1a(1b,1c)の一本一本が独立しているためストランド構造体10の表面積が大きく、その間に定着治具との接着用の接着剤が入り込み定着治具とストランド構造体10の接着強度が向上する。また、高強力繊維糸本来の引張強度を有し、かつ、曲げ応力に対する耐久性に優れる高強力繊維複合材1a(1b,1c)を用いていることにより、さらにドラムに巻き曲げ応力がかけられた後、伸ばして用いた場合や、曲げ応力がかかる箇所にもちいても優れた引張強度を維持することができる。
 また、撚りを形成する方向として、
 高強力繊維束×ストランド構造体=S方向×Z方向、S方向×S方向、Z方向×Z方向、Z方向×S方向、のいずれでも可能である。
 なお、同一径のストランド構造体では、素線数が増加するほど素線径(高強力繊維複合材の直径)を細くすることになる。この場合、ストランドは柔軟性を増すが、逆に耐摩耗性や耐形くずれ性などが低下するおそれがある。
 図4に示すストランド構造体10の撚り数は、20回/mであるがこれに限定されず、目的に応じて1.1~50回/mで選択される。撚り数が少なすぎると、高強力繊維複合材1a単位でバラケやすくなる。一方、撚り数が多くなりすぎると引張強度が低下するおそれがある。高強力複合材の本数が7~37本の場合には、1.5~20回/mが好ましい。より好ましくは2~10回/mがよい。
 なお、図4に示すストランド構造体10は、芯となる高強力繊維複合材1bを取り囲むように芯となる高強力繊維複合材1bと他の高強力繊維複合材1cとが撚り合わせられているが、ストランド構造体10の構造として、必要本数(例えば、2~50本)の高強力繊維複合材を束ね、束ねられた高強力繊維複合材全体に撚りを掛けてもよい。
 ストランド構造体10は、公知の装置を使用して製造することができる。すなわち、高強力繊維複合材1aを、ドラム等に巻き、クリールに設置したのちに、所定の撚り数になるように撚線機、撚合機、撚集合機等で撚り合して製造すればよい。
 なお、製造後の長尺のストランド構造体10は切断せずに、長尺のまま、ドラムに巻き取り、施工が決まった後、任意の長さに切断して用いることができる。また、ドラムには巻かずにあらかじめ任意の長さに切断してもよい。
 ストランド構造体10を構成する高強力繊維複合材1a(1b,1c)の本数は7本であるが、これに限定されず、目的とする性能(特に引張強度)、用途を考慮して適宜決定され、特に限定されるものではないが、通常、2~50本である。好ましくは、7~37本がよい。
 例えば、炭素繊維糸を24000本束ねたもの(24k)を高強力繊維束5として用いた場合には、ストランド構造体を構成する高強力繊維複合材の本数は2本~50本程度であるとブレース材等の用途として好適である。
 なお、ストランド構造体を構成する高強力繊維複合材の本数が7本を超え、高強力繊維束を2層以上重ねて配置する方法には、各層の高強力繊維束を同じより角で撚る交差撚りと、各層の高強力繊維束が同一ピッチになるように1工程で撚る平行撚りがあるがいずれでもよい。
 また、定着治具と一体化した複合材として、例えば、鉄筋の代替としての筋材として用いる場合には、ストランド構造体を構成する高強力繊維複合材の本数は、2本~50本程度である。
 また、炭素繊維糸を12000本束ねたもの(12k)を高強力繊維束5として用い、ワイヤーとして使用するためのストランド構造体を得る場合には、ストランド構造体を構成する高強力繊維複合材の本数は2本~50本程度である。
 ストランド構造体に用いる高強力繊維束の本数が上記の本数では強度の面より不足している場合には、さらに高強力繊維束の本数を増やしてもよいが、ストランド構造体の引張強度の観点から、以下に説明するストランド構造体を2本以上撚り合せた実施の形態4のマルチストランド構造体であるとよい。
(実施の形態4)
 本発明の実施の形態4を図5A及び図5Bに基づき説明する。なお、図5A及び図5Bにおいては、図1~4と同じ構成のものは同符号を付して説明を省略する
 実施の形態4に係るマルチストランド構造体100の断面図を図5A、側面図を図5Bに示す。マルチストランド構造体100は、本発明の実施の形態3で説明したストランド構造体10を7本備えてなり、中心に配置された1本のストランド構造体10a(以下、「芯ストランド10a」と称す場合がある。)を他の6本のストランド構造体10bが取り囲む構造を有する。すなわち、マルチストランド構造体100は、芯ストランド10aと芯ストランド10aの取り囲む6本のストランド構造体10bが撚り合わされているストランド構造を有しており、かつ、その構成部材であるストランド構造体10自体が高強力繊維複合材1aに由来する高い性能を有するため、単にストランド構造体10を7本引き揃えた場合と比較して、より強度の安定したストランド構造体となる。また、ストランド構造体10は上述のように、外周の全面を覆うように組紐状に拘束材3が配置された7本の高強力繊維複合材1aによって構成され、組紐状に配置された拘束材3が内部の高強力繊維束5に対する保護層として機能する。
 そのため、鉄筋の代替物となる筋材や、PC鋼線代替物として緊張材等のロッド状のようになど、特に引張強度が求められる用途に好適である。
 なお、マルチストランド構造体100において、その構成部材としてストランド構造体10を使用しているが、これに限定されず、本発明の実施の形態3に準ずる他のストランド構造体を用いることができる。
 マルチストランド構造体100を構成するストランド構造体10の本数は7本であるが、これに限定されず、目的とする性能(特に引張強度)、用途を考慮して適宜決定され、通常、2~40本である。40本を超えると所定のピッチで撚りをかけることが困難になるおそれがあるため、好適には7~37本である。
 マルチストランド構造体100の撚り数は、目的とする性能(特に引張強度)、用途を考慮して適宜決定される。
 マルチストランド構造体100の撚り数は0.3~30回/mであることが好ましく、ストランド構造体10の本数が7~37本の場合には、0.5~15回/mが好ましい。
 なお、図5A及び図5Bに示すマルチストランド構造体100は、芯ストランド10aを取り囲むように芯となる芯ストランド10aと他のストランド構造体10bとが撚り合されているが、マルチストランド構造体100の構造として、必要本数(例えば、2~50本)のストランド構造体10を束ね、束ねられたストランド構造体全体に撚りを掛けて、芯ストランドのないマルチストランド構造体としてもよい。
 マルチストランド構造体100は、公知の撚線機、撚合機、撚集合機等を使用して、製造することができる。すなわち、ストランド構造体10を所定の撚り数になるように撚り合して製造すればよい。なお、製造後の長尺のマルチストランド構造体100は切断せずに、長尺のまま、ドラムに巻き取り、施工が決まった後、任意の長さに切断して用いることができる。また、ドラムには巻かずにあらかじめ任意の長さに切断してもよい。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、本発明の技術的思想の範囲内で上記以外の様々な構成を採用することもできる。
 以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。
 実施例1:高強力繊維複合材
 撚りをかけた高強力繊維束としてS方向に30回/m撚りをかけた24Kの炭素繊維束(PAN系炭素繊維。東レ株式会社製。T700SC。)1本を用い、拘束材としてポリエステル繊維(1100デシテックスのポリエステル繊維束)を用い、製紐機(24打機)を用いて、8打ちの石目打にて、24Kの炭素繊維束の周りの全面を組紐状にポリエステル繊維で拘束した。拘束材による炭素繊維束表面の被覆率は、ほぼ100%であり、内部の炭素繊維束は目視できなかった。
 次に、図2に構成を示した装置を用い、重合型の熱可塑性エポキシ樹脂(DENATITE TPEP-AA-MEK-05B、ナガセケムテックス株式会社製)100質量部、硬化剤(XNH6850RIN-K、ナガセケムテックス株式会社製) 6.5質量部、メチルエチルケトン(MEK)1.6部からなる溶液(粘度100mPa・s、B型粘度計、ローターNo.20、12rpm。東機産業株式会社:TVB-15形粘度計)を、拘束された炭素繊維束に対し、20℃で付与した。その後、熱処理(150℃、20分間)を行うことで、前記重合型の熱可塑性エポキシ樹脂を重合させて、撚りがかかった状態の炭素繊維束と拘束材とが熱可塑性エポキシ樹脂(固化剤)で一体化した芯線からなる実施例1の高強力繊維複合材を得た。図6に実施例1の高強力繊維複合材の外観写真を示す。 得られた実施例1の高強力繊維複合材は、直径2.0mm(ノギスで測定)であった。
 実施例1の高強力繊維複合材を室温で直径50cmのドラムに巻きとったところ、折れることなく、スムーズに巻き取ることができた。
実施例2:高強力繊維複合材
 拘束材としてポリエステル繊維(1100デシテックスのポリエステル繊維束)に変えてビニロン繊維(1100デシテックスのビニロン繊維)を用いた以外は実施例1と同様にし、実施例2の高強力繊維複合材を得た。
 得られた高強力繊維複合材を10本引き揃え、室温で直径60cm及び50cmの径のドラムに巻き取った状態で一か月放置した。次に、一か月放置した高強力繊維複合材を60cmに切断し、10本束ね、それぞれの端部をネジを切った鋼管(長さ120mm、内径14mm、外形20mm)に挿入し、ウレタン系接着剤(UM890改1 主剤 1質量部、硬化剤 2質量部。セメダイン株式会社製)を用いて固定し、JIS K7165に準拠して、引張試験装置は株式会社島津製作所製 AG-100kN plusを使用し、試験片 A形、試験速度2mm/分、治具は丸棒用V溝平行目を用いて引張強度を測定した。また、巻き取らずにまっすぐな状態で保管したものも引張強度を測定した。
 結果は、巻き取っていないもの41.7kN、50cmに巻き取って保管したもの42.0kN、60cmに巻き取って保管したもの44.9kNと巻き取って保管したものにおいて引張強度の低下は見られなかった。
実施例3:ストランド構造体
 実施例1で得られたドラムに巻かれた高強力繊維複合材10本を束ね、120℃に加熱しながら、束ねられた10本の高強力繊維複合材全体にZ方向に20回/mで撚りをかけ、当該10本の高強力繊維複合材を撚り合わせて室温で70cmの径のドラムに巻きとることにより、実施例3のストランド構造体を得た。得られた実施例3のストランド構造体は、芯となる高強力繊維複合材がない構造であった。図7に実施例3のストランド構造体の外観写真を示す。
 得られた長尺のストランド構造体を2mに切断してロッドとし、それぞれの端部をネジを切った鋼管(長さ120mm、内径14mm、外形20mm)に挿入し、ウレタン系接着剤(UM890改1 主剤 1質量部、硬化剤 2質量部。セメダイン株式会社製)を用いて固定し、JSCE-E532-1995に準拠して、曲げ引張強度評価装置(株式会社東京試験機製、RAT100DE-S)を用いて実施例3のストランド構造体の曲げ引張強度を測定した。曲げ引張強度試験で用いたR部の径は300mmと500mmである。試験速度は100~500N/mm2で行った。曲げ角度は180°である。
 結果は、300mmでは66kN、500mmでは66kNとどちらも優れた引張強度を有していた。各径の治具に取り付けるときは加熱は行わず、室温にて取付をおこなった
実施例4:ストランド構造体
 使用する実施例1の高強力繊維複合材を7本準備し、1本の高強力繊維複合材を芯とし、これを6本の高強力複合材で取り囲むように120℃に加熱しながら撚り数をZ方向に5回/mで撚り合せた実施例4のストランド構造体を得た。図8に外観写真を示す。
実施例5:マルチストランド構造体
 実施例1の高強力繊維複合材37本準備し、120℃に加熱しながらS方向に8回/m撚り合せ1×6×12×18の4層構造のストランド構造体を得た。次に、このストランド構造体7本を、1本のストランド構造体を芯とし、これを6本のストランド構造体で取り囲むように120℃に加熱しながらZ方向に5回/mで撚り合せることで実施例5のマルチストランド構造体を得た。図9に実施例5のマルチストランド構造体の外観写真を示す。
比較例1
 高強力繊維束として、撚りをかけていない24Kの炭素繊維束(PAN系炭素繊維、東レ株式会社製、T700SC)1本を用いた以外は、実施例1と同様にして、比較例1の高強力繊維複合材を得た。比較例1の高強力繊維複合材を用いて、実施例3と同様の曲げ引張強度試験を試みたところ、300mmのR部、500mmのR部に取り付けると折れてしまった。
比較例2
 実施例3のストランド構造体に準じる形態として、比較例1の高強力繊維複合材10本を撚りをかけずに引きそろえて、実施例3と同様の曲げ引張強度を試みたところ、500mmのR部に取り付けるときに折れてしまった。
 本発明の高強力繊維複合材及びストランド構造体並びにマルチストランド構造体は、炭素繊維糸などの高強力繊維糸本来の引張強度や弾性係数等の機械的性能を十分に発揮することから、土木、建設、船舶、鉱業や漁業などのあらゆる産業分野へ適用することができるため、工業的に有望である。

Claims (13)

  1.  高強力繊維糸を束ねてなる高強力繊維束に撚りをかけ、当該撚りがかかった高強力繊維束を固化剤により固化した芯線を有してなることを特徴とする高強力繊維複合材。
  2.  前記高強力繊維束がその周囲に拘束材を巻き回して結束され、前記高強力繊維束に撚りがかかった状態で当該拘束材と共に固化剤によって一体化して前記芯線を構成してなる請求項1に記載の高強力繊維複合材。
  3.  前記高強力繊維束の撚り数が、2~50回/mである請求項1または2に記載の高強力繊維複合材。
  4.  前記固化剤が、熱可塑性樹脂である請求項1から3のいずれかに記載の高強力繊維複合材。
  5.  前記熱可塑性樹脂が、熱可塑性エポキシ樹脂である請求項4に記載の高強力繊維複合材。
  6.  前記芯線の直径が1~5mmである請求項1から5のいずれかに記載の高強力繊維複合材。
  7.  前記高強力繊維糸が、炭素繊維またはバサルト繊維を含む請求項1から6のいずれかに記載の高強力繊維複合材。
  8.  請求項1から7のいずれかに記載の高強力繊維複合材を2本以上撚り合わせて構成されるストランド構造を有することを特徴とするストランド構造体。
  9.  撚り数が1.1~50回/mである請求項8に記載のストランド構造体。
  10.  ストランド構造体を構成する高強力繊維複合材の本数が、2~40本である請求項8または9に記載のストランド構造体。
  11.  請求項8から10のいずれかに記載のストランド構造体を2本以上撚り合わせて構成されるストランド構造を有することを特徴とするマルチストランド構造体。
  12.  撚り数が0.3~30回/mである請求項11に記載のマルチストランド構造体。
  13.  マルチストランド構造体を構成するストランド構造体の本数が、2~40本である請求項11または12に記載のマルチストランド構造体。
PCT/JP2014/064127 2013-06-05 2014-05-28 高強力繊維複合材及びストランド構造体並びにマルチストランド構造体 WO2014196432A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015521406A JP6129963B2 (ja) 2013-06-05 2014-05-28 高強力繊維複合材及びストランド構造体並びにマルチストランド構造体
EP14808311.6A EP3006611B1 (en) 2013-06-05 2014-05-28 Strand structure, and multi-strand structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013119113 2013-06-05
JP2013-119113 2013-06-05

Publications (1)

Publication Number Publication Date
WO2014196432A1 true WO2014196432A1 (ja) 2014-12-11

Family

ID=52008081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064127 WO2014196432A1 (ja) 2013-06-05 2014-05-28 高強力繊維複合材及びストランド構造体並びにマルチストランド構造体

Country Status (3)

Country Link
EP (1) EP3006611B1 (ja)
JP (1) JP6129963B2 (ja)
WO (1) WO2014196432A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104613080A (zh) * 2015-01-30 2015-05-13 柳州市莫尔斯汽配制造有限公司 高强度刹车线
JP2017177394A (ja) * 2016-03-28 2017-10-05 小松精練株式会社 不燃性炭素繊維複合材
JP2017201090A (ja) * 2016-05-02 2017-11-09 小松精練株式会社 耐震補強材
WO2019021818A1 (ja) * 2017-07-24 2019-01-31 東京製綱株式会社 高強度繊維複合材ケーブル
JP2019026960A (ja) * 2017-07-28 2019-02-21 公益財団法人鉄道総合技術研究所 無機系繊維の製造方法
JP2019044542A (ja) * 2017-09-06 2019-03-22 小松マテーレ株式会社 コンクリート柱補強器具
JP2019049189A (ja) * 2017-09-11 2019-03-28 小松マテーレ株式会社 木舞構造および塗壁
JP2019089660A (ja) * 2017-11-10 2019-06-13 オーチス エレベータ カンパニーOtis Elevator Company エレベータシステム用のベルト、およびエレベータシステム
WO2019172246A1 (ja) 2018-03-06 2019-09-12 東レ株式会社 炭素繊維およびその製造方法
WO2019172247A1 (ja) 2018-03-06 2019-09-12 東レ株式会社 炭素繊維束およびその製造方法
CN110303732A (zh) * 2019-07-22 2019-10-08 吴江市美林格纺织品有限公司 一种防止断裂的乱麻
JP2021063319A (ja) * 2019-10-16 2021-04-22 株式会社豊田中央研究所 炭素繊維撚糸装置
CN113242784A (zh) * 2018-12-13 2021-08-10 赛峰航空器发动机 包含纤维预制件的涡轮发动机部件
CN114855483A (zh) * 2022-04-29 2022-08-05 浙江百傲新材料有限公司 一种聚酯线绳生产线
CN117187999A (zh) * 2023-11-06 2023-12-08 常州市武进广宇花辊机械有限公司 一种大丝束碳纤维控径抽丝加工收卷一体化设备
US12030261B2 (en) 2018-12-13 2024-07-09 Safran Aircraft Engines Turbomachine component comprising a fibrous preform

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10961360B2 (en) 2014-01-10 2021-03-30 Komatsu Matere Co., Ltd. Fiber-reinforced resin material and molded fiber-reinforced resin body obtained using the same
GB2558654A (en) * 2017-01-16 2018-07-18 Univ Bath Fibre ropes and composite materials containing fibre ropes
US20230407561A1 (en) 2020-11-02 2023-12-21 Kv R&D Center Gmbh Cable, Strand, and Method and Device for Producing a Cable and a Strand
CN114804765A (zh) * 2022-04-18 2022-07-29 扬州大学 一种掺杂有束状绞联玄武岩纤维的混凝土及其制法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03125089U (ja) * 1990-03-30 1991-12-18
WO2006043311A1 (ja) * 2004-10-19 2006-04-27 Tokyo Rope Manufacturing Co.,Ltd. 高強度繊維複合材からなるケーブル
JP2006182915A (ja) * 2004-12-27 2006-07-13 Daicel Chem Ind Ltd 繊維強化樹脂組成物で構成された成形用基材及びその製造方法
JP2006348506A (ja) 2005-06-14 2006-12-28 Keiichi Ikeda ブレース材固定具とこのブレース材固定具を有する補強用ブレース
JP2012084240A (ja) 2010-10-06 2012-04-26 Fujikura Ltd 作用極及びこれを有する色素増感太陽電池
JP2012136814A (ja) 2010-12-10 2012-07-19 Komatsu Seiren Co Ltd 紐状強化繊維複合体
JP2012251378A (ja) * 2011-06-03 2012-12-20 Komatsu Seiren Co Ltd 紐状強化繊維複合体
JP2013011162A (ja) * 2011-04-01 2013-01-17 Komatsu Seiren Co Ltd 定着治具およびこれを用いた筋材
JP2013213305A (ja) * 2011-12-28 2013-10-17 Komatsu Seiren Co Ltd 高強力繊維線材及び該高強力繊維線材を有してなる複合材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128092A (ja) * 1984-07-11 1986-02-07 東京製綱繊維ロ−プ株式会社 複合線条体およびその製造方法
JPH01174413A (ja) * 1987-12-28 1989-07-11 Toyobo Co Ltd 複合糸プリプレグ
JP2599187B2 (ja) * 1988-10-11 1997-04-09 東京製綱株式会社 複合線条体の製造方法
CN101715500A (zh) * 2007-05-18 2010-05-26 萨姆森罗普技术公司 复合绳子结构以及用于制造复合绳子结构的系统和方法
JP2009013512A (ja) * 2007-06-30 2009-01-22 Scalar High Touch Kk ゴム補強用炭素繊維コードの製造方法およびゴム補強用炭素繊維コード
CA2716359C (en) * 2008-02-28 2014-01-21 Bell Helicopter Textron Inc. Uncured composite rope including a plurality of different fiber materials
JP5633743B2 (ja) * 2009-01-09 2014-12-03 ナガセケムテックス株式会社 可視光に対して透明性を有する熱可塑性エポキシ樹脂硬化物の製造方法及び熱可塑性エポキシ樹脂組成物
CN102081993A (zh) * 2009-11-30 2011-06-01 单云刚 一种多芯绞合型碳纤维复合材料电缆芯
JP5505776B2 (ja) * 2009-12-15 2014-05-28 ナガセケムテックス株式会社 ホットメルト型接着剤及びrtm成形方法
JP3158927U (ja) * 2010-02-09 2010-04-22 東京製綱株式会社 繊維複合型撚合ケーブル

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03125089U (ja) * 1990-03-30 1991-12-18
WO2006043311A1 (ja) * 2004-10-19 2006-04-27 Tokyo Rope Manufacturing Co.,Ltd. 高強度繊維複合材からなるケーブル
US20080028740A1 (en) 2004-10-19 2008-02-07 Kenichi Ushijima Cable Made Of High Strength Fiber Composite Material
JP2006182915A (ja) * 2004-12-27 2006-07-13 Daicel Chem Ind Ltd 繊維強化樹脂組成物で構成された成形用基材及びその製造方法
JP2006348506A (ja) 2005-06-14 2006-12-28 Keiichi Ikeda ブレース材固定具とこのブレース材固定具を有する補強用ブレース
JP2012084240A (ja) 2010-10-06 2012-04-26 Fujikura Ltd 作用極及びこれを有する色素増感太陽電池
JP2012136814A (ja) 2010-12-10 2012-07-19 Komatsu Seiren Co Ltd 紐状強化繊維複合体
JP2013011162A (ja) * 2011-04-01 2013-01-17 Komatsu Seiren Co Ltd 定着治具およびこれを用いた筋材
JP2012251378A (ja) * 2011-06-03 2012-12-20 Komatsu Seiren Co Ltd 紐状強化繊維複合体
JP2013213305A (ja) * 2011-12-28 2013-10-17 Komatsu Seiren Co Ltd 高強力繊維線材及び該高強力繊維線材を有してなる複合材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3006611A4 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104613080A (zh) * 2015-01-30 2015-05-13 柳州市莫尔斯汽配制造有限公司 高强度刹车线
JP2017177394A (ja) * 2016-03-28 2017-10-05 小松精練株式会社 不燃性炭素繊維複合材
JP2017201090A (ja) * 2016-05-02 2017-11-09 小松精練株式会社 耐震補強材
WO2019021818A1 (ja) * 2017-07-24 2019-01-31 東京製綱株式会社 高強度繊維複合材ケーブル
JP2019023363A (ja) * 2017-07-24 2019-02-14 東京製綱株式会社 高強度繊維複合材ケーブル
JP2019026960A (ja) * 2017-07-28 2019-02-21 公益財団法人鉄道総合技術研究所 無機系繊維の製造方法
JP2019044542A (ja) * 2017-09-06 2019-03-22 小松マテーレ株式会社 コンクリート柱補強器具
JP7162476B2 (ja) 2017-09-11 2022-10-28 小松マテーレ株式会社 木舞構造および塗壁
JP2019049189A (ja) * 2017-09-11 2019-03-28 小松マテーレ株式会社 木舞構造および塗壁
JP2019089660A (ja) * 2017-11-10 2019-06-13 オーチス エレベータ カンパニーOtis Elevator Company エレベータシステム用のベルト、およびエレベータシステム
JP7306814B2 (ja) 2017-11-10 2023-07-11 オーチス エレベータ カンパニー エレベータシステム用のベルト、およびエレベータシステム
WO2019172246A1 (ja) 2018-03-06 2019-09-12 東レ株式会社 炭素繊維およびその製造方法
WO2019172247A1 (ja) 2018-03-06 2019-09-12 東レ株式会社 炭素繊維束およびその製造方法
US11834758B2 (en) 2018-03-06 2023-12-05 Toray Industries, Inc. Carbon fiber bundle and production method therefor
KR20200126394A (ko) 2018-03-06 2020-11-06 도레이 카부시키가이샤 탄소 섬유 및 그의 제조 방법
KR20200127204A (ko) 2018-03-06 2020-11-10 도레이 카부시키가이샤 탄소 섬유 다발 및 그의 제조 방법
CN113242784B (zh) * 2018-12-13 2023-08-15 赛峰航空器发动机 包含纤维预制件的涡轮发动机部件
CN113242784A (zh) * 2018-12-13 2021-08-10 赛峰航空器发动机 包含纤维预制件的涡轮发动机部件
US12030261B2 (en) 2018-12-13 2024-07-09 Safran Aircraft Engines Turbomachine component comprising a fibrous preform
CN110303732A (zh) * 2019-07-22 2019-10-08 吴江市美林格纺织品有限公司 一种防止断裂的乱麻
JP7059997B2 (ja) 2019-10-16 2022-04-26 株式会社豊田中央研究所 炭素繊維撚糸装置
JP2021063319A (ja) * 2019-10-16 2021-04-22 株式会社豊田中央研究所 炭素繊維撚糸装置
CN114855483A (zh) * 2022-04-29 2022-08-05 浙江百傲新材料有限公司 一种聚酯线绳生产线
CN117187999A (zh) * 2023-11-06 2023-12-08 常州市武进广宇花辊机械有限公司 一种大丝束碳纤维控径抽丝加工收卷一体化设备
CN117187999B (zh) * 2023-11-06 2024-01-26 常州市武进广宇花辊机械有限公司 一种大丝束碳纤维控径抽丝加工收卷一体化设备

Also Published As

Publication number Publication date
EP3006611B1 (en) 2019-02-20
EP3006611A1 (en) 2016-04-13
EP3006611A4 (en) 2016-12-07
JP6129963B2 (ja) 2017-05-17
JPWO2014196432A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6129963B2 (ja) 高強力繊維複合材及びストランド構造体並びにマルチストランド構造体
JP5953554B2 (ja) 高強力繊維線材及び該高強力繊維線材を有してなる複合材
JP5758203B2 (ja) 紐状強化繊維複合体およびコンクリート補強筋材並びにブレース材
US20080282664A1 (en) Composite rope structures and systems and methods for making composite rope structures
JP5670230B2 (ja) 紐状強化繊維複合体
RU2482247C2 (ru) Способ изготовления неметаллического арматурного элемента с периодической поверхностью и арматурный элемент с периодической поверхностью
JP6022186B2 (ja) 筋材
JP6022188B2 (ja) 引張材
JP6199440B2 (ja) 高強力繊維線材及び該高強力繊維線材を有してなる複合材
JP5808598B2 (ja) 木製部材の接合部構造
JP6830763B2 (ja) 耐震補強材
JP6794152B2 (ja) 接合構造体
JP6576865B2 (ja) 不燃性炭素繊維複合材
JP5801129B2 (ja) 木製部材の接合方法
JP5801130B2 (ja) 木製部材補強用の高強力繊維線材およびそれを用いた木製部材の接合構造
JP2021147791A (ja) 結束具及び結束方法
WO1994015015A1 (en) Complex fiber string and method of manufacturing the same
JP2017036519A (ja) 強化用組紐構造体及びこれを用いた複合材料
JP6705958B1 (ja) 繊維ロッド結束具及び繊維ロッド結束方法
JP6022187B2 (ja) 引張材
JP7369610B2 (ja) 接合構造体
JP2008139582A (ja) 繊維コードテンションメンバー
JP2005283624A (ja) 光ファイバケーブル及びその製造方法
JPH06212736A (ja) 脆性化学繊維製構造用材料及びその製造方法
JP2015172261A (ja) アラミド繊維ロッド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14808311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521406

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014808311

Country of ref document: EP